1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCPerfectShuffle.h" 19 #include "PPCTargetMachine.h" 20 #include "PPCTargetObjectFile.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetOptions.h" 42 43 using namespace llvm; 44 45 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 46 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 47 48 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 49 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 50 51 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 52 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 53 54 // FIXME: Remove this once the bug has been fixed! 55 extern cl::opt<bool> ANDIGlueBug; 56 57 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 58 const PPCSubtarget &STI) 59 : TargetLowering(TM), Subtarget(STI) { 60 // Use _setjmp/_longjmp instead of setjmp/longjmp. 61 setUseUnderscoreSetJmp(true); 62 setUseUnderscoreLongJmp(true); 63 64 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 65 // arguments are at least 4/8 bytes aligned. 66 bool isPPC64 = Subtarget.isPPC64(); 67 setMinStackArgumentAlignment(isPPC64 ? 8:4); 68 69 // Set up the register classes. 70 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 71 if (!Subtarget.useSoftFloat()) { 72 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 73 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 74 } 75 76 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 77 for (MVT VT : MVT::integer_valuetypes()) { 78 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 79 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 80 } 81 82 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 83 84 // PowerPC has pre-inc load and store's. 85 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 86 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 87 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 88 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 89 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 90 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 91 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 92 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 93 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 94 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 95 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 96 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 99 100 if (Subtarget.useCRBits()) { 101 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 102 103 if (isPPC64 || Subtarget.hasFPCVT()) { 104 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 105 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 106 isPPC64 ? MVT::i64 : MVT::i32); 107 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 108 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 109 isPPC64 ? MVT::i64 : MVT::i32); 110 } else { 111 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 112 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 113 } 114 115 // PowerPC does not support direct load / store of condition registers 116 setOperationAction(ISD::LOAD, MVT::i1, Custom); 117 setOperationAction(ISD::STORE, MVT::i1, Custom); 118 119 // FIXME: Remove this once the ANDI glue bug is fixed: 120 if (ANDIGlueBug) 121 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 122 123 for (MVT VT : MVT::integer_valuetypes()) { 124 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 126 setTruncStoreAction(VT, MVT::i1, Expand); 127 } 128 129 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 130 } 131 132 // This is used in the ppcf128->int sequence. Note it has different semantics 133 // from FP_ROUND: that rounds to nearest, this rounds to zero. 134 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 135 136 // We do not currently implement these libm ops for PowerPC. 137 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 138 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 139 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 140 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 141 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 142 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 143 144 // PowerPC has no SREM/UREM instructions 145 setOperationAction(ISD::SREM, MVT::i32, Expand); 146 setOperationAction(ISD::UREM, MVT::i32, Expand); 147 setOperationAction(ISD::SREM, MVT::i64, Expand); 148 setOperationAction(ISD::UREM, MVT::i64, Expand); 149 150 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 151 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 152 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 153 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 154 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 155 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 156 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 158 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 159 160 // We don't support sin/cos/sqrt/fmod/pow 161 setOperationAction(ISD::FSIN , MVT::f64, Expand); 162 setOperationAction(ISD::FCOS , MVT::f64, Expand); 163 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 164 setOperationAction(ISD::FREM , MVT::f64, Expand); 165 setOperationAction(ISD::FPOW , MVT::f64, Expand); 166 setOperationAction(ISD::FMA , MVT::f64, Legal); 167 setOperationAction(ISD::FSIN , MVT::f32, Expand); 168 setOperationAction(ISD::FCOS , MVT::f32, Expand); 169 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 170 setOperationAction(ISD::FREM , MVT::f32, Expand); 171 setOperationAction(ISD::FPOW , MVT::f32, Expand); 172 setOperationAction(ISD::FMA , MVT::f32, Legal); 173 174 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 175 176 // If we're enabling GP optimizations, use hardware square root 177 if (!Subtarget.hasFSQRT() && 178 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 179 Subtarget.hasFRE())) 180 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 181 182 if (!Subtarget.hasFSQRT() && 183 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 184 Subtarget.hasFRES())) 185 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 186 187 if (Subtarget.hasFCPSGN()) { 188 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 189 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 190 } else { 191 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 192 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 193 } 194 195 if (Subtarget.hasFPRND()) { 196 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 197 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 198 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 199 setOperationAction(ISD::FROUND, MVT::f64, Legal); 200 201 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 202 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 203 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 204 setOperationAction(ISD::FROUND, MVT::f32, Legal); 205 } 206 207 // PowerPC does not have BSWAP, CTPOP or CTTZ 208 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 209 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 210 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 211 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 212 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 213 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 214 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 215 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 216 217 if (Subtarget.hasPOPCNTD()) { 218 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 219 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 220 } else { 221 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 222 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 223 } 224 225 // PowerPC does not have ROTR 226 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 227 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 228 229 if (!Subtarget.useCRBits()) { 230 // PowerPC does not have Select 231 setOperationAction(ISD::SELECT, MVT::i32, Expand); 232 setOperationAction(ISD::SELECT, MVT::i64, Expand); 233 setOperationAction(ISD::SELECT, MVT::f32, Expand); 234 setOperationAction(ISD::SELECT, MVT::f64, Expand); 235 } 236 237 // PowerPC wants to turn select_cc of FP into fsel when possible. 238 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 239 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 240 241 // PowerPC wants to optimize integer setcc a bit 242 if (!Subtarget.useCRBits()) 243 setOperationAction(ISD::SETCC, MVT::i32, Custom); 244 245 // PowerPC does not have BRCOND which requires SetCC 246 if (!Subtarget.useCRBits()) 247 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 248 249 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 250 251 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 252 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 253 254 // PowerPC does not have [U|S]INT_TO_FP 255 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 256 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 257 258 if (Subtarget.hasDirectMove()) { 259 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 260 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 261 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 262 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 263 } else { 264 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 265 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 266 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 267 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 268 } 269 270 // We cannot sextinreg(i1). Expand to shifts. 271 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 272 273 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 274 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 275 // support continuation, user-level threading, and etc.. As a result, no 276 // other SjLj exception interfaces are implemented and please don't build 277 // your own exception handling based on them. 278 // LLVM/Clang supports zero-cost DWARF exception handling. 279 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 280 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 281 282 // We want to legalize GlobalAddress and ConstantPool nodes into the 283 // appropriate instructions to materialize the address. 284 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 285 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 286 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 287 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 288 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 289 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 290 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 291 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 292 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 293 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 294 295 // TRAP is legal. 296 setOperationAction(ISD::TRAP, MVT::Other, Legal); 297 298 // TRAMPOLINE is custom lowered. 299 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 300 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 301 302 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 303 setOperationAction(ISD::VASTART , MVT::Other, Custom); 304 305 if (Subtarget.isSVR4ABI()) { 306 if (isPPC64) { 307 // VAARG always uses double-word chunks, so promote anything smaller. 308 setOperationAction(ISD::VAARG, MVT::i1, Promote); 309 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 310 setOperationAction(ISD::VAARG, MVT::i8, Promote); 311 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 312 setOperationAction(ISD::VAARG, MVT::i16, Promote); 313 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 314 setOperationAction(ISD::VAARG, MVT::i32, Promote); 315 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 316 setOperationAction(ISD::VAARG, MVT::Other, Expand); 317 } else { 318 // VAARG is custom lowered with the 32-bit SVR4 ABI. 319 setOperationAction(ISD::VAARG, MVT::Other, Custom); 320 setOperationAction(ISD::VAARG, MVT::i64, Custom); 321 } 322 } else 323 setOperationAction(ISD::VAARG, MVT::Other, Expand); 324 325 if (Subtarget.isSVR4ABI() && !isPPC64) 326 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 327 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 328 else 329 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 330 331 // Use the default implementation. 332 setOperationAction(ISD::VAEND , MVT::Other, Expand); 333 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 334 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 335 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 336 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 337 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 338 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 339 340 // We want to custom lower some of our intrinsics. 341 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 342 343 // To handle counter-based loop conditions. 344 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 345 346 // Comparisons that require checking two conditions. 347 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 348 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 349 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 350 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 351 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 352 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 353 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 354 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 355 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 356 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 357 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 358 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 359 360 if (Subtarget.has64BitSupport()) { 361 // They also have instructions for converting between i64 and fp. 362 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 363 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 364 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 365 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 366 // This is just the low 32 bits of a (signed) fp->i64 conversion. 367 // We cannot do this with Promote because i64 is not a legal type. 368 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 369 370 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 371 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 372 } else { 373 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 374 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 375 } 376 377 // With the instructions enabled under FPCVT, we can do everything. 378 if (Subtarget.hasFPCVT()) { 379 if (Subtarget.has64BitSupport()) { 380 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 381 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 382 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 383 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 384 } 385 386 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 387 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 388 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 389 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 390 } 391 392 if (Subtarget.use64BitRegs()) { 393 // 64-bit PowerPC implementations can support i64 types directly 394 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 395 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 396 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 397 // 64-bit PowerPC wants to expand i128 shifts itself. 398 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 399 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 400 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 401 } else { 402 // 32-bit PowerPC wants to expand i64 shifts itself. 403 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 404 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 405 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 406 } 407 408 if (Subtarget.hasAltivec()) { 409 // First set operation action for all vector types to expand. Then we 410 // will selectively turn on ones that can be effectively codegen'd. 411 for (MVT VT : MVT::vector_valuetypes()) { 412 // add/sub are legal for all supported vector VT's. 413 setOperationAction(ISD::ADD, VT, Legal); 414 setOperationAction(ISD::SUB, VT, Legal); 415 416 // Vector instructions introduced in P8 417 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 418 setOperationAction(ISD::CTPOP, VT, Legal); 419 setOperationAction(ISD::CTLZ, VT, Legal); 420 } 421 else { 422 setOperationAction(ISD::CTPOP, VT, Expand); 423 setOperationAction(ISD::CTLZ, VT, Expand); 424 } 425 426 // We promote all shuffles to v16i8. 427 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 428 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 429 430 // We promote all non-typed operations to v4i32. 431 setOperationAction(ISD::AND , VT, Promote); 432 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 433 setOperationAction(ISD::OR , VT, Promote); 434 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 435 setOperationAction(ISD::XOR , VT, Promote); 436 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 437 setOperationAction(ISD::LOAD , VT, Promote); 438 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 439 setOperationAction(ISD::SELECT, VT, Promote); 440 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 441 setOperationAction(ISD::SELECT_CC, VT, Promote); 442 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 443 setOperationAction(ISD::STORE, VT, Promote); 444 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 445 446 // No other operations are legal. 447 setOperationAction(ISD::MUL , VT, Expand); 448 setOperationAction(ISD::SDIV, VT, Expand); 449 setOperationAction(ISD::SREM, VT, Expand); 450 setOperationAction(ISD::UDIV, VT, Expand); 451 setOperationAction(ISD::UREM, VT, Expand); 452 setOperationAction(ISD::FDIV, VT, Expand); 453 setOperationAction(ISD::FREM, VT, Expand); 454 setOperationAction(ISD::FNEG, VT, Expand); 455 setOperationAction(ISD::FSQRT, VT, Expand); 456 setOperationAction(ISD::FLOG, VT, Expand); 457 setOperationAction(ISD::FLOG10, VT, Expand); 458 setOperationAction(ISD::FLOG2, VT, Expand); 459 setOperationAction(ISD::FEXP, VT, Expand); 460 setOperationAction(ISD::FEXP2, VT, Expand); 461 setOperationAction(ISD::FSIN, VT, Expand); 462 setOperationAction(ISD::FCOS, VT, Expand); 463 setOperationAction(ISD::FABS, VT, Expand); 464 setOperationAction(ISD::FPOWI, VT, Expand); 465 setOperationAction(ISD::FFLOOR, VT, Expand); 466 setOperationAction(ISD::FCEIL, VT, Expand); 467 setOperationAction(ISD::FTRUNC, VT, Expand); 468 setOperationAction(ISD::FRINT, VT, Expand); 469 setOperationAction(ISD::FNEARBYINT, VT, Expand); 470 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 471 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 472 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 473 setOperationAction(ISD::MULHU, VT, Expand); 474 setOperationAction(ISD::MULHS, VT, Expand); 475 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 476 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 477 setOperationAction(ISD::UDIVREM, VT, Expand); 478 setOperationAction(ISD::SDIVREM, VT, Expand); 479 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 480 setOperationAction(ISD::FPOW, VT, Expand); 481 setOperationAction(ISD::BSWAP, VT, Expand); 482 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 483 setOperationAction(ISD::CTTZ, VT, Expand); 484 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 485 setOperationAction(ISD::VSELECT, VT, Expand); 486 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 487 setOperationAction(ISD::ROTL, VT, Expand); 488 setOperationAction(ISD::ROTR, VT, Expand); 489 490 for (MVT InnerVT : MVT::vector_valuetypes()) { 491 setTruncStoreAction(VT, InnerVT, Expand); 492 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 493 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 494 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 495 } 496 } 497 498 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 499 // with merges, splats, etc. 500 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 501 502 setOperationAction(ISD::AND , MVT::v4i32, Legal); 503 setOperationAction(ISD::OR , MVT::v4i32, Legal); 504 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 505 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 506 setOperationAction(ISD::SELECT, MVT::v4i32, 507 Subtarget.useCRBits() ? Legal : Expand); 508 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 509 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 510 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 511 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 512 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 513 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 514 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 515 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 516 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 517 518 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 519 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 520 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 521 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 522 523 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 524 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 525 526 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 527 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 528 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 529 } 530 531 if (Subtarget.hasP8Altivec()) 532 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 533 else 534 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 535 536 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 537 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 538 539 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 540 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 541 542 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 543 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 544 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 545 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 546 547 // Altivec does not contain unordered floating-point compare instructions 548 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 549 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 550 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 551 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 552 553 if (Subtarget.hasVSX()) { 554 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 555 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 556 if (Subtarget.hasP8Vector()) { 557 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 558 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 559 } 560 if (Subtarget.hasDirectMove()) { 561 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 562 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 564 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 565 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 567 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 568 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 569 } 570 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 571 572 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 573 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 574 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 575 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 576 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 577 578 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 579 580 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 581 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 582 583 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 584 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 585 586 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 587 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 588 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 589 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 590 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 591 592 // Share the Altivec comparison restrictions. 593 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 594 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 595 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 596 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 597 598 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 599 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 600 601 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 602 603 if (Subtarget.hasP8Vector()) 604 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 605 606 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 607 608 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 609 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 610 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 611 612 if (Subtarget.hasP8Altivec()) { 613 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 614 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 615 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 616 617 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 618 } 619 else { 620 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 621 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 622 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 623 624 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 625 626 // VSX v2i64 only supports non-arithmetic operations. 627 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 628 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 629 } 630 631 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 632 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 633 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 634 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 635 636 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 637 638 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 639 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 640 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 641 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 642 643 // Vector operation legalization checks the result type of 644 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 645 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 646 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 647 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 648 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 649 650 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 651 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 652 653 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 654 } 655 656 if (Subtarget.hasP8Altivec()) { 657 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 658 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 659 } 660 } 661 662 if (Subtarget.hasQPX()) { 663 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 664 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 665 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 666 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 667 668 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 669 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 670 671 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 672 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 673 674 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 675 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 676 677 if (!Subtarget.useCRBits()) 678 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 679 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 680 681 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 682 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 683 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 684 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 685 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 686 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 687 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 688 689 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 690 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 691 692 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 693 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 694 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 695 696 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 697 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 698 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 699 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 700 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 701 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 702 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 703 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 704 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 705 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 706 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 707 708 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 709 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 710 711 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 712 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 713 714 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 715 716 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 717 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 718 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 719 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 720 721 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 722 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 723 724 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 725 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 726 727 if (!Subtarget.useCRBits()) 728 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 729 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 730 731 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 732 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 733 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 734 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 735 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 736 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 737 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 738 739 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 740 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 741 742 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 743 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 744 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 745 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 746 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 747 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 748 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 749 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 750 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 751 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 752 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 753 754 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 755 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 756 757 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 758 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 759 760 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 761 762 setOperationAction(ISD::AND , MVT::v4i1, Legal); 763 setOperationAction(ISD::OR , MVT::v4i1, Legal); 764 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 765 766 if (!Subtarget.useCRBits()) 767 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 768 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 769 770 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 771 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 772 773 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 774 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 775 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 776 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 777 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 778 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 779 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 780 781 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 782 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 783 784 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 785 786 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 787 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 788 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 789 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 790 791 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 792 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 793 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 794 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 795 796 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 797 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 798 799 // These need to set FE_INEXACT, and so cannot be vectorized here. 800 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 801 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 802 803 if (TM.Options.UnsafeFPMath) { 804 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 805 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 806 807 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 808 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 809 } else { 810 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 811 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 812 813 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 814 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 815 } 816 } 817 818 if (Subtarget.has64BitSupport()) 819 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 820 821 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 822 823 if (!isPPC64) { 824 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 825 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 826 } 827 828 setBooleanContents(ZeroOrOneBooleanContent); 829 830 if (Subtarget.hasAltivec()) { 831 // Altivec instructions set fields to all zeros or all ones. 832 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 833 } 834 835 if (!isPPC64) { 836 // These libcalls are not available in 32-bit. 837 setLibcallName(RTLIB::SHL_I128, nullptr); 838 setLibcallName(RTLIB::SRL_I128, nullptr); 839 setLibcallName(RTLIB::SRA_I128, nullptr); 840 } 841 842 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 843 844 // We have target-specific dag combine patterns for the following nodes: 845 setTargetDAGCombine(ISD::SINT_TO_FP); 846 if (Subtarget.hasFPCVT()) 847 setTargetDAGCombine(ISD::UINT_TO_FP); 848 setTargetDAGCombine(ISD::LOAD); 849 setTargetDAGCombine(ISD::STORE); 850 setTargetDAGCombine(ISD::BR_CC); 851 if (Subtarget.useCRBits()) 852 setTargetDAGCombine(ISD::BRCOND); 853 setTargetDAGCombine(ISD::BSWAP); 854 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 855 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 856 setTargetDAGCombine(ISD::INTRINSIC_VOID); 857 858 setTargetDAGCombine(ISD::SIGN_EXTEND); 859 setTargetDAGCombine(ISD::ZERO_EXTEND); 860 setTargetDAGCombine(ISD::ANY_EXTEND); 861 862 if (Subtarget.useCRBits()) { 863 setTargetDAGCombine(ISD::TRUNCATE); 864 setTargetDAGCombine(ISD::SETCC); 865 setTargetDAGCombine(ISD::SELECT_CC); 866 } 867 868 // Use reciprocal estimates. 869 if (TM.Options.UnsafeFPMath) { 870 setTargetDAGCombine(ISD::FDIV); 871 setTargetDAGCombine(ISD::FSQRT); 872 } 873 874 // Darwin long double math library functions have $LDBL128 appended. 875 if (Subtarget.isDarwin()) { 876 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 877 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 878 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 879 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 880 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 881 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 882 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 883 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 884 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 885 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 886 } 887 888 // With 32 condition bits, we don't need to sink (and duplicate) compares 889 // aggressively in CodeGenPrep. 890 if (Subtarget.useCRBits()) { 891 setHasMultipleConditionRegisters(); 892 setJumpIsExpensive(); 893 } 894 895 setMinFunctionAlignment(2); 896 if (Subtarget.isDarwin()) 897 setPrefFunctionAlignment(4); 898 899 switch (Subtarget.getDarwinDirective()) { 900 default: break; 901 case PPC::DIR_970: 902 case PPC::DIR_A2: 903 case PPC::DIR_E500mc: 904 case PPC::DIR_E5500: 905 case PPC::DIR_PWR4: 906 case PPC::DIR_PWR5: 907 case PPC::DIR_PWR5X: 908 case PPC::DIR_PWR6: 909 case PPC::DIR_PWR6X: 910 case PPC::DIR_PWR7: 911 case PPC::DIR_PWR8: 912 setPrefFunctionAlignment(4); 913 setPrefLoopAlignment(4); 914 break; 915 } 916 917 setInsertFencesForAtomic(true); 918 919 if (Subtarget.enableMachineScheduler()) 920 setSchedulingPreference(Sched::Source); 921 else 922 setSchedulingPreference(Sched::Hybrid); 923 924 computeRegisterProperties(STI.getRegisterInfo()); 925 926 // The Freescale cores do better with aggressive inlining of memcpy and 927 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 928 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 929 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 930 MaxStoresPerMemset = 32; 931 MaxStoresPerMemsetOptSize = 16; 932 MaxStoresPerMemcpy = 32; 933 MaxStoresPerMemcpyOptSize = 8; 934 MaxStoresPerMemmove = 32; 935 MaxStoresPerMemmoveOptSize = 8; 936 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 937 // The A2 also benefits from (very) aggressive inlining of memcpy and 938 // friends. The overhead of a the function call, even when warm, can be 939 // over one hundred cycles. 940 MaxStoresPerMemset = 128; 941 MaxStoresPerMemcpy = 128; 942 MaxStoresPerMemmove = 128; 943 } 944 } 945 946 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 947 /// the desired ByVal argument alignment. 948 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 949 unsigned MaxMaxAlign) { 950 if (MaxAlign == MaxMaxAlign) 951 return; 952 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 953 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 954 MaxAlign = 32; 955 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 956 MaxAlign = 16; 957 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 958 unsigned EltAlign = 0; 959 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 960 if (EltAlign > MaxAlign) 961 MaxAlign = EltAlign; 962 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 963 for (auto *EltTy : STy->elements()) { 964 unsigned EltAlign = 0; 965 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 966 if (EltAlign > MaxAlign) 967 MaxAlign = EltAlign; 968 if (MaxAlign == MaxMaxAlign) 969 break; 970 } 971 } 972 } 973 974 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 975 /// function arguments in the caller parameter area. 976 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 977 const DataLayout &DL) const { 978 // Darwin passes everything on 4 byte boundary. 979 if (Subtarget.isDarwin()) 980 return 4; 981 982 // 16byte and wider vectors are passed on 16byte boundary. 983 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 984 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 985 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 986 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 987 return Align; 988 } 989 990 bool PPCTargetLowering::useSoftFloat() const { 991 return Subtarget.useSoftFloat(); 992 } 993 994 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 995 switch ((PPCISD::NodeType)Opcode) { 996 case PPCISD::FIRST_NUMBER: break; 997 case PPCISD::FSEL: return "PPCISD::FSEL"; 998 case PPCISD::FCFID: return "PPCISD::FCFID"; 999 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1000 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1001 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1002 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1003 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1004 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1005 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1006 case PPCISD::FRE: return "PPCISD::FRE"; 1007 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1008 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1009 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1010 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1011 case PPCISD::VPERM: return "PPCISD::VPERM"; 1012 case PPCISD::CMPB: return "PPCISD::CMPB"; 1013 case PPCISD::Hi: return "PPCISD::Hi"; 1014 case PPCISD::Lo: return "PPCISD::Lo"; 1015 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1016 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1017 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1018 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1019 case PPCISD::SRL: return "PPCISD::SRL"; 1020 case PPCISD::SRA: return "PPCISD::SRA"; 1021 case PPCISD::SHL: return "PPCISD::SHL"; 1022 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1023 case PPCISD::CALL: return "PPCISD::CALL"; 1024 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1025 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1026 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1027 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1028 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1029 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1030 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1031 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1032 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1033 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1034 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1035 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1036 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1037 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1038 case PPCISD::VCMP: return "PPCISD::VCMP"; 1039 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1040 case PPCISD::LBRX: return "PPCISD::LBRX"; 1041 case PPCISD::STBRX: return "PPCISD::STBRX"; 1042 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1043 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1044 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1045 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1046 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1047 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1048 case PPCISD::BDZ: return "PPCISD::BDZ"; 1049 case PPCISD::MFFS: return "PPCISD::MFFS"; 1050 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1051 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1052 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1053 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1054 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1055 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1056 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1057 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1058 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1059 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1060 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1061 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1062 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1063 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1064 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1065 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1066 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1067 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1068 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1069 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1070 case PPCISD::SC: return "PPCISD::SC"; 1071 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1072 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1073 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1074 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1075 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1076 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1077 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1078 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1079 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1080 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1081 } 1082 return nullptr; 1083 } 1084 1085 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1086 EVT VT) const { 1087 if (!VT.isVector()) 1088 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1089 1090 if (Subtarget.hasQPX()) 1091 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1092 1093 return VT.changeVectorElementTypeToInteger(); 1094 } 1095 1096 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1097 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1098 return true; 1099 } 1100 1101 //===----------------------------------------------------------------------===// 1102 // Node matching predicates, for use by the tblgen matching code. 1103 //===----------------------------------------------------------------------===// 1104 1105 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1106 static bool isFloatingPointZero(SDValue Op) { 1107 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1108 return CFP->getValueAPF().isZero(); 1109 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1110 // Maybe this has already been legalized into the constant pool? 1111 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1112 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1113 return CFP->getValueAPF().isZero(); 1114 } 1115 return false; 1116 } 1117 1118 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1119 /// true if Op is undef or if it matches the specified value. 1120 static bool isConstantOrUndef(int Op, int Val) { 1121 return Op < 0 || Op == Val; 1122 } 1123 1124 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1125 /// VPKUHUM instruction. 1126 /// The ShuffleKind distinguishes between big-endian operations with 1127 /// two different inputs (0), either-endian operations with two identical 1128 /// inputs (1), and little-endian operations with two different inputs (2). 1129 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1130 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1131 SelectionDAG &DAG) { 1132 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1133 if (ShuffleKind == 0) { 1134 if (IsLE) 1135 return false; 1136 for (unsigned i = 0; i != 16; ++i) 1137 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1138 return false; 1139 } else if (ShuffleKind == 2) { 1140 if (!IsLE) 1141 return false; 1142 for (unsigned i = 0; i != 16; ++i) 1143 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1144 return false; 1145 } else if (ShuffleKind == 1) { 1146 unsigned j = IsLE ? 0 : 1; 1147 for (unsigned i = 0; i != 8; ++i) 1148 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1149 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1150 return false; 1151 } 1152 return true; 1153 } 1154 1155 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1156 /// VPKUWUM instruction. 1157 /// The ShuffleKind distinguishes between big-endian operations with 1158 /// two different inputs (0), either-endian operations with two identical 1159 /// inputs (1), and little-endian operations with two different inputs (2). 1160 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1161 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1162 SelectionDAG &DAG) { 1163 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1164 if (ShuffleKind == 0) { 1165 if (IsLE) 1166 return false; 1167 for (unsigned i = 0; i != 16; i += 2) 1168 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1169 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1170 return false; 1171 } else if (ShuffleKind == 2) { 1172 if (!IsLE) 1173 return false; 1174 for (unsigned i = 0; i != 16; i += 2) 1175 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1176 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1177 return false; 1178 } else if (ShuffleKind == 1) { 1179 unsigned j = IsLE ? 0 : 2; 1180 for (unsigned i = 0; i != 8; i += 2) 1181 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1182 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1183 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1184 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1185 return false; 1186 } 1187 return true; 1188 } 1189 1190 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1191 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1192 /// current subtarget. 1193 /// 1194 /// The ShuffleKind distinguishes between big-endian operations with 1195 /// two different inputs (0), either-endian operations with two identical 1196 /// inputs (1), and little-endian operations with two different inputs (2). 1197 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1198 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1199 SelectionDAG &DAG) { 1200 const PPCSubtarget& Subtarget = 1201 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1202 if (!Subtarget.hasP8Vector()) 1203 return false; 1204 1205 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1206 if (ShuffleKind == 0) { 1207 if (IsLE) 1208 return false; 1209 for (unsigned i = 0; i != 16; i += 4) 1210 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1211 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1212 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1213 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1214 return false; 1215 } else if (ShuffleKind == 2) { 1216 if (!IsLE) 1217 return false; 1218 for (unsigned i = 0; i != 16; i += 4) 1219 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1220 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1221 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1222 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1223 return false; 1224 } else if (ShuffleKind == 1) { 1225 unsigned j = IsLE ? 0 : 4; 1226 for (unsigned i = 0; i != 8; i += 4) 1227 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1228 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1229 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1230 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1231 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1232 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1233 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1234 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /// isVMerge - Common function, used to match vmrg* shuffles. 1241 /// 1242 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1243 unsigned LHSStart, unsigned RHSStart) { 1244 if (N->getValueType(0) != MVT::v16i8) 1245 return false; 1246 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1247 "Unsupported merge size!"); 1248 1249 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1250 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1251 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1252 LHSStart+j+i*UnitSize) || 1253 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1254 RHSStart+j+i*UnitSize)) 1255 return false; 1256 } 1257 return true; 1258 } 1259 1260 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1261 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1262 /// The ShuffleKind distinguishes between big-endian merges with two 1263 /// different inputs (0), either-endian merges with two identical inputs (1), 1264 /// and little-endian merges with two different inputs (2). For the latter, 1265 /// the input operands are swapped (see PPCInstrAltivec.td). 1266 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1267 unsigned ShuffleKind, SelectionDAG &DAG) { 1268 if (DAG.getDataLayout().isLittleEndian()) { 1269 if (ShuffleKind == 1) // unary 1270 return isVMerge(N, UnitSize, 0, 0); 1271 else if (ShuffleKind == 2) // swapped 1272 return isVMerge(N, UnitSize, 0, 16); 1273 else 1274 return false; 1275 } else { 1276 if (ShuffleKind == 1) // unary 1277 return isVMerge(N, UnitSize, 8, 8); 1278 else if (ShuffleKind == 0) // normal 1279 return isVMerge(N, UnitSize, 8, 24); 1280 else 1281 return false; 1282 } 1283 } 1284 1285 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1286 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1287 /// The ShuffleKind distinguishes between big-endian merges with two 1288 /// different inputs (0), either-endian merges with two identical inputs (1), 1289 /// and little-endian merges with two different inputs (2). For the latter, 1290 /// the input operands are swapped (see PPCInstrAltivec.td). 1291 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1292 unsigned ShuffleKind, SelectionDAG &DAG) { 1293 if (DAG.getDataLayout().isLittleEndian()) { 1294 if (ShuffleKind == 1) // unary 1295 return isVMerge(N, UnitSize, 8, 8); 1296 else if (ShuffleKind == 2) // swapped 1297 return isVMerge(N, UnitSize, 8, 24); 1298 else 1299 return false; 1300 } else { 1301 if (ShuffleKind == 1) // unary 1302 return isVMerge(N, UnitSize, 0, 0); 1303 else if (ShuffleKind == 0) // normal 1304 return isVMerge(N, UnitSize, 0, 16); 1305 else 1306 return false; 1307 } 1308 } 1309 1310 /** 1311 * \brief Common function used to match vmrgew and vmrgow shuffles 1312 * 1313 * The indexOffset determines whether to look for even or odd words in 1314 * the shuffle mask. This is based on the of the endianness of the target 1315 * machine. 1316 * - Little Endian: 1317 * - Use offset of 0 to check for odd elements 1318 * - Use offset of 4 to check for even elements 1319 * - Big Endian: 1320 * - Use offset of 0 to check for even elements 1321 * - Use offset of 4 to check for odd elements 1322 * A detailed description of the vector element ordering for little endian and 1323 * big endian can be found at 1324 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1325 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1326 * compiler differences mean to you 1327 * 1328 * The mask to the shuffle vector instruction specifies the indices of the 1329 * elements from the two input vectors to place in the result. The elements are 1330 * numbered in array-access order, starting with the first vector. These vectors 1331 * are always of type v16i8, thus each vector will contain 16 elements of size 1332 * 8. More info on the shuffle vector can be found in the 1333 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1334 * Language Reference. 