1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCPerfectShuffle.h"
19 #include "PPCTargetMachine.h"
20 #include "PPCTargetObjectFile.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
46 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
47 
48 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
49 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
50 
51 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
52 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
53 
54 // FIXME: Remove this once the bug has been fixed!
55 extern cl::opt<bool> ANDIGlueBug;
56 
57 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
58                                      const PPCSubtarget &STI)
59     : TargetLowering(TM), Subtarget(STI) {
60   // Use _setjmp/_longjmp instead of setjmp/longjmp.
61   setUseUnderscoreSetJmp(true);
62   setUseUnderscoreLongJmp(true);
63 
64   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
65   // arguments are at least 4/8 bytes aligned.
66   bool isPPC64 = Subtarget.isPPC64();
67   setMinStackArgumentAlignment(isPPC64 ? 8:4);
68 
69   // Set up the register classes.
70   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
71   if (!Subtarget.useSoftFloat()) {
72     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
73     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
74   }
75 
76   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
77   for (MVT VT : MVT::integer_valuetypes()) {
78     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
80   }
81 
82   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
83 
84   // PowerPC has pre-inc load and store's.
85   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
86   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
87   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
88   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
89   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
90   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
91   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
92   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
93   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
94   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
95   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
96   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
99 
100   if (Subtarget.useCRBits()) {
101     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
102 
103     if (isPPC64 || Subtarget.hasFPCVT()) {
104       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
105       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
106                          isPPC64 ? MVT::i64 : MVT::i32);
107       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
108       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
109                         isPPC64 ? MVT::i64 : MVT::i32);
110     } else {
111       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
112       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
113     }
114 
115     // PowerPC does not support direct load / store of condition registers
116     setOperationAction(ISD::LOAD, MVT::i1, Custom);
117     setOperationAction(ISD::STORE, MVT::i1, Custom);
118 
119     // FIXME: Remove this once the ANDI glue bug is fixed:
120     if (ANDIGlueBug)
121       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
122 
123     for (MVT VT : MVT::integer_valuetypes()) {
124       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
125       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126       setTruncStoreAction(VT, MVT::i1, Expand);
127     }
128 
129     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
130   }
131 
132   // This is used in the ppcf128->int sequence.  Note it has different semantics
133   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
134   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
135 
136   // We do not currently implement these libm ops for PowerPC.
137   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
138   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
139   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
140   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
141   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
142   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
143 
144   // PowerPC has no SREM/UREM instructions
145   setOperationAction(ISD::SREM, MVT::i32, Expand);
146   setOperationAction(ISD::UREM, MVT::i32, Expand);
147   setOperationAction(ISD::SREM, MVT::i64, Expand);
148   setOperationAction(ISD::UREM, MVT::i64, Expand);
149 
150   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
151   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
152   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
153   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
154   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
155   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
156   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
157   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
158   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
159 
160   // We don't support sin/cos/sqrt/fmod/pow
161   setOperationAction(ISD::FSIN , MVT::f64, Expand);
162   setOperationAction(ISD::FCOS , MVT::f64, Expand);
163   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
164   setOperationAction(ISD::FREM , MVT::f64, Expand);
165   setOperationAction(ISD::FPOW , MVT::f64, Expand);
166   setOperationAction(ISD::FMA  , MVT::f64, Legal);
167   setOperationAction(ISD::FSIN , MVT::f32, Expand);
168   setOperationAction(ISD::FCOS , MVT::f32, Expand);
169   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
170   setOperationAction(ISD::FREM , MVT::f32, Expand);
171   setOperationAction(ISD::FPOW , MVT::f32, Expand);
172   setOperationAction(ISD::FMA  , MVT::f32, Legal);
173 
174   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
175 
176   // If we're enabling GP optimizations, use hardware square root
177   if (!Subtarget.hasFSQRT() &&
178       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
179         Subtarget.hasFRE()))
180     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
181 
182   if (!Subtarget.hasFSQRT() &&
183       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
184         Subtarget.hasFRES()))
185     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
186 
187   if (Subtarget.hasFCPSGN()) {
188     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
189     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
190   } else {
191     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
192     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
193   }
194 
195   if (Subtarget.hasFPRND()) {
196     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
197     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
198     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
199     setOperationAction(ISD::FROUND, MVT::f64, Legal);
200 
201     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
202     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
203     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
204     setOperationAction(ISD::FROUND, MVT::f32, Legal);
205   }
206 
207   // PowerPC does not have BSWAP, CTPOP or CTTZ
208   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
209   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
210   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
211   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
212   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
213   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
214   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
215   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
216 
217   if (Subtarget.hasPOPCNTD()) {
218     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
219     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
220   } else {
221     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
222     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
223   }
224 
225   // PowerPC does not have ROTR
226   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
227   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
228 
229   if (!Subtarget.useCRBits()) {
230     // PowerPC does not have Select
231     setOperationAction(ISD::SELECT, MVT::i32, Expand);
232     setOperationAction(ISD::SELECT, MVT::i64, Expand);
233     setOperationAction(ISD::SELECT, MVT::f32, Expand);
234     setOperationAction(ISD::SELECT, MVT::f64, Expand);
235   }
236 
237   // PowerPC wants to turn select_cc of FP into fsel when possible.
238   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
239   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
240 
241   // PowerPC wants to optimize integer setcc a bit
242   if (!Subtarget.useCRBits())
243     setOperationAction(ISD::SETCC, MVT::i32, Custom);
244 
245   // PowerPC does not have BRCOND which requires SetCC
246   if (!Subtarget.useCRBits())
247     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
248 
249   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
250 
251   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
252   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
253 
254   // PowerPC does not have [U|S]INT_TO_FP
255   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
256   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
257 
258   if (Subtarget.hasDirectMove()) {
259     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
260     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
261     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
262     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
263   } else {
264     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
265     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
266     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
267     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
268   }
269 
270   // We cannot sextinreg(i1).  Expand to shifts.
271   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
272 
273   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
274   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
275   // support continuation, user-level threading, and etc.. As a result, no
276   // other SjLj exception interfaces are implemented and please don't build
277   // your own exception handling based on them.
278   // LLVM/Clang supports zero-cost DWARF exception handling.
279   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
280   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
281 
282   // We want to legalize GlobalAddress and ConstantPool nodes into the
283   // appropriate instructions to materialize the address.
284   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
285   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
286   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
287   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
288   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
289   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
290   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
291   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
292   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
293   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
294 
295   // TRAP is legal.
296   setOperationAction(ISD::TRAP, MVT::Other, Legal);
297 
298   // TRAMPOLINE is custom lowered.
299   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
300   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
301 
302   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
303   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
304 
305   if (Subtarget.isSVR4ABI()) {
306     if (isPPC64) {
307       // VAARG always uses double-word chunks, so promote anything smaller.
308       setOperationAction(ISD::VAARG, MVT::i1, Promote);
309       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
310       setOperationAction(ISD::VAARG, MVT::i8, Promote);
311       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
312       setOperationAction(ISD::VAARG, MVT::i16, Promote);
313       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
314       setOperationAction(ISD::VAARG, MVT::i32, Promote);
315       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
316       setOperationAction(ISD::VAARG, MVT::Other, Expand);
317     } else {
318       // VAARG is custom lowered with the 32-bit SVR4 ABI.
319       setOperationAction(ISD::VAARG, MVT::Other, Custom);
320       setOperationAction(ISD::VAARG, MVT::i64, Custom);
321     }
322   } else
323     setOperationAction(ISD::VAARG, MVT::Other, Expand);
324 
325   if (Subtarget.isSVR4ABI() && !isPPC64)
326     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
327     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
328   else
329     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
330 
331   // Use the default implementation.
332   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
333   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
334   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
335   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
336   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
337   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
338   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
339 
340   // We want to custom lower some of our intrinsics.
341   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
342 
343   // To handle counter-based loop conditions.
344   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
345 
346   // Comparisons that require checking two conditions.
347   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
348   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
349   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
350   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
351   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
352   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
353   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
354   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
355   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
356   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
357   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
358   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
359 
360   if (Subtarget.has64BitSupport()) {
361     // They also have instructions for converting between i64 and fp.
362     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
363     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
364     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
365     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
366     // This is just the low 32 bits of a (signed) fp->i64 conversion.
367     // We cannot do this with Promote because i64 is not a legal type.
368     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
369 
370     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
371       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
372   } else {
373     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
374     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
375   }
376 
377   // With the instructions enabled under FPCVT, we can do everything.
378   if (Subtarget.hasFPCVT()) {
379     if (Subtarget.has64BitSupport()) {
380       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
381       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
382       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
383       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
384     }
385 
386     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
387     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
388     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
389     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
390   }
391 
392   if (Subtarget.use64BitRegs()) {
393     // 64-bit PowerPC implementations can support i64 types directly
394     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
395     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
396     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
397     // 64-bit PowerPC wants to expand i128 shifts itself.
398     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
399     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
400     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
401   } else {
402     // 32-bit PowerPC wants to expand i64 shifts itself.
403     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
404     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
405     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
406   }
407 
408   if (Subtarget.hasAltivec()) {
409     // First set operation action for all vector types to expand. Then we
410     // will selectively turn on ones that can be effectively codegen'd.
411     for (MVT VT : MVT::vector_valuetypes()) {
412       // add/sub are legal for all supported vector VT's.
413       setOperationAction(ISD::ADD, VT, Legal);
414       setOperationAction(ISD::SUB, VT, Legal);
415 
416       // Vector instructions introduced in P8
417       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
418         setOperationAction(ISD::CTPOP, VT, Legal);
419         setOperationAction(ISD::CTLZ, VT, Legal);
420       }
421       else {
422         setOperationAction(ISD::CTPOP, VT, Expand);
423         setOperationAction(ISD::CTLZ, VT, Expand);
424       }
425 
426       // We promote all shuffles to v16i8.
427       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
428       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
429 
430       // We promote all non-typed operations to v4i32.
431       setOperationAction(ISD::AND   , VT, Promote);
432       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
433       setOperationAction(ISD::OR    , VT, Promote);
434       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
435       setOperationAction(ISD::XOR   , VT, Promote);
436       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
437       setOperationAction(ISD::LOAD  , VT, Promote);
438       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
439       setOperationAction(ISD::SELECT, VT, Promote);
440       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
441       setOperationAction(ISD::SELECT_CC, VT, Promote);
442       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
443       setOperationAction(ISD::STORE, VT, Promote);
444       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
445 
446       // No other operations are legal.
447       setOperationAction(ISD::MUL , VT, Expand);
448       setOperationAction(ISD::SDIV, VT, Expand);
449       setOperationAction(ISD::SREM, VT, Expand);
450       setOperationAction(ISD::UDIV, VT, Expand);
451       setOperationAction(ISD::UREM, VT, Expand);
452       setOperationAction(ISD::FDIV, VT, Expand);
453       setOperationAction(ISD::FREM, VT, Expand);
454       setOperationAction(ISD::FNEG, VT, Expand);
455       setOperationAction(ISD::FSQRT, VT, Expand);
456       setOperationAction(ISD::FLOG, VT, Expand);
457       setOperationAction(ISD::FLOG10, VT, Expand);
458       setOperationAction(ISD::FLOG2, VT, Expand);
459       setOperationAction(ISD::FEXP, VT, Expand);
460       setOperationAction(ISD::FEXP2, VT, Expand);
461       setOperationAction(ISD::FSIN, VT, Expand);
462       setOperationAction(ISD::FCOS, VT, Expand);
463       setOperationAction(ISD::FABS, VT, Expand);
464       setOperationAction(ISD::FPOWI, VT, Expand);
465       setOperationAction(ISD::FFLOOR, VT, Expand);
466       setOperationAction(ISD::FCEIL,  VT, Expand);
467       setOperationAction(ISD::FTRUNC, VT, Expand);
468       setOperationAction(ISD::FRINT,  VT, Expand);
469       setOperationAction(ISD::FNEARBYINT, VT, Expand);
470       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
471       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
472       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
473       setOperationAction(ISD::MULHU, VT, Expand);
474       setOperationAction(ISD::MULHS, VT, Expand);
475       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
476       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
477       setOperationAction(ISD::UDIVREM, VT, Expand);
478       setOperationAction(ISD::SDIVREM, VT, Expand);
479       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
480       setOperationAction(ISD::FPOW, VT, Expand);
481       setOperationAction(ISD::BSWAP, VT, Expand);
482       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
483       setOperationAction(ISD::CTTZ, VT, Expand);
484       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
485       setOperationAction(ISD::VSELECT, VT, Expand);
486       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
487       setOperationAction(ISD::ROTL, VT, Expand);
488       setOperationAction(ISD::ROTR, VT, Expand);
489 
490       for (MVT InnerVT : MVT::vector_valuetypes()) {
491         setTruncStoreAction(VT, InnerVT, Expand);
492         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
493         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
494         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
495       }
496     }
497 
498     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
499     // with merges, splats, etc.
500     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
501 
502     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
503     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
504     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
505     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
506     setOperationAction(ISD::SELECT, MVT::v4i32,
507                        Subtarget.useCRBits() ? Legal : Expand);
508     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
509     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
510     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
511     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
512     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
513     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
514     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
515     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
516     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
517 
518     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
519     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
520     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
521     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
522 
523     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
524     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
525 
526     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
527       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
528       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
529     }
530 
531     if (Subtarget.hasP8Altivec())
532       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
533     else
534       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
535 
536     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
537     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
538 
539     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
540     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
541 
542     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
543     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
544     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
545     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
546 
547     // Altivec does not contain unordered floating-point compare instructions
548     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
549     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
550     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
551     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
552 
553     if (Subtarget.hasVSX()) {
554       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
555       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
556       if (Subtarget.hasP8Vector()) {
557         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
558         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
559       }
560       if (Subtarget.hasDirectMove()) {
561         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
562         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
563         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
564         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
565         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
566         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
567         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
568         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
569       }
570       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
571 
572       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
573       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
574       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
575       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
576       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
577 
578       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
579 
580       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
581       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
582 
583       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
584       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
585 
586       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
587       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
588       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
589       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
590       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
591 
592       // Share the Altivec comparison restrictions.
593       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
594       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
595       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
596       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
597 
598       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
599       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
600 
601       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
602 
603       if (Subtarget.hasP8Vector())
604         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
605 
606       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
607 
608       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
609       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
610       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
611 
612       if (Subtarget.hasP8Altivec()) {
613         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
614         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
615         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
616 
617         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
618       }
619       else {
620         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
621         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
622         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
623 
624         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
625 
626         // VSX v2i64 only supports non-arithmetic operations.
627         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
628         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
629       }
630 
631       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
632       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
633       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
634       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
635 
636       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
637 
638       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
639       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
640       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
641       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
642 
643       // Vector operation legalization checks the result type of
644       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
645       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
646       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
647       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
648       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
649 
650       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
651       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
652 
653       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
654     }
655 
656     if (Subtarget.hasP8Altivec()) {
657       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
658       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
659     }
660   }
661 
662   if (Subtarget.hasQPX()) {
663     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
664     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
665     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
666     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
667 
668     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
669     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
670 
671     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
672     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
673 
674     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
675     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
676 
677     if (!Subtarget.useCRBits())
678       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
679     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
680 
681     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
682     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
683     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
684     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
685     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
686     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
687     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
688 
689     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
690     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
691 
692     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
693     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
694     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
695 
696     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
697     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
698     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
699     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
700     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
701     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
702     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
703     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
704     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
705     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
706     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
707 
708     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
709     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
710 
711     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
712     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
713 
714     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
715 
716     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
717     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
718     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
719     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
720 
721     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
722     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
723 
724     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
725     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
726 
727     if (!Subtarget.useCRBits())
728       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
729     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
730 
731     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
732     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
733     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
734     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
735     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
736     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
737     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
738 
739     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
740     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
741 
742     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
743     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
744     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
745     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
746     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
747     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
748     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
749     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
750     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
751     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
752     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
753 
754     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
755     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
756 
757     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
758     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
759 
760     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
761 
762     setOperationAction(ISD::AND , MVT::v4i1, Legal);
763     setOperationAction(ISD::OR , MVT::v4i1, Legal);
764     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
765 
766     if (!Subtarget.useCRBits())
767       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
768     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
769 
770     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
771     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
772 
773     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
774     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
775     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
776     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
777     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
778     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
779     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
780 
781     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
782     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
783 
784     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
785 
786     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
787     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
788     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
789     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
790 
791     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
792     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
793     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
794     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
795 
796     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
797     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
798 
799     // These need to set FE_INEXACT, and so cannot be vectorized here.
800     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
801     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
802 
803     if (TM.Options.UnsafeFPMath) {
804       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
805       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
806 
807       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
808       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
809     } else {
810       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
811       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
812 
813       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
814       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
815     }
816   }
817 
818   if (Subtarget.has64BitSupport())
819     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
820 
821   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
822 
823   if (!isPPC64) {
824     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
825     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
826   }
827 
828   setBooleanContents(ZeroOrOneBooleanContent);
829 
830   if (Subtarget.hasAltivec()) {
831     // Altivec instructions set fields to all zeros or all ones.
832     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
833   }
834 
835   if (!isPPC64) {
836     // These libcalls are not available in 32-bit.
837     setLibcallName(RTLIB::SHL_I128, nullptr);
838     setLibcallName(RTLIB::SRL_I128, nullptr);
839     setLibcallName(RTLIB::SRA_I128, nullptr);
840   }
841 
842   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
843 
844   // We have target-specific dag combine patterns for the following nodes:
845   setTargetDAGCombine(ISD::SINT_TO_FP);
846   if (Subtarget.hasFPCVT())
847     setTargetDAGCombine(ISD::UINT_TO_FP);
848   setTargetDAGCombine(ISD::LOAD);
849   setTargetDAGCombine(ISD::STORE);
850   setTargetDAGCombine(ISD::BR_CC);
851   if (Subtarget.useCRBits())
852     setTargetDAGCombine(ISD::BRCOND);
853   setTargetDAGCombine(ISD::BSWAP);
854   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
855   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
856   setTargetDAGCombine(ISD::INTRINSIC_VOID);
857 
858   setTargetDAGCombine(ISD::SIGN_EXTEND);
859   setTargetDAGCombine(ISD::ZERO_EXTEND);
860   setTargetDAGCombine(ISD::ANY_EXTEND);
861 
862   if (Subtarget.useCRBits()) {
863     setTargetDAGCombine(ISD::TRUNCATE);
864     setTargetDAGCombine(ISD::SETCC);
865     setTargetDAGCombine(ISD::SELECT_CC);
866   }
867 
868   // Use reciprocal estimates.
869   if (TM.Options.UnsafeFPMath) {
870     setTargetDAGCombine(ISD::FDIV);
871     setTargetDAGCombine(ISD::FSQRT);
872   }
873 
874   // Darwin long double math library functions have $LDBL128 appended.
875   if (Subtarget.isDarwin()) {
876     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
877     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
878     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
879     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
880     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
881     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
882     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
883     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
884     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
885     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
886   }
887 
888   // With 32 condition bits, we don't need to sink (and duplicate) compares
889   // aggressively in CodeGenPrep.
890   if (Subtarget.useCRBits()) {
891     setHasMultipleConditionRegisters();
892     setJumpIsExpensive();
893   }
894 
895   setMinFunctionAlignment(2);
896   if (Subtarget.isDarwin())
897     setPrefFunctionAlignment(4);
898 
899   switch (Subtarget.getDarwinDirective()) {
900   default: break;
901   case PPC::DIR_970:
902   case PPC::DIR_A2:
903   case PPC::DIR_E500mc:
904   case PPC::DIR_E5500:
905   case PPC::DIR_PWR4:
906   case PPC::DIR_PWR5:
907   case PPC::DIR_PWR5X:
908   case PPC::DIR_PWR6:
909   case PPC::DIR_PWR6X:
910   case PPC::DIR_PWR7:
911   case PPC::DIR_PWR8:
912     setPrefFunctionAlignment(4);
913     setPrefLoopAlignment(4);
914     break;
915   }
916 
917   setInsertFencesForAtomic(true);
918 
919   if (Subtarget.enableMachineScheduler())
920     setSchedulingPreference(Sched::Source);
921   else
922     setSchedulingPreference(Sched::Hybrid);
923 
924   computeRegisterProperties(STI.getRegisterInfo());
925 
926   // The Freescale cores do better with aggressive inlining of memcpy and
927   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
928   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
929       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
930     MaxStoresPerMemset = 32;
931     MaxStoresPerMemsetOptSize = 16;
932     MaxStoresPerMemcpy = 32;
933     MaxStoresPerMemcpyOptSize = 8;
934     MaxStoresPerMemmove = 32;
935     MaxStoresPerMemmoveOptSize = 8;
936   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
937     // The A2 also benefits from (very) aggressive inlining of memcpy and
938     // friends. The overhead of a the function call, even when warm, can be
939     // over one hundred cycles.
940     MaxStoresPerMemset = 128;
941     MaxStoresPerMemcpy = 128;
942     MaxStoresPerMemmove = 128;
943   }
944 }
945 
946 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
947 /// the desired ByVal argument alignment.
948 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
949                              unsigned MaxMaxAlign) {
950   if (MaxAlign == MaxMaxAlign)
951     return;
952   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
953     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
954       MaxAlign = 32;
955     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
956       MaxAlign = 16;
957   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
958     unsigned EltAlign = 0;
959     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
960     if (EltAlign > MaxAlign)
961       MaxAlign = EltAlign;
962   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
963     for (auto *EltTy : STy->elements()) {
964       unsigned EltAlign = 0;
965       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
966       if (EltAlign > MaxAlign)
967         MaxAlign = EltAlign;
968       if (MaxAlign == MaxMaxAlign)
969         break;
970     }
971   }
972 }
973 
974 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
975 /// function arguments in the caller parameter area.
976 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
977                                                   const DataLayout &DL) const {
978   // Darwin passes everything on 4 byte boundary.
979   if (Subtarget.isDarwin())
980     return 4;
981 
982   // 16byte and wider vectors are passed on 16byte boundary.
983   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
984   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
985   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
986     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
987   return Align;
988 }
989 
990 bool PPCTargetLowering::useSoftFloat() const {
991   return Subtarget.useSoftFloat();
992 }
993 
994 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
995   switch ((PPCISD::NodeType)Opcode) {
996   case PPCISD::FIRST_NUMBER:    break;
997   case PPCISD::FSEL:            return "PPCISD::FSEL";
998   case PPCISD::FCFID:           return "PPCISD::FCFID";
999   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1000   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1001   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1002   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1003   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1004   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1005   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1006   case PPCISD::FRE:             return "PPCISD::FRE";
1007   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1008   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1009   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1010   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1011   case PPCISD::VPERM:           return "PPCISD::VPERM";
1012   case PPCISD::CMPB:            return "PPCISD::CMPB";
1013   case PPCISD::Hi:              return "PPCISD::Hi";
1014   case PPCISD::Lo:              return "PPCISD::Lo";
1015   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1016   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1017   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1018   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1019   case PPCISD::SRL:             return "PPCISD::SRL";
1020   case PPCISD::SRA:             return "PPCISD::SRA";
1021   case PPCISD::SHL:             return "PPCISD::SHL";
1022   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1023   case PPCISD::CALL:            return "PPCISD::CALL";
1024   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1025   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1026   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1027   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1028   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1029   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1030   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1031   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1032   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1033   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1034   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1035   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1036   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1037   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1038   case PPCISD::VCMP:            return "PPCISD::VCMP";
1039   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1040   case PPCISD::LBRX:            return "PPCISD::LBRX";
1041   case PPCISD::STBRX:           return "PPCISD::STBRX";
1042   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1043   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1044   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1045   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1046   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1047   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1048   case PPCISD::BDZ:             return "PPCISD::BDZ";
1049   case PPCISD::MFFS:            return "PPCISD::MFFS";
1050   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1051   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1052   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1053   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1054   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1055   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1056   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1057   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1058   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1059   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1060   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1061   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1062   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1063   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1064   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1065   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1066   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1067   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1068   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1069   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1070   case PPCISD::SC:              return "PPCISD::SC";
1071   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1072   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1073   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1074   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1075   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1076   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1077   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1078   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1079   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1080   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1081   }
1082   return nullptr;
1083 }
1084 
1085 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1086                                           EVT VT) const {
1087   if (!VT.isVector())
1088     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1089 
1090   if (Subtarget.hasQPX())
1091     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1092 
1093   return VT.changeVectorElementTypeToInteger();
1094 }
1095 
1096 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1097   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1098   return true;
1099 }
1100 
1101 //===----------------------------------------------------------------------===//
1102 // Node matching predicates, for use by the tblgen matching code.
1103 //===----------------------------------------------------------------------===//
1104 
1105 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1106 static bool isFloatingPointZero(SDValue Op) {
1107   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1108     return CFP->getValueAPF().isZero();
1109   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1110     // Maybe this has already been legalized into the constant pool?
1111     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1112       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1113         return CFP->getValueAPF().isZero();
1114   }
1115   return false;
1116 }
1117 
1118 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1119 /// true if Op is undef or if it matches the specified value.
1120 static bool isConstantOrUndef(int Op, int Val) {
1121   return Op < 0 || Op == Val;
1122 }
1123 
1124 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1125 /// VPKUHUM instruction.
1126 /// The ShuffleKind distinguishes between big-endian operations with
1127 /// two different inputs (0), either-endian operations with two identical
1128 /// inputs (1), and little-endian operations with two different inputs (2).
1129 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1130 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1131                                SelectionDAG &DAG) {
1132   bool IsLE = DAG.getDataLayout().isLittleEndian();
1133   if (ShuffleKind == 0) {
1134     if (IsLE)
1135       return false;
1136     for (unsigned i = 0; i != 16; ++i)
1137       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1138         return false;
1139   } else if (ShuffleKind == 2) {
1140     if (!IsLE)
1141       return false;
1142     for (unsigned i = 0; i != 16; ++i)
1143       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1144         return false;
1145   } else if (ShuffleKind == 1) {
1146     unsigned j = IsLE ? 0 : 1;
1147     for (unsigned i = 0; i != 8; ++i)
1148       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1149           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1150         return false;
1151   }
1152   return true;
1153 }
1154 
1155 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1156 /// VPKUWUM instruction.
1157 /// The ShuffleKind distinguishes between big-endian operations with
1158 /// two different inputs (0), either-endian operations with two identical
1159 /// inputs (1), and little-endian operations with two different inputs (2).
1160 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1161 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1162                                SelectionDAG &DAG) {
1163   bool IsLE = DAG.getDataLayout().isLittleEndian();
1164   if (ShuffleKind == 0) {
1165     if (IsLE)
1166       return false;
1167     for (unsigned i = 0; i != 16; i += 2)
1168       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1169           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1170         return false;
1171   } else if (ShuffleKind == 2) {
1172     if (!IsLE)
1173       return false;
1174     for (unsigned i = 0; i != 16; i += 2)
1175       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1176           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1177         return false;
1178   } else if (ShuffleKind == 1) {
1179     unsigned j = IsLE ? 0 : 2;
1180     for (unsigned i = 0; i != 8; i += 2)
1181       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1182           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1183           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1184           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1185         return false;
1186   }
1187   return true;
1188 }
1189 
1190 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1191 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1192 /// current subtarget.
1193 ///
1194 /// The ShuffleKind distinguishes between big-endian operations with
1195 /// two different inputs (0), either-endian operations with two identical
1196 /// inputs (1), and little-endian operations with two different inputs (2).
1197 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1198 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1199                                SelectionDAG &DAG) {
1200   const PPCSubtarget& Subtarget =
1201     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1202   if (!Subtarget.hasP8Vector())
1203     return false;
1204 
1205   bool IsLE = DAG.getDataLayout().isLittleEndian();
1206   if (ShuffleKind == 0) {
1207     if (IsLE)
1208       return false;
1209     for (unsigned i = 0; i != 16; i += 4)
1210       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1211           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1212           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1213           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1214         return false;
1215   } else if (ShuffleKind == 2) {
1216     if (!IsLE)
1217       return false;
1218     for (unsigned i = 0; i != 16; i += 4)
1219       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1220           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1221           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1222           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1223         return false;
1224   } else if (ShuffleKind == 1) {
1225     unsigned j = IsLE ? 0 : 4;
1226     for (unsigned i = 0; i != 8; i += 4)
1227       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1228           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1229           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1230           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1231           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1232           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1233           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1234           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1235         return false;
1236   }
1237   return true;
1238 }
1239 
1240 /// isVMerge - Common function, used to match vmrg* shuffles.
1241 ///
1242 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1243                      unsigned LHSStart, unsigned RHSStart) {
1244   if (N->getValueType(0) != MVT::v16i8)
1245     return false;
1246   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1247          "Unsupported merge size!");
1248 
1249   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1250     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1251       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1252                              LHSStart+j+i*UnitSize) ||
1253           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1254                              RHSStart+j+i*UnitSize))
1255         return false;
1256     }
1257   return true;
1258 }
1259 
1260 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1261 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1262 /// The ShuffleKind distinguishes between big-endian merges with two
1263 /// different inputs (0), either-endian merges with two identical inputs (1),
1264 /// and little-endian merges with two different inputs (2).  For the latter,
1265 /// the input operands are swapped (see PPCInstrAltivec.td).
1266 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1267                              unsigned ShuffleKind, SelectionDAG &DAG) {
1268   if (DAG.getDataLayout().isLittleEndian()) {
1269     if (ShuffleKind == 1) // unary
1270       return isVMerge(N, UnitSize, 0, 0);
1271     else if (ShuffleKind == 2) // swapped
1272       return isVMerge(N, UnitSize, 0, 16);
1273     else
1274       return false;
1275   } else {
1276     if (ShuffleKind == 1) // unary
1277       return isVMerge(N, UnitSize, 8, 8);
1278     else if (ShuffleKind == 0) // normal
1279       return isVMerge(N, UnitSize, 8, 24);
1280     else
1281       return false;
1282   }
1283 }
1284 
1285 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1286 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1287 /// The ShuffleKind distinguishes between big-endian merges with two
1288 /// different inputs (0), either-endian merges with two identical inputs (1),
1289 /// and little-endian merges with two different inputs (2).  For the latter,
1290 /// the input operands are swapped (see PPCInstrAltivec.td).
1291 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1292                              unsigned ShuffleKind, SelectionDAG &DAG) {
1293   if (DAG.getDataLayout().isLittleEndian()) {
1294     if (ShuffleKind == 1) // unary
1295       return isVMerge(N, UnitSize, 8, 8);
1296     else if (ShuffleKind == 2) // swapped
1297       return isVMerge(N, UnitSize, 8, 24);
1298     else
1299       return false;
1300   } else {
1301     if (ShuffleKind == 1) // unary
1302       return isVMerge(N, UnitSize, 0, 0);
1303     else if (ShuffleKind == 0) // normal
1304       return isVMerge(N, UnitSize, 0, 16);
1305     else
1306       return false;
1307   }
1308 }
1309 
1310 /**
1311  * \brief Common function used to match vmrgew and vmrgow shuffles
1312  *
1313  * The indexOffset determines whether to look for even or odd words in
1314  * the shuffle mask. This is based on the of the endianness of the target
1315  * machine.
1316  *   - Little Endian:
1317  *     - Use offset of 0 to check for odd elements
1318  *     - Use offset of 4 to check for even elements
1319  *   - Big Endian:
1320  *     - Use offset of 0 to check for even elements
1321  *     - Use offset of 4 to check for odd elements
1322  * A detailed description of the vector element ordering for little endian and
1323  * big endian can be found at
1324  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1325  * Targeting your applications - what little endian and big endian IBM XL C/C++
1326  * compiler differences mean to you
1327  *
1328  * The mask to the shuffle vector instruction specifies the indices of the
1329  * elements from the two input vectors to place in the result. The elements are
1330  * numbered in array-access order, starting with the first vector. These vectors
1331  * are always of type v16i8, thus each vector will contain 16 elements of size
1332  * 8. More info on the shuffle vector can be found in the
1333  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1334  * Language Reference.
1335  *
1336  * The RHSStartValue indicates whether the same input vectors are used (unary)
1337  * or two different input vectors are used, based on the following:
1338  *   - If the instruction uses the same vector for both inputs, the range of the
1339  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1340  *     be 0.
1341  *   - If the instruction has two different vectors then the range of the
1342  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1343  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1344  *     to 31 specify elements in the second vector).
1345  *
1346  * \param[in] N The shuffle vector SD Node to analyze
1347  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1348  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1349  * vector to the shuffle_vector instruction
1350  * \return true iff this shuffle vector represents an even or odd word merge
1351  */
1352 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1353                      unsigned RHSStartValue) {
1354   if (N->getValueType(0) != MVT::v16i8)
1355     return false;
1356 
1357   for (unsigned i = 0; i < 2; ++i)
1358     for (unsigned j = 0; j < 4; ++j)
1359       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1360                              i*RHSStartValue+j+IndexOffset) ||
1361           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1362                              i*RHSStartValue+j+IndexOffset+8))
1363         return false;
1364   return true;
1365 }
1366 
1367 /**
1368  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1369  * vmrgow instructions.
1370  *
1371  * \param[in] N The shuffle vector SD Node to analyze
1372  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1373  * \param[in] ShuffleKind Identify the type of merge:
1374  *   - 0 = big-endian merge with two different inputs;
1375  *   - 1 = either-endian merge with two identical inputs;
1376  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1377  *     little-endian merges).
1378  * \param[in] DAG The current SelectionDAG
1379  * \return true iff this shuffle mask
1380  */
1381 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1382                               unsigned ShuffleKind, SelectionDAG &DAG) {
1383   if (DAG.getDataLayout().isLittleEndian()) {
1384     unsigned indexOffset = CheckEven ? 4 : 0;
1385     if (ShuffleKind == 1) // Unary
1386       return isVMerge(N, indexOffset, 0);
1387     else if (ShuffleKind == 2) // swapped
1388       return isVMerge(N, indexOffset, 16);
1389     else
1390       return false;
1391   }
1392   else {
1393     unsigned indexOffset = CheckEven ? 0 : 4;
1394     if (ShuffleKind == 1) // Unary
1395       return isVMerge(N, indexOffset, 0);
1396     else if (ShuffleKind == 0) // Normal
1397       return isVMerge(N, indexOffset, 16);
1398     else
1399       return false;
1400   }
1401   return false;
1402 }
1403 
1404 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1405 /// amount, otherwise return -1.
1406 /// The ShuffleKind distinguishes between big-endian operations with two
1407 /// different inputs (0), either-endian operations with two identical inputs
1408 /// (1), and little-endian operations with two different inputs (2).  For the
1409 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1410 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1411                              SelectionDAG &DAG) {
1412   if (N->getValueType(0) != MVT::v16i8)
1413     return -1;
1414 
1415   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1416 
1417   // Find the first non-undef value in the shuffle mask.
1418   unsigned i;
1419   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1420     /*search*/;
1421 
1422   if (i == 16) return -1;  // all undef.
1423 
1424   // Otherwise, check to see if the rest of the elements are consecutively
1425   // numbered from this value.
1426   unsigned ShiftAmt = SVOp->getMaskElt(i);
1427   if (ShiftAmt < i) return -1;
1428 
1429   ShiftAmt -= i;
1430   bool isLE = DAG.getDataLayout().isLittleEndian();
1431 
1432   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1433     // Check the rest of the elements to see if they are consecutive.
1434     for (++i; i != 16; ++i)
1435       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1436         return -1;
1437   } else if (ShuffleKind == 1) {
1438     // Check the rest of the elements to see if they are consecutive.
1439     for (++i; i != 16; ++i)
1440       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1441         return -1;
1442   } else
1443     return -1;
1444 
1445   if (isLE)
1446     ShiftAmt = 16 - ShiftAmt;
1447 
1448   return ShiftAmt;
1449 }
1450 
1451 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1452 /// specifies a splat of a single element that is suitable for input to
1453 /// VSPLTB/VSPLTH/VSPLTW.
1454 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1455   assert(N->getValueType(0) == MVT::v16i8 &&
1456          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1457 
1458   // The consecutive indices need to specify an element, not part of two
1459   // different elements.  So abandon ship early if this isn't the case.
1460   if (N->getMaskElt(0) % EltSize != 0)
1461     return false;
1462 
1463   // This is a splat operation if each element of the permute is the same, and
1464   // if the value doesn't reference the second vector.
1465   unsigned ElementBase = N->getMaskElt(0);
1466 
1467   // FIXME: Handle UNDEF elements too!
1468   if (ElementBase >= 16)
1469     return false;
1470 
1471   // Check that the indices are consecutive, in the case of a multi-byte element
1472   // splatted with a v16i8 mask.
1473   for (unsigned i = 1; i != EltSize; ++i)
1474     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1475       return false;
1476 
1477   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1478     if (N->getMaskElt(i) < 0) continue;
1479     for (unsigned j = 0; j != EltSize; ++j)
1480       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1481         return false;
1482   }
1483   return true;
1484 }
1485 
1486 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1487 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1488 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1489                                 SelectionDAG &DAG) {
1490   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1491   assert(isSplatShuffleMask(SVOp, EltSize));
1492   if (DAG.getDataLayout().isLittleEndian())
1493     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1494   else
1495     return SVOp->getMaskElt(0) / EltSize;
1496 }
1497 
1498 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1499 /// by using a vspltis[bhw] instruction of the specified element size, return
1500 /// the constant being splatted.  The ByteSize field indicates the number of
1501 /// bytes of each element [124] -> [bhw].
1502 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1503   SDValue OpVal(nullptr, 0);
1504 
1505   // If ByteSize of the splat is bigger than the element size of the
1506   // build_vector, then we have a case where we are checking for a splat where
1507   // multiple elements of the buildvector are folded together into a single
1508   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1509   unsigned EltSize = 16/N->getNumOperands();
1510   if (EltSize < ByteSize) {
1511     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1512     SDValue UniquedVals[4];
1513     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1514 
1515     // See if all of the elements in the buildvector agree across.
1516     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1517       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1518       // If the element isn't a constant, bail fully out.
1519       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1520 
1521 
1522       if (!UniquedVals[i&(Multiple-1)].getNode())
1523         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1524       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1525         return SDValue();  // no match.
1526     }
1527 
1528     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1529     // either constant or undef values that are identical for each chunk.  See
1530     // if these chunks can form into a larger vspltis*.
1531 
1532     // Check to see if all of the leading entries are either 0 or -1.  If
1533     // neither, then this won't fit into the immediate field.
1534     bool LeadingZero = true;
1535     bool LeadingOnes = true;
1536     for (unsigned i = 0; i != Multiple-1; ++i) {
1537       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1538 
1539       LeadingZero &= isNullConstant(UniquedVals[i]);
1540       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1541     }
1542     // Finally, check the least significant entry.
1543     if (LeadingZero) {
1544       if (!UniquedVals[Multiple-1].getNode())
1545         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1546       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1547       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1548         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1549     }
1550     if (LeadingOnes) {
1551       if (!UniquedVals[Multiple-1].getNode())
1552         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1553       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1554       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1555         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1556     }
1557 
1558     return SDValue();
1559   }
1560 
1561   // Check to see if this buildvec has a single non-undef value in its elements.
1562   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1563     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1564     if (!OpVal.getNode())
1565       OpVal = N->getOperand(i);
1566     else if (OpVal != N->getOperand(i))
1567       return SDValue();
1568   }
1569 
1570   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1571 
1572   unsigned ValSizeInBytes = EltSize;
1573   uint64_t Value = 0;
1574   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1575     Value = CN->getZExtValue();
1576   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1577     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1578     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1579   }
1580 
1581   // If the splat value is larger than the element value, then we can never do
1582   // this splat.  The only case that we could fit the replicated bits into our
1583   // immediate field for would be zero, and we prefer to use vxor for it.
1584   if (ValSizeInBytes < ByteSize) return SDValue();
1585 
1586   // If the element value is larger than the splat value, check if it consists
1587   // of a repeated bit pattern of size ByteSize.
1588   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1589     return SDValue();
1590 
1591   // Properly sign extend the value.
1592   int MaskVal = SignExtend32(Value, ByteSize * 8);
1593 
1594   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1595   if (MaskVal == 0) return SDValue();
1596 
1597   // Finally, if this value fits in a 5 bit sext field, return it
1598   if (SignExtend32<5>(MaskVal) == MaskVal)
1599     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1600   return SDValue();
1601 }
1602 
1603 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1604 /// amount, otherwise return -1.
1605 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1606   EVT VT = N->getValueType(0);
1607   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1608     return -1;
1609 
1610   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1611 
1612   // Find the first non-undef value in the shuffle mask.
1613   unsigned i;
1614   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1615     /*search*/;
1616 
1617   if (i == 4) return -1;  // all undef.
1618 
1619   // Otherwise, check to see if the rest of the elements are consecutively
1620   // numbered from this value.
1621   unsigned ShiftAmt = SVOp->getMaskElt(i);
1622   if (ShiftAmt < i) return -1;
1623   ShiftAmt -= i;
1624 
1625   // Check the rest of the elements to see if they are consecutive.
1626   for (++i; i != 4; ++i)
1627     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1628       return -1;
1629 
1630   return ShiftAmt;
1631 }
1632 
1633 //===----------------------------------------------------------------------===//
1634 //  Addressing Mode Selection
1635 //===----------------------------------------------------------------------===//
1636 
1637 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1638 /// or 64-bit immediate, and if the value can be accurately represented as a
1639 /// sign extension from a 16-bit value.  If so, this returns true and the
1640 /// immediate.
1641 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1642   if (!isa<ConstantSDNode>(N))
1643     return false;
1644 
1645   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1646   if (N->getValueType(0) == MVT::i32)
1647     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1648   else
1649     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1650 }
1651 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1652   return isIntS16Immediate(Op.getNode(), Imm);
1653 }
1654 
1655 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1656 /// can be represented as an indexed [r+r] operation.  Returns false if it
1657 /// can be more efficiently represented with [r+imm].
1658 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1659                                             SDValue &Index,
1660                                             SelectionDAG &DAG) const {
1661   short imm = 0;
1662   if (N.getOpcode() == ISD::ADD) {
1663     if (isIntS16Immediate(N.getOperand(1), imm))
1664       return false;    // r+i
1665     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1666       return false;    // r+i
1667 
1668     Base = N.getOperand(0);
1669     Index = N.getOperand(1);
1670     return true;
1671   } else if (N.getOpcode() == ISD::OR) {
1672     if (isIntS16Immediate(N.getOperand(1), imm))
1673       return false;    // r+i can fold it if we can.
1674 
1675     // If this is an or of disjoint bitfields, we can codegen this as an add
1676     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1677     // disjoint.
1678     APInt LHSKnownZero, LHSKnownOne;
1679     APInt RHSKnownZero, RHSKnownOne;
1680     DAG.computeKnownBits(N.getOperand(0),
1681                          LHSKnownZero, LHSKnownOne);
1682 
1683     if (LHSKnownZero.getBoolValue()) {
1684       DAG.computeKnownBits(N.getOperand(1),
1685                            RHSKnownZero, RHSKnownOne);
1686       // If all of the bits are known zero on the LHS or RHS, the add won't
1687       // carry.
1688       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1689         Base = N.getOperand(0);
1690         Index = N.getOperand(1);
1691         return true;
1692       }
1693     }
1694   }
1695 
1696   return false;
1697 }
1698 
1699 // If we happen to be doing an i64 load or store into a stack slot that has
1700 // less than a 4-byte alignment, then the frame-index elimination may need to
1701 // use an indexed load or store instruction (because the offset may not be a
1702 // multiple of 4). The extra register needed to hold the offset comes from the
1703 // register scavenger, and it is possible that the scavenger will need to use
1704 // an emergency spill slot. As a result, we need to make sure that a spill slot
1705 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1706 // stack slot.
1707 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1708   // FIXME: This does not handle the LWA case.
