1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSymbolXCOFF.h" 78 #include "llvm/Support/AtomicOrdering.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CodeGen.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetMachine.h" 92 #include "llvm/Target/TargetOptions.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <list> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 103 #define DEBUG_TYPE "ppc-lowering" 104 105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 107 108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 110 111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 113 114 static cl::opt<bool> DisableSCO("disable-ppc-sco", 115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 116 117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 119 120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 121 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 122 123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 124 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 125 126 STATISTIC(NumTailCalls, "Number of tail calls"); 127 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 128 129 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 130 131 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 132 133 // FIXME: Remove this once the bug has been fixed! 134 extern cl::opt<bool> ANDIGlueBug; 135 136 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 137 const PPCSubtarget &STI) 138 : TargetLowering(TM), Subtarget(STI) { 139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 140 // arguments are at least 4/8 bytes aligned. 141 bool isPPC64 = Subtarget.isPPC64(); 142 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 143 144 // Set up the register classes. 145 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 146 if (!useSoftFloat()) { 147 if (hasSPE()) { 148 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 149 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 150 } else { 151 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 152 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 153 } 154 } 155 156 // Match BITREVERSE to customized fast code sequence in the td file. 157 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 158 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 159 160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 161 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 162 163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 164 for (MVT VT : MVT::integer_valuetypes()) { 165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 167 } 168 169 if (Subtarget.isISA3_0()) { 170 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 171 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 172 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 174 } else { 175 // No extending loads from f16 or HW conversions back and forth. 176 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 177 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 178 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 179 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 180 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 181 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 182 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 183 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 184 } 185 186 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 187 188 // PowerPC has pre-inc load and store's. 189 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 194 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 199 if (!Subtarget.hasSPE()) { 200 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 204 } 205 206 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 207 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 208 for (MVT VT : ScalarIntVTs) { 209 setOperationAction(ISD::ADDC, VT, Legal); 210 setOperationAction(ISD::ADDE, VT, Legal); 211 setOperationAction(ISD::SUBC, VT, Legal); 212 setOperationAction(ISD::SUBE, VT, Legal); 213 } 214 215 if (Subtarget.useCRBits()) { 216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 217 218 if (isPPC64 || Subtarget.hasFPCVT()) { 219 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 220 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 221 isPPC64 ? MVT::i64 : MVT::i32); 222 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 223 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 224 isPPC64 ? MVT::i64 : MVT::i32); 225 } else { 226 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 227 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 228 } 229 230 // PowerPC does not support direct load/store of condition registers. 231 setOperationAction(ISD::LOAD, MVT::i1, Custom); 232 setOperationAction(ISD::STORE, MVT::i1, Custom); 233 234 // FIXME: Remove this once the ANDI glue bug is fixed: 235 if (ANDIGlueBug) 236 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 237 238 for (MVT VT : MVT::integer_valuetypes()) { 239 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 240 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 241 setTruncStoreAction(VT, MVT::i1, Expand); 242 } 243 244 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 245 } 246 247 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 248 // PPC (the libcall is not available). 249 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 250 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 251 252 // We do not currently implement these libm ops for PowerPC. 253 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 254 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 259 260 // PowerPC has no SREM/UREM instructions unless we are on P9 261 // On P9 we may use a hardware instruction to compute the remainder. 262 // The instructions are not legalized directly because in the cases where the 263 // result of both the remainder and the division is required it is more 264 // efficient to compute the remainder from the result of the division rather 265 // than use the remainder instruction. 266 if (Subtarget.isISA3_0()) { 267 setOperationAction(ISD::SREM, MVT::i32, Custom); 268 setOperationAction(ISD::UREM, MVT::i32, Custom); 269 setOperationAction(ISD::SREM, MVT::i64, Custom); 270 setOperationAction(ISD::UREM, MVT::i64, Custom); 271 } else { 272 setOperationAction(ISD::SREM, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::SREM, MVT::i64, Expand); 275 setOperationAction(ISD::UREM, MVT::i64, Expand); 276 } 277 278 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 279 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 280 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 282 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 284 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 286 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 287 288 // Handle constrained floating-point operations of scalar. 289 // TODO: Handle SPE specific operation. 290 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 291 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 292 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 293 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 294 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 295 296 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 297 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 298 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 299 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 300 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 301 302 if (Subtarget.hasFSQRT()) { 303 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 304 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 305 } 306 307 // We don't support sin/cos/sqrt/fmod/pow 308 setOperationAction(ISD::FSIN , MVT::f64, Expand); 309 setOperationAction(ISD::FCOS , MVT::f64, Expand); 310 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 311 setOperationAction(ISD::FREM , MVT::f64, Expand); 312 setOperationAction(ISD::FPOW , MVT::f64, Expand); 313 setOperationAction(ISD::FSIN , MVT::f32, Expand); 314 setOperationAction(ISD::FCOS , MVT::f32, Expand); 315 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 316 setOperationAction(ISD::FREM , MVT::f32, Expand); 317 setOperationAction(ISD::FPOW , MVT::f32, Expand); 318 if (Subtarget.hasSPE()) { 319 setOperationAction(ISD::FMA , MVT::f64, Expand); 320 setOperationAction(ISD::FMA , MVT::f32, Expand); 321 } else { 322 setOperationAction(ISD::FMA , MVT::f64, Legal); 323 setOperationAction(ISD::FMA , MVT::f32, Legal); 324 } 325 326 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 327 328 // If we're enabling GP optimizations, use hardware square root 329 if (!Subtarget.hasFSQRT() && 330 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 331 Subtarget.hasFRE())) 332 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 333 334 if (!Subtarget.hasFSQRT() && 335 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 336 Subtarget.hasFRES())) 337 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 338 339 if (Subtarget.hasFCPSGN()) { 340 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 341 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 342 } else { 343 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 344 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 345 } 346 347 if (Subtarget.hasFPRND()) { 348 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 349 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 350 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 351 setOperationAction(ISD::FROUND, MVT::f64, Legal); 352 353 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 354 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 355 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 356 setOperationAction(ISD::FROUND, MVT::f32, Legal); 357 } 358 359 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 360 // to speed up scalar BSWAP64. 361 // CTPOP or CTTZ were introduced in P8/P9 respectively 362 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 363 if (Subtarget.hasP9Vector()) 364 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 365 else 366 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 367 if (Subtarget.isISA3_0()) { 368 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 369 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 370 } else { 371 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 372 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 373 } 374 375 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 376 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 377 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 378 } else { 379 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 380 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 381 } 382 383 // PowerPC does not have ROTR 384 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 385 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 386 387 if (!Subtarget.useCRBits()) { 388 // PowerPC does not have Select 389 setOperationAction(ISD::SELECT, MVT::i32, Expand); 390 setOperationAction(ISD::SELECT, MVT::i64, Expand); 391 setOperationAction(ISD::SELECT, MVT::f32, Expand); 392 setOperationAction(ISD::SELECT, MVT::f64, Expand); 393 } 394 395 // PowerPC wants to turn select_cc of FP into fsel when possible. 