1335 * 1336 * The RHSStartValue indicates whether the same input vectors are used (unary) 1337 * or two different input vectors are used, based on the following: 1338 * - If the instruction uses the same vector for both inputs, the range of the 1339 * indices will be 0 to 15. In this case, the RHSStart value passed should 1340 * be 0. 1341 * - If the instruction has two different vectors then the range of the 1342 * indices will be 0 to 31. In this case, the RHSStart value passed should 1343 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1344 * to 31 specify elements in the second vector). 1345 * 1346 * \param[in] N The shuffle vector SD Node to analyze 1347 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1348 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1349 * vector to the shuffle_vector instruction 1350 * \return true iff this shuffle vector represents an even or odd word merge 1351 */ 1352 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1353 unsigned RHSStartValue) { 1354 if (N->getValueType(0) != MVT::v16i8) 1355 return false; 1356 1357 for (unsigned i = 0; i < 2; ++i) 1358 for (unsigned j = 0; j < 4; ++j) 1359 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1360 i*RHSStartValue+j+IndexOffset) || 1361 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1362 i*RHSStartValue+j+IndexOffset+8)) 1363 return false; 1364 return true; 1365 } 1366 1367 /** 1368 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1369 * vmrgow instructions. 1370 * 1371 * \param[in] N The shuffle vector SD Node to analyze 1372 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1373 * \param[in] ShuffleKind Identify the type of merge: 1374 * - 0 = big-endian merge with two different inputs; 1375 * - 1 = either-endian merge with two identical inputs; 1376 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1377 * little-endian merges). 1378 * \param[in] DAG The current SelectionDAG 1379 * \return true iff this shuffle mask 1380 */ 1381 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1382 unsigned ShuffleKind, SelectionDAG &DAG) { 1383 if (DAG.getDataLayout().isLittleEndian()) { 1384 unsigned indexOffset = CheckEven ? 4 : 0; 1385 if (ShuffleKind == 1) // Unary 1386 return isVMerge(N, indexOffset, 0); 1387 else if (ShuffleKind == 2) // swapped 1388 return isVMerge(N, indexOffset, 16); 1389 else 1390 return false; 1391 } 1392 else { 1393 unsigned indexOffset = CheckEven ? 0 : 4; 1394 if (ShuffleKind == 1) // Unary 1395 return isVMerge(N, indexOffset, 0); 1396 else if (ShuffleKind == 0) // Normal 1397 return isVMerge(N, indexOffset, 16); 1398 else 1399 return false; 1400 } 1401 return false; 1402 } 1403 1404 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1405 /// amount, otherwise return -1. 1406 /// The ShuffleKind distinguishes between big-endian operations with two 1407 /// different inputs (0), either-endian operations with two identical inputs 1408 /// (1), and little-endian operations with two different inputs (2). For the 1409 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1410 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1411 SelectionDAG &DAG) { 1412 if (N->getValueType(0) != MVT::v16i8) 1413 return -1; 1414 1415 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1416 1417 // Find the first non-undef value in the shuffle mask. 1418 unsigned i; 1419 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1420 /*search*/; 1421 1422 if (i == 16) return -1; // all undef. 1423 1424 // Otherwise, check to see if the rest of the elements are consecutively 1425 // numbered from this value. 1426 unsigned ShiftAmt = SVOp->getMaskElt(i); 1427 if (ShiftAmt < i) return -1; 1428 1429 ShiftAmt -= i; 1430 bool isLE = DAG.getDataLayout().isLittleEndian(); 1431 1432 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1433 // Check the rest of the elements to see if they are consecutive. 1434 for (++i; i != 16; ++i) 1435 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1436 return -1; 1437 } else if (ShuffleKind == 1) { 1438 // Check the rest of the elements to see if they are consecutive. 1439 for (++i; i != 16; ++i) 1440 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1441 return -1; 1442 } else 1443 return -1; 1444 1445 if (isLE) 1446 ShiftAmt = 16 - ShiftAmt; 1447 1448 return ShiftAmt; 1449 } 1450 1451 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1452 /// specifies a splat of a single element that is suitable for input to 1453 /// VSPLTB/VSPLTH/VSPLTW. 1454 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1455 assert(N->getValueType(0) == MVT::v16i8 && 1456 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1457 1458 // The consecutive indices need to specify an element, not part of two 1459 // different elements. So abandon ship early if this isn't the case. 1460 if (N->getMaskElt(0) % EltSize != 0) 1461 return false; 1462 1463 // This is a splat operation if each element of the permute is the same, and 1464 // if the value doesn't reference the second vector. 1465 unsigned ElementBase = N->getMaskElt(0); 1466 1467 // FIXME: Handle UNDEF elements too! 1468 if (ElementBase >= 16) 1469 return false; 1470 1471 // Check that the indices are consecutive, in the case of a multi-byte element 1472 // splatted with a v16i8 mask. 1473 for (unsigned i = 1; i != EltSize; ++i) 1474 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1475 return false; 1476 1477 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1478 if (N->getMaskElt(i) < 0) continue; 1479 for (unsigned j = 0; j != EltSize; ++j) 1480 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1481 return false; 1482 } 1483 return true; 1484 } 1485 1486 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1487 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1488 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1489 SelectionDAG &DAG) { 1490 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1491 assert(isSplatShuffleMask(SVOp, EltSize)); 1492 if (DAG.getDataLayout().isLittleEndian()) 1493 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1494 else 1495 return SVOp->getMaskElt(0) / EltSize; 1496 } 1497 1498 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1499 /// by using a vspltis[bhw] instruction of the specified element size, return 1500 /// the constant being splatted. The ByteSize field indicates the number of 1501 /// bytes of each element [124] -> [bhw]. 1502 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1503 SDValue OpVal(nullptr, 0); 1504 1505 // If ByteSize of the splat is bigger than the element size of the 1506 // build_vector, then we have a case where we are checking for a splat where 1507 // multiple elements of the buildvector are folded together into a single 1508 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1509 unsigned EltSize = 16/N->getNumOperands(); 1510 if (EltSize < ByteSize) { 1511 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1512 SDValue UniquedVals[4]; 1513 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1514 1515 // See if all of the elements in the buildvector agree across. 1516 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1517 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1518 // If the element isn't a constant, bail fully out. 1519 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1520 1521 1522 if (!UniquedVals[i&(Multiple-1)].getNode()) 1523 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1524 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1525 return SDValue(); // no match. 1526 } 1527 1528 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1529 // either constant or undef values that are identical for each chunk. See 1530 // if these chunks can form into a larger vspltis*. 1531 1532 // Check to see if all of the leading entries are either 0 or -1. If 1533 // neither, then this won't fit into the immediate field. 1534 bool LeadingZero = true; 1535 bool LeadingOnes = true; 1536 for (unsigned i = 0; i != Multiple-1; ++i) { 1537 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1538 1539 LeadingZero &= isNullConstant(UniquedVals[i]); 1540 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1541 } 1542 // Finally, check the least significant entry. 1543 if (LeadingZero) { 1544 if (!UniquedVals[Multiple-1].getNode()) 1545 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1546 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1547 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1548 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1549 } 1550 if (LeadingOnes) { 1551 if (!UniquedVals[Multiple-1].getNode()) 1552 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1553 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1554 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1555 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1556 } 1557 1558 return SDValue(); 1559 } 1560 1561 // Check to see if this buildvec has a single non-undef value in its elements. 1562 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1563 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1564 if (!OpVal.getNode()) 1565 OpVal = N->getOperand(i); 1566 else if (OpVal != N->getOperand(i)) 1567 return SDValue(); 1568 } 1569 1570 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1571 1572 unsigned ValSizeInBytes = EltSize; 1573 uint64_t Value = 0; 1574 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1575 Value = CN->getZExtValue(); 1576 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1577 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1578 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1579 } 1580 1581 // If the splat value is larger than the element value, then we can never do 1582 // this splat. The only case that we could fit the replicated bits into our 1583 // immediate field for would be zero, and we prefer to use vxor for it. 1584 if (ValSizeInBytes < ByteSize) return SDValue(); 1585 1586 // If the element value is larger than the splat value, check if it consists 1587 // of a repeated bit pattern of size ByteSize. 1588 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1589 return SDValue(); 1590 1591 // Properly sign extend the value. 1592 int MaskVal = SignExtend32(Value, ByteSize * 8); 1593 1594 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1595 if (MaskVal == 0) return SDValue(); 1596 1597 // Finally, if this value fits in a 5 bit sext field, return it 1598 if (SignExtend32<5>(MaskVal) == MaskVal) 1599 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1600 return SDValue(); 1601 } 1602 1603 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1604 /// amount, otherwise return -1. 1605 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1606 EVT VT = N->getValueType(0); 1607 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1608 return -1; 1609 1610 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1611 1612 // Find the first non-undef value in the shuffle mask. 1613 unsigned i; 1614 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1615 /*search*/; 1616 1617 if (i == 4) return -1; // all undef. 1618 1619 // Otherwise, check to see if the rest of the elements are consecutively 1620 // numbered from this value. 1621 unsigned ShiftAmt = SVOp->getMaskElt(i); 1622 if (ShiftAmt < i) return -1; 1623 ShiftAmt -= i; 1624 1625 // Check the rest of the elements to see if they are consecutive. 1626 for (++i; i != 4; ++i) 1627 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1628 return -1; 1629 1630 return ShiftAmt; 1631 } 1632 1633 //===----------------------------------------------------------------------===// 1634 // Addressing Mode Selection 1635 //===----------------------------------------------------------------------===// 1636 1637 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1638 /// or 64-bit immediate, and if the value can be accurately represented as a 1639 /// sign extension from a 16-bit value. If so, this returns true and the 1640 /// immediate. 1641 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1642 if (!isa<ConstantSDNode>(N)) 1643 return false; 1644 1645 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1646 if (N->getValueType(0) == MVT::i32) 1647 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1648 else 1649 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1650 } 1651 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1652 return isIntS16Immediate(Op.getNode(), Imm); 1653 } 1654 1655 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1656 /// can be represented as an indexed [r+r] operation. Returns false if it 1657 /// can be more efficiently represented with [r+imm]. 1658 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1659 SDValue &Index, 1660 SelectionDAG &DAG) const { 1661 short imm = 0; 1662 if (N.getOpcode() == ISD::ADD) { 1663 if (isIntS16Immediate(N.getOperand(1), imm)) 1664 return false; // r+i 1665 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1666 return false; // r+i 1667 1668 Base = N.getOperand(0); 1669 Index = N.getOperand(1); 1670 return true; 1671 } else if (N.getOpcode() == ISD::OR) { 1672 if (isIntS16Immediate(N.getOperand(1), imm)) 1673 return false; // r+i can fold it if we can. 1674 1675 // If this is an or of disjoint bitfields, we can codegen this as an add 1676 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1677 // disjoint. 1678 APInt LHSKnownZero, LHSKnownOne; 1679 APInt RHSKnownZero, RHSKnownOne; 1680 DAG.computeKnownBits(N.getOperand(0), 1681 LHSKnownZero, LHSKnownOne); 1682 1683 if (LHSKnownZero.getBoolValue()) { 1684 DAG.computeKnownBits(N.getOperand(1), 1685 RHSKnownZero, RHSKnownOne); 1686 // If all of the bits are known zero on the LHS or RHS, the add won't 1687 // carry. 1688 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1689 Base = N.getOperand(0); 1690 Index = N.getOperand(1); 1691 return true; 1692 } 1693 } 1694 } 1695 1696 return false; 1697 } 1698 1699 // If we happen to be doing an i64 load or store into a stack slot that has 1700 // less than a 4-byte alignment, then the frame-index elimination may need to 1701 // use an indexed load or store instruction (because the offset may not be a 1702 // multiple of 4). The extra register needed to hold the offset comes from the 1703 // register scavenger, and it is possible that the scavenger will need to use 1704 // an emergency spill slot. As a result, we need to make sure that a spill slot 1705 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1706 // stack slot. 1707 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1708 // FIXME: This does not handle the LWA case. 1709 if (VT != MVT::i64) 1710 return; 1711 1712 // NOTE: We'll exclude negative FIs here, which come from argument 1713 // lowering, because there are no known test cases triggering this problem 1714 // using packed structures (or similar). We can remove this exclusion if 1715 // we find such a test case. The reason why this is so test-case driven is 1716 // because this entire 'fixup' is only to prevent crashes (from the 1717 // register scavenger) on not-really-valid inputs. For example, if we have: 1718 // %a = alloca i1 1719 // %b = bitcast i1* %a to i64* 1720 // store i64* a, i64 b 1721 // then the store should really be marked as 'align 1', but is not. If it 1722 // were marked as 'align 1' then the indexed form would have been 1723 // instruction-selected initially, and the problem this 'fixup' is preventing 1724 // won't happen regardless. 1725 if (FrameIdx < 0) 1726 return; 1727 1728 MachineFunction &MF = DAG.getMachineFunction(); 1729 MachineFrameInfo *MFI = MF.getFrameInfo(); 1730 1731 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1732 if (Align >= 4) 1733 return; 1734 1735 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1736 FuncInfo->setHasNonRISpills(); 1737 } 1738 1739 /// Returns true if the address N can be represented by a base register plus 1740 /// a signed 16-bit displacement [r+imm], and if it is not better 1741 /// represented as reg+reg. If Aligned is true, only accept displacements 1742 /// suitable for STD and friends, i.e. multiples of 4. 1743 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1744 SDValue &Base, 1745 SelectionDAG &DAG, 1746 bool Aligned) const { 1747 // FIXME dl should come from parent load or store, not from address 1748 SDLoc dl(N); 1749 // If this can be more profitably realized as r+r, fail. 1750 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1751 return false; 1752 1753 if (N.getOpcode() == ISD::ADD) { 1754 short imm = 0; 1755 if (isIntS16Immediate(N.getOperand(1), imm) && 1756 (!Aligned || (imm & 3) == 0)) { 1757 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1758 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1759 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1760 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1761 } else { 1762 Base = N.getOperand(0); 1763 } 1764 return true; // [r+i] 1765 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1766 // Match LOAD (ADD (X, Lo(G))). 1767 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1768 && "Cannot handle constant offsets yet!"); 1769 Disp = N.getOperand(1).getOperand(0); // The global address. 1770 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1771 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1772 Disp.getOpcode() == ISD::TargetConstantPool || 1773 Disp.getOpcode() == ISD::TargetJumpTable); 1774 Base = N.getOperand(0); 1775 return true; // [&g+r] 1776 } 1777 } else if (N.getOpcode() == ISD::OR) { 1778 short imm = 0; 1779 if (isIntS16Immediate(N.getOperand(1), imm) && 1780 (!Aligned || (imm & 3) == 0)) { 1781 // If this is an or of disjoint bitfields, we can codegen this as an add 1782 // (for better address arithmetic) if the LHS and RHS of the OR are 1783 // provably disjoint. 1784 APInt LHSKnownZero, LHSKnownOne; 1785 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1786 1787 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1788 // If all of the bits are known zero on the LHS or RHS, the add won't 1789 // carry. 1790 if (FrameIndexSDNode *FI = 1791 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1792 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1793 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1794 } else { 1795 Base = N.getOperand(0); 1796 } 1797 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1798 return true; 1799 } 1800 } 1801 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1802 // Loading from a constant address. 1803 1804 // If this address fits entirely in a 16-bit sext immediate field, codegen 1805 // this as "d, 0" 1806 short Imm; 1807 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1808 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1809 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1810 CN->getValueType(0)); 1811 return true; 1812 } 1813 1814 // Handle 32-bit sext immediates with LIS + addr mode. 1815 if ((CN->getValueType(0) == MVT::i32 || 1816 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1817 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1818 int Addr = (int)CN->getZExtValue(); 1819 1820 // Otherwise, break this down into an LIS + disp. 1821 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1822 1823 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1824 MVT::i32); 1825 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1826 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1827 return true; 1828 } 1829 } 1830 1831 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1832 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1833 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1834 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1835 } else 1836 Base = N; 1837 return true; // [r+0] 1838 } 1839 1840 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1841 /// represented as an indexed [r+r] operation. 1842 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1843 SDValue &Index, 1844 SelectionDAG &DAG) const { 1845 // Check to see if we can easily represent this as an [r+r] address. This 1846 // will fail if it thinks that the address is more profitably represented as 1847 // reg+imm, e.g. where imm = 0. 1848 if (SelectAddressRegReg(N, Base, Index, DAG)) 1849 return true; 1850 1851 // If the operand is an addition, always emit this as [r+r], since this is 1852 // better (for code size, and execution, as the memop does the add for free) 1853 // than emitting an explicit add. 1854 if (N.getOpcode() == ISD::ADD) { 1855 Base = N.getOperand(0); 1856 Index = N.getOperand(1); 1857 return true; 1858 } 1859 1860 // Otherwise, do it the hard way, using R0 as the base register. 1861 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1862 N.getValueType()); 1863 Index = N; 1864 return true; 1865 } 1866 1867 /// getPreIndexedAddressParts - returns true by value, base pointer and 1868 /// offset pointer and addressing mode by reference if the node's address 1869 /// can be legally represented as pre-indexed load / store address. 1870 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1871 SDValue &Offset, 1872 ISD::MemIndexedMode &AM, 1873 SelectionDAG &DAG) const { 1874 if (DisablePPCPreinc) return false; 1875 1876 bool isLoad = true; 1877 SDValue Ptr; 1878 EVT VT; 1879 unsigned Alignment; 1880 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1881 Ptr = LD->getBasePtr(); 1882 VT = LD->getMemoryVT(); 1883 Alignment = LD->getAlignment(); 1884 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1885 Ptr = ST->getBasePtr(); 1886 VT = ST->getMemoryVT(); 1887 Alignment = ST->getAlignment(); 1888 isLoad = false; 1889 } else 1890 return false; 1891 1892 // PowerPC doesn't have preinc load/store instructions for vectors (except 1893 // for QPX, which does have preinc r+r forms). 1894 if (VT.isVector()) { 1895 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1896 return false; 1897 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1898 AM = ISD::PRE_INC; 1899 return true; 1900 } 1901 } 1902 1903 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1904 1905 // Common code will reject creating a pre-inc form if the base pointer 1906 // is a frame index, or if N is a store and the base pointer is either 1907 // the same as or a predecessor of the value being stored. Check for 1908 // those situations here, and try with swapped Base/Offset instead. 1909 bool Swap = false; 1910 1911 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1912 Swap = true; 1913 else if (!isLoad) { 1914 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1915 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1916 Swap = true; 1917 } 1918 1919 if (Swap) 1920 std::swap(Base, Offset); 1921 1922 AM = ISD::PRE_INC; 1923 return true; 1924 } 1925 1926 // LDU/STU can only handle immediates that are a multiple of 4. 1927 if (VT != MVT::i64) { 1928 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1929 return false; 1930 } else { 1931 // LDU/STU need an address with at least 4-byte alignment. 1932 if (Alignment < 4) 1933 return false; 1934 1935 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1936 return false; 1937 } 1938 1939 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1940 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1941 // sext i32 to i64 when addr mode is r+i. 1942 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1943 LD->getExtensionType() == ISD::SEXTLOAD && 1944 isa<ConstantSDNode>(Offset)) 1945 return false; 1946 } 1947 1948 AM = ISD::PRE_INC; 1949 return true; 1950 } 1951 1952 //===----------------------------------------------------------------------===// 1953 // LowerOperation implementation 1954 //===----------------------------------------------------------------------===// 1955 1956 /// GetLabelAccessInfo - Return true if we should reference labels using a 1957 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1958 static bool GetLabelAccessInfo(const TargetMachine &TM, 1959 const PPCSubtarget &Subtarget, 1960 unsigned &HiOpFlags, unsigned &LoOpFlags, 1961 const GlobalValue *GV = nullptr) { 1962 HiOpFlags = PPCII::MO_HA; 1963 LoOpFlags = PPCII::MO_LO; 1964 1965 // Don't use the pic base if not in PIC relocation model. 1966 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1967 1968 if (isPIC) { 1969 HiOpFlags |= PPCII::MO_PIC_FLAG; 1970 LoOpFlags |= PPCII::MO_PIC_FLAG; 1971 } 1972 1973 // If this is a reference to a global value that requires a non-lazy-ptr, make 1974 // sure that instruction lowering adds it. 1975 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1976 HiOpFlags |= PPCII::MO_NLP_FLAG; 1977 LoOpFlags |= PPCII::MO_NLP_FLAG; 1978 1979 if (GV->hasHiddenVisibility()) { 1980 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1981 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1982 } 1983 } 1984 1985 return isPIC; 1986 } 1987 1988 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1989 SelectionDAG &DAG) { 1990 SDLoc DL(HiPart); 1991 EVT PtrVT = HiPart.getValueType(); 1992 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 1993 1994 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1995 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1996 1997 // With PIC, the first instruction is actually "GR+hi(&G)". 1998 if (isPIC) 1999 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2000 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2001 2002 // Generate non-pic code that has direct accesses to the constant pool. 2003 // The address of the global is just (hi(&g)+lo(&g)). 2004 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2005 } 2006 2007 static void setUsesTOCBasePtr(MachineFunction &MF) { 2008 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2009 FuncInfo->setUsesTOCBasePtr(); 2010 } 2011 2012 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2013 setUsesTOCBasePtr(DAG.getMachineFunction()); 2014 } 2015 2016 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit, 2017 SDValue GA) { 2018 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2019 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2020 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2021 2022 SDValue Ops[] = { GA, Reg }; 2023 return DAG.getMemIntrinsicNode( 2024 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2025 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2026 false, 0); 2027 } 2028 2029 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2030 SelectionDAG &DAG) const { 2031 EVT PtrVT = Op.getValueType(); 2032 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2033 const Constant *C = CP->getConstVal(); 2034 2035 // 64-bit SVR4 ABI code is always position-independent. 2036 // The actual address of the GlobalValue is stored in the TOC. 2037 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2038 setUsesTOCBasePtr(DAG); 2039 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2040 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2041 } 2042 2043 unsigned MOHiFlag, MOLoFlag; 2044 bool isPIC = 2045 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2046 2047 if (isPIC && Subtarget.isSVR4ABI()) { 2048 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2049 PPCII::MO_PIC_FLAG); 2050 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2051 } 2052 2053 SDValue CPIHi = 2054 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2055 SDValue CPILo = 2056 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2057 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2058 } 2059 2060 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2061 EVT PtrVT = Op.getValueType(); 2062 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2063 2064 // 64-bit SVR4 ABI code is always position-independent. 2065 // The actual address of the GlobalValue is stored in the TOC. 2066 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2067 setUsesTOCBasePtr(DAG); 2068 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2069 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2070 } 2071 2072 unsigned MOHiFlag, MOLoFlag; 2073 bool isPIC = 2074 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2075 2076 if (isPIC && Subtarget.isSVR4ABI()) { 2077 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2078 PPCII::MO_PIC_FLAG); 2079 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2080 } 2081 2082 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2083 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2084 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2085 } 2086 2087 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2088 SelectionDAG &DAG) const { 2089 EVT PtrVT = Op.getValueType(); 2090 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2091 const BlockAddress *BA = BASDN->getBlockAddress(); 2092 2093 // 64-bit SVR4 ABI code is always position-independent. 2094 // The actual BlockAddress is stored in the TOC. 2095 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2096 setUsesTOCBasePtr(DAG); 2097 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2098 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2099 } 2100 2101 unsigned MOHiFlag, MOLoFlag; 2102 bool isPIC = 2103 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2104 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2105 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2106 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2107 } 2108 2109 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2110 SelectionDAG &DAG) const { 2111 2112 // FIXME: TLS addresses currently use medium model code sequences, 2113 // which is the most useful form. Eventually support for small and 2114 // large models could be added if users need it, at the cost of 2115 // additional complexity. 2116 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2117 if (DAG.getTarget().Options.EmulatedTLS) 2118 return LowerToTLSEmulatedModel(GA, DAG); 2119 2120 SDLoc dl(GA); 2121 const GlobalValue *GV = GA->getGlobal(); 2122 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2123 bool is64bit = Subtarget.isPPC64(); 2124 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2125 PICLevel::Level picLevel = M->getPICLevel(); 2126 2127 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2128 2129 if (Model == TLSModel::LocalExec) { 2130 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2131 PPCII::MO_TPREL_HA); 2132 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2133 PPCII::MO_TPREL_LO); 2134 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2135 is64bit ? MVT::i64 : MVT::i32); 2136 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2137 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2138 } 2139 2140 if (Model == TLSModel::InitialExec) { 2141 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2142 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2143 PPCII::MO_TLS); 2144 SDValue GOTPtr; 2145 if (is64bit) { 2146 setUsesTOCBasePtr(DAG); 2147 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2148 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2149 PtrVT, GOTReg, TGA); 2150 } else 2151 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2152 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2153 PtrVT, TGA, GOTPtr); 2154 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2155 } 2156 2157 if (Model == TLSModel::GeneralDynamic) { 2158 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2159 SDValue GOTPtr; 2160 if (is64bit) { 2161 setUsesTOCBasePtr(DAG); 2162 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2163 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2164 GOTReg, TGA); 2165 } else { 2166 if (picLevel == PICLevel::Small) 2167 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2168 else 2169 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2170 } 2171 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2172 GOTPtr, TGA, TGA); 2173 } 2174 2175 if (Model == TLSModel::LocalDynamic) { 2176 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2177 SDValue GOTPtr; 2178 if (is64bit) { 2179 setUsesTOCBasePtr(DAG); 2180 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2181 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2182 GOTReg, TGA); 2183 } else { 2184 if (picLevel == PICLevel::Small) 2185 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2186 else 2187 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2188 } 2189 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2190 PtrVT, GOTPtr, TGA, TGA); 2191 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2192 PtrVT, TLSAddr, TGA); 2193 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2194 } 2195 2196 llvm_unreachable("Unknown TLS model!"); 2197 } 2198 2199 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2200 SelectionDAG &DAG) const { 2201 EVT PtrVT = Op.getValueType(); 2202 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2203 SDLoc DL(GSDN); 2204 const GlobalValue *GV = GSDN->getGlobal(); 2205 2206 // 64-bit SVR4 ABI code is always position-independent. 2207 // The actual address of the GlobalValue is stored in the TOC. 2208 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2209 setUsesTOCBasePtr(DAG); 2210 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2211 return getTOCEntry(DAG, DL, true, GA); 2212 } 2213 2214 unsigned MOHiFlag, MOLoFlag; 2215 bool isPIC = 2216 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2217 2218 if (isPIC && Subtarget.isSVR4ABI()) { 2219 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2220 GSDN->getOffset(), 2221 PPCII::MO_PIC_FLAG); 2222 return getTOCEntry(DAG, DL, false, GA); 2223 } 2224 2225 SDValue GAHi = 2226 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2227 SDValue GALo = 2228 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2229 2230 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2231 2232 // If the global reference is actually to a non-lazy-pointer, we have to do an 2233 // extra load to get the address of the global. 2234 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2235 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2236 false, false, false, 0); 2237 return Ptr; 2238 } 2239 2240 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2241 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2242 SDLoc dl(Op); 2243 2244 if (Op.getValueType() == MVT::v2i64) { 2245 // When the operands themselves are v2i64 values, we need to do something 2246 // special because VSX has no underlying comparison operations for these. 2247 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2248 // Equality can be handled by casting to the legal type for Altivec 2249 // comparisons, everything else needs to be expanded. 2250 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2251 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2252 DAG.getSetCC(dl, MVT::v4i32, 2253 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2254 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2255 CC)); 2256 } 2257 2258 return SDValue(); 2259 } 2260 2261 // We handle most of these in the usual way. 2262 return Op; 2263 } 2264 2265 // If we're comparing for equality to zero, expose the fact that this is 2266 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2267 // fold the new nodes. 2268 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2269 if (C->isNullValue() && CC == ISD::SETEQ) { 2270 EVT VT = Op.getOperand(0).getValueType(); 2271 SDValue Zext = Op.getOperand(0); 2272 if (VT.bitsLT(MVT::i32)) { 2273 VT = MVT::i32; 2274 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2275 } 2276 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2277 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2278 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2279 DAG.getConstant(Log2b, dl, MVT::i32)); 2280 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2281 } 2282 // Leave comparisons against 0 and -1 alone for now, since they're usually 2283 // optimized. FIXME: revisit this when we can custom lower all setcc 2284 // optimizations. 2285 if (C->isAllOnesValue() || C->isNullValue()) 2286 return SDValue(); 2287 } 2288 2289 // If we have an integer seteq/setne, turn it into a compare against zero 2290 // by xor'ing the rhs with the lhs, which is faster than setting a 2291 // condition register, reading it back out, and masking the correct bit. The 2292 // normal approach here uses sub to do this instead of xor. Using xor exposes 2293 // the result to other bit-twiddling opportunities. 2294 EVT LHSVT = Op.getOperand(0).getValueType(); 2295 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2296 EVT VT = Op.getValueType(); 2297 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2298 Op.getOperand(1)); 2299 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2300 } 2301 return SDValue(); 2302 } 2303 2304 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2305 const PPCSubtarget &Subtarget) const { 2306 SDNode *Node = Op.getNode(); 2307 EVT VT = Node->getValueType(0); 2308 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2309 SDValue InChain = Node->getOperand(0); 2310 SDValue VAListPtr = Node->getOperand(1); 2311 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2312 SDLoc dl(Node); 2313 2314 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2315 2316 // gpr_index 2317 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2318 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2319 false, false, false, 0); 2320 InChain = GprIndex.getValue(1); 2321 2322 if (VT == MVT::i64) { 2323 // Check if GprIndex is even 2324 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2325 DAG.getConstant(1, dl, MVT::i32)); 2326 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2327 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2328 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2329 DAG.getConstant(1, dl, MVT::i32)); 2330 // Align GprIndex to be even if it isn't 2331 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2332 GprIndex); 2333 } 2334 2335 // fpr index is 1 byte after gpr 2336 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2337 DAG.getConstant(1, dl, MVT::i32)); 2338 2339 // fpr 2340 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2341 FprPtr, MachinePointerInfo(SV), MVT::i8, 2342 false, false, false, 0); 2343 InChain = FprIndex.getValue(1); 2344 2345 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2346 DAG.getConstant(8, dl, MVT::i32)); 2347 2348 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2349 DAG.getConstant(4, dl, MVT::i32)); 2350 2351 // areas 2352 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2353 MachinePointerInfo(), false, false, 2354 false, 0); 2355 InChain = OverflowArea.getValue(1); 2356 2357 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2358 MachinePointerInfo(), false, false, 2359 false, 0); 2360 InChain = RegSaveArea.getValue(1); 2361 2362 // select overflow_area if index > 8 2363 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2364 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2365 2366 // adjustment constant gpr_index * 4/8 2367 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2368 VT.isInteger() ? GprIndex : FprIndex, 2369 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2370 MVT::i32)); 2371 2372 // OurReg = RegSaveArea + RegConstant 2373 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2374 RegConstant); 2375 2376 // Floating types are 32 bytes into RegSaveArea 2377 if (VT.isFloatingPoint()) 2378 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2379 DAG.getConstant(32, dl, MVT::i32)); 2380 2381 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2382 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2383 VT.isInteger() ? GprIndex : FprIndex, 2384 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2385 MVT::i32)); 2386 2387 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2388 VT.isInteger() ? VAListPtr : FprPtr, 2389 MachinePointerInfo(SV), 2390 MVT::i8, false, false, 0); 2391 2392 // determine if we should load from reg_save_area or overflow_area 2393 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2394 2395 // increase overflow_area by 4/8 if gpr/fpr > 8 2396 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2397 DAG.getConstant(VT.isInteger() ? 4 : 8, 2398 dl, MVT::i32)); 2399 2400 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2401 OverflowAreaPlusN); 2402 2403 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2404 OverflowAreaPtr, 2405 MachinePointerInfo(), 2406 MVT::i32, false, false, 0); 2407 2408 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2409 false, false, false, 0); 2410 } 2411 2412 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2413 const PPCSubtarget &Subtarget) const { 2414 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2415 2416 // We have to copy the entire va_list struct: 2417 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2418 return DAG.getMemcpy(Op.getOperand(0), Op, 2419 Op.getOperand(1), Op.getOperand(2), 2420 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2421 false, MachinePointerInfo(), MachinePointerInfo()); 2422 } 2423 2424 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2425 SelectionDAG &DAG) const { 2426 return Op.getOperand(0); 2427 } 2428 2429 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2430 SelectionDAG &DAG) const { 2431 SDValue Chain = Op.getOperand(0); 2432 SDValue Trmp = Op.getOperand(1); // trampoline 2433 SDValue FPtr = Op.getOperand(2); // nested function 2434 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2435 SDLoc dl(Op); 2436 2437 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2438 bool isPPC64 = (PtrVT == MVT::i64); 2439 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2440 2441 TargetLowering::ArgListTy Args; 2442 TargetLowering::ArgListEntry Entry; 2443 2444 Entry.Ty = IntPtrTy; 2445 Entry.Node = Trmp; Args.push_back(Entry); 2446 2447 // TrampSize == (isPPC64 ? 48 : 40); 2448 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2449 isPPC64 ? MVT::i64 : MVT::i32); 2450 Args.push_back(Entry); 2451 2452 Entry.Node = FPtr; Args.push_back(Entry); 2453 Entry.Node = Nest; Args.push_back(Entry); 2454 2455 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2456 TargetLowering::CallLoweringInfo CLI(DAG); 2457 CLI.setDebugLoc(dl).setChain(Chain) 2458 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2459 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2460 std::move(Args), 0); 2461 2462 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2463 return CallResult.second; 2464 } 2465 2466 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2467 const PPCSubtarget &Subtarget) const { 2468 MachineFunction &MF = DAG.getMachineFunction(); 2469 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2470 2471 SDLoc dl(Op); 2472 2473 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2474 // vastart just stores the address of the VarArgsFrameIndex slot into the 2475 // memory location argument. 2476 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2477 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2478 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2479 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2480 MachinePointerInfo(SV), 2481 false, false, 0); 2482 } 2483 2484 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2485 // We suppose the given va_list is already allocated. 2486 // 2487 // typedef struct { 2488 // char gpr; /* index into the array of 8 GPRs 2489 // * stored in the register save area 2490 // * gpr=0 corresponds to r3, 2491 // * gpr=1 to r4, etc. 2492 // */ 2493 // char fpr; /* index into the array of 8 FPRs 2494 // * stored in the register save area 2495 // * fpr=0 corresponds to f1, 2496 // * fpr=1 to f2, etc. 2497 // */ 2498 // char *overflow_arg_area; 2499 // /* location on stack that holds 2500 // * the next overflow argument 2501 // */ 2502 // char *reg_save_area; 2503 // /* where r3:r10 and f1:f8 (if saved) 2504 // * are stored 2505 // */ 2506 // } va_list[1]; 2507 2508 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2509 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2510 2511 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2512 2513 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2514 PtrVT); 2515 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2516 PtrVT); 2517 2518 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2519 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2520 2521 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2522 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2523 2524 uint64_t FPROffset = 1; 2525 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2526 2527 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2528 2529 // Store first byte : number of int regs 2530 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2531 Op.getOperand(1), 2532 MachinePointerInfo(SV), 2533 MVT::i8, false, false, 0); 2534 uint64_t nextOffset = FPROffset; 2535 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2536 ConstFPROffset); 2537 2538 // Store second byte : number of float regs 2539 SDValue secondStore = 2540 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2541 MachinePointerInfo(SV, nextOffset), MVT::i8, 2542 false, false, 0); 2543 nextOffset += StackOffset; 2544 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2545 2546 // Store second word : arguments given on stack 2547 SDValue thirdStore = 2548 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2549 MachinePointerInfo(SV, nextOffset), 2550 false, false, 0); 2551 nextOffset += FrameOffset; 2552 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2553 2554 // Store third word : arguments given in registers 2555 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2556 MachinePointerInfo(SV, nextOffset), 2557 false, false, 0); 2558 2559 } 2560 2561 #include "PPCGenCallingConv.inc" 2562 2563 // Function whose sole purpose is to kill compiler warnings 2564 // stemming from unused functions included from PPCGenCallingConv.inc. 2565 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2566 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2567 } 2568 2569 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2570 CCValAssign::LocInfo &LocInfo, 2571 ISD::ArgFlagsTy &ArgFlags, 2572 CCState &State) { 2573 return true; 2574 } 2575 2576 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2577 MVT &LocVT, 2578 CCValAssign::LocInfo &LocInfo, 2579 ISD::ArgFlagsTy &ArgFlags, 2580 CCState &State) { 2581 static const MCPhysReg ArgRegs[] = { 2582 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2583 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2584 }; 2585 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2586 2587 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2588 2589 // Skip one register if the first unallocated register has an even register 2590 // number and there are still argument registers available which have not been 2591 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2592 // need to skip a register if RegNum is odd. 2593 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2594 State.AllocateReg(ArgRegs[RegNum]); 2595 } 2596 2597 // Always return false here, as this function only makes sure that the first 2598 // unallocated register has an odd register number and does not actually 2599 // allocate a register for the current argument. 2600 return false; 2601 } 2602 2603 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2604 MVT &LocVT, 2605 CCValAssign::LocInfo &LocInfo, 2606 ISD::ArgFlagsTy &ArgFlags, 2607 CCState &State) { 2608 static const MCPhysReg ArgRegs[] = { 2609 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2610 PPC::F8 2611 }; 2612 2613 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2614 2615 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2616 2617 // If there is only one Floating-point register left we need to put both f64 2618 // values of a split ppc_fp128 value on the stack. 2619 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2620 State.AllocateReg(ArgRegs[RegNum]); 2621 } 2622 2623 // Always return false here, as this function only makes sure that the two f64 2624 // values a ppc_fp128 value is split into are both passed in registers or both 2625 // passed on the stack and does not actually allocate a register for the 2626 // current argument. 2627 return false; 2628 } 2629 2630 /// FPR - The set of FP registers that should be allocated for arguments, 2631 /// on Darwin. 2632 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2633 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2634 PPC::F11, PPC::F12, PPC::F13}; 2635 2636 /// QFPR - The set of QPX registers that should be allocated for arguments. 2637 static const MCPhysReg QFPR[] = { 2638 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2639 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2640 2641 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2642 /// the stack. 2643 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2644 unsigned PtrByteSize) { 2645 unsigned ArgSize = ArgVT.getStoreSize(); 2646 if (Flags.isByVal()) 2647 ArgSize = Flags.getByValSize(); 2648 2649 // Round up to multiples of the pointer size, except for array members, 2650 // which are always packed. 2651 if (!Flags.isInConsecutiveRegs()) 2652 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2653 2654 return ArgSize; 2655 } 2656 2657 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2658 /// on the stack. 2659 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2660 ISD::ArgFlagsTy Flags, 2661 unsigned PtrByteSize) { 2662 unsigned Align = PtrByteSize; 2663 2664 // Altivec parameters are padded to a 16 byte boundary. 2665 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2666 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2667 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2668 ArgVT == MVT::v1i128) 2669 Align = 16; 2670 // QPX vector types stored in double-precision are padded to a 32 byte 2671 // boundary. 2672 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2673 Align = 32; 2674 2675 // ByVal parameters are aligned as requested. 2676 if (Flags.isByVal()) { 2677 unsigned BVAlign = Flags.getByValAlign(); 2678 if (BVAlign > PtrByteSize) { 2679 if (BVAlign % PtrByteSize != 0) 2680 llvm_unreachable( 2681 "ByVal alignment is not a multiple of the pointer size"); 2682 2683 Align = BVAlign; 2684 } 2685 } 2686 2687 // Array members are always packed to their original alignment. 2688 if (Flags.isInConsecutiveRegs()) { 2689 // If the array member was split into multiple registers, the first 2690 // needs to be aligned to the size of the full type. (Except for 2691 // ppcf128, which is only aligned as its f64 components.) 2692 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2693 Align = OrigVT.getStoreSize(); 2694 else 2695 Align = ArgVT.getStoreSize(); 2696 } 2697 2698 return Align; 2699 } 2700 2701 /// CalculateStackSlotUsed - Return whether this argument will use its 2702 /// stack slot (instead of being passed in registers). ArgOffset, 2703 /// AvailableFPRs, and AvailableVRs must hold the current argument 2704 /// position, and will be updated to account for this argument. 2705 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2706 ISD::ArgFlagsTy Flags, 2707 unsigned PtrByteSize, 2708 unsigned LinkageSize, 2709 unsigned ParamAreaSize, 2710 unsigned &ArgOffset, 2711 unsigned &AvailableFPRs, 2712 unsigned &AvailableVRs, bool HasQPX) { 2713 bool UseMemory = false; 2714 2715 // Respect alignment of argument on the stack. 2716 unsigned Align = 2717 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2718 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2719 // If there's no space left in the argument save area, we must 2720 // use memory (this check also catches zero-sized arguments). 2721 if (ArgOffset >= LinkageSize + ParamAreaSize) 2722 UseMemory = true; 2723 2724 // Allocate argument on the stack. 2725 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2726 if (Flags.isInConsecutiveRegsLast()) 2727 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2728 // If we overran the argument save area, we must use memory 2729 // (this check catches arguments passed partially in memory) 2730 if (ArgOffset > LinkageSize + ParamAreaSize) 2731 UseMemory = true; 2732 2733 // However, if the argument is actually passed in an FPR or a VR, 2734 // we don't use memory after all. 2735 if (!Flags.isByVal()) { 2736 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2737 // QPX registers overlap with the scalar FP registers. 2738 (HasQPX && (ArgVT == MVT::v4f32 || 2739 ArgVT == MVT::v4f64 || 2740 ArgVT == MVT::v4i1))) 2741 if (AvailableFPRs > 0) { 2742 --AvailableFPRs; 2743 return false; 2744 } 2745 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2746 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2747 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2748 ArgVT == MVT::v1i128) 2749 if (AvailableVRs > 0) { 2750 --AvailableVRs; 2751 return false; 2752 } 2753 } 2754 2755 return UseMemory; 2756 } 2757 2758 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2759 /// ensure minimum alignment required for target. 2760 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2761 unsigned NumBytes) { 2762 unsigned TargetAlign = Lowering->getStackAlignment(); 2763 unsigned AlignMask = TargetAlign - 1; 2764 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2765 return NumBytes; 2766 } 2767 2768 SDValue 2769 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 2770 CallingConv::ID CallConv, bool isVarArg, 2771 const SmallVectorImpl<ISD::InputArg> 2772 &Ins, 2773 SDLoc dl, SelectionDAG &DAG, 2774 SmallVectorImpl<SDValue> &InVals) 2775 const { 2776 if (Subtarget.isSVR4ABI()) { 2777 if (Subtarget.isPPC64()) 2778 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2779 dl, DAG, InVals); 2780 else 2781 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2782 dl, DAG, InVals); 2783 } else { 2784 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2785 dl, DAG, InVals); 2786 } 2787 } 2788 2789 SDValue 2790 PPCTargetLowering::LowerFormalArguments_32SVR4( 2791 SDValue Chain, 2792 CallingConv::ID CallConv, bool isVarArg, 2793 const SmallVectorImpl<ISD::InputArg> 2794 &Ins, 2795 SDLoc dl, SelectionDAG &DAG, 2796 SmallVectorImpl<SDValue> &InVals) const { 2797 2798 // 32-bit SVR4 ABI Stack Frame Layout: 2799 // +-----------------------------------+ 2800 // +--> | Back chain | 2801 // | +-----------------------------------+ 2802 // | | Floating-point register save area | 2803 // | +-----------------------------------+ 2804 // | | General register save area | 2805 // | +-----------------------------------+ 2806 // | | CR save word | 2807 // | +-----------------------------------+ 2808 // | | VRSAVE save word | 2809 // | +-----------------------------------+ 2810 // | | Alignment padding | 2811 // | +-----------------------------------+ 2812 // | | Vector register save area | 2813 // | +-----------------------------------+ 2814 // | | Local variable space | 2815 // | +-----------------------------------+ 2816 // | | Parameter list area | 2817 // | +-----------------------------------+ 2818 // | | LR save word | 2819 // | +-----------------------------------+ 2820 // SP--> +--- | Back chain | 2821 // +-----------------------------------+ 2822 // 2823 // Specifications: 2824 // System V Application Binary Interface PowerPC Processor Supplement 2825 // AltiVec Technology Programming Interface Manual 2826 2827 MachineFunction &MF = DAG.getMachineFunction(); 2828 MachineFrameInfo *MFI = MF.getFrameInfo(); 2829 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2830 2831 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2832 // Potential tail calls could cause overwriting of argument stack slots. 