1709   if (VT != MVT::i64)
1710     return;
1711 
1712   // NOTE: We'll exclude negative FIs here, which come from argument
1713   // lowering, because there are no known test cases triggering this problem
1714   // using packed structures (or similar). We can remove this exclusion if
1715   // we find such a test case. The reason why this is so test-case driven is
1716   // because this entire 'fixup' is only to prevent crashes (from the
1717   // register scavenger) on not-really-valid inputs. For example, if we have:
1718   //   %a = alloca i1
1719   //   %b = bitcast i1* %a to i64*
1720   //   store i64* a, i64 b
1721   // then the store should really be marked as 'align 1', but is not. If it
1722   // were marked as 'align 1' then the indexed form would have been
1723   // instruction-selected initially, and the problem this 'fixup' is preventing
1724   // won't happen regardless.
1725   if (FrameIdx < 0)
1726     return;
1727 
1728   MachineFunction &MF = DAG.getMachineFunction();
1729   MachineFrameInfo *MFI = MF.getFrameInfo();
1730 
1731   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1732   if (Align >= 4)
1733     return;
1734 
1735   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1736   FuncInfo->setHasNonRISpills();
1737 }
1738 
1739 /// Returns true if the address N can be represented by a base register plus
1740 /// a signed 16-bit displacement [r+imm], and if it is not better
1741 /// represented as reg+reg.  If Aligned is true, only accept displacements
1742 /// suitable for STD and friends, i.e. multiples of 4.
1743 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1744                                             SDValue &Base,
1745                                             SelectionDAG &DAG,
1746                                             bool Aligned) const {
1747   // FIXME dl should come from parent load or store, not from address
1748   SDLoc dl(N);
1749   // If this can be more profitably realized as r+r, fail.
1750   if (SelectAddressRegReg(N, Disp, Base, DAG))
1751     return false;
1752 
1753   if (N.getOpcode() == ISD::ADD) {
1754     short imm = 0;
1755     if (isIntS16Immediate(N.getOperand(1), imm) &&
1756         (!Aligned || (imm & 3) == 0)) {
1757       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1758       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1759         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1760         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1761       } else {
1762         Base = N.getOperand(0);
1763       }
1764       return true; // [r+i]
1765     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1766       // Match LOAD (ADD (X, Lo(G))).
1767       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1768              && "Cannot handle constant offsets yet!");
1769       Disp = N.getOperand(1).getOperand(0);  // The global address.
1770       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1771              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1772              Disp.getOpcode() == ISD::TargetConstantPool ||
1773              Disp.getOpcode() == ISD::TargetJumpTable);
1774       Base = N.getOperand(0);
1775       return true;  // [&g+r]
1776     }
1777   } else if (N.getOpcode() == ISD::OR) {
1778     short imm = 0;
1779     if (isIntS16Immediate(N.getOperand(1), imm) &&
1780         (!Aligned || (imm & 3) == 0)) {
1781       // If this is an or of disjoint bitfields, we can codegen this as an add
1782       // (for better address arithmetic) if the LHS and RHS of the OR are
1783       // provably disjoint.
1784       APInt LHSKnownZero, LHSKnownOne;
1785       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1786 
1787       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1788         // If all of the bits are known zero on the LHS or RHS, the add won't
1789         // carry.
1790         if (FrameIndexSDNode *FI =
1791               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1792           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1793           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1794         } else {
1795           Base = N.getOperand(0);
1796         }
1797         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1798         return true;
1799       }
1800     }
1801   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1802     // Loading from a constant address.
1803 
1804     // If this address fits entirely in a 16-bit sext immediate field, codegen
1805     // this as "d, 0"
1806     short Imm;
1807     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1808       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1809       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1810                              CN->getValueType(0));
1811       return true;
1812     }
1813 
1814     // Handle 32-bit sext immediates with LIS + addr mode.
1815     if ((CN->getValueType(0) == MVT::i32 ||
1816          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1817         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1818       int Addr = (int)CN->getZExtValue();
1819 
1820       // Otherwise, break this down into an LIS + disp.
1821       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1822 
1823       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1824                                    MVT::i32);
1825       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1826       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1827       return true;
1828     }
1829   }
1830 
1831   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1832   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1833     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1834     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1835   } else
1836     Base = N;
1837   return true;      // [r+0]
1838 }
1839 
1840 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1841 /// represented as an indexed [r+r] operation.
1842 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1843                                                 SDValue &Index,
1844                                                 SelectionDAG &DAG) const {
1845   // Check to see if we can easily represent this as an [r+r] address.  This
1846   // will fail if it thinks that the address is more profitably represented as
1847   // reg+imm, e.g. where imm = 0.
1848   if (SelectAddressRegReg(N, Base, Index, DAG))
1849     return true;
1850 
1851   // If the operand is an addition, always emit this as [r+r], since this is
1852   // better (for code size, and execution, as the memop does the add for free)
1853   // than emitting an explicit add.
1854   if (N.getOpcode() == ISD::ADD) {
1855     Base = N.getOperand(0);
1856     Index = N.getOperand(1);
1857     return true;
1858   }
1859 
1860   // Otherwise, do it the hard way, using R0 as the base register.
1861   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1862                          N.getValueType());
1863   Index = N;
1864   return true;
1865 }
1866 
1867 /// getPreIndexedAddressParts - returns true by value, base pointer and
1868 /// offset pointer and addressing mode by reference if the node's address
1869 /// can be legally represented as pre-indexed load / store address.
1870 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1871                                                   SDValue &Offset,
1872                                                   ISD::MemIndexedMode &AM,
1873                                                   SelectionDAG &DAG) const {
1874   if (DisablePPCPreinc) return false;
1875 
1876   bool isLoad = true;
1877   SDValue Ptr;
1878   EVT VT;
1879   unsigned Alignment;
1880   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1881     Ptr = LD->getBasePtr();
1882     VT = LD->getMemoryVT();
1883     Alignment = LD->getAlignment();
1884   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1885     Ptr = ST->getBasePtr();
1886     VT  = ST->getMemoryVT();
1887     Alignment = ST->getAlignment();
1888     isLoad = false;
1889   } else
1890     return false;
1891 
1892   // PowerPC doesn't have preinc load/store instructions for vectors (except
1893   // for QPX, which does have preinc r+r forms).
1894   if (VT.isVector()) {
1895     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1896       return false;
1897     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
1898       AM = ISD::PRE_INC;
1899       return true;
1900     }
1901   }
1902 
1903   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1904 
1905     // Common code will reject creating a pre-inc form if the base pointer
1906     // is a frame index, or if N is a store and the base pointer is either
1907     // the same as or a predecessor of the value being stored.  Check for
1908     // those situations here, and try with swapped Base/Offset instead.
1909     bool Swap = false;
1910 
1911     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1912       Swap = true;
1913     else if (!isLoad) {
1914       SDValue Val = cast<StoreSDNode>(N)->getValue();
1915       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1916         Swap = true;
1917     }
1918 
1919     if (Swap)
1920       std::swap(Base, Offset);
1921 
1922     AM = ISD::PRE_INC;
1923     return true;
1924   }
1925 
1926   // LDU/STU can only handle immediates that are a multiple of 4.
1927   if (VT != MVT::i64) {
1928     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1929       return false;
1930   } else {
1931     // LDU/STU need an address with at least 4-byte alignment.
1932     if (Alignment < 4)
1933       return false;
1934 
1935     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1936       return false;
1937   }
1938 
1939   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1940     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1941     // sext i32 to i64 when addr mode is r+i.
1942     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1943         LD->getExtensionType() == ISD::SEXTLOAD &&
1944         isa<ConstantSDNode>(Offset))
1945       return false;
1946   }
1947 
1948   AM = ISD::PRE_INC;
1949   return true;
1950 }
1951 
1952 //===----------------------------------------------------------------------===//
1953 //  LowerOperation implementation
1954 //===----------------------------------------------------------------------===//
1955 
1956 /// GetLabelAccessInfo - Return true if we should reference labels using a
1957 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1958 static bool GetLabelAccessInfo(const TargetMachine &TM,
1959                                const PPCSubtarget &Subtarget,
1960                                unsigned &HiOpFlags, unsigned &LoOpFlags,
1961                                const GlobalValue *GV = nullptr) {
1962   HiOpFlags = PPCII::MO_HA;
1963   LoOpFlags = PPCII::MO_LO;
1964 
1965   // Don't use the pic base if not in PIC relocation model.
1966   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
1967 
1968   if (isPIC) {
1969     HiOpFlags |= PPCII::MO_PIC_FLAG;
1970     LoOpFlags |= PPCII::MO_PIC_FLAG;
1971   }
1972 
1973   // If this is a reference to a global value that requires a non-lazy-ptr, make
1974   // sure that instruction lowering adds it.
1975   if (GV && Subtarget.hasLazyResolverStub(GV)) {
1976     HiOpFlags |= PPCII::MO_NLP_FLAG;
1977     LoOpFlags |= PPCII::MO_NLP_FLAG;
1978 
1979     if (GV->hasHiddenVisibility()) {
1980       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1981       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1982     }
1983   }
1984 
1985   return isPIC;
1986 }
1987 
1988 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1989                              SelectionDAG &DAG) {
1990   SDLoc DL(HiPart);
1991   EVT PtrVT = HiPart.getValueType();
1992   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
1993 
1994   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1995   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1996 
1997   // With PIC, the first instruction is actually "GR+hi(&G)".
1998   if (isPIC)
1999     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2000                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2001 
2002   // Generate non-pic code that has direct accesses to the constant pool.
2003   // The address of the global is just (hi(&g)+lo(&g)).
2004   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2005 }
2006 
2007 static void setUsesTOCBasePtr(MachineFunction &MF) {
2008   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2009   FuncInfo->setUsesTOCBasePtr();
2010 }
2011 
2012 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2013   setUsesTOCBasePtr(DAG.getMachineFunction());
2014 }
2015 
2016 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
2017                            SDValue GA) {
2018   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2019   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2020                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2021 
2022   SDValue Ops[] = { GA, Reg };
2023   return DAG.getMemIntrinsicNode(
2024       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2025       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2026       false, 0);
2027 }
2028 
2029 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2030                                              SelectionDAG &DAG) const {
2031   EVT PtrVT = Op.getValueType();
2032   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2033   const Constant *C = CP->getConstVal();
2034 
2035   // 64-bit SVR4 ABI code is always position-independent.
2036   // The actual address of the GlobalValue is stored in the TOC.
2037   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2038     setUsesTOCBasePtr(DAG);
2039     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2040     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2041   }
2042 
2043   unsigned MOHiFlag, MOLoFlag;
2044   bool isPIC =
2045       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2046 
2047   if (isPIC && Subtarget.isSVR4ABI()) {
2048     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2049                                            PPCII::MO_PIC_FLAG);
2050     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2051   }
2052 
2053   SDValue CPIHi =
2054     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2055   SDValue CPILo =
2056     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2057   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
2058 }
2059 
2060 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2061   EVT PtrVT = Op.getValueType();
2062   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2063 
2064   // 64-bit SVR4 ABI code is always position-independent.
2065   // The actual address of the GlobalValue is stored in the TOC.
2066   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2067     setUsesTOCBasePtr(DAG);
2068     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2069     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2070   }
2071 
2072   unsigned MOHiFlag, MOLoFlag;
2073   bool isPIC =
2074       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2075 
2076   if (isPIC && Subtarget.isSVR4ABI()) {
2077     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2078                                         PPCII::MO_PIC_FLAG);
2079     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2080   }
2081 
2082   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2083   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2084   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
2085 }
2086 
2087 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2088                                              SelectionDAG &DAG) const {
2089   EVT PtrVT = Op.getValueType();
2090   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2091   const BlockAddress *BA = BASDN->getBlockAddress();
2092 
2093   // 64-bit SVR4 ABI code is always position-independent.
2094   // The actual BlockAddress is stored in the TOC.
2095   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2096     setUsesTOCBasePtr(DAG);
2097     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2098     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2099   }
2100 
2101   unsigned MOHiFlag, MOLoFlag;
2102   bool isPIC =
2103       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
2104   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2105   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2106   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
2107 }
2108 
2109 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2110                                               SelectionDAG &DAG) const {
2111 
2112   // FIXME: TLS addresses currently use medium model code sequences,
2113   // which is the most useful form.  Eventually support for small and
2114   // large models could be added if users need it, at the cost of
2115   // additional complexity.
2116   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2117   if (DAG.getTarget().Options.EmulatedTLS)
2118     return LowerToTLSEmulatedModel(GA, DAG);
2119 
2120   SDLoc dl(GA);
2121   const GlobalValue *GV = GA->getGlobal();
2122   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2123   bool is64bit = Subtarget.isPPC64();
2124   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2125   PICLevel::Level picLevel = M->getPICLevel();
2126 
2127   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2128 
2129   if (Model == TLSModel::LocalExec) {
2130     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2131                                                PPCII::MO_TPREL_HA);
2132     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2133                                                PPCII::MO_TPREL_LO);
2134     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2135                                      is64bit ? MVT::i64 : MVT::i32);
2136     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2137     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2138   }
2139 
2140   if (Model == TLSModel::InitialExec) {
2141     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2142     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2143                                                 PPCII::MO_TLS);
2144     SDValue GOTPtr;
2145     if (is64bit) {
2146       setUsesTOCBasePtr(DAG);
2147       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2148       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2149                            PtrVT, GOTReg, TGA);
2150     } else
2151       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2152     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2153                                    PtrVT, TGA, GOTPtr);
2154     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2155   }
2156 
2157   if (Model == TLSModel::GeneralDynamic) {
2158     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2159     SDValue GOTPtr;
2160     if (is64bit) {
2161       setUsesTOCBasePtr(DAG);
2162       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2163       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2164                                    GOTReg, TGA);
2165     } else {
2166       if (picLevel == PICLevel::Small)
2167         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2168       else
2169         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2170     }
2171     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2172                        GOTPtr, TGA, TGA);
2173   }
2174 
2175   if (Model == TLSModel::LocalDynamic) {
2176     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2177     SDValue GOTPtr;
2178     if (is64bit) {
2179       setUsesTOCBasePtr(DAG);
2180       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2181       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2182                            GOTReg, TGA);
2183     } else {
2184       if (picLevel == PICLevel::Small)
2185         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2186       else
2187         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2188     }
2189     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2190                                   PtrVT, GOTPtr, TGA, TGA);
2191     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2192                                       PtrVT, TLSAddr, TGA);
2193     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2194   }
2195 
2196   llvm_unreachable("Unknown TLS model!");
2197 }
2198 
2199 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2200                                               SelectionDAG &DAG) const {
2201   EVT PtrVT = Op.getValueType();
2202   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2203   SDLoc DL(GSDN);
2204   const GlobalValue *GV = GSDN->getGlobal();
2205 
2206   // 64-bit SVR4 ABI code is always position-independent.
2207   // The actual address of the GlobalValue is stored in the TOC.
2208   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2209     setUsesTOCBasePtr(DAG);
2210     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2211     return getTOCEntry(DAG, DL, true, GA);
2212   }
2213 
2214   unsigned MOHiFlag, MOLoFlag;
2215   bool isPIC =
2216       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
2217 
2218   if (isPIC && Subtarget.isSVR4ABI()) {
2219     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2220                                             GSDN->getOffset(),
2221                                             PPCII::MO_PIC_FLAG);
2222     return getTOCEntry(DAG, DL, false, GA);
2223   }
2224 
2225   SDValue GAHi =
2226     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2227   SDValue GALo =
2228     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2229 
2230   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
2231 
2232   // If the global reference is actually to a non-lazy-pointer, we have to do an
2233   // extra load to get the address of the global.
2234   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2235     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2236                       false, false, false, 0);
2237   return Ptr;
2238 }
2239 
2240 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2241   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2242   SDLoc dl(Op);
2243 
2244   if (Op.getValueType() == MVT::v2i64) {
2245     // When the operands themselves are v2i64 values, we need to do something
2246     // special because VSX has no underlying comparison operations for these.
2247     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2248       // Equality can be handled by casting to the legal type for Altivec
2249       // comparisons, everything else needs to be expanded.
2250       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2251         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2252                  DAG.getSetCC(dl, MVT::v4i32,
2253                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2254                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2255                    CC));
2256       }
2257 
2258       return SDValue();
2259     }
2260 
2261     // We handle most of these in the usual way.
2262     return Op;
2263   }
2264 
2265   // If we're comparing for equality to zero, expose the fact that this is
2266   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
2267   // fold the new nodes.
2268   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2269     if (C->isNullValue() && CC == ISD::SETEQ) {
2270       EVT VT = Op.getOperand(0).getValueType();
2271       SDValue Zext = Op.getOperand(0);
2272       if (VT.bitsLT(MVT::i32)) {
2273         VT = MVT::i32;
2274         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2275       }
2276       unsigned Log2b = Log2_32(VT.getSizeInBits());
2277       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2278       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2279                                 DAG.getConstant(Log2b, dl, MVT::i32));
2280       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2281     }
2282     // Leave comparisons against 0 and -1 alone for now, since they're usually
2283     // optimized.  FIXME: revisit this when we can custom lower all setcc
2284     // optimizations.
2285     if (C->isAllOnesValue() || C->isNullValue())
2286       return SDValue();
2287   }
2288 
2289   // If we have an integer seteq/setne, turn it into a compare against zero
2290   // by xor'ing the rhs with the lhs, which is faster than setting a
2291   // condition register, reading it back out, and masking the correct bit.  The
2292   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2293   // the result to other bit-twiddling opportunities.
2294   EVT LHSVT = Op.getOperand(0).getValueType();
2295   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2296     EVT VT = Op.getValueType();
2297     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2298                                 Op.getOperand(1));
2299     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2300   }
2301   return SDValue();
2302 }
2303 
2304 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
2305                                       const PPCSubtarget &Subtarget) const {
2306   SDNode *Node = Op.getNode();
2307   EVT VT = Node->getValueType(0);
2308   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2309   SDValue InChain = Node->getOperand(0);
2310   SDValue VAListPtr = Node->getOperand(1);
2311   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2312   SDLoc dl(Node);
2313 
2314   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2315 
2316   // gpr_index
2317   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2318                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
2319                                     false, false, false, 0);
2320   InChain = GprIndex.getValue(1);
2321 
2322   if (VT == MVT::i64) {
2323     // Check if GprIndex is even
2324     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2325                                  DAG.getConstant(1, dl, MVT::i32));
2326     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2327                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2328     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2329                                           DAG.getConstant(1, dl, MVT::i32));
2330     // Align GprIndex to be even if it isn't
2331     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2332                            GprIndex);
2333   }
2334 
2335   // fpr index is 1 byte after gpr
2336   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2337                                DAG.getConstant(1, dl, MVT::i32));
2338 
2339   // fpr
2340   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2341                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
2342                                     false, false, false, 0);
2343   InChain = FprIndex.getValue(1);
2344 
2345   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2346                                        DAG.getConstant(8, dl, MVT::i32));
2347 
2348   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2349                                         DAG.getConstant(4, dl, MVT::i32));
2350 
2351   // areas
2352   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2353                                      MachinePointerInfo(), false, false,
2354                                      false, 0);
2355   InChain = OverflowArea.getValue(1);
2356 
2357   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2358                                     MachinePointerInfo(), false, false,
2359                                     false, 0);
2360   InChain = RegSaveArea.getValue(1);
2361 
2362   // select overflow_area if index > 8
2363   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2364                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2365 
2366   // adjustment constant gpr_index * 4/8
2367   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2368                                     VT.isInteger() ? GprIndex : FprIndex,
2369                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2370                                                     MVT::i32));
2371 
2372   // OurReg = RegSaveArea + RegConstant
2373   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2374                                RegConstant);
2375 
2376   // Floating types are 32 bytes into RegSaveArea
2377   if (VT.isFloatingPoint())
2378     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2379                          DAG.getConstant(32, dl, MVT::i32));
2380 
2381   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2382   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2383                                    VT.isInteger() ? GprIndex : FprIndex,
2384                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2385                                                    MVT::i32));
2386 
2387   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2388                               VT.isInteger() ? VAListPtr : FprPtr,
2389                               MachinePointerInfo(SV),
2390                               MVT::i8, false, false, 0);
2391 
2392   // determine if we should load from reg_save_area or overflow_area
2393   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2394 
2395   // increase overflow_area by 4/8 if gpr/fpr > 8
2396   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2397                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2398                                           dl, MVT::i32));
2399 
2400   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2401                              OverflowAreaPlusN);
2402 
2403   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2404                               OverflowAreaPtr,
2405                               MachinePointerInfo(),
2406                               MVT::i32, false, false, 0);
2407 
2408   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2409                      false, false, false, 0);
2410 }
2411 
2412 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
2413                                        const PPCSubtarget &Subtarget) const {
2414   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2415 
2416   // We have to copy the entire va_list struct:
2417   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2418   return DAG.getMemcpy(Op.getOperand(0), Op,
2419                        Op.getOperand(1), Op.getOperand(2),
2420                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2421                        false, MachinePointerInfo(), MachinePointerInfo());
2422 }
2423 
2424 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2425                                                   SelectionDAG &DAG) const {
2426   return Op.getOperand(0);
2427 }
2428 
2429 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2430                                                 SelectionDAG &DAG) const {
2431   SDValue Chain = Op.getOperand(0);
2432   SDValue Trmp = Op.getOperand(1); // trampoline
2433   SDValue FPtr = Op.getOperand(2); // nested function
2434   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2435   SDLoc dl(Op);
2436 
2437   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2438   bool isPPC64 = (PtrVT == MVT::i64);
2439   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2440 
2441   TargetLowering::ArgListTy Args;
2442   TargetLowering::ArgListEntry Entry;
2443 
2444   Entry.Ty = IntPtrTy;
2445   Entry.Node = Trmp; Args.push_back(Entry);
2446 
2447   // TrampSize == (isPPC64 ? 48 : 40);
2448   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2449                                isPPC64 ? MVT::i64 : MVT::i32);
2450   Args.push_back(Entry);
2451 
2452   Entry.Node = FPtr; Args.push_back(Entry);
2453   Entry.Node = Nest; Args.push_back(Entry);
2454 
2455   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2456   TargetLowering::CallLoweringInfo CLI(DAG);
2457   CLI.setDebugLoc(dl).setChain(Chain)
2458     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2459                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2460                std::move(Args), 0);
2461 
2462   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2463   return CallResult.second;
2464 }
2465 
2466 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
2467                                         const PPCSubtarget &Subtarget) const {
2468   MachineFunction &MF = DAG.getMachineFunction();
2469   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2470 
2471   SDLoc dl(Op);
2472 
2473   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2474     // vastart just stores the address of the VarArgsFrameIndex slot into the
2475     // memory location argument.
2476     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2477     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2478     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2479     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2480                         MachinePointerInfo(SV),
2481                         false, false, 0);
2482   }
2483 
2484   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2485   // We suppose the given va_list is already allocated.
2486   //
2487   // typedef struct {
2488   //  char gpr;     /* index into the array of 8 GPRs
2489   //                 * stored in the register save area
2490   //                 * gpr=0 corresponds to r3,
2491   //                 * gpr=1 to r4, etc.
2492   //                 */
2493   //  char fpr;     /* index into the array of 8 FPRs
2494   //                 * stored in the register save area
2495   //                 * fpr=0 corresponds to f1,
2496   //                 * fpr=1 to f2, etc.
2497   //                 */
2498   //  char *overflow_arg_area;
2499   //                /* location on stack that holds
2500   //                 * the next overflow argument
2501   //                 */
2502   //  char *reg_save_area;
2503   //               /* where r3:r10 and f1:f8 (if saved)
2504   //                * are stored
2505   //                */
2506   // } va_list[1];
2507 
2508   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2509   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2510 
2511   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2512 
2513   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2514                                             PtrVT);
2515   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2516                                  PtrVT);
2517 
2518   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2519   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2520 
2521   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2522   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2523 
2524   uint64_t FPROffset = 1;
2525   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2526 
2527   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2528 
2529   // Store first byte : number of int regs
2530   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2531                                          Op.getOperand(1),
2532                                          MachinePointerInfo(SV),
2533                                          MVT::i8, false, false, 0);
2534   uint64_t nextOffset = FPROffset;
2535   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2536                                   ConstFPROffset);
2537 
2538   // Store second byte : number of float regs
2539   SDValue secondStore =
2540     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2541                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2542                       false, false, 0);
2543   nextOffset += StackOffset;
2544   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2545 
2546   // Store second word : arguments given on stack
2547   SDValue thirdStore =
2548     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2549                  MachinePointerInfo(SV, nextOffset),
2550                  false, false, 0);
2551   nextOffset += FrameOffset;
2552   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2553 
2554   // Store third word : arguments given in registers
2555   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2556                       MachinePointerInfo(SV, nextOffset),
2557                       false, false, 0);
2558 
2559 }
2560 
2561 #include "PPCGenCallingConv.inc"
2562 
2563 // Function whose sole purpose is to kill compiler warnings
2564 // stemming from unused functions included from PPCGenCallingConv.inc.
2565 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2566   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2567 }
2568 
2569 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2570                                       CCValAssign::LocInfo &LocInfo,
2571                                       ISD::ArgFlagsTy &ArgFlags,
2572                                       CCState &State) {
2573   return true;
2574 }
2575 
2576 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2577                                              MVT &LocVT,
2578                                              CCValAssign::LocInfo &LocInfo,
2579                                              ISD::ArgFlagsTy &ArgFlags,
2580                                              CCState &State) {
2581   static const MCPhysReg ArgRegs[] = {
2582     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2583     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2584   };
2585   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2586 
2587   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2588 
2589   // Skip one register if the first unallocated register has an even register
2590   // number and there are still argument registers available which have not been
2591   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2592   // need to skip a register if RegNum is odd.
2593   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2594     State.AllocateReg(ArgRegs[RegNum]);
2595   }
2596 
2597   // Always return false here, as this function only makes sure that the first
2598   // unallocated register has an odd register number and does not actually
2599   // allocate a register for the current argument.
2600   return false;
2601 }
2602 
2603 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2604                                                MVT &LocVT,
2605                                                CCValAssign::LocInfo &LocInfo,
2606                                                ISD::ArgFlagsTy &ArgFlags,
2607                                                CCState &State) {
2608   static const MCPhysReg ArgRegs[] = {
2609     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2610     PPC::F8
2611   };
2612 
2613   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2614 
2615   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2616 
2617   // If there is only one Floating-point register left we need to put both f64
2618   // values of a split ppc_fp128 value on the stack.
2619   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2620     State.AllocateReg(ArgRegs[RegNum]);
2621   }
2622 
2623   // Always return false here, as this function only makes sure that the two f64
2624   // values a ppc_fp128 value is split into are both passed in registers or both
2625   // passed on the stack and does not actually allocate a register for the
2626   // current argument.
2627   return false;
2628 }
2629 
2630 /// FPR - The set of FP registers that should be allocated for arguments,
2631 /// on Darwin.
2632 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2633                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2634                                 PPC::F11, PPC::F12, PPC::F13};
2635 
2636 /// QFPR - The set of QPX registers that should be allocated for arguments.
2637 static const MCPhysReg QFPR[] = {
2638     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2639     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2640 
2641 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2642 /// the stack.
2643 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2644                                        unsigned PtrByteSize) {
2645   unsigned ArgSize = ArgVT.getStoreSize();
2646   if (Flags.isByVal())
2647     ArgSize = Flags.getByValSize();
2648 
2649   // Round up to multiples of the pointer size, except for array members,
2650   // which are always packed.
2651   if (!Flags.isInConsecutiveRegs())
2652     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2653 
2654   return ArgSize;
2655 }
2656 
2657 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2658 /// on the stack.
2659 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2660                                             ISD::ArgFlagsTy Flags,
2661                                             unsigned PtrByteSize) {
2662   unsigned Align = PtrByteSize;
2663 
2664   // Altivec parameters are padded to a 16 byte boundary.
2665   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2666       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2667       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2668       ArgVT == MVT::v1i128)
2669     Align = 16;
2670   // QPX vector types stored in double-precision are padded to a 32 byte
2671   // boundary.
2672   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2673     Align = 32;
2674 
2675   // ByVal parameters are aligned as requested.
2676   if (Flags.isByVal()) {
2677     unsigned BVAlign = Flags.getByValAlign();
2678     if (BVAlign > PtrByteSize) {
2679       if (BVAlign % PtrByteSize != 0)
2680           llvm_unreachable(
2681             "ByVal alignment is not a multiple of the pointer size");
2682 
2683       Align = BVAlign;
2684     }
2685   }
2686 
2687   // Array members are always packed to their original alignment.
2688   if (Flags.isInConsecutiveRegs()) {
2689     // If the array member was split into multiple registers, the first
2690     // needs to be aligned to the size of the full type.  (Except for
2691     // ppcf128, which is only aligned as its f64 components.)
2692     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2693       Align = OrigVT.getStoreSize();
2694     else
2695       Align = ArgVT.getStoreSize();
2696   }
2697 
2698   return Align;
2699 }
2700 
2701 /// CalculateStackSlotUsed - Return whether this argument will use its
2702 /// stack slot (instead of being passed in registers).  ArgOffset,
2703 /// AvailableFPRs, and AvailableVRs must hold the current argument
2704 /// position, and will be updated to account for this argument.
2705 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2706                                    ISD::ArgFlagsTy Flags,
2707                                    unsigned PtrByteSize,
2708                                    unsigned LinkageSize,
2709                                    unsigned ParamAreaSize,
2710                                    unsigned &ArgOffset,
2711                                    unsigned &AvailableFPRs,
2712                                    unsigned &AvailableVRs, bool HasQPX) {
2713   bool UseMemory = false;
2714 
2715   // Respect alignment of argument on the stack.
2716   unsigned Align =
2717     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2718   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2719   // If there's no space left in the argument save area, we must
2720   // use memory (this check also catches zero-sized arguments).
2721   if (ArgOffset >= LinkageSize + ParamAreaSize)
2722     UseMemory = true;
2723 
2724   // Allocate argument on the stack.
2725   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2726   if (Flags.isInConsecutiveRegsLast())
2727     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2728   // If we overran the argument save area, we must use memory
2729   // (this check catches arguments passed partially in memory)
2730   if (ArgOffset > LinkageSize + ParamAreaSize)
2731     UseMemory = true;
2732 
2733   // However, if the argument is actually passed in an FPR or a VR,
2734   // we don't use memory after all.
2735   if (!Flags.isByVal()) {
2736     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2737         // QPX registers overlap with the scalar FP registers.
2738         (HasQPX && (ArgVT == MVT::v4f32 ||
2739                     ArgVT == MVT::v4f64 ||
2740                     ArgVT == MVT::v4i1)))
2741       if (AvailableFPRs > 0) {
2742         --AvailableFPRs;
2743         return false;
2744       }
2745     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2746         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2747         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2748         ArgVT == MVT::v1i128)
2749       if (AvailableVRs > 0) {
2750         --AvailableVRs;
2751         return false;
2752       }
2753   }
2754 
2755   return UseMemory;
2756 }
2757 
2758 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2759 /// ensure minimum alignment required for target.
2760 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2761                                      unsigned NumBytes) {
2762   unsigned TargetAlign = Lowering->getStackAlignment();
2763   unsigned AlignMask = TargetAlign - 1;
2764   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2765   return NumBytes;
2766 }
2767 
2768 SDValue
2769 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2770                                         CallingConv::ID CallConv, bool isVarArg,
2771                                         const SmallVectorImpl<ISD::InputArg>
2772                                           &Ins,
2773                                         SDLoc dl, SelectionDAG &DAG,
2774                                         SmallVectorImpl<SDValue> &InVals)
2775                                           const {
2776   if (Subtarget.isSVR4ABI()) {
2777     if (Subtarget.isPPC64())
2778       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2779                                          dl, DAG, InVals);
2780     else
2781       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2782                                          dl, DAG, InVals);
2783   } else {
2784     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2785                                        dl, DAG, InVals);
2786   }
2787 }
2788 
2789 SDValue
2790 PPCTargetLowering::LowerFormalArguments_32SVR4(
2791                                       SDValue Chain,
2792                                       CallingConv::ID CallConv, bool isVarArg,
2793                                       const SmallVectorImpl<ISD::InputArg>
2794                                         &Ins,
2795                                       SDLoc dl, SelectionDAG &DAG,
2796                                       SmallVectorImpl<SDValue> &InVals) const {
2797 
2798   // 32-bit SVR4 ABI Stack Frame Layout:
2799   //              +-----------------------------------+
2800   //        +-->  |            Back chain             |
2801   //        |     +-----------------------------------+
2802   //        |     | Floating-point register save area |
2803   //        |     +-----------------------------------+
2804   //        |     |    General register save area     |
2805   //        |     +-----------------------------------+
2806   //        |     |          CR save word             |
2807   //        |     +-----------------------------------+
2808   //        |     |         VRSAVE save word          |
2809   //        |     +-----------------------------------+
2810   //        |     |         Alignment padding         |
2811   //        |     +-----------------------------------+
2812   //        |     |     Vector register save area     |
2813   //        |     +-----------------------------------+
2814   //        |     |       Local variable space        |
2815   //        |     +-----------------------------------+
2816   //        |     |        Parameter list area        |
2817   //        |     +-----------------------------------+
2818   //        |     |           LR save word            |
2819   //        |     +-----------------------------------+
2820   // SP-->  +---  |            Back chain             |
2821   //              +-----------------------------------+
2822   //
2823   // Specifications:
2824   //   System V Application Binary Interface PowerPC Processor Supplement
2825   //   AltiVec Technology Programming Interface Manual
2826 
2827   MachineFunction &MF = DAG.getMachineFunction();
2828   MachineFrameInfo *MFI = MF.getFrameInfo();
2829   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2830 
2831   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
2832   // Potential tail calls could cause overwriting of argument stack slots.
2833   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2834                        (CallConv == CallingConv::Fast));
2835   unsigned PtrByteSize = 4;
2836 
2837   // Assign locations to all of the incoming arguments.
2838   SmallVector<CCValAssign, 16> ArgLocs;
2839   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2840                  *DAG.getContext());
2841 
2842   // Reserve space for the linkage area on the stack.
2843   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2844   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2845 
2846   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2847 
2848   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2849     CCValAssign &VA = ArgLocs[i];
2850 
2851     // Arguments stored in registers.
2852     if (VA.isRegLoc()) {
2853       const TargetRegisterClass *RC;
2854       EVT ValVT = VA.getValVT();
2855 
2856       switch (ValVT.getSimpleVT().SimpleTy) {
2857         default:
2858           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2859         case MVT::i1:
2860         case MVT::i32:
2861           RC = &PPC::GPRCRegClass;
2862           break;
2863         case MVT::f32:
2864           if (Subtarget.hasP8Vector())
2865             RC = &PPC::VSSRCRegClass;
2866           else
2867             RC = &PPC::F4RCRegClass;
2868           break;
2869         case MVT::f64:
2870           if (Subtarget.hasVSX())
2871             RC = &PPC::VSFRCRegClass;
2872           else
2873             RC = &PPC::F8RCRegClass;
2874           break;
2875         case MVT::v16i8:
2876         case MVT::v8i16:
2877         case MVT::v4i32:
2878           RC = &PPC::VRRCRegClass;
2879           break;
2880         case MVT::v4f32:
2881           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2882           break;
2883         case MVT::v2f64:
2884         case MVT::v2i64:
2885           RC = &PPC::VSHRCRegClass;
2886           break;
2887         case MVT::v4f64:
2888           RC = &PPC::QFRCRegClass;
2889           break;
2890         case MVT::v4i1:
2891           RC = &PPC::QBRCRegClass;
2892           break;
2893       }
2894 
2895       // Transform the arguments stored in physical registers into virtual ones.
2896       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2897       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2898                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2899 
2900       if (ValVT == MVT::i1)
2901         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2902 
2903       InVals.push_back(ArgValue);
2904     } else {
2905       // Argument stored in memory.
2906       assert(VA.isMemLoc());
2907 
2908       unsigned ArgSize = VA.getLocVT().getStoreSize();
2909       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2910                                       isImmutable);
2911 
2912       // Create load nodes to retrieve arguments from the stack.
2913       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2914       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2915                                    MachinePointerInfo(),
2916                                    false, false, false, 0));
2917     }
2918   }
2919 
2920   // Assign locations to all of the incoming aggregate by value arguments.
2921   // Aggregates passed by value are stored in the local variable space of the
2922   // caller's stack frame, right above the parameter list area.
2923   SmallVector<CCValAssign, 16> ByValArgLocs;
2924   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2925                       ByValArgLocs, *DAG.getContext());
2926 
2927   // Reserve stack space for the allocations in CCInfo.
2928   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2929 
2930   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2931 
2932   // Area that is at least reserved in the caller of this function.
2933   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2934   MinReservedArea = std::max(MinReservedArea, LinkageSize);
2935 
2936   // Set the size that is at least reserved in caller of this function.  Tail
2937   // call optimized function's reserved stack space needs to be aligned so that
2938   // taking the difference between two stack areas will result in an aligned
2939   // stack.
2940   MinReservedArea =
2941       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
2942   FuncInfo->setMinReservedArea(MinReservedArea);
2943 
2944   SmallVector<SDValue, 8> MemOps;
2945 
2946   // If the function takes variable number of arguments, make a frame index for
2947   // the start of the first vararg value... for expansion of llvm.va_start.
2948   if (isVarArg) {
2949     static const MCPhysReg GPArgRegs[] = {
2950       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2951       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2952     };
2953     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2954 
2955     static const MCPhysReg FPArgRegs[] = {
2956       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2957       PPC::F8
2958     };
2959     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2960 
2961     if (Subtarget.useSoftFloat())
2962        NumFPArgRegs = 0;
2963 
2964     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
2965     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
2966 
2967     // Make room for NumGPArgRegs and NumFPArgRegs.
2968     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2969                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
2970 
2971     FuncInfo->setVarArgsStackOffset(
2972       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2973                              CCInfo.getNextStackOffset(), true));
2974 
2975     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2976     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2977 
2978     // The fixed integer arguments of a variadic function are stored to the
2979     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2980     // the result of va_next.
2981     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2982       // Get an existing live-in vreg, or add a new one.
2983       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2984       if (!VReg)
2985         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2986 
2987       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2988       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2989                                    MachinePointerInfo(), false, false, 0);
2990       MemOps.push_back(Store);
2991       // Increment the address by four for the next argument to store
2992       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
2993       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2994     }
2995 
2996     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2997     // is set.
2998     // The double arguments are stored to the VarArgsFrameIndex
2999     // on the stack.
3000     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3001       // Get an existing live-in vreg, or add a new one.
3002       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3003       if (!VReg)
3004         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3005 
3006       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3007       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3008                                    MachinePointerInfo(), false, false, 0);
3009       MemOps.push_back(Store);
3010       // Increment the address by eight for the next argument to store
3011       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3012                                          PtrVT);
3013       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3014     }
3015   }
3016 
3017   if (!MemOps.empty())
3018     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3019 
3020   return Chain;
3021 }
3022 
3023 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3024 // value to MVT::i64 and then truncate to the correct register size.
3025 SDValue
3026 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
3027                                      SelectionDAG &DAG, SDValue ArgVal,
3028                                      SDLoc dl) const {
3029   if (Flags.isSExt())
3030     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3031                          DAG.getValueType(ObjectVT));
3032   else if (Flags.isZExt())
3033     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3034                          DAG.getValueType(ObjectVT));
3035 
3036   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3037 }
3038 
3039 SDValue
3040 PPCTargetLowering::LowerFormalArguments_64SVR4(
3041                                       SDValue Chain,
3042                                       CallingConv::ID CallConv, bool isVarArg,
3043                                       const SmallVectorImpl<ISD::InputArg>
3044                                         &Ins,
3045                                       SDLoc dl, SelectionDAG &DAG,
3046                                       SmallVectorImpl<SDValue> &InVals) const {
3047   // TODO: add description of PPC stack frame format, or at least some docs.
3048   //
3049   bool isELFv2ABI = Subtarget.isELFv2ABI();
3050   bool isLittleEndian = Subtarget.isLittleEndian();
3051   MachineFunction &MF = DAG.getMachineFunction();
3052   MachineFrameInfo *MFI = MF.getFrameInfo();
3053   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3054 
3055   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3056          "fastcc not supported on varargs functions");
3057 
3058   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3059   // Potential tail calls could cause overwriting of argument stack slots.
3060   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3061                        (CallConv == CallingConv::Fast));
3062   unsigned PtrByteSize = 8;
3063   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3064 
3065   static const MCPhysReg GPR[] = {
3066     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3067     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3068   };
3069   static const MCPhysReg VR[] = {
3070     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3071     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3072   };
3073   static const MCPhysReg VSRH[] = {
3074     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3075     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3076   };
3077 
3078   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3079   const unsigned Num_FPR_Regs = 13;
3080   const unsigned Num_VR_Regs  = array_lengthof(VR);
3081   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3082 
3083   // Do a first pass over the arguments to determine whether the ABI
3084   // guarantees that our caller has allocated the parameter save area
3085   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3086   // in the ELFv2 ABI, it is true if this is a vararg function or if
3087   // any parameter is located in a stack slot.
3088 
3089   bool HasParameterArea = !isELFv2ABI || isVarArg;
3090   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3091   unsigned NumBytes = LinkageSize;
3092   unsigned AvailableFPRs = Num_FPR_Regs;
3093   unsigned AvailableVRs = Num_VR_Regs;
3094   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3095     if (Ins[i].Flags.isNest())
3096       continue;
3097 
3098     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3099                                PtrByteSize, LinkageSize, ParamAreaSize,
3100                                NumBytes, AvailableFPRs, AvailableVRs,
3101                                Subtarget.hasQPX()))
3102       HasParameterArea = true;
3103   }
3104 
3105   // Add DAG nodes to load the arguments or copy them out of registers.  On
3106   // entry to a function on PPC, the arguments start after the linkage area,
3107   // although the first ones are often in registers.
3108 
3109   unsigned ArgOffset = LinkageSize;
3110   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3111   unsigned &QFPR_idx = FPR_idx;
3112   SmallVector<SDValue, 8> MemOps;
3113   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3114   unsigned CurArgIdx = 0;
3115   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3116     SDValue ArgVal;
3117     bool needsLoad = false;
3118     EVT ObjectVT = Ins[ArgNo].VT;
3119     EVT OrigVT = Ins[ArgNo].ArgVT;
3120     unsigned ObjSize = ObjectVT.getStoreSize();
3121     unsigned ArgSize = ObjSize;
3122     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3123     if (Ins[ArgNo].isOrigArg()) {
3124       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3125       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3126     }
3127     // We re-align the argument offset for each argument, except when using the
3128     // fast calling convention, when we need to make sure we do that only when
3129     // we'll actually use a stack slot.
3130     unsigned CurArgOffset, Align;
3131     auto ComputeArgOffset = [&]() {
3132       /* Respect alignment of argument on the stack.  */
3133       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3134       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3135       CurArgOffset = ArgOffset;
3136     };
3137 
3138     if (CallConv != CallingConv::Fast) {
3139       ComputeArgOffset();
3140 
3141       /* Compute GPR index associated with argument offset.  */
3142       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3143       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3144     }
3145 
3146     // FIXME the codegen can be much improved in some cases.
3147     // We do not have to keep everything in memory.
3148     if (Flags.isByVal()) {
3149       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3150 
3151       if (CallConv == CallingConv::Fast)
3152         ComputeArgOffset();
3153 
3154       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3155       ObjSize = Flags.getByValSize();
3156       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3157       // Empty aggregate parameters do not take up registers.  Examples:
3158       //   struct { } a;
3159       //   union  { } b;
3160       //   int c[0];
3161       // etc.  However, we have to provide a place-holder in InVals, so
3162       // pretend we have an 8-byte item at the current address for that
3163       // purpose.