396 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 397 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 398 399 // PowerPC wants to optimize integer setcc a bit 400 if (!Subtarget.useCRBits()) 401 setOperationAction(ISD::SETCC, MVT::i32, Custom); 402 403 // PowerPC does not have BRCOND which requires SetCC 404 if (!Subtarget.useCRBits()) 405 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 406 407 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 408 409 if (Subtarget.hasSPE()) { 410 // SPE has built-in conversions 411 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 412 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 413 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 414 } else { 415 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 416 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 417 418 // PowerPC does not have [U|S]INT_TO_FP 419 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 420 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 421 } 422 423 if (Subtarget.hasDirectMove() && isPPC64) { 424 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 425 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 426 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 427 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 428 if (TM.Options.UnsafeFPMath) { 429 setOperationAction(ISD::LRINT, MVT::f64, Legal); 430 setOperationAction(ISD::LRINT, MVT::f32, Legal); 431 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 432 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 433 setOperationAction(ISD::LROUND, MVT::f64, Legal); 434 setOperationAction(ISD::LROUND, MVT::f32, Legal); 435 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 436 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 437 } 438 } else { 439 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 440 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 441 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 442 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 443 } 444 445 // We cannot sextinreg(i1). Expand to shifts. 446 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 447 448 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 449 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 450 // support continuation, user-level threading, and etc.. As a result, no 451 // other SjLj exception interfaces are implemented and please don't build 452 // your own exception handling based on them. 453 // LLVM/Clang supports zero-cost DWARF exception handling. 454 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 455 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 456 457 // We want to legalize GlobalAddress and ConstantPool nodes into the 458 // appropriate instructions to materialize the address. 459 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 460 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 461 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 462 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 463 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 464 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 465 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 466 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 467 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 468 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 469 470 // TRAP is legal. 471 setOperationAction(ISD::TRAP, MVT::Other, Legal); 472 473 // TRAMPOLINE is custom lowered. 474 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 475 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 476 477 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 478 setOperationAction(ISD::VASTART , MVT::Other, Custom); 479 480 if (Subtarget.is64BitELFABI()) { 481 // VAARG always uses double-word chunks, so promote anything smaller. 482 setOperationAction(ISD::VAARG, MVT::i1, Promote); 483 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 484 setOperationAction(ISD::VAARG, MVT::i8, Promote); 485 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 486 setOperationAction(ISD::VAARG, MVT::i16, Promote); 487 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 488 setOperationAction(ISD::VAARG, MVT::i32, Promote); 489 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 490 setOperationAction(ISD::VAARG, MVT::Other, Expand); 491 } else if (Subtarget.is32BitELFABI()) { 492 // VAARG is custom lowered with the 32-bit SVR4 ABI. 493 setOperationAction(ISD::VAARG, MVT::Other, Custom); 494 setOperationAction(ISD::VAARG, MVT::i64, Custom); 495 } else 496 setOperationAction(ISD::VAARG, MVT::Other, Expand); 497 498 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 499 if (Subtarget.is32BitELFABI()) 500 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 501 else 502 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 503 504 // Use the default implementation. 505 setOperationAction(ISD::VAEND , MVT::Other, Expand); 506 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 507 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 508 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 509 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 510 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 511 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 512 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 513 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 514 515 // We want to custom lower some of our intrinsics. 516 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 517 518 // To handle counter-based loop conditions. 519 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 520 521 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 522 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 523 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 524 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 525 526 // Comparisons that require checking two conditions. 527 if (Subtarget.hasSPE()) { 528 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 529 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 530 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 531 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 532 } 533 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 534 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 535 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 536 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 537 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 538 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 539 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 540 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 541 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 542 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 543 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 544 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 545 546 if (Subtarget.has64BitSupport()) { 547 // They also have instructions for converting between i64 and fp. 548 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 549 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 550 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 551 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 552 // This is just the low 32 bits of a (signed) fp->i64 conversion. 553 // We cannot do this with Promote because i64 is not a legal type. 554 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 555 556 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 557 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 558 } else { 559 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 560 if (Subtarget.hasSPE()) 561 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 562 else 563 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 564 } 565 566 // With the instructions enabled under FPCVT, we can do everything. 567 if (Subtarget.hasFPCVT()) { 568 if (Subtarget.has64BitSupport()) { 569 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 570 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 571 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 572 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 573 } 574 575 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 576 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 577 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 578 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 579 } 580 581 if (Subtarget.use64BitRegs()) { 582 // 64-bit PowerPC implementations can support i64 types directly 583 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 584 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 585 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 586 // 64-bit PowerPC wants to expand i128 shifts itself. 587 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 588 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 589 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 590 } else { 591 // 32-bit PowerPC wants to expand i64 shifts itself. 592 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 593 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 594 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 595 } 596 597 if (Subtarget.hasVSX()) { 598 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 599 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 600 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 601 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 602 } 603 604 if (Subtarget.hasAltivec()) { 605 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 606 setOperationAction(ISD::SADDSAT, VT, Legal); 607 setOperationAction(ISD::SSUBSAT, VT, Legal); 608 setOperationAction(ISD::UADDSAT, VT, Legal); 609 setOperationAction(ISD::USUBSAT, VT, Legal); 610 } 611 // First set operation action for all vector types to expand. Then we 612 // will selectively turn on ones that can be effectively codegen'd. 613 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 614 // add/sub are legal for all supported vector VT's. 615 setOperationAction(ISD::ADD, VT, Legal); 616 setOperationAction(ISD::SUB, VT, Legal); 617 618 // For v2i64, these are only valid with P8Vector. This is corrected after 619 // the loop. 620 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 621 setOperationAction(ISD::SMAX, VT, Legal); 622 setOperationAction(ISD::SMIN, VT, Legal); 623 setOperationAction(ISD::UMAX, VT, Legal); 624 setOperationAction(ISD::UMIN, VT, Legal); 625 } 626 else { 627 setOperationAction(ISD::SMAX, VT, Expand); 628 setOperationAction(ISD::SMIN, VT, Expand); 629 setOperationAction(ISD::UMAX, VT, Expand); 630 setOperationAction(ISD::UMIN, VT, Expand); 631 } 632 633 if (Subtarget.hasVSX()) { 634 setOperationAction(ISD::FMAXNUM, VT, Legal); 635 setOperationAction(ISD::FMINNUM, VT, Legal); 636 } 637 638 // Vector instructions introduced in P8 639 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 640 setOperationAction(ISD::CTPOP, VT, Legal); 641 setOperationAction(ISD::CTLZ, VT, Legal); 642 } 643 else { 644 setOperationAction(ISD::CTPOP, VT, Expand); 645 setOperationAction(ISD::CTLZ, VT, Expand); 646 } 647 648 // Vector instructions introduced in P9 649 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 650 setOperationAction(ISD::CTTZ, VT, Legal); 651 else 652 setOperationAction(ISD::CTTZ, VT, Expand); 653 654 // We promote all shuffles to v16i8. 655 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 656 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 657 658 // We promote all non-typed operations to v4i32. 659 setOperationAction(ISD::AND , VT, Promote); 660 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 661 setOperationAction(ISD::OR , VT, Promote); 662 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 663 setOperationAction(ISD::XOR , VT, Promote); 664 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 665 setOperationAction(ISD::LOAD , VT, Promote); 666 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 667 setOperationAction(ISD::SELECT, VT, Promote); 668 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 669 setOperationAction(ISD::VSELECT, VT, Legal); 670 setOperationAction(ISD::SELECT_CC, VT, Promote); 671 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 672 setOperationAction(ISD::STORE, VT, Promote); 673 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 674 675 // No other operations are legal. 