2833 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2834 (CallConv == CallingConv::Fast)); 2835 unsigned PtrByteSize = 4; 2836 2837 // Assign locations to all of the incoming arguments. 2838 SmallVector<CCValAssign, 16> ArgLocs; 2839 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2840 *DAG.getContext()); 2841 2842 // Reserve space for the linkage area on the stack. 2843 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2844 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2845 2846 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2847 2848 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2849 CCValAssign &VA = ArgLocs[i]; 2850 2851 // Arguments stored in registers. 2852 if (VA.isRegLoc()) { 2853 const TargetRegisterClass *RC; 2854 EVT ValVT = VA.getValVT(); 2855 2856 switch (ValVT.getSimpleVT().SimpleTy) { 2857 default: 2858 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2859 case MVT::i1: 2860 case MVT::i32: 2861 RC = &PPC::GPRCRegClass; 2862 break; 2863 case MVT::f32: 2864 if (Subtarget.hasP8Vector()) 2865 RC = &PPC::VSSRCRegClass; 2866 else 2867 RC = &PPC::F4RCRegClass; 2868 break; 2869 case MVT::f64: 2870 if (Subtarget.hasVSX()) 2871 RC = &PPC::VSFRCRegClass; 2872 else 2873 RC = &PPC::F8RCRegClass; 2874 break; 2875 case MVT::v16i8: 2876 case MVT::v8i16: 2877 case MVT::v4i32: 2878 RC = &PPC::VRRCRegClass; 2879 break; 2880 case MVT::v4f32: 2881 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2882 break; 2883 case MVT::v2f64: 2884 case MVT::v2i64: 2885 RC = &PPC::VSHRCRegClass; 2886 break; 2887 case MVT::v4f64: 2888 RC = &PPC::QFRCRegClass; 2889 break; 2890 case MVT::v4i1: 2891 RC = &PPC::QBRCRegClass; 2892 break; 2893 } 2894 2895 // Transform the arguments stored in physical registers into virtual ones. 2896 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2897 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2898 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2899 2900 if (ValVT == MVT::i1) 2901 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2902 2903 InVals.push_back(ArgValue); 2904 } else { 2905 // Argument stored in memory. 2906 assert(VA.isMemLoc()); 2907 2908 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2909 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2910 isImmutable); 2911 2912 // Create load nodes to retrieve arguments from the stack. 2913 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2914 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2915 MachinePointerInfo(), 2916 false, false, false, 0)); 2917 } 2918 } 2919 2920 // Assign locations to all of the incoming aggregate by value arguments. 2921 // Aggregates passed by value are stored in the local variable space of the 2922 // caller's stack frame, right above the parameter list area. 2923 SmallVector<CCValAssign, 16> ByValArgLocs; 2924 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2925 ByValArgLocs, *DAG.getContext()); 2926 2927 // Reserve stack space for the allocations in CCInfo. 2928 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2929 2930 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2931 2932 // Area that is at least reserved in the caller of this function. 2933 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2934 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2935 2936 // Set the size that is at least reserved in caller of this function. Tail 2937 // call optimized function's reserved stack space needs to be aligned so that 2938 // taking the difference between two stack areas will result in an aligned 2939 // stack. 2940 MinReservedArea = 2941 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2942 FuncInfo->setMinReservedArea(MinReservedArea); 2943 2944 SmallVector<SDValue, 8> MemOps; 2945 2946 // If the function takes variable number of arguments, make a frame index for 2947 // the start of the first vararg value... for expansion of llvm.va_start. 2948 if (isVarArg) { 2949 static const MCPhysReg GPArgRegs[] = { 2950 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2951 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2952 }; 2953 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2954 2955 static const MCPhysReg FPArgRegs[] = { 2956 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2957 PPC::F8 2958 }; 2959 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2960 2961 if (Subtarget.useSoftFloat()) 2962 NumFPArgRegs = 0; 2963 2964 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2965 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2966 2967 // Make room for NumGPArgRegs and NumFPArgRegs. 2968 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2969 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2970 2971 FuncInfo->setVarArgsStackOffset( 2972 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2973 CCInfo.getNextStackOffset(), true)); 2974 2975 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2976 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2977 2978 // The fixed integer arguments of a variadic function are stored to the 2979 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2980 // the result of va_next. 2981 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2982 // Get an existing live-in vreg, or add a new one. 2983 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2984 if (!VReg) 2985 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2986 2987 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2988 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2989 MachinePointerInfo(), false, false, 0); 2990 MemOps.push_back(Store); 2991 // Increment the address by four for the next argument to store 2992 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2993 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2994 } 2995 2996 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 2997 // is set. 2998 // The double arguments are stored to the VarArgsFrameIndex 2999 // on the stack. 3000 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3001 // Get an existing live-in vreg, or add a new one. 3002 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3003 if (!VReg) 3004 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3005 3006 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3007 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3008 MachinePointerInfo(), false, false, 0); 3009 MemOps.push_back(Store); 3010 // Increment the address by eight for the next argument to store 3011 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3012 PtrVT); 3013 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3014 } 3015 } 3016 3017 if (!MemOps.empty()) 3018 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3019 3020 return Chain; 3021 } 3022 3023 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3024 // value to MVT::i64 and then truncate to the correct register size. 3025 SDValue 3026 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, 3027 SelectionDAG &DAG, SDValue ArgVal, 3028 SDLoc dl) const { 3029 if (Flags.isSExt()) 3030 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3031 DAG.getValueType(ObjectVT)); 3032 else if (Flags.isZExt()) 3033 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3034 DAG.getValueType(ObjectVT)); 3035 3036 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3037 } 3038 3039 SDValue 3040 PPCTargetLowering::LowerFormalArguments_64SVR4( 3041 SDValue Chain, 3042 CallingConv::ID CallConv, bool isVarArg, 3043 const SmallVectorImpl<ISD::InputArg> 3044 &Ins, 3045 SDLoc dl, SelectionDAG &DAG, 3046 SmallVectorImpl<SDValue> &InVals) const { 3047 // TODO: add description of PPC stack frame format, or at least some docs. 3048 // 3049 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3050 bool isLittleEndian = Subtarget.isLittleEndian(); 3051 MachineFunction &MF = DAG.getMachineFunction(); 3052 MachineFrameInfo *MFI = MF.getFrameInfo(); 3053 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3054 3055 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3056 "fastcc not supported on varargs functions"); 3057 3058 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3059 // Potential tail calls could cause overwriting of argument stack slots. 3060 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3061 (CallConv == CallingConv::Fast)); 3062 unsigned PtrByteSize = 8; 3063 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3064 3065 static const MCPhysReg GPR[] = { 3066 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3067 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3068 }; 3069 static const MCPhysReg VR[] = { 3070 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3071 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3072 }; 3073 static const MCPhysReg VSRH[] = { 3074 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3075 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3076 }; 3077 3078 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3079 const unsigned Num_FPR_Regs = 13; 3080 const unsigned Num_VR_Regs = array_lengthof(VR); 3081 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3082 3083 // Do a first pass over the arguments to determine whether the ABI 3084 // guarantees that our caller has allocated the parameter save area 3085 // on its stack frame. In the ELFv1 ABI, this is always the case; 3086 // in the ELFv2 ABI, it is true if this is a vararg function or if 3087 // any parameter is located in a stack slot. 3088 3089 bool HasParameterArea = !isELFv2ABI || isVarArg; 3090 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3091 unsigned NumBytes = LinkageSize; 3092 unsigned AvailableFPRs = Num_FPR_Regs; 3093 unsigned AvailableVRs = Num_VR_Regs; 3094 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3095 if (Ins[i].Flags.isNest()) 3096 continue; 3097 3098 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3099 PtrByteSize, LinkageSize, ParamAreaSize, 3100 NumBytes, AvailableFPRs, AvailableVRs, 3101 Subtarget.hasQPX())) 3102 HasParameterArea = true; 3103 } 3104 3105 // Add DAG nodes to load the arguments or copy them out of registers. On 3106 // entry to a function on PPC, the arguments start after the linkage area, 3107 // although the first ones are often in registers. 3108 3109 unsigned ArgOffset = LinkageSize; 3110 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3111 unsigned &QFPR_idx = FPR_idx; 3112 SmallVector<SDValue, 8> MemOps; 3113 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3114 unsigned CurArgIdx = 0; 3115 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3116 SDValue ArgVal; 3117 bool needsLoad = false; 3118 EVT ObjectVT = Ins[ArgNo].VT; 3119 EVT OrigVT = Ins[ArgNo].ArgVT; 3120 unsigned ObjSize = ObjectVT.getStoreSize(); 3121 unsigned ArgSize = ObjSize; 3122 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3123 if (Ins[ArgNo].isOrigArg()) { 3124 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3125 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3126 } 3127 // We re-align the argument offset for each argument, except when using the 3128 // fast calling convention, when we need to make sure we do that only when 3129 // we'll actually use a stack slot. 3130 unsigned CurArgOffset, Align; 3131 auto ComputeArgOffset = [&]() { 3132 /* Respect alignment of argument on the stack. */ 3133 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3134 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3135 CurArgOffset = ArgOffset; 3136 }; 3137 3138 if (CallConv != CallingConv::Fast) { 3139 ComputeArgOffset(); 3140 3141 /* Compute GPR index associated with argument offset. */ 3142 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3143 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3144 } 3145 3146 // FIXME the codegen can be much improved in some cases. 3147 // We do not have to keep everything in memory. 3148 if (Flags.isByVal()) { 3149 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3150 3151 if (CallConv == CallingConv::Fast) 3152 ComputeArgOffset(); 3153 3154 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3155 ObjSize = Flags.getByValSize(); 3156 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3157 // Empty aggregate parameters do not take up registers. Examples: 3158 // struct { } a; 3159 // union { } b; 3160 // int c[0]; 3161 // etc. However, we have to provide a place-holder in InVals, so 3162 // pretend we have an 8-byte item at the current address for that 3163 // purpose. 3164 if (!ObjSize) { 3165 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3166 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3167 InVals.push_back(FIN); 3168 continue; 3169 } 3170 3171 // Create a stack object covering all stack doublewords occupied 3172 // by the argument. If the argument is (fully or partially) on 3173 // the stack, or if the argument is fully in registers but the 3174 // caller has allocated the parameter save anyway, we can refer 3175 // directly to the caller's stack frame. Otherwise, create a 3176 // local copy in our own frame. 3177 int FI; 3178 if (HasParameterArea || 3179 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3180 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3181 else 3182 FI = MFI->CreateStackObject(ArgSize, Align, false); 3183 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3184 3185 // Handle aggregates smaller than 8 bytes. 3186 if (ObjSize < PtrByteSize) { 3187 // The value of the object is its address, which differs from the 3188 // address of the enclosing doubleword on big-endian systems. 3189 SDValue Arg = FIN; 3190 if (!isLittleEndian) { 3191 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3192 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3193 } 3194 InVals.push_back(Arg); 3195 3196 if (GPR_idx != Num_GPR_Regs) { 3197 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3198 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3199 SDValue Store; 3200 3201 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3202 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3203 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3204 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3205 MachinePointerInfo(&*FuncArg), ObjType, 3206 false, false, 0); 3207 } else { 3208 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3209 // store the whole register as-is to the parameter save area 3210 // slot. 3211 Store = 3212 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3213 MachinePointerInfo(&*FuncArg), false, false, 0); 3214 } 3215 3216 MemOps.push_back(Store); 3217 } 3218 // Whether we copied from a register or not, advance the offset 3219 // into the parameter save area by a full doubleword. 3220 ArgOffset += PtrByteSize; 3221 continue; 3222 } 3223 3224 // The value of the object is its address, which is the address of 3225 // its first stack doubleword. 3226 InVals.push_back(FIN); 3227 3228 // Store whatever pieces of the object are in registers to memory. 3229 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3230 if (GPR_idx == Num_GPR_Regs) 3231 break; 3232 3233 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3234 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3235 SDValue Addr = FIN; 3236 if (j) { 3237 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3238 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3239 } 3240 SDValue Store = 3241 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3242 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3243 MemOps.push_back(Store); 3244 ++GPR_idx; 3245 } 3246 ArgOffset += ArgSize; 3247 continue; 3248 } 3249 3250 switch (ObjectVT.getSimpleVT().SimpleTy) { 3251 default: llvm_unreachable("Unhandled argument type!"); 3252 case MVT::i1: 3253 case MVT::i32: 3254 case MVT::i64: 3255 if (Flags.isNest()) { 3256 // The 'nest' parameter, if any, is passed in R11. 3257 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3258 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3259 3260 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3261 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3262 3263 break; 3264 } 3265 3266 // These can be scalar arguments or elements of an integer array type 3267 // passed directly. Clang may use those instead of "byval" aggregate 3268 // types to avoid forcing arguments to memory unnecessarily. 3269 if (GPR_idx != Num_GPR_Regs) { 3270 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3271 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3272 3273 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3274 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3275 // value to MVT::i64 and then truncate to the correct register size. 3276 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3277 } else { 3278 if (CallConv == CallingConv::Fast) 3279 ComputeArgOffset(); 3280 3281 needsLoad = true; 3282 ArgSize = PtrByteSize; 3283 } 3284 if (CallConv != CallingConv::Fast || needsLoad) 3285 ArgOffset += 8; 3286 break; 3287 3288 case MVT::f32: 3289 case MVT::f64: 3290 // These can be scalar arguments or elements of a float array type 3291 // passed directly. The latter are used to implement ELFv2 homogenous 3292 // float aggregates. 3293 if (FPR_idx != Num_FPR_Regs) { 3294 unsigned VReg; 3295 3296 if (ObjectVT == MVT::f32) 3297 VReg = MF.addLiveIn(FPR[FPR_idx], 3298 Subtarget.hasP8Vector() 3299 ? &PPC::VSSRCRegClass 3300 : &PPC::F4RCRegClass); 3301 else 3302 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3303 ? &PPC::VSFRCRegClass 3304 : &PPC::F8RCRegClass); 3305 3306 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3307 ++FPR_idx; 3308 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3309 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3310 // once we support fp <-> gpr moves. 3311 3312 // This can only ever happen in the presence of f32 array types, 3313 // since otherwise we never run out of FPRs before running out 3314 // of GPRs. 3315 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3316 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3317 3318 if (ObjectVT == MVT::f32) { 3319 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3320 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3321 DAG.getConstant(32, dl, MVT::i32)); 3322 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3323 } 3324 3325 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3326 } else { 3327 if (CallConv == CallingConv::Fast) 3328 ComputeArgOffset(); 3329 3330 needsLoad = true; 3331 } 3332 3333 // When passing an array of floats, the array occupies consecutive 3334 // space in the argument area; only round up to the next doubleword 3335 // at the end of the array. Otherwise, each float takes 8 bytes. 3336 if (CallConv != CallingConv::Fast || needsLoad) { 3337 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3338 ArgOffset += ArgSize; 3339 if (Flags.isInConsecutiveRegsLast()) 3340 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3341 } 3342 break; 3343 case MVT::v4f32: 3344 case MVT::v4i32: 3345 case MVT::v8i16: 3346 case MVT::v16i8: 3347 case MVT::v2f64: 3348 case MVT::v2i64: 3349 case MVT::v1i128: 3350 if (!Subtarget.hasQPX()) { 3351 // These can be scalar arguments or elements of a vector array type 3352 // passed directly. The latter are used to implement ELFv2 homogenous 3353 // vector aggregates. 3354 if (VR_idx != Num_VR_Regs) { 3355 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3356 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3357 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3358 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3359 ++VR_idx; 3360 } else { 3361 if (CallConv == CallingConv::Fast) 3362 ComputeArgOffset(); 3363 3364 needsLoad = true; 3365 } 3366 if (CallConv != CallingConv::Fast || needsLoad) 3367 ArgOffset += 16; 3368 break; 3369 } // not QPX 3370 3371 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3372 "Invalid QPX parameter type"); 3373 /* fall through */ 3374 3375 case MVT::v4f64: 3376 case MVT::v4i1: 3377 // QPX vectors are treated like their scalar floating-point subregisters 3378 // (except that they're larger). 3379 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3380 if (QFPR_idx != Num_QFPR_Regs) { 3381 const TargetRegisterClass *RC; 3382 switch (ObjectVT.getSimpleVT().SimpleTy) { 3383 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3384 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3385 default: RC = &PPC::QBRCRegClass; break; 3386 } 3387 3388 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3389 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3390 ++QFPR_idx; 3391 } else { 3392 if (CallConv == CallingConv::Fast) 3393 ComputeArgOffset(); 3394 needsLoad = true; 3395 } 3396 if (CallConv != CallingConv::Fast || needsLoad) 3397 ArgOffset += Sz; 3398 break; 3399 } 3400 3401 // We need to load the argument to a virtual register if we determined 3402 // above that we ran out of physical registers of the appropriate type. 3403 if (needsLoad) { 3404 if (ObjSize < ArgSize && !isLittleEndian) 3405 CurArgOffset += ArgSize - ObjSize; 3406 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3407 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3408 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3409 false, false, false, 0); 3410 } 3411 3412 InVals.push_back(ArgVal); 3413 } 3414 3415 // Area that is at least reserved in the caller of this function. 3416 unsigned MinReservedArea; 3417 if (HasParameterArea) 3418 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3419 else 3420 MinReservedArea = LinkageSize; 3421 3422 // Set the size that is at least reserved in caller of this function. Tail 3423 // call optimized functions' reserved stack space needs to be aligned so that 3424 // taking the difference between two stack areas will result in an aligned 3425 // stack. 3426 MinReservedArea = 3427 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3428 FuncInfo->setMinReservedArea(MinReservedArea); 3429 3430 // If the function takes variable number of arguments, make a frame index for 3431 // the start of the first vararg value... for expansion of llvm.va_start. 3432 if (isVarArg) { 3433 int Depth = ArgOffset; 3434 3435 FuncInfo->setVarArgsFrameIndex( 3436 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3437 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3438 3439 // If this function is vararg, store any remaining integer argument regs 3440 // to their spots on the stack so that they may be loaded by deferencing the 3441 // result of va_next. 3442 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3443 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3444 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3445 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3446 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3447 MachinePointerInfo(), false, false, 0); 3448 MemOps.push_back(Store); 3449 // Increment the address by four for the next argument to store 3450 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3451 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3452 } 3453 } 3454 3455 if (!MemOps.empty()) 3456 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3457 3458 return Chain; 3459 } 3460 3461 SDValue 3462 PPCTargetLowering::LowerFormalArguments_Darwin( 3463 SDValue Chain, 3464 CallingConv::ID CallConv, bool isVarArg, 3465 const SmallVectorImpl<ISD::InputArg> 3466 &Ins, 3467 SDLoc dl, SelectionDAG &DAG, 3468 SmallVectorImpl<SDValue> &InVals) const { 3469 // TODO: add description of PPC stack frame format, or at least some docs. 3470 // 3471 MachineFunction &MF = DAG.getMachineFunction(); 3472 MachineFrameInfo *MFI = MF.getFrameInfo(); 3473 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3474 3475 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3476 bool isPPC64 = PtrVT == MVT::i64; 3477 // Potential tail calls could cause overwriting of argument stack slots. 3478 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3479 (CallConv == CallingConv::Fast)); 3480 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3481 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3482 unsigned ArgOffset = LinkageSize; 3483 // Area that is at least reserved in caller of this function. 3484 unsigned MinReservedArea = ArgOffset; 3485 3486 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3487 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3488 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3489 }; 3490 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3491 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3492 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3493 }; 3494 static const MCPhysReg VR[] = { 3495 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3496 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3497 }; 3498 3499 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3500 const unsigned Num_FPR_Regs = 13; 3501 const unsigned Num_VR_Regs = array_lengthof( VR); 3502 3503 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3504 3505 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3506 3507 // In 32-bit non-varargs functions, the stack space for vectors is after the 3508 // stack space for non-vectors. We do not use this space unless we have 3509 // too many vectors to fit in registers, something that only occurs in 3510 // constructed examples:), but we have to walk the arglist to figure 3511 // that out...for the pathological case, compute VecArgOffset as the 3512 // start of the vector parameter area. Computing VecArgOffset is the 3513 // entire point of the following loop. 3514 unsigned VecArgOffset = ArgOffset; 3515 if (!isVarArg && !isPPC64) { 3516 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3517 ++ArgNo) { 3518 EVT ObjectVT = Ins[ArgNo].VT; 3519 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3520 3521 if (Flags.isByVal()) { 3522 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3523 unsigned ObjSize = Flags.getByValSize(); 3524 unsigned ArgSize = 3525 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3526 VecArgOffset += ArgSize; 3527 continue; 3528 } 3529 3530 switch(ObjectVT.getSimpleVT().SimpleTy) { 3531 default: llvm_unreachable("Unhandled argument type!"); 3532 case MVT::i1: 3533 case MVT::i32: 3534 case MVT::f32: 3535 VecArgOffset += 4; 3536 break; 3537 case MVT::i64: // PPC64 3538 case MVT::f64: 3539 // FIXME: We are guaranteed to be !isPPC64 at this point. 3540 // Does MVT::i64 apply? 3541 VecArgOffset += 8; 3542 break; 3543 case MVT::v4f32: 3544 case MVT::v4i32: 3545 case MVT::v8i16: 3546 case MVT::v16i8: 3547 // Nothing to do, we're only looking at Nonvector args here. 3548 break; 3549 } 3550 } 3551 } 3552 // We've found where the vector parameter area in memory is. Skip the 3553 // first 12 parameters; these don't use that memory. 3554 VecArgOffset = ((VecArgOffset+15)/16)*16; 3555 VecArgOffset += 12*16; 3556 3557 // Add DAG nodes to load the arguments or copy them out of registers. On 3558 // entry to a function on PPC, the arguments start after the linkage area, 3559 // although the first ones are often in registers. 3560 3561 SmallVector<SDValue, 8> MemOps; 3562 unsigned nAltivecParamsAtEnd = 0; 3563 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3564 unsigned CurArgIdx = 0; 3565 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3566 SDValue ArgVal; 3567 bool needsLoad = false; 3568 EVT ObjectVT = Ins[ArgNo].VT; 3569 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3570 unsigned ArgSize = ObjSize; 3571 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3572 if (Ins[ArgNo].isOrigArg()) { 3573 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3574 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3575 } 3576 unsigned CurArgOffset = ArgOffset; 3577 3578 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3579 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3580 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3581 if (isVarArg || isPPC64) { 3582 MinReservedArea = ((MinReservedArea+15)/16)*16; 3583 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3584 Flags, 3585 PtrByteSize); 3586 } else nAltivecParamsAtEnd++; 3587 } else 3588 // Calculate min reserved area. 3589 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3590 Flags, 3591 PtrByteSize); 3592 3593 // FIXME the codegen can be much improved in some cases. 3594 // We do not have to keep everything in memory. 3595 if (Flags.isByVal()) { 3596 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3597 3598 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3599 ObjSize = Flags.getByValSize(); 3600 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3601 // Objects of size 1 and 2 are right justified, everything else is 3602 // left justified. This means the memory address is adjusted forwards. 3603 if (ObjSize==1 || ObjSize==2) { 3604 CurArgOffset = CurArgOffset + (4 - ObjSize); 3605 } 3606 // The value of the object is its address. 3607 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3608 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3609 InVals.push_back(FIN); 3610 if (ObjSize==1 || ObjSize==2) { 3611 if (GPR_idx != Num_GPR_Regs) { 3612 unsigned VReg; 3613 if (isPPC64) 3614 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3615 else 3616 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3617 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3618 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3619 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3620 MachinePointerInfo(&*FuncArg), 3621 ObjType, false, false, 0); 3622 MemOps.push_back(Store); 3623 ++GPR_idx; 3624 } 3625 3626 ArgOffset += PtrByteSize; 3627 3628 continue; 3629 } 3630 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3631 // Store whatever pieces of the object are in registers 3632 // to memory. ArgOffset will be the address of the beginning 3633 // of the object. 3634 if (GPR_idx != Num_GPR_Regs) { 3635 unsigned VReg; 3636 if (isPPC64) 3637 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3638 else 3639 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3640 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3641 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3642 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3643 SDValue Store = 3644 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3645 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3646 MemOps.push_back(Store); 3647 ++GPR_idx; 3648 ArgOffset += PtrByteSize; 3649 } else { 3650 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3651 break; 3652 } 3653 } 3654 continue; 3655 } 3656 3657 switch (ObjectVT.getSimpleVT().SimpleTy) { 3658 default: llvm_unreachable("Unhandled argument type!"); 3659 case MVT::i1: 3660 case MVT::i32: 3661 if (!isPPC64) { 3662 if (GPR_idx != Num_GPR_Regs) { 3663 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3664 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3665 3666 if (ObjectVT == MVT::i1) 3667 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3668 3669 ++GPR_idx; 3670 } else { 3671 needsLoad = true; 3672 ArgSize = PtrByteSize; 3673 } 3674 // All int arguments reserve stack space in the Darwin ABI. 3675 ArgOffset += PtrByteSize; 3676 break; 3677 } 3678 // FALLTHROUGH 3679 case MVT::i64: // PPC64 3680 if (GPR_idx != Num_GPR_Regs) { 3681 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3682 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3683 3684 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3685 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3686 // value to MVT::i64 and then truncate to the correct register size. 3687 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3688 3689 ++GPR_idx; 3690 } else { 3691 needsLoad = true; 3692 ArgSize = PtrByteSize; 3693 } 3694 // All int arguments reserve stack space in the Darwin ABI. 3695 ArgOffset += 8; 3696 break; 3697 3698 case MVT::f32: 3699 case MVT::f64: 3700 // Every 4 bytes of argument space consumes one of the GPRs available for 3701 // argument passing. 3702 if (GPR_idx != Num_GPR_Regs) { 3703 ++GPR_idx; 3704 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3705 ++GPR_idx; 3706 } 3707 if (FPR_idx != Num_FPR_Regs) { 3708 unsigned VReg; 3709 3710 if (ObjectVT == MVT::f32) 3711 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3712 else 3713 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3714 3715 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3716 ++FPR_idx; 3717 } else { 3718 needsLoad = true; 3719 } 3720 3721 // All FP arguments reserve stack space in the Darwin ABI. 3722 ArgOffset += isPPC64 ? 8 : ObjSize; 3723 break; 3724 case MVT::v4f32: 3725 case MVT::v4i32: 3726 case MVT::v8i16: 3727 case MVT::v16i8: 3728 // Note that vector arguments in registers don't reserve stack space, 3729 // except in varargs functions. 3730 if (VR_idx != Num_VR_Regs) { 3731 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3732 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3733 if (isVarArg) { 3734 while ((ArgOffset % 16) != 0) { 3735 ArgOffset += PtrByteSize; 3736 if (GPR_idx != Num_GPR_Regs) 3737 GPR_idx++; 3738 } 3739 ArgOffset += 16; 3740 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3741 } 3742 ++VR_idx; 3743 } else { 3744 if (!isVarArg && !isPPC64) { 3745 // Vectors go after all the nonvectors. 3746 CurArgOffset = VecArgOffset; 3747 VecArgOffset += 16; 3748 } else { 3749 // Vectors are aligned. 3750 ArgOffset = ((ArgOffset+15)/16)*16; 3751 CurArgOffset = ArgOffset; 3752 ArgOffset += 16; 3753 } 3754 needsLoad = true; 3755 } 3756 break; 3757 } 3758 3759 // We need to load the argument to a virtual register if we determined above 3760 // that we ran out of physical registers of the appropriate type. 3761 if (needsLoad) { 3762 int FI = MFI->CreateFixedObject(ObjSize, 3763 CurArgOffset + (ArgSize - ObjSize), 3764 isImmutable); 3765 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3766 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3767 false, false, false, 0); 3768 } 3769 3770 InVals.push_back(ArgVal); 3771 } 3772 3773 // Allow for Altivec parameters at the end, if needed. 3774 if (nAltivecParamsAtEnd) { 3775 MinReservedArea = ((MinReservedArea+15)/16)*16; 3776 MinReservedArea += 16*nAltivecParamsAtEnd; 3777 } 3778 3779 // Area that is at least reserved in the caller of this function. 3780 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3781 3782 // Set the size that is at least reserved in caller of this function. Tail 3783 // call optimized functions' reserved stack space needs to be aligned so that 3784 // taking the difference between two stack areas will result in an aligned 3785 // stack. 3786 MinReservedArea = 3787 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3788 FuncInfo->setMinReservedArea(MinReservedArea); 3789 3790 // If the function takes variable number of arguments, make a frame index for 3791 // the start of the first vararg value... for expansion of llvm.va_start. 3792 if (isVarArg) { 3793 int Depth = ArgOffset; 3794 3795 FuncInfo->setVarArgsFrameIndex( 3796 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3797 Depth, true)); 3798 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3799 3800 // If this function is vararg, store any remaining integer argument regs 3801 // to their spots on the stack so that they may be loaded by deferencing the 3802 // result of va_next. 3803 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3804 unsigned VReg; 3805 3806 if (isPPC64) 3807 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3808 else 3809 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3810 3811 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3812 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3813 MachinePointerInfo(), false, false, 0); 3814 MemOps.push_back(Store); 3815 // Increment the address by four for the next argument to store 3816 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3817 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3818 } 3819 } 3820 3821 if (!MemOps.empty()) 3822 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3823 3824 return Chain; 3825 } 3826 3827 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3828 /// adjusted to accommodate the arguments for the tailcall. 3829 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3830 unsigned ParamSize) { 3831 3832 if (!isTailCall) return 0; 3833 3834 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3835 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3836 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3837 // Remember only if the new adjustement is bigger. 3838 if (SPDiff < FI->getTailCallSPDelta()) 3839 FI->setTailCallSPDelta(SPDiff); 3840 3841 return SPDiff; 3842 } 3843 3844 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3845 /// for tail call optimization. Targets which want to do tail call 3846 /// optimization should implement this function. 3847 bool 3848 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 3849 CallingConv::ID CalleeCC, 3850 bool isVarArg, 3851 const SmallVectorImpl<ISD::InputArg> &Ins, 3852 SelectionDAG& DAG) const { 3853 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 3854 return false; 3855 3856 // Variable argument functions are not supported. 3857 if (isVarArg) 3858 return false; 3859 3860 MachineFunction &MF = DAG.getMachineFunction(); 3861 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3862 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 3863 // Functions containing by val parameters are not supported. 3864 for (unsigned i = 0; i != Ins.size(); i++) { 3865 ISD::ArgFlagsTy Flags = Ins[i].Flags; 3866 if (Flags.isByVal()) return false; 3867 } 3868 3869 // Non-PIC/GOT tail calls are supported. 3870 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 3871 return true; 3872 3873 // At the moment we can only do local tail calls (in same module, hidden 3874 // or protected) if we are generating PIC. 3875 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 3876 return G->getGlobal()->hasHiddenVisibility() 3877 || G->getGlobal()->hasProtectedVisibility(); 3878 } 3879 3880 return false; 3881 } 3882 3883 /// isCallCompatibleAddress - Return the immediate to use if the specified 3884 /// 32-bit value is representable in the immediate field of a BxA instruction. 3885 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 3886 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3887 if (!C) return nullptr; 3888 3889 int Addr = C->getZExtValue(); 3890 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 3891 SignExtend32<26>(Addr) != Addr) 3892 return nullptr; // Top 6 bits have to be sext of immediate. 3893 3894 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 3895 DAG.getTargetLoweringInfo().getPointerTy( 3896 DAG.getDataLayout())).getNode(); 3897 } 3898 3899 namespace { 3900 3901 struct TailCallArgumentInfo { 3902 SDValue Arg; 3903 SDValue FrameIdxOp; 3904 int FrameIdx; 3905 3906 TailCallArgumentInfo() : FrameIdx(0) {} 3907 }; 3908 } 3909 3910 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 3911 static void 3912 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 3913 SDValue Chain, 3914 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 3915 SmallVectorImpl<SDValue> &MemOpChains, 3916 SDLoc dl) { 3917 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 3918 SDValue Arg = TailCallArgs[i].Arg; 3919 SDValue FIN = TailCallArgs[i].FrameIdxOp; 3920 int FI = TailCallArgs[i].FrameIdx; 3921 // Store relative to framepointer. 3922 MemOpChains.push_back(DAG.getStore( 3923 Chain, dl, Arg, FIN, 3924 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 3925 false, 0)); 3926 } 3927 } 3928 3929 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 3930 /// the appropriate stack slot for the tail call optimized function call. 3931 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 3932 MachineFunction &MF, 3933 SDValue Chain, 3934 SDValue OldRetAddr, 3935 SDValue OldFP, 3936 int SPDiff, 3937 bool isPPC64, 3938 bool isDarwinABI, 3939 SDLoc dl) { 3940 if (SPDiff) { 3941 // Calculate the new stack slot for the return address. 3942 int SlotSize = isPPC64 ? 8 : 4; 3943 const PPCFrameLowering *FL = 3944 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 3945 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 3946 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 3947 NewRetAddrLoc, true); 3948 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3949 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 3950 Chain = DAG.getStore( 3951 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 3952 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 3953 false, false, 0); 3954 3955 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 3956 // slot as the FP is never overwritten. 3957 if (isDarwinABI) { 3958 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 3959 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 3960 true); 3961 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 3962 Chain = DAG.getStore( 3963 Chain, dl, OldFP, NewFramePtrIdx, 3964 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 3965 false, false, 0); 3966 } 3967 } 3968 return Chain; 3969 } 3970 3971 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 3972 /// the position of the argument. 3973 static void 3974 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 3975 SDValue Arg, int SPDiff, unsigned ArgOffset, 3976 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 3977 int Offset = ArgOffset + SPDiff; 3978 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 3979 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 3980 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 3981 SDValue FIN = DAG.getFrameIndex(FI, VT); 3982 TailCallArgumentInfo Info; 3983 Info.Arg = Arg; 3984 Info.FrameIdxOp = FIN; 3985 Info.FrameIdx = FI; 3986 TailCallArguments.push_back(Info); 3987 } 3988 3989 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 3990 /// stack slot. Returns the chain as result and the loaded frame pointers in 3991 /// LROpOut/FPOpout. Used when tail calling. 3992 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 3993 int SPDiff, 3994 SDValue Chain, 3995 SDValue &LROpOut, 3996 SDValue &FPOpOut, 3997 bool isDarwinABI, 3998 SDLoc dl) const { 3999 if (SPDiff) { 4000 // Load the LR and FP stack slot for later adjusting. 4001 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4002 LROpOut = getReturnAddrFrameIndex(DAG); 4003 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 4004 false, false, false, 0); 4005 Chain = SDValue(LROpOut.getNode(), 1); 4006 4007 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4008 // slot as the FP is never overwritten. 4009 if (isDarwinABI) { 4010 FPOpOut = getFramePointerFrameIndex(DAG); 4011 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 4012 false, false, false, 0); 4013 Chain = SDValue(FPOpOut.getNode(), 1); 4014 } 4015 } 4016 return Chain; 4017 } 4018 4019 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4020 /// by "Src" to address "Dst" of size "Size". Alignment information is 4021 /// specified by the specific parameter attribute. The copy will be passed as 4022 /// a byval function parameter. 4023 /// Sometimes what we are copying is the end of a larger object, the part that 4024 /// does not fit in registers. 4025 static SDValue 4026 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 4027 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 4028 SDLoc dl) { 4029 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4030 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4031 false, false, false, MachinePointerInfo(), 4032 MachinePointerInfo()); 4033 } 4034 4035 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4036 /// tail calls. 4037 static void 4038 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 4039 SDValue Arg, SDValue PtrOff, int SPDiff, 4040 unsigned ArgOffset, bool isPPC64, bool isTailCall, 4041 bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4042 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, 4043 SDLoc dl) { 4044 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4045 if (!isTailCall) { 4046 if (isVector) { 4047 SDValue StackPtr; 4048 if (isPPC64) 4049 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4050 else 4051 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4052 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4053 DAG.getConstant(ArgOffset, dl, PtrVT)); 4054 } 4055 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4056 MachinePointerInfo(), false, false, 0)); 4057 // Calculate and remember argument location. 4058 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4059 TailCallArguments); 4060 } 4061 4062 static 4063 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4064 SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4065 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4066 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4067 MachineFunction &MF = DAG.getMachineFunction(); 4068 4069 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4070 // might overwrite each other in case of tail call optimization. 4071 SmallVector<SDValue, 8> MemOpChains2; 4072 // Do not flag preceding copytoreg stuff together with the following stuff. 4073 InFlag = SDValue(); 4074 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4075 MemOpChains2, dl); 4076 if (!MemOpChains2.empty()) 4077 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4078 4079 // Store the return address to the appropriate stack slot. 4080 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4081 isPPC64, isDarwinABI, dl); 4082 4083 // Emit callseq_end just before tailcall node. 4084 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4085 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4086 InFlag = Chain.getValue(1); 4087 } 4088 4089 // Is this global address that of a function that can be called by name? (as 4090 // opposed to something that must hold a descriptor for an indirect call). 4091 static bool isFunctionGlobalAddress(SDValue Callee) { 4092 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4093 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4094 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4095 return false; 4096 4097 return G->getGlobal()->getValueType()->isFunctionTy(); 4098 } 4099 4100 return false; 4101 } 4102 4103 static 4104 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 4105 SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff, 4106 bool isTailCall, bool IsPatchPoint, bool hasNest, 4107 SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass, 4108 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4109 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4110 4111 bool isPPC64 = Subtarget.isPPC64(); 4112 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4113 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4114 4115 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4116 NodeTys.push_back(MVT::Other); // Returns a chain 4117 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4118 4119 unsigned CallOpc = PPCISD::CALL; 4120 4121 bool needIndirectCall = true; 4122 if (!isSVR4ABI || !isPPC64) 4123 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4124 // If this is an absolute destination address, use the munged value. 4125 Callee = SDValue(Dest, 0); 4126 needIndirectCall = false; 4127 } 4128 4129 if (isFunctionGlobalAddress(Callee)) { 4130 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4131 // A call to a TLS address is actually an indirect call to a 4132 // thread-specific pointer. 4133 unsigned OpFlags = 0; 4134 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4135 (Subtarget.getTargetTriple().isMacOSX() && 4136 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4137 !G->getGlobal()->isStrongDefinitionForLinker()) || 4138 (Subtarget.isTargetELF() && !isPPC64 && 4139 !G->getGlobal()->hasLocalLinkage() && 4140 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4141 // PC-relative references to external symbols should go through $stub, 4142 // unless we're building with the leopard linker or later, which 4143 // automatically synthesizes these stubs. 4144 OpFlags = PPCII::MO_PLT_OR_STUB; 4145 } 4146 4147 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4148 // every direct call is) turn it into a TargetGlobalAddress / 4149 // TargetExternalSymbol node so that legalize doesn't hack it. 4150 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4151 Callee.getValueType(), 0, OpFlags); 4152 needIndirectCall = false; 4153 } 4154 4155 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4156 unsigned char OpFlags = 0; 4157 4158 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4159 (Subtarget.getTargetTriple().isMacOSX() && 4160 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4161 (Subtarget.isTargetELF() && !isPPC64 && 4162 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4163 // PC-relative references to external symbols should go through $stub, 4164 // unless we're building with the leopard linker or later, which 4165 // automatically synthesizes these stubs. 4166 OpFlags = PPCII::MO_PLT_OR_STUB; 4167 } 4168 4169 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4170 OpFlags); 4171 needIndirectCall = false; 4172 } 4173 4174 if (IsPatchPoint) { 4175 // We'll form an invalid direct call when lowering a patchpoint; the full 4176 // sequence for an indirect call is complicated, and many of the 4177 // instructions introduced might have side effects (and, thus, can't be 4178 // removed later). The call itself will be removed as soon as the 4179 // argument/return lowering is complete, so the fact that it has the wrong 4180 // kind of operands should not really matter. 4181 needIndirectCall = false; 4182 } 4183 4184 if (needIndirectCall) { 4185 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4186 // to do the call, we can't use PPCISD::CALL. 4187 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4188 4189 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4190 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4191 // entry point, but to the function descriptor (the function entry point 4192 // address is part of the function descriptor though). 4193 // The function descriptor is a three doubleword structure with the 4194 // following fields: function entry point, TOC base address and 4195 // environment pointer. 4196 // Thus for a call through a function pointer, the following actions need 4197 // to be performed: 4198 // 1. Save the TOC of the caller in the TOC save area of its stack 4199 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4200 // 2. Load the address of the function entry point from the function 4201 // descriptor. 4202 // 3. Load the TOC of the callee from the function descriptor into r2. 4203 // 4. Load the environment pointer from the function descriptor into 4204 // r11. 4205 // 5. Branch to the function entry point address. 4206 // 6. On return of the callee, the TOC of the caller needs to be 4207 // restored (this is done in FinishCall()). 4208 // 4209 // The loads are scheduled at the beginning of the call sequence, and the 4210 // register copies are flagged together to ensure that no other 4211 // operations can be scheduled in between. E.g. without flagging the 4212 // copies together, a TOC access in the caller could be scheduled between 4213 // the assignment of the callee TOC and the branch to the callee, which 4214 // results in the TOC access going through the TOC of the callee instead 4215 // of going through the TOC of the caller, which leads to incorrect code. 4216 4217 // Load the address of the function entry point from the function 4218 // descriptor. 4219 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4220 if (LDChain.getValueType() == MVT::Glue) 4221 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4222 4223 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4224 4225 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4226 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4227 false, false, LoadsInv, 8); 4228 4229 // Load environment pointer into r11. 4230 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4231 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4232 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4233 MPI.getWithOffset(16), false, false, 4234 LoadsInv, 8); 4235 4236 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4237 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4238 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4239 MPI.getWithOffset(8), false, false, 4240 LoadsInv, 8); 4241 4242 setUsesTOCBasePtr(DAG); 4243 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4244 InFlag); 4245 Chain = TOCVal.getValue(0); 4246 InFlag = TOCVal.getValue(1); 4247 4248 // If the function call has an explicit 'nest' parameter, it takes the 4249 // place of the environment pointer. 4250 if (!hasNest) { 4251 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4252 InFlag); 4253 4254 Chain = EnvVal.getValue(0); 4255 InFlag = EnvVal.getValue(1); 4256 } 4257 4258 MTCTROps[0] = Chain; 4259 MTCTROps[1] = LoadFuncPtr; 4260 MTCTROps[2] = InFlag; 4261 } 4262 4263 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4264 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4265 InFlag = Chain.getValue(1); 4266 4267 NodeTys.clear(); 4268 NodeTys.push_back(MVT::Other); 4269 NodeTys.push_back(MVT::Glue); 4270 Ops.push_back(Chain); 4271 CallOpc = PPCISD::BCTRL; 4272 Callee.setNode(nullptr); 4273 // Add use of X11 (holding environment pointer) 4274 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4275 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4276 // Add CTR register as callee so a bctr can be emitted later. 