3164       if (!ObjSize) {
3165         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3166         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3167         InVals.push_back(FIN);
3168         continue;
3169       }
3170 
3171       // Create a stack object covering all stack doublewords occupied
3172       // by the argument.  If the argument is (fully or partially) on
3173       // the stack, or if the argument is fully in registers but the
3174       // caller has allocated the parameter save anyway, we can refer
3175       // directly to the caller's stack frame.  Otherwise, create a
3176       // local copy in our own frame.
3177       int FI;
3178       if (HasParameterArea ||
3179           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3180         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3181       else
3182         FI = MFI->CreateStackObject(ArgSize, Align, false);
3183       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3184 
3185       // Handle aggregates smaller than 8 bytes.
3186       if (ObjSize < PtrByteSize) {
3187         // The value of the object is its address, which differs from the
3188         // address of the enclosing doubleword on big-endian systems.
3189         SDValue Arg = FIN;
3190         if (!isLittleEndian) {
3191           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3192           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3193         }
3194         InVals.push_back(Arg);
3195 
3196         if (GPR_idx != Num_GPR_Regs) {
3197           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3198           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3199           SDValue Store;
3200 
3201           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3202             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3203                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3204             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3205                                       MachinePointerInfo(&*FuncArg), ObjType,
3206                                       false, false, 0);
3207           } else {
3208             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3209             // store the whole register as-is to the parameter save area
3210             // slot.
3211             Store =
3212                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3213                              MachinePointerInfo(&*FuncArg), false, false, 0);
3214           }
3215 
3216           MemOps.push_back(Store);
3217         }
3218         // Whether we copied from a register or not, advance the offset
3219         // into the parameter save area by a full doubleword.
3220         ArgOffset += PtrByteSize;
3221         continue;
3222       }
3223 
3224       // The value of the object is its address, which is the address of
3225       // its first stack doubleword.
3226       InVals.push_back(FIN);
3227 
3228       // Store whatever pieces of the object are in registers to memory.
3229       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3230         if (GPR_idx == Num_GPR_Regs)
3231           break;
3232 
3233         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3234         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3235         SDValue Addr = FIN;
3236         if (j) {
3237           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3238           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3239         }
3240         SDValue Store =
3241             DAG.getStore(Val.getValue(1), dl, Val, Addr,
3242                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
3243         MemOps.push_back(Store);
3244         ++GPR_idx;
3245       }
3246       ArgOffset += ArgSize;
3247       continue;
3248     }
3249 
3250     switch (ObjectVT.getSimpleVT().SimpleTy) {
3251     default: llvm_unreachable("Unhandled argument type!");
3252     case MVT::i1:
3253     case MVT::i32:
3254     case MVT::i64:
3255       if (Flags.isNest()) {
3256         // The 'nest' parameter, if any, is passed in R11.
3257         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3258         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3259 
3260         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3261           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3262 
3263         break;
3264       }
3265 
3266       // These can be scalar arguments or elements of an integer array type
3267       // passed directly.  Clang may use those instead of "byval" aggregate
3268       // types to avoid forcing arguments to memory unnecessarily.
3269       if (GPR_idx != Num_GPR_Regs) {
3270         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3271         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3272 
3273         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3274           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3275           // value to MVT::i64 and then truncate to the correct register size.
3276           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3277       } else {
3278         if (CallConv == CallingConv::Fast)
3279           ComputeArgOffset();
3280 
3281         needsLoad = true;
3282         ArgSize = PtrByteSize;
3283       }
3284       if (CallConv != CallingConv::Fast || needsLoad)
3285         ArgOffset += 8;
3286       break;
3287 
3288     case MVT::f32:
3289     case MVT::f64:
3290       // These can be scalar arguments or elements of a float array type
3291       // passed directly.  The latter are used to implement ELFv2 homogenous
3292       // float aggregates.
3293       if (FPR_idx != Num_FPR_Regs) {
3294         unsigned VReg;
3295 
3296         if (ObjectVT == MVT::f32)
3297           VReg = MF.addLiveIn(FPR[FPR_idx],
3298                               Subtarget.hasP8Vector()
3299                                   ? &PPC::VSSRCRegClass
3300                                   : &PPC::F4RCRegClass);
3301         else
3302           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3303                                                 ? &PPC::VSFRCRegClass
3304                                                 : &PPC::F8RCRegClass);
3305 
3306         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3307         ++FPR_idx;
3308       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3309         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3310         // once we support fp <-> gpr moves.
3311 
3312         // This can only ever happen in the presence of f32 array types,
3313         // since otherwise we never run out of FPRs before running out
3314         // of GPRs.
3315         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3316         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3317 
3318         if (ObjectVT == MVT::f32) {
3319           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3320             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3321                                  DAG.getConstant(32, dl, MVT::i32));
3322           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3323         }
3324 
3325         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3326       } else {
3327         if (CallConv == CallingConv::Fast)
3328           ComputeArgOffset();
3329 
3330         needsLoad = true;
3331       }
3332 
3333       // When passing an array of floats, the array occupies consecutive
3334       // space in the argument area; only round up to the next doubleword
3335       // at the end of the array.  Otherwise, each float takes 8 bytes.
3336       if (CallConv != CallingConv::Fast || needsLoad) {
3337         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3338         ArgOffset += ArgSize;
3339         if (Flags.isInConsecutiveRegsLast())
3340           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3341       }
3342       break;
3343     case MVT::v4f32:
3344     case MVT::v4i32:
3345     case MVT::v8i16:
3346     case MVT::v16i8:
3347     case MVT::v2f64:
3348     case MVT::v2i64:
3349     case MVT::v1i128:
3350       if (!Subtarget.hasQPX()) {
3351       // These can be scalar arguments or elements of a vector array type
3352       // passed directly.  The latter are used to implement ELFv2 homogenous
3353       // vector aggregates.
3354       if (VR_idx != Num_VR_Regs) {
3355         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3356                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3357                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3358         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3359         ++VR_idx;
3360       } else {
3361         if (CallConv == CallingConv::Fast)
3362           ComputeArgOffset();
3363 
3364         needsLoad = true;
3365       }
3366       if (CallConv != CallingConv::Fast || needsLoad)
3367         ArgOffset += 16;
3368       break;
3369       } // not QPX
3370 
3371       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3372              "Invalid QPX parameter type");
3373       /* fall through */
3374 
3375     case MVT::v4f64:
3376     case MVT::v4i1:
3377       // QPX vectors are treated like their scalar floating-point subregisters
3378       // (except that they're larger).
3379       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3380       if (QFPR_idx != Num_QFPR_Regs) {
3381         const TargetRegisterClass *RC;
3382         switch (ObjectVT.getSimpleVT().SimpleTy) {
3383         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3384         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3385         default:         RC = &PPC::QBRCRegClass; break;
3386         }
3387 
3388         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3389         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3390         ++QFPR_idx;
3391       } else {
3392         if (CallConv == CallingConv::Fast)
3393           ComputeArgOffset();
3394         needsLoad = true;
3395       }
3396       if (CallConv != CallingConv::Fast || needsLoad)
3397         ArgOffset += Sz;
3398       break;
3399     }
3400 
3401     // We need to load the argument to a virtual register if we determined
3402     // above that we ran out of physical registers of the appropriate type.
3403     if (needsLoad) {
3404       if (ObjSize < ArgSize && !isLittleEndian)
3405         CurArgOffset += ArgSize - ObjSize;
3406       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3407       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3408       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3409                            false, false, false, 0);
3410     }
3411 
3412     InVals.push_back(ArgVal);
3413   }
3414 
3415   // Area that is at least reserved in the caller of this function.
3416   unsigned MinReservedArea;
3417   if (HasParameterArea)
3418     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3419   else
3420     MinReservedArea = LinkageSize;
3421 
3422   // Set the size that is at least reserved in caller of this function.  Tail
3423   // call optimized functions' reserved stack space needs to be aligned so that
3424   // taking the difference between two stack areas will result in an aligned
3425   // stack.
3426   MinReservedArea =
3427       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3428   FuncInfo->setMinReservedArea(MinReservedArea);
3429 
3430   // If the function takes variable number of arguments, make a frame index for
3431   // the start of the first vararg value... for expansion of llvm.va_start.
3432   if (isVarArg) {
3433     int Depth = ArgOffset;
3434 
3435     FuncInfo->setVarArgsFrameIndex(
3436       MFI->CreateFixedObject(PtrByteSize, Depth, true));
3437     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3438 
3439     // If this function is vararg, store any remaining integer argument regs
3440     // to their spots on the stack so that they may be loaded by deferencing the
3441     // result of va_next.
3442     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3443          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3444       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3445       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3446       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3447                                    MachinePointerInfo(), false, false, 0);
3448       MemOps.push_back(Store);
3449       // Increment the address by four for the next argument to store
3450       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3451       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3452     }
3453   }
3454 
3455   if (!MemOps.empty())
3456     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3457 
3458   return Chain;
3459 }
3460 
3461 SDValue
3462 PPCTargetLowering::LowerFormalArguments_Darwin(
3463                                       SDValue Chain,
3464                                       CallingConv::ID CallConv, bool isVarArg,
3465                                       const SmallVectorImpl<ISD::InputArg>
3466                                         &Ins,
3467                                       SDLoc dl, SelectionDAG &DAG,
3468                                       SmallVectorImpl<SDValue> &InVals) const {
3469   // TODO: add description of PPC stack frame format, or at least some docs.
3470   //
3471   MachineFunction &MF = DAG.getMachineFunction();
3472   MachineFrameInfo *MFI = MF.getFrameInfo();
3473   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3474 
3475   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
3476   bool isPPC64 = PtrVT == MVT::i64;
3477   // Potential tail calls could cause overwriting of argument stack slots.
3478   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3479                        (CallConv == CallingConv::Fast));
3480   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3481   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3482   unsigned ArgOffset = LinkageSize;
3483   // Area that is at least reserved in caller of this function.
3484   unsigned MinReservedArea = ArgOffset;
3485 
3486   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3487     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3488     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3489   };
3490   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3491     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3492     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3493   };
3494   static const MCPhysReg VR[] = {
3495     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3496     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3497   };
3498 
3499   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3500   const unsigned Num_FPR_Regs = 13;
3501   const unsigned Num_VR_Regs  = array_lengthof( VR);
3502 
3503   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3504 
3505   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3506 
3507   // In 32-bit non-varargs functions, the stack space for vectors is after the
3508   // stack space for non-vectors.  We do not use this space unless we have
3509   // too many vectors to fit in registers, something that only occurs in
3510   // constructed examples:), but we have to walk the arglist to figure
3511   // that out...for the pathological case, compute VecArgOffset as the
3512   // start of the vector parameter area.  Computing VecArgOffset is the
3513   // entire point of the following loop.
3514   unsigned VecArgOffset = ArgOffset;
3515   if (!isVarArg && !isPPC64) {
3516     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3517          ++ArgNo) {
3518       EVT ObjectVT = Ins[ArgNo].VT;
3519       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3520 
3521       if (Flags.isByVal()) {
3522         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3523         unsigned ObjSize = Flags.getByValSize();
3524         unsigned ArgSize =
3525                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3526         VecArgOffset += ArgSize;
3527         continue;
3528       }
3529 
3530       switch(ObjectVT.getSimpleVT().SimpleTy) {
3531       default: llvm_unreachable("Unhandled argument type!");
3532       case MVT::i1:
3533       case MVT::i32:
3534       case MVT::f32:
3535         VecArgOffset += 4;
3536         break;
3537       case MVT::i64:  // PPC64
3538       case MVT::f64:
3539         // FIXME: We are guaranteed to be !isPPC64 at this point.
3540         // Does MVT::i64 apply?
3541         VecArgOffset += 8;
3542         break;
3543       case MVT::v4f32:
3544       case MVT::v4i32:
3545       case MVT::v8i16:
3546       case MVT::v16i8:
3547         // Nothing to do, we're only looking at Nonvector args here.
3548         break;
3549       }
3550     }
3551   }
3552   // We've found where the vector parameter area in memory is.  Skip the
3553   // first 12 parameters; these don't use that memory.
3554   VecArgOffset = ((VecArgOffset+15)/16)*16;
3555   VecArgOffset += 12*16;
3556 
3557   // Add DAG nodes to load the arguments or copy them out of registers.  On
3558   // entry to a function on PPC, the arguments start after the linkage area,
3559   // although the first ones are often in registers.
3560 
3561   SmallVector<SDValue, 8> MemOps;
3562   unsigned nAltivecParamsAtEnd = 0;
3563   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3564   unsigned CurArgIdx = 0;
3565   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3566     SDValue ArgVal;
3567     bool needsLoad = false;
3568     EVT ObjectVT = Ins[ArgNo].VT;
3569     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3570     unsigned ArgSize = ObjSize;
3571     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3572     if (Ins[ArgNo].isOrigArg()) {
3573       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3574       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3575     }
3576     unsigned CurArgOffset = ArgOffset;
3577 
3578     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3579     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3580         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3581       if (isVarArg || isPPC64) {
3582         MinReservedArea = ((MinReservedArea+15)/16)*16;
3583         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3584                                                   Flags,
3585                                                   PtrByteSize);
3586       } else  nAltivecParamsAtEnd++;
3587     } else
3588       // Calculate min reserved area.
3589       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3590                                                 Flags,
3591                                                 PtrByteSize);
3592 
3593     // FIXME the codegen can be much improved in some cases.
3594     // We do not have to keep everything in memory.
3595     if (Flags.isByVal()) {
3596       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3597 
3598       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3599       ObjSize = Flags.getByValSize();
3600       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3601       // Objects of size 1 and 2 are right justified, everything else is
3602       // left justified.  This means the memory address is adjusted forwards.
3603       if (ObjSize==1 || ObjSize==2) {
3604         CurArgOffset = CurArgOffset + (4 - ObjSize);
3605       }
3606       // The value of the object is its address.
3607       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3608       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3609       InVals.push_back(FIN);
3610       if (ObjSize==1 || ObjSize==2) {
3611         if (GPR_idx != Num_GPR_Regs) {
3612           unsigned VReg;
3613           if (isPPC64)
3614             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3615           else
3616             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3617           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3618           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3619           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3620                                             MachinePointerInfo(&*FuncArg),
3621                                             ObjType, false, false, 0);
3622           MemOps.push_back(Store);
3623           ++GPR_idx;
3624         }
3625 
3626         ArgOffset += PtrByteSize;
3627 
3628         continue;
3629       }
3630       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3631         // Store whatever pieces of the object are in registers
3632         // to memory.  ArgOffset will be the address of the beginning
3633         // of the object.
3634         if (GPR_idx != Num_GPR_Regs) {
3635           unsigned VReg;
3636           if (isPPC64)
3637             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3638           else
3639             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3640           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3641           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3642           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3643           SDValue Store =
3644               DAG.getStore(Val.getValue(1), dl, Val, FIN,
3645                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
3646           MemOps.push_back(Store);
3647           ++GPR_idx;
3648           ArgOffset += PtrByteSize;
3649         } else {
3650           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3651           break;
3652         }
3653       }
3654       continue;
3655     }
3656 
3657     switch (ObjectVT.getSimpleVT().SimpleTy) {
3658     default: llvm_unreachable("Unhandled argument type!");
3659     case MVT::i1:
3660     case MVT::i32:
3661       if (!isPPC64) {
3662         if (GPR_idx != Num_GPR_Regs) {
3663           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3664           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3665 
3666           if (ObjectVT == MVT::i1)
3667             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3668 
3669           ++GPR_idx;
3670         } else {
3671           needsLoad = true;
3672           ArgSize = PtrByteSize;
3673         }
3674         // All int arguments reserve stack space in the Darwin ABI.
3675         ArgOffset += PtrByteSize;
3676         break;
3677       }
3678       // FALLTHROUGH
3679     case MVT::i64:  // PPC64
3680       if (GPR_idx != Num_GPR_Regs) {
3681         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3682         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3683 
3684         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3685           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3686           // value to MVT::i64 and then truncate to the correct register size.
3687           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3688 
3689         ++GPR_idx;
3690       } else {
3691         needsLoad = true;
3692         ArgSize = PtrByteSize;
3693       }
3694       // All int arguments reserve stack space in the Darwin ABI.
3695       ArgOffset += 8;
3696       break;
3697 
3698     case MVT::f32:
3699     case MVT::f64:
3700       // Every 4 bytes of argument space consumes one of the GPRs available for
3701       // argument passing.
3702       if (GPR_idx != Num_GPR_Regs) {
3703         ++GPR_idx;
3704         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3705           ++GPR_idx;
3706       }
3707       if (FPR_idx != Num_FPR_Regs) {
3708         unsigned VReg;
3709 
3710         if (ObjectVT == MVT::f32)
3711           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3712         else
3713           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3714 
3715         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3716         ++FPR_idx;
3717       } else {
3718         needsLoad = true;
3719       }
3720 
3721       // All FP arguments reserve stack space in the Darwin ABI.
3722       ArgOffset += isPPC64 ? 8 : ObjSize;
3723       break;
3724     case MVT::v4f32:
3725     case MVT::v4i32:
3726     case MVT::v8i16:
3727     case MVT::v16i8:
3728       // Note that vector arguments in registers don't reserve stack space,
3729       // except in varargs functions.
3730       if (VR_idx != Num_VR_Regs) {
3731         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3732         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3733         if (isVarArg) {
3734           while ((ArgOffset % 16) != 0) {
3735             ArgOffset += PtrByteSize;
3736             if (GPR_idx != Num_GPR_Regs)
3737               GPR_idx++;
3738           }
3739           ArgOffset += 16;
3740           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3741         }
3742         ++VR_idx;
3743       } else {
3744         if (!isVarArg && !isPPC64) {
3745           // Vectors go after all the nonvectors.
3746           CurArgOffset = VecArgOffset;
3747           VecArgOffset += 16;
3748         } else {
3749           // Vectors are aligned.
3750           ArgOffset = ((ArgOffset+15)/16)*16;
3751           CurArgOffset = ArgOffset;
3752           ArgOffset += 16;
3753         }
3754         needsLoad = true;
3755       }
3756       break;
3757     }
3758 
3759     // We need to load the argument to a virtual register if we determined above
3760     // that we ran out of physical registers of the appropriate type.
3761     if (needsLoad) {
3762       int FI = MFI->CreateFixedObject(ObjSize,
3763                                       CurArgOffset + (ArgSize - ObjSize),
3764                                       isImmutable);
3765       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3766       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3767                            false, false, false, 0);
3768     }
3769 
3770     InVals.push_back(ArgVal);
3771   }
3772 
3773   // Allow for Altivec parameters at the end, if needed.
3774   if (nAltivecParamsAtEnd) {
3775     MinReservedArea = ((MinReservedArea+15)/16)*16;
3776     MinReservedArea += 16*nAltivecParamsAtEnd;
3777   }
3778 
3779   // Area that is at least reserved in the caller of this function.
3780   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3781 
3782   // Set the size that is at least reserved in caller of this function.  Tail
3783   // call optimized functions' reserved stack space needs to be aligned so that
3784   // taking the difference between two stack areas will result in an aligned
3785   // stack.
3786   MinReservedArea =
3787       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3788   FuncInfo->setMinReservedArea(MinReservedArea);
3789 
3790   // If the function takes variable number of arguments, make a frame index for
3791   // the start of the first vararg value... for expansion of llvm.va_start.
3792   if (isVarArg) {
3793     int Depth = ArgOffset;
3794 
3795     FuncInfo->setVarArgsFrameIndex(
3796       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3797                              Depth, true));
3798     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3799 
3800     // If this function is vararg, store any remaining integer argument regs
3801     // to their spots on the stack so that they may be loaded by deferencing the
3802     // result of va_next.
3803     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3804       unsigned VReg;
3805 
3806       if (isPPC64)
3807         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3808       else
3809         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3810 
3811       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3812       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3813                                    MachinePointerInfo(), false, false, 0);
3814       MemOps.push_back(Store);
3815       // Increment the address by four for the next argument to store
3816       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3817       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3818     }
3819   }
3820 
3821   if (!MemOps.empty())
3822     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3823 
3824   return Chain;
3825 }
3826 
3827 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3828 /// adjusted to accommodate the arguments for the tailcall.
3829 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3830                                    unsigned ParamSize) {
3831 
3832   if (!isTailCall) return 0;
3833 
3834   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3835   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3836   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3837   // Remember only if the new adjustement is bigger.
3838   if (SPDiff < FI->getTailCallSPDelta())
3839     FI->setTailCallSPDelta(SPDiff);
3840 
3841   return SPDiff;
3842 }
3843 
3844 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3845 /// for tail call optimization. Targets which want to do tail call
3846 /// optimization should implement this function.
3847 bool
3848 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3849                                                      CallingConv::ID CalleeCC,
3850                                                      bool isVarArg,
3851                                       const SmallVectorImpl<ISD::InputArg> &Ins,
3852                                                      SelectionDAG& DAG) const {
3853   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3854     return false;
3855 
3856   // Variable argument functions are not supported.
3857   if (isVarArg)
3858     return false;
3859 
3860   MachineFunction &MF = DAG.getMachineFunction();
3861   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3862   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3863     // Functions containing by val parameters are not supported.
3864     for (unsigned i = 0; i != Ins.size(); i++) {
3865        ISD::ArgFlagsTy Flags = Ins[i].Flags;
3866        if (Flags.isByVal()) return false;
3867     }
3868 
3869     // Non-PIC/GOT tail calls are supported.
3870     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3871       return true;
3872 
3873     // At the moment we can only do local tail calls (in same module, hidden
3874     // or protected) if we are generating PIC.
3875     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3876       return G->getGlobal()->hasHiddenVisibility()
3877           || G->getGlobal()->hasProtectedVisibility();
3878   }
3879 
3880   return false;
3881 }
3882 
3883 /// isCallCompatibleAddress - Return the immediate to use if the specified
3884 /// 32-bit value is representable in the immediate field of a BxA instruction.
3885 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3886   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3887   if (!C) return nullptr;
3888 
3889   int Addr = C->getZExtValue();
3890   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
3891       SignExtend32<26>(Addr) != Addr)
3892     return nullptr;  // Top 6 bits have to be sext of immediate.
3893 
3894   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
3895                          DAG.getTargetLoweringInfo().getPointerTy(
3896                              DAG.getDataLayout())).getNode();
3897 }
3898 
3899 namespace {
3900 
3901 struct TailCallArgumentInfo {
3902   SDValue Arg;
3903   SDValue FrameIdxOp;
3904   int       FrameIdx;
3905 
3906   TailCallArgumentInfo() : FrameIdx(0) {}
3907 };
3908 }
3909 
3910 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3911 static void
3912 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3913                                            SDValue Chain,
3914                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3915                    SmallVectorImpl<SDValue> &MemOpChains,
3916                    SDLoc dl) {
3917   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3918     SDValue Arg = TailCallArgs[i].Arg;
3919     SDValue FIN = TailCallArgs[i].FrameIdxOp;
3920     int FI = TailCallArgs[i].FrameIdx;
3921     // Store relative to framepointer.
3922     MemOpChains.push_back(DAG.getStore(
3923         Chain, dl, Arg, FIN,
3924         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
3925         false, 0));
3926   }
3927 }
3928 
3929 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3930 /// the appropriate stack slot for the tail call optimized function call.
3931 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3932                                                MachineFunction &MF,
3933                                                SDValue Chain,
3934                                                SDValue OldRetAddr,
3935                                                SDValue OldFP,
3936                                                int SPDiff,
3937                                                bool isPPC64,
3938                                                bool isDarwinABI,
3939                                                SDLoc dl) {
3940   if (SPDiff) {
3941     // Calculate the new stack slot for the return address.
3942     int SlotSize = isPPC64 ? 8 : 4;
3943     const PPCFrameLowering *FL =
3944         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
3945     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
3946     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3947                                                           NewRetAddrLoc, true);
3948     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3949     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3950     Chain = DAG.getStore(
3951         Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3952         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr),
3953         false, false, 0);
3954 
3955     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3956     // slot as the FP is never overwritten.
3957     if (isDarwinABI) {
3958       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
3959       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3960                                                           true);
3961       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3962       Chain = DAG.getStore(
3963           Chain, dl, OldFP, NewFramePtrIdx,
3964           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
3965           false, false, 0);
3966     }
3967   }
3968   return Chain;
3969 }
3970 
3971 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3972 /// the position of the argument.
3973 static void
3974 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3975                          SDValue Arg, int SPDiff, unsigned ArgOffset,
3976                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3977   int Offset = ArgOffset + SPDiff;
3978   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3979   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3980   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3981   SDValue FIN = DAG.getFrameIndex(FI, VT);
3982   TailCallArgumentInfo Info;
3983   Info.Arg = Arg;
3984   Info.FrameIdxOp = FIN;
3985   Info.FrameIdx = FI;
3986   TailCallArguments.push_back(Info);
3987 }
3988 
3989 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3990 /// stack slot. Returns the chain as result and the loaded frame pointers in
3991 /// LROpOut/FPOpout. Used when tail calling.
3992 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3993                                                         int SPDiff,
3994                                                         SDValue Chain,
3995                                                         SDValue &LROpOut,
3996                                                         SDValue &FPOpOut,
3997                                                         bool isDarwinABI,
3998                                                         SDLoc dl) const {
3999   if (SPDiff) {
4000     // Load the LR and FP stack slot for later adjusting.
4001     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4002     LROpOut = getReturnAddrFrameIndex(DAG);
4003     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
4004                           false, false, false, 0);
4005     Chain = SDValue(LROpOut.getNode(), 1);
4006 
4007     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4008     // slot as the FP is never overwritten.
4009     if (isDarwinABI) {
4010       FPOpOut = getFramePointerFrameIndex(DAG);
4011       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
4012                             false, false, false, 0);
4013       Chain = SDValue(FPOpOut.getNode(), 1);
4014     }
4015   }
4016   return Chain;
4017 }
4018 
4019 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4020 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4021 /// specified by the specific parameter attribute. The copy will be passed as
4022 /// a byval function parameter.
4023 /// Sometimes what we are copying is the end of a larger object, the part that
4024 /// does not fit in registers.
4025 static SDValue
4026 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
4027                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
4028                           SDLoc dl) {
4029   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4030   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4031                        false, false, false, MachinePointerInfo(),
4032                        MachinePointerInfo());
4033 }
4034 
4035 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4036 /// tail calls.
4037 static void
4038 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
4039                  SDValue Arg, SDValue PtrOff, int SPDiff,
4040                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
4041                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4042                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
4043                  SDLoc dl) {
4044   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4045   if (!isTailCall) {
4046     if (isVector) {
4047       SDValue StackPtr;
4048       if (isPPC64)
4049         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4050       else
4051         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4052       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4053                            DAG.getConstant(ArgOffset, dl, PtrVT));
4054     }
4055     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4056                                        MachinePointerInfo(), false, false, 0));
4057   // Calculate and remember argument location.
4058   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4059                                   TailCallArguments);
4060 }
4061 
4062 static
4063 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4064                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
4065                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
4066                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4067   MachineFunction &MF = DAG.getMachineFunction();
4068 
4069   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4070   // might overwrite each other in case of tail call optimization.
4071   SmallVector<SDValue, 8> MemOpChains2;
4072   // Do not flag preceding copytoreg stuff together with the following stuff.
4073   InFlag = SDValue();
4074   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4075                                     MemOpChains2, dl);
4076   if (!MemOpChains2.empty())
4077     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4078 
4079   // Store the return address to the appropriate stack slot.
4080   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
4081                                         isPPC64, isDarwinABI, dl);
4082 
4083   // Emit callseq_end just before tailcall node.
4084   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4085                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4086   InFlag = Chain.getValue(1);
4087 }
4088 
4089 // Is this global address that of a function that can be called by name? (as
4090 // opposed to something that must hold a descriptor for an indirect call).
4091 static bool isFunctionGlobalAddress(SDValue Callee) {
4092   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4093     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4094         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4095       return false;
4096 
4097     return G->getGlobal()->getValueType()->isFunctionTy();
4098   }
4099 
4100   return false;
4101 }
4102 
4103 static
4104 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
4105                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
4106                      bool isTailCall, bool IsPatchPoint, bool hasNest,
4107                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
4108                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4109                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4110 
4111   bool isPPC64 = Subtarget.isPPC64();
4112   bool isSVR4ABI = Subtarget.isSVR4ABI();
4113   bool isELFv2ABI = Subtarget.isELFv2ABI();
4114 
4115   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4116   NodeTys.push_back(MVT::Other);   // Returns a chain
4117   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4118 
4119   unsigned CallOpc = PPCISD::CALL;
4120 
4121   bool needIndirectCall = true;
4122   if (!isSVR4ABI || !isPPC64)
4123     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4124       // If this is an absolute destination address, use the munged value.
4125       Callee = SDValue(Dest, 0);
4126       needIndirectCall = false;
4127     }
4128 
4129   if (isFunctionGlobalAddress(Callee)) {
4130     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4131     // A call to a TLS address is actually an indirect call to a
4132     // thread-specific pointer.
4133     unsigned OpFlags = 0;
4134     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4135          (Subtarget.getTargetTriple().isMacOSX() &&
4136           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
4137          !G->getGlobal()->isStrongDefinitionForLinker()) ||
4138         (Subtarget.isTargetELF() && !isPPC64 &&
4139          !G->getGlobal()->hasLocalLinkage() &&
4140          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4141       // PC-relative references to external symbols should go through $stub,
4142       // unless we're building with the leopard linker or later, which
4143       // automatically synthesizes these stubs.
4144       OpFlags = PPCII::MO_PLT_OR_STUB;
4145     }
4146 
4147     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4148     // every direct call is) turn it into a TargetGlobalAddress /
4149     // TargetExternalSymbol node so that legalize doesn't hack it.
4150     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4151                                         Callee.getValueType(), 0, OpFlags);
4152     needIndirectCall = false;
4153   }
4154 
4155   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4156     unsigned char OpFlags = 0;
4157 
4158     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
4159          (Subtarget.getTargetTriple().isMacOSX() &&
4160           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
4161         (Subtarget.isTargetELF() && !isPPC64 &&
4162          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
4163       // PC-relative references to external symbols should go through $stub,
4164       // unless we're building with the leopard linker or later, which
4165       // automatically synthesizes these stubs.
4166       OpFlags = PPCII::MO_PLT_OR_STUB;
4167     }
4168 
4169     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4170                                          OpFlags);
4171     needIndirectCall = false;
4172   }
4173 
4174   if (IsPatchPoint) {
4175     // We'll form an invalid direct call when lowering a patchpoint; the full
4176     // sequence for an indirect call is complicated, and many of the
4177     // instructions introduced might have side effects (and, thus, can't be
4178     // removed later). The call itself will be removed as soon as the
4179     // argument/return lowering is complete, so the fact that it has the wrong
4180     // kind of operands should not really matter.
4181     needIndirectCall = false;
4182   }
4183 
4184   if (needIndirectCall) {
4185     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4186     // to do the call, we can't use PPCISD::CALL.
4187     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4188 
4189     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4190       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4191       // entry point, but to the function descriptor (the function entry point
4192       // address is part of the function descriptor though).
4193       // The function descriptor is a three doubleword structure with the
4194       // following fields: function entry point, TOC base address and
4195       // environment pointer.
4196       // Thus for a call through a function pointer, the following actions need
4197       // to be performed:
4198       //   1. Save the TOC of the caller in the TOC save area of its stack
4199       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4200       //   2. Load the address of the function entry point from the function
4201       //      descriptor.
4202       //   3. Load the TOC of the callee from the function descriptor into r2.
4203       //   4. Load the environment pointer from the function descriptor into
4204       //      r11.
4205       //   5. Branch to the function entry point address.
4206       //   6. On return of the callee, the TOC of the caller needs to be
4207       //      restored (this is done in FinishCall()).
4208       //
4209       // The loads are scheduled at the beginning of the call sequence, and the
4210       // register copies are flagged together to ensure that no other
4211       // operations can be scheduled in between. E.g. without flagging the
4212       // copies together, a TOC access in the caller could be scheduled between
4213       // the assignment of the callee TOC and the branch to the callee, which
4214       // results in the TOC access going through the TOC of the callee instead
4215       // of going through the TOC of the caller, which leads to incorrect code.
4216 
4217       // Load the address of the function entry point from the function
4218       // descriptor.
4219       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4220       if (LDChain.getValueType() == MVT::Glue)
4221         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4222 
4223       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4224 
4225       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4226       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4227                                         false, false, LoadsInv, 8);
4228 
4229       // Load environment pointer into r11.
4230       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4231       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4232       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4233                                        MPI.getWithOffset(16), false, false,
4234                                        LoadsInv, 8);
4235 
4236       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4237       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4238       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4239                                    MPI.getWithOffset(8), false, false,
4240                                    LoadsInv, 8);
4241 
4242       setUsesTOCBasePtr(DAG);
4243       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4244                                         InFlag);
4245       Chain = TOCVal.getValue(0);
4246       InFlag = TOCVal.getValue(1);
4247 
4248       // If the function call has an explicit 'nest' parameter, it takes the
4249       // place of the environment pointer.
4250       if (!hasNest) {
4251         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4252                                           InFlag);
4253 
4254         Chain = EnvVal.getValue(0);
4255         InFlag = EnvVal.getValue(1);
4256       }
4257 
4258       MTCTROps[0] = Chain;
4259       MTCTROps[1] = LoadFuncPtr;
4260       MTCTROps[2] = InFlag;
4261     }
4262 
4263     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4264                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4265     InFlag = Chain.getValue(1);
4266 
4267     NodeTys.clear();
4268     NodeTys.push_back(MVT::Other);
4269     NodeTys.push_back(MVT::Glue);
4270     Ops.push_back(Chain);
4271     CallOpc = PPCISD::BCTRL;
4272     Callee.setNode(nullptr);
4273     // Add use of X11 (holding environment pointer)
4274     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4275       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4276     // Add CTR register as callee so a bctr can be emitted later.
4277     if (isTailCall)
4278       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4279   }
4280 
4281   // If this is a direct call, pass the chain and the callee.
4282   if (Callee.getNode()) {
4283     Ops.push_back(Chain);
4284     Ops.push_back(Callee);
4285   }
4286   // If this is a tail call add stack pointer delta.
4287   if (isTailCall)
4288     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4289 
4290   // Add argument registers to the end of the list so that they are known live
4291   // into the call.
4292   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4293     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4294                                   RegsToPass[i].second.getValueType()));
4295 
4296   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4297   // into the call.
4298   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
4299     setUsesTOCBasePtr(DAG);
4300     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4301   }
4302 
4303   return CallOpc;
4304 }
4305 
4306 static
4307 bool isLocalCall(const SDValue &Callee)
4308 {
4309   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4310     return G->getGlobal()->isStrongDefinitionForLinker();
4311   return false;
4312 }
4313 
4314 SDValue
4315 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
4316                                    CallingConv::ID CallConv, bool isVarArg,
4317                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4318                                    SDLoc dl, SelectionDAG &DAG,
4319                                    SmallVectorImpl<SDValue> &InVals) const {
4320 
4321   SmallVector<CCValAssign, 16> RVLocs;
4322   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4323                     *DAG.getContext());
4324   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4325 
4326   // Copy all of the result registers out of their specified physreg.
4327   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4328     CCValAssign &VA = RVLocs[i];
4329     assert(VA.isRegLoc() && "Can only return in registers!");
4330 
4331     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4332                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4333     Chain = Val.getValue(1);
4334     InFlag = Val.getValue(2);
4335 
4336     switch (VA.getLocInfo()) {
4337     default: llvm_unreachable("Unknown loc info!");
4338     case CCValAssign::Full: break;
4339     case CCValAssign::AExt:
4340       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4341       break;
4342     case CCValAssign::ZExt:
4343       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4344                         DAG.getValueType(VA.getValVT()));
4345       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4346       break;
4347     case CCValAssign::SExt:
4348       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4349                         DAG.getValueType(VA.getValVT()));
4350       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4351       break;
4352     }
4353 
4354     InVals.push_back(Val);
4355   }
4356 
4357   return Chain;
4358 }
4359 
4360 SDValue
4361 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
4362                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
4363                               bool hasNest, SelectionDAG &DAG,
4364                               SmallVector<std::pair<unsigned, SDValue>, 8>
4365                                 &RegsToPass,
4366                               SDValue InFlag, SDValue Chain,
4367                               SDValue CallSeqStart, SDValue &Callee,
4368                               int SPDiff, unsigned NumBytes,
4369                               const SmallVectorImpl<ISD::InputArg> &Ins,
4370                               SmallVectorImpl<SDValue> &InVals,
4371                               ImmutableCallSite *CS) const {
4372 
4373   std::vector<EVT> NodeTys;
4374   SmallVector<SDValue, 8> Ops;
4375   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4376                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
4377                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4378 
4379   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4380   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4381     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4382 
4383   // When performing tail call optimization the callee pops its arguments off
4384   // the stack. Account for this here so these bytes can be pushed back on in
4385   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4386   int BytesCalleePops =
4387     (CallConv == CallingConv::Fast &&
4388      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4389 
4390   // Add a register mask operand representing the call-preserved registers.
4391   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4392   const uint32_t *Mask =
4393       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4394   assert(Mask && "Missing call preserved mask for calling convention");
4395   Ops.push_back(DAG.getRegisterMask(Mask));
4396 
4397   if (InFlag.getNode())
4398     Ops.push_back(InFlag);
4399 
4400   // Emit tail call.
4401   if (isTailCall) {
4402     assert(((Callee.getOpcode() == ISD::Register &&
4403              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4404             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4405             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4406             isa<ConstantSDNode>(Callee)) &&
4407     "Expecting an global address, external symbol, absolute value or register");
4408 
4409     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4410     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4411   }
4412 
4413   // Add a NOP immediately after the branch instruction when using the 64-bit
4414   // SVR4 ABI. At link time, if caller and callee are in a different module and
4415   // thus have a different TOC, the call will be replaced with a call to a stub
4416   // function which saves the current TOC, loads the TOC of the callee and
4417   // branches to the callee. The NOP will be replaced with a load instruction
4418   // which restores the TOC of the caller from the TOC save slot of the current
4419   // stack frame. If caller and callee belong to the same module (and have the
4420   // same TOC), the NOP will remain unchanged.
4421 
4422   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4423       !IsPatchPoint) {
4424     if (CallOpc == PPCISD::BCTRL) {
4425       // This is a call through a function pointer.
4426       // Restore the caller TOC from the save area into R2.
4427       // See PrepareCall() for more information about calls through function
4428       // pointers in the 64-bit SVR4 ABI.
4429       // We are using a target-specific load with r2 hard coded, because the
4430       // result of a target-independent load would never go directly into r2,
4431       // since r2 is a reserved register (which prevents the register allocator
4432       // from allocating it), resulting in an additional register being
4433       // allocated and an unnecessary move instruction being generated.
4434       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4435 
4436       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4437       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4438       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4439       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4440       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4441 
4442       // The address needs to go after the chain input but before the flag (or
4443       // any other variadic arguments).
4444       Ops.insert(std::next(Ops.begin()), AddTOC);
4445     } else if ((CallOpc == PPCISD::CALL) &&
4446                (!isLocalCall(Callee) ||
4447                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4448       // Otherwise insert NOP for non-local calls.
4449       CallOpc = PPCISD::CALL_NOP;
4450   }
4451 
4452   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4453   InFlag = Chain.getValue(1);
4454 
4455   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4456                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4457                              InFlag, dl);
4458   if (!Ins.empty())
4459     InFlag = Chain.getValue(1);
4460 
4461   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4462                          Ins, dl, DAG, InVals);
4463 }
4464 
4465 SDValue
4466 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4467                              SmallVectorImpl<SDValue> &InVals) const {
4468   SelectionDAG &DAG                     = CLI.DAG;
4469   SDLoc &dl                             = CLI.DL;
4470   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4471   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4472   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4473   SDValue Chain                         = CLI.Chain;
4474   SDValue Callee                        = CLI.Callee;
4475   bool &isTailCall                      = CLI.IsTailCall;
4476   CallingConv::ID CallConv              = CLI.CallConv;
4477   bool isVarArg                         = CLI.IsVarArg;
4478   bool IsPatchPoint                     = CLI.IsPatchPoint;
4479   ImmutableCallSite *CS                 = CLI.CS;
4480 
4481   if (isTailCall)
4482     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4483                                                    Ins, DAG);
4484 
4485   if (!isTailCall && CS && CS->isMustTailCall())
4486     report_fatal_error("failed to perform tail call elimination on a call "
4487                        "site marked musttail");
4488 
4489   if (Subtarget.isSVR4ABI()) {
4490     if (Subtarget.isPPC64())
4491       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4492                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4493                               dl, DAG, InVals, CS);
4494     else
4495       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4496                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4497                               dl, DAG, InVals, CS);
4498   }
4499 
4500   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4501                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
4502                           dl, DAG, InVals, CS);
4503 }
4504 
4505 SDValue
4506 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
4507                                     CallingConv::ID CallConv, bool isVarArg,
4508                                     bool isTailCall, bool IsPatchPoint,
4509                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4510                                     const SmallVectorImpl<SDValue> &OutVals,
4511                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4512                                     SDLoc dl, SelectionDAG &DAG,
4513                                     SmallVectorImpl<SDValue> &InVals,
4514                                     ImmutableCallSite *CS) const {
4515   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4516   // of the 32-bit SVR4 ABI stack frame layout.
4517 
4518   assert((CallConv == CallingConv::C ||
4519           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4520 
4521   unsigned PtrByteSize = 4;
4522 
4523   MachineFunction &MF = DAG.getMachineFunction();
4524 
4525   // Mark this function as potentially containing a function that contains a
4526   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4527   // and restoring the callers stack pointer in this functions epilog. This is
4528   // done because by tail calling the called function might overwrite the value
4529   // in this function's (MF) stack pointer stack slot 0(SP).
4530   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4531       CallConv == CallingConv::Fast)
4532     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4533 
4534   // Count how many bytes are to be pushed on the stack, including the linkage
4535   // area, parameter list area and the part of the local variable space which
4536   // contains copies of aggregates which are passed by value.
4537 
4538   // Assign locations to all of the outgoing arguments.
4539   SmallVector<CCValAssign, 16> ArgLocs;
4540   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4541                  *DAG.getContext());
4542 
4543   // Reserve space for the linkage area on the stack.
4544   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4545                        PtrByteSize);
4546 
4547   if (isVarArg) {
4548     // Handle fixed and variable vector arguments differently.
4549     // Fixed vector arguments go into registers as long as registers are
4550     // available. Variable vector arguments always go into memory.
4551     unsigned NumArgs = Outs.size();
4552 
4553     for (unsigned i = 0; i != NumArgs; ++i) {
4554       MVT ArgVT = Outs[i].VT;
4555       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4556       bool Result;
4557 
4558       if (Outs[i].IsFixed) {
4559         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4560                                CCInfo);
4561       } else {
4562         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4563                                       ArgFlags, CCInfo);
4564       }
4565 
4566       if (Result) {
4567 #ifndef NDEBUG
4568         errs() << "Call operand #" << i << " has unhandled type "
4569              << EVT(ArgVT).getEVTString() << "\n";
4570 #endif
4571         llvm_unreachable(nullptr);
4572       }
4573     }
4574   } else {
4575     // All arguments are treated the same.
4576     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4577   }
4578 
4579   // Assign locations to all of the outgoing aggregate by value arguments.
4580   SmallVector<CCValAssign, 16> ByValArgLocs;
4581   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4582                       ByValArgLocs, *DAG.getContext());
4583 
4584   // Reserve stack space for the allocations in CCInfo.
4585   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4586 
4587   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4588 
4589   // Size of the linkage area, parameter list area and the part of the local
4590   // space variable where copies of aggregates which are passed by value are
4591   // stored.
4592   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4593 
4594   // Calculate by how many bytes the stack has to be adjusted in case of tail
4595   // call optimization.