676 setOperationAction(ISD::MUL , VT, Expand); 677 setOperationAction(ISD::SDIV, VT, Expand); 678 setOperationAction(ISD::SREM, VT, Expand); 679 setOperationAction(ISD::UDIV, VT, Expand); 680 setOperationAction(ISD::UREM, VT, Expand); 681 setOperationAction(ISD::FDIV, VT, Expand); 682 setOperationAction(ISD::FREM, VT, Expand); 683 setOperationAction(ISD::FNEG, VT, Expand); 684 setOperationAction(ISD::FSQRT, VT, Expand); 685 setOperationAction(ISD::FLOG, VT, Expand); 686 setOperationAction(ISD::FLOG10, VT, Expand); 687 setOperationAction(ISD::FLOG2, VT, Expand); 688 setOperationAction(ISD::FEXP, VT, Expand); 689 setOperationAction(ISD::FEXP2, VT, Expand); 690 setOperationAction(ISD::FSIN, VT, Expand); 691 setOperationAction(ISD::FCOS, VT, Expand); 692 setOperationAction(ISD::FABS, VT, Expand); 693 setOperationAction(ISD::FFLOOR, VT, Expand); 694 setOperationAction(ISD::FCEIL, VT, Expand); 695 setOperationAction(ISD::FTRUNC, VT, Expand); 696 setOperationAction(ISD::FRINT, VT, Expand); 697 setOperationAction(ISD::FNEARBYINT, VT, Expand); 698 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 699 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 700 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 701 setOperationAction(ISD::MULHU, VT, Expand); 702 setOperationAction(ISD::MULHS, VT, Expand); 703 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 704 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 705 setOperationAction(ISD::UDIVREM, VT, Expand); 706 setOperationAction(ISD::SDIVREM, VT, Expand); 707 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 708 setOperationAction(ISD::FPOW, VT, Expand); 709 setOperationAction(ISD::BSWAP, VT, Expand); 710 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 711 setOperationAction(ISD::ROTL, VT, Expand); 712 setOperationAction(ISD::ROTR, VT, Expand); 713 714 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 715 setTruncStoreAction(VT, InnerVT, Expand); 716 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 717 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 718 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 719 } 720 } 721 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 722 if (!Subtarget.hasP8Vector()) { 723 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 724 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 725 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 726 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 727 } 728 729 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 730 setOperationAction(ISD::ABS, VT, Custom); 731 732 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 733 // with merges, splats, etc. 734 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 735 736 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 737 // are cheap, so handle them before they get expanded to scalar. 738 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 739 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 740 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 741 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 742 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 743 744 setOperationAction(ISD::AND , MVT::v4i32, Legal); 745 setOperationAction(ISD::OR , MVT::v4i32, Legal); 746 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 747 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 748 setOperationAction(ISD::SELECT, MVT::v4i32, 749 Subtarget.useCRBits() ? Legal : Expand); 750 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 751 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 752 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 753 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 754 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 755 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 756 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 757 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 758 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 759 760 // Without hasP8Altivec set, v2i64 SMAX isn't available. 761 // But ABS custom lowering requires SMAX support. 762 if (!Subtarget.hasP8Altivec()) 763 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 764 765 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 766 if (Subtarget.hasAltivec()) 767 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 768 setOperationAction(ISD::ROTL, VT, Legal); 769 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 770 if (Subtarget.hasP8Altivec()) 771 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 772 773 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 774 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 775 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 776 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 777 778 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 779 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 780 781 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 782 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 783 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 784 } 785 786 if (Subtarget.hasP8Altivec()) 787 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 788 else 789 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 790 791 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 792 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 793 794 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 795 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 796 797 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 798 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 799 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 800 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 801 802 // Altivec does not contain unordered floating-point compare instructions 803 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 804 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 805 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 806 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 807 808 if (Subtarget.hasVSX()) { 809 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 810 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 811 if (Subtarget.hasP8Vector()) { 812 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 813 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 814 } 815 if (Subtarget.hasDirectMove() && isPPC64) { 816 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 817 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 818 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 819 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 820 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 821 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 822 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 823 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 824 } 825 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 826 827 // The nearbyint variants are not allowed to raise the inexact exception 828 // so we can only code-gen them with unsafe math. 829 if (TM.Options.UnsafeFPMath) { 830 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 831 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 832 } 833 834 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 835 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 836 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 837 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 838 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 839 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 840 setOperationAction(ISD::FROUND, MVT::f64, Legal); 841 setOperationAction(ISD::FRINT, MVT::f64, Legal); 842 843 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 844 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 845 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 846 setOperationAction(ISD::FROUND, MVT::f32, Legal); 847 setOperationAction(ISD::FRINT, MVT::f32, Legal); 848 849 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 850 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 851 852 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 853 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 854 855 // Share the Altivec comparison restrictions. 856 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 857 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 858 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 859 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 860 861 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 862 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 863 864 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 865 866 if (Subtarget.hasP8Vector()) 867 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 868 869 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 870 871 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 872 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 873 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 874 875 if (Subtarget.hasP8Altivec()) { 876 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 877 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 878 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 879 880 // 128 bit shifts can be accomplished via 3 instructions for SHL and 881 // SRL, but not for SRA because of the instructions available: 882 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 883 // doing 884 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 885 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 886 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 887 888 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 889 } 890 else { 891 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 892 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 893 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 894 895 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 896 897 // VSX v2i64 only supports non-arithmetic operations. 898 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 899 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 900 } 901 902 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 903 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 904 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 905 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 906 907 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 908 909 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 910 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 911 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 912 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 913 914 // Custom handling for partial vectors of integers converted to 915 // floating point. We already have optimal handling for v2i32 through 916 // the DAG combine, so those aren't necessary. 917 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 918 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 919 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 920 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 921 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 922 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 923 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 924 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 925 926 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 927 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 928 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 929 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 930 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 931 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 932 933 if (Subtarget.hasDirectMove()) 934 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 935 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 936 937 // Handle constrained floating-point operations of vector. 