4277 if (isTailCall) 4278 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4279 } 4280 4281 // If this is a direct call, pass the chain and the callee. 4282 if (Callee.getNode()) { 4283 Ops.push_back(Chain); 4284 Ops.push_back(Callee); 4285 } 4286 // If this is a tail call add stack pointer delta. 4287 if (isTailCall) 4288 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4289 4290 // Add argument registers to the end of the list so that they are known live 4291 // into the call. 4292 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4293 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4294 RegsToPass[i].second.getValueType())); 4295 4296 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4297 // into the call. 4298 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4299 setUsesTOCBasePtr(DAG); 4300 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4301 } 4302 4303 return CallOpc; 4304 } 4305 4306 static 4307 bool isLocalCall(const SDValue &Callee) 4308 { 4309 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4310 return G->getGlobal()->isStrongDefinitionForLinker(); 4311 return false; 4312 } 4313 4314 SDValue 4315 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 4316 CallingConv::ID CallConv, bool isVarArg, 4317 const SmallVectorImpl<ISD::InputArg> &Ins, 4318 SDLoc dl, SelectionDAG &DAG, 4319 SmallVectorImpl<SDValue> &InVals) const { 4320 4321 SmallVector<CCValAssign, 16> RVLocs; 4322 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4323 *DAG.getContext()); 4324 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4325 4326 // Copy all of the result registers out of their specified physreg. 4327 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4328 CCValAssign &VA = RVLocs[i]; 4329 assert(VA.isRegLoc() && "Can only return in registers!"); 4330 4331 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4332 VA.getLocReg(), VA.getLocVT(), InFlag); 4333 Chain = Val.getValue(1); 4334 InFlag = Val.getValue(2); 4335 4336 switch (VA.getLocInfo()) { 4337 default: llvm_unreachable("Unknown loc info!"); 4338 case CCValAssign::Full: break; 4339 case CCValAssign::AExt: 4340 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4341 break; 4342 case CCValAssign::ZExt: 4343 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4344 DAG.getValueType(VA.getValVT())); 4345 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4346 break; 4347 case CCValAssign::SExt: 4348 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4349 DAG.getValueType(VA.getValVT())); 4350 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4351 break; 4352 } 4353 4354 InVals.push_back(Val); 4355 } 4356 4357 return Chain; 4358 } 4359 4360 SDValue 4361 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl, 4362 bool isTailCall, bool isVarArg, bool IsPatchPoint, 4363 bool hasNest, SelectionDAG &DAG, 4364 SmallVector<std::pair<unsigned, SDValue>, 8> 4365 &RegsToPass, 4366 SDValue InFlag, SDValue Chain, 4367 SDValue CallSeqStart, SDValue &Callee, 4368 int SPDiff, unsigned NumBytes, 4369 const SmallVectorImpl<ISD::InputArg> &Ins, 4370 SmallVectorImpl<SDValue> &InVals, 4371 ImmutableCallSite *CS) const { 4372 4373 std::vector<EVT> NodeTys; 4374 SmallVector<SDValue, 8> Ops; 4375 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4376 SPDiff, isTailCall, IsPatchPoint, hasNest, 4377 RegsToPass, Ops, NodeTys, CS, Subtarget); 4378 4379 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4380 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4381 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4382 4383 // When performing tail call optimization the callee pops its arguments off 4384 // the stack. Account for this here so these bytes can be pushed back on in 4385 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4386 int BytesCalleePops = 4387 (CallConv == CallingConv::Fast && 4388 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4389 4390 // Add a register mask operand representing the call-preserved registers. 4391 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4392 const uint32_t *Mask = 4393 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4394 assert(Mask && "Missing call preserved mask for calling convention"); 4395 Ops.push_back(DAG.getRegisterMask(Mask)); 4396 4397 if (InFlag.getNode()) 4398 Ops.push_back(InFlag); 4399 4400 // Emit tail call. 4401 if (isTailCall) { 4402 assert(((Callee.getOpcode() == ISD::Register && 4403 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4404 Callee.getOpcode() == ISD::TargetExternalSymbol || 4405 Callee.getOpcode() == ISD::TargetGlobalAddress || 4406 isa<ConstantSDNode>(Callee)) && 4407 "Expecting an global address, external symbol, absolute value or register"); 4408 4409 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4410 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4411 } 4412 4413 // Add a NOP immediately after the branch instruction when using the 64-bit 4414 // SVR4 ABI. At link time, if caller and callee are in a different module and 4415 // thus have a different TOC, the call will be replaced with a call to a stub 4416 // function which saves the current TOC, loads the TOC of the callee and 4417 // branches to the callee. The NOP will be replaced with a load instruction 4418 // which restores the TOC of the caller from the TOC save slot of the current 4419 // stack frame. If caller and callee belong to the same module (and have the 4420 // same TOC), the NOP will remain unchanged. 4421 4422 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4423 !IsPatchPoint) { 4424 if (CallOpc == PPCISD::BCTRL) { 4425 // This is a call through a function pointer. 4426 // Restore the caller TOC from the save area into R2. 4427 // See PrepareCall() for more information about calls through function 4428 // pointers in the 64-bit SVR4 ABI. 4429 // We are using a target-specific load with r2 hard coded, because the 4430 // result of a target-independent load would never go directly into r2, 4431 // since r2 is a reserved register (which prevents the register allocator 4432 // from allocating it), resulting in an additional register being 4433 // allocated and an unnecessary move instruction being generated. 4434 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4435 4436 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4437 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4438 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4439 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4440 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4441 4442 // The address needs to go after the chain input but before the flag (or 4443 // any other variadic arguments). 4444 Ops.insert(std::next(Ops.begin()), AddTOC); 4445 } else if ((CallOpc == PPCISD::CALL) && 4446 (!isLocalCall(Callee) || 4447 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4448 // Otherwise insert NOP for non-local calls. 4449 CallOpc = PPCISD::CALL_NOP; 4450 } 4451 4452 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4453 InFlag = Chain.getValue(1); 4454 4455 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4456 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4457 InFlag, dl); 4458 if (!Ins.empty()) 4459 InFlag = Chain.getValue(1); 4460 4461 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4462 Ins, dl, DAG, InVals); 4463 } 4464 4465 SDValue 4466 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4467 SmallVectorImpl<SDValue> &InVals) const { 4468 SelectionDAG &DAG = CLI.DAG; 4469 SDLoc &dl = CLI.DL; 4470 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4471 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4472 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4473 SDValue Chain = CLI.Chain; 4474 SDValue Callee = CLI.Callee; 4475 bool &isTailCall = CLI.IsTailCall; 4476 CallingConv::ID CallConv = CLI.CallConv; 4477 bool isVarArg = CLI.IsVarArg; 4478 bool IsPatchPoint = CLI.IsPatchPoint; 4479 ImmutableCallSite *CS = CLI.CS; 4480 4481 if (isTailCall) 4482 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4483 Ins, DAG); 4484 4485 if (!isTailCall && CS && CS->isMustTailCall()) 4486 report_fatal_error("failed to perform tail call elimination on a call " 4487 "site marked musttail"); 4488 4489 if (Subtarget.isSVR4ABI()) { 4490 if (Subtarget.isPPC64()) 4491 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4492 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4493 dl, DAG, InVals, CS); 4494 else 4495 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4496 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4497 dl, DAG, InVals, CS); 4498 } 4499 4500 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4501 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4502 dl, DAG, InVals, CS); 4503 } 4504 4505 SDValue 4506 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee, 4507 CallingConv::ID CallConv, bool isVarArg, 4508 bool isTailCall, bool IsPatchPoint, 4509 const SmallVectorImpl<ISD::OutputArg> &Outs, 4510 const SmallVectorImpl<SDValue> &OutVals, 4511 const SmallVectorImpl<ISD::InputArg> &Ins, 4512 SDLoc dl, SelectionDAG &DAG, 4513 SmallVectorImpl<SDValue> &InVals, 4514 ImmutableCallSite *CS) const { 4515 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4516 // of the 32-bit SVR4 ABI stack frame layout. 4517 4518 assert((CallConv == CallingConv::C || 4519 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4520 4521 unsigned PtrByteSize = 4; 4522 4523 MachineFunction &MF = DAG.getMachineFunction(); 4524 4525 // Mark this function as potentially containing a function that contains a 4526 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4527 // and restoring the callers stack pointer in this functions epilog. This is 4528 // done because by tail calling the called function might overwrite the value 4529 // in this function's (MF) stack pointer stack slot 0(SP). 4530 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4531 CallConv == CallingConv::Fast) 4532 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4533 4534 // Count how many bytes are to be pushed on the stack, including the linkage 4535 // area, parameter list area and the part of the local variable space which 4536 // contains copies of aggregates which are passed by value. 4537 4538 // Assign locations to all of the outgoing arguments. 4539 SmallVector<CCValAssign, 16> ArgLocs; 4540 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4541 *DAG.getContext()); 4542 4543 // Reserve space for the linkage area on the stack. 4544 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4545 PtrByteSize); 4546 4547 if (isVarArg) { 4548 // Handle fixed and variable vector arguments differently. 4549 // Fixed vector arguments go into registers as long as registers are 4550 // available. Variable vector arguments always go into memory. 4551 unsigned NumArgs = Outs.size(); 4552 4553 for (unsigned i = 0; i != NumArgs; ++i) { 4554 MVT ArgVT = Outs[i].VT; 4555 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4556 bool Result; 4557 4558 if (Outs[i].IsFixed) { 4559 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4560 CCInfo); 4561 } else { 4562 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4563 ArgFlags, CCInfo); 4564 } 4565 4566 if (Result) { 4567 #ifndef NDEBUG 4568 errs() << "Call operand #" << i << " has unhandled type " 4569 << EVT(ArgVT).getEVTString() << "\n"; 4570 #endif 4571 llvm_unreachable(nullptr); 4572 } 4573 } 4574 } else { 4575 // All arguments are treated the same. 4576 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4577 } 4578 4579 // Assign locations to all of the outgoing aggregate by value arguments. 4580 SmallVector<CCValAssign, 16> ByValArgLocs; 4581 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4582 ByValArgLocs, *DAG.getContext()); 4583 4584 // Reserve stack space for the allocations in CCInfo. 4585 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4586 4587 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4588 4589 // Size of the linkage area, parameter list area and the part of the local 4590 // space variable where copies of aggregates which are passed by value are 4591 // stored. 4592 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4593 4594 // Calculate by how many bytes the stack has to be adjusted in case of tail 4595 // call optimization. 4596 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4597 4598 // Adjust the stack pointer for the new arguments... 4599 // These operations are automatically eliminated by the prolog/epilog pass 4600 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4601 dl); 4602 SDValue CallSeqStart = Chain; 4603 4604 // Load the return address and frame pointer so it can be moved somewhere else 4605 // later. 4606 SDValue LROp, FPOp; 4607 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4608 dl); 4609 4610 // Set up a copy of the stack pointer for use loading and storing any 4611 // arguments that may not fit in the registers available for argument 4612 // passing. 4613 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4614 4615 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4616 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4617 SmallVector<SDValue, 8> MemOpChains; 4618 4619 bool seenFloatArg = false; 4620 // Walk the register/memloc assignments, inserting copies/loads. 4621 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4622 i != e; 4623 ++i) { 4624 CCValAssign &VA = ArgLocs[i]; 4625 SDValue Arg = OutVals[i]; 4626 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4627 4628 if (Flags.isByVal()) { 4629 // Argument is an aggregate which is passed by value, thus we need to 4630 // create a copy of it in the local variable space of the current stack 4631 // frame (which is the stack frame of the caller) and pass the address of 4632 // this copy to the callee. 4633 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4634 CCValAssign &ByValVA = ByValArgLocs[j++]; 4635 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4636 4637 // Memory reserved in the local variable space of the callers stack frame. 4638 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4639 4640 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4641 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4642 StackPtr, PtrOff); 4643 4644 // Create a copy of the argument in the local area of the current 4645 // stack frame. 4646 SDValue MemcpyCall = 4647 CreateCopyOfByValArgument(Arg, PtrOff, 4648 CallSeqStart.getNode()->getOperand(0), 4649 Flags, DAG, dl); 4650 4651 // This must go outside the CALLSEQ_START..END. 4652 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4653 CallSeqStart.getNode()->getOperand(1), 4654 SDLoc(MemcpyCall)); 4655 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4656 NewCallSeqStart.getNode()); 4657 Chain = CallSeqStart = NewCallSeqStart; 4658 4659 // Pass the address of the aggregate copy on the stack either in a 4660 // physical register or in the parameter list area of the current stack 4661 // frame to the callee. 4662 Arg = PtrOff; 4663 } 4664 4665 if (VA.isRegLoc()) { 4666 if (Arg.getValueType() == MVT::i1) 4667 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4668 4669 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4670 // Put argument in a physical register. 4671 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4672 } else { 4673 // Put argument in the parameter list area of the current stack frame. 4674 assert(VA.isMemLoc()); 4675 unsigned LocMemOffset = VA.getLocMemOffset(); 4676 4677 if (!isTailCall) { 4678 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4679 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4680 StackPtr, PtrOff); 4681 4682 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4683 MachinePointerInfo(), 4684 false, false, 0)); 4685 } else { 4686 // Calculate and remember argument location. 4687 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4688 TailCallArguments); 4689 } 4690 } 4691 } 4692 4693 if (!MemOpChains.empty()) 4694 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4695 4696 // Build a sequence of copy-to-reg nodes chained together with token chain 4697 // and flag operands which copy the outgoing args into the appropriate regs. 4698 SDValue InFlag; 4699 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4700 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4701 RegsToPass[i].second, InFlag); 4702 InFlag = Chain.getValue(1); 4703 } 4704 4705 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4706 // registers. 4707 if (isVarArg) { 4708 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4709 SDValue Ops[] = { Chain, InFlag }; 4710 4711 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4712 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4713 4714 InFlag = Chain.getValue(1); 4715 } 4716 4717 if (isTailCall) 4718 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4719 false, TailCallArguments); 4720 4721 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4722 /* unused except on PPC64 ELFv1 */ false, DAG, 4723 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4724 NumBytes, Ins, InVals, CS); 4725 } 4726 4727 // Copy an argument into memory, being careful to do this outside the 4728 // call sequence for the call to which the argument belongs. 4729 SDValue 4730 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, 4731 SDValue CallSeqStart, 4732 ISD::ArgFlagsTy Flags, 4733 SelectionDAG &DAG, 4734 SDLoc dl) const { 4735 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4736 CallSeqStart.getNode()->getOperand(0), 4737 Flags, DAG, dl); 4738 // The MEMCPY must go outside the CALLSEQ_START..END. 4739 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4740 CallSeqStart.getNode()->getOperand(1), 4741 SDLoc(MemcpyCall)); 4742 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4743 NewCallSeqStart.getNode()); 4744 return NewCallSeqStart; 4745 } 4746 4747 SDValue 4748 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee, 4749 CallingConv::ID CallConv, bool isVarArg, 4750 bool isTailCall, bool IsPatchPoint, 4751 const SmallVectorImpl<ISD::OutputArg> &Outs, 4752 const SmallVectorImpl<SDValue> &OutVals, 4753 const SmallVectorImpl<ISD::InputArg> &Ins, 4754 SDLoc dl, SelectionDAG &DAG, 4755 SmallVectorImpl<SDValue> &InVals, 4756 ImmutableCallSite *CS) const { 4757 4758 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4759 bool isLittleEndian = Subtarget.isLittleEndian(); 4760 unsigned NumOps = Outs.size(); 4761 bool hasNest = false; 4762 4763 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4764 unsigned PtrByteSize = 8; 4765 4766 MachineFunction &MF = DAG.getMachineFunction(); 4767 4768 // Mark this function as potentially containing a function that contains a 4769 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4770 // and restoring the callers stack pointer in this functions epilog. This is 4771 // done because by tail calling the called function might overwrite the value 4772 // in this function's (MF) stack pointer stack slot 0(SP). 4773 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4774 CallConv == CallingConv::Fast) 4775 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4776 4777 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4778 "fastcc not supported on varargs functions"); 4779 4780 // Count how many bytes are to be pushed on the stack, including the linkage 4781 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4782 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4783 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4784 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4785 unsigned NumBytes = LinkageSize; 4786 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4787 unsigned &QFPR_idx = FPR_idx; 4788 4789 static const MCPhysReg GPR[] = { 4790 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4791 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4792 }; 4793 static const MCPhysReg VR[] = { 4794 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4795 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4796 }; 4797 static const MCPhysReg VSRH[] = { 4798 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4799 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4800 }; 4801 4802 const unsigned NumGPRs = array_lengthof(GPR); 4803 const unsigned NumFPRs = 13; 4804 const unsigned NumVRs = array_lengthof(VR); 4805 const unsigned NumQFPRs = NumFPRs; 4806 4807 // When using the fast calling convention, we don't provide backing for 4808 // arguments that will be in registers. 4809 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4810 4811 // Add up all the space actually used. 4812 for (unsigned i = 0; i != NumOps; ++i) { 4813 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4814 EVT ArgVT = Outs[i].VT; 4815 EVT OrigVT = Outs[i].ArgVT; 4816 4817 if (Flags.isNest()) 4818 continue; 4819 4820 if (CallConv == CallingConv::Fast) { 4821 if (Flags.isByVal()) 4822 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4823 else 4824 switch (ArgVT.getSimpleVT().SimpleTy) { 4825 default: llvm_unreachable("Unexpected ValueType for argument!"); 4826 case MVT::i1: 4827 case MVT::i32: 4828 case MVT::i64: 4829 if (++NumGPRsUsed <= NumGPRs) 4830 continue; 4831 break; 4832 case MVT::v4i32: 4833 case MVT::v8i16: 4834 case MVT::v16i8: 4835 case MVT::v2f64: 4836 case MVT::v2i64: 4837 case MVT::v1i128: 4838 if (++NumVRsUsed <= NumVRs) 4839 continue; 4840 break; 4841 case MVT::v4f32: 4842 // When using QPX, this is handled like a FP register, otherwise, it 4843 // is an Altivec register. 4844 if (Subtarget.hasQPX()) { 4845 if (++NumFPRsUsed <= NumFPRs) 4846 continue; 4847 } else { 4848 if (++NumVRsUsed <= NumVRs) 4849 continue; 4850 } 4851 break; 4852 case MVT::f32: 4853 case MVT::f64: 4854 case MVT::v4f64: // QPX 4855 case MVT::v4i1: // QPX 4856 if (++NumFPRsUsed <= NumFPRs) 4857 continue; 4858 break; 4859 } 4860 } 4861 4862 /* Respect alignment of argument on the stack. */ 4863 unsigned Align = 4864 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4865 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 4866 4867 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 4868 if (Flags.isInConsecutiveRegsLast()) 4869 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4870 } 4871 4872 unsigned NumBytesActuallyUsed = NumBytes; 4873 4874 // The prolog code of the callee may store up to 8 GPR argument registers to 4875 // the stack, allowing va_start to index over them in memory if its varargs. 4876 // Because we cannot tell if this is needed on the caller side, we have to 4877 // conservatively assume that it is needed. As such, make sure we have at 4878 // least enough stack space for the caller to store the 8 GPRs. 4879 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 4880 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 4881 4882 // Tail call needs the stack to be aligned. 4883 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4884 CallConv == CallingConv::Fast) 4885 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 4886 4887 // Calculate by how many bytes the stack has to be adjusted in case of tail 4888 // call optimization. 4889 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4890 4891 // To protect arguments on the stack from being clobbered in a tail call, 4892 // force all the loads to happen before doing any other lowering. 4893 if (isTailCall) 4894 Chain = DAG.getStackArgumentTokenFactor(Chain); 4895 4896 // Adjust the stack pointer for the new arguments... 4897 // These operations are automatically eliminated by the prolog/epilog pass 4898 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4899 dl); 4900 SDValue CallSeqStart = Chain; 4901 4902 // Load the return address and frame pointer so it can be move somewhere else 4903 // later. 4904 SDValue LROp, FPOp; 4905 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 4906 dl); 4907 4908 // Set up a copy of the stack pointer for use loading and storing any 4909 // arguments that may not fit in the registers available for argument 4910 // passing. 4911 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4912 4913 // Figure out which arguments are going to go in registers, and which in 4914 // memory. Also, if this is a vararg function, floating point operations 4915 // must be stored to our stack, and loaded into integer regs as well, if 4916 // any integer regs are available for argument passing. 4917 unsigned ArgOffset = LinkageSize; 4918 4919 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4920 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4921 4922 SmallVector<SDValue, 8> MemOpChains; 4923 for (unsigned i = 0; i != NumOps; ++i) { 4924 SDValue Arg = OutVals[i]; 4925 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4926 EVT ArgVT = Outs[i].VT; 4927 EVT OrigVT = Outs[i].ArgVT; 4928 4929 // PtrOff will be used to store the current argument to the stack if a 4930 // register cannot be found for it. 4931 SDValue PtrOff; 4932 4933 // We re-align the argument offset for each argument, except when using the 4934 // fast calling convention, when we need to make sure we do that only when 4935 // we'll actually use a stack slot. 4936 auto ComputePtrOff = [&]() { 4937 /* Respect alignment of argument on the stack. */ 4938 unsigned Align = 4939 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 4940 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 4941 4942 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 4943 4944 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 4945 }; 4946 4947 if (CallConv != CallingConv::Fast) { 4948 ComputePtrOff(); 4949 4950 /* Compute GPR index associated with argument offset. */ 4951 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4952 GPR_idx = std::min(GPR_idx, NumGPRs); 4953 } 4954 4955 // Promote integers to 64-bit values. 4956 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 4957 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 4958 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4959 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 4960 } 4961 4962 // FIXME memcpy is used way more than necessary. Correctness first. 4963 // Note: "by value" is code for passing a structure by value, not 4964 // basic types. 4965 if (Flags.isByVal()) { 4966 // Note: Size includes alignment padding, so 4967 // struct x { short a; char b; } 4968 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 4969 // These are the proper values we need for right-justifying the 4970 // aggregate in a parameter register. 4971 unsigned Size = Flags.getByValSize(); 4972 4973 // An empty aggregate parameter takes up no storage and no 4974 // registers. 4975 if (Size == 0) 4976 continue; 4977 4978 if (CallConv == CallingConv::Fast) 4979 ComputePtrOff(); 4980 4981 // All aggregates smaller than 8 bytes must be passed right-justified. 4982 if (Size==1 || Size==2 || Size==4) { 4983 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 4984 if (GPR_idx != NumGPRs) { 4985 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 4986 MachinePointerInfo(), VT, 4987 false, false, false, 0); 4988 MemOpChains.push_back(Load.getValue(1)); 4989 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 4990 4991 ArgOffset += PtrByteSize; 4992 continue; 4993 } 4994 } 4995 4996 if (GPR_idx == NumGPRs && Size < 8) { 4997 SDValue AddPtr = PtrOff; 4998 if (!isLittleEndian) { 4999 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5000 PtrOff.getValueType()); 5001 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5002 } 5003 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5004 CallSeqStart, 5005 Flags, DAG, dl); 5006 ArgOffset += PtrByteSize; 5007 continue; 5008 } 5009 // Copy entire object into memory. There are cases where gcc-generated 5010 // code assumes it is there, even if it could be put entirely into 5011 // registers. (This is not what the doc says.) 5012 5013 // FIXME: The above statement is likely due to a misunderstanding of the 5014 // documents. All arguments must be copied into the parameter area BY 5015 // THE CALLEE in the event that the callee takes the address of any 5016 // formal argument. That has not yet been implemented. However, it is 5017 // reasonable to use the stack area as a staging area for the register 5018 // load. 5019 5020 // Skip this for small aggregates, as we will use the same slot for a 5021 // right-justified copy, below. 5022 if (Size >= 8) 5023 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5024 CallSeqStart, 5025 Flags, DAG, dl); 5026 5027 // When a register is available, pass a small aggregate right-justified. 5028 if (Size < 8 && GPR_idx != NumGPRs) { 5029 // The easiest way to get this right-justified in a register 5030 // is to copy the structure into the rightmost portion of a 5031 // local variable slot, then load the whole slot into the 5032 // register. 5033 // FIXME: The memcpy seems to produce pretty awful code for 5034 // small aggregates, particularly for packed ones. 5035 // FIXME: It would be preferable to use the slot in the 5036 // parameter save area instead of a new local variable. 5037 SDValue AddPtr = PtrOff; 5038 if (!isLittleEndian) { 5039 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5040 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5041 } 5042 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5043 CallSeqStart, 5044 Flags, DAG, dl); 5045 5046 // Load the slot into the register. 5047 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5048 MachinePointerInfo(), 5049 false, false, false, 0); 5050 MemOpChains.push_back(Load.getValue(1)); 5051 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5052 5053 // Done with this argument. 5054 ArgOffset += PtrByteSize; 5055 continue; 5056 } 5057 5058 // For aggregates larger than PtrByteSize, copy the pieces of the 5059 // object that fit into registers from the parameter save area. 5060 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5061 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5062 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5063 if (GPR_idx != NumGPRs) { 5064 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5065 MachinePointerInfo(), 5066 false, false, false, 0); 5067 MemOpChains.push_back(Load.getValue(1)); 5068 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5069 ArgOffset += PtrByteSize; 5070 } else { 5071 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5072 break; 5073 } 5074 } 5075 continue; 5076 } 5077 5078 switch (Arg.getSimpleValueType().SimpleTy) { 5079 default: llvm_unreachable("Unexpected ValueType for argument!"); 5080 case MVT::i1: 5081 case MVT::i32: 5082 case MVT::i64: 5083 if (Flags.isNest()) { 5084 // The 'nest' parameter, if any, is passed in R11. 5085 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5086 hasNest = true; 5087 break; 5088 } 5089 5090 // These can be scalar arguments or elements of an integer array type 5091 // passed directly. Clang may use those instead of "byval" aggregate 5092 // types to avoid forcing arguments to memory unnecessarily. 5093 if (GPR_idx != NumGPRs) { 5094 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5095 } else { 5096 if (CallConv == CallingConv::Fast) 5097 ComputePtrOff(); 5098 5099 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5100 true, isTailCall, false, MemOpChains, 5101 TailCallArguments, dl); 5102 if (CallConv == CallingConv::Fast) 5103 ArgOffset += PtrByteSize; 5104 } 5105 if (CallConv != CallingConv::Fast) 5106 ArgOffset += PtrByteSize; 5107 break; 5108 case MVT::f32: 5109 case MVT::f64: { 5110 // These can be scalar arguments or elements of a float array type 5111 // passed directly. The latter are used to implement ELFv2 homogenous 5112 // float aggregates. 5113 5114 // Named arguments go into FPRs first, and once they overflow, the 5115 // remaining arguments go into GPRs and then the parameter save area. 5116 // Unnamed arguments for vararg functions always go to GPRs and 5117 // then the parameter save area. For now, put all arguments to vararg 5118 // routines always in both locations (FPR *and* GPR or stack slot). 5119 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5120 bool NeededLoad = false; 5121 5122 // First load the argument into the next available FPR. 5123 if (FPR_idx != NumFPRs) 5124 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5125 5126 // Next, load the argument into GPR or stack slot if needed. 5127 if (!NeedGPROrStack) 5128 ; 5129 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5130 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5131 // once we support fp <-> gpr moves. 5132 5133 // In the non-vararg case, this can only ever happen in the 5134 // presence of f32 array types, since otherwise we never run 5135 // out of FPRs before running out of GPRs. 5136 SDValue ArgVal; 5137 5138 // Double values are always passed in a single GPR. 5139 if (Arg.getValueType() != MVT::f32) { 5140 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5141 5142 // Non-array float values are extended and passed in a GPR. 5143 } else if (!Flags.isInConsecutiveRegs()) { 5144 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5145 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5146 5147 // If we have an array of floats, we collect every odd element 5148 // together with its predecessor into one GPR. 5149 } else if (ArgOffset % PtrByteSize != 0) { 5150 SDValue Lo, Hi; 5151 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5152 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5153 if (!isLittleEndian) 5154 std::swap(Lo, Hi); 5155 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5156 5157 // The final element, if even, goes into the first half of a GPR. 5158 } else if (Flags.isInConsecutiveRegsLast()) { 5159 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5160 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5161 if (!isLittleEndian) 5162 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5163 DAG.getConstant(32, dl, MVT::i32)); 5164 5165 // Non-final even elements are skipped; they will be handled 5166 // together the with subsequent argument on the next go-around. 5167 } else 5168 ArgVal = SDValue(); 5169 5170 if (ArgVal.getNode()) 5171 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5172 } else { 5173 if (CallConv == CallingConv::Fast) 5174 ComputePtrOff(); 5175 5176 // Single-precision floating-point values are mapped to the 5177 // second (rightmost) word of the stack doubleword. 5178 if (Arg.getValueType() == MVT::f32 && 5179 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5180 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5181 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5182 } 5183 5184 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5185 true, isTailCall, false, MemOpChains, 5186 TailCallArguments, dl); 5187 5188 NeededLoad = true; 5189 } 5190 // When passing an array of floats, the array occupies consecutive 5191 // space in the argument area; only round up to the next doubleword 5192 // at the end of the array. Otherwise, each float takes 8 bytes. 5193 if (CallConv != CallingConv::Fast || NeededLoad) { 5194 ArgOffset += (Arg.getValueType() == MVT::f32 && 5195 Flags.isInConsecutiveRegs()) ? 4 : 8; 5196 if (Flags.isInConsecutiveRegsLast()) 5197 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5198 } 5199 break; 5200 } 5201 case MVT::v4f32: 5202 case MVT::v4i32: 5203 case MVT::v8i16: 5204 case MVT::v16i8: 5205 case MVT::v2f64: 5206 case MVT::v2i64: 5207 case MVT::v1i128: 5208 if (!Subtarget.hasQPX()) { 5209 // These can be scalar arguments or elements of a vector array type 5210 // passed directly. The latter are used to implement ELFv2 homogenous 5211 // vector aggregates. 5212 5213 // For a varargs call, named arguments go into VRs or on the stack as 5214 // usual; unnamed arguments always go to the stack or the corresponding 5215 // GPRs when within range. For now, we always put the value in both 5216 // locations (or even all three). 5217 if (isVarArg) { 5218 // We could elide this store in the case where the object fits 5219 // entirely in R registers. Maybe later. 5220 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5221 MachinePointerInfo(), false, false, 0); 5222 MemOpChains.push_back(Store); 5223 if (VR_idx != NumVRs) { 5224 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5225 MachinePointerInfo(), 5226 false, false, false, 0); 5227 MemOpChains.push_back(Load.getValue(1)); 5228 5229 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5230 Arg.getSimpleValueType() == MVT::v2i64) ? 5231 VSRH[VR_idx] : VR[VR_idx]; 5232 ++VR_idx; 5233 5234 RegsToPass.push_back(std::make_pair(VReg, Load)); 5235 } 5236 ArgOffset += 16; 5237 for (unsigned i=0; i<16; i+=PtrByteSize) { 5238 if (GPR_idx == NumGPRs) 5239 break; 5240 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5241 DAG.getConstant(i, dl, PtrVT)); 5242 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5243 false, false, false, 0); 5244 MemOpChains.push_back(Load.getValue(1)); 5245 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5246 } 5247 break; 5248 } 5249 5250 // Non-varargs Altivec params go into VRs or on the stack. 5251 if (VR_idx != NumVRs) { 5252 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5253 Arg.getSimpleValueType() == MVT::v2i64) ? 5254 VSRH[VR_idx] : VR[VR_idx]; 5255 ++VR_idx; 5256 5257 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5258 } else { 5259 if (CallConv == CallingConv::Fast) 5260 ComputePtrOff(); 5261 5262 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5263 true, isTailCall, true, MemOpChains, 5264 TailCallArguments, dl); 5265 if (CallConv == CallingConv::Fast) 5266 ArgOffset += 16; 5267 } 5268 5269 if (CallConv != CallingConv::Fast) 5270 ArgOffset += 16; 5271 break; 5272 } // not QPX 5273 5274 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5275 "Invalid QPX parameter type"); 5276 5277 /* fall through */ 5278 case MVT::v4f64: 5279 case MVT::v4i1: { 5280 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5281 if (isVarArg) { 5282 // We could elide this store in the case where the object fits 5283 // entirely in R registers. Maybe later. 5284 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5285 MachinePointerInfo(), false, false, 0); 5286 MemOpChains.push_back(Store); 5287 if (QFPR_idx != NumQFPRs) { 5288 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5289 Store, PtrOff, MachinePointerInfo(), 5290 false, false, false, 0); 5291 MemOpChains.push_back(Load.getValue(1)); 5292 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5293 } 5294 ArgOffset += (IsF32 ? 16 : 32); 5295 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5296 if (GPR_idx == NumGPRs) 5297 break; 5298 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5299 DAG.getConstant(i, dl, PtrVT)); 5300 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5301 false, false, false, 0); 5302 MemOpChains.push_back(Load.getValue(1)); 5303 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5304 } 5305 break; 5306 } 5307 5308 // Non-varargs QPX params go into registers or on the stack. 5309 if (QFPR_idx != NumQFPRs) { 5310 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5311 } else { 5312 if (CallConv == CallingConv::Fast) 5313 ComputePtrOff(); 5314 5315 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5316 true, isTailCall, true, MemOpChains, 5317 TailCallArguments, dl); 5318 if (CallConv == CallingConv::Fast) 5319 ArgOffset += (IsF32 ? 16 : 32); 5320 } 5321 5322 if (CallConv != CallingConv::Fast) 5323 ArgOffset += (IsF32 ? 16 : 32); 5324 break; 5325 } 5326 } 5327 } 5328 5329 assert(NumBytesActuallyUsed == ArgOffset); 5330 (void)NumBytesActuallyUsed; 5331 5332 if (!MemOpChains.empty()) 5333 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5334 5335 // Check if this is an indirect call (MTCTR/BCTRL). 5336 // See PrepareCall() for more information about calls through function 5337 // pointers in the 64-bit SVR4 ABI. 5338 if (!isTailCall && !IsPatchPoint && 5339 !isFunctionGlobalAddress(Callee) && 5340 !isa<ExternalSymbolSDNode>(Callee)) { 5341 // Load r2 into a virtual register and store it to the TOC save area. 5342 setUsesTOCBasePtr(DAG); 5343 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5344 // TOC save area offset. 5345 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5346 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5347 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5348 Chain = DAG.getStore( 5349 Val.getValue(1), dl, Val, AddPtr, 5350 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5351 false, false, 0); 5352 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5353 // This does not mean the MTCTR instruction must use R12; it's easier 5354 // to model this as an extra parameter, so do that. 5355 if (isELFv2ABI && !IsPatchPoint) 5356 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5357 } 5358 5359 // Build a sequence of copy-to-reg nodes chained together with token chain 5360 // and flag operands which copy the outgoing args into the appropriate regs. 5361 SDValue InFlag; 5362 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5363 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5364 RegsToPass[i].second, InFlag); 5365 InFlag = Chain.getValue(1); 5366 } 5367 5368 if (isTailCall) 5369 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5370 FPOp, true, TailCallArguments); 5371 5372 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5373 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5374 SPDiff, NumBytes, Ins, InVals, CS); 5375 } 5376 5377 SDValue 5378 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 5379 CallingConv::ID CallConv, bool isVarArg, 5380 bool isTailCall, bool IsPatchPoint, 5381 const SmallVectorImpl<ISD::OutputArg> &Outs, 5382 const SmallVectorImpl<SDValue> &OutVals, 5383 const SmallVectorImpl<ISD::InputArg> &Ins, 5384 SDLoc dl, SelectionDAG &DAG, 5385 SmallVectorImpl<SDValue> &InVals, 5386 ImmutableCallSite *CS) const { 5387 5388 unsigned NumOps = Outs.size(); 5389 5390 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5391 bool isPPC64 = PtrVT == MVT::i64; 5392 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5393 5394 MachineFunction &MF = DAG.getMachineFunction(); 5395 5396 // Mark this function as potentially containing a function that contains a 5397 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5398 // and restoring the callers stack pointer in this functions epilog. This is 5399 // done because by tail calling the called function might overwrite the value 5400 // in this function's (MF) stack pointer stack slot 0(SP). 5401 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5402 CallConv == CallingConv::Fast) 5403 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5404 5405 // Count how many bytes are to be pushed on the stack, including the linkage 5406 // area, and parameter passing area. We start with 24/48 bytes, which is 5407 // prereserved space for [SP][CR][LR][3 x unused]. 5408 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5409 unsigned NumBytes = LinkageSize; 5410 5411 // Add up all the space actually used. 5412 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5413 // they all go in registers, but we must reserve stack space for them for 5414 // possible use by the caller. In varargs or 64-bit calls, parameters are 5415 // assigned stack space in order, with padding so Altivec parameters are 5416 // 16-byte aligned. 5417 unsigned nAltivecParamsAtEnd = 0; 5418 for (unsigned i = 0; i != NumOps; ++i) { 5419 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5420 EVT ArgVT = Outs[i].VT; 5421 // Varargs Altivec parameters are padded to a 16 byte boundary. 5422 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5423 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5424 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5425 if (!isVarArg && !isPPC64) { 5426 // Non-varargs Altivec parameters go after all the non-Altivec 5427 // parameters; handle those later so we know how much padding we need. 5428 nAltivecParamsAtEnd++; 5429 continue; 5430 } 5431 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5432 NumBytes = ((NumBytes+15)/16)*16; 5433 } 5434 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5435 } 5436 5437 // Allow for Altivec parameters at the end, if needed. 5438 if (nAltivecParamsAtEnd) { 5439 NumBytes = ((NumBytes+15)/16)*16; 5440 NumBytes += 16*nAltivecParamsAtEnd; 5441 } 5442 5443 // The prolog code of the callee may store up to 8 GPR argument registers to 5444 // the stack, allowing va_start to index over them in memory if its varargs. 5445 // Because we cannot tell if this is needed on the caller side, we have to 5446 // conservatively assume that it is needed. As such, make sure we have at 5447 // least enough stack space for the caller to store the 8 GPRs. 5448 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5449 5450 // Tail call needs the stack to be aligned. 5451 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5452 CallConv == CallingConv::Fast) 5453 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5454 5455 // Calculate by how many bytes the stack has to be adjusted in case of tail 5456 // call optimization. 5457 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5458 5459 // To protect arguments on the stack from being clobbered in a tail call, 5460 // force all the loads to happen before doing any other lowering. 5461 if (isTailCall) 5462 Chain = DAG.getStackArgumentTokenFactor(Chain); 5463 5464 // Adjust the stack pointer for the new arguments... 5465 // These operations are automatically eliminated by the prolog/epilog pass 5466 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5467 dl); 5468 SDValue CallSeqStart = Chain; 5469 5470 // Load the return address and frame pointer so it can be move somewhere else 5471 // later. 5472 SDValue LROp, FPOp; 5473 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5474 dl); 5475 5476 // Set up a copy of the stack pointer for use loading and storing any 5477 // arguments that may not fit in the registers available for argument 5478 // passing. 5479 SDValue StackPtr; 5480 if (isPPC64) 5481 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5482 else 5483 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5484 5485 // Figure out which arguments are going to go in registers, and which in 5486 // memory. Also, if this is a vararg function, floating point operations 5487 // must be stored to our stack, and loaded into integer regs as well, if 5488 // any integer regs are available for argument passing. 5489 unsigned ArgOffset = LinkageSize; 5490 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5491 5492 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5493 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5494 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5495 }; 5496 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5497 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5498 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5499 }; 5500 static const MCPhysReg VR[] = { 5501 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5502 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5503 }; 5504 const unsigned NumGPRs = array_lengthof(GPR_32); 5505 const unsigned NumFPRs = 13; 5506 const unsigned NumVRs = array_lengthof(VR); 5507 5508 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5509 5510 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5511 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5512 5513 SmallVector<SDValue, 8> MemOpChains; 5514 for (unsigned i = 0; i != NumOps; ++i) { 5515 SDValue Arg = OutVals[i]; 5516 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5517 5518 // PtrOff will be used to store the current argument to the stack if a 5519 // register cannot be found for it. 5520 SDValue PtrOff; 5521 5522 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5523 5524 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5525 5526 // On PPC64, promote integers to 64-bit values. 5527 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5528 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5529 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5530 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5531 } 5532 5533 // FIXME memcpy is used way more than necessary. Correctness first. 5534 // Note: "by value" is code for passing a structure by value, not 5535 // basic types. 5536 if (Flags.isByVal()) { 5537 unsigned Size = Flags.getByValSize(); 5538 // Very small objects are passed right-justified. Everything else is 5539 // passed left-justified. 5540 if (Size==1 || Size==2) { 5541 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5542 if (GPR_idx != NumGPRs) { 5543 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5544 MachinePointerInfo(), VT, 5545 false, false, false, 0); 5546 MemOpChains.push_back(Load.getValue(1)); 5547 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5548 5549 ArgOffset += PtrByteSize; 5550 } else { 5551 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5552 PtrOff.getValueType()); 5553 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5554 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5555 CallSeqStart, 5556 Flags, DAG, dl); 5557 ArgOffset += PtrByteSize; 5558 } 5559 continue; 5560 } 5561 // Copy entire object into memory. There are cases where gcc-generated 5562 // code assumes it is there, even if it could be put entirely into 5563 // registers. (This is not what the doc says.) 5564 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5565 CallSeqStart, 5566 Flags, DAG, dl); 5567 5568 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5569 // copy the pieces of the object that fit into registers from the 5570 // parameter save area. 5571 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5572 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5573 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5574 if (GPR_idx != NumGPRs) { 5575 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5576 MachinePointerInfo(), 5577 false, false, false, 0); 5578 MemOpChains.push_back(Load.getValue(1)); 5579 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5580 ArgOffset += PtrByteSize; 5581 } else { 5582 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5583 break; 5584 } 5585 } 5586 continue; 5587 } 5588 5589 switch (Arg.getSimpleValueType().SimpleTy) { 5590 default: llvm_unreachable("Unexpected ValueType for argument!"); 5591 case MVT::i1: 5592 case MVT::i32: 5593 case MVT::i64: 5594 if (GPR_idx != NumGPRs) { 5595 if (Arg.getValueType() == MVT::i1) 5596 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5597 5598 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5599 } else { 5600 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5601 isPPC64, isTailCall, false, MemOpChains, 5602 TailCallArguments, dl); 5603 } 5604 ArgOffset += PtrByteSize; 5605 break; 5606 case MVT::f32: 5607 case MVT::f64: 5608 if (FPR_idx != NumFPRs) { 5609 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5610 5611 if (isVarArg) { 5612 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5613 MachinePointerInfo(), false, false, 0); 5614 MemOpChains.push_back(Store); 5615 5616 // Float varargs are always shadowed in available integer registers 5617 if (GPR_idx != NumGPRs) { 5618 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5619 MachinePointerInfo(), false, false, 5620 false, 0); 5621 MemOpChains.push_back(Load.getValue(1)); 5622 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5623 } 5624 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5625 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5626 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5627 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5628 MachinePointerInfo(), 5629 false, false, false, 0); 5630 MemOpChains.push_back(Load.getValue(1)); 5631 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5632 } 5633 } else { 5634 // If we have any FPRs remaining, we may also have GPRs remaining. 5635 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5636 // GPRs. 5637 if (GPR_idx != NumGPRs) 5638 ++GPR_idx; 5639 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5640 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5641 ++GPR_idx; 5642 } 5643 } else 5644 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5645 isPPC64, isTailCall, false, MemOpChains, 5646 TailCallArguments, dl); 5647 if (isPPC64) 5648 ArgOffset += 8; 5649 else 5650 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5651 break; 5652 case MVT::v4f32: 5653 case MVT::v4i32: 5654 case MVT::v8i16: 5655 case MVT::v16i8: 5656 if (isVarArg) { 5657 // These go aligned on the stack, or in the corresponding R registers 5658 // when within range. The Darwin PPC ABI doc claims they also go in 5659 // V registers; in fact gcc does this only for arguments that are 5660 // prototyped, not for those that match the ... We do it for all 5661 // arguments, seems to work. 5662 while (ArgOffset % 16 !=0) { 5663 ArgOffset += PtrByteSize; 5664 if (GPR_idx != NumGPRs) 5665 GPR_idx++; 5666 } 5667 // We could elide this store in the case where the object fits 5668 // entirely in R registers. Maybe later. 5669 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5670 DAG.getConstant(ArgOffset, dl, PtrVT)); 5671 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5672 MachinePointerInfo(), false, false, 0); 5673 MemOpChains.push_back(Store); 5674 if (VR_idx != NumVRs) { 5675 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5676 MachinePointerInfo(), 5677 false, false, false, 0); 5678 MemOpChains.push_back(Load.getValue(1)); 5679 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5680 } 5681 ArgOffset += 16; 5682 for (unsigned i=0; i<16; i+=PtrByteSize) { 5683 if (GPR_idx == NumGPRs) 5684 break; 5685 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5686 DAG.getConstant(i, dl, PtrVT)); 5687 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5688 false, false, false, 0); 5689 MemOpChains.push_back(Load.getValue(1)); 5690 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5691 } 5692 break; 5693 } 5694 5695 // Non-varargs Altivec params generally go in registers, but have 5696 // stack space allocated at the end. 5697 if (VR_idx != NumVRs) { 5698 // Doesn't have GPR space allocated. 