4596   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4597 
4598   // Adjust the stack pointer for the new arguments...
4599   // These operations are automatically eliminated by the prolog/epilog pass
4600   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4601                                dl);
4602   SDValue CallSeqStart = Chain;
4603 
4604   // Load the return address and frame pointer so it can be moved somewhere else
4605   // later.
4606   SDValue LROp, FPOp;
4607   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
4608                                        dl);
4609 
4610   // Set up a copy of the stack pointer for use loading and storing any
4611   // arguments that may not fit in the registers available for argument
4612   // passing.
4613   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4614 
4615   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4616   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4617   SmallVector<SDValue, 8> MemOpChains;
4618 
4619   bool seenFloatArg = false;
4620   // Walk the register/memloc assignments, inserting copies/loads.
4621   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4622        i != e;
4623        ++i) {
4624     CCValAssign &VA = ArgLocs[i];
4625     SDValue Arg = OutVals[i];
4626     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4627 
4628     if (Flags.isByVal()) {
4629       // Argument is an aggregate which is passed by value, thus we need to
4630       // create a copy of it in the local variable space of the current stack
4631       // frame (which is the stack frame of the caller) and pass the address of
4632       // this copy to the callee.
4633       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4634       CCValAssign &ByValVA = ByValArgLocs[j++];
4635       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4636 
4637       // Memory reserved in the local variable space of the callers stack frame.
4638       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4639 
4640       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4641       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4642                            StackPtr, PtrOff);
4643 
4644       // Create a copy of the argument in the local area of the current
4645       // stack frame.
4646       SDValue MemcpyCall =
4647         CreateCopyOfByValArgument(Arg, PtrOff,
4648                                   CallSeqStart.getNode()->getOperand(0),
4649                                   Flags, DAG, dl);
4650 
4651       // This must go outside the CALLSEQ_START..END.
4652       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4653                            CallSeqStart.getNode()->getOperand(1),
4654                            SDLoc(MemcpyCall));
4655       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4656                              NewCallSeqStart.getNode());
4657       Chain = CallSeqStart = NewCallSeqStart;
4658 
4659       // Pass the address of the aggregate copy on the stack either in a
4660       // physical register or in the parameter list area of the current stack
4661       // frame to the callee.
4662       Arg = PtrOff;
4663     }
4664 
4665     if (VA.isRegLoc()) {
4666       if (Arg.getValueType() == MVT::i1)
4667         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4668 
4669       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4670       // Put argument in a physical register.
4671       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4672     } else {
4673       // Put argument in the parameter list area of the current stack frame.
4674       assert(VA.isMemLoc());
4675       unsigned LocMemOffset = VA.getLocMemOffset();
4676 
4677       if (!isTailCall) {
4678         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4679         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4680                              StackPtr, PtrOff);
4681 
4682         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4683                                            MachinePointerInfo(),
4684                                            false, false, 0));
4685       } else {
4686         // Calculate and remember argument location.
4687         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4688                                  TailCallArguments);
4689       }
4690     }
4691   }
4692 
4693   if (!MemOpChains.empty())
4694     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4695 
4696   // Build a sequence of copy-to-reg nodes chained together with token chain
4697   // and flag operands which copy the outgoing args into the appropriate regs.
4698   SDValue InFlag;
4699   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4700     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4701                              RegsToPass[i].second, InFlag);
4702     InFlag = Chain.getValue(1);
4703   }
4704 
4705   // Set CR bit 6 to true if this is a vararg call with floating args passed in
4706   // registers.
4707   if (isVarArg) {
4708     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4709     SDValue Ops[] = { Chain, InFlag };
4710 
4711     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4712                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4713 
4714     InFlag = Chain.getValue(1);
4715   }
4716 
4717   if (isTailCall)
4718     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
4719                     false, TailCallArguments);
4720 
4721   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
4722                     /* unused except on PPC64 ELFv1 */ false, DAG,
4723                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4724                     NumBytes, Ins, InVals, CS);
4725 }
4726 
4727 // Copy an argument into memory, being careful to do this outside the
4728 // call sequence for the call to which the argument belongs.
4729 SDValue
4730 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
4731                                               SDValue CallSeqStart,
4732                                               ISD::ArgFlagsTy Flags,
4733                                               SelectionDAG &DAG,
4734                                               SDLoc dl) const {
4735   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4736                         CallSeqStart.getNode()->getOperand(0),
4737                         Flags, DAG, dl);
4738   // The MEMCPY must go outside the CALLSEQ_START..END.
4739   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4740                              CallSeqStart.getNode()->getOperand(1),
4741                              SDLoc(MemcpyCall));
4742   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4743                          NewCallSeqStart.getNode());
4744   return NewCallSeqStart;
4745 }
4746 
4747 SDValue
4748 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
4749                                     CallingConv::ID CallConv, bool isVarArg,
4750                                     bool isTailCall, bool IsPatchPoint,
4751                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4752                                     const SmallVectorImpl<SDValue> &OutVals,
4753                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4754                                     SDLoc dl, SelectionDAG &DAG,
4755                                     SmallVectorImpl<SDValue> &InVals,
4756                                     ImmutableCallSite *CS) const {
4757 
4758   bool isELFv2ABI = Subtarget.isELFv2ABI();
4759   bool isLittleEndian = Subtarget.isLittleEndian();
4760   unsigned NumOps = Outs.size();
4761   bool hasNest = false;
4762 
4763   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4764   unsigned PtrByteSize = 8;
4765 
4766   MachineFunction &MF = DAG.getMachineFunction();
4767 
4768   // Mark this function as potentially containing a function that contains a
4769   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4770   // and restoring the callers stack pointer in this functions epilog. This is
4771   // done because by tail calling the called function might overwrite the value
4772   // in this function's (MF) stack pointer stack slot 0(SP).
4773   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4774       CallConv == CallingConv::Fast)
4775     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4776 
4777   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4778          "fastcc not supported on varargs functions");
4779 
4780   // Count how many bytes are to be pushed on the stack, including the linkage
4781   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
4782   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
4783   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
4784   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4785   unsigned NumBytes = LinkageSize;
4786   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4787   unsigned &QFPR_idx = FPR_idx;
4788 
4789   static const MCPhysReg GPR[] = {
4790     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4791     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4792   };
4793   static const MCPhysReg VR[] = {
4794     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4795     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4796   };
4797   static const MCPhysReg VSRH[] = {
4798     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4799     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4800   };
4801 
4802   const unsigned NumGPRs = array_lengthof(GPR);
4803   const unsigned NumFPRs = 13;
4804   const unsigned NumVRs  = array_lengthof(VR);
4805   const unsigned NumQFPRs = NumFPRs;
4806 
4807   // When using the fast calling convention, we don't provide backing for
4808   // arguments that will be in registers.
4809   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
4810 
4811   // Add up all the space actually used.
4812   for (unsigned i = 0; i != NumOps; ++i) {
4813     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4814     EVT ArgVT = Outs[i].VT;
4815     EVT OrigVT = Outs[i].ArgVT;
4816 
4817     if (Flags.isNest())
4818       continue;
4819 
4820     if (CallConv == CallingConv::Fast) {
4821       if (Flags.isByVal())
4822         NumGPRsUsed += (Flags.getByValSize()+7)/8;
4823       else
4824         switch (ArgVT.getSimpleVT().SimpleTy) {
4825         default: llvm_unreachable("Unexpected ValueType for argument!");
4826         case MVT::i1:
4827         case MVT::i32:
4828         case MVT::i64:
4829           if (++NumGPRsUsed <= NumGPRs)
4830             continue;
4831           break;
4832         case MVT::v4i32:
4833         case MVT::v8i16:
4834         case MVT::v16i8:
4835         case MVT::v2f64:
4836         case MVT::v2i64:
4837         case MVT::v1i128:
4838           if (++NumVRsUsed <= NumVRs)
4839             continue;
4840           break;
4841         case MVT::v4f32:
4842           // When using QPX, this is handled like a FP register, otherwise, it
4843           // is an Altivec register.
4844           if (Subtarget.hasQPX()) {
4845             if (++NumFPRsUsed <= NumFPRs)
4846               continue;
4847           } else {
4848             if (++NumVRsUsed <= NumVRs)
4849               continue;
4850           }
4851           break;
4852         case MVT::f32:
4853         case MVT::f64:
4854         case MVT::v4f64: // QPX
4855         case MVT::v4i1:  // QPX
4856           if (++NumFPRsUsed <= NumFPRs)
4857             continue;
4858           break;
4859         }
4860     }
4861 
4862     /* Respect alignment of argument on the stack.  */
4863     unsigned Align =
4864       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4865     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
4866 
4867     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4868     if (Flags.isInConsecutiveRegsLast())
4869       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4870   }
4871 
4872   unsigned NumBytesActuallyUsed = NumBytes;
4873 
4874   // The prolog code of the callee may store up to 8 GPR argument registers to
4875   // the stack, allowing va_start to index over them in memory if its varargs.
4876   // Because we cannot tell if this is needed on the caller side, we have to
4877   // conservatively assume that it is needed.  As such, make sure we have at
4878   // least enough stack space for the caller to store the 8 GPRs.
4879   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
4880   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
4881 
4882   // Tail call needs the stack to be aligned.
4883   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4884       CallConv == CallingConv::Fast)
4885     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
4886 
4887   // Calculate by how many bytes the stack has to be adjusted in case of tail
4888   // call optimization.
4889   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4890 
4891   // To protect arguments on the stack from being clobbered in a tail call,
4892   // force all the loads to happen before doing any other lowering.
4893   if (isTailCall)
4894     Chain = DAG.getStackArgumentTokenFactor(Chain);
4895 
4896   // Adjust the stack pointer for the new arguments...
4897   // These operations are automatically eliminated by the prolog/epilog pass
4898   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4899                                dl);
4900   SDValue CallSeqStart = Chain;
4901 
4902   // Load the return address and frame pointer so it can be move somewhere else
4903   // later.
4904   SDValue LROp, FPOp;
4905   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4906                                        dl);
4907 
4908   // Set up a copy of the stack pointer for use loading and storing any
4909   // arguments that may not fit in the registers available for argument
4910   // passing.
4911   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4912 
4913   // Figure out which arguments are going to go in registers, and which in
4914   // memory.  Also, if this is a vararg function, floating point operations
4915   // must be stored to our stack, and loaded into integer regs as well, if
4916   // any integer regs are available for argument passing.
4917   unsigned ArgOffset = LinkageSize;
4918 
4919   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4920   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4921 
4922   SmallVector<SDValue, 8> MemOpChains;
4923   for (unsigned i = 0; i != NumOps; ++i) {
4924     SDValue Arg = OutVals[i];
4925     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4926     EVT ArgVT = Outs[i].VT;
4927     EVT OrigVT = Outs[i].ArgVT;
4928 
4929     // PtrOff will be used to store the current argument to the stack if a
4930     // register cannot be found for it.
4931     SDValue PtrOff;
4932 
4933     // We re-align the argument offset for each argument, except when using the
4934     // fast calling convention, when we need to make sure we do that only when
4935     // we'll actually use a stack slot.
4936     auto ComputePtrOff = [&]() {
4937       /* Respect alignment of argument on the stack.  */
4938       unsigned Align =
4939         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4940       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
4941 
4942       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
4943 
4944       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4945     };
4946 
4947     if (CallConv != CallingConv::Fast) {
4948       ComputePtrOff();
4949 
4950       /* Compute GPR index associated with argument offset.  */
4951       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4952       GPR_idx = std::min(GPR_idx, NumGPRs);
4953     }
4954 
4955     // Promote integers to 64-bit values.
4956     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4957       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4958       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4959       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4960     }
4961 
4962     // FIXME memcpy is used way more than necessary.  Correctness first.
4963     // Note: "by value" is code for passing a structure by value, not
4964     // basic types.
4965     if (Flags.isByVal()) {
4966       // Note: Size includes alignment padding, so
4967       //   struct x { short a; char b; }
4968       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
4969       // These are the proper values we need for right-justifying the
4970       // aggregate in a parameter register.
4971       unsigned Size = Flags.getByValSize();
4972 
4973       // An empty aggregate parameter takes up no storage and no
4974       // registers.
4975       if (Size == 0)
4976         continue;
4977 
4978       if (CallConv == CallingConv::Fast)
4979         ComputePtrOff();
4980 
4981       // All aggregates smaller than 8 bytes must be passed right-justified.
4982       if (Size==1 || Size==2 || Size==4) {
4983         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4984         if (GPR_idx != NumGPRs) {
4985           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4986                                         MachinePointerInfo(), VT,
4987                                         false, false, false, 0);
4988           MemOpChains.push_back(Load.getValue(1));
4989           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4990 
4991           ArgOffset += PtrByteSize;
4992           continue;
4993         }
4994       }
4995 
4996       if (GPR_idx == NumGPRs && Size < 8) {
4997         SDValue AddPtr = PtrOff;
4998         if (!isLittleEndian) {
4999           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5000                                           PtrOff.getValueType());
5001           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5002         }
5003         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5004                                                           CallSeqStart,
5005                                                           Flags, DAG, dl);
5006         ArgOffset += PtrByteSize;
5007         continue;
5008       }
5009       // Copy entire object into memory.  There are cases where gcc-generated
5010       // code assumes it is there, even if it could be put entirely into
5011       // registers.  (This is not what the doc says.)
5012 
5013       // FIXME: The above statement is likely due to a misunderstanding of the
5014       // documents.  All arguments must be copied into the parameter area BY
5015       // THE CALLEE in the event that the callee takes the address of any
5016       // formal argument.  That has not yet been implemented.  However, it is
5017       // reasonable to use the stack area as a staging area for the register
5018       // load.
5019 
5020       // Skip this for small aggregates, as we will use the same slot for a
5021       // right-justified copy, below.
5022       if (Size >= 8)
5023         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5024                                                           CallSeqStart,
5025                                                           Flags, DAG, dl);
5026 
5027       // When a register is available, pass a small aggregate right-justified.
5028       if (Size < 8 && GPR_idx != NumGPRs) {
5029         // The easiest way to get this right-justified in a register
5030         // is to copy the structure into the rightmost portion of a
5031         // local variable slot, then load the whole slot into the
5032         // register.
5033         // FIXME: The memcpy seems to produce pretty awful code for
5034         // small aggregates, particularly for packed ones.
5035         // FIXME: It would be preferable to use the slot in the
5036         // parameter save area instead of a new local variable.
5037         SDValue AddPtr = PtrOff;
5038         if (!isLittleEndian) {
5039           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5040           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5041         }
5042         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5043                                                           CallSeqStart,
5044                                                           Flags, DAG, dl);
5045 
5046         // Load the slot into the register.
5047         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5048                                    MachinePointerInfo(),
5049                                    false, false, false, 0);
5050         MemOpChains.push_back(Load.getValue(1));
5051         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5052 
5053         // Done with this argument.
5054         ArgOffset += PtrByteSize;
5055         continue;
5056       }
5057 
5058       // For aggregates larger than PtrByteSize, copy the pieces of the
5059       // object that fit into registers from the parameter save area.
5060       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5061         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5062         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5063         if (GPR_idx != NumGPRs) {
5064           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5065                                      MachinePointerInfo(),
5066                                      false, false, false, 0);
5067           MemOpChains.push_back(Load.getValue(1));
5068           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5069           ArgOffset += PtrByteSize;
5070         } else {
5071           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5072           break;
5073         }
5074       }
5075       continue;
5076     }
5077 
5078     switch (Arg.getSimpleValueType().SimpleTy) {
5079     default: llvm_unreachable("Unexpected ValueType for argument!");
5080     case MVT::i1:
5081     case MVT::i32:
5082     case MVT::i64:
5083       if (Flags.isNest()) {
5084         // The 'nest' parameter, if any, is passed in R11.
5085         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5086         hasNest = true;
5087         break;
5088       }
5089 
5090       // These can be scalar arguments or elements of an integer array type
5091       // passed directly.  Clang may use those instead of "byval" aggregate
5092       // types to avoid forcing arguments to memory unnecessarily.
5093       if (GPR_idx != NumGPRs) {
5094         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5095       } else {
5096         if (CallConv == CallingConv::Fast)
5097           ComputePtrOff();
5098 
5099         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5100                          true, isTailCall, false, MemOpChains,
5101                          TailCallArguments, dl);
5102         if (CallConv == CallingConv::Fast)
5103           ArgOffset += PtrByteSize;
5104       }
5105       if (CallConv != CallingConv::Fast)
5106         ArgOffset += PtrByteSize;
5107       break;
5108     case MVT::f32:
5109     case MVT::f64: {
5110       // These can be scalar arguments or elements of a float array type
5111       // passed directly.  The latter are used to implement ELFv2 homogenous
5112       // float aggregates.
5113 
5114       // Named arguments go into FPRs first, and once they overflow, the
5115       // remaining arguments go into GPRs and then the parameter save area.
5116       // Unnamed arguments for vararg functions always go to GPRs and
5117       // then the parameter save area.  For now, put all arguments to vararg
5118       // routines always in both locations (FPR *and* GPR or stack slot).
5119       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5120       bool NeededLoad = false;
5121 
5122       // First load the argument into the next available FPR.
5123       if (FPR_idx != NumFPRs)
5124         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5125 
5126       // Next, load the argument into GPR or stack slot if needed.
5127       if (!NeedGPROrStack)
5128         ;
5129       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5130         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5131         // once we support fp <-> gpr moves.
5132 
5133         // In the non-vararg case, this can only ever happen in the
5134         // presence of f32 array types, since otherwise we never run
5135         // out of FPRs before running out of GPRs.
5136         SDValue ArgVal;
5137 
5138         // Double values are always passed in a single GPR.
5139         if (Arg.getValueType() != MVT::f32) {
5140           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5141 
5142         // Non-array float values are extended and passed in a GPR.
5143         } else if (!Flags.isInConsecutiveRegs()) {
5144           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5145           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5146 
5147         // If we have an array of floats, we collect every odd element
5148         // together with its predecessor into one GPR.
5149         } else if (ArgOffset % PtrByteSize != 0) {
5150           SDValue Lo, Hi;
5151           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5152           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5153           if (!isLittleEndian)
5154             std::swap(Lo, Hi);
5155           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5156 
5157         // The final element, if even, goes into the first half of a GPR.
5158         } else if (Flags.isInConsecutiveRegsLast()) {
5159           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5160           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5161           if (!isLittleEndian)
5162             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5163                                  DAG.getConstant(32, dl, MVT::i32));
5164 
5165         // Non-final even elements are skipped; they will be handled
5166         // together the with subsequent argument on the next go-around.
5167         } else
5168           ArgVal = SDValue();
5169 
5170         if (ArgVal.getNode())
5171           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5172       } else {
5173         if (CallConv == CallingConv::Fast)
5174           ComputePtrOff();
5175 
5176         // Single-precision floating-point values are mapped to the
5177         // second (rightmost) word of the stack doubleword.
5178         if (Arg.getValueType() == MVT::f32 &&
5179             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5180           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5181           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5182         }
5183 
5184         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5185                          true, isTailCall, false, MemOpChains,
5186                          TailCallArguments, dl);
5187 
5188         NeededLoad = true;
5189       }
5190       // When passing an array of floats, the array occupies consecutive
5191       // space in the argument area; only round up to the next doubleword
5192       // at the end of the array.  Otherwise, each float takes 8 bytes.
5193       if (CallConv != CallingConv::Fast || NeededLoad) {
5194         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5195                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5196         if (Flags.isInConsecutiveRegsLast())
5197           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5198       }
5199       break;
5200     }
5201     case MVT::v4f32:
5202     case MVT::v4i32:
5203     case MVT::v8i16:
5204     case MVT::v16i8:
5205     case MVT::v2f64:
5206     case MVT::v2i64:
5207     case MVT::v1i128:
5208       if (!Subtarget.hasQPX()) {
5209       // These can be scalar arguments or elements of a vector array type
5210       // passed directly.  The latter are used to implement ELFv2 homogenous
5211       // vector aggregates.
5212 
5213       // For a varargs call, named arguments go into VRs or on the stack as
5214       // usual; unnamed arguments always go to the stack or the corresponding
5215       // GPRs when within range.  For now, we always put the value in both
5216       // locations (or even all three).
5217       if (isVarArg) {
5218         // We could elide this store in the case where the object fits
5219         // entirely in R registers.  Maybe later.
5220         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5221                                      MachinePointerInfo(), false, false, 0);
5222         MemOpChains.push_back(Store);
5223         if (VR_idx != NumVRs) {
5224           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5225                                      MachinePointerInfo(),
5226                                      false, false, false, 0);
5227           MemOpChains.push_back(Load.getValue(1));
5228 
5229           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5230                            Arg.getSimpleValueType() == MVT::v2i64) ?
5231                           VSRH[VR_idx] : VR[VR_idx];
5232           ++VR_idx;
5233 
5234           RegsToPass.push_back(std::make_pair(VReg, Load));
5235         }
5236         ArgOffset += 16;
5237         for (unsigned i=0; i<16; i+=PtrByteSize) {
5238           if (GPR_idx == NumGPRs)
5239             break;
5240           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5241                                    DAG.getConstant(i, dl, PtrVT));
5242           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5243                                      false, false, false, 0);
5244           MemOpChains.push_back(Load.getValue(1));
5245           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5246         }
5247         break;
5248       }
5249 
5250       // Non-varargs Altivec params go into VRs or on the stack.
5251       if (VR_idx != NumVRs) {
5252         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5253                          Arg.getSimpleValueType() == MVT::v2i64) ?
5254                         VSRH[VR_idx] : VR[VR_idx];
5255         ++VR_idx;
5256 
5257         RegsToPass.push_back(std::make_pair(VReg, Arg));
5258       } else {
5259         if (CallConv == CallingConv::Fast)
5260           ComputePtrOff();
5261 
5262         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5263                          true, isTailCall, true, MemOpChains,
5264                          TailCallArguments, dl);
5265         if (CallConv == CallingConv::Fast)
5266           ArgOffset += 16;
5267       }
5268 
5269       if (CallConv != CallingConv::Fast)
5270         ArgOffset += 16;
5271       break;
5272       } // not QPX
5273 
5274       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5275              "Invalid QPX parameter type");
5276 
5277       /* fall through */
5278     case MVT::v4f64:
5279     case MVT::v4i1: {
5280       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5281       if (isVarArg) {
5282         // We could elide this store in the case where the object fits
5283         // entirely in R registers.  Maybe later.
5284         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5285                                      MachinePointerInfo(), false, false, 0);
5286         MemOpChains.push_back(Store);
5287         if (QFPR_idx != NumQFPRs) {
5288           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5289                                      Store, PtrOff, MachinePointerInfo(),
5290                                      false, false, false, 0);
5291           MemOpChains.push_back(Load.getValue(1));
5292           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5293         }
5294         ArgOffset += (IsF32 ? 16 : 32);
5295         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5296           if (GPR_idx == NumGPRs)
5297             break;
5298           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5299                                    DAG.getConstant(i, dl, PtrVT));
5300           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5301                                      false, false, false, 0);
5302           MemOpChains.push_back(Load.getValue(1));
5303           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5304         }
5305         break;
5306       }
5307 
5308       // Non-varargs QPX params go into registers or on the stack.
5309       if (QFPR_idx != NumQFPRs) {
5310         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5311       } else {
5312         if (CallConv == CallingConv::Fast)
5313           ComputePtrOff();
5314 
5315         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5316                          true, isTailCall, true, MemOpChains,
5317                          TailCallArguments, dl);
5318         if (CallConv == CallingConv::Fast)
5319           ArgOffset += (IsF32 ? 16 : 32);
5320       }
5321 
5322       if (CallConv != CallingConv::Fast)
5323         ArgOffset += (IsF32 ? 16 : 32);
5324       break;
5325       }
5326     }
5327   }
5328 
5329   assert(NumBytesActuallyUsed == ArgOffset);
5330   (void)NumBytesActuallyUsed;
5331 
5332   if (!MemOpChains.empty())
5333     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5334 
5335   // Check if this is an indirect call (MTCTR/BCTRL).
5336   // See PrepareCall() for more information about calls through function
5337   // pointers in the 64-bit SVR4 ABI.
5338   if (!isTailCall && !IsPatchPoint &&
5339       !isFunctionGlobalAddress(Callee) &&
5340       !isa<ExternalSymbolSDNode>(Callee)) {
5341     // Load r2 into a virtual register and store it to the TOC save area.
5342     setUsesTOCBasePtr(DAG);
5343     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5344     // TOC save area offset.
5345     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5346     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5347     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5348     Chain = DAG.getStore(
5349         Val.getValue(1), dl, Val, AddPtr,
5350         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
5351         false, false, 0);
5352     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5353     // This does not mean the MTCTR instruction must use R12; it's easier
5354     // to model this as an extra parameter, so do that.
5355     if (isELFv2ABI && !IsPatchPoint)
5356       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5357   }
5358 
5359   // Build a sequence of copy-to-reg nodes chained together with token chain
5360   // and flag operands which copy the outgoing args into the appropriate regs.
5361   SDValue InFlag;
5362   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5363     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5364                              RegsToPass[i].second, InFlag);
5365     InFlag = Chain.getValue(1);
5366   }
5367 
5368   if (isTailCall)
5369     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
5370                     FPOp, true, TailCallArguments);
5371 
5372   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest,
5373                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5374                     SPDiff, NumBytes, Ins, InVals, CS);
5375 }
5376 
5377 SDValue
5378 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
5379                                     CallingConv::ID CallConv, bool isVarArg,
5380                                     bool isTailCall, bool IsPatchPoint,
5381                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
5382                                     const SmallVectorImpl<SDValue> &OutVals,
5383                                     const SmallVectorImpl<ISD::InputArg> &Ins,
5384                                     SDLoc dl, SelectionDAG &DAG,
5385                                     SmallVectorImpl<SDValue> &InVals,
5386                                     ImmutableCallSite *CS) const {
5387 
5388   unsigned NumOps = Outs.size();
5389 
5390   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5391   bool isPPC64 = PtrVT == MVT::i64;
5392   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5393 
5394   MachineFunction &MF = DAG.getMachineFunction();
5395 
5396   // Mark this function as potentially containing a function that contains a
5397   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5398   // and restoring the callers stack pointer in this functions epilog. This is
5399   // done because by tail calling the called function might overwrite the value
5400   // in this function's (MF) stack pointer stack slot 0(SP).
5401   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5402       CallConv == CallingConv::Fast)
5403     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5404 
5405   // Count how many bytes are to be pushed on the stack, including the linkage
5406   // area, and parameter passing area.  We start with 24/48 bytes, which is
5407   // prereserved space for [SP][CR][LR][3 x unused].
5408   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5409   unsigned NumBytes = LinkageSize;
5410 
5411   // Add up all the space actually used.
5412   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5413   // they all go in registers, but we must reserve stack space for them for
5414   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5415   // assigned stack space in order, with padding so Altivec parameters are
5416   // 16-byte aligned.
5417   unsigned nAltivecParamsAtEnd = 0;
5418   for (unsigned i = 0; i != NumOps; ++i) {
5419     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5420     EVT ArgVT = Outs[i].VT;
5421     // Varargs Altivec parameters are padded to a 16 byte boundary.
5422     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5423         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5424         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5425       if (!isVarArg && !isPPC64) {
5426         // Non-varargs Altivec parameters go after all the non-Altivec
5427         // parameters; handle those later so we know how much padding we need.
5428         nAltivecParamsAtEnd++;
5429         continue;
5430       }
5431       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5432       NumBytes = ((NumBytes+15)/16)*16;
5433     }
5434     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5435   }
5436 
5437   // Allow for Altivec parameters at the end, if needed.
5438   if (nAltivecParamsAtEnd) {
5439     NumBytes = ((NumBytes+15)/16)*16;
5440     NumBytes += 16*nAltivecParamsAtEnd;
5441   }
5442 
5443   // The prolog code of the callee may store up to 8 GPR argument registers to
5444   // the stack, allowing va_start to index over them in memory if its varargs.
5445   // Because we cannot tell if this is needed on the caller side, we have to
5446   // conservatively assume that it is needed.  As such, make sure we have at
5447   // least enough stack space for the caller to store the 8 GPRs.
5448   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5449 
5450   // Tail call needs the stack to be aligned.
5451   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5452       CallConv == CallingConv::Fast)
5453     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5454 
5455   // Calculate by how many bytes the stack has to be adjusted in case of tail
5456   // call optimization.
5457   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5458 
5459   // To protect arguments on the stack from being clobbered in a tail call,
5460   // force all the loads to happen before doing any other lowering.
5461   if (isTailCall)
5462     Chain = DAG.getStackArgumentTokenFactor(Chain);
5463 
5464   // Adjust the stack pointer for the new arguments...
5465   // These operations are automatically eliminated by the prolog/epilog pass
5466   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5467                                dl);
5468   SDValue CallSeqStart = Chain;
5469 
5470   // Load the return address and frame pointer so it can be move somewhere else
5471   // later.
5472   SDValue LROp, FPOp;
5473   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
5474                                        dl);
5475 
5476   // Set up a copy of the stack pointer for use loading and storing any
5477   // arguments that may not fit in the registers available for argument
5478   // passing.
5479   SDValue StackPtr;
5480   if (isPPC64)
5481     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5482   else
5483     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5484 
5485   // Figure out which arguments are going to go in registers, and which in
5486   // memory.  Also, if this is a vararg function, floating point operations
5487   // must be stored to our stack, and loaded into integer regs as well, if
5488   // any integer regs are available for argument passing.
5489   unsigned ArgOffset = LinkageSize;
5490   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5491 
5492   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5493     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5494     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5495   };
5496   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5497     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5498     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5499   };
5500   static const MCPhysReg VR[] = {
5501     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5502     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5503   };
5504   const unsigned NumGPRs = array_lengthof(GPR_32);
5505   const unsigned NumFPRs = 13;
5506   const unsigned NumVRs  = array_lengthof(VR);
5507 
5508   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5509 
5510   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5511   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5512 
5513   SmallVector<SDValue, 8> MemOpChains;
5514   for (unsigned i = 0; i != NumOps; ++i) {
5515     SDValue Arg = OutVals[i];
5516     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5517 
5518     // PtrOff will be used to store the current argument to the stack if a
5519     // register cannot be found for it.
5520     SDValue PtrOff;
5521 
5522     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5523 
5524     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5525 
5526     // On PPC64, promote integers to 64-bit values.
5527     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5528       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5529       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5530       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5531     }
5532 
5533     // FIXME memcpy is used way more than necessary.  Correctness first.
5534     // Note: "by value" is code for passing a structure by value, not
5535     // basic types.
5536     if (Flags.isByVal()) {
5537       unsigned Size = Flags.getByValSize();
5538       // Very small objects are passed right-justified.  Everything else is
5539       // passed left-justified.
5540       if (Size==1 || Size==2) {
5541         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5542         if (GPR_idx != NumGPRs) {
5543           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5544                                         MachinePointerInfo(), VT,
5545                                         false, false, false, 0);
5546           MemOpChains.push_back(Load.getValue(1));
5547           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5548 
5549           ArgOffset += PtrByteSize;
5550         } else {
5551           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5552                                           PtrOff.getValueType());
5553           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5554           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5555                                                             CallSeqStart,
5556                                                             Flags, DAG, dl);
5557           ArgOffset += PtrByteSize;
5558         }
5559         continue;
5560       }
5561       // Copy entire object into memory.  There are cases where gcc-generated
5562       // code assumes it is there, even if it could be put entirely into
5563       // registers.  (This is not what the doc says.)
5564       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5565                                                         CallSeqStart,
5566                                                         Flags, DAG, dl);
5567 
5568       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5569       // copy the pieces of the object that fit into registers from the
5570       // parameter save area.
5571       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5572         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5573         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5574         if (GPR_idx != NumGPRs) {
5575           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5576                                      MachinePointerInfo(),
5577                                      false, false, false, 0);
5578           MemOpChains.push_back(Load.getValue(1));
5579           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5580           ArgOffset += PtrByteSize;
5581         } else {
5582           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5583           break;
5584         }
5585       }
5586       continue;
5587     }
5588 
5589     switch (Arg.getSimpleValueType().SimpleTy) {
5590     default: llvm_unreachable("Unexpected ValueType for argument!");
5591     case MVT::i1:
5592     case MVT::i32:
5593     case MVT::i64:
5594       if (GPR_idx != NumGPRs) {
5595         if (Arg.getValueType() == MVT::i1)
5596           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5597 
5598         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5599       } else {
5600         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5601                          isPPC64, isTailCall, false, MemOpChains,
5602                          TailCallArguments, dl);
5603       }
5604       ArgOffset += PtrByteSize;
5605       break;
5606     case MVT::f32:
5607     case MVT::f64:
5608       if (FPR_idx != NumFPRs) {
5609         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5610 
5611         if (isVarArg) {
5612           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5613                                        MachinePointerInfo(), false, false, 0);
5614           MemOpChains.push_back(Store);
5615 
5616           // Float varargs are always shadowed in available integer registers
5617           if (GPR_idx != NumGPRs) {
5618             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5619                                        MachinePointerInfo(), false, false,
5620                                        false, 0);
5621             MemOpChains.push_back(Load.getValue(1));
5622             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5623           }
5624           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5625             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5626             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5627             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5628                                        MachinePointerInfo(),
5629                                        false, false, false, 0);
5630             MemOpChains.push_back(Load.getValue(1));
5631             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5632           }
5633         } else {
5634           // If we have any FPRs remaining, we may also have GPRs remaining.
5635           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5636           // GPRs.
5637           if (GPR_idx != NumGPRs)
5638             ++GPR_idx;
5639           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5640               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5641             ++GPR_idx;
5642         }
5643       } else
5644         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5645                          isPPC64, isTailCall, false, MemOpChains,
5646                          TailCallArguments, dl);
5647       if (isPPC64)
5648         ArgOffset += 8;
5649       else
5650         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5651       break;
5652     case MVT::v4f32:
5653     case MVT::v4i32:
5654     case MVT::v8i16:
5655     case MVT::v16i8:
5656       if (isVarArg) {
5657         // These go aligned on the stack, or in the corresponding R registers
5658         // when within range.  The Darwin PPC ABI doc claims they also go in
5659         // V registers; in fact gcc does this only for arguments that are
5660         // prototyped, not for those that match the ...  We do it for all
5661         // arguments, seems to work.
5662         while (ArgOffset % 16 !=0) {
5663           ArgOffset += PtrByteSize;
5664           if (GPR_idx != NumGPRs)
5665             GPR_idx++;
5666         }
5667         // We could elide this store in the case where the object fits
5668         // entirely in R registers.  Maybe later.
5669         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5670                              DAG.getConstant(ArgOffset, dl, PtrVT));
5671         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5672                                      MachinePointerInfo(), false, false, 0);
5673         MemOpChains.push_back(Store);
5674         if (VR_idx != NumVRs) {
5675           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5676                                      MachinePointerInfo(),
5677                                      false, false, false, 0);
5678           MemOpChains.push_back(Load.getValue(1));
5679           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5680         }
5681         ArgOffset += 16;
5682         for (unsigned i=0; i<16; i+=PtrByteSize) {
5683           if (GPR_idx == NumGPRs)
5684             break;
5685           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5686                                    DAG.getConstant(i, dl, PtrVT));
5687           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5688                                      false, false, false, 0);
5689           MemOpChains.push_back(Load.getValue(1));
5690           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5691         }
5692         break;
5693       }
5694 
5695       // Non-varargs Altivec params generally go in registers, but have
5696       // stack space allocated at the end.
5697       if (VR_idx != NumVRs) {
5698         // Doesn't have GPR space allocated.
5699         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5700       } else if (nAltivecParamsAtEnd==0) {
5701         // We are emitting Altivec params in order.
5702         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5703                          isPPC64, isTailCall, true, MemOpChains,
5704                          TailCallArguments, dl);
5705         ArgOffset += 16;
5706       }
5707       break;
5708     }
5709   }
5710   // If all Altivec parameters fit in registers, as they usually do,
5711   // they get stack space following the non-Altivec parameters.  We
5712   // don't track this here because nobody below needs it.
5713   // If there are more Altivec parameters than fit in registers emit
5714   // the stores here.
5715   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5716     unsigned j = 0;
5717     // Offset is aligned; skip 1st 12 params which go in V registers.
5718     ArgOffset = ((ArgOffset+15)/16)*16;
5719     ArgOffset += 12*16;
5720     for (unsigned i = 0; i != NumOps; ++i) {
5721       SDValue Arg = OutVals[i];
5722       EVT ArgType = Outs[i].VT;
5723       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5724           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5725         if (++j > NumVRs) {
5726           SDValue PtrOff;
5727           // We are emitting Altivec params in order.
5728           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5729                            isPPC64, isTailCall, true, MemOpChains,
5730                            TailCallArguments, dl);
5731           ArgOffset += 16;
5732         }
5733       }
5734     }
5735   }
5736 
5737   if (!MemOpChains.empty())
5738     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5739 
5740   // On Darwin, R12 must contain the address of an indirect callee.  This does
5741   // not mean the MTCTR instruction must use R12; it's easier to model this as
5742   // an extra parameter, so do that.
5743   if (!isTailCall &&
5744       !isFunctionGlobalAddress(Callee) &&
5745       !isa<ExternalSymbolSDNode>(Callee) &&
5746       !isBLACompatibleAddress(Callee, DAG))
5747     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5748                                                    PPC::R12), Callee));
5749 
5750   // Build a sequence of copy-to-reg nodes chained together with token chain
5751   // and flag operands which copy the outgoing args into the appropriate regs.
5752   SDValue InFlag;
5753   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5754     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5755                              RegsToPass[i].second, InFlag);
5756     InFlag = Chain.getValue(1);
5757   }
5758 
5759   if (isTailCall)
5760     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
5761                     FPOp, true, TailCallArguments);
5762 
5763   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
5764                     /* unused except on PPC64 ELFv1 */ false, DAG,
5765                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5766                     NumBytes, Ins, InVals, CS);
5767 }
5768 
5769 bool
5770 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
5771                                   MachineFunction &MF, bool isVarArg,
5772                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
5773                                   LLVMContext &Context) const {
5774   SmallVector<CCValAssign, 16> RVLocs;
5775   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
5776   return CCInfo.CheckReturn(Outs, RetCC_PPC);
5777 }
5778 
5779 SDValue
5780 PPCTargetLowering::LowerReturn(SDValue Chain,
5781                                CallingConv::ID CallConv, bool isVarArg,
5782                                const SmallVectorImpl<ISD::OutputArg> &Outs,
5783                                const SmallVectorImpl<SDValue> &OutVals,
5784                                SDLoc dl, SelectionDAG &DAG) const {
5785 
5786   SmallVector<CCValAssign, 16> RVLocs;
5787   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5788                  *DAG.getContext());
5789   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
5790 
5791   SDValue Flag;
5792   SmallVector<SDValue, 4> RetOps(1, Chain);
5793 
5794   // Copy the result values into the output registers.
5795   for (unsigned i = 0; i != RVLocs.size(); ++i) {
5796     CCValAssign &VA = RVLocs[i];
5797     assert(VA.isRegLoc() && "Can only return in registers!");
5798 
5799     SDValue Arg = OutVals[i];
5800 
5801     switch (VA.getLocInfo()) {
5802     default: llvm_unreachable("Unknown loc info!");
5803     case CCValAssign::Full: break;
5804     case CCValAssign::AExt:
5805       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
5806       break;
5807     case CCValAssign::ZExt:
5808       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
5809       break;
5810     case CCValAssign::SExt:
5811       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
5812       break;
5813     }
5814 
5815     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
5816     Flag = Chain.getValue(1);
5817     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5818   }
5819 
5820   RetOps[0] = Chain;  // Update chain.
5821 
5822   // Add the flag if we have it.
5823   if (Flag.getNode())
5824     RetOps.push_back(Flag);
5825 
5826   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
5827 }
5828 
5829 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(
5830     SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const {
5831   SDLoc dl(Op);
5832 
5833   // Get the corect type for integers.
5834   EVT IntVT = Op.getValueType();
5835 
5836   // Get the inputs.
5837   SDValue Chain = Op.getOperand(0);
5838   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
5839   // Build a DYNAREAOFFSET node.
5840   SDValue Ops[2] = {Chain, FPSIdx};
5841   SDVTList VTs = DAG.getVTList(IntVT);
5842   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
5843 }
5844 
5845 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
5846                                    const PPCSubtarget &Subtarget) const {
5847   // When we pop the dynamic allocation we need to restore the SP link.
5848   SDLoc dl(Op);
5849 
5850   // Get the corect type for pointers.
5851   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5852 
5853   // Construct the stack pointer operand.
5854   bool isPPC64 = Subtarget.isPPC64();
5855   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
5856   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
5857 
5858   // Get the operands for the STACKRESTORE.
5859   SDValue Chain = Op.getOperand(0);
5860   SDValue SaveSP = Op.getOperand(1);
5861 
5862   // Load the old link SP.
5863   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
5864                                    MachinePointerInfo(),
5865                                    false, false, false, 0);
5866 
5867   // Restore the stack pointer.
5868   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
5869 
5870   // Store the old link SP.
5871   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
5872                       false, false, 0);
5873 }
5874 
5875 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
5876   MachineFunction &MF = DAG.getMachineFunction();
5877   bool isPPC64 = Subtarget.isPPC64();
5878   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5879 
5880   // Get current frame pointer save index.  The users of this index will be
5881   // primarily DYNALLOC instructions.
5882   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5883   int RASI = FI->getReturnAddrSaveIndex();
5884 
5885   // If the frame pointer save index hasn't been defined yet.
5886   if (!RASI) {
5887     // Find out what the fix offset of the frame pointer save area.
5888     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
5889     // Allocate the frame index for frame pointer save area.
5890     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
5891     // Save the result.
5892     FI->setReturnAddrSaveIndex(RASI);
5893   }
5894   return DAG.getFrameIndex(RASI, PtrVT);
5895 }
5896 
5897 SDValue
5898 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
5899   MachineFunction &MF = DAG.getMachineFunction();
5900   bool isPPC64 = Subtarget.isPPC64();
5901   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
5902 
5903   // Get current frame pointer save index.  The users of this index will be
5904   // primarily DYNALLOC instructions.
5905   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
5906   int FPSI = FI->getFramePointerSaveIndex();
5907 
5908   // If the frame pointer save index hasn't been defined yet.
5909   if (!FPSI) {
5910     // Find out what the fix offset of the frame pointer save area.
5911     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
5912     // Allocate the frame index for frame pointer save area.
5913     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
5914     // Save the result.
5915     FI->setFramePointerSaveIndex(FPSI);
5916   }
5917   return DAG.getFrameIndex(FPSI, PtrVT);
5918 }
5919 
5920 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5921                                          SelectionDAG &DAG,
5922                                          const PPCSubtarget &Subtarget) const {
5923   // Get the inputs.
5924   SDValue Chain = Op.getOperand(0);
5925   SDValue Size  = Op.getOperand(1);
5926   SDLoc dl(Op);
5927 
5928   // Get the corect type for pointers.
5929   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5930   // Negate the size.
5931   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
5932                                 DAG.getConstant(0, dl, PtrVT), Size);
5933   // Construct a node for the frame pointer save index.
5934   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
5935   // Build a DYNALLOC node.
5936   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
5937   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
5938   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
5939 }
5940 
5941 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
5942                                                SelectionDAG &DAG) const {
5943   SDLoc DL(Op);
5944   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
5945                      DAG.getVTList(MVT::i32, MVT::Other),
5946                      Op.getOperand(0), Op.getOperand(1));
5947 }
5948 
5949 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
5950                                                 SelectionDAG &DAG) const {
5951   SDLoc DL(Op);
5952   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
5953                      Op.getOperand(0), Op.getOperand(1));
5954 }
5955 
5956 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5957   if (Op.getValueType().isVector())
5958     return LowerVectorLoad(Op, DAG);
5959 
5960   assert(Op.getValueType() == MVT::i1 &&
5961          "Custom lowering only for i1 loads");
5962 
5963   // First, load 8 bits into 32 bits, then truncate to 1 bit.