938 // The predictor is `hasVSX` because altivec instruction has 939 // no exception but VSX vector instruction has. 940 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 941 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 942 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 943 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 944 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 945 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 946 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 947 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 948 949 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 950 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 951 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 952 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 953 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 954 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 955 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 956 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 957 958 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 959 } 960 961 if (Subtarget.hasP8Altivec()) { 962 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 963 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 964 } 965 966 if (Subtarget.hasP9Vector()) { 967 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 968 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 969 970 // 128 bit shifts can be accomplished via 3 instructions for SHL and 971 // SRL, but not for SRA because of the instructions available: 972 // VS{RL} and VS{RL}O. 973 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 974 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 975 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 976 977 if (EnableQuadPrecision) { 978 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 979 setOperationAction(ISD::FADD, MVT::f128, Legal); 980 setOperationAction(ISD::FSUB, MVT::f128, Legal); 981 setOperationAction(ISD::FDIV, MVT::f128, Legal); 982 setOperationAction(ISD::FMUL, MVT::f128, Legal); 983 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 984 // No extending loads to f128 on PPC. 985 for (MVT FPT : MVT::fp_valuetypes()) 986 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 987 setOperationAction(ISD::FMA, MVT::f128, Legal); 988 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 989 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 990 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 991 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 992 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 993 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 994 995 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 996 setOperationAction(ISD::FRINT, MVT::f128, Legal); 997 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 998 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 999 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1000 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1001 1002 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1003 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1004 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1005 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1006 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1007 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1008 // No implementation for these ops for PowerPC. 1009 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1010 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1011 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1012 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1013 setOperationAction(ISD::FREM, MVT::f128, Expand); 1014 1015 // Handle constrained floating-point operations of fp128 1016 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1017 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1018 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1019 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1020 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1021 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1022 } 1023 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1024 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1025 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1026 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1027 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1028 } 1029 1030 if (Subtarget.hasP9Altivec()) { 1031 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1032 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1033 1034 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1035 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1036 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1037 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1038 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1039 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1040 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1041 } 1042 } 1043 1044 if (Subtarget.hasQPX()) { 1045 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 1046 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 1047 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 1048 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 1049 1050 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 1051 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 1052 1053 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 1054 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 1055 1056 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1057 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1058 1059 if (!Subtarget.useCRBits()) 1060 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1061 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1062 1063 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1064 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1065 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1066 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1067 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1068 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1069 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1070 1071 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1072 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1073 1074 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1075 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1076 1077 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1078 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1079 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1080 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1081 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1082 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1083 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1084 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1085 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1086 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1087 1088 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1089 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1090 1091 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1092 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1093 1094 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1095 1096 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1097 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1098 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1099 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1100 1101 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1102 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1103 1104 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1105 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1106 1107 if (!Subtarget.useCRBits()) 1108 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1109 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1110 1111 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1112 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1113 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1114 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1115 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1116 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1117 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1118 1119 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1120 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1121 1122 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1123 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1124 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1125 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1126 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1127 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1128 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1129 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1130 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1131 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1132 1133 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1134 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1135 1136 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1137 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1138 1139 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1140 1141 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1142 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1143 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1144 1145 if (!Subtarget.useCRBits()) 1146 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1147 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1148 1149 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1150 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1151 1152 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1153 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1154 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1155 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1156 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1157 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1158 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1159 1160 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1161 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1162 1163 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1164 1165 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1166 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1167 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1168 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1169 1170 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1171 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1172 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1173 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1174 1175 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1176 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1177 1178 // These need to set FE_INEXACT, and so cannot be vectorized here. 1179 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1180 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1181 1182 if (TM.Options.UnsafeFPMath) { 1183 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1184 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1185 1186 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1187 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1188 } else { 1189 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1190 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1191 1192 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1193 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1194 } 1195 1196 // TODO: Handle constrained floating-point operations of v4f64 1197 } 1198 1199 if (Subtarget.has64BitSupport()) 1200 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1201 1202 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1203 1204 if (!isPPC64) { 1205 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1206 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1207 } 1208 1209 setBooleanContents(ZeroOrOneBooleanContent); 1210 1211 if (Subtarget.hasAltivec()) { 1212 // Altivec instructions set fields to all zeros or all ones. 1213 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1214 } 1215 1216 if (!isPPC64) { 1217 // These libcalls are not available in 32-bit. 1218 setLibcallName(RTLIB::SHL_I128, nullptr); 1219 setLibcallName(RTLIB::SRL_I128, nullptr); 1220 setLibcallName(RTLIB::SRA_I128, nullptr); 1221 } 1222 1223 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1224 1225 // We have target-specific dag combine patterns for the following nodes: 1226 setTargetDAGCombine(ISD::ADD); 1227 setTargetDAGCombine(ISD::SHL); 1228 setTargetDAGCombine(ISD::SRA); 1229 setTargetDAGCombine(ISD::SRL); 1230 setTargetDAGCombine(ISD::MUL); 1231 setTargetDAGCombine(ISD::FMA); 1232 setTargetDAGCombine(ISD::SINT_TO_FP); 1233 setTargetDAGCombine(ISD::BUILD_VECTOR); 1234 if (Subtarget.hasFPCVT()) 1235 setTargetDAGCombine(ISD::UINT_TO_FP); 1236 setTargetDAGCombine(ISD::LOAD); 1237 setTargetDAGCombine(ISD::STORE); 1238 setTargetDAGCombine(ISD::BR_CC); 1239 if (Subtarget.useCRBits()) 1240 setTargetDAGCombine(ISD::BRCOND); 1241 setTargetDAGCombine(ISD::BSWAP); 1242 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1243 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1244 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1245 1246 setTargetDAGCombine(ISD::SIGN_EXTEND); 1247 setTargetDAGCombine(ISD::ZERO_EXTEND); 1248 setTargetDAGCombine(ISD::ANY_EXTEND); 1249 1250 setTargetDAGCombine(ISD::TRUNCATE); 1251 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1252 1253 1254 if (Subtarget.useCRBits()) { 1255 setTargetDAGCombine(ISD::TRUNCATE); 1256 setTargetDAGCombine(ISD::SETCC); 1257 setTargetDAGCombine(ISD::SELECT_CC); 1258 } 1259 1260 // Use reciprocal estimates. 