5699 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5700 } else if (nAltivecParamsAtEnd==0) { 5701 // We are emitting Altivec params in order. 5702 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5703 isPPC64, isTailCall, true, MemOpChains, 5704 TailCallArguments, dl); 5705 ArgOffset += 16; 5706 } 5707 break; 5708 } 5709 } 5710 // If all Altivec parameters fit in registers, as they usually do, 5711 // they get stack space following the non-Altivec parameters. We 5712 // don't track this here because nobody below needs it. 5713 // If there are more Altivec parameters than fit in registers emit 5714 // the stores here. 5715 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5716 unsigned j = 0; 5717 // Offset is aligned; skip 1st 12 params which go in V registers. 5718 ArgOffset = ((ArgOffset+15)/16)*16; 5719 ArgOffset += 12*16; 5720 for (unsigned i = 0; i != NumOps; ++i) { 5721 SDValue Arg = OutVals[i]; 5722 EVT ArgType = Outs[i].VT; 5723 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5724 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5725 if (++j > NumVRs) { 5726 SDValue PtrOff; 5727 // We are emitting Altivec params in order. 5728 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5729 isPPC64, isTailCall, true, MemOpChains, 5730 TailCallArguments, dl); 5731 ArgOffset += 16; 5732 } 5733 } 5734 } 5735 } 5736 5737 if (!MemOpChains.empty()) 5738 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5739 5740 // On Darwin, R12 must contain the address of an indirect callee. This does 5741 // not mean the MTCTR instruction must use R12; it's easier to model this as 5742 // an extra parameter, so do that. 5743 if (!isTailCall && 5744 !isFunctionGlobalAddress(Callee) && 5745 !isa<ExternalSymbolSDNode>(Callee) && 5746 !isBLACompatibleAddress(Callee, DAG)) 5747 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5748 PPC::R12), Callee)); 5749 5750 // Build a sequence of copy-to-reg nodes chained together with token chain 5751 // and flag operands which copy the outgoing args into the appropriate regs. 5752 SDValue InFlag; 5753 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5754 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5755 RegsToPass[i].second, InFlag); 5756 InFlag = Chain.getValue(1); 5757 } 5758 5759 if (isTailCall) 5760 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5761 FPOp, true, TailCallArguments); 5762 5763 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5764 /* unused except on PPC64 ELFv1 */ false, DAG, 5765 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5766 NumBytes, Ins, InVals, CS); 5767 } 5768 5769 bool 5770 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5771 MachineFunction &MF, bool isVarArg, 5772 const SmallVectorImpl<ISD::OutputArg> &Outs, 5773 LLVMContext &Context) const { 5774 SmallVector<CCValAssign, 16> RVLocs; 5775 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5776 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5777 } 5778 5779 SDValue 5780 PPCTargetLowering::LowerReturn(SDValue Chain, 5781 CallingConv::ID CallConv, bool isVarArg, 5782 const SmallVectorImpl<ISD::OutputArg> &Outs, 5783 const SmallVectorImpl<SDValue> &OutVals, 5784 SDLoc dl, SelectionDAG &DAG) const { 5785 5786 SmallVector<CCValAssign, 16> RVLocs; 5787 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5788 *DAG.getContext()); 5789 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5790 5791 SDValue Flag; 5792 SmallVector<SDValue, 4> RetOps(1, Chain); 5793 5794 // Copy the result values into the output registers. 5795 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5796 CCValAssign &VA = RVLocs[i]; 5797 assert(VA.isRegLoc() && "Can only return in registers!"); 5798 5799 SDValue Arg = OutVals[i]; 5800 5801 switch (VA.getLocInfo()) { 5802 default: llvm_unreachable("Unknown loc info!"); 5803 case CCValAssign::Full: break; 5804 case CCValAssign::AExt: 5805 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5806 break; 5807 case CCValAssign::ZExt: 5808 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5809 break; 5810 case CCValAssign::SExt: 5811 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5812 break; 5813 } 5814 5815 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5816 Flag = Chain.getValue(1); 5817 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5818 } 5819 5820 RetOps[0] = Chain; // Update chain. 5821 5822 // Add the flag if we have it. 5823 if (Flag.getNode()) 5824 RetOps.push_back(Flag); 5825 5826 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 5827 } 5828 5829 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET( 5830 SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { 5831 SDLoc dl(Op); 5832 5833 // Get the corect type for integers. 5834 EVT IntVT = Op.getValueType(); 5835 5836 // Get the inputs. 5837 SDValue Chain = Op.getOperand(0); 5838 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5839 // Build a DYNAREAOFFSET node. 5840 SDValue Ops[2] = {Chain, FPSIdx}; 5841 SDVTList VTs = DAG.getVTList(IntVT); 5842 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 5843 } 5844 5845 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 5846 const PPCSubtarget &Subtarget) const { 5847 // When we pop the dynamic allocation we need to restore the SP link. 5848 SDLoc dl(Op); 5849 5850 // Get the corect type for pointers. 5851 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5852 5853 // Construct the stack pointer operand. 5854 bool isPPC64 = Subtarget.isPPC64(); 5855 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 5856 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 5857 5858 // Get the operands for the STACKRESTORE. 5859 SDValue Chain = Op.getOperand(0); 5860 SDValue SaveSP = Op.getOperand(1); 5861 5862 // Load the old link SP. 5863 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 5864 MachinePointerInfo(), 5865 false, false, false, 0); 5866 5867 // Restore the stack pointer. 5868 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 5869 5870 // Store the old link SP. 5871 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 5872 false, false, 0); 5873 } 5874 5875 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 5876 MachineFunction &MF = DAG.getMachineFunction(); 5877 bool isPPC64 = Subtarget.isPPC64(); 5878 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5879 5880 // Get current frame pointer save index. The users of this index will be 5881 // primarily DYNALLOC instructions. 5882 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5883 int RASI = FI->getReturnAddrSaveIndex(); 5884 5885 // If the frame pointer save index hasn't been defined yet. 5886 if (!RASI) { 5887 // Find out what the fix offset of the frame pointer save area. 5888 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 5889 // Allocate the frame index for frame pointer save area. 5890 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 5891 // Save the result. 5892 FI->setReturnAddrSaveIndex(RASI); 5893 } 5894 return DAG.getFrameIndex(RASI, PtrVT); 5895 } 5896 5897 SDValue 5898 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 5899 MachineFunction &MF = DAG.getMachineFunction(); 5900 bool isPPC64 = Subtarget.isPPC64(); 5901 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 5902 5903 // Get current frame pointer save index. The users of this index will be 5904 // primarily DYNALLOC instructions. 5905 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 5906 int FPSI = FI->getFramePointerSaveIndex(); 5907 5908 // If the frame pointer save index hasn't been defined yet. 5909 if (!FPSI) { 5910 // Find out what the fix offset of the frame pointer save area. 5911 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 5912 // Allocate the frame index for frame pointer save area. 5913 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 5914 // Save the result. 5915 FI->setFramePointerSaveIndex(FPSI); 5916 } 5917 return DAG.getFrameIndex(FPSI, PtrVT); 5918 } 5919 5920 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 5921 SelectionDAG &DAG, 5922 const PPCSubtarget &Subtarget) const { 5923 // Get the inputs. 5924 SDValue Chain = Op.getOperand(0); 5925 SDValue Size = Op.getOperand(1); 5926 SDLoc dl(Op); 5927 5928 // Get the corect type for pointers. 5929 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5930 // Negate the size. 5931 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 5932 DAG.getConstant(0, dl, PtrVT), Size); 5933 // Construct a node for the frame pointer save index. 5934 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 5935 // Build a DYNALLOC node. 5936 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 5937 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 5938 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 5939 } 5940 5941 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 5942 SelectionDAG &DAG) const { 5943 SDLoc DL(Op); 5944 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 5945 DAG.getVTList(MVT::i32, MVT::Other), 5946 Op.getOperand(0), Op.getOperand(1)); 5947 } 5948 5949 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 5950 SelectionDAG &DAG) const { 5951 SDLoc DL(Op); 5952 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 5953 Op.getOperand(0), Op.getOperand(1)); 5954 } 5955 5956 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 5957 if (Op.getValueType().isVector()) 5958 return LowerVectorLoad(Op, DAG); 5959 5960 assert(Op.getValueType() == MVT::i1 && 5961 "Custom lowering only for i1 loads"); 5962 5963 // First, load 8 bits into 32 bits, then truncate to 1 bit. 5964 5965 SDLoc dl(Op); 5966 LoadSDNode *LD = cast<LoadSDNode>(Op); 5967 5968 SDValue Chain = LD->getChain(); 5969 SDValue BasePtr = LD->getBasePtr(); 5970 MachineMemOperand *MMO = LD->getMemOperand(); 5971 5972 SDValue NewLD = 5973 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 5974 BasePtr, MVT::i8, MMO); 5975 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 5976 5977 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 5978 return DAG.getMergeValues(Ops, dl); 5979 } 5980 5981 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 5982 if (Op.getOperand(1).getValueType().isVector()) 5983 return LowerVectorStore(Op, DAG); 5984 5985 assert(Op.getOperand(1).getValueType() == MVT::i1 && 5986 "Custom lowering only for i1 stores"); 5987 5988 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 5989 5990 SDLoc dl(Op); 5991 StoreSDNode *ST = cast<StoreSDNode>(Op); 5992 5993 SDValue Chain = ST->getChain(); 5994 SDValue BasePtr = ST->getBasePtr(); 5995 SDValue Value = ST->getValue(); 5996 MachineMemOperand *MMO = ST->getMemOperand(); 5997 5998 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 5999 Value); 6000 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6001 } 6002 6003 // FIXME: Remove this once the ANDI glue bug is fixed: 6004 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6005 assert(Op.getValueType() == MVT::i1 && 6006 "Custom lowering only for i1 results"); 6007 6008 SDLoc DL(Op); 6009 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6010 Op.getOperand(0)); 6011 } 6012 6013 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6014 /// possible. 6015 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6016 // Not FP? Not a fsel. 6017 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6018 !Op.getOperand(2).getValueType().isFloatingPoint()) 6019 return Op; 6020 6021 // We might be able to do better than this under some circumstances, but in 6022 // general, fsel-based lowering of select is a finite-math-only optimization. 6023 // For more information, see section F.3 of the 2.06 ISA specification. 6024 if (!DAG.getTarget().Options.NoInfsFPMath || 6025 !DAG.getTarget().Options.NoNaNsFPMath) 6026 return Op; 6027 // TODO: Propagate flags from the select rather than global settings. 6028 SDNodeFlags Flags; 6029 Flags.setNoInfs(true); 6030 Flags.setNoNaNs(true); 6031 6032 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6033 6034 EVT ResVT = Op.getValueType(); 6035 EVT CmpVT = Op.getOperand(0).getValueType(); 6036 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6037 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6038 SDLoc dl(Op); 6039 6040 // If the RHS of the comparison is a 0.0, we don't need to do the 6041 // subtraction at all. 6042 SDValue Sel1; 6043 if (isFloatingPointZero(RHS)) 6044 switch (CC) { 6045 default: break; // SETUO etc aren't handled by fsel. 6046 case ISD::SETNE: 6047 std::swap(TV, FV); 6048 case ISD::SETEQ: 6049 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6050 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6051 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6052 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6053 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6054 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6055 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6056 case ISD::SETULT: 6057 case ISD::SETLT: 6058 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6059 case ISD::SETOGE: 6060 case ISD::SETGE: 6061 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6062 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6063 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6064 case ISD::SETUGT: 6065 case ISD::SETGT: 6066 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6067 case ISD::SETOLE: 6068 case ISD::SETLE: 6069 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6070 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6071 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6072 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6073 } 6074 6075 SDValue Cmp; 6076 switch (CC) { 6077 default: break; // SETUO etc aren't handled by fsel. 6078 case ISD::SETNE: 6079 std::swap(TV, FV); 6080 case ISD::SETEQ: 6081 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6082 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6083 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6084 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6085 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6086 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6087 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6088 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6089 case ISD::SETULT: 6090 case ISD::SETLT: 6091 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6092 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6093 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6094 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6095 case ISD::SETOGE: 6096 case ISD::SETGE: 6097 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6098 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6099 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6100 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6101 case ISD::SETUGT: 6102 case ISD::SETGT: 6103 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6104 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6105 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6106 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6107 case ISD::SETOLE: 6108 case ISD::SETLE: 6109 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6110 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6111 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6112 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6113 } 6114 return Op; 6115 } 6116 6117 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6118 SelectionDAG &DAG, 6119 SDLoc dl) const { 6120 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6121 SDValue Src = Op.getOperand(0); 6122 if (Src.getValueType() == MVT::f32) 6123 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6124 6125 SDValue Tmp; 6126 switch (Op.getSimpleValueType().SimpleTy) { 6127 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6128 case MVT::i32: 6129 Tmp = DAG.getNode( 6130 Op.getOpcode() == ISD::FP_TO_SINT 6131 ? PPCISD::FCTIWZ 6132 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6133 dl, MVT::f64, Src); 6134 break; 6135 case MVT::i64: 6136 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6137 "i64 FP_TO_UINT is supported only with FPCVT"); 6138 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6139 PPCISD::FCTIDUZ, 6140 dl, MVT::f64, Src); 6141 break; 6142 } 6143 6144 // Convert the FP value to an int value through memory. 6145 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6146 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6147 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6148 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6149 MachinePointerInfo MPI = 6150 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6151 6152 // Emit a store to the stack slot. 6153 SDValue Chain; 6154 if (i32Stack) { 6155 MachineFunction &MF = DAG.getMachineFunction(); 6156 MachineMemOperand *MMO = 6157 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6158 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6159 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6160 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6161 } else 6162 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6163 MPI, false, false, 0); 6164 6165 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6166 // add in a bias on big endian. 6167 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6168 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6169 DAG.getConstant(4, dl, FIPtr.getValueType())); 6170 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6171 } 6172 6173 RLI.Chain = Chain; 6174 RLI.Ptr = FIPtr; 6175 RLI.MPI = MPI; 6176 } 6177 6178 /// \brief Custom lowers floating point to integer conversions to use 6179 /// the direct move instructions available in ISA 2.07 to avoid the 6180 /// need for load/store combinations. 6181 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6182 SelectionDAG &DAG, 6183 SDLoc dl) const { 6184 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6185 SDValue Src = Op.getOperand(0); 6186 6187 if (Src.getValueType() == MVT::f32) 6188 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6189 6190 SDValue Tmp; 6191 switch (Op.getSimpleValueType().SimpleTy) { 6192 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6193 case MVT::i32: 6194 Tmp = DAG.getNode( 6195 Op.getOpcode() == ISD::FP_TO_SINT 6196 ? PPCISD::FCTIWZ 6197 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6198 dl, MVT::f64, Src); 6199 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6200 break; 6201 case MVT::i64: 6202 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6203 "i64 FP_TO_UINT is supported only with FPCVT"); 6204 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6205 PPCISD::FCTIDUZ, 6206 dl, MVT::f64, Src); 6207 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6208 break; 6209 } 6210 return Tmp; 6211 } 6212 6213 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6214 SDLoc dl) const { 6215 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6216 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6217 6218 ReuseLoadInfo RLI; 6219 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6220 6221 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6222 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6223 RLI.Ranges); 6224 } 6225 6226 // We're trying to insert a regular store, S, and then a load, L. If the 6227 // incoming value, O, is a load, we might just be able to have our load use the 6228 // address used by O. However, we don't know if anything else will store to 6229 // that address before we can load from it. To prevent this situation, we need 6230 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6231 // the same chain operand as O, we create a token factor from the chain results 6232 // of O and L, and we replace all uses of O's chain result with that token 6233 // factor (see spliceIntoChain below for this last part). 6234 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6235 ReuseLoadInfo &RLI, 6236 SelectionDAG &DAG, 6237 ISD::LoadExtType ET) const { 6238 SDLoc dl(Op); 6239 if (ET == ISD::NON_EXTLOAD && 6240 (Op.getOpcode() == ISD::FP_TO_UINT || 6241 Op.getOpcode() == ISD::FP_TO_SINT) && 6242 isOperationLegalOrCustom(Op.getOpcode(), 6243 Op.getOperand(0).getValueType())) { 6244 6245 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6246 return true; 6247 } 6248 6249 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6250 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6251 LD->isNonTemporal()) 6252 return false; 6253 if (LD->getMemoryVT() != MemVT) 6254 return false; 6255 6256 RLI.Ptr = LD->getBasePtr(); 6257 if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) { 6258 assert(LD->getAddressingMode() == ISD::PRE_INC && 6259 "Non-pre-inc AM on PPC?"); 6260 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6261 LD->getOffset()); 6262 } 6263 6264 RLI.Chain = LD->getChain(); 6265 RLI.MPI = LD->getPointerInfo(); 6266 RLI.IsInvariant = LD->isInvariant(); 6267 RLI.Alignment = LD->getAlignment(); 6268 RLI.AAInfo = LD->getAAInfo(); 6269 RLI.Ranges = LD->getRanges(); 6270 6271 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6272 return true; 6273 } 6274 6275 // Given the head of the old chain, ResChain, insert a token factor containing 6276 // it and NewResChain, and make users of ResChain now be users of that token 6277 // factor. 6278 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6279 SDValue NewResChain, 6280 SelectionDAG &DAG) const { 6281 if (!ResChain) 6282 return; 6283 6284 SDLoc dl(NewResChain); 6285 6286 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6287 NewResChain, DAG.getUNDEF(MVT::Other)); 6288 assert(TF.getNode() != NewResChain.getNode() && 6289 "A new TF really is required here"); 6290 6291 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6292 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6293 } 6294 6295 /// \brief Custom lowers integer to floating point conversions to use 6296 /// the direct move instructions available in ISA 2.07 to avoid the 6297 /// need for load/store combinations. 6298 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6299 SelectionDAG &DAG, 6300 SDLoc dl) const { 6301 assert((Op.getValueType() == MVT::f32 || 6302 Op.getValueType() == MVT::f64) && 6303 "Invalid floating point type as target of conversion"); 6304 assert(Subtarget.hasFPCVT() && 6305 "Int to FP conversions with direct moves require FPCVT"); 6306 SDValue FP; 6307 SDValue Src = Op.getOperand(0); 6308 bool SinglePrec = Op.getValueType() == MVT::f32; 6309 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6310 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6311 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6312 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6313 6314 if (WordInt) { 6315 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6316 dl, MVT::f64, Src); 6317 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6318 } 6319 else { 6320 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6321 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6322 } 6323 6324 return FP; 6325 } 6326 6327 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6328 SelectionDAG &DAG) const { 6329 SDLoc dl(Op); 6330 6331 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6332 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6333 return SDValue(); 6334 6335 SDValue Value = Op.getOperand(0); 6336 // The values are now known to be -1 (false) or 1 (true). To convert this 6337 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6338 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6339 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6340 6341 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6342 6343 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6344 6345 if (Op.getValueType() != MVT::v4f64) 6346 Value = DAG.getNode(ISD::FP_ROUND, dl, 6347 Op.getValueType(), Value, 6348 DAG.getIntPtrConstant(1, dl)); 6349 return Value; 6350 } 6351 6352 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6353 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6354 return SDValue(); 6355 6356 if (Op.getOperand(0).getValueType() == MVT::i1) 6357 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6358 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6359 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6360 6361 // If we have direct moves, we can do all the conversion, skip the store/load 6362 // however, without FPCVT we can't do most conversions. 6363 if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6364 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6365 6366 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6367 "UINT_TO_FP is supported only with FPCVT"); 6368 6369 // If we have FCFIDS, then use it when converting to single-precision. 6370 // Otherwise, convert to double-precision and then round. 6371 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6372 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6373 : PPCISD::FCFIDS) 6374 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6375 : PPCISD::FCFID); 6376 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6377 ? MVT::f32 6378 : MVT::f64; 6379 6380 if (Op.getOperand(0).getValueType() == MVT::i64) { 6381 SDValue SINT = Op.getOperand(0); 6382 // When converting to single-precision, we actually need to convert 6383 // to double-precision first and then round to single-precision. 6384 // To avoid double-rounding effects during that operation, we have 6385 // to prepare the input operand. Bits that might be truncated when 6386 // converting to double-precision are replaced by a bit that won't 6387 // be lost at this stage, but is below the single-precision rounding 6388 // position. 6389 // 6390 // However, if -enable-unsafe-fp-math is in effect, accept double 6391 // rounding to avoid the extra overhead. 6392 if (Op.getValueType() == MVT::f32 && 6393 !Subtarget.hasFPCVT() && 6394 !DAG.getTarget().Options.UnsafeFPMath) { 6395 6396 // Twiddle input to make sure the low 11 bits are zero. (If this 6397 // is the case, we are guaranteed the value will fit into the 53 bit 6398 // mantissa of an IEEE double-precision value without rounding.) 6399 // If any of those low 11 bits were not zero originally, make sure 6400 // bit 12 (value 2048) is set instead, so that the final rounding 6401 // to single-precision gets the correct result. 6402 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6403 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6404 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6405 Round, DAG.getConstant(2047, dl, MVT::i64)); 6406 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6407 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6408 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6409 6410 // However, we cannot use that value unconditionally: if the magnitude 6411 // of the input value is small, the bit-twiddling we did above might 6412 // end up visibly changing the output. Fortunately, in that case, we 6413 // don't need to twiddle bits since the original input will convert 6414 // exactly to double-precision floating-point already. Therefore, 6415 // construct a conditional to use the original value if the top 11 6416 // bits are all sign-bit copies, and use the rounded value computed 6417 // above otherwise. 6418 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6419 SINT, DAG.getConstant(53, dl, MVT::i32)); 6420 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6421 Cond, DAG.getConstant(1, dl, MVT::i64)); 6422 Cond = DAG.getSetCC(dl, MVT::i32, 6423 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6424 6425 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6426 } 6427 6428 ReuseLoadInfo RLI; 6429 SDValue Bits; 6430 6431 MachineFunction &MF = DAG.getMachineFunction(); 6432 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6433 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6434 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6435 RLI.Ranges); 6436 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6437 } else if (Subtarget.hasLFIWAX() && 6438 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6439 MachineMemOperand *MMO = 6440 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6441 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6442 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6443 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6444 DAG.getVTList(MVT::f64, MVT::Other), 6445 Ops, MVT::i32, MMO); 6446 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6447 } else if (Subtarget.hasFPCVT() && 6448 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6449 MachineMemOperand *MMO = 6450 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6451 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6452 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6453 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6454 DAG.getVTList(MVT::f64, MVT::Other), 6455 Ops, MVT::i32, MMO); 6456 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6457 } else if (((Subtarget.hasLFIWAX() && 6458 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6459 (Subtarget.hasFPCVT() && 6460 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6461 SINT.getOperand(0).getValueType() == MVT::i32) { 6462 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6463 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6464 6465 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6466 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6467 6468 SDValue Store = DAG.getStore( 6469 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6470 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6471 false, false, 0); 6472 6473 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6474 "Expected an i32 store"); 6475 6476 RLI.Ptr = FIdx; 6477 RLI.Chain = Store; 6478 RLI.MPI = 6479 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6480 RLI.Alignment = 4; 6481 6482 MachineMemOperand *MMO = 6483 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6484 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6485 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6486 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6487 PPCISD::LFIWZX : PPCISD::LFIWAX, 6488 dl, DAG.getVTList(MVT::f64, MVT::Other), 6489 Ops, MVT::i32, MMO); 6490 } else 6491 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6492 6493 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6494 6495 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6496 FP = DAG.getNode(ISD::FP_ROUND, dl, 6497 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6498 return FP; 6499 } 6500 6501 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6502 "Unhandled INT_TO_FP type in custom expander!"); 6503 // Since we only generate this in 64-bit mode, we can take advantage of 6504 // 64-bit registers. In particular, sign extend the input value into the 6505 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6506 // then lfd it and fcfid it. 6507 MachineFunction &MF = DAG.getMachineFunction(); 6508 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6509 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6510 6511 SDValue Ld; 6512 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6513 ReuseLoadInfo RLI; 6514 bool ReusingLoad; 6515 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6516 DAG))) { 6517 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6518 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6519 6520 SDValue Store = DAG.getStore( 6521 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6523 false, false, 0); 6524 6525 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6526 "Expected an i32 store"); 6527 6528 RLI.Ptr = FIdx; 6529 RLI.Chain = Store; 6530 RLI.MPI = 6531 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6532 RLI.Alignment = 4; 6533 } 6534 6535 MachineMemOperand *MMO = 6536 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6537 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6538 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6539 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6540 PPCISD::LFIWZX : PPCISD::LFIWAX, 6541 dl, DAG.getVTList(MVT::f64, MVT::Other), 6542 Ops, MVT::i32, MMO); 6543 if (ReusingLoad) 6544 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6545 } else { 6546 assert(Subtarget.isPPC64() && 6547 "i32->FP without LFIWAX supported only on PPC64"); 6548 6549 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6550 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6551 6552 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6553 Op.getOperand(0)); 6554 6555 // STD the extended value into the stack slot. 6556 SDValue Store = DAG.getStore( 6557 DAG.getEntryNode(), dl, Ext64, FIdx, 6558 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6559 false, false, 0); 6560 6561 // Load the value as a double. 6562 Ld = DAG.getLoad( 6563 MVT::f64, dl, Store, FIdx, 6564 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6565 false, false, false, 0); 6566 } 6567 6568 // FCFID it and return it. 6569 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6570 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6571 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6572 DAG.getIntPtrConstant(0, dl)); 6573 return FP; 6574 } 6575 6576 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6577 SelectionDAG &DAG) const { 6578 SDLoc dl(Op); 6579 /* 6580 The rounding mode is in bits 30:31 of FPSR, and has the following 6581 settings: 6582 00 Round to nearest 6583 01 Round to 0 6584 10 Round to +inf 6585 11 Round to -inf 6586 6587 FLT_ROUNDS, on the other hand, expects the following: 6588 -1 Undefined 6589 0 Round to 0 6590 1 Round to nearest 6591 2 Round to +inf 6592 3 Round to -inf 6593 6594 To perform the conversion, we do: 6595 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6596 */ 6597 6598 MachineFunction &MF = DAG.getMachineFunction(); 6599 EVT VT = Op.getValueType(); 6600 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6601 6602 // Save FP Control Word to register 6603 EVT NodeTys[] = { 6604 MVT::f64, // return register 6605 MVT::Glue // unused in this context 6606 }; 6607 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6608 6609 // Save FP register to stack slot 6610 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6611 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6612 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6613 StackSlot, MachinePointerInfo(), false, false,0); 6614 6615 // Load FP Control Word from low 32 bits of stack slot. 6616 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6617 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6618 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6619 false, false, false, 0); 6620 6621 // Transform as necessary 6622 SDValue CWD1 = 6623 DAG.getNode(ISD::AND, dl, MVT::i32, 6624 CWD, DAG.getConstant(3, dl, MVT::i32)); 6625 SDValue CWD2 = 6626 DAG.getNode(ISD::SRL, dl, MVT::i32, 6627 DAG.getNode(ISD::AND, dl, MVT::i32, 6628 DAG.getNode(ISD::XOR, dl, MVT::i32, 6629 CWD, DAG.getConstant(3, dl, MVT::i32)), 6630 DAG.getConstant(3, dl, MVT::i32)), 6631 DAG.getConstant(1, dl, MVT::i32)); 6632 6633 SDValue RetVal = 6634 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6635 6636 return DAG.getNode((VT.getSizeInBits() < 16 ? 6637 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6638 } 6639 6640 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6641 EVT VT = Op.getValueType(); 6642 unsigned BitWidth = VT.getSizeInBits(); 6643 SDLoc dl(Op); 6644 assert(Op.getNumOperands() == 3 && 6645 VT == Op.getOperand(1).getValueType() && 6646 "Unexpected SHL!"); 6647 6648 // Expand into a bunch of logical ops. Note that these ops 6649 // depend on the PPC behavior for oversized shift amounts. 6650 SDValue Lo = Op.getOperand(0); 6651 SDValue Hi = Op.getOperand(1); 6652 SDValue Amt = Op.getOperand(2); 6653 EVT AmtVT = Amt.getValueType(); 6654 6655 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6656 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6657 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6658 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6659 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6660 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6661 DAG.getConstant(-BitWidth, dl, AmtVT)); 6662 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6663 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6664 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6665 SDValue OutOps[] = { OutLo, OutHi }; 6666 return DAG.getMergeValues(OutOps, dl); 6667 } 6668 6669 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6670 EVT VT = Op.getValueType(); 6671 SDLoc dl(Op); 6672 unsigned BitWidth = VT.getSizeInBits(); 6673 assert(Op.getNumOperands() == 3 && 6674 VT == Op.getOperand(1).getValueType() && 6675 "Unexpected SRL!"); 6676 6677 // Expand into a bunch of logical ops. Note that these ops 6678 // depend on the PPC behavior for oversized shift amounts. 6679 SDValue Lo = Op.getOperand(0); 6680 SDValue Hi = Op.getOperand(1); 6681 SDValue Amt = Op.getOperand(2); 6682 EVT AmtVT = Amt.getValueType(); 6683 6684 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6685 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6686 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6687 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6688 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6689 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6690 DAG.getConstant(-BitWidth, dl, AmtVT)); 6691 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6692 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6693 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6694 SDValue OutOps[] = { OutLo, OutHi }; 6695 return DAG.getMergeValues(OutOps, dl); 6696 } 6697 6698 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6699 SDLoc dl(Op); 6700 EVT VT = Op.getValueType(); 6701 unsigned BitWidth = VT.getSizeInBits(); 6702 assert(Op.getNumOperands() == 3 && 6703 VT == Op.getOperand(1).getValueType() && 6704 "Unexpected SRA!"); 6705 6706 // Expand into a bunch of logical ops, followed by a select_cc. 6707 SDValue Lo = Op.getOperand(0); 6708 SDValue Hi = Op.getOperand(1); 6709 SDValue Amt = Op.getOperand(2); 6710 EVT AmtVT = Amt.getValueType(); 6711 6712 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6713 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6714 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6715 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6716 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6717 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6718 DAG.getConstant(-BitWidth, dl, AmtVT)); 6719 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6720 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6721 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6722 Tmp4, Tmp6, ISD::SETLE); 6723 SDValue OutOps[] = { OutLo, OutHi }; 6724 return DAG.getMergeValues(OutOps, dl); 6725 } 6726 6727 //===----------------------------------------------------------------------===// 6728 // Vector related lowering. 6729 // 6730 6731 /// BuildSplatI - Build a canonical splati of Val with an element size of 6732 /// SplatSize. Cast the result to VT. 6733 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6734 SelectionDAG &DAG, SDLoc dl) { 6735 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6736 6737 static const MVT VTys[] = { // canonical VT to use for each size. 6738 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6739 }; 6740 6741 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6742 6743 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6744 if (Val == -1) 6745 SplatSize = 1; 6746 6747 EVT CanonicalVT = VTys[SplatSize-1]; 6748 6749 // Build a canonical splat for this value. 6750 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 6751 } 6752 6753 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6754 /// specified intrinsic ID. 6755 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, 6756 SelectionDAG &DAG, SDLoc dl, 6757 EVT DestVT = MVT::Other) { 6758 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6759 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6760 DAG.getConstant(IID, dl, MVT::i32), Op); 6761 } 6762 6763 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6764 /// specified intrinsic ID. 6765 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6766 SelectionDAG &DAG, SDLoc dl, 6767 EVT DestVT = MVT::Other) { 6768 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6769 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6770 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6771 } 6772 6773 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6774 /// specified intrinsic ID. 6775 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6776 SDValue Op2, SelectionDAG &DAG, 6777 SDLoc dl, EVT DestVT = MVT::Other) { 6778 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6779 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6780 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6781 } 6782 6783 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6784 /// amount. The result has the specified value type. 6785 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 6786 EVT VT, SelectionDAG &DAG, SDLoc dl) { 6787 // Force LHS/RHS to be the right type. 6788 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 6789 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 6790 6791 int Ops[16]; 6792 for (unsigned i = 0; i != 16; ++i) 6793 Ops[i] = i + Amt; 6794 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 6795 return DAG.getNode(ISD::BITCAST, dl, VT, T); 6796 } 6797 6798 // If this is a case we can't handle, return null and let the default 6799 // expansion code take care of it. If we CAN select this case, and if it 6800 // selects to a single instruction, return Op. Otherwise, if we can codegen 6801 // this case more efficiently than a constant pool load, lower it to the 6802 // sequence of ops that should be used. 6803 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 6804 SelectionDAG &DAG) const { 6805 SDLoc dl(Op); 6806 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6807 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 6808 6809 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 6810 // We first build an i32 vector, load it into a QPX register, 6811 // then convert it to a floating-point vector and compare it 6812 // to a zero vector to get the boolean result. 6813 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6814 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 6815 MachinePointerInfo PtrInfo = 6816 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6817 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6818 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6819 6820 assert(BVN->getNumOperands() == 4 && 6821 "BUILD_VECTOR for v4i1 does not have 4 operands"); 6822 6823 bool IsConst = true; 6824 for (unsigned i = 0; i < 4; ++i) { 6825 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6826 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 6827 IsConst = false; 6828 break; 6829 } 6830 } 6831 6832 if (IsConst) { 6833 Constant *One = 6834 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 6835 Constant *NegOne = 6836 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 6837 6838 SmallVector<Constant*, 4> CV(4, NegOne); 6839 for (unsigned i = 0; i < 4; ++i) { 6840 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 6841 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 6842 else if (isNullConstant(BVN->getOperand(i))) 6843 continue; 6844 else 6845 CV[i] = One; 6846 } 6847 6848 Constant *CP = ConstantVector::get(CV); 6849 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 6850 16 /* alignment */); 6851 6852 SmallVector<SDValue, 2> Ops; 6853 Ops.push_back(DAG.getEntryNode()); 6854 Ops.push_back(CPIdx); 6855 6856 SmallVector<EVT, 2> ValueVTs; 6857 ValueVTs.push_back(MVT::v4i1); 6858 ValueVTs.push_back(MVT::Other); // chain 6859 SDVTList VTs = DAG.getVTList(ValueVTs); 6860 6861 return DAG.getMemIntrinsicNode( 6862 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 6863 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 6864 } 6865 6866 SmallVector<SDValue, 4> Stores; 6867 for (unsigned i = 0; i < 4; ++i) { 6868 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue; 6869 6870 unsigned Offset = 4*i; 6871 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 6872 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 6873 6874 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 6875 if (StoreSize > 4) { 6876 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 6877 BVN->getOperand(i), Idx, 6878 PtrInfo.getWithOffset(Offset), 6879 MVT::i32, false, false, 0)); 6880 } else { 6881 SDValue StoreValue = BVN->getOperand(i); 6882 if (StoreSize < 4) 6883 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 6884 6885 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 6886 StoreValue, Idx, 6887 PtrInfo.getWithOffset(Offset), 6888 false, false, 0)); 6889 } 6890 } 6891 6892 SDValue StoreChain; 6893 if (!Stores.empty()) 6894 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6895 else 6896 StoreChain = DAG.getEntryNode(); 6897 6898 // Now load from v4i32 into the QPX register; this will extend it to 6899 // v4i64 but not yet convert it to a floating point. Nevertheless, this 6900 // is typed as v4f64 because the QPX register integer states are not 6901 // explicitly represented. 6902 6903 SmallVector<SDValue, 2> Ops; 6904 Ops.push_back(StoreChain); 6905 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32)); 6906 Ops.push_back(FIdx); 6907 6908 SmallVector<EVT, 2> ValueVTs; 6909 ValueVTs.push_back(MVT::v4f64); 6910 ValueVTs.push_back(MVT::Other); // chain 6911 SDVTList VTs = DAG.getVTList(ValueVTs); 6912 6913 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 6914 dl, VTs, Ops, MVT::v4i32, PtrInfo); 6915 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 6916 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 6917 LoadedVect); 6918 6919 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 6920 6921 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 6922 } 6923 6924 // All other QPX vectors are handled by generic code. 6925 if (Subtarget.hasQPX()) 6926 return SDValue(); 6927 6928 // Check if this is a splat of a constant value. 6929 APInt APSplatBits, APSplatUndef; 6930 unsigned SplatBitSize; 6931 bool HasAnyUndefs; 6932 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 6933 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 6934 SplatBitSize > 32) 6935 return SDValue(); 6936 6937 unsigned SplatBits = APSplatBits.getZExtValue(); 6938 unsigned SplatUndef = APSplatUndef.getZExtValue(); 6939 unsigned SplatSize = SplatBitSize / 8; 6940 6941 // First, handle single instruction cases. 6942 6943 // All zeros? 6944 if (SplatBits == 0) { 6945 // Canonicalize all zero vectors to be v4i32. 6946 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 6947 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 6948 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 6949 } 6950 return Op; 6951 } 6952 6953 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 6954 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 6955 (32-SplatBitSize)); 6956 if (SextVal >= -16 && SextVal <= 15) 6957 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 6958 6959 // Two instruction sequences. 6960 6961 // If this value is in the range [-32,30] and is even, use: 6962 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 6963 // If this value is in the range [17,31] and is odd, use: 6964 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 6965 // If this value is in the range [-31,-17] and is odd, use: 6966 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 6967 // Note the last two are three-instruction sequences. 6968 if (SextVal >= -32 && SextVal <= 31) { 6969 // To avoid having these optimizations undone by constant folding, 6970 // we convert to a pseudo that will be expanded later into one of 6971 // the above forms. 6972 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 6973 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 6974 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 6975 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 6976 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 6977 if (VT == Op.getValueType()) 6978 return RetVal; 6979 else 6980 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 6981 } 6982 6983 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 6984 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 6985 // for fneg/fabs. 6986 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 6987 // Make -1 and vspltisw -1: 6988 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 6989 6990 // Make the VSLW intrinsic, computing 0x8000_0000. 6991 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 6992 OnesV, DAG, dl); 6993 6994 // xor by OnesV to invert it. 6995 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 6996 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 6997 } 6998 6999 // Check to see if this is a wide variety of vsplti*, binop self cases. 7000 static const signed char SplatCsts[] = { 7001 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7002 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7003 }; 7004 7005 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7006 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7007 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7008 int i = SplatCsts[idx]; 7009 7010 // Figure out what shift amount will be used by altivec if shifted by i in 7011 // this splat size. 7012 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7013 7014 // vsplti + shl self. 7015 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7016 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7017 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7018 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7019 Intrinsic::ppc_altivec_vslw 7020 }; 7021 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7022 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7023 } 7024 7025 // vsplti + srl self. 7026 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7027 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7028 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7029 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7030 Intrinsic::ppc_altivec_vsrw 7031 }; 7032 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7033 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7034 } 7035 7036 // vsplti + sra self. 7037 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7038 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7039 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7040 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7041 Intrinsic::ppc_altivec_vsraw 7042 }; 7043 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7044 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7045 } 7046 7047 // vsplti + rol self. 7048 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7049 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7050 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7051 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7052 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7053 Intrinsic::ppc_altivec_vrlw 7054 }; 7055 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7056 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7057 } 7058 7059 // t = vsplti c, result = vsldoi t, t, 1 7060 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7061 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7062 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7063 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7064 } 7065 // t = vsplti c, result = vsldoi t, t, 2 7066 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7067 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7068 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7069 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7070 } 7071 // t = vsplti c, result = vsldoi t, t, 3 7072 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7073 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7074 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7075 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7076 } 7077 } 7078 7079 return SDValue(); 7080 } 7081 7082 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7083 /// the specified operations to build the shuffle. 7084 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7085 SDValue RHS, SelectionDAG &DAG, 7086 SDLoc dl) { 7087 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7088 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7089 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7090 7091 enum { 7092 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7093 OP_VMRGHW, 7094 OP_VMRGLW, 7095 OP_VSPLTISW0, 7096 OP_VSPLTISW1, 7097 OP_VSPLTISW2, 7098 OP_VSPLTISW3, 7099 OP_VSLDOI4, 7100 OP_VSLDOI8, 7101 OP_VSLDOI12 7102 }; 7103 7104 if (OpNum == OP_COPY) { 7105 if (LHSID == (1*9+2)*9+3) return LHS; 7106 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7107 return RHS; 7108 } 7109 7110 SDValue OpLHS, OpRHS; 7111 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7112 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7113 7114 int ShufIdxs[16]; 7115 switch (OpNum) { 7116 default: llvm_unreachable("Unknown i32 permute!"); 7117 case OP_VMRGHW: 7118 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7119 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7120 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7121 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7122 break; 7123 case OP_VMRGLW: 7124 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7125 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7126 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7127 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7128 break; 7129 case OP_VSPLTISW0: 7130 for (unsigned i = 0; i != 16; ++i) 7131 ShufIdxs[i] = (i&3)+0; 7132 break; 7133 case OP_VSPLTISW1: 7134 for (unsigned i = 0; i != 16; ++i) 7135 ShufIdxs[i] = (i&3)+4; 7136 break; 7137 case OP_VSPLTISW2: 7138 for (unsigned i = 0; i != 16; ++i) 7139 ShufIdxs[i] = (i&3)+8; 7140 break; 7141 case OP_VSPLTISW3: 7142 for (unsigned i = 0; i != 16; ++i) 7143 ShufIdxs[i] = (i&3)+12; 7144 break; 7145 case OP_VSLDOI4: 7146 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7147 case OP_VSLDOI8: 7148 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7149 case OP_VSLDOI12: 7150 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7151 } 7152 EVT VT = OpLHS.getValueType(); 7153 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7154 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7155 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7156 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7157 } 7158 7159 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7160 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7161 /// return the code it can be lowered into. Worst case, it can always be 7162 /// lowered into a vperm. 