5964 
5965   SDLoc dl(Op);
5966   LoadSDNode *LD = cast<LoadSDNode>(Op);
5967 
5968   SDValue Chain = LD->getChain();
5969   SDValue BasePtr = LD->getBasePtr();
5970   MachineMemOperand *MMO = LD->getMemOperand();
5971 
5972   SDValue NewLD =
5973       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
5974                      BasePtr, MVT::i8, MMO);
5975   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
5976 
5977   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
5978   return DAG.getMergeValues(Ops, dl);
5979 }
5980 
5981 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5982   if (Op.getOperand(1).getValueType().isVector())
5983     return LowerVectorStore(Op, DAG);
5984 
5985   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
5986          "Custom lowering only for i1 stores");
5987 
5988   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
5989 
5990   SDLoc dl(Op);
5991   StoreSDNode *ST = cast<StoreSDNode>(Op);
5992 
5993   SDValue Chain = ST->getChain();
5994   SDValue BasePtr = ST->getBasePtr();
5995   SDValue Value = ST->getValue();
5996   MachineMemOperand *MMO = ST->getMemOperand();
5997 
5998   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
5999                       Value);
6000   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6001 }
6002 
6003 // FIXME: Remove this once the ANDI glue bug is fixed:
6004 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6005   assert(Op.getValueType() == MVT::i1 &&
6006          "Custom lowering only for i1 results");
6007 
6008   SDLoc DL(Op);
6009   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6010                      Op.getOperand(0));
6011 }
6012 
6013 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6014 /// possible.
6015 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6016   // Not FP? Not a fsel.
6017   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6018       !Op.getOperand(2).getValueType().isFloatingPoint())
6019     return Op;
6020 
6021   // We might be able to do better than this under some circumstances, but in
6022   // general, fsel-based lowering of select is a finite-math-only optimization.
6023   // For more information, see section F.3 of the 2.06 ISA specification.
6024   if (!DAG.getTarget().Options.NoInfsFPMath ||
6025       !DAG.getTarget().Options.NoNaNsFPMath)
6026     return Op;
6027   // TODO: Propagate flags from the select rather than global settings.
6028   SDNodeFlags Flags;
6029   Flags.setNoInfs(true);
6030   Flags.setNoNaNs(true);
6031 
6032   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6033 
6034   EVT ResVT = Op.getValueType();
6035   EVT CmpVT = Op.getOperand(0).getValueType();
6036   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6037   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6038   SDLoc dl(Op);
6039 
6040   // If the RHS of the comparison is a 0.0, we don't need to do the
6041   // subtraction at all.
6042   SDValue Sel1;
6043   if (isFloatingPointZero(RHS))
6044     switch (CC) {
6045     default: break;       // SETUO etc aren't handled by fsel.
6046     case ISD::SETNE:
6047       std::swap(TV, FV);
6048     case ISD::SETEQ:
6049       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6050         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6051       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6052       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6053         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6054       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6055                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6056     case ISD::SETULT:
6057     case ISD::SETLT:
6058       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6059     case ISD::SETOGE:
6060     case ISD::SETGE:
6061       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6062         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6063       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6064     case ISD::SETUGT:
6065     case ISD::SETGT:
6066       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6067     case ISD::SETOLE:
6068     case ISD::SETLE:
6069       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6070         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6071       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6072                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6073     }
6074 
6075   SDValue Cmp;
6076   switch (CC) {
6077   default: break;       // SETUO etc aren't handled by fsel.
6078   case ISD::SETNE:
6079     std::swap(TV, FV);
6080   case ISD::SETEQ:
6081     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6082     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6083       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6084     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6085     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6086       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6087     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6088                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6089   case ISD::SETULT:
6090   case ISD::SETLT:
6091     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6092     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6093       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6094     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6095   case ISD::SETOGE:
6096   case ISD::SETGE:
6097     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6098     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6099       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6100     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6101   case ISD::SETUGT:
6102   case ISD::SETGT:
6103     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6104     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6105       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6106     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6107   case ISD::SETOLE:
6108   case ISD::SETLE:
6109     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6110     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6111       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6112     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6113   }
6114   return Op;
6115 }
6116 
6117 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6118                                                SelectionDAG &DAG,
6119                                                SDLoc dl) const {
6120   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6121   SDValue Src = Op.getOperand(0);
6122   if (Src.getValueType() == MVT::f32)
6123     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6124 
6125   SDValue Tmp;
6126   switch (Op.getSimpleValueType().SimpleTy) {
6127   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6128   case MVT::i32:
6129     Tmp = DAG.getNode(
6130         Op.getOpcode() == ISD::FP_TO_SINT
6131             ? PPCISD::FCTIWZ
6132             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6133         dl, MVT::f64, Src);
6134     break;
6135   case MVT::i64:
6136     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6137            "i64 FP_TO_UINT is supported only with FPCVT");
6138     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6139                                                         PPCISD::FCTIDUZ,
6140                       dl, MVT::f64, Src);
6141     break;
6142   }
6143 
6144   // Convert the FP value to an int value through memory.
6145   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6146     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6147   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6148   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6149   MachinePointerInfo MPI =
6150       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6151 
6152   // Emit a store to the stack slot.
6153   SDValue Chain;
6154   if (i32Stack) {
6155     MachineFunction &MF = DAG.getMachineFunction();
6156     MachineMemOperand *MMO =
6157       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6158     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6159     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6160               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6161   } else
6162     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6163                          MPI, false, false, 0);
6164 
6165   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6166   // add in a bias on big endian.
6167   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6168     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6169                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6170     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6171   }
6172 
6173   RLI.Chain = Chain;
6174   RLI.Ptr = FIPtr;
6175   RLI.MPI = MPI;
6176 }
6177 
6178 /// \brief Custom lowers floating point to integer conversions to use
6179 /// the direct move instructions available in ISA 2.07 to avoid the
6180 /// need for load/store combinations.
6181 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6182                                                     SelectionDAG &DAG,
6183                                                     SDLoc dl) const {
6184   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6185   SDValue Src = Op.getOperand(0);
6186 
6187   if (Src.getValueType() == MVT::f32)
6188     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6189 
6190   SDValue Tmp;
6191   switch (Op.getSimpleValueType().SimpleTy) {
6192   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6193   case MVT::i32:
6194     Tmp = DAG.getNode(
6195         Op.getOpcode() == ISD::FP_TO_SINT
6196             ? PPCISD::FCTIWZ
6197             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6198         dl, MVT::f64, Src);
6199     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6200     break;
6201   case MVT::i64:
6202     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6203            "i64 FP_TO_UINT is supported only with FPCVT");
6204     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6205                                                         PPCISD::FCTIDUZ,
6206                       dl, MVT::f64, Src);
6207     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6208     break;
6209   }
6210   return Tmp;
6211 }
6212 
6213 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6214                                           SDLoc dl) const {
6215   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6216     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6217 
6218   ReuseLoadInfo RLI;
6219   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6220 
6221   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6222                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6223                      RLI.Ranges);
6224 }
6225 
6226 // We're trying to insert a regular store, S, and then a load, L. If the
6227 // incoming value, O, is a load, we might just be able to have our load use the
6228 // address used by O. However, we don't know if anything else will store to
6229 // that address before we can load from it. To prevent this situation, we need
6230 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6231 // the same chain operand as O, we create a token factor from the chain results
6232 // of O and L, and we replace all uses of O's chain result with that token
6233 // factor (see spliceIntoChain below for this last part).
6234 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6235                                             ReuseLoadInfo &RLI,
6236                                             SelectionDAG &DAG,
6237                                             ISD::LoadExtType ET) const {
6238   SDLoc dl(Op);
6239   if (ET == ISD::NON_EXTLOAD &&
6240       (Op.getOpcode() == ISD::FP_TO_UINT ||
6241        Op.getOpcode() == ISD::FP_TO_SINT) &&
6242       isOperationLegalOrCustom(Op.getOpcode(),
6243                                Op.getOperand(0).getValueType())) {
6244 
6245     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6246     return true;
6247   }
6248 
6249   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6250   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6251       LD->isNonTemporal())
6252     return false;
6253   if (LD->getMemoryVT() != MemVT)
6254     return false;
6255 
6256   RLI.Ptr = LD->getBasePtr();
6257   if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
6258     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6259            "Non-pre-inc AM on PPC?");
6260     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6261                           LD->getOffset());
6262   }
6263 
6264   RLI.Chain = LD->getChain();
6265   RLI.MPI = LD->getPointerInfo();
6266   RLI.IsInvariant = LD->isInvariant();
6267   RLI.Alignment = LD->getAlignment();
6268   RLI.AAInfo = LD->getAAInfo();
6269   RLI.Ranges = LD->getRanges();
6270 
6271   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6272   return true;
6273 }
6274 
6275 // Given the head of the old chain, ResChain, insert a token factor containing
6276 // it and NewResChain, and make users of ResChain now be users of that token
6277 // factor.
6278 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6279                                         SDValue NewResChain,
6280                                         SelectionDAG &DAG) const {
6281   if (!ResChain)
6282     return;
6283 
6284   SDLoc dl(NewResChain);
6285 
6286   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6287                            NewResChain, DAG.getUNDEF(MVT::Other));
6288   assert(TF.getNode() != NewResChain.getNode() &&
6289          "A new TF really is required here");
6290 
6291   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6292   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6293 }
6294 
6295 /// \brief Custom lowers integer to floating point conversions to use
6296 /// the direct move instructions available in ISA 2.07 to avoid the
6297 /// need for load/store combinations.
6298 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6299                                                     SelectionDAG &DAG,
6300                                                     SDLoc dl) const {
6301   assert((Op.getValueType() == MVT::f32 ||
6302           Op.getValueType() == MVT::f64) &&
6303          "Invalid floating point type as target of conversion");
6304   assert(Subtarget.hasFPCVT() &&
6305          "Int to FP conversions with direct moves require FPCVT");
6306   SDValue FP;
6307   SDValue Src = Op.getOperand(0);
6308   bool SinglePrec = Op.getValueType() == MVT::f32;
6309   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6310   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6311   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6312                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6313 
6314   if (WordInt) {
6315     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6316                      dl, MVT::f64, Src);
6317     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6318   }
6319   else {
6320     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6321     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6322   }
6323 
6324   return FP;
6325 }
6326 
6327 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6328                                           SelectionDAG &DAG) const {
6329   SDLoc dl(Op);
6330 
6331   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6332     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6333       return SDValue();
6334 
6335     SDValue Value = Op.getOperand(0);
6336     // The values are now known to be -1 (false) or 1 (true). To convert this
6337     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6338     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6339     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6340 
6341     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
6342 
6343     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6344 
6345     if (Op.getValueType() != MVT::v4f64)
6346       Value = DAG.getNode(ISD::FP_ROUND, dl,
6347                           Op.getValueType(), Value,
6348                           DAG.getIntPtrConstant(1, dl));
6349     return Value;
6350   }
6351 
6352   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6353   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6354     return SDValue();
6355 
6356   if (Op.getOperand(0).getValueType() == MVT::i1)
6357     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6358                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6359                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6360 
6361   // If we have direct moves, we can do all the conversion, skip the store/load
6362   // however, without FPCVT we can't do most conversions.
6363   if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT())
6364     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6365 
6366   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6367          "UINT_TO_FP is supported only with FPCVT");
6368 
6369   // If we have FCFIDS, then use it when converting to single-precision.
6370   // Otherwise, convert to double-precision and then round.
6371   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6372                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6373                                                             : PPCISD::FCFIDS)
6374                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6375                                                             : PPCISD::FCFID);
6376   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6377                   ? MVT::f32
6378                   : MVT::f64;
6379 
6380   if (Op.getOperand(0).getValueType() == MVT::i64) {
6381     SDValue SINT = Op.getOperand(0);
6382     // When converting to single-precision, we actually need to convert
6383     // to double-precision first and then round to single-precision.
6384     // To avoid double-rounding effects during that operation, we have
6385     // to prepare the input operand.  Bits that might be truncated when
6386     // converting to double-precision are replaced by a bit that won't
6387     // be lost at this stage, but is below the single-precision rounding
6388     // position.
6389     //
6390     // However, if -enable-unsafe-fp-math is in effect, accept double
6391     // rounding to avoid the extra overhead.
6392     if (Op.getValueType() == MVT::f32 &&
6393         !Subtarget.hasFPCVT() &&
6394         !DAG.getTarget().Options.UnsafeFPMath) {
6395 
6396       // Twiddle input to make sure the low 11 bits are zero.  (If this
6397       // is the case, we are guaranteed the value will fit into the 53 bit
6398       // mantissa of an IEEE double-precision value without rounding.)
6399       // If any of those low 11 bits were not zero originally, make sure
6400       // bit 12 (value 2048) is set instead, so that the final rounding
6401       // to single-precision gets the correct result.
6402       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6403                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6404       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6405                           Round, DAG.getConstant(2047, dl, MVT::i64));
6406       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6407       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6408                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6409 
6410       // However, we cannot use that value unconditionally: if the magnitude
6411       // of the input value is small, the bit-twiddling we did above might
6412       // end up visibly changing the output.  Fortunately, in that case, we
6413       // don't need to twiddle bits since the original input will convert
6414       // exactly to double-precision floating-point already.  Therefore,
6415       // construct a conditional to use the original value if the top 11
6416       // bits are all sign-bit copies, and use the rounded value computed
6417       // above otherwise.
6418       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6419                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6420       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6421                          Cond, DAG.getConstant(1, dl, MVT::i64));
6422       Cond = DAG.getSetCC(dl, MVT::i32,
6423                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6424 
6425       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6426     }
6427 
6428     ReuseLoadInfo RLI;
6429     SDValue Bits;
6430 
6431     MachineFunction &MF = DAG.getMachineFunction();
6432     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6433       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6434                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6435                          RLI.Ranges);
6436       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6437     } else if (Subtarget.hasLFIWAX() &&
6438                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6439       MachineMemOperand *MMO =
6440         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6441                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6442       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6443       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6444                                      DAG.getVTList(MVT::f64, MVT::Other),
6445                                      Ops, MVT::i32, MMO);
6446       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6447     } else if (Subtarget.hasFPCVT() &&
6448                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6449       MachineMemOperand *MMO =
6450         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6451                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6452       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6453       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6454                                      DAG.getVTList(MVT::f64, MVT::Other),
6455                                      Ops, MVT::i32, MMO);
6456       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6457     } else if (((Subtarget.hasLFIWAX() &&
6458                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6459                 (Subtarget.hasFPCVT() &&
6460                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6461                SINT.getOperand(0).getValueType() == MVT::i32) {
6462       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6463       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
6464 
6465       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6466       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6467 
6468       SDValue Store = DAG.getStore(
6469           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6470           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6471           false, false, 0);
6472 
6473       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6474              "Expected an i32 store");
6475 
6476       RLI.Ptr = FIdx;
6477       RLI.Chain = Store;
6478       RLI.MPI =
6479           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6480       RLI.Alignment = 4;
6481 
6482       MachineMemOperand *MMO =
6483         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6484                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6485       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6486       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6487                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6488                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6489                                      Ops, MVT::i32, MMO);
6490     } else
6491       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6492 
6493     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6494 
6495     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6496       FP = DAG.getNode(ISD::FP_ROUND, dl,
6497                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6498     return FP;
6499   }
6500 
6501   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6502          "Unhandled INT_TO_FP type in custom expander!");
6503   // Since we only generate this in 64-bit mode, we can take advantage of
6504   // 64-bit registers.  In particular, sign extend the input value into the
6505   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6506   // then lfd it and fcfid it.
6507   MachineFunction &MF = DAG.getMachineFunction();
6508   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6509   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6510 
6511   SDValue Ld;
6512   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6513     ReuseLoadInfo RLI;
6514     bool ReusingLoad;
6515     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6516                                             DAG))) {
6517       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6518       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6519 
6520       SDValue Store = DAG.getStore(
6521           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6522           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6523           false, false, 0);
6524 
6525       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6526              "Expected an i32 store");
6527 
6528       RLI.Ptr = FIdx;
6529       RLI.Chain = Store;
6530       RLI.MPI =
6531           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6532       RLI.Alignment = 4;
6533     }
6534 
6535     MachineMemOperand *MMO =
6536       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6537                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6538     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6539     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6540                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6541                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6542                                  Ops, MVT::i32, MMO);
6543     if (ReusingLoad)
6544       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6545   } else {
6546     assert(Subtarget.isPPC64() &&
6547            "i32->FP without LFIWAX supported only on PPC64");
6548 
6549     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6550     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6551 
6552     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6553                                 Op.getOperand(0));
6554 
6555     // STD the extended value into the stack slot.
6556     SDValue Store = DAG.getStore(
6557         DAG.getEntryNode(), dl, Ext64, FIdx,
6558         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6559         false, false, 0);
6560 
6561     // Load the value as a double.
6562     Ld = DAG.getLoad(
6563         MVT::f64, dl, Store, FIdx,
6564         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6565         false, false, false, 0);
6566   }
6567 
6568   // FCFID it and return it.
6569   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6570   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6571     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6572                      DAG.getIntPtrConstant(0, dl));
6573   return FP;
6574 }
6575 
6576 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6577                                             SelectionDAG &DAG) const {
6578   SDLoc dl(Op);
6579   /*
6580    The rounding mode is in bits 30:31 of FPSR, and has the following
6581    settings:
6582      00 Round to nearest
6583      01 Round to 0
6584      10 Round to +inf
6585      11 Round to -inf
6586 
6587   FLT_ROUNDS, on the other hand, expects the following:
6588     -1 Undefined
6589      0 Round to 0
6590      1 Round to nearest
6591      2 Round to +inf
6592      3 Round to -inf
6593 
6594   To perform the conversion, we do:
6595     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6596   */
6597 
6598   MachineFunction &MF = DAG.getMachineFunction();
6599   EVT VT = Op.getValueType();
6600   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
6601 
6602   // Save FP Control Word to register
6603   EVT NodeTys[] = {
6604     MVT::f64,    // return register
6605     MVT::Glue    // unused in this context
6606   };
6607   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6608 
6609   // Save FP register to stack slot
6610   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6611   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6612   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6613                                StackSlot, MachinePointerInfo(), false, false,0);
6614 
6615   // Load FP Control Word from low 32 bits of stack slot.
6616   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6617   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6618   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6619                             false, false, false, 0);
6620 
6621   // Transform as necessary
6622   SDValue CWD1 =
6623     DAG.getNode(ISD::AND, dl, MVT::i32,
6624                 CWD, DAG.getConstant(3, dl, MVT::i32));
6625   SDValue CWD2 =
6626     DAG.getNode(ISD::SRL, dl, MVT::i32,
6627                 DAG.getNode(ISD::AND, dl, MVT::i32,
6628                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6629                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6630                             DAG.getConstant(3, dl, MVT::i32)),
6631                 DAG.getConstant(1, dl, MVT::i32));
6632 
6633   SDValue RetVal =
6634     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6635 
6636   return DAG.getNode((VT.getSizeInBits() < 16 ?
6637                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6638 }
6639 
6640 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6641   EVT VT = Op.getValueType();
6642   unsigned BitWidth = VT.getSizeInBits();
6643   SDLoc dl(Op);
6644   assert(Op.getNumOperands() == 3 &&
6645          VT == Op.getOperand(1).getValueType() &&
6646          "Unexpected SHL!");
6647 
6648   // Expand into a bunch of logical ops.  Note that these ops
6649   // depend on the PPC behavior for oversized shift amounts.
6650   SDValue Lo = Op.getOperand(0);
6651   SDValue Hi = Op.getOperand(1);
6652   SDValue Amt = Op.getOperand(2);
6653   EVT AmtVT = Amt.getValueType();
6654 
6655   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6656                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6657   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6658   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6659   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6660   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6661                              DAG.getConstant(-BitWidth, dl, AmtVT));
6662   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6663   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6664   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6665   SDValue OutOps[] = { OutLo, OutHi };
6666   return DAG.getMergeValues(OutOps, dl);
6667 }
6668 
6669 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6670   EVT VT = Op.getValueType();
6671   SDLoc dl(Op);
6672   unsigned BitWidth = VT.getSizeInBits();
6673   assert(Op.getNumOperands() == 3 &&
6674          VT == Op.getOperand(1).getValueType() &&
6675          "Unexpected SRL!");
6676 
6677   // Expand into a bunch of logical ops.  Note that these ops
6678   // depend on the PPC behavior for oversized shift amounts.
6679   SDValue Lo = Op.getOperand(0);
6680   SDValue Hi = Op.getOperand(1);
6681   SDValue Amt = Op.getOperand(2);
6682   EVT AmtVT = Amt.getValueType();
6683 
6684   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6685                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6686   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6687   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6688   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6689   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6690                              DAG.getConstant(-BitWidth, dl, AmtVT));
6691   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6692   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6693   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6694   SDValue OutOps[] = { OutLo, OutHi };
6695   return DAG.getMergeValues(OutOps, dl);
6696 }
6697 
6698 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6699   SDLoc dl(Op);
6700   EVT VT = Op.getValueType();
6701   unsigned BitWidth = VT.getSizeInBits();
6702   assert(Op.getNumOperands() == 3 &&
6703          VT == Op.getOperand(1).getValueType() &&
6704          "Unexpected SRA!");
6705 
6706   // Expand into a bunch of logical ops, followed by a select_cc.
6707   SDValue Lo = Op.getOperand(0);
6708   SDValue Hi = Op.getOperand(1);
6709   SDValue Amt = Op.getOperand(2);
6710   EVT AmtVT = Amt.getValueType();
6711 
6712   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6713                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6714   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6715   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6716   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6717   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6718                              DAG.getConstant(-BitWidth, dl, AmtVT));
6719   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
6720   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
6721   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
6722                                   Tmp4, Tmp6, ISD::SETLE);
6723   SDValue OutOps[] = { OutLo, OutHi };
6724   return DAG.getMergeValues(OutOps, dl);
6725 }
6726 
6727 //===----------------------------------------------------------------------===//
6728 // Vector related lowering.
6729 //
6730 
6731 /// BuildSplatI - Build a canonical splati of Val with an element size of
6732 /// SplatSize.  Cast the result to VT.
6733 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
6734                              SelectionDAG &DAG, SDLoc dl) {
6735   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
6736 
6737   static const MVT VTys[] = { // canonical VT to use for each size.
6738     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
6739   };
6740 
6741   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
6742 
6743   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
6744   if (Val == -1)
6745     SplatSize = 1;
6746 
6747   EVT CanonicalVT = VTys[SplatSize-1];
6748 
6749   // Build a canonical splat for this value.
6750   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
6751 }
6752 
6753 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
6754 /// specified intrinsic ID.
6755 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
6756                                 SelectionDAG &DAG, SDLoc dl,
6757                                 EVT DestVT = MVT::Other) {
6758   if (DestVT == MVT::Other) DestVT = Op.getValueType();
6759   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6760                      DAG.getConstant(IID, dl, MVT::i32), Op);
6761 }
6762 
6763 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
6764 /// specified intrinsic ID.
6765 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
6766                                 SelectionDAG &DAG, SDLoc dl,
6767                                 EVT DestVT = MVT::Other) {
6768   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
6769   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6770                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
6771 }
6772 
6773 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
6774 /// specified intrinsic ID.
6775 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
6776                                 SDValue Op2, SelectionDAG &DAG,
6777                                 SDLoc dl, EVT DestVT = MVT::Other) {
6778   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
6779   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
6780                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
6781 }
6782 
6783 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
6784 /// amount.  The result has the specified value type.
6785 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
6786                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
6787   // Force LHS/RHS to be the right type.
6788   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
6789   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
6790 
6791   int Ops[16];
6792   for (unsigned i = 0; i != 16; ++i)
6793     Ops[i] = i + Amt;
6794   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
6795   return DAG.getNode(ISD::BITCAST, dl, VT, T);
6796 }
6797 
6798 // If this is a case we can't handle, return null and let the default
6799 // expansion code take care of it.  If we CAN select this case, and if it
6800 // selects to a single instruction, return Op.  Otherwise, if we can codegen
6801 // this case more efficiently than a constant pool load, lower it to the
6802 // sequence of ops that should be used.
6803 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
6804                                              SelectionDAG &DAG) const {
6805   SDLoc dl(Op);
6806   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6807   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
6808 
6809   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
6810     // We first build an i32 vector, load it into a QPX register,
6811     // then convert it to a floating-point vector and compare it
6812     // to a zero vector to get the boolean result.
6813     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6814     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
6815     MachinePointerInfo PtrInfo =
6816         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6817     EVT PtrVT = getPointerTy(DAG.getDataLayout());
6818     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6819 
6820     assert(BVN->getNumOperands() == 4 &&
6821       "BUILD_VECTOR for v4i1 does not have 4 operands");
6822 
6823     bool IsConst = true;
6824     for (unsigned i = 0; i < 4; ++i) {
6825       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6826       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
6827         IsConst = false;
6828         break;
6829       }
6830     }
6831 
6832     if (IsConst) {
6833       Constant *One =
6834         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
6835       Constant *NegOne =
6836         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
6837 
6838       SmallVector<Constant*, 4> CV(4, NegOne);
6839       for (unsigned i = 0; i < 4; ++i) {
6840         if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
6841           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
6842         else if (isNullConstant(BVN->getOperand(i)))
6843           continue;
6844         else
6845           CV[i] = One;
6846       }
6847 
6848       Constant *CP = ConstantVector::get(CV);
6849       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
6850                                           16 /* alignment */);
6851 
6852       SmallVector<SDValue, 2> Ops;
6853       Ops.push_back(DAG.getEntryNode());
6854       Ops.push_back(CPIdx);
6855 
6856       SmallVector<EVT, 2> ValueVTs;
6857       ValueVTs.push_back(MVT::v4i1);
6858       ValueVTs.push_back(MVT::Other); // chain
6859       SDVTList VTs = DAG.getVTList(ValueVTs);
6860 
6861       return DAG.getMemIntrinsicNode(
6862           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
6863           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
6864     }
6865 
6866     SmallVector<SDValue, 4> Stores;
6867     for (unsigned i = 0; i < 4; ++i) {
6868       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
6869 
6870       unsigned Offset = 4*i;
6871       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
6872       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
6873 
6874       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
6875       if (StoreSize > 4) {
6876         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
6877                                            BVN->getOperand(i), Idx,
6878                                            PtrInfo.getWithOffset(Offset),
6879                                            MVT::i32, false, false, 0));
6880       } else {
6881         SDValue StoreValue = BVN->getOperand(i);
6882         if (StoreSize < 4)
6883           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
6884 
6885         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
6886                                       StoreValue, Idx,
6887                                       PtrInfo.getWithOffset(Offset),
6888                                       false, false, 0));
6889       }
6890     }
6891 
6892     SDValue StoreChain;
6893     if (!Stores.empty())
6894       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6895     else
6896       StoreChain = DAG.getEntryNode();
6897 
6898     // Now load from v4i32 into the QPX register; this will extend it to
6899     // v4i64 but not yet convert it to a floating point. Nevertheless, this
6900     // is typed as v4f64 because the QPX register integer states are not
6901     // explicitly represented.
6902 
6903     SmallVector<SDValue, 2> Ops;
6904     Ops.push_back(StoreChain);
6905     Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32));
6906     Ops.push_back(FIdx);
6907 
6908     SmallVector<EVT, 2> ValueVTs;
6909     ValueVTs.push_back(MVT::v4f64);
6910     ValueVTs.push_back(MVT::Other); // chain
6911     SDVTList VTs = DAG.getVTList(ValueVTs);
6912 
6913     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
6914       dl, VTs, Ops, MVT::v4i32, PtrInfo);
6915     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
6916       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
6917       LoadedVect);
6918 
6919     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
6920 
6921     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
6922   }
6923 
6924   // All other QPX vectors are handled by generic code.
6925   if (Subtarget.hasQPX())
6926     return SDValue();
6927 
6928   // Check if this is a splat of a constant value.
6929   APInt APSplatBits, APSplatUndef;
6930   unsigned SplatBitSize;
6931   bool HasAnyUndefs;
6932   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
6933                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
6934       SplatBitSize > 32)
6935     return SDValue();
6936 
6937   unsigned SplatBits = APSplatBits.getZExtValue();
6938   unsigned SplatUndef = APSplatUndef.getZExtValue();
6939   unsigned SplatSize = SplatBitSize / 8;
6940 
6941   // First, handle single instruction cases.
6942 
6943   // All zeros?
6944   if (SplatBits == 0) {
6945     // Canonicalize all zero vectors to be v4i32.
6946     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
6947       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
6948       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
6949     }
6950     return Op;
6951   }
6952 
6953   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
6954   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
6955                     (32-SplatBitSize));
6956   if (SextVal >= -16 && SextVal <= 15)
6957     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
6958 
6959   // Two instruction sequences.
6960 
6961   // If this value is in the range [-32,30] and is even, use:
6962   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
6963   // If this value is in the range [17,31] and is odd, use:
6964   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
6965   // If this value is in the range [-31,-17] and is odd, use:
6966   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
6967   // Note the last two are three-instruction sequences.
6968   if (SextVal >= -32 && SextVal <= 31) {
6969     // To avoid having these optimizations undone by constant folding,
6970     // we convert to a pseudo that will be expanded later into one of
6971     // the above forms.
6972     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
6973     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
6974               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
6975     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
6976     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
6977     if (VT == Op.getValueType())
6978       return RetVal;
6979     else
6980       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
6981   }
6982 
6983   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
6984   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
6985   // for fneg/fabs.
6986   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
6987     // Make -1 and vspltisw -1:
6988     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
6989 
6990     // Make the VSLW intrinsic, computing 0x8000_0000.
6991     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
6992                                    OnesV, DAG, dl);
6993 
6994     // xor by OnesV to invert it.
6995     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
6996     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
6997   }
6998 
6999   // Check to see if this is a wide variety of vsplti*, binop self cases.
7000   static const signed char SplatCsts[] = {
7001     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7002     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7003   };
7004 
7005   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7006     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7007     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7008     int i = SplatCsts[idx];
7009 
7010     // Figure out what shift amount will be used by altivec if shifted by i in
7011     // this splat size.
7012     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7013 
7014     // vsplti + shl self.
7015     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7016       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7017       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7018         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7019         Intrinsic::ppc_altivec_vslw
7020       };
7021       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7022       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7023     }
7024 
7025     // vsplti + srl self.
7026     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7027       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7028       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7029         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7030         Intrinsic::ppc_altivec_vsrw
7031       };
7032       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7033       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7034     }
7035 
7036     // vsplti + sra self.
7037     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7038       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7039       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7040         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7041         Intrinsic::ppc_altivec_vsraw
7042       };
7043       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7044       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7045     }
7046 
7047     // vsplti + rol self.
7048     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7049                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7050       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7051       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7052         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7053         Intrinsic::ppc_altivec_vrlw
7054       };
7055       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7056       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7057     }
7058 
7059     // t = vsplti c, result = vsldoi t, t, 1
7060     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7061       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7062       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7063       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7064     }
7065     // t = vsplti c, result = vsldoi t, t, 2
7066     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7067       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7068       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7069       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7070     }
7071     // t = vsplti c, result = vsldoi t, t, 3
7072     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7073       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7074       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7075       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7076     }
7077   }
7078 
7079   return SDValue();
7080 }
7081 
7082 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7083 /// the specified operations to build the shuffle.
7084 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7085                                       SDValue RHS, SelectionDAG &DAG,
7086                                       SDLoc dl) {
7087   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7088   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7089   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7090 
7091   enum {
7092     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7093     OP_VMRGHW,
7094     OP_VMRGLW,
7095     OP_VSPLTISW0,
7096     OP_VSPLTISW1,
7097     OP_VSPLTISW2,
7098     OP_VSPLTISW3,
7099     OP_VSLDOI4,
7100     OP_VSLDOI8,
7101     OP_VSLDOI12
7102   };
7103 
7104   if (OpNum == OP_COPY) {
7105     if (LHSID == (1*9+2)*9+3) return LHS;
7106     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7107     return RHS;
7108   }
7109 
7110   SDValue OpLHS, OpRHS;
7111   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7112   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7113 
7114   int ShufIdxs[16];
7115   switch (OpNum) {
7116   default: llvm_unreachable("Unknown i32 permute!");
7117   case OP_VMRGHW:
7118     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7119     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7120     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7121     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7122     break;
7123   case OP_VMRGLW:
7124     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7125     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7126     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7127     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7128     break;
7129   case OP_VSPLTISW0:
7130     for (unsigned i = 0; i != 16; ++i)
7131       ShufIdxs[i] = (i&3)+0;
7132     break;
7133   case OP_VSPLTISW1:
7134     for (unsigned i = 0; i != 16; ++i)
7135       ShufIdxs[i] = (i&3)+4;
7136     break;
7137   case OP_VSPLTISW2:
7138     for (unsigned i = 0; i != 16; ++i)
7139       ShufIdxs[i] = (i&3)+8;
7140     break;
7141   case OP_VSPLTISW3:
7142     for (unsigned i = 0; i != 16; ++i)
7143       ShufIdxs[i] = (i&3)+12;
7144     break;
7145   case OP_VSLDOI4:
7146     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7147   case OP_VSLDOI8:
7148     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7149   case OP_VSLDOI12:
7150     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7151   }
7152   EVT VT = OpLHS.getValueType();
7153   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7154   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7155   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7156   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7157 }
7158 
7159 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7160 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7161 /// return the code it can be lowered into.  Worst case, it can always be
7162 /// lowered into a vperm.
7163 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7164                                                SelectionDAG &DAG) const {
7165   SDLoc dl(Op);
7166   SDValue V1 = Op.getOperand(0);
7167   SDValue V2 = Op.getOperand(1);
7168   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7169   EVT VT = Op.getValueType();
7170   bool isLittleEndian = Subtarget.isLittleEndian();
7171 
7172   if (Subtarget.hasQPX()) {
7173     if (VT.getVectorNumElements() != 4)
7174       return SDValue();
7175 
7176     if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7177 
7178     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7179     if (AlignIdx != -1) {
7180       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7181                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7182     } else if (SVOp->isSplat()) {
7183       int SplatIdx = SVOp->getSplatIndex();
7184       if (SplatIdx >= 4) {
7185         std::swap(V1, V2);
7186         SplatIdx -= 4;
7187       }
7188 
7189       // FIXME: If SplatIdx == 0 and the input came from a load, then there is
7190       // nothing to do.
7191 
7192       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7193                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7194     }
7195 
7196     // Lower this into a qvgpci/qvfperm pair.
7197 
7198     // Compute the qvgpci literal
7199     unsigned idx = 0;
7200     for (unsigned i = 0; i < 4; ++i) {
7201       int m = SVOp->getMaskElt(i);
7202       unsigned mm = m >= 0 ? (unsigned) m : i;
7203       idx |= mm << (3-i)*3;
7204     }
7205 
7206     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7207                              DAG.getConstant(idx, dl, MVT::i32));
7208     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7209   }
7210 
7211   // Cases that are handled by instructions that take permute immediates
7212   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7213   // selected by the instruction selector.
7214   if (V2.getOpcode() == ISD::UNDEF) {
7215     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7216         PPC::isSplatShuffleMask(SVOp, 2) ||
7217         PPC::isSplatShuffleMask(SVOp, 4) ||
7218         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7219         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7220         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7221         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7222         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7223         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7224         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7225         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7226         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7227         (Subtarget.hasP8Altivec() && (
7228          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7229          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7230          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7231       return Op;
7232     }
7233   }
7234 
7235   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7236   // and produce a fixed permutation.  If any of these match, do not lower to
7237   // VPERM.
7238   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7239   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7240       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7241       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7242       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7243       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7244       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7245       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7246       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7247       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7248       (Subtarget.hasP8Altivec() && (
7249        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7250        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7251        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7252     return Op;
7253 
7254   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7255   // perfect shuffle table to emit an optimal matching sequence.
7256   ArrayRef<int> PermMask = SVOp->getMask();
7257 
7258   unsigned PFIndexes[4];
7259   bool isFourElementShuffle = true;
7260   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7261     unsigned EltNo = 8;   // Start out undef.
7262     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7263       if (PermMask[i*4+j] < 0)
7264         continue;   // Undef, ignore it.
7265 
7266       unsigned ByteSource = PermMask[i*4+j];
7267       if ((ByteSource & 3) != j) {
7268         isFourElementShuffle = false;
7269         break;
7270       }
7271 
7272       if (EltNo == 8) {
7273         EltNo = ByteSource/4;
7274       } else if (EltNo != ByteSource/4) {
7275         isFourElementShuffle = false;
7276         break;
7277       }
7278     }
7279     PFIndexes[i] = EltNo;
7280   }
7281 
7282   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7283   // perfect shuffle vector to determine if it is cost effective to do this as
7284   // discrete instructions, or whether we should use a vperm.
7285   // For now, we skip this for little endian until such time as we have a
7286   // little-endian perfect shuffle table.
7287   if (isFourElementShuffle && !isLittleEndian) {
7288     // Compute the index in the perfect shuffle table.
7289     unsigned PFTableIndex =
7290       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7291 
7292     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7293     unsigned Cost  = (PFEntry >> 30);
7294 
7295     // Determining when to avoid vperm is tricky.  Many things affect the cost
7296     // of vperm, particularly how many times the perm mask needs to be computed.
7297     // For example, if the perm mask can be hoisted out of a loop or is already
7298     // used (perhaps because there are multiple permutes with the same shuffle
7299     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7300     // the loop requires an extra register.
7301     //
7302     // As a compromise, we only emit discrete instructions if the shuffle can be
7303     // generated in 3 or fewer operations.  When we have loop information
7304     // available, if this block is within a loop, we should avoid using vperm
7305     // for 3-operation perms and use a constant pool load instead.
7306     if (Cost < 3)
7307       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7308   }
7309 
7310   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7311   // vector that will get spilled to the constant pool.
7312   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
7313 
7314   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7315   // that it is in input element units, not in bytes.  Convert now.
7316 
7317   // For little endian, the order of the input vectors is reversed, and
7318   // the permutation mask is complemented with respect to 31.  This is
7319   // necessary to produce proper semantics with the big-endian-biased vperm
7320   // instruction.
7321   EVT EltVT = V1.getValueType().getVectorElementType();
7322   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7323 
7324   SmallVector<SDValue, 16> ResultMask;
7325   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7326     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7327 
7328     for (unsigned j = 0; j != BytesPerElement; ++j)
7329       if (isLittleEndian)
7330         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7331                                              dl, MVT::i32));
7332       else
7333         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7334                                              MVT::i32));
7335   }
7336 
7337   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
7338                                   ResultMask);
7339   if (isLittleEndian)
7340     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7341                        V2, V1, VPermMask);
7342   else
7343     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7344                        V1, V2, VPermMask);
7345 }
7346 
7347 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7348 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7349 /// information about the intrinsic.
7350 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7351                                  bool &isDot, const PPCSubtarget &Subtarget) {
7352   unsigned IntrinsicID =
7353     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7354   CompareOpc = -1;
7355   isDot = false;
7356   switch (IntrinsicID) {
7357   default: return false;
7358     // Comparison predicates.
7359   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7360   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7361   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7362   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7363   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7364   case Intrinsic::ppc_altivec_vcmpequd_p:
7365     if (Subtarget.hasP8Altivec()) {
7366       CompareOpc = 199;
7367       isDot = 1;
7368     } else
7369       return false;
7370 
7371     break;
7372   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7373   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7374   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7375   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7376   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7377   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7378     if (Subtarget.hasP8Altivec()) {
7379       CompareOpc = 967;
7380       isDot = 1;
7381     } else
7382       return false;
7383 
7384     break;
7385   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7386   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7387   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7388   case Intrinsic::ppc_altivec_vcmpgtud_p:
7389     if (Subtarget.hasP8Altivec()) {
7390       CompareOpc = 711;
7391       isDot = 1;
7392     } else
7393       return false;
7394 
7395     break;
7396     // VSX predicate comparisons use the same infrastructure
7397   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7398   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7399   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7400   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7401   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7402   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7403     if (Subtarget.hasVSX()) {
7404       switch (IntrinsicID) {
7405       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7406       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7407       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7408       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7409       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7410       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7411       }
7412       isDot = 1;
7413     }
7414     else
7415       return false;
7416 
7417     break;
7418 
7419     // Normal Comparisons.
7420   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7421   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7422   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7423   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7424   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7425   case Intrinsic::ppc_altivec_vcmpequd:
7426     if (Subtarget.hasP8Altivec()) {
7427       CompareOpc = 199;
7428       isDot = 0;
7429     } else
7430       return false;
7431 
7432     break;
7433   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7434   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7435   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7436   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7437   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7438   case Intrinsic::ppc_altivec_vcmpgtsd:
7439     if (Subtarget.hasP8Altivec()) {
7440       CompareOpc = 967;
7441       isDot = 0;
7442     } else
7443       return false;
7444 
7445     break;
7446   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7447   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7448   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7449   case Intrinsic::ppc_altivec_vcmpgtud:
7450     if (Subtarget.hasP8Altivec()) {
7451       CompareOpc = 711;
7452       isDot = 0;
7453     } else
7454       return false;
7455 
7456     break;
7457   }
7458   return true;
7459 }
7460 
7461 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7462 /// lower, do it, otherwise return null.
7463 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7464                                                    SelectionDAG &DAG) const {
7465   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7466   // opcode number of the comparison.
7467   SDLoc dl(Op);
7468   int CompareOpc;
7469   bool isDot;
7470   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7471     return SDValue();    // Don't custom lower most intrinsics.
7472 
7473   // If this is a non-dot comparison, make the VCMP node and we are done.
7474   if (!isDot) {
7475     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7476                               Op.getOperand(1), Op.getOperand(2),
7477                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7478     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7479   }
7480 
7481   // Create the PPCISD altivec 'dot' comparison node.
7482   SDValue Ops[] = {
7483     Op.getOperand(2),  // LHS
7484     Op.getOperand(3),  // RHS
7485     DAG.getConstant(CompareOpc, dl, MVT::i32)
7486   };
7487   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7488   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7489 
7490   // Now that we have the comparison, emit a copy from the CR to a GPR.
7491   // This is flagged to the above dot comparison.
7492   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7493                                 DAG.getRegister(PPC::CR6, MVT::i32),
7494                                 CompNode.getValue(1));
7495 
7496   // Unpack the result based on how the target uses it.
7497   unsigned BitNo;   // Bit # of CR6.
7498   bool InvertBit;   // Invert result?
7499   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7500   default:  // Can't happen, don't crash on invalid number though.
7501   case 0:   // Return the value of the EQ bit of CR6.
7502     BitNo = 0; InvertBit = false;
7503     break;
7504   case 1:   // Return the inverted value of the EQ bit of CR6.
7505     BitNo = 0; InvertBit = true;
7506     break;
7507   case 2:   // Return the value of the LT bit of CR6.
7508     BitNo = 2; InvertBit = false;
7509     break;
7510   case 3:   // Return the inverted value of the LT bit of CR6.
7511     BitNo = 2; InvertBit = true;
7512     break;
7513   }
7514 
7515   // Shift the bit into the low position.
7516   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7517                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7518   // Isolate the bit.
7519   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7520                       DAG.getConstant(1, dl, MVT::i32));
7521 
7522   // If we are supposed to, toggle the bit.
7523   if (InvertBit)
7524     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7525                         DAG.getConstant(1, dl, MVT::i32));
7526   return Flags;
7527 }
7528 
7529 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7530                                                   SelectionDAG &DAG) const {
7531   SDLoc dl(Op);
7532   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7533   // instructions), but for smaller types, we need to first extend up to v2i32
7534   // before doing going farther.