1261 if (TM.Options.UnsafeFPMath) { 1262 setTargetDAGCombine(ISD::FDIV); 1263 setTargetDAGCombine(ISD::FSQRT); 1264 } 1265 1266 if (Subtarget.hasP9Altivec()) { 1267 setTargetDAGCombine(ISD::ABS); 1268 setTargetDAGCombine(ISD::VSELECT); 1269 } 1270 1271 if (EnableQuadPrecision) { 1272 setLibcallName(RTLIB::LOG_F128, "logf128"); 1273 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1274 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1275 setLibcallName(RTLIB::EXP_F128, "expf128"); 1276 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1277 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1278 setLibcallName(RTLIB::COS_F128, "cosf128"); 1279 setLibcallName(RTLIB::POW_F128, "powf128"); 1280 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1281 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1282 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1283 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1284 } 1285 1286 // With 32 condition bits, we don't need to sink (and duplicate) compares 1287 // aggressively in CodeGenPrep. 1288 if (Subtarget.useCRBits()) { 1289 setHasMultipleConditionRegisters(); 1290 setJumpIsExpensive(); 1291 } 1292 1293 setMinFunctionAlignment(Align(4)); 1294 1295 switch (Subtarget.getCPUDirective()) { 1296 default: break; 1297 case PPC::DIR_970: 1298 case PPC::DIR_A2: 1299 case PPC::DIR_E500: 1300 case PPC::DIR_E500mc: 1301 case PPC::DIR_E5500: 1302 case PPC::DIR_PWR4: 1303 case PPC::DIR_PWR5: 1304 case PPC::DIR_PWR5X: 1305 case PPC::DIR_PWR6: 1306 case PPC::DIR_PWR6X: 1307 case PPC::DIR_PWR7: 1308 case PPC::DIR_PWR8: 1309 case PPC::DIR_PWR9: 1310 case PPC::DIR_PWR10: 1311 case PPC::DIR_PWR_FUTURE: 1312 setPrefLoopAlignment(Align(16)); 1313 setPrefFunctionAlignment(Align(16)); 1314 break; 1315 } 1316 1317 if (Subtarget.enableMachineScheduler()) 1318 setSchedulingPreference(Sched::Source); 1319 else 1320 setSchedulingPreference(Sched::Hybrid); 1321 1322 computeRegisterProperties(STI.getRegisterInfo()); 1323 1324 // The Freescale cores do better with aggressive inlining of memcpy and 1325 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1326 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1327 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1328 MaxStoresPerMemset = 32; 1329 MaxStoresPerMemsetOptSize = 16; 1330 MaxStoresPerMemcpy = 32; 1331 MaxStoresPerMemcpyOptSize = 8; 1332 MaxStoresPerMemmove = 32; 1333 MaxStoresPerMemmoveOptSize = 8; 1334 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1335 // The A2 also benefits from (very) aggressive inlining of memcpy and 1336 // friends. The overhead of a the function call, even when warm, can be 1337 // over one hundred cycles. 1338 MaxStoresPerMemset = 128; 1339 MaxStoresPerMemcpy = 128; 1340 MaxStoresPerMemmove = 128; 1341 MaxLoadsPerMemcmp = 128; 1342 } else { 1343 MaxLoadsPerMemcmp = 8; 1344 MaxLoadsPerMemcmpOptSize = 4; 1345 } 1346 1347 // Let the subtarget (CPU) decide if a predictable select is more expensive 1348 // than the corresponding branch. This information is used in CGP to decide 1349 // when to convert selects into branches. 1350 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1351 } 1352 1353 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1354 /// the desired ByVal argument alignment. 1355 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1356 unsigned MaxMaxAlign) { 1357 if (MaxAlign == MaxMaxAlign) 1358 return; 1359 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1360 if (MaxMaxAlign >= 32 && 1361 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1362 MaxAlign = 32; 1363 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1364 MaxAlign < 16) 1365 MaxAlign = 16; 1366 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1367 unsigned EltAlign = 0; 1368 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1369 if (EltAlign > MaxAlign) 1370 MaxAlign = EltAlign; 1371 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1372 for (auto *EltTy : STy->elements()) { 1373 unsigned EltAlign = 0; 1374 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1375 if (EltAlign > MaxAlign) 1376 MaxAlign = EltAlign; 1377 if (MaxAlign == MaxMaxAlign) 1378 break; 1379 } 1380 } 1381 } 1382 1383 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1384 /// function arguments in the caller parameter area. 1385 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1386 const DataLayout &DL) const { 1387 // 16byte and wider vectors are passed on 16byte boundary. 1388 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1389 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1390 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1391 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1392 return Align; 1393 } 1394 1395 bool PPCTargetLowering::useSoftFloat() const { 1396 return Subtarget.useSoftFloat(); 1397 } 1398 1399 bool PPCTargetLowering::hasSPE() const { 1400 return Subtarget.hasSPE(); 1401 } 1402 1403 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1404 return VT.isScalarInteger(); 1405 } 1406 1407 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific 1408 /// type is cheaper than a multiply followed by a shift. 1409 /// This is true for words and doublewords on 64-bit PowerPC. 1410 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const { 1411 if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) || 1412 isOperationLegal(ISD::MULHU, Type))) 1413 return true; 1414 return TargetLowering::isMulhCheaperThanMulShift(Type); 1415 } 1416 1417 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1418 switch ((PPCISD::NodeType)Opcode) { 1419 case PPCISD::FIRST_NUMBER: break; 1420 case PPCISD::FSEL: return "PPCISD::FSEL"; 1421 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1422 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1423 case PPCISD::FCFID: return "PPCISD::FCFID"; 1424 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1425 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1426 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1427 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1428 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1429 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1430 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1431 case PPCISD::FP_TO_UINT_IN_VSR: 1432 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1433 case PPCISD::FP_TO_SINT_IN_VSR: 1434 return "PPCISD::FP_TO_SINT_IN_VSR"; 1435 case PPCISD::FRE: return "PPCISD::FRE"; 1436 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1437 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1438 case PPCISD::VPERM: return "PPCISD::VPERM"; 1439 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1440 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1441 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1442 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1443 case PPCISD::CMPB: return "PPCISD::CMPB"; 1444 case PPCISD::Hi: return "PPCISD::Hi"; 1445 case PPCISD::Lo: return "PPCISD::Lo"; 1446 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1447 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1448 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1449 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1450 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1451 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1452 case PPCISD::SRL: return "PPCISD::SRL"; 1453 case PPCISD::SRA: return "PPCISD::SRA"; 1454 case PPCISD::SHL: return "PPCISD::SHL"; 1455 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1456 case PPCISD::CALL: return "PPCISD::CALL"; 1457 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1458 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1459 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1460 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1461 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1462 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1463 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1464 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1465 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1466 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1467 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1468 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1469 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1470 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1471 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1472 case PPCISD::ANDI_rec_1_EQ_BIT: 1473 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1474 case PPCISD::ANDI_rec_1_GT_BIT: 1475 return "PPCISD::ANDI_rec_1_GT_BIT"; 1476 case PPCISD::VCMP: return "PPCISD::VCMP"; 1477 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1478 case PPCISD::LBRX: return "PPCISD::LBRX"; 1479 case PPCISD::STBRX: return "PPCISD::STBRX"; 1480 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1481 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1482 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1483 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1484 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1485 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1486 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1487 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1488 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1489 case PPCISD::ST_VSR_SCAL_INT: 1490 return "PPCISD::ST_VSR_SCAL_INT"; 1491 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1492 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1493 case PPCISD::BDZ: return "PPCISD::BDZ"; 1494 case PPCISD::MFFS: return "PPCISD::MFFS"; 1495 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1496 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1497 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1498 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1499 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1500 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1501 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1502 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1503 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1504 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1505 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1506 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1507 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1508 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1509 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1510 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1511 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1512 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1513 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1514 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1515 case PPCISD::SC: return "PPCISD::SC"; 1516 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1517 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1518 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1519 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1520 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1521 case PPCISD::VABSD: return "PPCISD::VABSD"; 1522 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1523 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1524 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1525 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1526 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1527 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1528 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1529 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1530 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1531 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1532 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1533 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1534 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1535 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1536 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1537 } 1538 return nullptr; 1539 } 1540 1541 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1542 EVT VT) const { 1543 if (!VT.isVector()) 1544 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1545 1546 if (Subtarget.hasQPX()) 1547 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1548 1549 return VT.changeVectorElementTypeToInteger(); 1550 } 1551 1552 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1553 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1554 return true; 1555 } 1556 1557 //===----------------------------------------------------------------------===// 1558 // Node matching predicates, for use by the tblgen matching code. 1559 //===----------------------------------------------------------------------===// 1560 1561 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1562 static bool isFloatingPointZero(SDValue Op) { 1563 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1564 return CFP->getValueAPF().isZero(); 1565 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1566 // Maybe this has already been legalized into the constant pool? 1567 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1568 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1569 return CFP->getValueAPF().isZero(); 1570 } 1571 return false; 1572 } 1573 1574 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1575 /// true if Op is undef or if it matches the specified value. 