7163 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7164 SelectionDAG &DAG) const { 7165 SDLoc dl(Op); 7166 SDValue V1 = Op.getOperand(0); 7167 SDValue V2 = Op.getOperand(1); 7168 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7169 EVT VT = Op.getValueType(); 7170 bool isLittleEndian = Subtarget.isLittleEndian(); 7171 7172 if (Subtarget.hasQPX()) { 7173 if (VT.getVectorNumElements() != 4) 7174 return SDValue(); 7175 7176 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7177 7178 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7179 if (AlignIdx != -1) { 7180 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7181 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7182 } else if (SVOp->isSplat()) { 7183 int SplatIdx = SVOp->getSplatIndex(); 7184 if (SplatIdx >= 4) { 7185 std::swap(V1, V2); 7186 SplatIdx -= 4; 7187 } 7188 7189 // FIXME: If SplatIdx == 0 and the input came from a load, then there is 7190 // nothing to do. 7191 7192 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7193 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7194 } 7195 7196 // Lower this into a qvgpci/qvfperm pair. 7197 7198 // Compute the qvgpci literal 7199 unsigned idx = 0; 7200 for (unsigned i = 0; i < 4; ++i) { 7201 int m = SVOp->getMaskElt(i); 7202 unsigned mm = m >= 0 ? (unsigned) m : i; 7203 idx |= mm << (3-i)*3; 7204 } 7205 7206 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7207 DAG.getConstant(idx, dl, MVT::i32)); 7208 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7209 } 7210 7211 // Cases that are handled by instructions that take permute immediates 7212 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7213 // selected by the instruction selector. 7214 if (V2.getOpcode() == ISD::UNDEF) { 7215 if (PPC::isSplatShuffleMask(SVOp, 1) || 7216 PPC::isSplatShuffleMask(SVOp, 2) || 7217 PPC::isSplatShuffleMask(SVOp, 4) || 7218 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7219 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7220 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7221 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7222 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7223 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7224 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7225 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7226 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7227 (Subtarget.hasP8Altivec() && ( 7228 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7229 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7230 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7231 return Op; 7232 } 7233 } 7234 7235 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7236 // and produce a fixed permutation. If any of these match, do not lower to 7237 // VPERM. 7238 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7239 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7240 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7241 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7242 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7243 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7244 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7245 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7246 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7247 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7248 (Subtarget.hasP8Altivec() && ( 7249 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7250 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7251 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7252 return Op; 7253 7254 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7255 // perfect shuffle table to emit an optimal matching sequence. 7256 ArrayRef<int> PermMask = SVOp->getMask(); 7257 7258 unsigned PFIndexes[4]; 7259 bool isFourElementShuffle = true; 7260 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7261 unsigned EltNo = 8; // Start out undef. 7262 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7263 if (PermMask[i*4+j] < 0) 7264 continue; // Undef, ignore it. 7265 7266 unsigned ByteSource = PermMask[i*4+j]; 7267 if ((ByteSource & 3) != j) { 7268 isFourElementShuffle = false; 7269 break; 7270 } 7271 7272 if (EltNo == 8) { 7273 EltNo = ByteSource/4; 7274 } else if (EltNo != ByteSource/4) { 7275 isFourElementShuffle = false; 7276 break; 7277 } 7278 } 7279 PFIndexes[i] = EltNo; 7280 } 7281 7282 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7283 // perfect shuffle vector to determine if it is cost effective to do this as 7284 // discrete instructions, or whether we should use a vperm. 7285 // For now, we skip this for little endian until such time as we have a 7286 // little-endian perfect shuffle table. 7287 if (isFourElementShuffle && !isLittleEndian) { 7288 // Compute the index in the perfect shuffle table. 7289 unsigned PFTableIndex = 7290 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7291 7292 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7293 unsigned Cost = (PFEntry >> 30); 7294 7295 // Determining when to avoid vperm is tricky. Many things affect the cost 7296 // of vperm, particularly how many times the perm mask needs to be computed. 7297 // For example, if the perm mask can be hoisted out of a loop or is already 7298 // used (perhaps because there are multiple permutes with the same shuffle 7299 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7300 // the loop requires an extra register. 7301 // 7302 // As a compromise, we only emit discrete instructions if the shuffle can be 7303 // generated in 3 or fewer operations. When we have loop information 7304 // available, if this block is within a loop, we should avoid using vperm 7305 // for 3-operation perms and use a constant pool load instead. 7306 if (Cost < 3) 7307 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7308 } 7309 7310 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7311 // vector that will get spilled to the constant pool. 7312 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 7313 7314 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7315 // that it is in input element units, not in bytes. Convert now. 7316 7317 // For little endian, the order of the input vectors is reversed, and 7318 // the permutation mask is complemented with respect to 31. This is 7319 // necessary to produce proper semantics with the big-endian-biased vperm 7320 // instruction. 7321 EVT EltVT = V1.getValueType().getVectorElementType(); 7322 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7323 7324 SmallVector<SDValue, 16> ResultMask; 7325 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7326 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7327 7328 for (unsigned j = 0; j != BytesPerElement; ++j) 7329 if (isLittleEndian) 7330 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7331 dl, MVT::i32)); 7332 else 7333 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7334 MVT::i32)); 7335 } 7336 7337 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 7338 ResultMask); 7339 if (isLittleEndian) 7340 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7341 V2, V1, VPermMask); 7342 else 7343 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7344 V1, V2, VPermMask); 7345 } 7346 7347 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7348 /// vector comparison. If it is, return true and fill in Opc/isDot with 7349 /// information about the intrinsic. 7350 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7351 bool &isDot, const PPCSubtarget &Subtarget) { 7352 unsigned IntrinsicID = 7353 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7354 CompareOpc = -1; 7355 isDot = false; 7356 switch (IntrinsicID) { 7357 default: return false; 7358 // Comparison predicates. 7359 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7360 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7361 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7362 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7363 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7364 case Intrinsic::ppc_altivec_vcmpequd_p: 7365 if (Subtarget.hasP8Altivec()) { 7366 CompareOpc = 199; 7367 isDot = 1; 7368 } else 7369 return false; 7370 7371 break; 7372 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7373 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7374 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7375 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7376 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7377 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7378 if (Subtarget.hasP8Altivec()) { 7379 CompareOpc = 967; 7380 isDot = 1; 7381 } else 7382 return false; 7383 7384 break; 7385 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7386 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7387 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7388 case Intrinsic::ppc_altivec_vcmpgtud_p: 7389 if (Subtarget.hasP8Altivec()) { 7390 CompareOpc = 711; 7391 isDot = 1; 7392 } else 7393 return false; 7394 7395 break; 7396 // VSX predicate comparisons use the same infrastructure 7397 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7398 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7399 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7400 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7401 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7402 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7403 if (Subtarget.hasVSX()) { 7404 switch (IntrinsicID) { 7405 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7406 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7407 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7408 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7409 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7410 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7411 } 7412 isDot = 1; 7413 } 7414 else 7415 return false; 7416 7417 break; 7418 7419 // Normal Comparisons. 7420 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7421 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7422 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7423 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7424 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7425 case Intrinsic::ppc_altivec_vcmpequd: 7426 if (Subtarget.hasP8Altivec()) { 7427 CompareOpc = 199; 7428 isDot = 0; 7429 } else 7430 return false; 7431 7432 break; 7433 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7434 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7435 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7436 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7437 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7438 case Intrinsic::ppc_altivec_vcmpgtsd: 7439 if (Subtarget.hasP8Altivec()) { 7440 CompareOpc = 967; 7441 isDot = 0; 7442 } else 7443 return false; 7444 7445 break; 7446 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7447 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7448 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7449 case Intrinsic::ppc_altivec_vcmpgtud: 7450 if (Subtarget.hasP8Altivec()) { 7451 CompareOpc = 711; 7452 isDot = 0; 7453 } else 7454 return false; 7455 7456 break; 7457 } 7458 return true; 7459 } 7460 7461 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7462 /// lower, do it, otherwise return null. 7463 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7464 SelectionDAG &DAG) const { 7465 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7466 // opcode number of the comparison. 7467 SDLoc dl(Op); 7468 int CompareOpc; 7469 bool isDot; 7470 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7471 return SDValue(); // Don't custom lower most intrinsics. 7472 7473 // If this is a non-dot comparison, make the VCMP node and we are done. 7474 if (!isDot) { 7475 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7476 Op.getOperand(1), Op.getOperand(2), 7477 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7478 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7479 } 7480 7481 // Create the PPCISD altivec 'dot' comparison node. 7482 SDValue Ops[] = { 7483 Op.getOperand(2), // LHS 7484 Op.getOperand(3), // RHS 7485 DAG.getConstant(CompareOpc, dl, MVT::i32) 7486 }; 7487 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7488 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7489 7490 // Now that we have the comparison, emit a copy from the CR to a GPR. 7491 // This is flagged to the above dot comparison. 7492 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7493 DAG.getRegister(PPC::CR6, MVT::i32), 7494 CompNode.getValue(1)); 7495 7496 // Unpack the result based on how the target uses it. 7497 unsigned BitNo; // Bit # of CR6. 7498 bool InvertBit; // Invert result? 7499 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7500 default: // Can't happen, don't crash on invalid number though. 7501 case 0: // Return the value of the EQ bit of CR6. 7502 BitNo = 0; InvertBit = false; 7503 break; 7504 case 1: // Return the inverted value of the EQ bit of CR6. 7505 BitNo = 0; InvertBit = true; 7506 break; 7507 case 2: // Return the value of the LT bit of CR6. 7508 BitNo = 2; InvertBit = false; 7509 break; 7510 case 3: // Return the inverted value of the LT bit of CR6. 7511 BitNo = 2; InvertBit = true; 7512 break; 7513 } 7514 7515 // Shift the bit into the low position. 7516 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7517 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7518 // Isolate the bit. 7519 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7520 DAG.getConstant(1, dl, MVT::i32)); 7521 7522 // If we are supposed to, toggle the bit. 7523 if (InvertBit) 7524 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7525 DAG.getConstant(1, dl, MVT::i32)); 7526 return Flags; 7527 } 7528 7529 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7530 SelectionDAG &DAG) const { 7531 SDLoc dl(Op); 7532 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7533 // instructions), but for smaller types, we need to first extend up to v2i32 7534 // before doing going farther. 7535 if (Op.getValueType() == MVT::v2i64) { 7536 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7537 if (ExtVT != MVT::v2i32) { 7538 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7539 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7540 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7541 ExtVT.getVectorElementType(), 4))); 7542 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7543 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7544 DAG.getValueType(MVT::v2i32)); 7545 } 7546 7547 return Op; 7548 } 7549 7550 return SDValue(); 7551 } 7552 7553 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7554 SelectionDAG &DAG) const { 7555 SDLoc dl(Op); 7556 // Create a stack slot that is 16-byte aligned. 7557 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7558 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7559 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7560 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7561 7562 // Store the input value into Value#0 of the stack slot. 7563 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7564 Op.getOperand(0), FIdx, MachinePointerInfo(), 7565 false, false, 0); 7566 // Load it out. 7567 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7568 false, false, false, 0); 7569 } 7570 7571 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7572 SelectionDAG &DAG) const { 7573 SDLoc dl(Op); 7574 SDNode *N = Op.getNode(); 7575 7576 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7577 "Unknown extract_vector_elt type"); 7578 7579 SDValue Value = N->getOperand(0); 7580 7581 // The first part of this is like the store lowering except that we don't 7582 // need to track the chain. 7583 7584 // The values are now known to be -1 (false) or 1 (true). To convert this 7585 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7586 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7587 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7588 7589 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7590 // understand how to form the extending load. 7591 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7592 7593 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7594 7595 // Now convert to an integer and store. 7596 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7597 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7598 Value); 7599 7600 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7601 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7602 MachinePointerInfo PtrInfo = 7603 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7604 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7605 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7606 7607 SDValue StoreChain = DAG.getEntryNode(); 7608 SmallVector<SDValue, 2> Ops; 7609 Ops.push_back(StoreChain); 7610 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7611 Ops.push_back(Value); 7612 Ops.push_back(FIdx); 7613 7614 SmallVector<EVT, 2> ValueVTs; 7615 ValueVTs.push_back(MVT::Other); // chain 7616 SDVTList VTs = DAG.getVTList(ValueVTs); 7617 7618 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7619 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7620 7621 // Extract the value requested. 7622 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7623 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7624 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7625 7626 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7627 PtrInfo.getWithOffset(Offset), 7628 false, false, false, 0); 7629 7630 if (!Subtarget.useCRBits()) 7631 return IntVal; 7632 7633 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7634 } 7635 7636 /// Lowering for QPX v4i1 loads 7637 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7638 SelectionDAG &DAG) const { 7639 SDLoc dl(Op); 7640 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7641 SDValue LoadChain = LN->getChain(); 7642 SDValue BasePtr = LN->getBasePtr(); 7643 7644 if (Op.getValueType() == MVT::v4f64 || 7645 Op.getValueType() == MVT::v4f32) { 7646 EVT MemVT = LN->getMemoryVT(); 7647 unsigned Alignment = LN->getAlignment(); 7648 7649 // If this load is properly aligned, then it is legal. 7650 if (Alignment >= MemVT.getStoreSize()) 7651 return Op; 7652 7653 EVT ScalarVT = Op.getValueType().getScalarType(), 7654 ScalarMemVT = MemVT.getScalarType(); 7655 unsigned Stride = ScalarMemVT.getStoreSize(); 7656 7657 SmallVector<SDValue, 8> Vals, LoadChains; 7658 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7659 SDValue Load; 7660 if (ScalarVT != ScalarMemVT) 7661 Load = 7662 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7663 BasePtr, 7664 LN->getPointerInfo().getWithOffset(Idx*Stride), 7665 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7666 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7667 LN->getAAInfo()); 7668 else 7669 Load = 7670 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7671 LN->getPointerInfo().getWithOffset(Idx*Stride), 7672 LN->isVolatile(), LN->isNonTemporal(), 7673 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7674 LN->getAAInfo()); 7675 7676 if (Idx == 0 && LN->isIndexed()) { 7677 assert(LN->getAddressingMode() == ISD::PRE_INC && 7678 "Unknown addressing mode on vector load"); 7679 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7680 LN->getAddressingMode()); 7681 } 7682 7683 Vals.push_back(Load); 7684 LoadChains.push_back(Load.getValue(1)); 7685 7686 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7687 DAG.getConstant(Stride, dl, 7688 BasePtr.getValueType())); 7689 } 7690 7691 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7692 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 7693 Op.getValueType(), Vals); 7694 7695 if (LN->isIndexed()) { 7696 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7697 return DAG.getMergeValues(RetOps, dl); 7698 } 7699 7700 SDValue RetOps[] = { Value, TF }; 7701 return DAG.getMergeValues(RetOps, dl); 7702 } 7703 7704 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7705 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7706 7707 // To lower v4i1 from a byte array, we load the byte elements of the 7708 // vector and then reuse the BUILD_VECTOR logic. 7709 7710 SmallVector<SDValue, 4> VectElmts, VectElmtChains; 7711 for (unsigned i = 0; i < 4; ++i) { 7712 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7713 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7714 7715 VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD, 7716 dl, MVT::i32, LoadChain, Idx, 7717 LN->getPointerInfo().getWithOffset(i), 7718 MVT::i8 /* memory type */, 7719 LN->isVolatile(), LN->isNonTemporal(), 7720 LN->isInvariant(), 7721 1 /* alignment */, LN->getAAInfo())); 7722 VectElmtChains.push_back(VectElmts[i].getValue(1)); 7723 } 7724 7725 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7726 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts); 7727 7728 SDValue RVals[] = { Value, LoadChain }; 7729 return DAG.getMergeValues(RVals, dl); 7730 } 7731 7732 /// Lowering for QPX v4i1 stores 7733 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7734 SelectionDAG &DAG) const { 7735 SDLoc dl(Op); 7736 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7737 SDValue StoreChain = SN->getChain(); 7738 SDValue BasePtr = SN->getBasePtr(); 7739 SDValue Value = SN->getValue(); 7740 7741 if (Value.getValueType() == MVT::v4f64 || 7742 Value.getValueType() == MVT::v4f32) { 7743 EVT MemVT = SN->getMemoryVT(); 7744 unsigned Alignment = SN->getAlignment(); 7745 7746 // If this store is properly aligned, then it is legal. 7747 if (Alignment >= MemVT.getStoreSize()) 7748 return Op; 7749 7750 EVT ScalarVT = Value.getValueType().getScalarType(), 7751 ScalarMemVT = MemVT.getScalarType(); 7752 unsigned Stride = ScalarMemVT.getStoreSize(); 7753 7754 SmallVector<SDValue, 8> Stores; 7755 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7756 SDValue Ex = DAG.getNode( 7757 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7758 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7759 SDValue Store; 7760 if (ScalarVT != ScalarMemVT) 7761 Store = 7762 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7763 SN->getPointerInfo().getWithOffset(Idx*Stride), 7764 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7765 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7766 else 7767 Store = 7768 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7769 SN->getPointerInfo().getWithOffset(Idx*Stride), 7770 SN->isVolatile(), SN->isNonTemporal(), 7771 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7772 7773 if (Idx == 0 && SN->isIndexed()) { 7774 assert(SN->getAddressingMode() == ISD::PRE_INC && 7775 "Unknown addressing mode on vector store"); 7776 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7777 SN->getAddressingMode()); 7778 } 7779 7780 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7781 DAG.getConstant(Stride, dl, 7782 BasePtr.getValueType())); 7783 Stores.push_back(Store); 7784 } 7785 7786 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7787 7788 if (SN->isIndexed()) { 7789 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 7790 return DAG.getMergeValues(RetOps, dl); 7791 } 7792 7793 return TF; 7794 } 7795 7796 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 7797 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 7798 7799 // The values are now known to be -1 (false) or 1 (true). To convert this 7800 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7801 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7802 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7803 7804 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7805 // understand how to form the extending load. 7806 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7807 7808 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7809 7810 // Now convert to an integer and store. 7811 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7812 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7813 Value); 7814 7815 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7816 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7817 MachinePointerInfo PtrInfo = 7818 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7819 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7820 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7821 7822 SmallVector<SDValue, 2> Ops; 7823 Ops.push_back(StoreChain); 7824 Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32)); 7825 Ops.push_back(Value); 7826 Ops.push_back(FIdx); 7827 7828 SmallVector<EVT, 2> ValueVTs; 7829 ValueVTs.push_back(MVT::Other); // chain 7830 SDVTList VTs = DAG.getVTList(ValueVTs); 7831 7832 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7833 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7834 7835 // Move data into the byte array. 7836 SmallVector<SDValue, 4> Loads, LoadChains; 7837 for (unsigned i = 0; i < 4; ++i) { 7838 unsigned Offset = 4*i; 7839 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7840 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7841 7842 Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7843 PtrInfo.getWithOffset(Offset), 7844 false, false, false, 0)); 7845 LoadChains.push_back(Loads[i].getValue(1)); 7846 } 7847 7848 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7849 7850 SmallVector<SDValue, 4> Stores; 7851 for (unsigned i = 0; i < 4; ++i) { 7852 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7853 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7854 7855 Stores.push_back(DAG.getTruncStore( 7856 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 7857 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 7858 1 /* alignment */, SN->getAAInfo())); 7859 } 7860 7861 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7862 7863 return StoreChain; 7864 } 7865 7866 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 7867 SDLoc dl(Op); 7868 if (Op.getValueType() == MVT::v4i32) { 7869 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7870 7871 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 7872 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 7873 7874 SDValue RHSSwap = // = vrlw RHS, 16 7875 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 7876 7877 // Shrinkify inputs to v8i16. 7878 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 7879 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 7880 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 7881 7882 // Low parts multiplied together, generating 32-bit results (we ignore the 7883 // top parts). 7884 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 7885 LHS, RHS, DAG, dl, MVT::v4i32); 7886 7887 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 7888 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 7889 // Shift the high parts up 16 bits. 7890 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 7891 Neg16, DAG, dl); 7892 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 7893 } else if (Op.getValueType() == MVT::v8i16) { 7894 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7895 7896 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 7897 7898 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 7899 LHS, RHS, Zero, DAG, dl); 7900 } else if (Op.getValueType() == MVT::v16i8) { 7901 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7902 bool isLittleEndian = Subtarget.isLittleEndian(); 7903 7904 // Multiply the even 8-bit parts, producing 16-bit sums. 7905 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 7906 LHS, RHS, DAG, dl, MVT::v8i16); 7907 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 7908 7909 // Multiply the odd 8-bit parts, producing 16-bit sums. 7910 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 7911 LHS, RHS, DAG, dl, MVT::v8i16); 7912 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 7913 7914 // Merge the results together. Because vmuleub and vmuloub are 7915 // instructions with a big-endian bias, we must reverse the 7916 // element numbering and reverse the meaning of "odd" and "even" 7917 // when generating little endian code. 7918 int Ops[16]; 7919 for (unsigned i = 0; i != 8; ++i) { 7920 if (isLittleEndian) { 7921 Ops[i*2 ] = 2*i; 7922 Ops[i*2+1] = 2*i+16; 7923 } else { 7924 Ops[i*2 ] = 2*i+1; 7925 Ops[i*2+1] = 2*i+1+16; 7926 } 7927 } 7928 if (isLittleEndian) 7929 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 7930 else 7931 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 7932 } else { 7933 llvm_unreachable("Unknown mul to lower!"); 7934 } 7935 } 7936 7937 /// LowerOperation - Provide custom lowering hooks for some operations. 7938 /// 7939 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7940 switch (Op.getOpcode()) { 7941 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 7942 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 7943 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 7944 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 7945 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 7946 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 7947 case ISD::SETCC: return LowerSETCC(Op, DAG); 7948 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 7949 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 7950 case ISD::VASTART: 7951 return LowerVASTART(Op, DAG, Subtarget); 7952 7953 case ISD::VAARG: 7954 return LowerVAARG(Op, DAG, Subtarget); 7955 7956 case ISD::VACOPY: 7957 return LowerVACOPY(Op, DAG, Subtarget); 7958 7959 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 7960 case ISD::DYNAMIC_STACKALLOC: 7961 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 7962 case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget); 7963 7964 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 7965 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 7966 7967 case ISD::LOAD: return LowerLOAD(Op, DAG); 7968 case ISD::STORE: return LowerSTORE(Op, DAG); 7969 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 7970 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 7971 case ISD::FP_TO_UINT: 7972 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 7973 SDLoc(Op)); 7974 case ISD::UINT_TO_FP: 7975 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 7976 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 7977 7978 // Lower 64-bit shifts. 7979 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 7980 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 7981 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 7982 7983 // Vector-related lowering. 7984 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 7985 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 7986 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 7987 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 7988 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 7989 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 7990 case ISD::MUL: return LowerMUL(Op, DAG); 7991 7992 // For counter-based loop handling. 7993 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 7994 7995 // Frame & Return address. 7996 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 7997 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 7998 } 7999 } 8000 8001 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8002 SmallVectorImpl<SDValue>&Results, 8003 SelectionDAG &DAG) const { 8004 SDLoc dl(N); 8005 switch (N->getOpcode()) { 8006 default: 8007 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8008 case ISD::READCYCLECOUNTER: { 8009 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8010 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8011 8012 Results.push_back(RTB); 8013 Results.push_back(RTB.getValue(1)); 8014 Results.push_back(RTB.getValue(2)); 8015 break; 8016 } 8017 case ISD::INTRINSIC_W_CHAIN: { 8018 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8019 Intrinsic::ppc_is_decremented_ctr_nonzero) 8020 break; 8021 8022 assert(N->getValueType(0) == MVT::i1 && 8023 "Unexpected result type for CTR decrement intrinsic"); 8024 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8025 N->getValueType(0)); 8026 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8027 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8028 N->getOperand(1)); 8029 8030 Results.push_back(NewInt); 8031 Results.push_back(NewInt.getValue(1)); 8032 break; 8033 } 8034 case ISD::VAARG: { 8035 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8036 return; 8037 8038 EVT VT = N->getValueType(0); 8039 8040 if (VT == MVT::i64) { 8041 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8042 8043 Results.push_back(NewNode); 8044 Results.push_back(NewNode.getValue(1)); 8045 } 8046 return; 8047 } 8048 case ISD::FP_ROUND_INREG: { 8049 assert(N->getValueType(0) == MVT::ppcf128); 8050 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8051 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8052 MVT::f64, N->getOperand(0), 8053 DAG.getIntPtrConstant(0, dl)); 8054 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8055 MVT::f64, N->getOperand(0), 8056 DAG.getIntPtrConstant(1, dl)); 8057 8058 // Add the two halves of the long double in round-to-zero mode. 8059 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8060 8061 // We know the low half is about to be thrown away, so just use something 8062 // convenient. 8063 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8064 FPreg, FPreg)); 8065 return; 8066 } 8067 case ISD::FP_TO_SINT: 8068 case ISD::FP_TO_UINT: 8069 // LowerFP_TO_INT() can only handle f32 and f64. 8070 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8071 return; 8072 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8073 return; 8074 } 8075 } 8076 8077 //===----------------------------------------------------------------------===// 8078 // Other Lowering Code 8079 //===----------------------------------------------------------------------===// 8080 8081 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8082 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8083 Function *Func = Intrinsic::getDeclaration(M, Id); 8084 return Builder.CreateCall(Func, {}); 8085 } 8086 8087 // The mappings for emitLeading/TrailingFence is taken from 8088 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8089 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8090 AtomicOrdering Ord, bool IsStore, 8091 bool IsLoad) const { 8092 if (Ord == SequentiallyConsistent) 8093 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8094 if (isAtLeastRelease(Ord)) 8095 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8096 return nullptr; 8097 } 8098 8099 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8100 AtomicOrdering Ord, bool IsStore, 8101 bool IsLoad) const { 8102 if (IsLoad && isAtLeastAcquire(Ord)) 8103 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8104 // FIXME: this is too conservative, a dependent branch + isync is enough. 8105 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8106 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8107 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8108 return nullptr; 8109 } 8110 8111 MachineBasicBlock * 8112 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8113 unsigned AtomicSize, 8114 unsigned BinOpcode) const { 8115 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8116 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8117 8118 auto LoadMnemonic = PPC::LDARX; 8119 auto StoreMnemonic = PPC::STDCX; 8120 switch (AtomicSize) { 8121 default: 8122 llvm_unreachable("Unexpected size of atomic entity"); 8123 case 1: 8124 LoadMnemonic = PPC::LBARX; 8125 StoreMnemonic = PPC::STBCX; 8126 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8127 break; 8128 case 2: 8129 LoadMnemonic = PPC::LHARX; 8130 StoreMnemonic = PPC::STHCX; 8131 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8132 break; 8133 case 4: 8134 LoadMnemonic = PPC::LWARX; 8135 StoreMnemonic = PPC::STWCX; 8136 break; 8137 case 8: 8138 LoadMnemonic = PPC::LDARX; 8139 StoreMnemonic = PPC::STDCX; 8140 break; 8141 } 8142 8143 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8144 MachineFunction *F = BB->getParent(); 8145 MachineFunction::iterator It = ++BB->getIterator(); 8146 8147 unsigned dest = MI->getOperand(0).getReg(); 8148 unsigned ptrA = MI->getOperand(1).getReg(); 8149 unsigned ptrB = MI->getOperand(2).getReg(); 8150 unsigned incr = MI->getOperand(3).getReg(); 8151 DebugLoc dl = MI->getDebugLoc(); 8152 8153 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8154 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8155 F->insert(It, loopMBB); 8156 F->insert(It, exitMBB); 8157 exitMBB->splice(exitMBB->begin(), BB, 8158 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8159 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8160 8161 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8162 unsigned TmpReg = (!BinOpcode) ? incr : 8163 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8164 : &PPC::GPRCRegClass); 8165 8166 // thisMBB: 8167 // ... 8168 // fallthrough --> loopMBB 8169 BB->addSuccessor(loopMBB); 8170 8171 // loopMBB: 8172 // l[wd]arx dest, ptr 8173 // add r0, dest, incr 8174 // st[wd]cx. r0, ptr 8175 // bne- loopMBB 8176 // fallthrough --> exitMBB 8177 BB = loopMBB; 8178 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8179 .addReg(ptrA).addReg(ptrB); 8180 if (BinOpcode) 8181 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8182 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8183 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8184 BuildMI(BB, dl, TII->get(PPC::BCC)) 8185 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8186 BB->addSuccessor(loopMBB); 8187 BB->addSuccessor(exitMBB); 8188 8189 // exitMBB: 8190 // ... 8191 BB = exitMBB; 8192 return BB; 8193 } 8194 8195 MachineBasicBlock * 8196 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8197 MachineBasicBlock *BB, 8198 bool is8bit, // operation 8199 unsigned BinOpcode) const { 8200 // If we support part-word atomic mnemonics, just use them 8201 if (Subtarget.hasPartwordAtomics()) 8202 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8203 8204 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8205 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8206 // In 64 bit mode we have to use 64 bits for addresses, even though the 8207 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8208 // registers without caring whether they're 32 or 64, but here we're 8209 // doing actual arithmetic on the addresses. 8210 bool is64bit = Subtarget.isPPC64(); 8211 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8212 8213 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8214 MachineFunction *F = BB->getParent(); 8215 MachineFunction::iterator It = ++BB->getIterator(); 8216 8217 unsigned dest = MI->getOperand(0).getReg(); 8218 unsigned ptrA = MI->getOperand(1).getReg(); 8219 unsigned ptrB = MI->getOperand(2).getReg(); 8220 unsigned incr = MI->getOperand(3).getReg(); 8221 DebugLoc dl = MI->getDebugLoc(); 8222 8223 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8224 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8225 F->insert(It, loopMBB); 8226 F->insert(It, exitMBB); 8227 exitMBB->splice(exitMBB->begin(), BB, 8228 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8229 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8230 8231 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8232 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8233 : &PPC::GPRCRegClass; 8234 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8235 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8236 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8237 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8238 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8239 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8240 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8241 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8242 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8243 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8244 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8245 unsigned Ptr1Reg; 8246 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8247 8248 // thisMBB: 8249 // ... 8250 // fallthrough --> loopMBB 8251 BB->addSuccessor(loopMBB); 8252 8253 // The 4-byte load must be aligned, while a char or short may be 8254 // anywhere in the word. Hence all this nasty bookkeeping code. 8255 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8256 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8257 // xori shift, shift1, 24 [16] 8258 // rlwinm ptr, ptr1, 0, 0, 29 8259 // slw incr2, incr, shift 8260 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8261 // slw mask, mask2, shift 8262 // loopMBB: 8263 // lwarx tmpDest, ptr 8264 // add tmp, tmpDest, incr2 8265 // andc tmp2, tmpDest, mask 8266 // and tmp3, tmp, mask 8267 // or tmp4, tmp3, tmp2 8268 // stwcx. tmp4, ptr 8269 // bne- loopMBB 8270 // fallthrough --> exitMBB 8271 // srw dest, tmpDest, shift 8272 if (ptrA != ZeroReg) { 8273 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8274 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8275 .addReg(ptrA).addReg(ptrB); 8276 } else { 8277 Ptr1Reg = ptrB; 8278 } 8279 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8280 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8281 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8282 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8283 if (is64bit) 8284 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8285 .addReg(Ptr1Reg).addImm(0).addImm(61); 8286 else 8287 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8288 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8289 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8290 .addReg(incr).addReg(ShiftReg); 8291 if (is8bit) 8292 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8293 else { 8294 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8295 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8296 } 8297 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8298 .addReg(Mask2Reg).addReg(ShiftReg); 8299 8300 BB = loopMBB; 8301 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8302 .addReg(ZeroReg).addReg(PtrReg); 8303 if (BinOpcode) 8304 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8305 .addReg(Incr2Reg).addReg(TmpDestReg); 8306 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8307 .addReg(TmpDestReg).addReg(MaskReg); 8308 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8309 .addReg(TmpReg).addReg(MaskReg); 8310 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8311 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8312 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8313 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8314 BuildMI(BB, dl, TII->get(PPC::BCC)) 8315 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8316 BB->addSuccessor(loopMBB); 8317 BB->addSuccessor(exitMBB); 8318 8319 // exitMBB: 8320 // ... 8321 BB = exitMBB; 8322 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8323 .addReg(ShiftReg); 8324 return BB; 8325 } 8326 8327 llvm::MachineBasicBlock* 8328 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8329 MachineBasicBlock *MBB) const { 8330 DebugLoc DL = MI->getDebugLoc(); 8331 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8332 8333 MachineFunction *MF = MBB->getParent(); 8334 MachineRegisterInfo &MRI = MF->getRegInfo(); 8335 8336 const BasicBlock *BB = MBB->getBasicBlock(); 8337 MachineFunction::iterator I = ++MBB->getIterator(); 8338 8339 // Memory Reference 8340 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8341 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8342 8343 unsigned DstReg = MI->getOperand(0).getReg(); 8344 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8345 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8346 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8347 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8348 8349 MVT PVT = getPointerTy(MF->getDataLayout()); 8350 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8351 "Invalid Pointer Size!"); 8352 // For v = setjmp(buf), we generate 8353 // 8354 // thisMBB: 8355 // SjLjSetup mainMBB 8356 // bl mainMBB 8357 // v_restore = 1 8358 // b sinkMBB 8359 // 8360 // mainMBB: 8361 // buf[LabelOffset] = LR 8362 // v_main = 0 8363 // 8364 // sinkMBB: 8365 // v = phi(main, restore) 8366 // 8367 8368 MachineBasicBlock *thisMBB = MBB; 8369 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8370 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8371 MF->insert(I, mainMBB); 8372 MF->insert(I, sinkMBB); 8373 8374 MachineInstrBuilder MIB; 8375 8376 // Transfer the remainder of BB and its successor edges to sinkMBB. 8377 sinkMBB->splice(sinkMBB->begin(), MBB, 8378 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8379 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8380 8381 // Note that the structure of the jmp_buf used here is not compatible 8382 // with that used by libc, and is not designed to be. Specifically, it 8383 // stores only those 'reserved' registers that LLVM does not otherwise 8384 // understand how to spill. Also, by convention, by the time this 8385 // intrinsic is called, Clang has already stored the frame address in the 8386 // first slot of the buffer and stack address in the third. Following the 8387 // X86 target code, we'll store the jump address in the second slot. We also 8388 // need to save the TOC pointer (R2) to handle jumps between shared 8389 // libraries, and that will be stored in the fourth slot. The thread 8390 // identifier (R13) is not affected. 8391 8392 // thisMBB: 8393 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8394 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8395 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8396 8397 // Prepare IP either in reg. 8398 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8399 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8400 unsigned BufReg = MI->getOperand(1).getReg(); 8401 8402 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8403 setUsesTOCBasePtr(*MBB->getParent()); 8404 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8405 .addReg(PPC::X2) 8406 .addImm(TOCOffset) 8407 .addReg(BufReg); 8408 MIB.setMemRefs(MMOBegin, MMOEnd); 8409 } 8410 8411 // Naked functions never have a base pointer, and so we use r1. For all 8412 // other functions, this decision must be delayed until during PEI. 8413 unsigned BaseReg; 8414 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8415 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8416 else 8417 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8418 8419 MIB = BuildMI(*thisMBB, MI, DL, 8420 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8421 .addReg(BaseReg) 8422 .addImm(BPOffset) 8423 .addReg(BufReg); 8424 MIB.setMemRefs(MMOBegin, MMOEnd); 8425 8426 // Setup 8427 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8428 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8429 MIB.addRegMask(TRI->getNoPreservedMask()); 8430 8431 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8432 8433 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8434 .addMBB(mainMBB); 8435 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8436 8437 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8438 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8439 8440 // mainMBB: 8441 // mainDstReg = 0 8442 MIB = 8443 BuildMI(mainMBB, DL, 8444 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8445 8446 // Store IP 8447 if (Subtarget.isPPC64()) { 8448 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8449 .addReg(LabelReg) 8450 .addImm(LabelOffset) 8451 .addReg(BufReg); 8452 } else { 8453 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8454 .addReg(LabelReg) 8455 .addImm(LabelOffset) 8456 .addReg(BufReg); 8457 } 8458 8459 MIB.setMemRefs(MMOBegin, MMOEnd); 8460 8461 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8462 mainMBB->addSuccessor(sinkMBB); 8463 8464 // sinkMBB: 8465 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8466 TII->get(PPC::PHI), DstReg) 8467 .addReg(mainDstReg).addMBB(mainMBB) 8468 .addReg(restoreDstReg).addMBB(thisMBB); 8469 8470 MI->eraseFromParent(); 8471 return sinkMBB; 8472 } 8473 8474 MachineBasicBlock * 8475 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8476 MachineBasicBlock *MBB) const { 8477 DebugLoc DL = MI->getDebugLoc(); 8478 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8479 8480 MachineFunction *MF = MBB->getParent(); 8481 MachineRegisterInfo &MRI = MF->getRegInfo(); 8482 8483 // Memory Reference 8484 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8485 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8486 8487 MVT PVT = getPointerTy(MF->getDataLayout()); 8488 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8489 "Invalid Pointer Size!"); 8490 8491 const TargetRegisterClass *RC = 8492 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8493 unsigned Tmp = MRI.createVirtualRegister(RC); 8494 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8495 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8496 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8497 unsigned BP = 8498 (PVT == MVT::i64) 8499 ? PPC::X30 8500 : (Subtarget.isSVR4ABI() && 8501 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8502 ? PPC::R29 8503 : PPC::R30); 8504 8505 MachineInstrBuilder MIB; 8506 8507 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8508 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8509 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8510 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8511 8512 unsigned BufReg = MI->getOperand(0).getReg(); 8513 8514 // Reload FP (the jumped-to function may not have had a 8515 // frame pointer, and if so, then its r31 will be restored 8516 // as necessary). 8517 if (PVT == MVT::i64) { 8518 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8519 .addImm(0) 8520 .addReg(BufReg); 8521 } else { 8522 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8523 .addImm(0) 8524 .addReg(BufReg); 8525 } 8526 MIB.setMemRefs(MMOBegin, MMOEnd); 8527 8528 // Reload IP 8529 if (PVT == MVT::i64) { 8530 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8531 .addImm(LabelOffset) 8532 .addReg(BufReg); 8533 } else { 8534 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8535 .addImm(LabelOffset) 8536 .addReg(BufReg); 8537 } 8538 MIB.setMemRefs(MMOBegin, MMOEnd); 8539 8540 // Reload SP 8541 if (PVT == MVT::i64) { 8542 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8543 .addImm(SPOffset) 8544 .addReg(BufReg); 8545 } else { 8546 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8547 .addImm(SPOffset) 8548 .addReg(BufReg); 8549 } 8550 MIB.setMemRefs(MMOBegin, MMOEnd); 8551 8552 // Reload BP 8553 if (PVT == MVT::i64) { 8554 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8555 .addImm(BPOffset) 8556 .addReg(BufReg); 8557 } else { 8558 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8559 .addImm(BPOffset) 8560 .addReg(BufReg); 8561 } 8562 MIB.setMemRefs(MMOBegin, MMOEnd); 8563 8564 // Reload TOC 8565 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8566 setUsesTOCBasePtr(*MBB->getParent()); 8567 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8568 .addImm(TOCOffset) 8569 .addReg(BufReg); 8570 8571 MIB.setMemRefs(MMOBegin, MMOEnd); 8572 } 8573 8574 // Jump 8575 BuildMI(*MBB, MI, DL, 8576 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8577 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8578 8579 MI->eraseFromParent(); 8580 return MBB; 8581 } 8582 8583 MachineBasicBlock * 8584 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8585 MachineBasicBlock *BB) const { 8586 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8587 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8588 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8589 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8590 // Call lowering should have added an r2 operand to indicate a dependence 8591 // on the TOC base pointer value. It can't however, because there is no 8592 // way to mark the dependence as implicit there, and so the stackmap code 8593 // will confuse it with a regular operand. Instead, add the dependence 8594 // here. 8595 setUsesTOCBasePtr(*BB->getParent()); 8596 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8597 } 8598 8599 return emitPatchPoint(MI, BB); 8600 } 8601 8602 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8603 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8604 return emitEHSjLjSetJmp(MI, BB); 8605 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8606 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8607 return emitEHSjLjLongJmp(MI, BB); 8608 } 8609 8610 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8611 8612 // To "insert" these instructions we actually have to insert their 8613 // control-flow patterns. 