7535   if (Op.getValueType() == MVT::v2i64) {
7536     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7537     if (ExtVT != MVT::v2i32) {
7538       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7539       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7540                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7541                                         ExtVT.getVectorElementType(), 4)));
7542       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7543       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7544                        DAG.getValueType(MVT::v2i32));
7545     }
7546 
7547     return Op;
7548   }
7549 
7550   return SDValue();
7551 }
7552 
7553 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7554                                                    SelectionDAG &DAG) const {
7555   SDLoc dl(Op);
7556   // Create a stack slot that is 16-byte aligned.
7557   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7558   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7559   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7560   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7561 
7562   // Store the input value into Value#0 of the stack slot.
7563   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7564                                Op.getOperand(0), FIdx, MachinePointerInfo(),
7565                                false, false, 0);
7566   // Load it out.
7567   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7568                      false, false, false, 0);
7569 }
7570 
7571 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7572                                                    SelectionDAG &DAG) const {
7573   SDLoc dl(Op);
7574   SDNode *N = Op.getNode();
7575 
7576   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7577          "Unknown extract_vector_elt type");
7578 
7579   SDValue Value = N->getOperand(0);
7580 
7581   // The first part of this is like the store lowering except that we don't
7582   // need to track the chain.
7583 
7584   // The values are now known to be -1 (false) or 1 (true). To convert this
7585   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7586   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7587   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7588 
7589   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7590   // understand how to form the extending load.
7591   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7592 
7593   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7594 
7595   // Now convert to an integer and store.
7596   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7597     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7598     Value);
7599 
7600   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7601   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7602   MachinePointerInfo PtrInfo =
7603       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7604   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7605   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7606 
7607   SDValue StoreChain = DAG.getEntryNode();
7608   SmallVector<SDValue, 2> Ops;
7609   Ops.push_back(StoreChain);
7610   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7611   Ops.push_back(Value);
7612   Ops.push_back(FIdx);
7613 
7614   SmallVector<EVT, 2> ValueVTs;
7615   ValueVTs.push_back(MVT::Other); // chain
7616   SDVTList VTs = DAG.getVTList(ValueVTs);
7617 
7618   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7619     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7620 
7621   // Extract the value requested.
7622   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7623   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7624   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7625 
7626   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7627                                PtrInfo.getWithOffset(Offset),
7628                                false, false, false, 0);
7629 
7630   if (!Subtarget.useCRBits())
7631     return IntVal;
7632 
7633   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7634 }
7635 
7636 /// Lowering for QPX v4i1 loads
7637 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7638                                            SelectionDAG &DAG) const {
7639   SDLoc dl(Op);
7640   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7641   SDValue LoadChain = LN->getChain();
7642   SDValue BasePtr = LN->getBasePtr();
7643 
7644   if (Op.getValueType() == MVT::v4f64 ||
7645       Op.getValueType() == MVT::v4f32) {
7646     EVT MemVT = LN->getMemoryVT();
7647     unsigned Alignment = LN->getAlignment();
7648 
7649     // If this load is properly aligned, then it is legal.
7650     if (Alignment >= MemVT.getStoreSize())
7651       return Op;
7652 
7653     EVT ScalarVT = Op.getValueType().getScalarType(),
7654         ScalarMemVT = MemVT.getScalarType();
7655     unsigned Stride = ScalarMemVT.getStoreSize();
7656 
7657     SmallVector<SDValue, 8> Vals, LoadChains;
7658     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7659       SDValue Load;
7660       if (ScalarVT != ScalarMemVT)
7661         Load =
7662           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7663                          BasePtr,
7664                          LN->getPointerInfo().getWithOffset(Idx*Stride),
7665                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7666                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7667                          LN->getAAInfo());
7668       else
7669         Load =
7670           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7671                        LN->getPointerInfo().getWithOffset(Idx*Stride),
7672                        LN->isVolatile(), LN->isNonTemporal(),
7673                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7674                        LN->getAAInfo());
7675 
7676       if (Idx == 0 && LN->isIndexed()) {
7677         assert(LN->getAddressingMode() == ISD::PRE_INC &&
7678                "Unknown addressing mode on vector load");
7679         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7680                                   LN->getAddressingMode());
7681       }
7682 
7683       Vals.push_back(Load);
7684       LoadChains.push_back(Load.getValue(1));
7685 
7686       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7687                             DAG.getConstant(Stride, dl,
7688                                             BasePtr.getValueType()));
7689     }
7690 
7691     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7692     SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
7693                                 Op.getValueType(), Vals);
7694 
7695     if (LN->isIndexed()) {
7696       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
7697       return DAG.getMergeValues(RetOps, dl);
7698     }
7699 
7700     SDValue RetOps[] = { Value, TF };
7701     return DAG.getMergeValues(RetOps, dl);
7702   }
7703 
7704   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
7705   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
7706 
7707   // To lower v4i1 from a byte array, we load the byte elements of the
7708   // vector and then reuse the BUILD_VECTOR logic.
7709 
7710   SmallVector<SDValue, 4> VectElmts, VectElmtChains;
7711   for (unsigned i = 0; i < 4; ++i) {
7712     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7713     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7714 
7715     VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
7716                         dl, MVT::i32, LoadChain, Idx,
7717                         LN->getPointerInfo().getWithOffset(i),
7718                         MVT::i8 /* memory type */,
7719                         LN->isVolatile(), LN->isNonTemporal(),
7720                         LN->isInvariant(),
7721                         1 /* alignment */, LN->getAAInfo()));
7722     VectElmtChains.push_back(VectElmts[i].getValue(1));
7723   }
7724 
7725   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
7726   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
7727 
7728   SDValue RVals[] = { Value, LoadChain };
7729   return DAG.getMergeValues(RVals, dl);
7730 }
7731 
7732 /// Lowering for QPX v4i1 stores
7733 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
7734                                             SelectionDAG &DAG) const {
7735   SDLoc dl(Op);
7736   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
7737   SDValue StoreChain = SN->getChain();
7738   SDValue BasePtr = SN->getBasePtr();
7739   SDValue Value = SN->getValue();
7740 
7741   if (Value.getValueType() == MVT::v4f64 ||
7742       Value.getValueType() == MVT::v4f32) {
7743     EVT MemVT = SN->getMemoryVT();
7744     unsigned Alignment = SN->getAlignment();
7745 
7746     // If this store is properly aligned, then it is legal.
7747     if (Alignment >= MemVT.getStoreSize())
7748       return Op;
7749 
7750     EVT ScalarVT = Value.getValueType().getScalarType(),
7751         ScalarMemVT = MemVT.getScalarType();
7752     unsigned Stride = ScalarMemVT.getStoreSize();
7753 
7754     SmallVector<SDValue, 8> Stores;
7755     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7756       SDValue Ex = DAG.getNode(
7757           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
7758           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
7759       SDValue Store;
7760       if (ScalarVT != ScalarMemVT)
7761         Store =
7762           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
7763                             SN->getPointerInfo().getWithOffset(Idx*Stride),
7764                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
7765                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7766       else
7767         Store =
7768           DAG.getStore(StoreChain, dl, Ex, BasePtr,
7769                        SN->getPointerInfo().getWithOffset(Idx*Stride),
7770                        SN->isVolatile(), SN->isNonTemporal(),
7771                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
7772 
7773       if (Idx == 0 && SN->isIndexed()) {
7774         assert(SN->getAddressingMode() == ISD::PRE_INC &&
7775                "Unknown addressing mode on vector store");
7776         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
7777                                     SN->getAddressingMode());
7778       }
7779 
7780       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7781                             DAG.getConstant(Stride, dl,
7782                                             BasePtr.getValueType()));
7783       Stores.push_back(Store);
7784     }
7785 
7786     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7787 
7788     if (SN->isIndexed()) {
7789       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
7790       return DAG.getMergeValues(RetOps, dl);
7791     }
7792 
7793     return TF;
7794   }
7795 
7796   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
7797   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
7798 
7799   // The values are now known to be -1 (false) or 1 (true). To convert this
7800   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7801   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7802   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7803 
7804   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7805   // understand how to form the extending load.
7806   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7807 
7808   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7809 
7810   // Now convert to an integer and store.
7811   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7812     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7813     Value);
7814 
7815   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7816   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7817   MachinePointerInfo PtrInfo =
7818       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7819   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7820   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7821 
7822   SmallVector<SDValue, 2> Ops;
7823   Ops.push_back(StoreChain);
7824   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
7825   Ops.push_back(Value);
7826   Ops.push_back(FIdx);
7827 
7828   SmallVector<EVT, 2> ValueVTs;
7829   ValueVTs.push_back(MVT::Other); // chain
7830   SDVTList VTs = DAG.getVTList(ValueVTs);
7831 
7832   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7833     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7834 
7835   // Move data into the byte array.
7836   SmallVector<SDValue, 4> Loads, LoadChains;
7837   for (unsigned i = 0; i < 4; ++i) {
7838     unsigned Offset = 4*i;
7839     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7840     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7841 
7842     Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7843                                    PtrInfo.getWithOffset(Offset),
7844                                    false, false, false, 0));
7845     LoadChains.push_back(Loads[i].getValue(1));
7846   }
7847 
7848   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7849 
7850   SmallVector<SDValue, 4> Stores;
7851   for (unsigned i = 0; i < 4; ++i) {
7852     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
7853     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
7854 
7855     Stores.push_back(DAG.getTruncStore(
7856         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
7857         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
7858         1 /* alignment */, SN->getAAInfo()));
7859   }
7860 
7861   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7862 
7863   return StoreChain;
7864 }
7865 
7866 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
7867   SDLoc dl(Op);
7868   if (Op.getValueType() == MVT::v4i32) {
7869     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7870 
7871     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
7872     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
7873 
7874     SDValue RHSSwap =   // = vrlw RHS, 16
7875       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
7876 
7877     // Shrinkify inputs to v8i16.
7878     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
7879     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
7880     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
7881 
7882     // Low parts multiplied together, generating 32-bit results (we ignore the
7883     // top parts).
7884     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
7885                                         LHS, RHS, DAG, dl, MVT::v4i32);
7886 
7887     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
7888                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
7889     // Shift the high parts up 16 bits.
7890     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
7891                               Neg16, DAG, dl);
7892     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
7893   } else if (Op.getValueType() == MVT::v8i16) {
7894     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7895 
7896     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
7897 
7898     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
7899                             LHS, RHS, Zero, DAG, dl);
7900   } else if (Op.getValueType() == MVT::v16i8) {
7901     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7902     bool isLittleEndian = Subtarget.isLittleEndian();
7903 
7904     // Multiply the even 8-bit parts, producing 16-bit sums.
7905     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
7906                                            LHS, RHS, DAG, dl, MVT::v8i16);
7907     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
7908 
7909     // Multiply the odd 8-bit parts, producing 16-bit sums.
7910     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
7911                                           LHS, RHS, DAG, dl, MVT::v8i16);
7912     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
7913 
7914     // Merge the results together.  Because vmuleub and vmuloub are
7915     // instructions with a big-endian bias, we must reverse the
7916     // element numbering and reverse the meaning of "odd" and "even"
7917     // when generating little endian code.
7918     int Ops[16];
7919     for (unsigned i = 0; i != 8; ++i) {
7920       if (isLittleEndian) {
7921         Ops[i*2  ] = 2*i;
7922         Ops[i*2+1] = 2*i+16;
7923       } else {
7924         Ops[i*2  ] = 2*i+1;
7925         Ops[i*2+1] = 2*i+1+16;
7926       }
7927     }
7928     if (isLittleEndian)
7929       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
7930     else
7931       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
7932   } else {
7933     llvm_unreachable("Unknown mul to lower!");
7934   }
7935 }
7936 
7937 /// LowerOperation - Provide custom lowering hooks for some operations.
7938 ///
7939 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7940   switch (Op.getOpcode()) {
7941   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
7942   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7943   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7944   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7945   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7946   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7947   case ISD::SETCC:              return LowerSETCC(Op, DAG);
7948   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
7949   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
7950   case ISD::VASTART:
7951     return LowerVASTART(Op, DAG, Subtarget);
7952 
7953   case ISD::VAARG:
7954     return LowerVAARG(Op, DAG, Subtarget);
7955 
7956   case ISD::VACOPY:
7957     return LowerVACOPY(Op, DAG, Subtarget);
7958 
7959   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
7960   case ISD::DYNAMIC_STACKALLOC:
7961     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
7962   case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget);
7963 
7964   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
7965   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
7966 
7967   case ISD::LOAD:               return LowerLOAD(Op, DAG);
7968   case ISD::STORE:              return LowerSTORE(Op, DAG);
7969   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
7970   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
7971   case ISD::FP_TO_UINT:
7972   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
7973                                                       SDLoc(Op));
7974   case ISD::UINT_TO_FP:
7975   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
7976   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7977 
7978   // Lower 64-bit shifts.
7979   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
7980   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
7981   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
7982 
7983   // Vector-related lowering.
7984   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7985   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7986   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7987   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7988   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
7989   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7990   case ISD::MUL:                return LowerMUL(Op, DAG);
7991 
7992   // For counter-based loop handling.
7993   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
7994 
7995   // Frame & Return address.
7996   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7997   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7998   }
7999 }
8000 
8001 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8002                                            SmallVectorImpl<SDValue>&Results,
8003                                            SelectionDAG &DAG) const {
8004   SDLoc dl(N);
8005   switch (N->getOpcode()) {
8006   default:
8007     llvm_unreachable("Do not know how to custom type legalize this operation!");
8008   case ISD::READCYCLECOUNTER: {
8009     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8010     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8011 
8012     Results.push_back(RTB);
8013     Results.push_back(RTB.getValue(1));
8014     Results.push_back(RTB.getValue(2));
8015     break;
8016   }
8017   case ISD::INTRINSIC_W_CHAIN: {
8018     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8019         Intrinsic::ppc_is_decremented_ctr_nonzero)
8020       break;
8021 
8022     assert(N->getValueType(0) == MVT::i1 &&
8023            "Unexpected result type for CTR decrement intrinsic");
8024     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8025                                  N->getValueType(0));
8026     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8027     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8028                                  N->getOperand(1));
8029 
8030     Results.push_back(NewInt);
8031     Results.push_back(NewInt.getValue(1));
8032     break;
8033   }
8034   case ISD::VAARG: {
8035     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8036       return;
8037 
8038     EVT VT = N->getValueType(0);
8039 
8040     if (VT == MVT::i64) {
8041       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
8042 
8043       Results.push_back(NewNode);
8044       Results.push_back(NewNode.getValue(1));
8045     }
8046     return;
8047   }
8048   case ISD::FP_ROUND_INREG: {
8049     assert(N->getValueType(0) == MVT::ppcf128);
8050     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8051     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8052                              MVT::f64, N->getOperand(0),
8053                              DAG.getIntPtrConstant(0, dl));
8054     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8055                              MVT::f64, N->getOperand(0),
8056                              DAG.getIntPtrConstant(1, dl));
8057 
8058     // Add the two halves of the long double in round-to-zero mode.
8059     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8060 
8061     // We know the low half is about to be thrown away, so just use something
8062     // convenient.
8063     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8064                                 FPreg, FPreg));
8065     return;
8066   }
8067   case ISD::FP_TO_SINT:
8068   case ISD::FP_TO_UINT:
8069     // LowerFP_TO_INT() can only handle f32 and f64.
8070     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8071       return;
8072     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8073     return;
8074   }
8075 }
8076 
8077 //===----------------------------------------------------------------------===//
8078 //  Other Lowering Code
8079 //===----------------------------------------------------------------------===//
8080 
8081 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8082   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8083   Function *Func = Intrinsic::getDeclaration(M, Id);
8084   return Builder.CreateCall(Func, {});
8085 }
8086 
8087 // The mappings for emitLeading/TrailingFence is taken from
8088 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
8089 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8090                                          AtomicOrdering Ord, bool IsStore,
8091                                          bool IsLoad) const {
8092   if (Ord == SequentiallyConsistent)
8093     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8094   if (isAtLeastRelease(Ord))
8095     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8096   return nullptr;
8097 }
8098 
8099 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8100                                           AtomicOrdering Ord, bool IsStore,
8101                                           bool IsLoad) const {
8102   if (IsLoad && isAtLeastAcquire(Ord))
8103     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8104   // FIXME: this is too conservative, a dependent branch + isync is enough.
8105   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8106   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8107   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8108   return nullptr;
8109 }
8110 
8111 MachineBasicBlock *
8112 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
8113                                     unsigned AtomicSize,
8114                                     unsigned BinOpcode) const {
8115   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8116   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8117 
8118   auto LoadMnemonic = PPC::LDARX;
8119   auto StoreMnemonic = PPC::STDCX;
8120   switch (AtomicSize) {
8121   default:
8122     llvm_unreachable("Unexpected size of atomic entity");
8123   case 1:
8124     LoadMnemonic = PPC::LBARX;
8125     StoreMnemonic = PPC::STBCX;
8126     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8127     break;
8128   case 2:
8129     LoadMnemonic = PPC::LHARX;
8130     StoreMnemonic = PPC::STHCX;
8131     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8132     break;
8133   case 4:
8134     LoadMnemonic = PPC::LWARX;
8135     StoreMnemonic = PPC::STWCX;
8136     break;
8137   case 8:
8138     LoadMnemonic = PPC::LDARX;
8139     StoreMnemonic = PPC::STDCX;
8140     break;
8141   }
8142 
8143   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8144   MachineFunction *F = BB->getParent();
8145   MachineFunction::iterator It = ++BB->getIterator();
8146 
8147   unsigned dest = MI->getOperand(0).getReg();
8148   unsigned ptrA = MI->getOperand(1).getReg();
8149   unsigned ptrB = MI->getOperand(2).getReg();
8150   unsigned incr = MI->getOperand(3).getReg();
8151   DebugLoc dl = MI->getDebugLoc();
8152 
8153   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8154   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8155   F->insert(It, loopMBB);
8156   F->insert(It, exitMBB);
8157   exitMBB->splice(exitMBB->begin(), BB,
8158                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8159   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8160 
8161   MachineRegisterInfo &RegInfo = F->getRegInfo();
8162   unsigned TmpReg = (!BinOpcode) ? incr :
8163     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8164                                            : &PPC::GPRCRegClass);
8165 
8166   //  thisMBB:
8167   //   ...
8168   //   fallthrough --> loopMBB
8169   BB->addSuccessor(loopMBB);
8170 
8171   //  loopMBB:
8172   //   l[wd]arx dest, ptr
8173   //   add r0, dest, incr
8174   //   st[wd]cx. r0, ptr
8175   //   bne- loopMBB
8176   //   fallthrough --> exitMBB
8177   BB = loopMBB;
8178   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8179     .addReg(ptrA).addReg(ptrB);
8180   if (BinOpcode)
8181     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8182   BuildMI(BB, dl, TII->get(StoreMnemonic))
8183     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8184   BuildMI(BB, dl, TII->get(PPC::BCC))
8185     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8186   BB->addSuccessor(loopMBB);
8187   BB->addSuccessor(exitMBB);
8188 
8189   //  exitMBB:
8190   //   ...
8191   BB = exitMBB;
8192   return BB;
8193 }
8194 
8195 MachineBasicBlock *
8196 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
8197                                             MachineBasicBlock *BB,
8198                                             bool is8bit,    // operation
8199                                             unsigned BinOpcode) const {
8200   // If we support part-word atomic mnemonics, just use them
8201   if (Subtarget.hasPartwordAtomics())
8202     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8203 
8204   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8205   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8206   // In 64 bit mode we have to use 64 bits for addresses, even though the
8207   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8208   // registers without caring whether they're 32 or 64, but here we're
8209   // doing actual arithmetic on the addresses.
8210   bool is64bit = Subtarget.isPPC64();
8211   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8212 
8213   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8214   MachineFunction *F = BB->getParent();
8215   MachineFunction::iterator It = ++BB->getIterator();
8216 
8217   unsigned dest = MI->getOperand(0).getReg();
8218   unsigned ptrA = MI->getOperand(1).getReg();
8219   unsigned ptrB = MI->getOperand(2).getReg();
8220   unsigned incr = MI->getOperand(3).getReg();
8221   DebugLoc dl = MI->getDebugLoc();
8222 
8223   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8224   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8225   F->insert(It, loopMBB);
8226   F->insert(It, exitMBB);
8227   exitMBB->splice(exitMBB->begin(), BB,
8228                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8229   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8230 
8231   MachineRegisterInfo &RegInfo = F->getRegInfo();
8232   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8233                                           : &PPC::GPRCRegClass;
8234   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8235   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8236   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8237   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8238   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8239   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8240   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8241   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8242   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8243   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8244   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8245   unsigned Ptr1Reg;
8246   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8247 
8248   //  thisMBB:
8249   //   ...
8250   //   fallthrough --> loopMBB
8251   BB->addSuccessor(loopMBB);
8252 
8253   // The 4-byte load must be aligned, while a char or short may be
8254   // anywhere in the word.  Hence all this nasty bookkeeping code.
8255   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8256   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8257   //   xori shift, shift1, 24 [16]
8258   //   rlwinm ptr, ptr1, 0, 0, 29
8259   //   slw incr2, incr, shift
8260   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8261   //   slw mask, mask2, shift
8262   //  loopMBB:
8263   //   lwarx tmpDest, ptr
8264   //   add tmp, tmpDest, incr2
8265   //   andc tmp2, tmpDest, mask
8266   //   and tmp3, tmp, mask
8267   //   or tmp4, tmp3, tmp2
8268   //   stwcx. tmp4, ptr
8269   //   bne- loopMBB
8270   //   fallthrough --> exitMBB
8271   //   srw dest, tmpDest, shift
8272   if (ptrA != ZeroReg) {
8273     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8274     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8275       .addReg(ptrA).addReg(ptrB);
8276   } else {
8277     Ptr1Reg = ptrB;
8278   }
8279   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8280       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8281   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8282       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8283   if (is64bit)
8284     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8285       .addReg(Ptr1Reg).addImm(0).addImm(61);
8286   else
8287     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8288       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8289   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8290       .addReg(incr).addReg(ShiftReg);
8291   if (is8bit)
8292     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8293   else {
8294     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8295     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8296   }
8297   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8298       .addReg(Mask2Reg).addReg(ShiftReg);
8299 
8300   BB = loopMBB;
8301   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8302     .addReg(ZeroReg).addReg(PtrReg);
8303   if (BinOpcode)
8304     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8305       .addReg(Incr2Reg).addReg(TmpDestReg);
8306   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8307     .addReg(TmpDestReg).addReg(MaskReg);
8308   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8309     .addReg(TmpReg).addReg(MaskReg);
8310   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8311     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8312   BuildMI(BB, dl, TII->get(PPC::STWCX))
8313     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8314   BuildMI(BB, dl, TII->get(PPC::BCC))
8315     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8316   BB->addSuccessor(loopMBB);
8317   BB->addSuccessor(exitMBB);
8318 
8319   //  exitMBB:
8320   //   ...
8321   BB = exitMBB;
8322   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8323     .addReg(ShiftReg);
8324   return BB;
8325 }
8326 
8327 llvm::MachineBasicBlock*
8328 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
8329                                     MachineBasicBlock *MBB) const {
8330   DebugLoc DL = MI->getDebugLoc();
8331   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8332 
8333   MachineFunction *MF = MBB->getParent();
8334   MachineRegisterInfo &MRI = MF->getRegInfo();
8335 
8336   const BasicBlock *BB = MBB->getBasicBlock();
8337   MachineFunction::iterator I = ++MBB->getIterator();
8338 
8339   // Memory Reference
8340   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8341   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8342 
8343   unsigned DstReg = MI->getOperand(0).getReg();
8344   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8345   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8346   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8347   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8348 
8349   MVT PVT = getPointerTy(MF->getDataLayout());
8350   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8351          "Invalid Pointer Size!");
8352   // For v = setjmp(buf), we generate
8353   //
8354   // thisMBB:
8355   //  SjLjSetup mainMBB
8356   //  bl mainMBB
8357   //  v_restore = 1
8358   //  b sinkMBB
8359   //
8360   // mainMBB:
8361   //  buf[LabelOffset] = LR
8362   //  v_main = 0
8363   //
8364   // sinkMBB:
8365   //  v = phi(main, restore)
8366   //
8367 
8368   MachineBasicBlock *thisMBB = MBB;
8369   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8370   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8371   MF->insert(I, mainMBB);
8372   MF->insert(I, sinkMBB);
8373 
8374   MachineInstrBuilder MIB;
8375 
8376   // Transfer the remainder of BB and its successor edges to sinkMBB.
8377   sinkMBB->splice(sinkMBB->begin(), MBB,
8378                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8379   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8380 
8381   // Note that the structure of the jmp_buf used here is not compatible
8382   // with that used by libc, and is not designed to be. Specifically, it
8383   // stores only those 'reserved' registers that LLVM does not otherwise
8384   // understand how to spill. Also, by convention, by the time this
8385   // intrinsic is called, Clang has already stored the frame address in the
8386   // first slot of the buffer and stack address in the third. Following the
8387   // X86 target code, we'll store the jump address in the second slot. We also
8388   // need to save the TOC pointer (R2) to handle jumps between shared
8389   // libraries, and that will be stored in the fourth slot. The thread
8390   // identifier (R13) is not affected.
8391 
8392   // thisMBB:
8393   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8394   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8395   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8396 
8397   // Prepare IP either in reg.
8398   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8399   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8400   unsigned BufReg = MI->getOperand(1).getReg();
8401 
8402   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8403     setUsesTOCBasePtr(*MBB->getParent());
8404     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8405             .addReg(PPC::X2)
8406             .addImm(TOCOffset)
8407             .addReg(BufReg);
8408     MIB.setMemRefs(MMOBegin, MMOEnd);
8409   }
8410 
8411   // Naked functions never have a base pointer, and so we use r1. For all
8412   // other functions, this decision must be delayed until during PEI.
8413   unsigned BaseReg;
8414   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8415     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8416   else
8417     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8418 
8419   MIB = BuildMI(*thisMBB, MI, DL,
8420                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8421             .addReg(BaseReg)
8422             .addImm(BPOffset)
8423             .addReg(BufReg);
8424   MIB.setMemRefs(MMOBegin, MMOEnd);
8425 
8426   // Setup
8427   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8428   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8429   MIB.addRegMask(TRI->getNoPreservedMask());
8430 
8431   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8432 
8433   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8434           .addMBB(mainMBB);
8435   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8436 
8437   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
8438   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
8439 
8440   // mainMBB:
8441   //  mainDstReg = 0
8442   MIB =
8443       BuildMI(mainMBB, DL,
8444               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8445 
8446   // Store IP
8447   if (Subtarget.isPPC64()) {
8448     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8449             .addReg(LabelReg)
8450             .addImm(LabelOffset)
8451             .addReg(BufReg);
8452   } else {
8453     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8454             .addReg(LabelReg)
8455             .addImm(LabelOffset)
8456             .addReg(BufReg);
8457   }
8458 
8459   MIB.setMemRefs(MMOBegin, MMOEnd);
8460 
8461   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8462   mainMBB->addSuccessor(sinkMBB);
8463 
8464   // sinkMBB:
8465   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8466           TII->get(PPC::PHI), DstReg)
8467     .addReg(mainDstReg).addMBB(mainMBB)
8468     .addReg(restoreDstReg).addMBB(thisMBB);
8469 
8470   MI->eraseFromParent();
8471   return sinkMBB;
8472 }
8473 
8474 MachineBasicBlock *
8475 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
8476                                      MachineBasicBlock *MBB) const {
8477   DebugLoc DL = MI->getDebugLoc();
8478   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8479 
8480   MachineFunction *MF = MBB->getParent();
8481   MachineRegisterInfo &MRI = MF->getRegInfo();
8482 
8483   // Memory Reference
8484   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
8485   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
8486 
8487   MVT PVT = getPointerTy(MF->getDataLayout());
8488   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8489          "Invalid Pointer Size!");
8490 
8491   const TargetRegisterClass *RC =
8492     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8493   unsigned Tmp = MRI.createVirtualRegister(RC);
8494   // Since FP is only updated here but NOT referenced, it's treated as GPR.
8495   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8496   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8497   unsigned BP =
8498       (PVT == MVT::i64)
8499           ? PPC::X30
8500           : (Subtarget.isSVR4ABI() &&
8501                      MF->getTarget().getRelocationModel() == Reloc::PIC_
8502                  ? PPC::R29
8503                  : PPC::R30);
8504 
8505   MachineInstrBuilder MIB;
8506 
8507   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8508   const int64_t SPOffset    = 2 * PVT.getStoreSize();
8509   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8510   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8511 
8512   unsigned BufReg = MI->getOperand(0).getReg();
8513 
8514   // Reload FP (the jumped-to function may not have had a
8515   // frame pointer, and if so, then its r31 will be restored
8516   // as necessary).
8517   if (PVT == MVT::i64) {
8518     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8519             .addImm(0)
8520             .addReg(BufReg);
8521   } else {
8522     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8523             .addImm(0)
8524             .addReg(BufReg);
8525   }
8526   MIB.setMemRefs(MMOBegin, MMOEnd);
8527 
8528   // Reload IP
8529   if (PVT == MVT::i64) {
8530     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8531             .addImm(LabelOffset)
8532             .addReg(BufReg);
8533   } else {
8534     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8535             .addImm(LabelOffset)
8536             .addReg(BufReg);
8537   }
8538   MIB.setMemRefs(MMOBegin, MMOEnd);
8539 
8540   // Reload SP
8541   if (PVT == MVT::i64) {
8542     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8543             .addImm(SPOffset)
8544             .addReg(BufReg);
8545   } else {
8546     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8547             .addImm(SPOffset)
8548             .addReg(BufReg);
8549   }
8550   MIB.setMemRefs(MMOBegin, MMOEnd);
8551 
8552   // Reload BP
8553   if (PVT == MVT::i64) {
8554     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8555             .addImm(BPOffset)
8556             .addReg(BufReg);
8557   } else {
8558     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8559             .addImm(BPOffset)
8560             .addReg(BufReg);
8561   }
8562   MIB.setMemRefs(MMOBegin, MMOEnd);
8563 
8564   // Reload TOC
8565   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8566     setUsesTOCBasePtr(*MBB->getParent());
8567     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8568             .addImm(TOCOffset)
8569             .addReg(BufReg);
8570 
8571     MIB.setMemRefs(MMOBegin, MMOEnd);
8572   }
8573 
8574   // Jump
8575   BuildMI(*MBB, MI, DL,
8576           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8577   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8578 
8579   MI->eraseFromParent();
8580   return MBB;
8581 }
8582 
8583 MachineBasicBlock *
8584 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8585                                                MachineBasicBlock *BB) const {
8586   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
8587       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8588     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8589         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
8590       // Call lowering should have added an r2 operand to indicate a dependence
8591       // on the TOC base pointer value. It can't however, because there is no
8592       // way to mark the dependence as implicit there, and so the stackmap code
8593       // will confuse it with a regular operand. Instead, add the dependence
8594       // here.
8595       setUsesTOCBasePtr(*BB->getParent());
8596       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8597     }
8598 
8599     return emitPatchPoint(MI, BB);
8600   }
8601 
8602   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8603       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
8604     return emitEHSjLjSetJmp(MI, BB);
8605   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8606              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
8607     return emitEHSjLjLongJmp(MI, BB);
8608   }
8609 
8610   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8611 
8612   // To "insert" these instructions we actually have to insert their
8613   // control-flow patterns.
8614   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8615   MachineFunction::iterator It = ++BB->getIterator();
8616 
8617   MachineFunction *F = BB->getParent();
8618 
8619   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8620                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
8621                               MI->getOpcode() == PPC::SELECT_I4 ||
8622                               MI->getOpcode() == PPC::SELECT_I8)) {
8623     SmallVector<MachineOperand, 2> Cond;
8624     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8625         MI->getOpcode() == PPC::SELECT_CC_I8)
8626       Cond.push_back(MI->getOperand(4));
8627     else
8628       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8629     Cond.push_back(MI->getOperand(1));
8630 
8631     DebugLoc dl = MI->getDebugLoc();
8632     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
8633                       Cond, MI->getOperand(2).getReg(),
8634                       MI->getOperand(3).getReg());
8635   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
8636              MI->getOpcode() == PPC::SELECT_CC_I8 ||
8637              MI->getOpcode() == PPC::SELECT_CC_F4 ||
8638              MI->getOpcode() == PPC::SELECT_CC_F8 ||
8639              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
8640              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
8641              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
8642              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
8643              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
8644              MI->getOpcode() == PPC::SELECT_CC_VSSRC ||
8645              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
8646              MI->getOpcode() == PPC::SELECT_I4 ||
8647              MI->getOpcode() == PPC::SELECT_I8 ||
8648              MI->getOpcode() == PPC::SELECT_F4 ||
8649              MI->getOpcode() == PPC::SELECT_F8 ||
8650              MI->getOpcode() == PPC::SELECT_QFRC ||
8651              MI->getOpcode() == PPC::SELECT_QSRC ||
8652              MI->getOpcode() == PPC::SELECT_QBRC ||
8653              MI->getOpcode() == PPC::SELECT_VRRC ||
8654              MI->getOpcode() == PPC::SELECT_VSFRC ||
8655              MI->getOpcode() == PPC::SELECT_VSSRC ||
8656              MI->getOpcode() == PPC::SELECT_VSRC) {
8657     // The incoming instruction knows the destination vreg to set, the
8658     // condition code register to branch on, the true/false values to
8659     // select between, and a branch opcode to use.
8660 
8661     //  thisMBB:
8662     //  ...
8663     //   TrueVal = ...
8664     //   cmpTY ccX, r1, r2
8665     //   bCC copy1MBB
8666     //   fallthrough --> copy0MBB
8667     MachineBasicBlock *thisMBB = BB;
8668     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8669     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8670     DebugLoc dl = MI->getDebugLoc();
8671     F->insert(It, copy0MBB);
8672     F->insert(It, sinkMBB);
8673 
8674     // Transfer the remainder of BB and its successor edges to sinkMBB.
8675     sinkMBB->splice(sinkMBB->begin(), BB,
8676                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8677     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8678 
8679     // Next, add the true and fallthrough blocks as its successors.
8680     BB->addSuccessor(copy0MBB);
8681     BB->addSuccessor(sinkMBB);
8682 
8683     if (MI->getOpcode() == PPC::SELECT_I4 ||
8684         MI->getOpcode() == PPC::SELECT_I8 ||
8685         MI->getOpcode() == PPC::SELECT_F4 ||
8686         MI->getOpcode() == PPC::SELECT_F8 ||
8687         MI->getOpcode() == PPC::SELECT_QFRC ||
8688         MI->getOpcode() == PPC::SELECT_QSRC ||
8689         MI->getOpcode() == PPC::SELECT_QBRC ||
8690         MI->getOpcode() == PPC::SELECT_VRRC ||
8691         MI->getOpcode() == PPC::SELECT_VSFRC ||
8692         MI->getOpcode() == PPC::SELECT_VSSRC ||
8693         MI->getOpcode() == PPC::SELECT_VSRC) {
8694       BuildMI(BB, dl, TII->get(PPC::BC))
8695         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8696     } else {
8697       unsigned SelectPred = MI->getOperand(4).getImm();
8698       BuildMI(BB, dl, TII->get(PPC::BCC))
8699         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
8700     }
8701 
8702     //  copy0MBB:
8703     //   %FalseValue = ...
8704     //   # fallthrough to sinkMBB
8705     BB = copy0MBB;
8706 
8707     // Update machine-CFG edges
8708     BB->addSuccessor(sinkMBB);
8709 
8710     //  sinkMBB:
8711     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8712     //  ...
8713     BB = sinkMBB;
8714     BuildMI(*BB, BB->begin(), dl,
8715             TII->get(PPC::PHI), MI->getOperand(0).getReg())
8716       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
8717       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8718   } else if (MI->getOpcode() == PPC::ReadTB) {
8719     // To read the 64-bit time-base register on a 32-bit target, we read the
8720     // two halves. Should the counter have wrapped while it was being read, we
8721     // need to try again.
8722     // ...
8723     // readLoop:
8724     // mfspr Rx,TBU # load from TBU
8725     // mfspr Ry,TB  # load from TB
8726     // mfspr Rz,TBU # load from TBU
8727     // cmpw crX,Rx,Rz # check if 'old'='new'
8728     // bne readLoop   # branch if they're not equal
8729     // ...
8730 
8731     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
8732     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8733     DebugLoc dl = MI->getDebugLoc();
8734     F->insert(It, readMBB);
8735     F->insert(It, sinkMBB);
8736 
8737     // Transfer the remainder of BB and its successor edges to sinkMBB.
8738     sinkMBB->splice(sinkMBB->begin(), BB,
8739                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8740     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8741 
8742     BB->addSuccessor(readMBB);
8743     BB = readMBB;
8744 
8745     MachineRegisterInfo &RegInfo = F->getRegInfo();
8746     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
8747     unsigned LoReg = MI->getOperand(0).getReg();
8748     unsigned HiReg = MI->getOperand(1).getReg();
8749 
8750     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
8751     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
8752     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
8753 
8754     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
8755 
8756     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
8757       .addReg(HiReg).addReg(ReadAgainReg);
8758     BuildMI(BB, dl, TII->get(PPC::BCC))
8759       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
8760 
8761     BB->addSuccessor(readMBB);
8762     BB->addSuccessor(sinkMBB);
8763   }
8764   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
8765     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
8766   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
8767     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
8768   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
8769     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
8770   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
8771     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
8772 
8773   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
8774     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
8775   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
8776     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
8777   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
8778     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
8779   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
8780     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
8781 
8782   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
8783     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
8784   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
8785     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
8786   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
8787     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
8788   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
8789     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
8790 
8791   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
8792     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
8793   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
8794     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
8795   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
8796     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
8797   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
8798     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
8799 
8800   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
8801     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
8802   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
8803     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
8804   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
8805     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
8806   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
8807     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
8808 
8809   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
8810     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
8811   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
8812     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
8813   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
8814     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
8815   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
8816     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
8817 
8818   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
8819     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
8820   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
8821     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
8822   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
8823     BB = EmitAtomicBinary(MI, BB, 4, 0);
8824   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
8825     BB = EmitAtomicBinary(MI, BB, 8, 0);
8826 
8827   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
8828            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
8829            (Subtarget.hasPartwordAtomics() &&
8830             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
8831            (Subtarget.hasPartwordAtomics() &&
8832             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
8833     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
8834 
8835     auto LoadMnemonic = PPC::LDARX;
8836     auto StoreMnemonic = PPC::STDCX;
8837     switch(MI->getOpcode()) {
8838     default:
8839       llvm_unreachable("Compare and swap of unknown size");
8840     case PPC::ATOMIC_CMP_SWAP_I8:
8841       LoadMnemonic = PPC::LBARX;
8842       StoreMnemonic = PPC::STBCX;
8843       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8844       break;
8845     case PPC::ATOMIC_CMP_SWAP_I16:
8846       LoadMnemonic = PPC::LHARX;
8847       StoreMnemonic = PPC::STHCX;
8848       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
8849       break;
8850     case PPC::ATOMIC_CMP_SWAP_I32:
8851       LoadMnemonic = PPC::LWARX;
8852       StoreMnemonic = PPC::STWCX;
8853       break;
8854     case PPC::ATOMIC_CMP_SWAP_I64:
8855       LoadMnemonic = PPC::LDARX;
8856       StoreMnemonic = PPC::STDCX;
8857       break;
8858     }
8859     unsigned dest   = MI->getOperand(0).getReg();
8860     unsigned ptrA   = MI->getOperand(1).getReg();
8861     unsigned ptrB   = MI->getOperand(2).getReg();
8862     unsigned oldval = MI->getOperand(3).getReg();
8863     unsigned newval = MI->getOperand(4).getReg();
8864     DebugLoc dl     = MI->getDebugLoc();
8865 
8866     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8867     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8868     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8869     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8870     F->insert(It, loop1MBB);
8871     F->insert(It, loop2MBB);
8872     F->insert(It, midMBB);
8873     F->insert(It, exitMBB);
8874     exitMBB->splice(exitMBB->begin(), BB,
8875                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8876     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8877 
8878     //  thisMBB:
8879     //   ...
8880     //   fallthrough --> loopMBB
8881     BB->addSuccessor(loop1MBB);
8882 
8883     // loop1MBB:
8884     //   l[bhwd]arx dest, ptr
8885     //   cmp[wd] dest, oldval
8886     //   bne- midMBB
8887     // loop2MBB:
8888     //   st[bhwd]cx. newval, ptr
8889     //   bne- loopMBB
8890     //   b exitBB
8891     // midMBB:
8892     //   st[bhwd]cx. dest, ptr
8893     // exitBB:
8894     BB = loop1MBB;
8895     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8896       .addReg(ptrA).addReg(ptrB);
8897     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
8898       .addReg(oldval).addReg(dest);
8899     BuildMI(BB, dl, TII->get(PPC::BCC))
8900       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
8901     BB->addSuccessor(loop2MBB);
8902     BB->addSuccessor(midMBB);
8903 
8904     BB = loop2MBB;
8905     BuildMI(BB, dl, TII->get(StoreMnemonic))
8906       .addReg(newval).addReg(ptrA).addReg(ptrB);
8907     BuildMI(BB, dl, TII->get(PPC::BCC))
8908       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
8909     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
8910     BB->addSuccessor(loop1MBB);
8911     BB->addSuccessor(exitMBB);
8912 
8913     BB = midMBB;
8914     BuildMI(BB, dl, TII->get(StoreMnemonic))
8915       .addReg(dest).addReg(ptrA).addReg(ptrB);
8916     BB->addSuccessor(exitMBB);
8917 
8918     //  exitMBB:
8919     //   ...
8920     BB = exitMBB;
8921   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
8922              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
8923     // We must use 64-bit registers for addresses when targeting 64-bit,
8924     // since we're actually doing arithmetic on them.  Other registers
8925     // can be 32-bit.
8926     bool is64bit = Subtarget.isPPC64();
8927     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
8928 
8929     unsigned dest   = MI->getOperand(0).getReg();
8930     unsigned ptrA   = MI->getOperand(1).getReg();
8931     unsigned ptrB   = MI->getOperand(2).getReg();
8932     unsigned oldval = MI->getOperand(3).getReg();
8933     unsigned newval = MI->getOperand(4).getReg();
8934     DebugLoc dl     = MI->getDebugLoc();
8935 
8936     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
8937     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
8938     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
8939     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8940     F->insert(It, loop1MBB);
8941     F->insert(It, loop2MBB);
8942     F->insert(It, midMBB);
8943     F->insert(It, exitMBB);
8944     exitMBB->splice(exitMBB->begin(), BB,
8945                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8946     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8947 
8948     MachineRegisterInfo &RegInfo = F->getRegInfo();
8949     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8950                                             : &PPC::GPRCRegClass;
8951     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8952     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8953     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8954     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
8955     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
8956     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
8957     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
8958     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8959     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8960     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8961     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8962     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8963     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8964     unsigned Ptr1Reg;
8965     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
8966     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8967     //  thisMBB:
8968     //   ...
8969     //   fallthrough --> loopMBB
8970     BB->addSuccessor(loop1MBB);
8971 
8972     // The 4-byte load must be aligned, while a char or short may be
8973     // anywhere in the word.  Hence all this nasty bookkeeping code.