1576 static bool isConstantOrUndef(int Op, int Val) { 1577 return Op < 0 || Op == Val; 1578 } 1579 1580 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1581 /// VPKUHUM instruction. 1582 /// The ShuffleKind distinguishes between big-endian operations with 1583 /// two different inputs (0), either-endian operations with two identical 1584 /// inputs (1), and little-endian operations with two different inputs (2). 1585 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1586 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1587 SelectionDAG &DAG) { 1588 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1589 if (ShuffleKind == 0) { 1590 if (IsLE) 1591 return false; 1592 for (unsigned i = 0; i != 16; ++i) 1593 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1594 return false; 1595 } else if (ShuffleKind == 2) { 1596 if (!IsLE) 1597 return false; 1598 for (unsigned i = 0; i != 16; ++i) 1599 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1600 return false; 1601 } else if (ShuffleKind == 1) { 1602 unsigned j = IsLE ? 0 : 1; 1603 for (unsigned i = 0; i != 8; ++i) 1604 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1605 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1606 return false; 1607 } 1608 return true; 1609 } 1610 1611 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1612 /// VPKUWUM instruction. 1613 /// The ShuffleKind distinguishes between big-endian operations with 1614 /// two different inputs (0), either-endian operations with two identical 1615 /// inputs (1), and little-endian operations with two different inputs (2). 1616 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1617 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1618 SelectionDAG &DAG) { 1619 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1620 if (ShuffleKind == 0) { 1621 if (IsLE) 1622 return false; 1623 for (unsigned i = 0; i != 16; i += 2) 1624 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1625 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1626 return false; 1627 } else if (ShuffleKind == 2) { 1628 if (!IsLE) 1629 return false; 1630 for (unsigned i = 0; i != 16; i += 2) 1631 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1632 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1633 return false; 1634 } else if (ShuffleKind == 1) { 1635 unsigned j = IsLE ? 0 : 2; 1636 for (unsigned i = 0; i != 8; i += 2) 1637 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1638 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1639 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1640 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1641 return false; 1642 } 1643 return true; 1644 } 1645 1646 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1647 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1648 /// current subtarget. 1649 /// 1650 /// The ShuffleKind distinguishes between big-endian operations with 1651 /// two different inputs (0), either-endian operations with two identical 1652 /// inputs (1), and little-endian operations with two different inputs (2). 1653 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1654 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1655 SelectionDAG &DAG) { 1656 const PPCSubtarget& Subtarget = 1657 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1658 if (!Subtarget.hasP8Vector()) 1659 return false; 1660 1661 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1662 if (ShuffleKind == 0) { 1663 if (IsLE) 1664 return false; 1665 for (unsigned i = 0; i != 16; i += 4) 1666 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1667 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1668 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1669 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1670 return false; 1671 } else if (ShuffleKind == 2) { 1672 if (!IsLE) 1673 return false; 1674 for (unsigned i = 0; i != 16; i += 4) 1675 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1676 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1677 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1678 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1679 return false; 1680 } else if (ShuffleKind == 1) { 1681 unsigned j = IsLE ? 0 : 4; 1682 for (unsigned i = 0; i != 8; i += 4) 1683 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1684 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1685 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1686 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1687 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1688 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1689 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1690 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1691 return false; 1692 } 1693 return true; 1694 } 1695 1696 /// isVMerge - Common function, used to match vmrg* shuffles. 1697 /// 1698 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1699 unsigned LHSStart, unsigned RHSStart) { 1700 if (N->getValueType(0) != MVT::v16i8) 1701 return false; 1702 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1703 "Unsupported merge size!"); 1704 1705 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1706 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1707 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1708 LHSStart+j+i*UnitSize) || 1709 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1710 RHSStart+j+i*UnitSize)) 1711 return false; 1712 } 1713 return true; 1714 } 1715 1716 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1717 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1718 /// The ShuffleKind distinguishes between big-endian merges with two 1719 /// different inputs (0), either-endian merges with two identical inputs (1), 1720 /// and little-endian merges with two different inputs (2). For the latter, 1721 /// the input operands are swapped (see PPCInstrAltivec.td). 1722 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1723 unsigned ShuffleKind, SelectionDAG &DAG) { 1724 if (DAG.getDataLayout().isLittleEndian()) { 1725 if (ShuffleKind == 1) // unary 1726 return isVMerge(N, UnitSize, 0, 0); 1727 else if (ShuffleKind == 2) // swapped 1728 return isVMerge(N, UnitSize, 0, 16); 1729 else 1730 return false; 1731 } else { 1732 if (ShuffleKind == 1) // unary 1733 return isVMerge(N, UnitSize, 8, 8); 1734 else if (ShuffleKind == 0) // normal 1735 return isVMerge(N, UnitSize, 8, 24); 1736 else 1737 return false; 1738 } 1739 } 1740 1741 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1742 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1743 /// The ShuffleKind distinguishes between big-endian merges with two 1744 /// different inputs (0), either-endian merges with two identical inputs (1), 1745 /// and little-endian merges with two different inputs (2). For the latter, 1746 /// the input operands are swapped (see PPCInstrAltivec.td). 1747 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1748 unsigned ShuffleKind, SelectionDAG &DAG) { 1749 if (DAG.getDataLayout().isLittleEndian()) { 1750 if (ShuffleKind == 1) // unary 1751 return isVMerge(N, UnitSize, 8, 8); 1752 else if (ShuffleKind == 2) // swapped 1753 return isVMerge(N, UnitSize, 8, 24); 1754 else 1755 return false; 1756 } else { 1757 if (ShuffleKind == 1) // unary 1758 return isVMerge(N, UnitSize, 0, 0); 1759 else if (ShuffleKind == 0) // normal 1760 return isVMerge(N, UnitSize, 0, 16); 1761 else 1762 return false; 1763 } 1764 } 1765 1766 /** 1767 * Common function used to match vmrgew and vmrgow shuffles 1768 * 1769 * The indexOffset determines whether to look for even or odd words in 1770 * the shuffle mask. This is based on the of the endianness of the target 1771 * machine. 1772 * - Little Endian: 1773 * - Use offset of 0 to check for odd elements 1774 * - Use offset of 4 to check for even elements 1775 * - Big Endian: 1776 * - Use offset of 0 to check for even elements 1777 * - Use offset of 4 to check for odd elements 1778 * A detailed description of the vector element ordering for little endian and 1779 * big endian can be found at 1780 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1781 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1782 * compiler differences mean to you 1783 * 1784 * The mask to the shuffle vector instruction specifies the indices of the 1785 * elements from the two input vectors to place in the result. The elements are 1786 * numbered in array-access order, starting with the first vector. These vectors 1787 * are always of type v16i8, thus each vector will contain 16 elements of size 1788 * 8. More info on the shuffle vector can be found in the 1789 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1790 * Language Reference. 1791 * 1792 * The RHSStartValue indicates whether the same input vectors are used (unary) 1793 * or two different input vectors are used, based on the following: 1794 * - If the instruction uses the same vector for both inputs, the range of the 1795 * indices will be 0 to 15. In this case, the RHSStart value passed should 1796 * be 0. 1797 * - If the instruction has two different vectors then the range of the 1798 * indices will be 0 to 31. In this case, the RHSStart value passed should 1799 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1800 * to 31 specify elements in the second vector). 1801 * 1802 * \param[in] N The shuffle vector SD Node to analyze 1803 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1804 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1805 * vector to the shuffle_vector instruction 1806 * \return true iff this shuffle vector represents an even or odd word merge 1807 */ 1808 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1809 unsigned RHSStartValue) { 1810 if (N->getValueType(0) != MVT::v16i8) 1811 return false; 1812 1813 for (unsigned i = 0; i < 2; ++i) 1814 for (unsigned j = 0; j < 4; ++j) 1815 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1816 i*RHSStartValue+j+IndexOffset) || 1817 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1818 i*RHSStartValue+j+IndexOffset+8)) 1819 return false; 1820 return true; 1821 } 1822 1823 /** 1824 * Determine if the specified shuffle mask is suitable for the vmrgew or 1825 * vmrgow instructions. 1826 * 1827 * \param[in] N The shuffle vector SD Node to analyze 1828 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1829 * \param[in] ShuffleKind Identify the type of merge: 1830 * - 0 = big-endian merge with two different inputs; 1831 * - 1 = either-endian merge with two identical inputs; 1832 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1833 * little-endian merges). 1834 * \param[in] DAG The current SelectionDAG 1835 * \return true iff this shuffle mask 1836 */ 1837 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1838 unsigned ShuffleKind, SelectionDAG &DAG) { 1839 if (DAG.getDataLayout().isLittleEndian()) { 1840 unsigned indexOffset = CheckEven ? 