8614 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8615 MachineFunction::iterator It = ++BB->getIterator(); 8616 8617 MachineFunction *F = BB->getParent(); 8618 8619 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8620 MI->getOpcode() == PPC::SELECT_CC_I8 || 8621 MI->getOpcode() == PPC::SELECT_I4 || 8622 MI->getOpcode() == PPC::SELECT_I8)) { 8623 SmallVector<MachineOperand, 2> Cond; 8624 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8625 MI->getOpcode() == PPC::SELECT_CC_I8) 8626 Cond.push_back(MI->getOperand(4)); 8627 else 8628 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8629 Cond.push_back(MI->getOperand(1)); 8630 8631 DebugLoc dl = MI->getDebugLoc(); 8632 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8633 Cond, MI->getOperand(2).getReg(), 8634 MI->getOperand(3).getReg()); 8635 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8636 MI->getOpcode() == PPC::SELECT_CC_I8 || 8637 MI->getOpcode() == PPC::SELECT_CC_F4 || 8638 MI->getOpcode() == PPC::SELECT_CC_F8 || 8639 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8640 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8641 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8642 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8643 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8644 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8645 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8646 MI->getOpcode() == PPC::SELECT_I4 || 8647 MI->getOpcode() == PPC::SELECT_I8 || 8648 MI->getOpcode() == PPC::SELECT_F4 || 8649 MI->getOpcode() == PPC::SELECT_F8 || 8650 MI->getOpcode() == PPC::SELECT_QFRC || 8651 MI->getOpcode() == PPC::SELECT_QSRC || 8652 MI->getOpcode() == PPC::SELECT_QBRC || 8653 MI->getOpcode() == PPC::SELECT_VRRC || 8654 MI->getOpcode() == PPC::SELECT_VSFRC || 8655 MI->getOpcode() == PPC::SELECT_VSSRC || 8656 MI->getOpcode() == PPC::SELECT_VSRC) { 8657 // The incoming instruction knows the destination vreg to set, the 8658 // condition code register to branch on, the true/false values to 8659 // select between, and a branch opcode to use. 8660 8661 // thisMBB: 8662 // ... 8663 // TrueVal = ... 8664 // cmpTY ccX, r1, r2 8665 // bCC copy1MBB 8666 // fallthrough --> copy0MBB 8667 MachineBasicBlock *thisMBB = BB; 8668 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8669 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8670 DebugLoc dl = MI->getDebugLoc(); 8671 F->insert(It, copy0MBB); 8672 F->insert(It, sinkMBB); 8673 8674 // Transfer the remainder of BB and its successor edges to sinkMBB. 8675 sinkMBB->splice(sinkMBB->begin(), BB, 8676 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8677 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8678 8679 // Next, add the true and fallthrough blocks as its successors. 8680 BB->addSuccessor(copy0MBB); 8681 BB->addSuccessor(sinkMBB); 8682 8683 if (MI->getOpcode() == PPC::SELECT_I4 || 8684 MI->getOpcode() == PPC::SELECT_I8 || 8685 MI->getOpcode() == PPC::SELECT_F4 || 8686 MI->getOpcode() == PPC::SELECT_F8 || 8687 MI->getOpcode() == PPC::SELECT_QFRC || 8688 MI->getOpcode() == PPC::SELECT_QSRC || 8689 MI->getOpcode() == PPC::SELECT_QBRC || 8690 MI->getOpcode() == PPC::SELECT_VRRC || 8691 MI->getOpcode() == PPC::SELECT_VSFRC || 8692 MI->getOpcode() == PPC::SELECT_VSSRC || 8693 MI->getOpcode() == PPC::SELECT_VSRC) { 8694 BuildMI(BB, dl, TII->get(PPC::BC)) 8695 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8696 } else { 8697 unsigned SelectPred = MI->getOperand(4).getImm(); 8698 BuildMI(BB, dl, TII->get(PPC::BCC)) 8699 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8700 } 8701 8702 // copy0MBB: 8703 // %FalseValue = ... 8704 // # fallthrough to sinkMBB 8705 BB = copy0MBB; 8706 8707 // Update machine-CFG edges 8708 BB->addSuccessor(sinkMBB); 8709 8710 // sinkMBB: 8711 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8712 // ... 8713 BB = sinkMBB; 8714 BuildMI(*BB, BB->begin(), dl, 8715 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8716 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8717 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8718 } else if (MI->getOpcode() == PPC::ReadTB) { 8719 // To read the 64-bit time-base register on a 32-bit target, we read the 8720 // two halves. Should the counter have wrapped while it was being read, we 8721 // need to try again. 8722 // ... 8723 // readLoop: 8724 // mfspr Rx,TBU # load from TBU 8725 // mfspr Ry,TB # load from TB 8726 // mfspr Rz,TBU # load from TBU 8727 // cmpw crX,Rx,Rz # check if 'old'='new' 8728 // bne readLoop # branch if they're not equal 8729 // ... 8730 8731 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8732 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8733 DebugLoc dl = MI->getDebugLoc(); 8734 F->insert(It, readMBB); 8735 F->insert(It, sinkMBB); 8736 8737 // Transfer the remainder of BB and its successor edges to sinkMBB. 8738 sinkMBB->splice(sinkMBB->begin(), BB, 8739 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8740 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8741 8742 BB->addSuccessor(readMBB); 8743 BB = readMBB; 8744 8745 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8746 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8747 unsigned LoReg = MI->getOperand(0).getReg(); 8748 unsigned HiReg = MI->getOperand(1).getReg(); 8749 8750 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8751 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8752 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8753 8754 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8755 8756 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8757 .addReg(HiReg).addReg(ReadAgainReg); 8758 BuildMI(BB, dl, TII->get(PPC::BCC)) 8759 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8760 8761 BB->addSuccessor(readMBB); 8762 BB->addSuccessor(sinkMBB); 8763 } 8764 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8765 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8766 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8767 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8768 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8769 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8770 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8771 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8772 8773 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8774 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8775 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8776 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8777 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8778 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8779 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8780 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8781 8782 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8783 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8784 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8785 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8786 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8787 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8788 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8789 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8790 8791 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8792 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8793 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8794 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 8795 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 8796 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 8797 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 8798 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 8799 8800 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 8801 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 8802 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 8803 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 8804 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 8805 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 8806 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 8807 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 8808 8809 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 8810 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 8811 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 8812 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 8813 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 8814 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 8815 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 8816 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 8817 8818 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 8819 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 8820 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 8821 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 8822 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 8823 BB = EmitAtomicBinary(MI, BB, 4, 0); 8824 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 8825 BB = EmitAtomicBinary(MI, BB, 8, 0); 8826 8827 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 8828 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 8829 (Subtarget.hasPartwordAtomics() && 8830 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 8831 (Subtarget.hasPartwordAtomics() && 8832 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 8833 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 8834 8835 auto LoadMnemonic = PPC::LDARX; 8836 auto StoreMnemonic = PPC::STDCX; 8837 switch(MI->getOpcode()) { 8838 default: 8839 llvm_unreachable("Compare and swap of unknown size"); 8840 case PPC::ATOMIC_CMP_SWAP_I8: 8841 LoadMnemonic = PPC::LBARX; 8842 StoreMnemonic = PPC::STBCX; 8843 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8844 break; 8845 case PPC::ATOMIC_CMP_SWAP_I16: 8846 LoadMnemonic = PPC::LHARX; 8847 StoreMnemonic = PPC::STHCX; 8848 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 8849 break; 8850 case PPC::ATOMIC_CMP_SWAP_I32: 8851 LoadMnemonic = PPC::LWARX; 8852 StoreMnemonic = PPC::STWCX; 8853 break; 8854 case PPC::ATOMIC_CMP_SWAP_I64: 8855 LoadMnemonic = PPC::LDARX; 8856 StoreMnemonic = PPC::STDCX; 8857 break; 8858 } 8859 unsigned dest = MI->getOperand(0).getReg(); 8860 unsigned ptrA = MI->getOperand(1).getReg(); 8861 unsigned ptrB = MI->getOperand(2).getReg(); 8862 unsigned oldval = MI->getOperand(3).getReg(); 8863 unsigned newval = MI->getOperand(4).getReg(); 8864 DebugLoc dl = MI->getDebugLoc(); 8865 8866 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8867 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8868 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8869 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8870 F->insert(It, loop1MBB); 8871 F->insert(It, loop2MBB); 8872 F->insert(It, midMBB); 8873 F->insert(It, exitMBB); 8874 exitMBB->splice(exitMBB->begin(), BB, 8875 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8876 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8877 8878 // thisMBB: 8879 // ... 8880 // fallthrough --> loopMBB 8881 BB->addSuccessor(loop1MBB); 8882 8883 // loop1MBB: 8884 // l[bhwd]arx dest, ptr 8885 // cmp[wd] dest, oldval 8886 // bne- midMBB 8887 // loop2MBB: 8888 // st[bhwd]cx. newval, ptr 8889 // bne- loopMBB 8890 // b exitBB 8891 // midMBB: 8892 // st[bhwd]cx. dest, ptr 8893 // exitBB: 8894 BB = loop1MBB; 8895 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8896 .addReg(ptrA).addReg(ptrB); 8897 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 8898 .addReg(oldval).addReg(dest); 8899 BuildMI(BB, dl, TII->get(PPC::BCC)) 8900 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 8901 BB->addSuccessor(loop2MBB); 8902 BB->addSuccessor(midMBB); 8903 8904 BB = loop2MBB; 8905 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8906 .addReg(newval).addReg(ptrA).addReg(ptrB); 8907 BuildMI(BB, dl, TII->get(PPC::BCC)) 8908 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 8909 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 8910 BB->addSuccessor(loop1MBB); 8911 BB->addSuccessor(exitMBB); 8912 8913 BB = midMBB; 8914 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8915 .addReg(dest).addReg(ptrA).addReg(ptrB); 8916 BB->addSuccessor(exitMBB); 8917 8918 // exitMBB: 8919 // ... 8920 BB = exitMBB; 8921 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 8922 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 8923 // We must use 64-bit registers for addresses when targeting 64-bit, 8924 // since we're actually doing arithmetic on them. Other registers 8925 // can be 32-bit. 8926 bool is64bit = Subtarget.isPPC64(); 8927 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 8928 8929 unsigned dest = MI->getOperand(0).getReg(); 8930 unsigned ptrA = MI->getOperand(1).getReg(); 8931 unsigned ptrB = MI->getOperand(2).getReg(); 8932 unsigned oldval = MI->getOperand(3).getReg(); 8933 unsigned newval = MI->getOperand(4).getReg(); 8934 DebugLoc dl = MI->getDebugLoc(); 8935 8936 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 8937 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 8938 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 8939 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8940 F->insert(It, loop1MBB); 8941 F->insert(It, loop2MBB); 8942 F->insert(It, midMBB); 8943 F->insert(It, exitMBB); 8944 exitMBB->splice(exitMBB->begin(), BB, 8945 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8946 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8947 8948 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8949 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8950 : &PPC::GPRCRegClass; 8951 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8952 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8953 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8954 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 8955 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 8956 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 8957 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 8958 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8959 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8960 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8961 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8962 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8963 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8964 unsigned Ptr1Reg; 8965 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 8966 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8967 // thisMBB: 8968 // ... 8969 // fallthrough --> loopMBB 8970 BB->addSuccessor(loop1MBB); 8971 8972 // The 4-byte load must be aligned, while a char or short may be 8973 // anywhere in the word. Hence all this nasty bookkeeping code. 8974 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8975 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8976 // xori shift, shift1, 24 [16] 8977 // rlwinm ptr, ptr1, 0, 0, 29 8978 // slw newval2, newval, shift 8979 // slw oldval2, oldval,shift 8980 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8981 // slw mask, mask2, shift 8982 // and newval3, newval2, mask 8983 // and oldval3, oldval2, mask 8984 // loop1MBB: 8985 // lwarx tmpDest, ptr 8986 // and tmp, tmpDest, mask 8987 // cmpw tmp, oldval3 8988 // bne- midMBB 8989 // loop2MBB: 8990 // andc tmp2, tmpDest, mask 8991 // or tmp4, tmp2, newval3 8992 // stwcx. tmp4, ptr 8993 // bne- loop1MBB 8994 // b exitBB 8995 // midMBB: 8996 // stwcx. tmpDest, ptr 8997 // exitBB: 8998 // srw dest, tmpDest, shift 8999 if (ptrA != ZeroReg) { 9000 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9001 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9002 .addReg(ptrA).addReg(ptrB); 9003 } else { 9004 Ptr1Reg = ptrB; 9005 } 9006 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9007 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9008 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9009 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9010 if (is64bit) 9011 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9012 .addReg(Ptr1Reg).addImm(0).addImm(61); 9013 else 9014 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9015 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9016 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9017 .addReg(newval).addReg(ShiftReg); 9018 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9019 .addReg(oldval).addReg(ShiftReg); 9020 if (is8bit) 9021 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9022 else { 9023 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9024 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9025 .addReg(Mask3Reg).addImm(65535); 9026 } 9027 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9028 .addReg(Mask2Reg).addReg(ShiftReg); 9029 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9030 .addReg(NewVal2Reg).addReg(MaskReg); 9031 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9032 .addReg(OldVal2Reg).addReg(MaskReg); 9033 9034 BB = loop1MBB; 9035 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9036 .addReg(ZeroReg).addReg(PtrReg); 9037 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9038 .addReg(TmpDestReg).addReg(MaskReg); 9039 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9040 .addReg(TmpReg).addReg(OldVal3Reg); 9041 BuildMI(BB, dl, TII->get(PPC::BCC)) 9042 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9043 BB->addSuccessor(loop2MBB); 9044 BB->addSuccessor(midMBB); 9045 9046 BB = loop2MBB; 9047 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9048 .addReg(TmpDestReg).addReg(MaskReg); 9049 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9050 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9051 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9052 .addReg(ZeroReg).addReg(PtrReg); 9053 BuildMI(BB, dl, TII->get(PPC::BCC)) 9054 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9055 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9056 BB->addSuccessor(loop1MBB); 9057 BB->addSuccessor(exitMBB); 9058 9059 BB = midMBB; 9060 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9061 .addReg(ZeroReg).addReg(PtrReg); 9062 BB->addSuccessor(exitMBB); 9063 9064 // exitMBB: 9065 // ... 9066 BB = exitMBB; 9067 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9068 .addReg(ShiftReg); 9069 } else if (MI->getOpcode() == PPC::FADDrtz) { 9070 // This pseudo performs an FADD with rounding mode temporarily forced 9071 // to round-to-zero. We emit this via custom inserter since the FPSCR 9072 // is not modeled at the SelectionDAG level. 9073 unsigned Dest = MI->getOperand(0).getReg(); 9074 unsigned Src1 = MI->getOperand(1).getReg(); 9075 unsigned Src2 = MI->getOperand(2).getReg(); 9076 DebugLoc dl = MI->getDebugLoc(); 9077 9078 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9079 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9080 9081 // Save FPSCR value. 9082 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9083 9084 // Set rounding mode to round-to-zero. 9085 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9086 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9087 9088 // Perform addition. 9089 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9090 9091 // Restore FPSCR value. 9092 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9093 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9094 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9095 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9096 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9097 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9098 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9099 PPC::ANDIo8 : PPC::ANDIo; 9100 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9101 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9102 9103 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9104 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9105 &PPC::GPRCRegClass : 9106 &PPC::G8RCRegClass); 9107 9108 DebugLoc dl = MI->getDebugLoc(); 9109 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9110 .addReg(MI->getOperand(1).getReg()).addImm(1); 9111 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9112 MI->getOperand(0).getReg()) 9113 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9114 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9115 DebugLoc Dl = MI->getDebugLoc(); 9116 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9117 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9118 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9119 return BB; 9120 } else { 9121 llvm_unreachable("Unexpected instr type to insert"); 9122 } 9123 9124 MI->eraseFromParent(); // The pseudo instruction is gone now. 9125 return BB; 9126 } 9127 9128 //===----------------------------------------------------------------------===// 9129 // Target Optimization Hooks 9130 //===----------------------------------------------------------------------===// 9131 9132 static std::string getRecipOp(const char *Base, EVT VT) { 9133 std::string RecipOp(Base); 9134 if (VT.getScalarType() == MVT::f64) 9135 RecipOp += "d"; 9136 else 9137 RecipOp += "f"; 9138 9139 if (VT.isVector()) 9140 RecipOp = "vec-" + RecipOp; 9141 9142 return RecipOp; 9143 } 9144 9145 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9146 DAGCombinerInfo &DCI, 9147 unsigned &RefinementSteps, 9148 bool &UseOneConstNR) const { 9149 EVT VT = Operand.getValueType(); 9150 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9151 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9152 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9153 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9154 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9155 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9156 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9157 std::string RecipOp = getRecipOp("sqrt", VT); 9158 if (!Recips.isEnabled(RecipOp)) 9159 return SDValue(); 9160 9161 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9162 UseOneConstNR = true; 9163 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9164 } 9165 return SDValue(); 9166 } 9167 9168 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9169 DAGCombinerInfo &DCI, 9170 unsigned &RefinementSteps) const { 9171 EVT VT = Operand.getValueType(); 9172 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9173 (VT == MVT::f64 && Subtarget.hasFRE()) || 9174 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9175 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9176 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9177 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9178 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9179 std::string RecipOp = getRecipOp("div", VT); 9180 if (!Recips.isEnabled(RecipOp)) 9181 return SDValue(); 9182 9183 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9184 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9185 } 9186 return SDValue(); 9187 } 9188 9189 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9190 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9191 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9192 // enabled for division), this functionality is redundant with the default 9193 // combiner logic (once the division -> reciprocal/multiply transformation 9194 // has taken place). As a result, this matters more for older cores than for 9195 // newer ones. 9196 9197 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9198 // reciprocal if there are two or more FDIVs (for embedded cores with only 9199 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9200 switch (Subtarget.getDarwinDirective()) { 9201 default: 9202 return 3; 9203 case PPC::DIR_440: 9204 case PPC::DIR_A2: 9205 case PPC::DIR_E500mc: 9206 case PPC::DIR_E5500: 9207 return 2; 9208 } 9209 } 9210 9211 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9212 // collapsed, and so we need to look through chains of them. 9213 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9214 int64_t& Offset, SelectionDAG &DAG) { 9215 if (DAG.isBaseWithConstantOffset(Loc)) { 9216 Base = Loc.getOperand(0); 9217 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9218 9219 // The base might itself be a base plus an offset, and if so, accumulate 9220 // that as well. 9221 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9222 } 9223 } 9224 9225 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9226 unsigned Bytes, int Dist, 9227 SelectionDAG &DAG) { 9228 if (VT.getSizeInBits() / 8 != Bytes) 9229 return false; 9230 9231 SDValue BaseLoc = Base->getBasePtr(); 9232 if (Loc.getOpcode() == ISD::FrameIndex) { 9233 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9234 return false; 9235 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9236 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9237 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9238 int FS = MFI->getObjectSize(FI); 9239 int BFS = MFI->getObjectSize(BFI); 9240 if (FS != BFS || FS != (int)Bytes) return false; 9241 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9242 } 9243 9244 SDValue Base1 = Loc, Base2 = BaseLoc; 9245 int64_t Offset1 = 0, Offset2 = 0; 9246 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9247 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9248 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9249 return true; 9250 9251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9252 const GlobalValue *GV1 = nullptr; 9253 const GlobalValue *GV2 = nullptr; 9254 Offset1 = 0; 9255 Offset2 = 0; 9256 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9257 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9258 if (isGA1 && isGA2 && GV1 == GV2) 9259 return Offset1 == (Offset2 + Dist*Bytes); 9260 return false; 9261 } 9262 9263 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9264 // not enforce equality of the chain operands. 9265 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9266 unsigned Bytes, int Dist, 9267 SelectionDAG &DAG) { 9268 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9269 EVT VT = LS->getMemoryVT(); 9270 SDValue Loc = LS->getBasePtr(); 9271 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9272 } 9273 9274 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9275 EVT VT; 9276 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9277 default: return false; 9278 case Intrinsic::ppc_qpx_qvlfd: 9279 case Intrinsic::ppc_qpx_qvlfda: 9280 VT = MVT::v4f64; 9281 break; 9282 case Intrinsic::ppc_qpx_qvlfs: 9283 case Intrinsic::ppc_qpx_qvlfsa: 9284 VT = MVT::v4f32; 9285 break; 9286 case Intrinsic::ppc_qpx_qvlfcd: 9287 case Intrinsic::ppc_qpx_qvlfcda: 9288 VT = MVT::v2f64; 9289 break; 9290 case Intrinsic::ppc_qpx_qvlfcs: 9291 case Intrinsic::ppc_qpx_qvlfcsa: 9292 VT = MVT::v2f32; 9293 break; 9294 case Intrinsic::ppc_qpx_qvlfiwa: 9295 case Intrinsic::ppc_qpx_qvlfiwz: 9296 case Intrinsic::ppc_altivec_lvx: 9297 case Intrinsic::ppc_altivec_lvxl: 9298 case Intrinsic::ppc_vsx_lxvw4x: 9299 VT = MVT::v4i32; 9300 break; 9301 case Intrinsic::ppc_vsx_lxvd2x: 9302 VT = MVT::v2f64; 9303 break; 9304 case Intrinsic::ppc_altivec_lvebx: 9305 VT = MVT::i8; 9306 break; 9307 case Intrinsic::ppc_altivec_lvehx: 9308 VT = MVT::i16; 9309 break; 9310 case Intrinsic::ppc_altivec_lvewx: 9311 VT = MVT::i32; 9312 break; 9313 } 9314 9315 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9316 } 9317 9318 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9319 EVT VT; 9320 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9321 default: return false; 9322 case Intrinsic::ppc_qpx_qvstfd: 9323 case Intrinsic::ppc_qpx_qvstfda: 9324 VT = MVT::v4f64; 9325 break; 9326 case Intrinsic::ppc_qpx_qvstfs: 9327 case Intrinsic::ppc_qpx_qvstfsa: 9328 VT = MVT::v4f32; 9329 break; 9330 case Intrinsic::ppc_qpx_qvstfcd: 9331 case Intrinsic::ppc_qpx_qvstfcda: 9332 VT = MVT::v2f64; 9333 break; 9334 case Intrinsic::ppc_qpx_qvstfcs: 9335 case Intrinsic::ppc_qpx_qvstfcsa: 9336 VT = MVT::v2f32; 9337 break; 9338 case Intrinsic::ppc_qpx_qvstfiw: 9339 case Intrinsic::ppc_qpx_qvstfiwa: 9340 case Intrinsic::ppc_altivec_stvx: 9341 case Intrinsic::ppc_altivec_stvxl: 9342 case Intrinsic::ppc_vsx_stxvw4x: 9343 VT = MVT::v4i32; 9344 break; 9345 case Intrinsic::ppc_vsx_stxvd2x: 9346 VT = MVT::v2f64; 9347 break; 9348 case Intrinsic::ppc_altivec_stvebx: 9349 VT = MVT::i8; 9350 break; 9351 case Intrinsic::ppc_altivec_stvehx: 9352 VT = MVT::i16; 9353 break; 9354 case Intrinsic::ppc_altivec_stvewx: 9355 VT = MVT::i32; 9356 break; 9357 } 9358 9359 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9360 } 9361 9362 return false; 9363 } 9364 9365 // Return true is there is a nearyby consecutive load to the one provided 9366 // (regardless of alignment). We search up and down the chain, looking though 9367 // token factors and other loads (but nothing else). As a result, a true result 9368 // indicates that it is safe to create a new consecutive load adjacent to the 9369 // load provided. 9370 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9371 SDValue Chain = LD->getChain(); 9372 EVT VT = LD->getMemoryVT(); 9373 9374 SmallSet<SDNode *, 16> LoadRoots; 9375 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9376 SmallSet<SDNode *, 16> Visited; 9377 9378 // First, search up the chain, branching to follow all token-factor operands. 9379 // If we find a consecutive load, then we're done, otherwise, record all 9380 // nodes just above the top-level loads and token factors. 9381 while (!Queue.empty()) { 9382 SDNode *ChainNext = Queue.pop_back_val(); 9383 if (!Visited.insert(ChainNext).second) 9384 continue; 9385 9386 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9387 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9388 return true; 9389 9390 if (!Visited.count(ChainLD->getChain().getNode())) 9391 Queue.push_back(ChainLD->getChain().getNode()); 9392 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9393 for (const SDUse &O : ChainNext->ops()) 9394 if (!Visited.count(O.getNode())) 9395 Queue.push_back(O.getNode()); 9396 } else 9397 LoadRoots.insert(ChainNext); 9398 } 9399 9400 // Second, search down the chain, starting from the top-level nodes recorded 9401 // in the first phase. These top-level nodes are the nodes just above all 9402 // loads and token factors. Starting with their uses, recursively look though 9403 // all loads (just the chain uses) and token factors to find a consecutive 9404 // load. 9405 Visited.clear(); 9406 Queue.clear(); 9407 9408 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9409 IE = LoadRoots.end(); I != IE; ++I) { 9410 Queue.push_back(*I); 9411 9412 while (!Queue.empty()) { 9413 SDNode *LoadRoot = Queue.pop_back_val(); 9414 if (!Visited.insert(LoadRoot).second) 9415 continue; 9416 9417 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9418 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9419 return true; 9420 9421 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9422 UE = LoadRoot->use_end(); UI != UE; ++UI) 9423 if (((isa<MemSDNode>(*UI) && 9424 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9425 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9426 Queue.push_back(*UI); 9427 } 9428 } 9429 9430 return false; 9431 } 9432 9433 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9434 DAGCombinerInfo &DCI) const { 9435 SelectionDAG &DAG = DCI.DAG; 9436 SDLoc dl(N); 9437 9438 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9439 // If we're tracking CR bits, we need to be careful that we don't have: 9440 // trunc(binary-ops(zext(x), zext(y))) 9441 // or 9442 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9443 // such that we're unnecessarily moving things into GPRs when it would be 9444 // better to keep them in CR bits. 9445 9446 // Note that trunc here can be an actual i1 trunc, or can be the effective 9447 // truncation that comes from a setcc or select_cc. 9448 if (N->getOpcode() == ISD::TRUNCATE && 9449 N->getValueType(0) != MVT::i1) 9450 return SDValue(); 9451 9452 if (N->getOperand(0).getValueType() != MVT::i32 && 9453 N->getOperand(0).getValueType() != MVT::i64) 9454 return SDValue(); 9455 9456 if (N->getOpcode() == ISD::SETCC || 9457 N->getOpcode() == ISD::SELECT_CC) { 9458 // If we're looking at a comparison, then we need to make sure that the 9459 // high bits (all except for the first) don't matter the result. 9460 ISD::CondCode CC = 9461 cast<CondCodeSDNode>(N->getOperand( 9462 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9463 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9464 9465 if (ISD::isSignedIntSetCC(CC)) { 9466 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9467 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9468 return SDValue(); 9469 } else if (ISD::isUnsignedIntSetCC(CC)) { 9470 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9471 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9472 !DAG.MaskedValueIsZero(N->getOperand(1), 9473 APInt::getHighBitsSet(OpBits, OpBits-1))) 9474 return SDValue(); 9475 } else { 9476 // This is neither a signed nor an unsigned comparison, just make sure 9477 // that the high bits are equal. 9478 APInt Op1Zero, Op1One; 9479 APInt Op2Zero, Op2One; 9480 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9481 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9482 9483 // We don't really care about what is known about the first bit (if 9484 // anything), so clear it in all masks prior to comparing them. 9485 Op1Zero.clearBit(0); Op1One.clearBit(0); 9486 Op2Zero.clearBit(0); Op2One.clearBit(0); 9487 9488 if (Op1Zero != Op2Zero || Op1One != Op2One) 9489 return SDValue(); 9490 } 9491 } 9492 9493 // We now know that the higher-order bits are irrelevant, we just need to 9494 // make sure that all of the intermediate operations are bit operations, and 9495 // all inputs are extensions. 9496 if (N->getOperand(0).getOpcode() != ISD::AND && 9497 N->getOperand(0).getOpcode() != ISD::OR && 9498 N->getOperand(0).getOpcode() != ISD::XOR && 9499 N->getOperand(0).getOpcode() != ISD::SELECT && 9500 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9501 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9502 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9503 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9504 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9505 return SDValue(); 9506 9507 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9508 N->getOperand(1).getOpcode() != ISD::AND && 9509 N->getOperand(1).getOpcode() != ISD::OR && 9510 N->getOperand(1).getOpcode() != ISD::XOR && 9511 N->getOperand(1).getOpcode() != ISD::SELECT && 9512 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9513 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9514 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9515 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9516 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9517 return SDValue(); 9518 9519 SmallVector<SDValue, 4> Inputs; 9520 SmallVector<SDValue, 8> BinOps, PromOps; 9521 SmallPtrSet<SDNode *, 16> Visited; 9522 9523 for (unsigned i = 0; i < 2; ++i) { 9524 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9525 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9526 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9527 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9528 isa<ConstantSDNode>(N->getOperand(i))) 9529 Inputs.push_back(N->getOperand(i)); 9530 else 9531 BinOps.push_back(N->getOperand(i)); 9532 9533 if (N->getOpcode() == ISD::TRUNCATE) 9534 break; 9535 } 9536 9537 // Visit all inputs, collect all binary operations (and, or, xor and 9538 // select) that are all fed by extensions. 9539 while (!BinOps.empty()) { 9540 SDValue BinOp = BinOps.back(); 9541 BinOps.pop_back(); 9542 9543 if (!Visited.insert(BinOp.getNode()).second) 9544 continue; 9545 9546 PromOps.push_back(BinOp); 9547 9548 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9549 // The condition of the select is not promoted. 9550 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9551 continue; 9552 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9553 continue; 9554 9555 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9556 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9557 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9558 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9559 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9560 Inputs.push_back(BinOp.getOperand(i)); 9561 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9562 BinOp.getOperand(i).getOpcode() == ISD::OR || 9563 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9564 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9565 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9566 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9567 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9568 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9569 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9570 BinOps.push_back(BinOp.getOperand(i)); 9571 } else { 9572 // We have an input that is not an extension or another binary 9573 // operation; we'll abort this transformation. 9574 return SDValue(); 9575 } 9576 } 9577 } 9578 9579 // Make sure that this is a self-contained cluster of operations (which 9580 // is not quite the same thing as saying that everything has only one 9581 // use). 9582 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9583 if (isa<ConstantSDNode>(Inputs[i])) 9584 continue; 9585 9586 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9587 UE = Inputs[i].getNode()->use_end(); 9588 UI != UE; ++UI) { 9589 SDNode *User = *UI; 9590 if (User != N && !Visited.count(User)) 9591 return SDValue(); 9592 9593 // Make sure that we're not going to promote the non-output-value 9594 // operand(s) or SELECT or SELECT_CC. 9595 // FIXME: Although we could sometimes handle this, and it does occur in 9596 // practice that one of the condition inputs to the select is also one of 9597 // the outputs, we currently can't deal with this. 9598 if (User->getOpcode() == ISD::SELECT) { 9599 if (User->getOperand(0) == Inputs[i]) 9600 return SDValue(); 9601 } else if (User->getOpcode() == ISD::SELECT_CC) { 9602 if (User->getOperand(0) == Inputs[i] || 9603 User->getOperand(1) == Inputs[i]) 9604 return SDValue(); 9605 } 9606 } 9607 } 9608 9609 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9610 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9611 UE = PromOps[i].getNode()->use_end(); 9612 UI != UE; ++UI) { 9613 SDNode *User = *UI; 9614 if (User != N && !Visited.count(User)) 9615 return SDValue(); 9616 9617 // Make sure that we're not going to promote the non-output-value 9618 // operand(s) or SELECT or SELECT_CC. 9619 // FIXME: Although we could sometimes handle this, and it does occur in 9620 // practice that one of the condition inputs to the select is also one of 9621 // the outputs, we currently can't deal with this. 9622 if (User->getOpcode() == ISD::SELECT) { 9623 if (User->getOperand(0) == PromOps[i]) 9624 return SDValue(); 9625 } else if (User->getOpcode() == ISD::SELECT_CC) { 9626 if (User->getOperand(0) == PromOps[i] || 9627 User->getOperand(1) == PromOps[i]) 9628 return SDValue(); 9629 } 9630 } 9631 } 9632 9633 // Replace all inputs with the extension operand. 9634 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9635 // Constants may have users outside the cluster of to-be-promoted nodes, 9636 // and so we need to replace those as we do the promotions. 9637 if (isa<ConstantSDNode>(Inputs[i])) 9638 continue; 9639 else 9640 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9641 } 9642 9643 // Replace all operations (these are all the same, but have a different 9644 // (i1) return type). DAG.getNode will validate that the types of 9645 // a binary operator match, so go through the list in reverse so that 9646 // we've likely promoted both operands first. Any intermediate truncations or 9647 // extensions disappear. 9648 while (!PromOps.empty()) { 9649 SDValue PromOp = PromOps.back(); 9650 PromOps.pop_back(); 9651 9652 if (PromOp.getOpcode() == ISD::TRUNCATE || 9653 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9654 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9655 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9656 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9657 PromOp.getOperand(0).getValueType() != MVT::i1) { 9658 // The operand is not yet ready (see comment below). 9659 PromOps.insert(PromOps.begin(), PromOp); 9660 continue; 9661 } 9662 9663 SDValue RepValue = PromOp.getOperand(0); 9664 if (isa<ConstantSDNode>(RepValue)) 9665 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9666 9667 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9668 continue; 9669 } 9670 9671 unsigned C; 9672 switch (PromOp.getOpcode()) { 9673 default: C = 0; break; 9674 case ISD::SELECT: C = 1; break; 9675 case ISD::SELECT_CC: C = 2; break; 9676 } 9677 9678 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9679 PromOp.getOperand(C).getValueType() != MVT::i1) || 9680 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9681 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9682 // The to-be-promoted operands of this node have not yet been 9683 // promoted (this should be rare because we're going through the 9684 // list backward, but if one of the operands has several users in 9685 // this cluster of to-be-promoted nodes, it is possible). 9686 PromOps.insert(PromOps.begin(), PromOp); 9687 continue; 9688 } 9689 9690 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9691 PromOp.getNode()->op_end()); 9692 9693 // If there are any constant inputs, make sure they're replaced now. 9694 for (unsigned i = 0; i < 2; ++i) 9695 if (isa<ConstantSDNode>(Ops[C+i])) 9696 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9697 9698 DAG.ReplaceAllUsesOfValueWith(PromOp, 9699 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9700 } 9701 9702 // Now we're left with the initial truncation itself. 9703 if (N->getOpcode() == ISD::TRUNCATE) 9704 return N->getOperand(0); 9705 9706 // Otherwise, this is a comparison. The operands to be compared have just 9707 // changed type (to i1), but everything else is the same. 9708 return SDValue(N, 0); 9709 } 9710 9711 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9712 DAGCombinerInfo &DCI) const { 9713 SelectionDAG &DAG = DCI.DAG; 9714 SDLoc dl(N); 9715 9716 // If we're tracking CR bits, we need to be careful that we don't have: 9717 // zext(binary-ops(trunc(x), trunc(y))) 9718 // or 9719 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9720 // such that we're unnecessarily moving things into CR bits that can more 9721 // efficiently stay in GPRs. Note that if we're not certain that the high 9722 // bits are set as required by the final extension, we still may need to do 9723 // some masking to get the proper behavior. 9724 9725 // This same functionality is important on PPC64 when dealing with 9726 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9727 // the return values of functions. Because it is so similar, it is handled 9728 // here as well. 9729 9730 if (N->getValueType(0) != MVT::i32 && 9731 N->getValueType(0) != MVT::i64) 9732 return SDValue(); 9733 9734 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9735 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9736 return SDValue(); 9737 9738 if (N->getOperand(0).getOpcode() != ISD::AND && 9739 N->getOperand(0).getOpcode() != ISD::OR && 9740 N->getOperand(0).getOpcode() != ISD::XOR && 9741 N->getOperand(0).getOpcode() != ISD::SELECT && 9742 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9743 return SDValue(); 9744 9745 SmallVector<SDValue, 4> Inputs; 9746 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9747 SmallPtrSet<SDNode *, 16> Visited; 9748 9749 // Visit all inputs, collect all binary operations (and, or, xor and 9750 // select) that are all fed by truncations. 9751 while (!BinOps.empty()) { 9752 SDValue BinOp = BinOps.back(); 9753 BinOps.pop_back(); 9754 9755 if (!Visited.insert(BinOp.getNode()).second) 9756 continue; 9757 9758 PromOps.push_back(BinOp); 9759 9760 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9761 // The condition of the select is not promoted. 9762 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9763 continue; 9764 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9765 continue; 9766 9767 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9768 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9769 Inputs.push_back(BinOp.getOperand(i)); 9770 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9771 BinOp.getOperand(i).getOpcode() == ISD::OR || 9772 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9773 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9774 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9775 BinOps.push_back(BinOp.getOperand(i)); 9776 } else { 9777 // We have an input that is not a truncation or another binary 9778 // operation; we'll abort this transformation. 9779 return SDValue(); 9780 } 9781 } 9782 } 9783 9784 // The operands of a select that must be truncated when the select is 9785 // promoted because the operand is actually part of the to-be-promoted set. 9786 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9787 9788 // Make sure that this is a self-contained cluster of operations (which 9789 // is not quite the same thing as saying that everything has only one 9790 // use). 9791 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9792 if (isa<ConstantSDNode>(Inputs[i])) 9793 continue; 9794 9795 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9796 UE = Inputs[i].getNode()->use_end(); 9797 UI != UE; ++UI) { 9798 SDNode *User = *UI; 9799 if (User != N && !Visited.count(User)) 9800 return SDValue(); 9801 9802 // If we're going to promote the non-output-value operand(s) or SELECT or 9803 // SELECT_CC, record them for truncation. 9804 if (User->getOpcode() == ISD::SELECT) { 9805 if (User->getOperand(0) == Inputs[i]) 9806 SelectTruncOp[0].insert(std::make_pair(User, 9807 User->getOperand(0).getValueType())); 9808 } else if (User->getOpcode() == ISD::SELECT_CC) { 9809 if (User->getOperand(0) == Inputs[i]) 9810 SelectTruncOp[0].insert(std::make_pair(User, 9811 User->getOperand(0).getValueType())); 9812 if (User->getOperand(1) == Inputs[i]) 9813 SelectTruncOp[1].insert(std::make_pair(User, 9814 User->getOperand(1).getValueType())); 9815 } 9816 } 9817 } 9818 9819 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9820 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9821 UE = PromOps[i].getNode()->use_end(); 9822 UI != UE; ++UI) { 9823 SDNode *User = *UI; 9824 if (User != N && !Visited.count(User)) 9825 return SDValue(); 9826 9827 // If we're going to promote the non-output-value operand(s) or SELECT or 9828 // SELECT_CC, record them for truncation. 9829 if (User->getOpcode() == ISD::SELECT) { 9830 if (User->getOperand(0) == PromOps[i]) 9831 SelectTruncOp[0].insert(std::make_pair(User, 9832 User->getOperand(0).getValueType())); 9833 } else if (User->getOpcode() == ISD::SELECT_CC) { 9834 if (User->getOperand(0) == PromOps[i]) 9835 SelectTruncOp[0].insert(std::make_pair(User, 9836 User->getOperand(0).getValueType())); 9837 if (User->getOperand(1) == PromOps[i]) 9838 SelectTruncOp[1].insert(std::make_pair(User, 9839 User->getOperand(1).getValueType())); 9840 } 9841 } 9842 } 9843 9844 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 9845 bool ReallyNeedsExt = false; 9846 if (N->getOpcode() != ISD::ANY_EXTEND) { 9847 // If all of the inputs are not already sign/zero extended, then 9848 // we'll still need to do that at the end. 9849 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9850 if (isa<ConstantSDNode>(Inputs[i])) 9851 continue; 9852 9853 unsigned OpBits = 9854 Inputs[i].getOperand(0).getValueSizeInBits(); 9855 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 9856 9857 if ((N->getOpcode() == ISD::ZERO_EXTEND && 9858 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 9859 APInt::getHighBitsSet(OpBits, 9860 OpBits-PromBits))) || 9861 (N->getOpcode() == ISD::SIGN_EXTEND && 9862 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 9863 (OpBits-(PromBits-1)))) { 9864 ReallyNeedsExt = true; 9865 break; 9866 } 9867 } 9868 } 9869 9870 // Replace all inputs, either with the truncation operand, or a 9871 // truncation or extension to the final output type. 9872 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9873 // Constant inputs need to be replaced with the to-be-promoted nodes that 9874 // use them because they might have users outside of the cluster of 9875 // promoted nodes. 9876 if (isa<ConstantSDNode>(Inputs[i])) 9877 continue; 9878 9879 SDValue InSrc = Inputs[i].getOperand(0); 9880 if (Inputs[i].getValueType() == N->getValueType(0)) 9881 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 9882 else if (N->getOpcode() == ISD::SIGN_EXTEND) 9883 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9884 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 9885 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9886 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9887 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 9888 else 9889 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 9890 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 9891 } 9892 9893 // Replace all operations (these are all the same, but have a different 9894 // (promoted) return type). DAG.getNode will validate that the types of 9895 // a binary operator match, so go through the list in reverse so that 9896 // we've likely promoted both operands first. 9897 while (!PromOps.empty()) { 9898 SDValue PromOp = PromOps.back(); 9899 PromOps.pop_back(); 9900 9901 unsigned C; 9902 switch (PromOp.getOpcode()) { 9903 default: C = 0; break; 9904 case ISD::SELECT: C = 1; break; 9905 case ISD::SELECT_CC: C = 2; break; 9906 } 9907 9908 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9909 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 9910 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9911 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 9912 // The to-be-promoted operands of this node have not yet been 9913 // promoted (this should be rare because we're going through the 9914 // list backward, but if one of the operands has several users in 9915 // this cluster of to-be-promoted nodes, it is possible). 9916 PromOps.insert(PromOps.begin(), PromOp); 9917 continue; 9918 } 9919 9920 // For SELECT and SELECT_CC nodes, we do a similar check for any 9921 // to-be-promoted comparison inputs. 9922 if (PromOp.getOpcode() == ISD::SELECT || 9923 PromOp.getOpcode() == ISD::SELECT_CC) { 9924 if ((SelectTruncOp[0].count(PromOp.getNode()) && 9925 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 9926 (SelectTruncOp[1].count(PromOp.getNode()) && 9927 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 9928 PromOps.insert(PromOps.begin(), PromOp); 9929 continue; 9930 } 9931 } 9932 9933 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9934 PromOp.getNode()->op_end()); 9935 9936 // If this node has constant inputs, then they'll need to be promoted here. 9937 for (unsigned i = 0; i < 2; ++i) { 9938 if (!isa<ConstantSDNode>(Ops[C+i])) 9939 continue; 9940 if (Ops[C+i].getValueType() == N->getValueType(0)) 9941 continue; 9942 9943 if (N->getOpcode() == ISD::SIGN_EXTEND) 9944 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9945 else if (N->getOpcode() == ISD::ZERO_EXTEND) 9946 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9947 else 9948 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 9949 } 9950 9951 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 9952 // truncate them again to the original value type. 9953 if (PromOp.getOpcode() == ISD::SELECT || 9954 PromOp.getOpcode() == ISD::SELECT_CC) { 9955 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 9956 if (SI0 != SelectTruncOp[0].end()) 9957 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 9958 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 9959 if (SI1 != SelectTruncOp[1].end()) 9960 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 9961 } 9962 9963 DAG.ReplaceAllUsesOfValueWith(PromOp, 9964 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 9965 } 9966 9967 // Now we're left with the initial extension itself. 9968 if (!ReallyNeedsExt) 9969 return N->getOperand(0); 9970 9971 // To zero extend, just mask off everything except for the first bit (in the 9972 // i1 case). 9973 if (N->getOpcode() == ISD::ZERO_EXTEND) 9974 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 9975 DAG.getConstant(APInt::getLowBitsSet( 9976 N->getValueSizeInBits(0), PromBits), 9977 dl, N->getValueType(0))); 9978 9979 assert(N->getOpcode() == ISD::SIGN_EXTEND && 9980 "Invalid extension type"); 9981 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 9982 SDValue ShiftCst = 9983 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 9984 return DAG.getNode( 9985 ISD::SRA, dl, N->getValueType(0), 9986 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 9987 ShiftCst); 9988 } 9989 9990 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 9991 DAGCombinerInfo &DCI) const { 9992 assert((N->getOpcode() == ISD::SINT_TO_FP || 9993 N->getOpcode() == ISD::UINT_TO_FP) && 9994 "Need an int -> FP conversion node here"); 9995 9996 if (!Subtarget.has64BitSupport()) 9997 return SDValue(); 9998 9999 SelectionDAG &DAG = DCI.DAG; 10000 SDLoc dl(N); 10001 SDValue Op(N, 0); 10002 10003 // Don't handle ppc_fp128 here or i1 conversions. 10004 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10005 return SDValue(); 10006 if (Op.getOperand(0).getValueType() == MVT::i1) 10007 return SDValue(); 10008 10009 // For i32 intermediate values, unfortunately, the conversion functions 10010 // leave the upper 32 bits of the value are undefined. Within the set of 10011 // scalar instructions, we have no method for zero- or sign-extending the 10012 // value. Thus, we cannot handle i32 intermediate values here. 10013 if (Op.getOperand(0).getValueType() == MVT::i32) 10014 return SDValue(); 10015 10016 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10017 "UINT_TO_FP is supported only with FPCVT"); 10018 10019 // If we have FCFIDS, then use it when converting to single-precision. 10020 // Otherwise, convert to double-precision and then round. 10021 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10022 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10023 : PPCISD::FCFIDS) 10024 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10025 : PPCISD::FCFID); 10026 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10027 ? MVT::f32 10028 : MVT::f64; 10029 10030 // If we're converting from a float, to an int, and back to a float again, 10031 // then we don't need the store/load pair at all. 10032 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10033 Subtarget.hasFPCVT()) || 10034 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10035 SDValue Src = Op.getOperand(0).getOperand(0); 10036 if (Src.getValueType() == MVT::f32) { 10037 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10038 DCI.AddToWorklist(Src.getNode()); 10039 } else if (Src.getValueType() != MVT::f64) { 10040 // Make sure that we don't pick up a ppc_fp128 source value. 