8974     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8975     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8976     //   xori shift, shift1, 24 [16]
8977     //   rlwinm ptr, ptr1, 0, 0, 29
8978     //   slw newval2, newval, shift
8979     //   slw oldval2, oldval,shift
8980     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8981     //   slw mask, mask2, shift
8982     //   and newval3, newval2, mask
8983     //   and oldval3, oldval2, mask
8984     // loop1MBB:
8985     //   lwarx tmpDest, ptr
8986     //   and tmp, tmpDest, mask
8987     //   cmpw tmp, oldval3
8988     //   bne- midMBB
8989     // loop2MBB:
8990     //   andc tmp2, tmpDest, mask
8991     //   or tmp4, tmp2, newval3
8992     //   stwcx. tmp4, ptr
8993     //   bne- loop1MBB
8994     //   b exitBB
8995     // midMBB:
8996     //   stwcx. tmpDest, ptr
8997     // exitBB:
8998     //   srw dest, tmpDest, shift
8999     if (ptrA != ZeroReg) {
9000       Ptr1Reg = RegInfo.createVirtualRegister(RC);
9001       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9002         .addReg(ptrA).addReg(ptrB);
9003     } else {
9004       Ptr1Reg = ptrB;
9005     }
9006     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9007         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9008     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9009         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9010     if (is64bit)
9011       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9012         .addReg(Ptr1Reg).addImm(0).addImm(61);
9013     else
9014       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9015         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9016     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9017         .addReg(newval).addReg(ShiftReg);
9018     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9019         .addReg(oldval).addReg(ShiftReg);
9020     if (is8bit)
9021       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9022     else {
9023       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9024       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9025         .addReg(Mask3Reg).addImm(65535);
9026     }
9027     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9028         .addReg(Mask2Reg).addReg(ShiftReg);
9029     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9030         .addReg(NewVal2Reg).addReg(MaskReg);
9031     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9032         .addReg(OldVal2Reg).addReg(MaskReg);
9033 
9034     BB = loop1MBB;
9035     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9036         .addReg(ZeroReg).addReg(PtrReg);
9037     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9038         .addReg(TmpDestReg).addReg(MaskReg);
9039     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9040         .addReg(TmpReg).addReg(OldVal3Reg);
9041     BuildMI(BB, dl, TII->get(PPC::BCC))
9042         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9043     BB->addSuccessor(loop2MBB);
9044     BB->addSuccessor(midMBB);
9045 
9046     BB = loop2MBB;
9047     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9048         .addReg(TmpDestReg).addReg(MaskReg);
9049     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9050         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9051     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9052         .addReg(ZeroReg).addReg(PtrReg);
9053     BuildMI(BB, dl, TII->get(PPC::BCC))
9054       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9055     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9056     BB->addSuccessor(loop1MBB);
9057     BB->addSuccessor(exitMBB);
9058 
9059     BB = midMBB;
9060     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9061       .addReg(ZeroReg).addReg(PtrReg);
9062     BB->addSuccessor(exitMBB);
9063 
9064     //  exitMBB:
9065     //   ...
9066     BB = exitMBB;
9067     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9068       .addReg(ShiftReg);
9069   } else if (MI->getOpcode() == PPC::FADDrtz) {
9070     // This pseudo performs an FADD with rounding mode temporarily forced
9071     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9072     // is not modeled at the SelectionDAG level.
9073     unsigned Dest = MI->getOperand(0).getReg();
9074     unsigned Src1 = MI->getOperand(1).getReg();
9075     unsigned Src2 = MI->getOperand(2).getReg();
9076     DebugLoc dl   = MI->getDebugLoc();
9077 
9078     MachineRegisterInfo &RegInfo = F->getRegInfo();
9079     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9080 
9081     // Save FPSCR value.
9082     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9083 
9084     // Set rounding mode to round-to-zero.
9085     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9086     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9087 
9088     // Perform addition.
9089     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9090 
9091     // Restore FPSCR value.
9092     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9093   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9094              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
9095              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9096              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9097     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9098                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
9099                       PPC::ANDIo8 : PPC::ANDIo;
9100     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9101                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9102 
9103     MachineRegisterInfo &RegInfo = F->getRegInfo();
9104     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9105                                                   &PPC::GPRCRegClass :
9106                                                   &PPC::G8RCRegClass);
9107 
9108     DebugLoc dl   = MI->getDebugLoc();
9109     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9110       .addReg(MI->getOperand(1).getReg()).addImm(1);
9111     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9112             MI->getOperand(0).getReg())
9113       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9114   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
9115     DebugLoc Dl = MI->getDebugLoc();
9116     MachineRegisterInfo &RegInfo = F->getRegInfo();
9117     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9118     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9119     return BB;
9120   } else {
9121     llvm_unreachable("Unexpected instr type to insert");
9122   }
9123 
9124   MI->eraseFromParent();   // The pseudo instruction is gone now.
9125   return BB;
9126 }
9127 
9128 //===----------------------------------------------------------------------===//
9129 // Target Optimization Hooks
9130 //===----------------------------------------------------------------------===//
9131 
9132 static std::string getRecipOp(const char *Base, EVT VT) {
9133   std::string RecipOp(Base);
9134   if (VT.getScalarType() == MVT::f64)
9135     RecipOp += "d";
9136   else
9137     RecipOp += "f";
9138 
9139   if (VT.isVector())
9140     RecipOp = "vec-" + RecipOp;
9141 
9142   return RecipOp;
9143 }
9144 
9145 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9146                                             DAGCombinerInfo &DCI,
9147                                             unsigned &RefinementSteps,
9148                                             bool &UseOneConstNR) const {
9149   EVT VT = Operand.getValueType();
9150   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9151       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9152       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9153       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9154       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9155       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9156     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9157     std::string RecipOp = getRecipOp("sqrt", VT);
9158     if (!Recips.isEnabled(RecipOp))
9159       return SDValue();
9160 
9161     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9162     UseOneConstNR = true;
9163     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9164   }
9165   return SDValue();
9166 }
9167 
9168 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9169                                             DAGCombinerInfo &DCI,
9170                                             unsigned &RefinementSteps) const {
9171   EVT VT = Operand.getValueType();
9172   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9173       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9174       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9175       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9176       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9177       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9178     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9179     std::string RecipOp = getRecipOp("div", VT);
9180     if (!Recips.isEnabled(RecipOp))
9181       return SDValue();
9182 
9183     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9184     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9185   }
9186   return SDValue();
9187 }
9188 
9189 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9190   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9191   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9192   // enabled for division), this functionality is redundant with the default
9193   // combiner logic (once the division -> reciprocal/multiply transformation
9194   // has taken place). As a result, this matters more for older cores than for
9195   // newer ones.
9196 
9197   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9198   // reciprocal if there are two or more FDIVs (for embedded cores with only
9199   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9200   switch (Subtarget.getDarwinDirective()) {
9201   default:
9202     return 3;
9203   case PPC::DIR_440:
9204   case PPC::DIR_A2:
9205   case PPC::DIR_E500mc:
9206   case PPC::DIR_E5500:
9207     return 2;
9208   }
9209 }
9210 
9211 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9212 // collapsed, and so we need to look through chains of them.
9213 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9214                                      int64_t& Offset, SelectionDAG &DAG) {
9215   if (DAG.isBaseWithConstantOffset(Loc)) {
9216     Base = Loc.getOperand(0);
9217     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9218 
9219     // The base might itself be a base plus an offset, and if so, accumulate
9220     // that as well.
9221     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9222   }
9223 }
9224 
9225 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9226                             unsigned Bytes, int Dist,
9227                             SelectionDAG &DAG) {
9228   if (VT.getSizeInBits() / 8 != Bytes)
9229     return false;
9230 
9231   SDValue BaseLoc = Base->getBasePtr();
9232   if (Loc.getOpcode() == ISD::FrameIndex) {
9233     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9234       return false;
9235     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9236     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9237     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9238     int FS  = MFI->getObjectSize(FI);
9239     int BFS = MFI->getObjectSize(BFI);
9240     if (FS != BFS || FS != (int)Bytes) return false;
9241     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9242   }
9243 
9244   SDValue Base1 = Loc, Base2 = BaseLoc;
9245   int64_t Offset1 = 0, Offset2 = 0;
9246   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9247   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9248   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9249     return true;
9250 
9251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9252   const GlobalValue *GV1 = nullptr;
9253   const GlobalValue *GV2 = nullptr;
9254   Offset1 = 0;
9255   Offset2 = 0;
9256   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9257   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9258   if (isGA1 && isGA2 && GV1 == GV2)
9259     return Offset1 == (Offset2 + Dist*Bytes);
9260   return false;
9261 }
9262 
9263 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9264 // not enforce equality of the chain operands.
9265 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9266                             unsigned Bytes, int Dist,
9267                             SelectionDAG &DAG) {
9268   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9269     EVT VT = LS->getMemoryVT();
9270     SDValue Loc = LS->getBasePtr();
9271     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9272   }
9273 
9274   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9275     EVT VT;
9276     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9277     default: return false;
9278     case Intrinsic::ppc_qpx_qvlfd:
9279     case Intrinsic::ppc_qpx_qvlfda:
9280       VT = MVT::v4f64;
9281       break;
9282     case Intrinsic::ppc_qpx_qvlfs:
9283     case Intrinsic::ppc_qpx_qvlfsa:
9284       VT = MVT::v4f32;
9285       break;
9286     case Intrinsic::ppc_qpx_qvlfcd:
9287     case Intrinsic::ppc_qpx_qvlfcda:
9288       VT = MVT::v2f64;
9289       break;
9290     case Intrinsic::ppc_qpx_qvlfcs:
9291     case Intrinsic::ppc_qpx_qvlfcsa:
9292       VT = MVT::v2f32;
9293       break;
9294     case Intrinsic::ppc_qpx_qvlfiwa:
9295     case Intrinsic::ppc_qpx_qvlfiwz:
9296     case Intrinsic::ppc_altivec_lvx:
9297     case Intrinsic::ppc_altivec_lvxl:
9298     case Intrinsic::ppc_vsx_lxvw4x:
9299       VT = MVT::v4i32;
9300       break;
9301     case Intrinsic::ppc_vsx_lxvd2x:
9302       VT = MVT::v2f64;
9303       break;
9304     case Intrinsic::ppc_altivec_lvebx:
9305       VT = MVT::i8;
9306       break;
9307     case Intrinsic::ppc_altivec_lvehx:
9308       VT = MVT::i16;
9309       break;
9310     case Intrinsic::ppc_altivec_lvewx:
9311       VT = MVT::i32;
9312       break;
9313     }
9314 
9315     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9316   }
9317 
9318   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9319     EVT VT;
9320     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9321     default: return false;
9322     case Intrinsic::ppc_qpx_qvstfd:
9323     case Intrinsic::ppc_qpx_qvstfda:
9324       VT = MVT::v4f64;
9325       break;
9326     case Intrinsic::ppc_qpx_qvstfs:
9327     case Intrinsic::ppc_qpx_qvstfsa:
9328       VT = MVT::v4f32;
9329       break;
9330     case Intrinsic::ppc_qpx_qvstfcd:
9331     case Intrinsic::ppc_qpx_qvstfcda:
9332       VT = MVT::v2f64;
9333       break;
9334     case Intrinsic::ppc_qpx_qvstfcs:
9335     case Intrinsic::ppc_qpx_qvstfcsa:
9336       VT = MVT::v2f32;
9337       break;
9338     case Intrinsic::ppc_qpx_qvstfiw:
9339     case Intrinsic::ppc_qpx_qvstfiwa:
9340     case Intrinsic::ppc_altivec_stvx:
9341     case Intrinsic::ppc_altivec_stvxl:
9342     case Intrinsic::ppc_vsx_stxvw4x:
9343       VT = MVT::v4i32;
9344       break;
9345     case Intrinsic::ppc_vsx_stxvd2x:
9346       VT = MVT::v2f64;
9347       break;
9348     case Intrinsic::ppc_altivec_stvebx:
9349       VT = MVT::i8;
9350       break;
9351     case Intrinsic::ppc_altivec_stvehx:
9352       VT = MVT::i16;
9353       break;
9354     case Intrinsic::ppc_altivec_stvewx:
9355       VT = MVT::i32;
9356       break;
9357     }
9358 
9359     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9360   }
9361 
9362   return false;
9363 }
9364 
9365 // Return true is there is a nearyby consecutive load to the one provided
9366 // (regardless of alignment). We search up and down the chain, looking though
9367 // token factors and other loads (but nothing else). As a result, a true result
9368 // indicates that it is safe to create a new consecutive load adjacent to the
9369 // load provided.
9370 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9371   SDValue Chain = LD->getChain();
9372   EVT VT = LD->getMemoryVT();
9373 
9374   SmallSet<SDNode *, 16> LoadRoots;
9375   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9376   SmallSet<SDNode *, 16> Visited;
9377 
9378   // First, search up the chain, branching to follow all token-factor operands.
9379   // If we find a consecutive load, then we're done, otherwise, record all
9380   // nodes just above the top-level loads and token factors.
9381   while (!Queue.empty()) {
9382     SDNode *ChainNext = Queue.pop_back_val();
9383     if (!Visited.insert(ChainNext).second)
9384       continue;
9385 
9386     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9387       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9388         return true;
9389 
9390       if (!Visited.count(ChainLD->getChain().getNode()))
9391         Queue.push_back(ChainLD->getChain().getNode());
9392     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9393       for (const SDUse &O : ChainNext->ops())
9394         if (!Visited.count(O.getNode()))
9395           Queue.push_back(O.getNode());
9396     } else
9397       LoadRoots.insert(ChainNext);
9398   }
9399 
9400   // Second, search down the chain, starting from the top-level nodes recorded
9401   // in the first phase. These top-level nodes are the nodes just above all
9402   // loads and token factors. Starting with their uses, recursively look though
9403   // all loads (just the chain uses) and token factors to find a consecutive
9404   // load.
9405   Visited.clear();
9406   Queue.clear();
9407 
9408   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9409        IE = LoadRoots.end(); I != IE; ++I) {
9410     Queue.push_back(*I);
9411 
9412     while (!Queue.empty()) {
9413       SDNode *LoadRoot = Queue.pop_back_val();
9414       if (!Visited.insert(LoadRoot).second)
9415         continue;
9416 
9417       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9418         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9419           return true;
9420 
9421       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9422            UE = LoadRoot->use_end(); UI != UE; ++UI)
9423         if (((isa<MemSDNode>(*UI) &&
9424             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9425             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9426           Queue.push_back(*UI);
9427     }
9428   }
9429 
9430   return false;
9431 }
9432 
9433 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9434                                                   DAGCombinerInfo &DCI) const {
9435   SelectionDAG &DAG = DCI.DAG;
9436   SDLoc dl(N);
9437 
9438   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9439   // If we're tracking CR bits, we need to be careful that we don't have:
9440   //   trunc(binary-ops(zext(x), zext(y)))
9441   // or
9442   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9443   // such that we're unnecessarily moving things into GPRs when it would be
9444   // better to keep them in CR bits.
9445 
9446   // Note that trunc here can be an actual i1 trunc, or can be the effective
9447   // truncation that comes from a setcc or select_cc.
9448   if (N->getOpcode() == ISD::TRUNCATE &&
9449       N->getValueType(0) != MVT::i1)
9450     return SDValue();
9451 
9452   if (N->getOperand(0).getValueType() != MVT::i32 &&
9453       N->getOperand(0).getValueType() != MVT::i64)
9454     return SDValue();
9455 
9456   if (N->getOpcode() == ISD::SETCC ||
9457       N->getOpcode() == ISD::SELECT_CC) {
9458     // If we're looking at a comparison, then we need to make sure that the
9459     // high bits (all except for the first) don't matter the result.
9460     ISD::CondCode CC =
9461       cast<CondCodeSDNode>(N->getOperand(
9462         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9463     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9464 
9465     if (ISD::isSignedIntSetCC(CC)) {
9466       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9467           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9468         return SDValue();
9469     } else if (ISD::isUnsignedIntSetCC(CC)) {
9470       if (!DAG.MaskedValueIsZero(N->getOperand(0),
9471                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9472           !DAG.MaskedValueIsZero(N->getOperand(1),
9473                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
9474         return SDValue();
9475     } else {
9476       // This is neither a signed nor an unsigned comparison, just make sure
9477       // that the high bits are equal.
9478       APInt Op1Zero, Op1One;
9479       APInt Op2Zero, Op2One;
9480       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9481       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9482 
9483       // We don't really care about what is known about the first bit (if
9484       // anything), so clear it in all masks prior to comparing them.
9485       Op1Zero.clearBit(0); Op1One.clearBit(0);
9486       Op2Zero.clearBit(0); Op2One.clearBit(0);
9487 
9488       if (Op1Zero != Op2Zero || Op1One != Op2One)
9489         return SDValue();
9490     }
9491   }
9492 
9493   // We now know that the higher-order bits are irrelevant, we just need to
9494   // make sure that all of the intermediate operations are bit operations, and
9495   // all inputs are extensions.
9496   if (N->getOperand(0).getOpcode() != ISD::AND &&
9497       N->getOperand(0).getOpcode() != ISD::OR  &&
9498       N->getOperand(0).getOpcode() != ISD::XOR &&
9499       N->getOperand(0).getOpcode() != ISD::SELECT &&
9500       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9501       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9502       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9503       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9504       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9505     return SDValue();
9506 
9507   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9508       N->getOperand(1).getOpcode() != ISD::AND &&
9509       N->getOperand(1).getOpcode() != ISD::OR  &&
9510       N->getOperand(1).getOpcode() != ISD::XOR &&
9511       N->getOperand(1).getOpcode() != ISD::SELECT &&
9512       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9513       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9514       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9515       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9516       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9517     return SDValue();
9518 
9519   SmallVector<SDValue, 4> Inputs;
9520   SmallVector<SDValue, 8> BinOps, PromOps;
9521   SmallPtrSet<SDNode *, 16> Visited;
9522 
9523   for (unsigned i = 0; i < 2; ++i) {
9524     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9525           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9526           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9527           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9528         isa<ConstantSDNode>(N->getOperand(i)))
9529       Inputs.push_back(N->getOperand(i));
9530     else
9531       BinOps.push_back(N->getOperand(i));
9532 
9533     if (N->getOpcode() == ISD::TRUNCATE)
9534       break;
9535   }
9536 
9537   // Visit all inputs, collect all binary operations (and, or, xor and
9538   // select) that are all fed by extensions.
9539   while (!BinOps.empty()) {
9540     SDValue BinOp = BinOps.back();
9541     BinOps.pop_back();
9542 
9543     if (!Visited.insert(BinOp.getNode()).second)
9544       continue;
9545 
9546     PromOps.push_back(BinOp);
9547 
9548     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9549       // The condition of the select is not promoted.
9550       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9551         continue;
9552       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9553         continue;
9554 
9555       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9556             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9557             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9558            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9559           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9560         Inputs.push_back(BinOp.getOperand(i));
9561       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9562                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9563                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9564                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9565                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9566                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9567                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9568                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9569                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9570         BinOps.push_back(BinOp.getOperand(i));
9571       } else {
9572         // We have an input that is not an extension or another binary
9573         // operation; we'll abort this transformation.
9574         return SDValue();
9575       }
9576     }
9577   }
9578 
9579   // Make sure that this is a self-contained cluster of operations (which
9580   // is not quite the same thing as saying that everything has only one
9581   // use).
9582   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9583     if (isa<ConstantSDNode>(Inputs[i]))
9584       continue;
9585 
9586     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9587                               UE = Inputs[i].getNode()->use_end();
9588          UI != UE; ++UI) {
9589       SDNode *User = *UI;
9590       if (User != N && !Visited.count(User))
9591         return SDValue();
9592 
9593       // Make sure that we're not going to promote the non-output-value
9594       // operand(s) or SELECT or SELECT_CC.
9595       // FIXME: Although we could sometimes handle this, and it does occur in
9596       // practice that one of the condition inputs to the select is also one of
9597       // the outputs, we currently can't deal with this.
9598       if (User->getOpcode() == ISD::SELECT) {
9599         if (User->getOperand(0) == Inputs[i])
9600           return SDValue();
9601       } else if (User->getOpcode() == ISD::SELECT_CC) {
9602         if (User->getOperand(0) == Inputs[i] ||
9603             User->getOperand(1) == Inputs[i])
9604           return SDValue();
9605       }
9606     }
9607   }
9608 
9609   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9610     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9611                               UE = PromOps[i].getNode()->use_end();
9612          UI != UE; ++UI) {
9613       SDNode *User = *UI;
9614       if (User != N && !Visited.count(User))
9615         return SDValue();
9616 
9617       // Make sure that we're not going to promote the non-output-value
9618       // operand(s) or SELECT or SELECT_CC.
9619       // FIXME: Although we could sometimes handle this, and it does occur in
9620       // practice that one of the condition inputs to the select is also one of
9621       // the outputs, we currently can't deal with this.
9622       if (User->getOpcode() == ISD::SELECT) {
9623         if (User->getOperand(0) == PromOps[i])
9624           return SDValue();
9625       } else if (User->getOpcode() == ISD::SELECT_CC) {
9626         if (User->getOperand(0) == PromOps[i] ||
9627             User->getOperand(1) == PromOps[i])
9628           return SDValue();
9629       }
9630     }
9631   }
9632 
9633   // Replace all inputs with the extension operand.
9634   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9635     // Constants may have users outside the cluster of to-be-promoted nodes,
9636     // and so we need to replace those as we do the promotions.
9637     if (isa<ConstantSDNode>(Inputs[i]))
9638       continue;
9639     else
9640       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9641   }
9642 
9643   // Replace all operations (these are all the same, but have a different
9644   // (i1) return type). DAG.getNode will validate that the types of
9645   // a binary operator match, so go through the list in reverse so that
9646   // we've likely promoted both operands first. Any intermediate truncations or
9647   // extensions disappear.
9648   while (!PromOps.empty()) {
9649     SDValue PromOp = PromOps.back();
9650     PromOps.pop_back();
9651 
9652     if (PromOp.getOpcode() == ISD::TRUNCATE ||
9653         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9654         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9655         PromOp.getOpcode() == ISD::ANY_EXTEND) {
9656       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9657           PromOp.getOperand(0).getValueType() != MVT::i1) {
9658         // The operand is not yet ready (see comment below).
9659         PromOps.insert(PromOps.begin(), PromOp);
9660         continue;
9661       }
9662 
9663       SDValue RepValue = PromOp.getOperand(0);
9664       if (isa<ConstantSDNode>(RepValue))
9665         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9666 
9667       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9668       continue;
9669     }
9670 
9671     unsigned C;
9672     switch (PromOp.getOpcode()) {
9673     default:             C = 0; break;
9674     case ISD::SELECT:    C = 1; break;
9675     case ISD::SELECT_CC: C = 2; break;
9676     }
9677 
9678     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9679          PromOp.getOperand(C).getValueType() != MVT::i1) ||
9680         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9681          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9682       // The to-be-promoted operands of this node have not yet been
9683       // promoted (this should be rare because we're going through the
9684       // list backward, but if one of the operands has several users in
9685       // this cluster of to-be-promoted nodes, it is possible).
9686       PromOps.insert(PromOps.begin(), PromOp);
9687       continue;
9688     }
9689 
9690     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9691                                 PromOp.getNode()->op_end());
9692 
9693     // If there are any constant inputs, make sure they're replaced now.
9694     for (unsigned i = 0; i < 2; ++i)
9695       if (isa<ConstantSDNode>(Ops[C+i]))
9696         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
9697 
9698     DAG.ReplaceAllUsesOfValueWith(PromOp,
9699       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
9700   }
9701 
9702   // Now we're left with the initial truncation itself.
9703   if (N->getOpcode() == ISD::TRUNCATE)
9704     return N->getOperand(0);
9705 
9706   // Otherwise, this is a comparison. The operands to be compared have just
9707   // changed type (to i1), but everything else is the same.
9708   return SDValue(N, 0);
9709 }
9710 
9711 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
9712                                                   DAGCombinerInfo &DCI) const {
9713   SelectionDAG &DAG = DCI.DAG;
9714   SDLoc dl(N);
9715 
9716   // If we're tracking CR bits, we need to be careful that we don't have:
9717   //   zext(binary-ops(trunc(x), trunc(y)))
9718   // or
9719   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
9720   // such that we're unnecessarily moving things into CR bits that can more
9721   // efficiently stay in GPRs. Note that if we're not certain that the high
9722   // bits are set as required by the final extension, we still may need to do
9723   // some masking to get the proper behavior.
9724 
9725   // This same functionality is important on PPC64 when dealing with
9726   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
9727   // the return values of functions. Because it is so similar, it is handled
9728   // here as well.
9729 
9730   if (N->getValueType(0) != MVT::i32 &&
9731       N->getValueType(0) != MVT::i64)
9732     return SDValue();
9733 
9734   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
9735         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
9736     return SDValue();
9737 
9738   if (N->getOperand(0).getOpcode() != ISD::AND &&
9739       N->getOperand(0).getOpcode() != ISD::OR  &&
9740       N->getOperand(0).getOpcode() != ISD::XOR &&
9741       N->getOperand(0).getOpcode() != ISD::SELECT &&
9742       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
9743     return SDValue();
9744 
9745   SmallVector<SDValue, 4> Inputs;
9746   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
9747   SmallPtrSet<SDNode *, 16> Visited;
9748 
9749   // Visit all inputs, collect all binary operations (and, or, xor and
9750   // select) that are all fed by truncations.
9751   while (!BinOps.empty()) {
9752     SDValue BinOp = BinOps.back();
9753     BinOps.pop_back();
9754 
9755     if (!Visited.insert(BinOp.getNode()).second)
9756       continue;
9757 
9758     PromOps.push_back(BinOp);
9759 
9760     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9761       // The condition of the select is not promoted.
9762       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9763         continue;
9764       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9765         continue;
9766 
9767       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9768           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9769         Inputs.push_back(BinOp.getOperand(i));
9770       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9771                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9772                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9773                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9774                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
9775         BinOps.push_back(BinOp.getOperand(i));
9776       } else {
9777         // We have an input that is not a truncation or another binary
9778         // operation; we'll abort this transformation.
9779         return SDValue();
9780       }
9781     }
9782   }
9783 
9784   // The operands of a select that must be truncated when the select is
9785   // promoted because the operand is actually part of the to-be-promoted set.
9786   DenseMap<SDNode *, EVT> SelectTruncOp[2];
9787 
9788   // Make sure that this is a self-contained cluster of operations (which
9789   // is not quite the same thing as saying that everything has only one
9790   // use).
9791   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9792     if (isa<ConstantSDNode>(Inputs[i]))
9793       continue;
9794 
9795     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9796                               UE = Inputs[i].getNode()->use_end();
9797          UI != UE; ++UI) {
9798       SDNode *User = *UI;
9799       if (User != N && !Visited.count(User))
9800         return SDValue();
9801 
9802       // If we're going to promote the non-output-value operand(s) or SELECT or
9803       // SELECT_CC, record them for truncation.
9804       if (User->getOpcode() == ISD::SELECT) {
9805         if (User->getOperand(0) == Inputs[i])
9806           SelectTruncOp[0].insert(std::make_pair(User,
9807                                     User->getOperand(0).getValueType()));
9808       } else if (User->getOpcode() == ISD::SELECT_CC) {
9809         if (User->getOperand(0) == Inputs[i])
9810           SelectTruncOp[0].insert(std::make_pair(User,
9811                                     User->getOperand(0).getValueType()));
9812         if (User->getOperand(1) == Inputs[i])
9813           SelectTruncOp[1].insert(std::make_pair(User,
9814                                     User->getOperand(1).getValueType()));
9815       }
9816     }
9817   }
9818 
9819   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9820     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9821                               UE = PromOps[i].getNode()->use_end();
9822          UI != UE; ++UI) {
9823       SDNode *User = *UI;
9824       if (User != N && !Visited.count(User))
9825         return SDValue();
9826 
9827       // If we're going to promote the non-output-value operand(s) or SELECT or
9828       // SELECT_CC, record them for truncation.
9829       if (User->getOpcode() == ISD::SELECT) {
9830         if (User->getOperand(0) == PromOps[i])
9831           SelectTruncOp[0].insert(std::make_pair(User,
9832                                     User->getOperand(0).getValueType()));
9833       } else if (User->getOpcode() == ISD::SELECT_CC) {
9834         if (User->getOperand(0) == PromOps[i])
9835           SelectTruncOp[0].insert(std::make_pair(User,
9836                                     User->getOperand(0).getValueType()));
9837         if (User->getOperand(1) == PromOps[i])
9838           SelectTruncOp[1].insert(std::make_pair(User,
9839                                     User->getOperand(1).getValueType()));
9840       }
9841     }
9842   }
9843 
9844   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
9845   bool ReallyNeedsExt = false;
9846   if (N->getOpcode() != ISD::ANY_EXTEND) {
9847     // If all of the inputs are not already sign/zero extended, then
9848     // we'll still need to do that at the end.
9849     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9850       if (isa<ConstantSDNode>(Inputs[i]))
9851         continue;
9852 
9853       unsigned OpBits =
9854         Inputs[i].getOperand(0).getValueSizeInBits();
9855       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
9856 
9857       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
9858            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
9859                                   APInt::getHighBitsSet(OpBits,
9860                                                         OpBits-PromBits))) ||
9861           (N->getOpcode() == ISD::SIGN_EXTEND &&
9862            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
9863              (OpBits-(PromBits-1)))) {
9864         ReallyNeedsExt = true;
9865         break;
9866       }
9867     }
9868   }
9869 
9870   // Replace all inputs, either with the truncation operand, or a
9871   // truncation or extension to the final output type.
9872   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9873     // Constant inputs need to be replaced with the to-be-promoted nodes that
9874     // use them because they might have users outside of the cluster of
9875     // promoted nodes.
9876     if (isa<ConstantSDNode>(Inputs[i]))
9877       continue;
9878 
9879     SDValue InSrc = Inputs[i].getOperand(0);
9880     if (Inputs[i].getValueType() == N->getValueType(0))
9881       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
9882     else if (N->getOpcode() == ISD::SIGN_EXTEND)
9883       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9884         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
9885     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9886       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9887         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
9888     else
9889       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
9890         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
9891   }
9892 
9893   // Replace all operations (these are all the same, but have a different
9894   // (promoted) return type). DAG.getNode will validate that the types of
9895   // a binary operator match, so go through the list in reverse so that
9896   // we've likely promoted both operands first.
9897   while (!PromOps.empty()) {
9898     SDValue PromOp = PromOps.back();
9899     PromOps.pop_back();
9900 
9901     unsigned C;
9902     switch (PromOp.getOpcode()) {
9903     default:             C = 0; break;
9904     case ISD::SELECT:    C = 1; break;
9905     case ISD::SELECT_CC: C = 2; break;
9906     }
9907 
9908     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9909          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
9910         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9911          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
9912       // The to-be-promoted operands of this node have not yet been
9913       // promoted (this should be rare because we're going through the
9914       // list backward, but if one of the operands has several users in
9915       // this cluster of to-be-promoted nodes, it is possible).
9916       PromOps.insert(PromOps.begin(), PromOp);
9917       continue;
9918     }
9919 
9920     // For SELECT and SELECT_CC nodes, we do a similar check for any
9921     // to-be-promoted comparison inputs.
9922     if (PromOp.getOpcode() == ISD::SELECT ||
9923         PromOp.getOpcode() == ISD::SELECT_CC) {
9924       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
9925            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
9926           (SelectTruncOp[1].count(PromOp.getNode()) &&
9927            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
9928         PromOps.insert(PromOps.begin(), PromOp);
9929         continue;
9930       }
9931     }
9932 
9933     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
9934                                 PromOp.getNode()->op_end());
9935 
9936     // If this node has constant inputs, then they'll need to be promoted here.
9937     for (unsigned i = 0; i < 2; ++i) {
9938       if (!isa<ConstantSDNode>(Ops[C+i]))
9939         continue;
9940       if (Ops[C+i].getValueType() == N->getValueType(0))
9941         continue;
9942 
9943       if (N->getOpcode() == ISD::SIGN_EXTEND)
9944         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9945       else if (N->getOpcode() == ISD::ZERO_EXTEND)
9946         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9947       else
9948         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
9949     }
9950 
9951     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
9952     // truncate them again to the original value type.
9953     if (PromOp.getOpcode() == ISD::SELECT ||
9954         PromOp.getOpcode() == ISD::SELECT_CC) {
9955       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
9956       if (SI0 != SelectTruncOp[0].end())
9957         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
9958       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
9959       if (SI1 != SelectTruncOp[1].end())
9960         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
9961     }
9962 
9963     DAG.ReplaceAllUsesOfValueWith(PromOp,
9964       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
9965   }
9966 
9967   // Now we're left with the initial extension itself.
9968   if (!ReallyNeedsExt)
9969     return N->getOperand(0);
9970 
9971   // To zero extend, just mask off everything except for the first bit (in the
9972   // i1 case).
9973   if (N->getOpcode() == ISD::ZERO_EXTEND)
9974     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
9975                        DAG.getConstant(APInt::getLowBitsSet(
9976                                          N->getValueSizeInBits(0), PromBits),
9977                                        dl, N->getValueType(0)));
9978 
9979   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
9980          "Invalid extension type");
9981   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
9982   SDValue ShiftCst =
9983       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
9984   return DAG.getNode(
9985       ISD::SRA, dl, N->getValueType(0),
9986       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
9987       ShiftCst);
9988 }
9989 
9990 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
9991                                               DAGCombinerInfo &DCI) const {
9992   assert((N->getOpcode() == ISD::SINT_TO_FP ||
9993           N->getOpcode() == ISD::UINT_TO_FP) &&
9994          "Need an int -> FP conversion node here");
9995 
9996   if (!Subtarget.has64BitSupport())
9997     return SDValue();
9998 
9999   SelectionDAG &DAG = DCI.DAG;
10000   SDLoc dl(N);
10001   SDValue Op(N, 0);
10002 
10003   // Don't handle ppc_fp128 here or i1 conversions.
10004   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
10005     return SDValue();
10006   if (Op.getOperand(0).getValueType() == MVT::i1)
10007     return SDValue();
10008 
10009   // For i32 intermediate values, unfortunately, the conversion functions
10010   // leave the upper 32 bits of the value are undefined. Within the set of
10011   // scalar instructions, we have no method for zero- or sign-extending the
10012   // value. Thus, we cannot handle i32 intermediate values here.
10013   if (Op.getOperand(0).getValueType() == MVT::i32)
10014     return SDValue();
10015 
10016   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10017          "UINT_TO_FP is supported only with FPCVT");
10018 
10019   // If we have FCFIDS, then use it when converting to single-precision.
10020   // Otherwise, convert to double-precision and then round.
10021   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10022                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10023                                                             : PPCISD::FCFIDS)
10024                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10025                                                             : PPCISD::FCFID);
10026   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10027                   ? MVT::f32
10028                   : MVT::f64;
10029 
10030   // If we're converting from a float, to an int, and back to a float again,
10031   // then we don't need the store/load pair at all.
10032   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10033        Subtarget.hasFPCVT()) ||
10034       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10035     SDValue Src = Op.getOperand(0).getOperand(0);
10036     if (Src.getValueType() == MVT::f32) {
10037       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10038       DCI.AddToWorklist(Src.getNode());
10039     } else if (Src.getValueType() != MVT::f64) {
10040       // Make sure that we don't pick up a ppc_fp128 source value.
10041       return SDValue();
10042     }
10043 
10044     unsigned FCTOp =
10045       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
10046                                                         PPCISD::FCTIDUZ;
10047 
10048     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
10049     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
10050 
10051     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
10052       FP = DAG.getNode(ISD::FP_ROUND, dl,
10053                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
10054       DCI.AddToWorklist(FP.getNode());
10055     }
10056 
10057     return FP;
10058   }
10059 
10060   return SDValue();
10061 }
10062 
10063 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
10064 // builtins) into loads with swaps.
10065 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
10066                                               DAGCombinerInfo &DCI) const {
10067   SelectionDAG &DAG = DCI.DAG;
10068   SDLoc dl(N);
10069   SDValue Chain;
10070   SDValue Base;
10071   MachineMemOperand *MMO;
10072 
10073   switch (N->getOpcode()) {
10074   default:
10075     llvm_unreachable("Unexpected opcode for little endian VSX load");
10076   case ISD::LOAD: {
10077     LoadSDNode *LD = cast<LoadSDNode>(N);
10078     Chain = LD->getChain();
10079     Base = LD->getBasePtr();
10080     MMO = LD->getMemOperand();
10081     // If the MMO suggests this isn't a load of a full vector, leave
10082     // things alone.  For a built-in, we have to make the change for
10083     // correctness, so if there is a size problem that will be a bug.
10084     if (MMO->getSize() < 16)
10085       return SDValue();
10086     break;
10087   }
10088   case ISD::INTRINSIC_W_CHAIN: {
10089     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10090     Chain = Intrin->getChain();
10091     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10092     // us what we want. Get operand 2 instead.
10093     Base = Intrin->getOperand(2);
10094     MMO = Intrin->getMemOperand();
10095     break;
10096   }
10097   }
10098 
10099   MVT VecTy = N->getValueType(0).getSimpleVT();
10100   SDValue LoadOps[] = { Chain, Base };
10101   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10102                                          DAG.getVTList(VecTy, MVT::Other),
10103                                          LoadOps, VecTy, MMO);
10104   DCI.AddToWorklist(Load.getNode());
10105   Chain = Load.getValue(1);
10106   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10107                              DAG.getVTList(VecTy, MVT::Other), Chain, Load);
10108   DCI.AddToWorklist(Swap.getNode());
10109   return Swap;
10110 }
10111 
10112 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10113 // builtins) into stores with swaps.
10114 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10115                                                DAGCombinerInfo &DCI) const {
10116   SelectionDAG &DAG = DCI.DAG;
10117   SDLoc dl(N);
10118   SDValue Chain;
10119   SDValue Base;
10120   unsigned SrcOpnd;
10121   MachineMemOperand *MMO;
10122 
10123   switch (N->getOpcode()) {
10124   default:
10125     llvm_unreachable("Unexpected opcode for little endian VSX store");
10126   case ISD::STORE: {
10127     StoreSDNode *ST = cast<StoreSDNode>(N);
10128     Chain = ST->getChain();
10129     Base = ST->getBasePtr();
10130     MMO = ST->getMemOperand();
10131     SrcOpnd = 1;
10132     // If the MMO suggests this isn't a store of a full vector, leave
10133     // things alone.  For a built-in, we have to make the change for
10134     // correctness, so if there is a size problem that will be a bug.
10135     if (MMO->getSize() < 16)
10136       return SDValue();
10137     break;
10138   }
10139   case ISD::INTRINSIC_VOID: {
10140     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10141     Chain = Intrin->getChain();
10142     // Intrin->getBasePtr() oddly does not get what we want.
10143     Base = Intrin->getOperand(3);
10144     MMO = Intrin->getMemOperand();
10145     SrcOpnd = 2;
10146     break;
10147   }
10148   }
10149 
10150   SDValue Src = N->getOperand(SrcOpnd);
10151   MVT VecTy = Src.getValueType().getSimpleVT();
10152   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10153                              DAG.getVTList(VecTy, MVT::Other), Chain, Src);
10154   DCI.AddToWorklist(Swap.getNode());
10155   Chain = Swap.getValue(1);
10156   SDValue StoreOps[] = { Chain, Swap, Base };
10157   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10158                                           DAG.getVTList(MVT::Other),
10159                                           StoreOps, VecTy, MMO);
10160   DCI.AddToWorklist(Store.getNode());
10161   return Store;
10162 }
10163 
10164 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10165                                              DAGCombinerInfo &DCI) const {
10166   SelectionDAG &DAG = DCI.DAG;
10167   SDLoc dl(N);
10168   switch (N->getOpcode()) {
10169   default: break;
10170   case PPCISD::SHL:
10171     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
10172         return N->getOperand(0);
10173     break;
10174   case PPCISD::SRL:
10175     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
10176         return N->getOperand(0);
10177     break;
10178   case PPCISD::SRA:
10179     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10180       if (C->isNullValue() ||   //  0 >>s V -> 0.
10181           C->isAllOnesValue())    // -1 >>s V -> -1.
10182         return N->getOperand(0);
10183     }
10184     break;
10185   case ISD::SIGN_EXTEND:
10186   case ISD::ZERO_EXTEND:
10187   case ISD::ANY_EXTEND:
10188     return DAGCombineExtBoolTrunc(N, DCI);
10189   case ISD::TRUNCATE:
10190   case ISD::SETCC:
10191   case ISD::SELECT_CC:
10192     return DAGCombineTruncBoolExt(N, DCI);
10193   case ISD::SINT_TO_FP:
10194   case ISD::UINT_TO_FP:
10195     return combineFPToIntToFP(N, DCI);
10196   case ISD::STORE: {
10197     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10198     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10199         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10200         N->getOperand(1).getValueType() == MVT::i32 &&
10201         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10202       SDValue Val = N->getOperand(1).getOperand(0);
10203       if (Val.getValueType() == MVT::f32) {
10204         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10205         DCI.AddToWorklist(Val.getNode());
10206       }
10207       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10208       DCI.AddToWorklist(Val.getNode());
10209 
10210       SDValue Ops[] = {
10211         N->getOperand(0), Val, N->getOperand(2),
10212         DAG.getValueType(N->getOperand(1).getValueType())
10213       };
10214 
10215       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10216               DAG.getVTList(MVT::Other), Ops,
10217               cast<StoreSDNode>(N)->getMemoryVT(),
10218               cast<StoreSDNode>(N)->getMemOperand());
10219       DCI.AddToWorklist(Val.getNode());
10220       return Val;
10221     }
10222 
10223     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10224     if (cast<StoreSDNode>(N)->isUnindexed() &&
10225         N->getOperand(1).getOpcode() == ISD::BSWAP &&
10226         N->getOperand(1).getNode()->hasOneUse() &&
10227         (N->getOperand(1).getValueType() == MVT::i32 ||
10228          N->getOperand(1).getValueType() == MVT::i16 ||
10229          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10230           N->getOperand(1).getValueType() == MVT::i64))) {
10231       SDValue BSwapOp = N->getOperand(1).getOperand(0);
10232       // Do an any-extend to 32-bits if this is a half-word input.
10233       if (BSwapOp.getValueType() == MVT::i16)
10234         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10235 
10236       SDValue Ops[] = {
10237         N->getOperand(0), BSwapOp, N->getOperand(2),
10238         DAG.getValueType(N->getOperand(1).getValueType())
10239       };
10240       return
10241         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10242                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10243                                 cast<StoreSDNode>(N)->getMemOperand());
10244     }
10245 
10246     // For little endian, VSX stores require generating xxswapd/lxvd2x.
10247     EVT VT = N->getOperand(1).getValueType();
10248     if (VT.isSimple()) {
10249       MVT StoreVT = VT.getSimpleVT();
10250       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10251           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10252            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10253         return expandVSXStoreForLE(N, DCI);
10254     }
10255     break;
10256   }
10257   case ISD::LOAD: {
10258     LoadSDNode *LD = cast<LoadSDNode>(N);
10259     EVT VT = LD->getValueType(0);
10260 
10261     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10262     if (VT.isSimple()) {
10263       MVT LoadVT = VT.getSimpleVT();
10264       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10265           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10266            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10267         return expandVSXLoadForLE(N, DCI);
10268     }
10269 
10270     EVT MemVT = LD->getMemoryVT();
10271     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10272     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10273     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10274     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10275     if (LD->isUnindexed() && VT.isVector() &&
10276         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10277           // P8 and later hardware should just use LOAD.
10278           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10279                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10280          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10281           LD->getAlignment() >= ScalarABIAlignment)) &&
10282         LD->getAlignment() < ABIAlignment) {
10283       // This is a type-legal unaligned Altivec or QPX load.