4 : 0; 1841 if (ShuffleKind == 1) // Unary 1842 return isVMerge(N, indexOffset, 0); 1843 else if (ShuffleKind == 2) // swapped 1844 return isVMerge(N, indexOffset, 16); 1845 else 1846 return false; 1847 } 1848 else { 1849 unsigned indexOffset = CheckEven ? 0 : 4; 1850 if (ShuffleKind == 1) // Unary 1851 return isVMerge(N, indexOffset, 0); 1852 else if (ShuffleKind == 0) // Normal 1853 return isVMerge(N, indexOffset, 16); 1854 else 1855 return false; 1856 } 1857 return false; 1858 } 1859 1860 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1861 /// amount, otherwise return -1. 1862 /// The ShuffleKind distinguishes between big-endian operations with two 1863 /// different inputs (0), either-endian operations with two identical inputs 1864 /// (1), and little-endian operations with two different inputs (2). For the 1865 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1866 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1867 SelectionDAG &DAG) { 1868 if (N->getValueType(0) != MVT::v16i8) 1869 return -1; 1870 1871 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1872 1873 // Find the first non-undef value in the shuffle mask. 1874 unsigned i; 1875 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1876 /*search*/; 1877 1878 if (i == 16) return -1; // all undef. 1879 1880 // Otherwise, check to see if the rest of the elements are consecutively 1881 // numbered from this value. 1882 unsigned ShiftAmt = SVOp->getMaskElt(i); 1883 if (ShiftAmt < i) return -1; 1884 1885 ShiftAmt -= i; 1886 bool isLE = DAG.getDataLayout().isLittleEndian(); 1887 1888 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1889 // Check the rest of the elements to see if they are consecutive. 1890 for (++i; i != 16; ++i) 1891 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1892 return -1; 1893 } else if (ShuffleKind == 1) { 1894 // Check the rest of the elements to see if they are consecutive. 1895 for (++i; i != 16; ++i) 1896 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1897 return -1; 1898 } else 1899 return -1; 1900 1901 if (isLE) 1902 ShiftAmt = 16 - ShiftAmt; 1903 1904 return ShiftAmt; 1905 } 1906 1907 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1908 /// specifies a splat of a single element that is suitable for input to 1909 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1910 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1911 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1912 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1913 1914 // The consecutive indices need to specify an element, not part of two 1915 // different elements. So abandon ship early if this isn't the case. 1916 if (N->getMaskElt(0) % EltSize != 0) 1917 return false; 1918 1919 // This is a splat operation if each element of the permute is the same, and 1920 // if the value doesn't reference the second vector. 1921 unsigned ElementBase = N->getMaskElt(0); 1922 1923 // FIXME: Handle UNDEF elements too! 1924 if (ElementBase >= 16) 1925 return false; 1926 1927 // Check that the indices are consecutive, in the case of a multi-byte element 1928 // splatted with a v16i8 mask. 1929 for (unsigned i = 1; i != EltSize; ++i) 1930 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1931 return false; 1932 1933 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1934 if (N->getMaskElt(i) < 0) continue; 1935 for (unsigned j = 0; j != EltSize; ++j) 1936 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1937 return false; 1938 } 1939 return true; 1940 } 1941 1942 /// Check that the mask is shuffling N byte elements. Within each N byte 1943 /// element of the mask, the indices could be either in increasing or 1944 /// decreasing order as long as they are consecutive. 1945 /// \param[in] N the shuffle vector SD Node to analyze 1946 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1947 /// Word/DoubleWord/QuadWord). 1948 /// \param[in] StepLen the delta indices number among the N byte element, if 1949 /// the mask is in increasing/decreasing order then it is 1/-1. 1950 /// \return true iff the mask is shuffling N byte elements. 1951 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1952 int StepLen) { 1953 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1954 "Unexpected element width."); 1955 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1956 1957 unsigned NumOfElem = 16 / Width; 1958 unsigned MaskVal[16]; // Width is never greater than 16 1959 for (unsigned i = 0; i < NumOfElem; ++i) { 1960 MaskVal[0] = N->getMaskElt(i * Width); 1961 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1962 return false; 1963 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1964 return false; 1965 } 1966 1967 for (unsigned int j = 1; j < Width; ++j) { 1968 MaskVal[j] = N->getMaskElt(i * Width + j); 1969 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1970 return false; 1971 } 1972 } 1973 } 1974 1975 return true; 1976 } 1977 1978 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1979 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1980 if (!isNByteElemShuffleMask(N, 4, 1)) 1981 return false; 1982 1983 // Now we look at mask elements 0,4,8,12 1984 unsigned M0 = N->getMaskElt(0) / 4; 1985 unsigned M1 = N->getMaskElt(4) / 4; 1986 unsigned M2 = N->getMaskElt(8) / 4; 1987 unsigned M3 = N->getMaskElt(12) / 4; 1988 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1989 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1990 1991 // Below, let H and L be arbitrary elements of the shuffle mask 1992 // where H is in the range [4,7] and L is in the range [0,3]. 1993 // H, 1, 2, 3 or L, 5, 6, 7 1994 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1995 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1996 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1997 InsertAtByte = IsLE ? 12 : 0; 1998 Swap = M0 < 4; 1999 return true; 2000 } 2001 // 0, H, 2, 3 or 4, L, 6, 7 2002 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2003 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2004 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2005 InsertAtByte = IsLE ? 8 : 4; 2006 Swap = M1 < 4; 2007 return true; 2008 } 2009 // 0, 1, H, 3 or 4, 5, L, 7 2010 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2011 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2012 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2013 InsertAtByte = IsLE ? 4 : 8; 2014 Swap = M2 < 4; 2015 return true; 2016 } 2017 // 0, 1, 2, H or 4, 5, 6, L 2018 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2019 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2020 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2021 InsertAtByte = IsLE ? 0 : 12; 2022 Swap = M3 < 4; 2023 return true; 2024 } 2025 2026 // If both vector operands for the shuffle are the same vector, the mask will 2027 // contain only elements from the first one and the second one will be undef. 2028 if (N->getOperand(1).isUndef()) { 2029 ShiftElts = 0; 2030 Swap = true; 2031 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2032 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2033 InsertAtByte = IsLE ? 12 : 0; 2034 return true; 2035 } 2036 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2037 InsertAtByte = IsLE ? 8 : 4; 2038 return true; 2039 } 2040 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2041 InsertAtByte = IsLE ? 4 : 8; 2042 return true; 2043 } 2044 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2045 InsertAtByte = IsLE ? 0 : 12; 2046 return true; 2047 } 2048 } 2049 2050 return false; 2051 } 2052 2053 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2054 bool &Swap, bool IsLE) { 2055 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2056 // Ensure each byte index of the word is consecutive. 2057 if (!isNByteElemShuffleMask(N, 4, 1)) 2058 return false; 2059 2060 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2061 unsigned M0 = N->getMaskElt(0) / 4; 2062 unsigned M1 = N->getMaskElt(4) / 4; 2063 unsigned M2 = N->getMaskElt(8) / 4; 2064 unsigned M3 = N->getMaskElt(12) / 4; 2065 2066 // If both vector operands for the shuffle are the same vector, the mask will 2067 // contain only elements from the first one and the second one will be undef. 2068 if (N->getOperand(1).isUndef()) { 2069 assert(M0 < 4 && "Indexing into an undef vector?"); 2070 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2071 return false; 2072 2073 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2074 Swap = false; 2075 return true; 2076 } 2077 2078 // Ensure each word index of the ShuffleVector Mask is consecutive. 2079 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2080 return false; 2081 2082 if (IsLE) { 2083 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2084 // Input vectors don't need to be swapped if the leading element 2085 // of the result is one of the 3 left elements of the second vector 2086 // (or if there is no shift to be done at all). 2087 Swap = false; 2088 ShiftElts = (8 - M0) % 8; 2089 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2090 // Input vectors need to be swapped if the leading element 2091 // of the result is one of the 3 left elements of the first vector 2092 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2093 Swap = true; 2094 ShiftElts = (4 - M0) % 4; 2095 } 2096 2097 return true; 2098 } else { // BE 2099 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2100 // Input vectors don't need to be swapped if the leading element 2101 // of the result is one of the 4 elements of the first vector. 2102 Swap = false; 2103 ShiftElts = M0; 2104 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2105 // Input vectors need to be swapped if the leading element 2106 // of the result is one of the 4 elements of the right vector. 2107 Swap = true; 2108 ShiftElts = M0 - 4; 2109 } 2110 2111 return true; 2112 } 2113 } 2114 2115 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2116 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2117 2118 if (!isNByteElemShuffleMask(N, Width, -1)) 2119 return false; 2120 2121 for (int i = 0; i < 16; i += Width) 2122 if (N->getMaskElt(i) != i + Width - 1) 2123 return false; 2124 2125 return true; 2126 } 2127 2128 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2129 return isXXBRShuffleMaskHelper(N, 2); 2130 } 2131 2132 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2133 return isXXBRShuffleMaskHelper(N, 4); 2134 } 2135 2136 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2137 return isXXBRShuffleMaskHelper(N, 8); 2138 } 2139 2140 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2141 return isXXBRShuffleMaskHelper(N, 16); 2142 } 2143 2144 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2145 /// if the inputs to the instruction should be swapped and set \p DM to the 2146 /// value for the immediate. 2147 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2148 /// AND element 0 of the result comes from the first input (LE) or second input 2149 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2150 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2151 /// mask. 2152 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2153 bool &Swap, bool IsLE) { 2154 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2155 2156 // Ensure each byte index of the double word is consecutive. 2157 if (!isNByteElemShuffleMask(N, 8, 1)) 2158 return false; 2159 2160 unsigned M0 = N->getMaskElt(0) / 8; 2161 unsigned M1 = N->getMaskElt(8) / 8; 2162 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2163 2164 // If both vector operands for the shuffle are the same vector, the mask will 2165 // contain only elements from the first one and the second one will be undef. 