10041 return SDValue(); 10042 } 10043 10044 unsigned FCTOp = 10045 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10046 PPCISD::FCTIDUZ; 10047 10048 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10049 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10050 10051 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10052 FP = DAG.getNode(ISD::FP_ROUND, dl, 10053 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10054 DCI.AddToWorklist(FP.getNode()); 10055 } 10056 10057 return FP; 10058 } 10059 10060 return SDValue(); 10061 } 10062 10063 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10064 // builtins) into loads with swaps. 10065 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10066 DAGCombinerInfo &DCI) const { 10067 SelectionDAG &DAG = DCI.DAG; 10068 SDLoc dl(N); 10069 SDValue Chain; 10070 SDValue Base; 10071 MachineMemOperand *MMO; 10072 10073 switch (N->getOpcode()) { 10074 default: 10075 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10076 case ISD::LOAD: { 10077 LoadSDNode *LD = cast<LoadSDNode>(N); 10078 Chain = LD->getChain(); 10079 Base = LD->getBasePtr(); 10080 MMO = LD->getMemOperand(); 10081 // If the MMO suggests this isn't a load of a full vector, leave 10082 // things alone. For a built-in, we have to make the change for 10083 // correctness, so if there is a size problem that will be a bug. 10084 if (MMO->getSize() < 16) 10085 return SDValue(); 10086 break; 10087 } 10088 case ISD::INTRINSIC_W_CHAIN: { 10089 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10090 Chain = Intrin->getChain(); 10091 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10092 // us what we want. Get operand 2 instead. 10093 Base = Intrin->getOperand(2); 10094 MMO = Intrin->getMemOperand(); 10095 break; 10096 } 10097 } 10098 10099 MVT VecTy = N->getValueType(0).getSimpleVT(); 10100 SDValue LoadOps[] = { Chain, Base }; 10101 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10102 DAG.getVTList(VecTy, MVT::Other), 10103 LoadOps, VecTy, MMO); 10104 DCI.AddToWorklist(Load.getNode()); 10105 Chain = Load.getValue(1); 10106 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10107 DAG.getVTList(VecTy, MVT::Other), Chain, Load); 10108 DCI.AddToWorklist(Swap.getNode()); 10109 return Swap; 10110 } 10111 10112 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10113 // builtins) into stores with swaps. 10114 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10115 DAGCombinerInfo &DCI) const { 10116 SelectionDAG &DAG = DCI.DAG; 10117 SDLoc dl(N); 10118 SDValue Chain; 10119 SDValue Base; 10120 unsigned SrcOpnd; 10121 MachineMemOperand *MMO; 10122 10123 switch (N->getOpcode()) { 10124 default: 10125 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10126 case ISD::STORE: { 10127 StoreSDNode *ST = cast<StoreSDNode>(N); 10128 Chain = ST->getChain(); 10129 Base = ST->getBasePtr(); 10130 MMO = ST->getMemOperand(); 10131 SrcOpnd = 1; 10132 // If the MMO suggests this isn't a store of a full vector, leave 10133 // things alone. For a built-in, we have to make the change for 10134 // correctness, so if there is a size problem that will be a bug. 10135 if (MMO->getSize() < 16) 10136 return SDValue(); 10137 break; 10138 } 10139 case ISD::INTRINSIC_VOID: { 10140 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10141 Chain = Intrin->getChain(); 10142 // Intrin->getBasePtr() oddly does not get what we want. 10143 Base = Intrin->getOperand(3); 10144 MMO = Intrin->getMemOperand(); 10145 SrcOpnd = 2; 10146 break; 10147 } 10148 } 10149 10150 SDValue Src = N->getOperand(SrcOpnd); 10151 MVT VecTy = Src.getValueType().getSimpleVT(); 10152 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10153 DAG.getVTList(VecTy, MVT::Other), Chain, Src); 10154 DCI.AddToWorklist(Swap.getNode()); 10155 Chain = Swap.getValue(1); 10156 SDValue StoreOps[] = { Chain, Swap, Base }; 10157 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10158 DAG.getVTList(MVT::Other), 10159 StoreOps, VecTy, MMO); 10160 DCI.AddToWorklist(Store.getNode()); 10161 return Store; 10162 } 10163 10164 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10165 DAGCombinerInfo &DCI) const { 10166 SelectionDAG &DAG = DCI.DAG; 10167 SDLoc dl(N); 10168 switch (N->getOpcode()) { 10169 default: break; 10170 case PPCISD::SHL: 10171 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10172 return N->getOperand(0); 10173 break; 10174 case PPCISD::SRL: 10175 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10176 return N->getOperand(0); 10177 break; 10178 case PPCISD::SRA: 10179 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10180 if (C->isNullValue() || // 0 >>s V -> 0. 10181 C->isAllOnesValue()) // -1 >>s V -> -1. 10182 return N->getOperand(0); 10183 } 10184 break; 10185 case ISD::SIGN_EXTEND: 10186 case ISD::ZERO_EXTEND: 10187 case ISD::ANY_EXTEND: 10188 return DAGCombineExtBoolTrunc(N, DCI); 10189 case ISD::TRUNCATE: 10190 case ISD::SETCC: 10191 case ISD::SELECT_CC: 10192 return DAGCombineTruncBoolExt(N, DCI); 10193 case ISD::SINT_TO_FP: 10194 case ISD::UINT_TO_FP: 10195 return combineFPToIntToFP(N, DCI); 10196 case ISD::STORE: { 10197 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10198 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10199 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10200 N->getOperand(1).getValueType() == MVT::i32 && 10201 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10202 SDValue Val = N->getOperand(1).getOperand(0); 10203 if (Val.getValueType() == MVT::f32) { 10204 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10205 DCI.AddToWorklist(Val.getNode()); 10206 } 10207 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10208 DCI.AddToWorklist(Val.getNode()); 10209 10210 SDValue Ops[] = { 10211 N->getOperand(0), Val, N->getOperand(2), 10212 DAG.getValueType(N->getOperand(1).getValueType()) 10213 }; 10214 10215 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10216 DAG.getVTList(MVT::Other), Ops, 10217 cast<StoreSDNode>(N)->getMemoryVT(), 10218 cast<StoreSDNode>(N)->getMemOperand()); 10219 DCI.AddToWorklist(Val.getNode()); 10220 return Val; 10221 } 10222 10223 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10224 if (cast<StoreSDNode>(N)->isUnindexed() && 10225 N->getOperand(1).getOpcode() == ISD::BSWAP && 10226 N->getOperand(1).getNode()->hasOneUse() && 10227 (N->getOperand(1).getValueType() == MVT::i32 || 10228 N->getOperand(1).getValueType() == MVT::i16 || 10229 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10230 N->getOperand(1).getValueType() == MVT::i64))) { 10231 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10232 // Do an any-extend to 32-bits if this is a half-word input. 10233 if (BSwapOp.getValueType() == MVT::i16) 10234 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10235 10236 SDValue Ops[] = { 10237 N->getOperand(0), BSwapOp, N->getOperand(2), 10238 DAG.getValueType(N->getOperand(1).getValueType()) 10239 }; 10240 return 10241 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10242 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10243 cast<StoreSDNode>(N)->getMemOperand()); 10244 } 10245 10246 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10247 EVT VT = N->getOperand(1).getValueType(); 10248 if (VT.isSimple()) { 10249 MVT StoreVT = VT.getSimpleVT(); 10250 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10251 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10252 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10253 return expandVSXStoreForLE(N, DCI); 10254 } 10255 break; 10256 } 10257 case ISD::LOAD: { 10258 LoadSDNode *LD = cast<LoadSDNode>(N); 10259 EVT VT = LD->getValueType(0); 10260 10261 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10262 if (VT.isSimple()) { 10263 MVT LoadVT = VT.getSimpleVT(); 10264 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10265 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10266 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10267 return expandVSXLoadForLE(N, DCI); 10268 } 10269 10270 EVT MemVT = LD->getMemoryVT(); 10271 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10272 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10273 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10274 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10275 if (LD->isUnindexed() && VT.isVector() && 10276 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10277 // P8 and later hardware should just use LOAD. 10278 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10279 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10280 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10281 LD->getAlignment() >= ScalarABIAlignment)) && 10282 LD->getAlignment() < ABIAlignment) { 10283 // This is a type-legal unaligned Altivec or QPX load. 10284 SDValue Chain = LD->getChain(); 10285 SDValue Ptr = LD->getBasePtr(); 10286 bool isLittleEndian = Subtarget.isLittleEndian(); 10287 10288 // This implements the loading of unaligned vectors as described in 10289 // the venerable Apple Velocity Engine overview. Specifically: 10290 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10291 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10292 // 10293 // The general idea is to expand a sequence of one or more unaligned 10294 // loads into an alignment-based permutation-control instruction (lvsl 10295 // or lvsr), a series of regular vector loads (which always truncate 10296 // their input address to an aligned address), and a series of 10297 // permutations. The results of these permutations are the requested 10298 // loaded values. The trick is that the last "extra" load is not taken 10299 // from the address you might suspect (sizeof(vector) bytes after the 10300 // last requested load), but rather sizeof(vector) - 1 bytes after the 10301 // last requested vector. The point of this is to avoid a page fault if 10302 // the base address happened to be aligned. This works because if the 10303 // base address is aligned, then adding less than a full vector length 10304 // will cause the last vector in the sequence to be (re)loaded. 10305 // Otherwise, the next vector will be fetched as you might suspect was 10306 // necessary. 10307 10308 // We might be able to reuse the permutation generation from 10309 // a different base address offset from this one by an aligned amount. 10310 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10311 // optimization later. 10312 Intrinsic::ID Intr, IntrLD, IntrPerm; 10313 MVT PermCntlTy, PermTy, LDTy; 10314 if (Subtarget.hasAltivec()) { 10315 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10316 Intrinsic::ppc_altivec_lvsl; 10317 IntrLD = Intrinsic::ppc_altivec_lvx; 10318 IntrPerm = Intrinsic::ppc_altivec_vperm; 10319 PermCntlTy = MVT::v16i8; 10320 PermTy = MVT::v4i32; 10321 LDTy = MVT::v4i32; 10322 } else { 10323 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10324 Intrinsic::ppc_qpx_qvlpcls; 10325 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10326 Intrinsic::ppc_qpx_qvlfs; 10327 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10328 PermCntlTy = MVT::v4f64; 10329 PermTy = MVT::v4f64; 10330 LDTy = MemVT.getSimpleVT(); 10331 } 10332 10333 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10334 10335 // Create the new MMO for the new base load. It is like the original MMO, 10336 // but represents an area in memory almost twice the vector size centered 10337 // on the original address. If the address is unaligned, we might start 10338 // reading up to (sizeof(vector)-1) bytes below the address of the 10339 // original unaligned load. 10340 MachineFunction &MF = DAG.getMachineFunction(); 10341 MachineMemOperand *BaseMMO = 10342 MF.getMachineMemOperand(LD->getMemOperand(), 10343 -(long)MemVT.getStoreSize()+1, 10344 2*MemVT.getStoreSize()-1); 10345 10346 // Create the new base load. 10347 SDValue LDXIntID = 10348 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10349 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10350 SDValue BaseLoad = 10351 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10352 DAG.getVTList(PermTy, MVT::Other), 10353 BaseLoadOps, LDTy, BaseMMO); 10354 10355 // Note that the value of IncOffset (which is provided to the next 10356 // load's pointer info offset value, and thus used to calculate the 10357 // alignment), and the value of IncValue (which is actually used to 10358 // increment the pointer value) are different! This is because we 10359 // require the next load to appear to be aligned, even though it 10360 // is actually offset from the base pointer by a lesser amount. 10361 int IncOffset = VT.getSizeInBits() / 8; 10362 int IncValue = IncOffset; 10363 10364 // Walk (both up and down) the chain looking for another load at the real 10365 // (aligned) offset (the alignment of the other load does not matter in 10366 // this case). If found, then do not use the offset reduction trick, as 10367 // that will prevent the loads from being later combined (as they would 10368 // otherwise be duplicates). 10369 if (!findConsecutiveLoad(LD, DAG)) 10370 --IncValue; 10371 10372 SDValue Increment = 10373 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10374 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10375 10376 MachineMemOperand *ExtraMMO = 10377 MF.getMachineMemOperand(LD->getMemOperand(), 10378 1, 2*MemVT.getStoreSize()-1); 10379 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10380 SDValue ExtraLoad = 10381 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10382 DAG.getVTList(PermTy, MVT::Other), 10383 ExtraLoadOps, LDTy, ExtraMMO); 10384 10385 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10386 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10387 10388 // Because vperm has a big-endian bias, we must reverse the order 10389 // of the input vectors and complement the permute control vector 10390 // when generating little endian code. We have already handled the 10391 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10392 // and ExtraLoad here. 10393 SDValue Perm; 10394 if (isLittleEndian) 10395 Perm = BuildIntrinsicOp(IntrPerm, 10396 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10397 else 10398 Perm = BuildIntrinsicOp(IntrPerm, 10399 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10400 10401 if (VT != PermTy) 10402 Perm = Subtarget.hasAltivec() ? 10403 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10404 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10405 DAG.getTargetConstant(1, dl, MVT::i64)); 10406 // second argument is 1 because this rounding 10407 // is always exact. 10408 10409 // The output of the permutation is our loaded result, the TokenFactor is 10410 // our new chain. 10411 DCI.CombineTo(N, Perm, TF); 10412 return SDValue(N, 0); 10413 } 10414 } 10415 break; 10416 case ISD::INTRINSIC_WO_CHAIN: { 10417 bool isLittleEndian = Subtarget.isLittleEndian(); 10418 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10419 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10420 : Intrinsic::ppc_altivec_lvsl); 10421 if ((IID == Intr || 10422 IID == Intrinsic::ppc_qpx_qvlpcld || 10423 IID == Intrinsic::ppc_qpx_qvlpcls) && 10424 N->getOperand(1)->getOpcode() == ISD::ADD) { 10425 SDValue Add = N->getOperand(1); 10426 10427 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10428 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10429 10430 if (DAG.MaskedValueIsZero( 10431 Add->getOperand(1), 10432 APInt::getAllOnesValue(Bits /* alignment */) 10433 .zext( 10434 Add.getValueType().getScalarType().getSizeInBits()))) { 10435 SDNode *BasePtr = Add->getOperand(0).getNode(); 10436 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10437 UE = BasePtr->use_end(); 10438 UI != UE; ++UI) { 10439 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10440 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10441 // We've found another LVSL/LVSR, and this address is an aligned 10442 // multiple of that one. The results will be the same, so use the 10443 // one we've just found instead. 10444 10445 return SDValue(*UI, 0); 10446 } 10447 } 10448 } 10449 10450 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10451 SDNode *BasePtr = Add->getOperand(0).getNode(); 10452 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10453 UE = BasePtr->use_end(); UI != UE; ++UI) { 10454 if (UI->getOpcode() == ISD::ADD && 10455 isa<ConstantSDNode>(UI->getOperand(1)) && 10456 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10457 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10458 (1ULL << Bits) == 0) { 10459 SDNode *OtherAdd = *UI; 10460 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10461 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10462 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10463 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10464 return SDValue(*VI, 0); 10465 } 10466 } 10467 } 10468 } 10469 } 10470 } 10471 } 10472 10473 break; 10474 case ISD::INTRINSIC_W_CHAIN: { 10475 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10476 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10477 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10478 default: 10479 break; 10480 case Intrinsic::ppc_vsx_lxvw4x: 10481 case Intrinsic::ppc_vsx_lxvd2x: 10482 return expandVSXLoadForLE(N, DCI); 10483 } 10484 } 10485 break; 10486 } 10487 case ISD::INTRINSIC_VOID: { 10488 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10489 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10490 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10491 default: 10492 break; 10493 case Intrinsic::ppc_vsx_stxvw4x: 10494 case Intrinsic::ppc_vsx_stxvd2x: 10495 return expandVSXStoreForLE(N, DCI); 10496 } 10497 } 10498 break; 10499 } 10500 case ISD::BSWAP: 10501 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10502 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10503 N->getOperand(0).hasOneUse() && 10504 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10505 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10506 N->getValueType(0) == MVT::i64))) { 10507 SDValue Load = N->getOperand(0); 10508 LoadSDNode *LD = cast<LoadSDNode>(Load); 10509 // Create the byte-swapping load. 10510 SDValue Ops[] = { 10511 LD->getChain(), // Chain 10512 LD->getBasePtr(), // Ptr 10513 DAG.getValueType(N->getValueType(0)) // VT 10514 }; 10515 SDValue BSLoad = 10516 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10517 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10518 MVT::i64 : MVT::i32, MVT::Other), 10519 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10520 10521 // If this is an i16 load, insert the truncate. 10522 SDValue ResVal = BSLoad; 10523 if (N->getValueType(0) == MVT::i16) 10524 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10525 10526 // First, combine the bswap away. This makes the value produced by the 10527 // load dead. 10528 DCI.CombineTo(N, ResVal); 10529 10530 // Next, combine the load away, we give it a bogus result value but a real 10531 // chain result. The result value is dead because the bswap is dead. 10532 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10533 10534 // Return N so it doesn't get rechecked! 10535 return SDValue(N, 0); 10536 } 10537 10538 break; 10539 case PPCISD::VCMP: { 10540 // If a VCMPo node already exists with exactly the same operands as this 10541 // node, use its result instead of this node (VCMPo computes both a CR6 and 10542 // a normal output). 10543 // 10544 if (!N->getOperand(0).hasOneUse() && 10545 !N->getOperand(1).hasOneUse() && 10546 !N->getOperand(2).hasOneUse()) { 10547 10548 // Scan all of the users of the LHS, looking for VCMPo's that match. 10549 SDNode *VCMPoNode = nullptr; 10550 10551 SDNode *LHSN = N->getOperand(0).getNode(); 10552 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10553 UI != E; ++UI) 10554 if (UI->getOpcode() == PPCISD::VCMPo && 10555 UI->getOperand(1) == N->getOperand(1) && 10556 UI->getOperand(2) == N->getOperand(2) && 10557 UI->getOperand(0) == N->getOperand(0)) { 10558 VCMPoNode = *UI; 10559 break; 10560 } 10561 10562 // If there is no VCMPo node, or if the flag value has a single use, don't 10563 // transform this. 10564 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10565 break; 10566 10567 // Look at the (necessarily single) use of the flag value. If it has a 10568 // chain, this transformation is more complex. Note that multiple things 10569 // could use the value result, which we should ignore. 10570 SDNode *FlagUser = nullptr; 10571 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10572 FlagUser == nullptr; ++UI) { 10573 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10574 SDNode *User = *UI; 10575 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10576 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10577 FlagUser = User; 10578 break; 10579 } 10580 } 10581 } 10582 10583 // If the user is a MFOCRF instruction, we know this is safe. 10584 // Otherwise we give up for right now. 10585 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10586 return SDValue(VCMPoNode, 0); 10587 } 10588 break; 10589 } 10590 case ISD::BRCOND: { 10591 SDValue Cond = N->getOperand(1); 10592 SDValue Target = N->getOperand(2); 10593 10594 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10595 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10596 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10597 10598 // We now need to make the intrinsic dead (it cannot be instruction 10599 // selected). 10600 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10601 assert(Cond.getNode()->hasOneUse() && 10602 "Counter decrement has more than one use"); 10603 10604 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10605 N->getOperand(0), Target); 10606 } 10607 } 10608 break; 10609 case ISD::BR_CC: { 10610 // If this is a branch on an altivec predicate comparison, lower this so 10611 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10612 // lowering is done pre-legalize, because the legalizer lowers the predicate 10613 // compare down to code that is difficult to reassemble. 10614 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10615 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10616 10617 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10618 // value. If so, pass-through the AND to get to the intrinsic. 10619 if (LHS.getOpcode() == ISD::AND && 10620 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10621 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10622 Intrinsic::ppc_is_decremented_ctr_nonzero && 10623 isa<ConstantSDNode>(LHS.getOperand(1)) && 10624 !isNullConstant(LHS.getOperand(1))) 10625 LHS = LHS.getOperand(0); 10626 10627 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10628 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10629 Intrinsic::ppc_is_decremented_ctr_nonzero && 10630 isa<ConstantSDNode>(RHS)) { 10631 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10632 "Counter decrement comparison is not EQ or NE"); 10633 10634 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10635 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10636 (CC == ISD::SETNE && !Val); 10637 10638 // We now need to make the intrinsic dead (it cannot be instruction 10639 // selected). 10640 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10641 assert(LHS.getNode()->hasOneUse() && 10642 "Counter decrement has more than one use"); 10643 10644 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10645 N->getOperand(0), N->getOperand(4)); 10646 } 10647 10648 int CompareOpc; 10649 bool isDot; 10650 10651 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10652 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10653 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10654 assert(isDot && "Can't compare against a vector result!"); 10655 10656 // If this is a comparison against something other than 0/1, then we know 10657 // that the condition is never/always true. 10658 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10659 if (Val != 0 && Val != 1) { 10660 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10661 return N->getOperand(0); 10662 // Always !=, turn it into an unconditional branch. 10663 return DAG.getNode(ISD::BR, dl, MVT::Other, 10664 N->getOperand(0), N->getOperand(4)); 10665 } 10666 10667 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 10668 10669 // Create the PPCISD altivec 'dot' comparison node. 10670 SDValue Ops[] = { 10671 LHS.getOperand(2), // LHS of compare 10672 LHS.getOperand(3), // RHS of compare 10673 DAG.getConstant(CompareOpc, dl, MVT::i32) 10674 }; 10675 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 10676 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10677 10678 // Unpack the result based on how the target uses it. 10679 PPC::Predicate CompOpc; 10680 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 10681 default: // Can't happen, don't crash on invalid number though. 10682 case 0: // Branch on the value of the EQ bit of CR6. 10683 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 10684 break; 10685 case 1: // Branch on the inverted value of the EQ bit of CR6. 10686 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 10687 break; 10688 case 2: // Branch on the value of the LT bit of CR6. 10689 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 10690 break; 10691 case 3: // Branch on the inverted value of the LT bit of CR6. 10692 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 10693 break; 10694 } 10695 10696 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 10697 DAG.getConstant(CompOpc, dl, MVT::i32), 10698 DAG.getRegister(PPC::CR6, MVT::i32), 10699 N->getOperand(4), CompNode.getValue(1)); 10700 } 10701 break; 10702 } 10703 } 10704 10705 return SDValue(); 10706 } 10707 10708 SDValue 10709 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10710 SelectionDAG &DAG, 10711 std::vector<SDNode *> *Created) const { 10712 // fold (sdiv X, pow2) 10713 EVT VT = N->getValueType(0); 10714 if (VT == MVT::i64 && !Subtarget.isPPC64()) 10715 return SDValue(); 10716 if ((VT != MVT::i32 && VT != MVT::i64) || 10717 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10718 return SDValue(); 10719 10720 SDLoc DL(N); 10721 SDValue N0 = N->getOperand(0); 10722 10723 bool IsNegPow2 = (-Divisor).isPowerOf2(); 10724 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 10725 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 10726 10727 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 10728 if (Created) 10729 Created->push_back(Op.getNode()); 10730 10731 if (IsNegPow2) { 10732 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 10733 if (Created) 10734 Created->push_back(Op.getNode()); 10735 } 10736 10737 return Op; 10738 } 10739 10740 //===----------------------------------------------------------------------===// 10741 // Inline Assembly Support 10742 //===----------------------------------------------------------------------===// 10743 10744 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10745 APInt &KnownZero, 10746 APInt &KnownOne, 10747 const SelectionDAG &DAG, 10748 unsigned Depth) const { 10749 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 10750 switch (Op.getOpcode()) { 10751 default: break; 10752 case PPCISD::LBRX: { 10753 // lhbrx is known to have the top bits cleared out. 10754 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 10755 KnownZero = 0xFFFF0000; 10756 break; 10757 } 10758 case ISD::INTRINSIC_WO_CHAIN: { 10759 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 10760 default: break; 10761 case Intrinsic::ppc_altivec_vcmpbfp_p: 10762 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10763 case Intrinsic::ppc_altivec_vcmpequb_p: 10764 case Intrinsic::ppc_altivec_vcmpequh_p: 10765 case Intrinsic::ppc_altivec_vcmpequw_p: 10766 case Intrinsic::ppc_altivec_vcmpequd_p: 10767 case Intrinsic::ppc_altivec_vcmpgefp_p: 10768 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10769 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10770 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10771 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10772 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10773 case Intrinsic::ppc_altivec_vcmpgtub_p: 10774 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10775 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10776 case Intrinsic::ppc_altivec_vcmpgtud_p: 10777 KnownZero = ~1U; // All bits but the low one are known to be zero. 10778 break; 10779 } 10780 } 10781 } 10782 } 10783 10784 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 10785 switch (Subtarget.getDarwinDirective()) { 10786 default: break; 10787 case PPC::DIR_970: 10788 case PPC::DIR_PWR4: 10789 case PPC::DIR_PWR5: 10790 case PPC::DIR_PWR5X: 10791 case PPC::DIR_PWR6: 10792 case PPC::DIR_PWR6X: 10793 case PPC::DIR_PWR7: 10794 case PPC::DIR_PWR8: { 10795 if (!ML) 10796 break; 10797 10798 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10799 10800 // For small loops (between 5 and 8 instructions), align to a 32-byte 10801 // boundary so that the entire loop fits in one instruction-cache line. 10802 uint64_t LoopSize = 0; 10803 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 10804 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 10805 LoopSize += TII->GetInstSizeInBytes(J); 10806 if (LoopSize > 32) 10807 break; 10808 } 10809 10810 if (LoopSize > 16 && LoopSize <= 32) 10811 return 5; 10812 10813 break; 10814 } 10815 } 10816 10817 return TargetLowering::getPrefLoopAlignment(ML); 10818 } 10819 10820 /// getConstraintType - Given a constraint, return the type of 10821 /// constraint it is for this target. 10822 PPCTargetLowering::ConstraintType 10823 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 10824 if (Constraint.size() == 1) { 10825 switch (Constraint[0]) { 10826 default: break; 10827 case 'b': 10828 case 'r': 10829 case 'f': 10830 case 'v': 10831 case 'y': 10832 return C_RegisterClass; 10833 case 'Z': 10834 // FIXME: While Z does indicate a memory constraint, it specifically 10835 // indicates an r+r address (used in conjunction with the 'y' modifier 10836 // in the replacement string). Currently, we're forcing the base 10837 // register to be r0 in the asm printer (which is interpreted as zero) 10838 // and forming the complete address in the second register. This is 10839 // suboptimal. 10840 return C_Memory; 10841 } 10842 } else if (Constraint == "wc") { // individual CR bits. 10843 return C_RegisterClass; 10844 } else if (Constraint == "wa" || Constraint == "wd" || 10845 Constraint == "wf" || Constraint == "ws") { 10846 return C_RegisterClass; // VSX registers. 10847 } 10848 return TargetLowering::getConstraintType(Constraint); 10849 } 10850 10851 /// Examine constraint type and operand type and determine a weight value. 10852 /// This object must already have been set up with the operand type 10853 /// and the current alternative constraint selected. 10854 TargetLowering::ConstraintWeight 10855 PPCTargetLowering::getSingleConstraintMatchWeight( 10856 AsmOperandInfo &info, const char *constraint) const { 10857 ConstraintWeight weight = CW_Invalid; 10858 Value *CallOperandVal = info.CallOperandVal; 10859 // If we don't have a value, we can't do a match, 10860 // but allow it at the lowest weight. 10861 if (!CallOperandVal) 10862 return CW_Default; 10863 Type *type = CallOperandVal->getType(); 10864 10865 // Look at the constraint type. 10866 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 10867 return CW_Register; // an individual CR bit. 10868 else if ((StringRef(constraint) == "wa" || 10869 StringRef(constraint) == "wd" || 10870 StringRef(constraint) == "wf") && 10871 type->isVectorTy()) 10872 return CW_Register; 10873 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 10874 return CW_Register; 10875 10876 switch (*constraint) { 10877 default: 10878 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10879 break; 10880 case 'b': 10881 if (type->isIntegerTy()) 10882 weight = CW_Register; 10883 break; 10884 case 'f': 10885 if (type->isFloatTy()) 10886 weight = CW_Register; 10887 break; 10888 case 'd': 10889 if (type->isDoubleTy()) 10890 weight = CW_Register; 10891 break; 10892 case 'v': 10893 if (type->isVectorTy()) 10894 weight = CW_Register; 10895 break; 10896 case 'y': 10897 weight = CW_Register; 10898 break; 10899 case 'Z': 10900 weight = CW_Memory; 10901 break; 10902 } 10903 return weight; 10904 } 10905 10906 std::pair<unsigned, const TargetRegisterClass *> 10907 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 10908 StringRef Constraint, 10909 MVT VT) const { 10910 if (Constraint.size() == 1) { 10911 // GCC RS6000 Constraint Letters 10912 switch (Constraint[0]) { 10913 case 'b': // R1-R31 10914 if (VT == MVT::i64 && Subtarget.isPPC64()) 10915 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 10916 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 10917 case 'r': // R0-R31 10918 if (VT == MVT::i64 && Subtarget.isPPC64()) 10919 return std::make_pair(0U, &PPC::G8RCRegClass); 10920 return std::make_pair(0U, &PPC::GPRCRegClass); 10921 case 'f': 10922 if (VT == MVT::f32 || VT == MVT::i32) 10923 return std::make_pair(0U, &PPC::F4RCRegClass); 10924 if (VT == MVT::f64 || VT == MVT::i64) 10925 return std::make_pair(0U, &PPC::F8RCRegClass); 10926 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10927 return std::make_pair(0U, &PPC::QFRCRegClass); 10928 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10929 return std::make_pair(0U, &PPC::QSRCRegClass); 10930 break; 10931 case 'v': 10932 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 10933 return std::make_pair(0U, &PPC::QFRCRegClass); 10934 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 10935 return std::make_pair(0U, &PPC::QSRCRegClass); 10936 if (Subtarget.hasAltivec()) 10937 return std::make_pair(0U, &PPC::VRRCRegClass); 10938 case 'y': // crrc 10939 return std::make_pair(0U, &PPC::CRRCRegClass); 10940 } 10941 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 10942 // An individual CR bit. 10943 return std::make_pair(0U, &PPC::CRBITRCRegClass); 10944 } else if ((Constraint == "wa" || Constraint == "wd" || 10945 Constraint == "wf") && Subtarget.hasVSX()) { 10946 return std::make_pair(0U, &PPC::VSRCRegClass); 10947 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 10948 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 10949 return std::make_pair(0U, &PPC::VSSRCRegClass); 10950 else 10951 return std::make_pair(0U, &PPC::VSFRCRegClass); 10952 } 10953 10954 std::pair<unsigned, const TargetRegisterClass *> R = 10955 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 10956 10957 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 10958 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 10959 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 10960 // register. 10961 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 10962 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 10963 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 10964 PPC::GPRCRegClass.contains(R.first)) 10965 return std::make_pair(TRI->getMatchingSuperReg(R.first, 10966 PPC::sub_32, &PPC::G8RCRegClass), 10967 &PPC::G8RCRegClass); 10968 10969 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 10970 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 10971 R.first = PPC::CR0; 10972 R.second = &PPC::CRRCRegClass; 10973 } 10974 10975 return R; 10976 } 10977 10978 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10979 /// vector. If it is invalid, don't add anything to Ops. 10980 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10981 std::string &Constraint, 10982 std::vector<SDValue>&Ops, 10983 SelectionDAG &DAG) const { 10984 SDValue Result; 10985 10986 // Only support length 1 constraints. 10987 if (Constraint.length() > 1) return; 10988 10989 char Letter = Constraint[0]; 10990 switch (Letter) { 10991 default: break; 10992 case 'I': 10993 case 'J': 10994 case 'K': 10995 case 'L': 10996 case 'M': 10997 case 'N': 10998 case 'O': 10999 case 'P': { 11000 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 11001 if (!CST) return; // Must be an immediate to match. 11002 SDLoc dl(Op); 11003 int64_t Value = CST->getSExtValue(); 11004 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11005 // numbers are printed as such. 11006 switch (Letter) { 11007 default: llvm_unreachable("Unknown constraint letter!"); 11008 case 'I': // "I" is a signed 16-bit constant. 11009 if (isInt<16>(Value)) 11010 Result = DAG.getTargetConstant(Value, dl, TCVT); 11011 break; 11012 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11013 if (isShiftedUInt<16, 16>(Value)) 11014 Result = DAG.getTargetConstant(Value, dl, TCVT); 11015 break; 11016 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11017 if (isShiftedInt<16, 16>(Value)) 11018 Result = DAG.getTargetConstant(Value, dl, TCVT); 11019 break; 11020 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11021 if (isUInt<16>(Value)) 11022 Result = DAG.getTargetConstant(Value, dl, TCVT); 11023 break; 11024 case 'M': // "M" is a constant that is greater than 31. 11025 if (Value > 31) 11026 Result = DAG.getTargetConstant(Value, dl, TCVT); 11027 break; 11028 case 'N': // "N" is a positive constant that is an exact power of two. 11029 if (Value > 0 && isPowerOf2_64(Value)) 11030 Result = DAG.getTargetConstant(Value, dl, TCVT); 11031 break; 11032 case 'O': // "O" is the constant zero. 11033 if (Value == 0) 11034 Result = DAG.getTargetConstant(Value, dl, TCVT); 11035 break; 11036 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11037 if (isInt<16>(-Value)) 11038 Result = DAG.getTargetConstant(Value, dl, TCVT); 11039 break; 11040 } 11041 break; 11042 } 11043 } 11044 11045 if (Result.getNode()) { 11046 Ops.push_back(Result); 11047 return; 11048 } 11049 11050 // Handle standard constraint letters. 11051 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11052 } 11053 11054 // isLegalAddressingMode - Return true if the addressing mode represented 11055 // by AM is legal for this target, for a load/store of the specified type. 11056 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11057 const AddrMode &AM, Type *Ty, 11058 unsigned AS) const { 11059 // PPC does not allow r+i addressing modes for vectors! 11060 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11061 return false; 11062 11063 // PPC allows a sign-extended 16-bit immediate field. 11064 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11065 return false; 11066 11067 // No global is ever allowed as a base. 11068 if (AM.BaseGV) 11069 return false; 11070 11071 // PPC only support r+r, 11072 switch (AM.Scale) { 11073 case 0: // "r+i" or just "i", depending on HasBaseReg. 11074 break; 11075 case 1: 11076 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11077 return false; 11078 // Otherwise we have r+r or r+i. 11079 break; 11080 case 2: 11081 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11082 return false; 11083 // Allow 2*r as r+r. 11084 break; 11085 default: 11086 // No other scales are supported. 11087 return false; 11088 } 11089 11090 return true; 11091 } 11092 11093 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11094 SelectionDAG &DAG) const { 11095 MachineFunction &MF = DAG.getMachineFunction(); 11096 MachineFrameInfo *MFI = MF.getFrameInfo(); 11097 MFI->setReturnAddressIsTaken(true); 11098 11099 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11100 return SDValue(); 11101 11102 SDLoc dl(Op); 11103 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11104 11105 // Make sure the function does not optimize away the store of the RA to 11106 // the stack. 11107 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11108 FuncInfo->setLRStoreRequired(); 11109 bool isPPC64 = Subtarget.isPPC64(); 11110 auto PtrVT = getPointerTy(MF.getDataLayout()); 11111 11112 if (Depth > 0) { 11113 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11114 SDValue Offset = 11115 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11116 isPPC64 ? MVT::i64 : MVT::i32); 11117 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11118 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11119 MachinePointerInfo(), false, false, false, 0); 11120 } 11121 11122 // Just load the return address off the stack. 11123 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11124 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11125 MachinePointerInfo(), false, false, false, 0); 11126 } 11127 11128 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11129 SelectionDAG &DAG) const { 11130 SDLoc dl(Op); 11131 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11132 11133 MachineFunction &MF = DAG.getMachineFunction(); 11134 MachineFrameInfo *MFI = MF.getFrameInfo(); 11135 MFI->setFrameAddressIsTaken(true); 11136 11137 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11138 bool isPPC64 = PtrVT == MVT::i64; 11139 11140 // Naked functions never have a frame pointer, and so we use r1. For all 11141 // other functions, this decision must be delayed until during PEI. 11142 unsigned FrameReg; 11143 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11144 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11145 else 11146 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11147 11148 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11149 PtrVT); 11150 while (Depth--) 11151 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11152 FrameAddr, MachinePointerInfo(), false, false, 11153 false, 0); 11154 return FrameAddr; 11155 } 11156 11157 // FIXME? Maybe this could be a TableGen attribute on some registers and 11158 // this table could be generated automatically from RegInfo. 11159 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11160 SelectionDAG &DAG) const { 11161 bool isPPC64 = Subtarget.isPPC64(); 11162 bool isDarwinABI = Subtarget.isDarwinABI(); 11163 11164 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11165 (!isPPC64 && VT != MVT::i32)) 11166 report_fatal_error("Invalid register global variable type"); 11167 11168 bool is64Bit = isPPC64 && VT == MVT::i64; 11169 unsigned Reg = StringSwitch<unsigned>(RegName) 11170 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11171 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11172 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11173 (is64Bit ? PPC::X13 : PPC::R13)) 11174 .Default(0); 11175 11176 if (Reg) 11177 return Reg; 11178 report_fatal_error("Invalid register name global variable"); 11179 } 11180 11181 bool 11182 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11183 // The PowerPC target isn't yet aware of offsets. 11184 return false; 11185 } 11186 11187 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11188 const CallInst &I, 11189 unsigned Intrinsic) const { 11190 11191 switch (Intrinsic) { 11192 case Intrinsic::ppc_qpx_qvlfd: 11193 case Intrinsic::ppc_qpx_qvlfs: 11194 case Intrinsic::ppc_qpx_qvlfcd: 11195 case Intrinsic::ppc_qpx_qvlfcs: 11196 case Intrinsic::ppc_qpx_qvlfiwa: 11197 case Intrinsic::ppc_qpx_qvlfiwz: 11198 case Intrinsic::ppc_altivec_lvx: 11199 case Intrinsic::ppc_altivec_lvxl: 11200 case Intrinsic::ppc_altivec_lvebx: 11201 case Intrinsic::ppc_altivec_lvehx: 11202 case Intrinsic::ppc_altivec_lvewx: 11203 case Intrinsic::ppc_vsx_lxvd2x: 11204 case Intrinsic::ppc_vsx_lxvw4x: { 11205 EVT VT; 11206 switch (Intrinsic) { 11207 case Intrinsic::ppc_altivec_lvebx: 11208 VT = MVT::i8; 11209 break; 11210 case Intrinsic::ppc_altivec_lvehx: 11211 VT = MVT::i16; 11212 break; 11213 case Intrinsic::ppc_altivec_lvewx: 11214 VT = MVT::i32; 11215 break; 11216 case Intrinsic::ppc_vsx_lxvd2x: 11217 VT = MVT::v2f64; 11218 break; 11219 case Intrinsic::ppc_qpx_qvlfd: 11220 VT = MVT::v4f64; 11221 break; 11222 case Intrinsic::ppc_qpx_qvlfs: 11223 VT = MVT::v4f32; 11224 break; 11225 case Intrinsic::ppc_qpx_qvlfcd: 11226 VT = MVT::v2f64; 11227 break; 11228 case Intrinsic::ppc_qpx_qvlfcs: 11229 VT = MVT::v2f32; 11230 break; 11231 default: 11232 VT = MVT::v4i32; 11233 break; 11234 } 11235 11236 Info.opc = ISD::INTRINSIC_W_CHAIN; 11237 Info.memVT = VT; 11238 Info.ptrVal = I.getArgOperand(0); 11239 Info.offset = -VT.getStoreSize()+1; 11240 Info.size = 2*VT.getStoreSize()-1; 11241 Info.align = 1; 11242 Info.vol = false; 11243 Info.readMem = true; 11244 Info.writeMem = false; 11245 return true; 11246 } 11247 case Intrinsic::ppc_qpx_qvlfda: 11248 case Intrinsic::ppc_qpx_qvlfsa: 11249 case Intrinsic::ppc_qpx_qvlfcda: 11250 case Intrinsic::ppc_qpx_qvlfcsa: 11251 case Intrinsic::ppc_qpx_qvlfiwaa: 11252 case Intrinsic::ppc_qpx_qvlfiwza: { 11253 EVT VT; 11254 switch (Intrinsic) { 11255 case Intrinsic::ppc_qpx_qvlfda: 11256 VT = MVT::v4f64; 11257 break; 11258 case Intrinsic::ppc_qpx_qvlfsa: 11259 VT = MVT::v4f32; 11260 break; 11261 case Intrinsic::ppc_qpx_qvlfcda: 11262 VT = MVT::v2f64; 11263 break; 11264 case Intrinsic::ppc_qpx_qvlfcsa: 11265 VT = MVT::v2f32; 11266 break; 11267 default: 11268 VT = MVT::v4i32; 11269 break; 11270 } 11271 11272 Info.opc = ISD::INTRINSIC_W_CHAIN; 11273 Info.memVT = VT; 11274 Info.ptrVal = I.getArgOperand(0); 11275 Info.offset = 0; 11276 Info.size = VT.getStoreSize(); 11277 Info.align = 1; 11278 Info.vol = false; 11279 Info.readMem = true; 11280 Info.writeMem = false; 11281 return true; 11282 } 11283 case Intrinsic::ppc_qpx_qvstfd: 11284 case Intrinsic::ppc_qpx_qvstfs: 11285 case Intrinsic::ppc_qpx_qvstfcd: 11286 case Intrinsic::ppc_qpx_qvstfcs: 11287 case Intrinsic::ppc_qpx_qvstfiw: 11288 case Intrinsic::ppc_altivec_stvx: 11289 case Intrinsic::ppc_altivec_stvxl: 11290 case Intrinsic::ppc_altivec_stvebx: 11291 case Intrinsic::ppc_altivec_stvehx: 11292 case Intrinsic::ppc_altivec_stvewx: 11293 case Intrinsic::ppc_vsx_stxvd2x: 11294 case Intrinsic::ppc_vsx_stxvw4x: { 11295 EVT VT; 11296 switch (Intrinsic) { 11297 case Intrinsic::ppc_altivec_stvebx: 11298 VT = MVT::i8; 11299 break; 11300 case Intrinsic::ppc_altivec_stvehx: 11301 VT = MVT::i16; 11302 break; 11303 case Intrinsic::ppc_altivec_stvewx: 11304 VT = MVT::i32; 11305 break; 11306 case Intrinsic::ppc_vsx_stxvd2x: 11307 VT = MVT::v2f64; 11308 break; 11309 case Intrinsic::ppc_qpx_qvstfd: 11310 VT = MVT::v4f64; 11311 break; 11312 case Intrinsic::ppc_qpx_qvstfs: 11313 VT = MVT::v4f32; 11314 break; 11315 case Intrinsic::ppc_qpx_qvstfcd: 11316 VT = MVT::v2f64; 11317 break; 11318 case Intrinsic::ppc_qpx_qvstfcs: 11319 VT = MVT::v2f32; 11320 break; 11321 default: 11322 VT = MVT::v4i32; 11323 break; 11324 } 11325 11326 Info.opc = ISD::INTRINSIC_VOID; 11327 Info.memVT = VT; 11328 Info.ptrVal = I.getArgOperand(1); 11329 Info.offset = -VT.getStoreSize()+1; 11330 Info.size = 2*VT.getStoreSize()-1; 11331 Info.align = 1; 11332 Info.vol = false; 11333 Info.readMem = false; 11334 Info.writeMem = true; 11335 return true; 11336 } 11337 case Intrinsic::ppc_qpx_qvstfda: 11338 case Intrinsic::ppc_qpx_qvstfsa: 11339 case Intrinsic::ppc_qpx_qvstfcda: 11340 case Intrinsic::ppc_qpx_qvstfcsa: 11341 case Intrinsic::ppc_qpx_qvstfiwa: { 11342 EVT VT; 11343 switch (Intrinsic) { 11344 case Intrinsic::ppc_qpx_qvstfda: 11345 VT = MVT::v4f64; 11346 break; 11347 case Intrinsic::ppc_qpx_qvstfsa: 11348 VT = MVT::v4f32; 11349 break; 11350 case Intrinsic::ppc_qpx_qvstfcda: 11351 VT = MVT::v2f64; 11352 break; 11353 case Intrinsic::ppc_qpx_qvstfcsa: 11354 VT = MVT::v2f32; 11355 break; 11356 default: 11357 VT = MVT::v4i32; 11358 break; 11359 } 11360 11361 Info.opc = ISD::INTRINSIC_VOID; 11362 Info.memVT = VT; 11363 Info.ptrVal = I.getArgOperand(1); 11364 Info.offset = 0; 11365 Info.size = VT.getStoreSize(); 11366 Info.align = 1; 11367 Info.vol = false; 11368 Info.readMem = false; 11369 Info.writeMem = true; 11370 return true; 11371 } 11372 default: 11373 break; 11374 } 11375 11376 return false; 11377 } 11378 11379 /// getOptimalMemOpType - Returns the target specific optimal type for load 11380 /// and store operations as a result of memset, memcpy, and memmove 11381 /// lowering. If DstAlign is zero that means it's safe to destination 11382 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11383 /// means there isn't a need to check it against alignment requirement, 11384 /// probably because the source does not need to be loaded. If 'IsMemset' is 11385 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11386 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11387 /// source is constant so it does not need to be loaded. 11388 /// It returns EVT::Other if the type should be determined using generic 11389 /// target-independent logic. 11390 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11391 unsigned DstAlign, unsigned SrcAlign, 11392 bool IsMemset, bool ZeroMemset, 11393 bool MemcpyStrSrc, 11394 MachineFunction &MF) const { 11395 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11396 const Function *F = MF.getFunction(); 11397 // When expanding a memset, require at least two QPX instructions to cover 11398 // the cost of loading the value to be stored from the constant pool. 11399 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11400 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11401 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11402 return MVT::v4f64; 11403 } 11404 11405 // We should use Altivec/VSX loads and stores when available. For unaligned 11406 // addresses, unaligned VSX loads are only fast starting with the P8. 11407 if (Subtarget.hasAltivec() && Size >= 16 && 11408 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11409 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11410 return MVT::v4i32; 11411 } 11412 11413 if (Subtarget.isPPC64()) { 11414 return MVT::i64; 11415 } 11416 11417 return MVT::i32; 11418 } 11419 11420 /// \brief Returns true if it is beneficial to convert a load of a constant 11421 /// to just the constant itself. 11422 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11423 Type *Ty) const { 11424 assert(Ty->isIntegerTy()); 11425 11426 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11427 return !(BitSize == 0 || BitSize > 64); 11428 } 11429 11430 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11431 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11432 return false; 11433 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11434 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11435 return NumBits1 == 64 && NumBits2 == 32; 11436 } 11437 11438 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11439 if (!VT1.isInteger() || !VT2.isInteger()) 11440 return false; 11441 unsigned NumBits1 = VT1.getSizeInBits(); 11442 unsigned NumBits2 = VT2.getSizeInBits(); 11443 return NumBits1 == 64 && NumBits2 == 32; 11444 } 11445 11446 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11447 // Generally speaking, zexts are not free, but they are free when they can be 11448 // folded with other operations. 11449 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11450 EVT MemVT = LD->getMemoryVT(); 11451 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11452 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11453 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11454 LD->getExtensionType() == ISD::ZEXTLOAD)) 11455 return true; 11456 } 11457 11458 // FIXME: Add other cases... 11459 // - 32-bit shifts with a zext to i64 11460 // - zext after ctlz, bswap, etc. 11461 // - zext after and by a constant mask 11462 11463 return TargetLowering::isZExtFree(Val, VT2); 11464 } 11465 11466 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11467 assert(VT.isFloatingPoint()); 11468 return true; 11469 } 11470 11471 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11472 return isInt<16>(Imm) || isUInt<16>(Imm); 11473 } 11474 11475 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11476 return isInt<16>(Imm) || isUInt<16>(Imm); 11477 } 11478 11479 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11480 unsigned, 11481 unsigned, 11482 bool *Fast) const { 11483 if (DisablePPCUnaligned) 11484 return false; 11485 11486 // PowerPC supports unaligned memory access for simple non-vector types. 11487 // Although accessing unaligned addresses is not as efficient as accessing 11488 // aligned addresses, it is generally more efficient than manual expansion, 11489 // and generally only traps for software emulation when crossing page 11490 // boundaries. 11491 11492 if (!VT.isSimple()) 11493 return false; 11494 11495 if (VT.getSimpleVT().isVector()) { 11496 if (Subtarget.hasVSX()) { 11497 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11498 VT != MVT::v4f32 && VT != MVT::v4i32) 11499 return false; 11500 } else { 11501 return false; 11502 } 11503 } 11504 11505 if (VT == MVT::ppcf128) 11506 return false; 11507 11508 if (Fast) 11509 *Fast = true; 11510 11511 return true; 11512 } 11513 11514 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11515 VT = VT.getScalarType(); 11516 11517 if (!VT.isSimple()) 11518 return false; 11519 11520 switch (VT.getSimpleVT().SimpleTy) { 11521 case MVT::f32: 11522 case MVT::f64: 11523 return true; 11524 default: 11525 break; 11526 } 11527 11528 return false; 11529 } 11530 11531 const MCPhysReg * 11532 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11533 // LR is a callee-save register, but we must treat it as clobbered by any call 11534 // site. Hence we include LR in the scratch registers, which are in turn added 11535 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11536 // to CTR, which is used by any indirect call. 11537 static const MCPhysReg ScratchRegs[] = { 11538 PPC::X12, PPC::LR8, PPC::CTR8, 0 11539 }; 11540 11541 return ScratchRegs; 11542 } 11543 11544 unsigned PPCTargetLowering::getExceptionPointerRegister( 11545 const Constant *PersonalityFn) const { 11546 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 11547 } 11548 11549 unsigned PPCTargetLowering::getExceptionSelectorRegister( 11550 const Constant *PersonalityFn) const { 11551 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 11552 } 11553 11554 bool 11555 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11556 EVT VT , unsigned DefinedValues) const { 11557 if (VT == MVT::v2i64) 11558 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11559 11560 if (Subtarget.hasQPX()) { 11561 if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1) 11562 return true; 11563 } 11564 11565 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11566 } 11567 11568 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11569 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11570 return TargetLowering::getSchedulingPreference(N); 11571 11572 return Sched::ILP; 11573 } 11574 11575 // Create a fast isel object. 11576 FastISel * 11577 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11578 const TargetLibraryInfo *LibInfo) const { 11579 return PPC::createFastISel(FuncInfo, LibInfo); 11580 } 11581