10284       SDValue Chain = LD->getChain();
10285       SDValue Ptr = LD->getBasePtr();
10286       bool isLittleEndian = Subtarget.isLittleEndian();
10287 
10288       // This implements the loading of unaligned vectors as described in
10289       // the venerable Apple Velocity Engine overview. Specifically:
10290       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10291       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10292       //
10293       // The general idea is to expand a sequence of one or more unaligned
10294       // loads into an alignment-based permutation-control instruction (lvsl
10295       // or lvsr), a series of regular vector loads (which always truncate
10296       // their input address to an aligned address), and a series of
10297       // permutations.  The results of these permutations are the requested
10298       // loaded values.  The trick is that the last "extra" load is not taken
10299       // from the address you might suspect (sizeof(vector) bytes after the
10300       // last requested load), but rather sizeof(vector) - 1 bytes after the
10301       // last requested vector. The point of this is to avoid a page fault if
10302       // the base address happened to be aligned. This works because if the
10303       // base address is aligned, then adding less than a full vector length
10304       // will cause the last vector in the sequence to be (re)loaded.
10305       // Otherwise, the next vector will be fetched as you might suspect was
10306       // necessary.
10307 
10308       // We might be able to reuse the permutation generation from
10309       // a different base address offset from this one by an aligned amount.
10310       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10311       // optimization later.
10312       Intrinsic::ID Intr, IntrLD, IntrPerm;
10313       MVT PermCntlTy, PermTy, LDTy;
10314       if (Subtarget.hasAltivec()) {
10315         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10316                                  Intrinsic::ppc_altivec_lvsl;
10317         IntrLD = Intrinsic::ppc_altivec_lvx;
10318         IntrPerm = Intrinsic::ppc_altivec_vperm;
10319         PermCntlTy = MVT::v16i8;
10320         PermTy = MVT::v4i32;
10321         LDTy = MVT::v4i32;
10322       } else {
10323         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10324                                        Intrinsic::ppc_qpx_qvlpcls;
10325         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10326                                        Intrinsic::ppc_qpx_qvlfs;
10327         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10328         PermCntlTy = MVT::v4f64;
10329         PermTy = MVT::v4f64;
10330         LDTy = MemVT.getSimpleVT();
10331       }
10332 
10333       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10334 
10335       // Create the new MMO for the new base load. It is like the original MMO,
10336       // but represents an area in memory almost twice the vector size centered
10337       // on the original address. If the address is unaligned, we might start
10338       // reading up to (sizeof(vector)-1) bytes below the address of the
10339       // original unaligned load.
10340       MachineFunction &MF = DAG.getMachineFunction();
10341       MachineMemOperand *BaseMMO =
10342         MF.getMachineMemOperand(LD->getMemOperand(),
10343                                 -(long)MemVT.getStoreSize()+1,
10344                                 2*MemVT.getStoreSize()-1);
10345 
10346       // Create the new base load.
10347       SDValue LDXIntID =
10348           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10349       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10350       SDValue BaseLoad =
10351         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10352                                 DAG.getVTList(PermTy, MVT::Other),
10353                                 BaseLoadOps, LDTy, BaseMMO);
10354 
10355       // Note that the value of IncOffset (which is provided to the next
10356       // load's pointer info offset value, and thus used to calculate the
10357       // alignment), and the value of IncValue (which is actually used to
10358       // increment the pointer value) are different! This is because we
10359       // require the next load to appear to be aligned, even though it
10360       // is actually offset from the base pointer by a lesser amount.
10361       int IncOffset = VT.getSizeInBits() / 8;
10362       int IncValue = IncOffset;
10363 
10364       // Walk (both up and down) the chain looking for another load at the real
10365       // (aligned) offset (the alignment of the other load does not matter in
10366       // this case). If found, then do not use the offset reduction trick, as
10367       // that will prevent the loads from being later combined (as they would
10368       // otherwise be duplicates).
10369       if (!findConsecutiveLoad(LD, DAG))
10370         --IncValue;
10371 
10372       SDValue Increment =
10373           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10374       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10375 
10376       MachineMemOperand *ExtraMMO =
10377         MF.getMachineMemOperand(LD->getMemOperand(),
10378                                 1, 2*MemVT.getStoreSize()-1);
10379       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10380       SDValue ExtraLoad =
10381         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10382                                 DAG.getVTList(PermTy, MVT::Other),
10383                                 ExtraLoadOps, LDTy, ExtraMMO);
10384 
10385       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10386         BaseLoad.getValue(1), ExtraLoad.getValue(1));
10387 
10388       // Because vperm has a big-endian bias, we must reverse the order
10389       // of the input vectors and complement the permute control vector
10390       // when generating little endian code.  We have already handled the
10391       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10392       // and ExtraLoad here.
10393       SDValue Perm;
10394       if (isLittleEndian)
10395         Perm = BuildIntrinsicOp(IntrPerm,
10396                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10397       else
10398         Perm = BuildIntrinsicOp(IntrPerm,
10399                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10400 
10401       if (VT != PermTy)
10402         Perm = Subtarget.hasAltivec() ?
10403                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10404                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10405                                DAG.getTargetConstant(1, dl, MVT::i64));
10406                                // second argument is 1 because this rounding
10407                                // is always exact.
10408 
10409       // The output of the permutation is our loaded result, the TokenFactor is
10410       // our new chain.
10411       DCI.CombineTo(N, Perm, TF);
10412       return SDValue(N, 0);
10413     }
10414     }
10415     break;
10416     case ISD::INTRINSIC_WO_CHAIN: {
10417       bool isLittleEndian = Subtarget.isLittleEndian();
10418       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10419       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10420                                            : Intrinsic::ppc_altivec_lvsl);
10421       if ((IID == Intr ||
10422            IID == Intrinsic::ppc_qpx_qvlpcld  ||
10423            IID == Intrinsic::ppc_qpx_qvlpcls) &&
10424         N->getOperand(1)->getOpcode() == ISD::ADD) {
10425         SDValue Add = N->getOperand(1);
10426 
10427         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10428                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10429 
10430         if (DAG.MaskedValueIsZero(
10431                 Add->getOperand(1),
10432                 APInt::getAllOnesValue(Bits /* alignment */)
10433                     .zext(
10434                         Add.getValueType().getScalarType().getSizeInBits()))) {
10435           SDNode *BasePtr = Add->getOperand(0).getNode();
10436           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10437                                     UE = BasePtr->use_end();
10438                UI != UE; ++UI) {
10439             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10440                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10441               // We've found another LVSL/LVSR, and this address is an aligned
10442               // multiple of that one. The results will be the same, so use the
10443               // one we've just found instead.
10444 
10445               return SDValue(*UI, 0);
10446             }
10447           }
10448         }
10449 
10450         if (isa<ConstantSDNode>(Add->getOperand(1))) {
10451           SDNode *BasePtr = Add->getOperand(0).getNode();
10452           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10453                UE = BasePtr->use_end(); UI != UE; ++UI) {
10454             if (UI->getOpcode() == ISD::ADD &&
10455                 isa<ConstantSDNode>(UI->getOperand(1)) &&
10456                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10457                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10458                 (1ULL << Bits) == 0) {
10459               SDNode *OtherAdd = *UI;
10460               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10461                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
10462                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10463                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10464                   return SDValue(*VI, 0);
10465                 }
10466               }
10467             }
10468           }
10469         }
10470       }
10471     }
10472 
10473     break;
10474   case ISD::INTRINSIC_W_CHAIN: {
10475     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10476     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10477       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10478       default:
10479         break;
10480       case Intrinsic::ppc_vsx_lxvw4x:
10481       case Intrinsic::ppc_vsx_lxvd2x:
10482         return expandVSXLoadForLE(N, DCI);
10483       }
10484     }
10485     break;
10486   }
10487   case ISD::INTRINSIC_VOID: {
10488     // For little endian, VSX stores require generating xxswapd/stxvd2x.
10489     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10490       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10491       default:
10492         break;
10493       case Intrinsic::ppc_vsx_stxvw4x:
10494       case Intrinsic::ppc_vsx_stxvd2x:
10495         return expandVSXStoreForLE(N, DCI);
10496       }
10497     }
10498     break;
10499   }
10500   case ISD::BSWAP:
10501     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10502     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10503         N->getOperand(0).hasOneUse() &&
10504         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10505          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10506           N->getValueType(0) == MVT::i64))) {
10507       SDValue Load = N->getOperand(0);
10508       LoadSDNode *LD = cast<LoadSDNode>(Load);
10509       // Create the byte-swapping load.
10510       SDValue Ops[] = {
10511         LD->getChain(),    // Chain
10512         LD->getBasePtr(),  // Ptr
10513         DAG.getValueType(N->getValueType(0)) // VT
10514       };
10515       SDValue BSLoad =
10516         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
10517                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
10518                                               MVT::i64 : MVT::i32, MVT::Other),
10519                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
10520 
10521       // If this is an i16 load, insert the truncate.
10522       SDValue ResVal = BSLoad;
10523       if (N->getValueType(0) == MVT::i16)
10524         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
10525 
10526       // First, combine the bswap away.  This makes the value produced by the
10527       // load dead.
10528       DCI.CombineTo(N, ResVal);
10529 
10530       // Next, combine the load away, we give it a bogus result value but a real
10531       // chain result.  The result value is dead because the bswap is dead.
10532       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
10533 
10534       // Return N so it doesn't get rechecked!
10535       return SDValue(N, 0);
10536     }
10537 
10538     break;
10539   case PPCISD::VCMP: {
10540     // If a VCMPo node already exists with exactly the same operands as this
10541     // node, use its result instead of this node (VCMPo computes both a CR6 and
10542     // a normal output).
10543     //
10544     if (!N->getOperand(0).hasOneUse() &&
10545         !N->getOperand(1).hasOneUse() &&
10546         !N->getOperand(2).hasOneUse()) {
10547 
10548       // Scan all of the users of the LHS, looking for VCMPo's that match.
10549       SDNode *VCMPoNode = nullptr;
10550 
10551       SDNode *LHSN = N->getOperand(0).getNode();
10552       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
10553            UI != E; ++UI)
10554         if (UI->getOpcode() == PPCISD::VCMPo &&
10555             UI->getOperand(1) == N->getOperand(1) &&
10556             UI->getOperand(2) == N->getOperand(2) &&
10557             UI->getOperand(0) == N->getOperand(0)) {
10558           VCMPoNode = *UI;
10559           break;
10560         }
10561 
10562       // If there is no VCMPo node, or if the flag value has a single use, don't
10563       // transform this.
10564       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
10565         break;
10566 
10567       // Look at the (necessarily single) use of the flag value.  If it has a
10568       // chain, this transformation is more complex.  Note that multiple things
10569       // could use the value result, which we should ignore.
10570       SDNode *FlagUser = nullptr;
10571       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
10572            FlagUser == nullptr; ++UI) {
10573         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
10574         SDNode *User = *UI;
10575         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
10576           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
10577             FlagUser = User;
10578             break;
10579           }
10580         }
10581       }
10582 
10583       // If the user is a MFOCRF instruction, we know this is safe.
10584       // Otherwise we give up for right now.
10585       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
10586         return SDValue(VCMPoNode, 0);
10587     }
10588     break;
10589   }
10590   case ISD::BRCOND: {
10591     SDValue Cond = N->getOperand(1);
10592     SDValue Target = N->getOperand(2);
10593 
10594     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10595         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
10596           Intrinsic::ppc_is_decremented_ctr_nonzero) {
10597 
10598       // We now need to make the intrinsic dead (it cannot be instruction
10599       // selected).
10600       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
10601       assert(Cond.getNode()->hasOneUse() &&
10602              "Counter decrement has more than one use");
10603 
10604       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
10605                          N->getOperand(0), Target);
10606     }
10607   }
10608   break;
10609   case ISD::BR_CC: {
10610     // If this is a branch on an altivec predicate comparison, lower this so
10611     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
10612     // lowering is done pre-legalize, because the legalizer lowers the predicate
10613     // compare down to code that is difficult to reassemble.
10614     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
10615     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
10616 
10617     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
10618     // value. If so, pass-through the AND to get to the intrinsic.
10619     if (LHS.getOpcode() == ISD::AND &&
10620         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10621         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
10622           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10623         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10624         !isNullConstant(LHS.getOperand(1)))
10625       LHS = LHS.getOperand(0);
10626 
10627     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
10628         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
10629           Intrinsic::ppc_is_decremented_ctr_nonzero &&
10630         isa<ConstantSDNode>(RHS)) {
10631       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10632              "Counter decrement comparison is not EQ or NE");
10633 
10634       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10635       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
10636                     (CC == ISD::SETNE && !Val);
10637 
10638       // We now need to make the intrinsic dead (it cannot be instruction
10639       // selected).
10640       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
10641       assert(LHS.getNode()->hasOneUse() &&
10642              "Counter decrement has more than one use");
10643 
10644       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
10645                          N->getOperand(0), N->getOperand(4));
10646     }
10647 
10648     int CompareOpc;
10649     bool isDot;
10650 
10651     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10652         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
10653         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
10654       assert(isDot && "Can't compare against a vector result!");
10655 
10656       // If this is a comparison against something other than 0/1, then we know
10657       // that the condition is never/always true.
10658       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
10659       if (Val != 0 && Val != 1) {
10660         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
10661           return N->getOperand(0);
10662         // Always !=, turn it into an unconditional branch.
10663         return DAG.getNode(ISD::BR, dl, MVT::Other,
10664                            N->getOperand(0), N->getOperand(4));
10665       }
10666 
10667       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
10668 
10669       // Create the PPCISD altivec 'dot' comparison node.
10670       SDValue Ops[] = {
10671         LHS.getOperand(2),  // LHS of compare
10672         LHS.getOperand(3),  // RHS of compare
10673         DAG.getConstant(CompareOpc, dl, MVT::i32)
10674       };
10675       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
10676       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10677 
10678       // Unpack the result based on how the target uses it.
10679       PPC::Predicate CompOpc;
10680       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
10681       default:  // Can't happen, don't crash on invalid number though.
10682       case 0:   // Branch on the value of the EQ bit of CR6.
10683         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
10684         break;
10685       case 1:   // Branch on the inverted value of the EQ bit of CR6.
10686         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
10687         break;
10688       case 2:   // Branch on the value of the LT bit of CR6.
10689         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
10690         break;
10691       case 3:   // Branch on the inverted value of the LT bit of CR6.
10692         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
10693         break;
10694       }
10695 
10696       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
10697                          DAG.getConstant(CompOpc, dl, MVT::i32),
10698                          DAG.getRegister(PPC::CR6, MVT::i32),
10699                          N->getOperand(4), CompNode.getValue(1));
10700     }
10701     break;
10702   }
10703   }
10704 
10705   return SDValue();
10706 }
10707 
10708 SDValue
10709 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10710                                   SelectionDAG &DAG,
10711                                   std::vector<SDNode *> *Created) const {
10712   // fold (sdiv X, pow2)
10713   EVT VT = N->getValueType(0);
10714   if (VT == MVT::i64 && !Subtarget.isPPC64())
10715     return SDValue();
10716   if ((VT != MVT::i32 && VT != MVT::i64) ||
10717       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
10718     return SDValue();
10719 
10720   SDLoc DL(N);
10721   SDValue N0 = N->getOperand(0);
10722 
10723   bool IsNegPow2 = (-Divisor).isPowerOf2();
10724   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
10725   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
10726 
10727   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
10728   if (Created)
10729     Created->push_back(Op.getNode());
10730 
10731   if (IsNegPow2) {
10732     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
10733     if (Created)
10734       Created->push_back(Op.getNode());
10735   }
10736 
10737   return Op;
10738 }
10739 
10740 //===----------------------------------------------------------------------===//
10741 // Inline Assembly Support
10742 //===----------------------------------------------------------------------===//
10743 
10744 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10745                                                       APInt &KnownZero,
10746                                                       APInt &KnownOne,
10747                                                       const SelectionDAG &DAG,
10748                                                       unsigned Depth) const {
10749   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
10750   switch (Op.getOpcode()) {
10751   default: break;
10752   case PPCISD::LBRX: {
10753     // lhbrx is known to have the top bits cleared out.
10754     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
10755       KnownZero = 0xFFFF0000;
10756     break;
10757   }
10758   case ISD::INTRINSIC_WO_CHAIN: {
10759     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
10760     default: break;
10761     case Intrinsic::ppc_altivec_vcmpbfp_p:
10762     case Intrinsic::ppc_altivec_vcmpeqfp_p:
10763     case Intrinsic::ppc_altivec_vcmpequb_p:
10764     case Intrinsic::ppc_altivec_vcmpequh_p:
10765     case Intrinsic::ppc_altivec_vcmpequw_p:
10766     case Intrinsic::ppc_altivec_vcmpequd_p:
10767     case Intrinsic::ppc_altivec_vcmpgefp_p:
10768     case Intrinsic::ppc_altivec_vcmpgtfp_p:
10769     case Intrinsic::ppc_altivec_vcmpgtsb_p:
10770     case Intrinsic::ppc_altivec_vcmpgtsh_p:
10771     case Intrinsic::ppc_altivec_vcmpgtsw_p:
10772     case Intrinsic::ppc_altivec_vcmpgtsd_p:
10773     case Intrinsic::ppc_altivec_vcmpgtub_p:
10774     case Intrinsic::ppc_altivec_vcmpgtuh_p:
10775     case Intrinsic::ppc_altivec_vcmpgtuw_p:
10776     case Intrinsic::ppc_altivec_vcmpgtud_p:
10777       KnownZero = ~1U;  // All bits but the low one are known to be zero.
10778       break;
10779     }
10780   }
10781   }
10782 }
10783 
10784 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
10785   switch (Subtarget.getDarwinDirective()) {
10786   default: break;
10787   case PPC::DIR_970:
10788   case PPC::DIR_PWR4:
10789   case PPC::DIR_PWR5:
10790   case PPC::DIR_PWR5X:
10791   case PPC::DIR_PWR6:
10792   case PPC::DIR_PWR6X:
10793   case PPC::DIR_PWR7:
10794   case PPC::DIR_PWR8: {
10795     if (!ML)
10796       break;
10797 
10798     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
10799 
10800     // For small loops (between 5 and 8 instructions), align to a 32-byte
10801     // boundary so that the entire loop fits in one instruction-cache line.
10802     uint64_t LoopSize = 0;
10803     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
10804       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
10805         LoopSize += TII->GetInstSizeInBytes(J);
10806         if (LoopSize > 32)
10807           break;
10808       }
10809 
10810     if (LoopSize > 16 && LoopSize <= 32)
10811       return 5;
10812 
10813     break;
10814   }
10815   }
10816 
10817   return TargetLowering::getPrefLoopAlignment(ML);
10818 }
10819 
10820 /// getConstraintType - Given a constraint, return the type of
10821 /// constraint it is for this target.
10822 PPCTargetLowering::ConstraintType
10823 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
10824   if (Constraint.size() == 1) {
10825     switch (Constraint[0]) {
10826     default: break;
10827     case 'b':
10828     case 'r':
10829     case 'f':
10830     case 'v':
10831     case 'y':
10832       return C_RegisterClass;
10833     case 'Z':
10834       // FIXME: While Z does indicate a memory constraint, it specifically
10835       // indicates an r+r address (used in conjunction with the 'y' modifier
10836       // in the replacement string). Currently, we're forcing the base
10837       // register to be r0 in the asm printer (which is interpreted as zero)
10838       // and forming the complete address in the second register. This is
10839       // suboptimal.
10840       return C_Memory;
10841     }
10842   } else if (Constraint == "wc") { // individual CR bits.
10843     return C_RegisterClass;
10844   } else if (Constraint == "wa" || Constraint == "wd" ||
10845              Constraint == "wf" || Constraint == "ws") {
10846     return C_RegisterClass; // VSX registers.
10847   }
10848   return TargetLowering::getConstraintType(Constraint);
10849 }
10850 
10851 /// Examine constraint type and operand type and determine a weight value.
10852 /// This object must already have been set up with the operand type
10853 /// and the current alternative constraint selected.
10854 TargetLowering::ConstraintWeight
10855 PPCTargetLowering::getSingleConstraintMatchWeight(
10856     AsmOperandInfo &info, const char *constraint) const {
10857   ConstraintWeight weight = CW_Invalid;
10858   Value *CallOperandVal = info.CallOperandVal;
10859     // If we don't have a value, we can't do a match,
10860     // but allow it at the lowest weight.
10861   if (!CallOperandVal)
10862     return CW_Default;
10863   Type *type = CallOperandVal->getType();
10864 
10865   // Look at the constraint type.
10866   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
10867     return CW_Register; // an individual CR bit.
10868   else if ((StringRef(constraint) == "wa" ||
10869             StringRef(constraint) == "wd" ||
10870             StringRef(constraint) == "wf") &&
10871            type->isVectorTy())
10872     return CW_Register;
10873   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
10874     return CW_Register;
10875 
10876   switch (*constraint) {
10877   default:
10878     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10879     break;
10880   case 'b':
10881     if (type->isIntegerTy())
10882       weight = CW_Register;
10883     break;
10884   case 'f':
10885     if (type->isFloatTy())
10886       weight = CW_Register;
10887     break;
10888   case 'd':
10889     if (type->isDoubleTy())
10890       weight = CW_Register;
10891     break;
10892   case 'v':
10893     if (type->isVectorTy())
10894       weight = CW_Register;
10895     break;
10896   case 'y':
10897     weight = CW_Register;
10898     break;
10899   case 'Z':
10900     weight = CW_Memory;
10901     break;
10902   }
10903   return weight;
10904 }
10905 
10906 std::pair<unsigned, const TargetRegisterClass *>
10907 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
10908                                                 StringRef Constraint,
10909                                                 MVT VT) const {
10910   if (Constraint.size() == 1) {
10911     // GCC RS6000 Constraint Letters
10912     switch (Constraint[0]) {
10913     case 'b':   // R1-R31
10914       if (VT == MVT::i64 && Subtarget.isPPC64())
10915         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
10916       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
10917     case 'r':   // R0-R31
10918       if (VT == MVT::i64 && Subtarget.isPPC64())
10919         return std::make_pair(0U, &PPC::G8RCRegClass);
10920       return std::make_pair(0U, &PPC::GPRCRegClass);
10921     case 'f':
10922       if (VT == MVT::f32 || VT == MVT::i32)
10923         return std::make_pair(0U, &PPC::F4RCRegClass);
10924       if (VT == MVT::f64 || VT == MVT::i64)
10925         return std::make_pair(0U, &PPC::F8RCRegClass);
10926       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10927         return std::make_pair(0U, &PPC::QFRCRegClass);
10928       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10929         return std::make_pair(0U, &PPC::QSRCRegClass);
10930       break;
10931     case 'v':
10932       if (VT == MVT::v4f64 && Subtarget.hasQPX())
10933         return std::make_pair(0U, &PPC::QFRCRegClass);
10934       if (VT == MVT::v4f32 && Subtarget.hasQPX())
10935         return std::make_pair(0U, &PPC::QSRCRegClass);
10936       if (Subtarget.hasAltivec())
10937         return std::make_pair(0U, &PPC::VRRCRegClass);
10938     case 'y':   // crrc
10939       return std::make_pair(0U, &PPC::CRRCRegClass);
10940     }
10941   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
10942     // An individual CR bit.
10943     return std::make_pair(0U, &PPC::CRBITRCRegClass);
10944   } else if ((Constraint == "wa" || Constraint == "wd" ||
10945              Constraint == "wf") && Subtarget.hasVSX()) {
10946     return std::make_pair(0U, &PPC::VSRCRegClass);
10947   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
10948     if (VT == MVT::f32 && Subtarget.hasP8Vector())
10949       return std::make_pair(0U, &PPC::VSSRCRegClass);
10950     else
10951       return std::make_pair(0U, &PPC::VSFRCRegClass);
10952   }
10953 
10954   std::pair<unsigned, const TargetRegisterClass *> R =
10955       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
10956 
10957   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
10958   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
10959   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
10960   // register.
10961   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
10962   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
10963   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
10964       PPC::GPRCRegClass.contains(R.first))
10965     return std::make_pair(TRI->getMatchingSuperReg(R.first,
10966                             PPC::sub_32, &PPC::G8RCRegClass),
10967                           &PPC::G8RCRegClass);
10968 
10969   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
10970   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
10971     R.first = PPC::CR0;
10972     R.second = &PPC::CRRCRegClass;
10973   }
10974 
10975   return R;
10976 }
10977 
10978 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10979 /// vector.  If it is invalid, don't add anything to Ops.
10980 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10981                                                      std::string &Constraint,
10982                                                      std::vector<SDValue>&Ops,
10983                                                      SelectionDAG &DAG) const {
10984   SDValue Result;
10985 
10986   // Only support length 1 constraints.
10987   if (Constraint.length() > 1) return;
10988 
10989   char Letter = Constraint[0];
10990   switch (Letter) {
10991   default: break;
10992   case 'I':
10993   case 'J':
10994   case 'K':
10995   case 'L':
10996   case 'M':
10997   case 'N':
10998   case 'O':
10999   case 'P': {
11000     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
11001     if (!CST) return; // Must be an immediate to match.
11002     SDLoc dl(Op);
11003     int64_t Value = CST->getSExtValue();
11004     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
11005                          // numbers are printed as such.
11006     switch (Letter) {
11007     default: llvm_unreachable("Unknown constraint letter!");
11008     case 'I':  // "I" is a signed 16-bit constant.
11009       if (isInt<16>(Value))
11010         Result = DAG.getTargetConstant(Value, dl, TCVT);
11011       break;
11012     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
11013       if (isShiftedUInt<16, 16>(Value))
11014         Result = DAG.getTargetConstant(Value, dl, TCVT);
11015       break;
11016     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
11017       if (isShiftedInt<16, 16>(Value))
11018         Result = DAG.getTargetConstant(Value, dl, TCVT);
11019       break;
11020     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
11021       if (isUInt<16>(Value))
11022         Result = DAG.getTargetConstant(Value, dl, TCVT);
11023       break;
11024     case 'M':  // "M" is a constant that is greater than 31.
11025       if (Value > 31)
11026         Result = DAG.getTargetConstant(Value, dl, TCVT);
11027       break;
11028     case 'N':  // "N" is a positive constant that is an exact power of two.
11029       if (Value > 0 && isPowerOf2_64(Value))
11030         Result = DAG.getTargetConstant(Value, dl, TCVT);
11031       break;
11032     case 'O':  // "O" is the constant zero.
11033       if (Value == 0)
11034         Result = DAG.getTargetConstant(Value, dl, TCVT);
11035       break;
11036     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
11037       if (isInt<16>(-Value))
11038         Result = DAG.getTargetConstant(Value, dl, TCVT);
11039       break;
11040     }
11041     break;
11042   }
11043   }
11044 
11045   if (Result.getNode()) {
11046     Ops.push_back(Result);
11047     return;
11048   }
11049 
11050   // Handle standard constraint letters.
11051   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11052 }
11053 
11054 // isLegalAddressingMode - Return true if the addressing mode represented
11055 // by AM is legal for this target, for a load/store of the specified type.
11056 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11057                                               const AddrMode &AM, Type *Ty,
11058                                               unsigned AS) const {
11059   // PPC does not allow r+i addressing modes for vectors!
11060   if (Ty->isVectorTy() && AM.BaseOffs != 0)
11061     return false;
11062 
11063   // PPC allows a sign-extended 16-bit immediate field.
11064   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
11065     return false;
11066 
11067   // No global is ever allowed as a base.
11068   if (AM.BaseGV)
11069     return false;
11070 
11071   // PPC only support r+r,
11072   switch (AM.Scale) {
11073   case 0:  // "r+i" or just "i", depending on HasBaseReg.
11074     break;
11075   case 1:
11076     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
11077       return false;
11078     // Otherwise we have r+r or r+i.
11079     break;
11080   case 2:
11081     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
11082       return false;
11083     // Allow 2*r as r+r.
11084     break;
11085   default:
11086     // No other scales are supported.
11087     return false;
11088   }
11089 
11090   return true;
11091 }
11092 
11093 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11094                                            SelectionDAG &DAG) const {
11095   MachineFunction &MF = DAG.getMachineFunction();
11096   MachineFrameInfo *MFI = MF.getFrameInfo();
11097   MFI->setReturnAddressIsTaken(true);
11098 
11099   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11100     return SDValue();
11101 
11102   SDLoc dl(Op);
11103   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11104 
11105   // Make sure the function does not optimize away the store of the RA to
11106   // the stack.
11107   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11108   FuncInfo->setLRStoreRequired();
11109   bool isPPC64 = Subtarget.isPPC64();
11110   auto PtrVT = getPointerTy(MF.getDataLayout());
11111 
11112   if (Depth > 0) {
11113     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11114     SDValue Offset =
11115         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11116                         isPPC64 ? MVT::i64 : MVT::i32);
11117     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11118                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11119                        MachinePointerInfo(), false, false, false, 0);
11120   }
11121 
11122   // Just load the return address off the stack.
11123   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11124   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11125                      MachinePointerInfo(), false, false, false, 0);
11126 }
11127 
11128 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11129                                           SelectionDAG &DAG) const {
11130   SDLoc dl(Op);
11131   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11132 
11133   MachineFunction &MF = DAG.getMachineFunction();
11134   MachineFrameInfo *MFI = MF.getFrameInfo();
11135   MFI->setFrameAddressIsTaken(true);
11136 
11137   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
11138   bool isPPC64 = PtrVT == MVT::i64;
11139 
11140   // Naked functions never have a frame pointer, and so we use r1. For all
11141   // other functions, this decision must be delayed until during PEI.
11142   unsigned FrameReg;
11143   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11144     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11145   else
11146     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11147 
11148   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11149                                          PtrVT);
11150   while (Depth--)
11151     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11152                             FrameAddr, MachinePointerInfo(), false, false,
11153                             false, 0);
11154   return FrameAddr;
11155 }
11156 
11157 // FIXME? Maybe this could be a TableGen attribute on some registers and
11158 // this table could be generated automatically from RegInfo.
11159 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11160                                               SelectionDAG &DAG) const {
11161   bool isPPC64 = Subtarget.isPPC64();
11162   bool isDarwinABI = Subtarget.isDarwinABI();
11163 
11164   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11165       (!isPPC64 && VT != MVT::i32))
11166     report_fatal_error("Invalid register global variable type");
11167 
11168   bool is64Bit = isPPC64 && VT == MVT::i64;
11169   unsigned Reg = StringSwitch<unsigned>(RegName)
11170                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11171                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11172                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11173                                   (is64Bit ? PPC::X13 : PPC::R13))
11174                    .Default(0);
11175 
11176   if (Reg)
11177     return Reg;
11178   report_fatal_error("Invalid register name global variable");
11179 }
11180 
11181 bool
11182 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11183   // The PowerPC target isn't yet aware of offsets.
11184   return false;
11185 }
11186 
11187 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11188                                            const CallInst &I,
11189                                            unsigned Intrinsic) const {
11190 
11191   switch (Intrinsic) {
11192   case Intrinsic::ppc_qpx_qvlfd:
11193   case Intrinsic::ppc_qpx_qvlfs:
11194   case Intrinsic::ppc_qpx_qvlfcd:
11195   case Intrinsic::ppc_qpx_qvlfcs:
11196   case Intrinsic::ppc_qpx_qvlfiwa:
11197   case Intrinsic::ppc_qpx_qvlfiwz:
11198   case Intrinsic::ppc_altivec_lvx:
11199   case Intrinsic::ppc_altivec_lvxl:
11200   case Intrinsic::ppc_altivec_lvebx:
11201   case Intrinsic::ppc_altivec_lvehx:
11202   case Intrinsic::ppc_altivec_lvewx:
11203   case Intrinsic::ppc_vsx_lxvd2x:
11204   case Intrinsic::ppc_vsx_lxvw4x: {
11205     EVT VT;
11206     switch (Intrinsic) {
11207     case Intrinsic::ppc_altivec_lvebx:
11208       VT = MVT::i8;
11209       break;
11210     case Intrinsic::ppc_altivec_lvehx:
11211       VT = MVT::i16;
11212       break;
11213     case Intrinsic::ppc_altivec_lvewx:
11214       VT = MVT::i32;
11215       break;
11216     case Intrinsic::ppc_vsx_lxvd2x:
11217       VT = MVT::v2f64;
11218       break;
11219     case Intrinsic::ppc_qpx_qvlfd:
11220       VT = MVT::v4f64;
11221       break;
11222     case Intrinsic::ppc_qpx_qvlfs:
11223       VT = MVT::v4f32;
11224       break;
11225     case Intrinsic::ppc_qpx_qvlfcd:
11226       VT = MVT::v2f64;
11227       break;
11228     case Intrinsic::ppc_qpx_qvlfcs:
11229       VT = MVT::v2f32;
11230       break;
11231     default:
11232       VT = MVT::v4i32;
11233       break;
11234     }
11235 
11236     Info.opc = ISD::INTRINSIC_W_CHAIN;
11237     Info.memVT = VT;
11238     Info.ptrVal = I.getArgOperand(0);
11239     Info.offset = -VT.getStoreSize()+1;
11240     Info.size = 2*VT.getStoreSize()-1;
11241     Info.align = 1;
11242     Info.vol = false;
11243     Info.readMem = true;
11244     Info.writeMem = false;
11245     return true;
11246   }
11247   case Intrinsic::ppc_qpx_qvlfda:
11248   case Intrinsic::ppc_qpx_qvlfsa:
11249   case Intrinsic::ppc_qpx_qvlfcda:
11250   case Intrinsic::ppc_qpx_qvlfcsa:
11251   case Intrinsic::ppc_qpx_qvlfiwaa:
11252   case Intrinsic::ppc_qpx_qvlfiwza: {
11253     EVT VT;
11254     switch (Intrinsic) {
11255     case Intrinsic::ppc_qpx_qvlfda:
11256       VT = MVT::v4f64;
11257       break;
11258     case Intrinsic::ppc_qpx_qvlfsa:
11259       VT = MVT::v4f32;
11260       break;
11261     case Intrinsic::ppc_qpx_qvlfcda:
11262       VT = MVT::v2f64;
11263       break;
11264     case Intrinsic::ppc_qpx_qvlfcsa:
11265       VT = MVT::v2f32;
11266       break;
11267     default:
11268       VT = MVT::v4i32;
11269       break;
11270     }
11271 
11272     Info.opc = ISD::INTRINSIC_W_CHAIN;
11273     Info.memVT = VT;
11274     Info.ptrVal = I.getArgOperand(0);
11275     Info.offset = 0;
11276     Info.size = VT.getStoreSize();
11277     Info.align = 1;
11278     Info.vol = false;
11279     Info.readMem = true;
11280     Info.writeMem = false;
11281     return true;
11282   }
11283   case Intrinsic::ppc_qpx_qvstfd:
11284   case Intrinsic::ppc_qpx_qvstfs:
11285   case Intrinsic::ppc_qpx_qvstfcd:
11286   case Intrinsic::ppc_qpx_qvstfcs:
11287   case Intrinsic::ppc_qpx_qvstfiw:
11288   case Intrinsic::ppc_altivec_stvx:
11289   case Intrinsic::ppc_altivec_stvxl:
11290   case Intrinsic::ppc_altivec_stvebx:
11291   case Intrinsic::ppc_altivec_stvehx:
11292   case Intrinsic::ppc_altivec_stvewx:
11293   case Intrinsic::ppc_vsx_stxvd2x:
11294   case Intrinsic::ppc_vsx_stxvw4x: {
11295     EVT VT;
11296     switch (Intrinsic) {
11297     case Intrinsic::ppc_altivec_stvebx:
11298       VT = MVT::i8;
11299       break;
11300     case Intrinsic::ppc_altivec_stvehx:
11301       VT = MVT::i16;
11302       break;
11303     case Intrinsic::ppc_altivec_stvewx:
11304       VT = MVT::i32;
11305       break;
11306     case Intrinsic::ppc_vsx_stxvd2x:
11307       VT = MVT::v2f64;
11308       break;
11309     case Intrinsic::ppc_qpx_qvstfd:
11310       VT = MVT::v4f64;
11311       break;
11312     case Intrinsic::ppc_qpx_qvstfs:
11313       VT = MVT::v4f32;
11314       break;
11315     case Intrinsic::ppc_qpx_qvstfcd:
11316       VT = MVT::v2f64;
11317       break;
11318     case Intrinsic::ppc_qpx_qvstfcs:
11319       VT = MVT::v2f32;
11320       break;
11321     default:
11322       VT = MVT::v4i32;
11323       break;
11324     }
11325 
11326     Info.opc = ISD::INTRINSIC_VOID;
11327     Info.memVT = VT;
11328     Info.ptrVal = I.getArgOperand(1);
11329     Info.offset = -VT.getStoreSize()+1;
11330     Info.size = 2*VT.getStoreSize()-1;
11331     Info.align = 1;
11332     Info.vol = false;
11333     Info.readMem = false;
11334     Info.writeMem = true;
11335     return true;
11336   }
11337   case Intrinsic::ppc_qpx_qvstfda:
11338   case Intrinsic::ppc_qpx_qvstfsa:
11339   case Intrinsic::ppc_qpx_qvstfcda:
11340   case Intrinsic::ppc_qpx_qvstfcsa:
11341   case Intrinsic::ppc_qpx_qvstfiwa: {
11342     EVT VT;
11343     switch (Intrinsic) {
11344     case Intrinsic::ppc_qpx_qvstfda:
11345       VT = MVT::v4f64;
11346       break;
11347     case Intrinsic::ppc_qpx_qvstfsa:
11348       VT = MVT::v4f32;
11349       break;
11350     case Intrinsic::ppc_qpx_qvstfcda:
11351       VT = MVT::v2f64;
11352       break;
11353     case Intrinsic::ppc_qpx_qvstfcsa:
11354       VT = MVT::v2f32;
11355       break;
11356     default:
11357       VT = MVT::v4i32;
11358       break;
11359     }
11360 
11361     Info.opc = ISD::INTRINSIC_VOID;
11362     Info.memVT = VT;
11363     Info.ptrVal = I.getArgOperand(1);
11364     Info.offset = 0;
11365     Info.size = VT.getStoreSize();
11366     Info.align = 1;
11367     Info.vol = false;
11368     Info.readMem = false;
11369     Info.writeMem = true;
11370     return true;
11371   }
11372   default:
11373     break;
11374   }
11375 
11376   return false;
11377 }
11378 
11379 /// getOptimalMemOpType - Returns the target specific optimal type for load
11380 /// and store operations as a result of memset, memcpy, and memmove
11381 /// lowering. If DstAlign is zero that means it's safe to destination
11382 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11383 /// means there isn't a need to check it against alignment requirement,
11384 /// probably because the source does not need to be loaded. If 'IsMemset' is
11385 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11386 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11387 /// source is constant so it does not need to be loaded.
11388 /// It returns EVT::Other if the type should be determined using generic
11389 /// target-independent logic.
11390 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11391                                            unsigned DstAlign, unsigned SrcAlign,
11392                                            bool IsMemset, bool ZeroMemset,
11393                                            bool MemcpyStrSrc,
11394                                            MachineFunction &MF) const {
11395   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11396     const Function *F = MF.getFunction();
11397     // When expanding a memset, require at least two QPX instructions to cover
11398     // the cost of loading the value to be stored from the constant pool.
11399     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11400        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11401         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11402       return MVT::v4f64;
11403     }
11404 
11405     // We should use Altivec/VSX loads and stores when available. For unaligned
11406     // addresses, unaligned VSX loads are only fast starting with the P8.
11407     if (Subtarget.hasAltivec() && Size >= 16 &&
11408         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11409          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11410       return MVT::v4i32;
11411   }
11412 
11413   if (Subtarget.isPPC64()) {
11414     return MVT::i64;
11415   }
11416 
11417   return MVT::i32;
11418 }
11419 
11420 /// \brief Returns true if it is beneficial to convert a load of a constant
11421 /// to just the constant itself.
11422 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11423                                                           Type *Ty) const {
11424   assert(Ty->isIntegerTy());
11425 
11426   unsigned BitSize = Ty->getPrimitiveSizeInBits();
11427   return !(BitSize == 0 || BitSize > 64);
11428 }
11429 
11430 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11431   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11432     return false;
11433   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11434   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11435   return NumBits1 == 64 && NumBits2 == 32;
11436 }
11437 
11438 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11439   if (!VT1.isInteger() || !VT2.isInteger())
11440     return false;
11441   unsigned NumBits1 = VT1.getSizeInBits();
11442   unsigned NumBits2 = VT2.getSizeInBits();
11443   return NumBits1 == 64 && NumBits2 == 32;
11444 }
11445 
11446 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11447   // Generally speaking, zexts are not free, but they are free when they can be
11448   // folded with other operations.
11449   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11450     EVT MemVT = LD->getMemoryVT();
11451     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11452          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11453         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11454          LD->getExtensionType() == ISD::ZEXTLOAD))
11455       return true;
11456   }
11457 
11458   // FIXME: Add other cases...
11459   //  - 32-bit shifts with a zext to i64
11460   //  - zext after ctlz, bswap, etc.
11461   //  - zext after and by a constant mask
11462 
11463   return TargetLowering::isZExtFree(Val, VT2);
11464 }
11465 
11466 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11467   assert(VT.isFloatingPoint());
11468   return true;
11469 }
11470 
11471 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11472   return isInt<16>(Imm) || isUInt<16>(Imm);
11473 }
11474 
11475 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11476   return isInt<16>(Imm) || isUInt<16>(Imm);
11477 }
11478 
11479 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11480                                                        unsigned,
11481                                                        unsigned,
11482                                                        bool *Fast) const {
11483   if (DisablePPCUnaligned)
11484     return false;
11485 
11486   // PowerPC supports unaligned memory access for simple non-vector types.
11487   // Although accessing unaligned addresses is not as efficient as accessing
11488   // aligned addresses, it is generally more efficient than manual expansion,
11489   // and generally only traps for software emulation when crossing page
11490   // boundaries.
11491 
11492   if (!VT.isSimple())
11493     return false;
11494 
11495   if (VT.getSimpleVT().isVector()) {
11496     if (Subtarget.hasVSX()) {
11497       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11498           VT != MVT::v4f32 && VT != MVT::v4i32)
11499         return false;
11500     } else {
11501       return false;
11502     }
11503   }
11504 
11505   if (VT == MVT::ppcf128)
11506     return false;
11507 
11508   if (Fast)
11509     *Fast = true;
11510 
11511   return true;
11512 }
11513 
11514 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
11515   VT = VT.getScalarType();
11516 
11517   if (!VT.isSimple())
11518     return false;
11519 
11520   switch (VT.getSimpleVT().SimpleTy) {
11521   case MVT::f32:
11522   case MVT::f64:
11523     return true;
11524   default:
11525     break;
11526   }
11527 
11528   return false;
11529 }
11530 
11531 const MCPhysReg *
11532 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
11533   // LR is a callee-save register, but we must treat it as clobbered by any call
11534   // site. Hence we include LR in the scratch registers, which are in turn added
11535   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
11536   // to CTR, which is used by any indirect call.
11537   static const MCPhysReg ScratchRegs[] = {
11538     PPC::X12, PPC::LR8, PPC::CTR8, 0
11539   };
11540 
11541   return ScratchRegs;
11542 }
11543 
11544 unsigned PPCTargetLowering::getExceptionPointerRegister(
11545     const Constant *PersonalityFn) const {
11546   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
11547 }
11548 
11549 unsigned PPCTargetLowering::getExceptionSelectorRegister(
11550     const Constant *PersonalityFn) const {
11551   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
11552 }
11553 
11554 bool
11555 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
11556                      EVT VT , unsigned DefinedValues) const {
11557   if (VT == MVT::v2i64)
11558     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
11559 
11560   if (Subtarget.hasQPX()) {
11561     if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
11562       return true;
11563   }
11564 
11565   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
11566 }
11567 
11568 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
11569   if (DisableILPPref || Subtarget.enableMachineScheduler())
11570     return TargetLowering::getSchedulingPreference(N);
11571 
11572   return Sched::ILP;
11573 }
11574 
11575 // Create a fast isel object.
11576 FastISel *
11577 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
11578                                   const TargetLibraryInfo *LibInfo) const {
11579   return PPC::createFastISel(FuncInfo, LibInfo);
11580 }
11581