2166 if (N->getOperand(1).isUndef()) { 2167 if ((M0 | M1) < 2) { 2168 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2169 Swap = false; 2170 return true; 2171 } else 2172 return false; 2173 } 2174 2175 if (IsLE) { 2176 if (M0 > 1 && M1 < 2) { 2177 Swap = false; 2178 } else if (M0 < 2 && M1 > 1) { 2179 M0 = (M0 + 2) % 4; 2180 M1 = (M1 + 2) % 4; 2181 Swap = true; 2182 } else 2183 return false; 2184 2185 // Note: if control flow comes here that means Swap is already set above 2186 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2187 return true; 2188 } else { // BE 2189 if (M0 < 2 && M1 > 1) { 2190 Swap = false; 2191 } else if (M0 > 1 && M1 < 2) { 2192 M0 = (M0 + 2) % 4; 2193 M1 = (M1 + 2) % 4; 2194 Swap = true; 2195 } else 2196 return false; 2197 2198 // Note: if control flow comes here that means Swap is already set above 2199 DM = (M0 << 1) + (M1 & 1); 2200 return true; 2201 } 2202 } 2203 2204 2205 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2206 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2207 /// elements are counted from the left of the vector register). 2208 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2209 SelectionDAG &DAG) { 2210 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2211 assert(isSplatShuffleMask(SVOp, EltSize)); 2212 if (DAG.getDataLayout().isLittleEndian()) 2213 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2214 else 2215 return SVOp->getMaskElt(0) / EltSize; 2216 } 2217 2218 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2219 /// by using a vspltis[bhw] instruction of the specified element size, return 2220 /// the constant being splatted. The ByteSize field indicates the number of 2221 /// bytes of each element [124] -> [bhw]. 2222 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2223 SDValue OpVal(nullptr, 0); 2224 2225 // If ByteSize of the splat is bigger than the element size of the 2226 // build_vector, then we have a case where we are checking for a splat where 2227 // multiple elements of the buildvector are folded together into a single 2228 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2229 unsigned EltSize = 16/N->getNumOperands(); 2230 if (EltSize < ByteSize) { 2231 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2232 SDValue UniquedVals[4]; 2233 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2234 2235 // See if all of the elements in the buildvector agree across. 2236 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2237 if (N->getOperand(i).isUndef()) continue; 2238 // If the element isn't a constant, bail fully out. 2239 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2240 2241 if (!UniquedVals[i&(Multiple-1)].getNode()) 2242 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2243 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2244 return SDValue(); // no match. 2245 } 2246 2247 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2248 // either constant or undef values that are identical for each chunk. See 2249 // if these chunks can form into a larger vspltis*. 2250 2251 // Check to see if all of the leading entries are either 0 or -1. If 2252 // neither, then this won't fit into the immediate field. 2253 bool LeadingZero = true; 2254 bool LeadingOnes = true; 2255 for (unsigned i = 0; i != Multiple-1; ++i) { 2256 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2257 2258 LeadingZero &= isNullConstant(UniquedVals[i]); 2259 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2260 } 2261 // Finally, check the least significant entry. 2262 if (LeadingZero) { 2263 if (!UniquedVals[Multiple-1].getNode()) 2264 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2265 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2266 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2267 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2268 } 2269 if (LeadingOnes) { 2270 if (!UniquedVals[Multiple-1].getNode()) 2271 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2272 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2273 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2274 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2275 } 2276 2277 return SDValue(); 2278 } 2279 2280 // Check to see if this buildvec has a single non-undef value in its elements. 2281 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2282 if (N->getOperand(i).isUndef()) continue; 2283 if (!OpVal.getNode()) 2284 OpVal = N->getOperand(i); 2285 else if (OpVal != N->getOperand(i)) 2286 return SDValue(); 2287 } 2288 2289 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2290 2291 unsigned ValSizeInBytes = EltSize; 2292 uint64_t Value = 0; 2293 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2294 Value = CN->getZExtValue(); 2295 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2296 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2297 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2298 } 2299 2300 // If the splat value is larger than the element value, then we can never do 2301 // this splat. The only case that we could fit the replicated bits into our 2302 // immediate field for would be zero, and we prefer to use vxor for it. 2303 if (ValSizeInBytes < ByteSize) return SDValue(); 2304 2305 // If the element value is larger than the splat value, check if it consists 2306 // of a repeated bit pattern of size ByteSize. 2307 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2308 return SDValue(); 2309 2310 // Properly sign extend the value. 2311 int MaskVal = SignExtend32(Value, ByteSize * 8); 2312 2313 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2314 if (MaskVal == 0) return SDValue(); 2315 2316 // Finally, if this value fits in a 5 bit sext field, return it 2317 if (SignExtend32<5>(MaskVal) == MaskVal) 2318 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2319 return SDValue(); 2320 } 2321 2322 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2323 /// amount, otherwise return -1. 2324 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2325 EVT VT = N->getValueType(0); 2326 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2327 return -1; 2328 2329 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2330 2331 // Find the first non-undef value in the shuffle mask. 2332 unsigned i; 2333 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2334 /*search*/; 2335 2336 if (i == 4) return -1; // all undef. 2337 2338 // Otherwise, check to see if the rest of the elements are consecutively 2339 // numbered from this value. 2340 unsigned ShiftAmt = SVOp->getMaskElt(i); 2341 if (ShiftAmt < i) return -1; 2342 ShiftAmt -= i; 2343 2344 // Check the rest of the elements to see if they are consecutive. 2345 for (++i; i != 4; ++i) 2346 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2347 return -1; 2348 2349 return ShiftAmt; 2350 } 2351 2352 //===----------------------------------------------------------------------===// 2353 // Addressing Mode Selection 2354 //===----------------------------------------------------------------------===// 2355 2356 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2357 /// or 64-bit immediate, and if the value can be accurately represented as a 2358 /// sign extension from a 16-bit value. If so, this returns true and the 2359 /// immediate. 2360 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2361 if (!isa<ConstantSDNode>(N)) 2362 return false; 2363 2364 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2365 if (N->getValueType(0) == MVT::i32) 2366 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2367 else 2368 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2369 } 2370 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2371 return isIntS16Immediate(Op.getNode(), Imm); 2372 } 2373 2374 2375 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2376 /// be represented as an indexed [r+r] operation. 2377 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2378 SDValue &Index, 2379 SelectionDAG &DAG) const { 2380 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2381 UI != E; ++UI) { 2382 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2383 if (Memop->getMemoryVT() == MVT::f64) { 2384 Base = N.getOperand(0); 2385 Index = N.getOperand(1); 2386 return true; 2387 } 2388 } 2389 } 2390 return false; 2391 } 2392 2393 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2394 /// can be represented as an indexed [r+r] operation. Returns false if it 2395 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2396 /// non-zero and N can be represented by a base register plus a signed 16-bit 2397 /// displacement, make a more precise judgement by checking (displacement % \p 2398 /// EncodingAlignment). 2399 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2400 SDValue &Index, SelectionDAG &DAG, 2401 unsigned EncodingAlignment) const { 2402 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2403 // a [pc+imm]. 2404 if (SelectAddressPCRel(N, Base)) 2405 return false; 2406 2407 int16_t imm = 0; 2408 if (N.getOpcode() == ISD::ADD) { 2409 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2410 // SPE load/store can only handle 8-bit offsets. 2411 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2412 return true; 2413 if (isIntS16Immediate(N.getOperand(1), imm) && 2414 (!EncodingAlignment || !(imm % EncodingAlignment))) 2415 return false; // r+i 2416 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2417 return false; // r+i 2418 2419 Base = N.getOperand(0); 2420 Index = N.getOperand(1); 2421 return true; 2422 } else if (N.getOpcode() == ISD::OR) { 2423 if (isIntS16Immediate(N.getOperand(1), imm) && 2424 (!EncodingAlignment || !(imm % EncodingAlignment))) 2425 return false; // r+i can fold it if we can. 2426 2427 // If this is an or of disjoint bitfields, we can codegen this as an add 2428 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2429 // disjoint. 2430 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2431 2432 if (LHSKnown.Zero.getBoolValue()) { 2433 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2434 // If all of the bits are known zero on the LHS or RHS, the add won't 2435 // carry. 2436 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2437 Base = N.getOperand(0); 2438 Index = N.getOperand(1); 2439 return true; 2440 } 2441 } 2442 } 2443 2444 return false; 2445 } 2446 2447 // If we happen to be doing an i64 load or store into a stack slot that has 2448 // less than a 4-byte alignment, then the frame-index elimination may need to 2449 // use an indexed load or store instruction (because the offset may not be a 2450 // multiple of 4). The extra register needed to hold the offset comes from the 2451 // register scavenger, and it is possible that the scavenger will need to use 2452 // an emergency spill slot. As a result, we need to make sure that a spill slot 2453 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2454 // stack slot. 2455 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2456 // FIXME: This does not handle the LWA case. 2457 if (VT != MVT::i64) 2458 return; 2459 2460 // NOTE: We'll exclude negative FIs here, which come from argument 2461 // lowering, because there are no known test cases triggering this problem 2462 // using packed structures (or similar). We can remove this exclusion if 2463 // we find such a test case. The reason why this is so test-case driven is 2464 // because this entire 'fixup' is only to prevent crashes (from the 2465 // register scavenger) on not-really-valid inputs. For example, if we have: 2466 // %a = alloca i1 2467 // %b = bitcast i1* %a to i64* 2468 // store i64* a, i64 b 2469 // then the store should really be marked as 'align 1', but is not. If it 2470 // were marked as 'align 1' then the indexed form would have been 2471 // instruction-selected initially, and the problem this 'fixup' is preventing 2472 // won't happen regardless. 2473 if (FrameIdx < 0) 2474 return; 2475 2476 MachineFunction &MF = DAG.getMachineFunction(); 2477 MachineFrameInfo &MFI = MF.getFrameInfo(); 2478 2479 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2480 return; 2481 2482 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2483 FuncInfo->setHasNonRISpills(); 2484 } 2485 2486 /// Returns true if the address N can be represented by a base register plus 2487 /// a signed 16-bit displacement [r+imm], and if it is not better 2488 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2489 /// displacements that are multiples of that value. 2490 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2491 SDValue &Base, 2492 SelectionDAG &DAG, 2493 unsigned EncodingAlignment) const { 2494 // FIXME dl should come from parent load or store, not from address 2495 SDLoc dl(N); 2496 2497 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2498 // a [pc+imm]. 2499 if (SelectAddressPCRel(N, Base)) 2500 return false; 2501 2502 // If this can be more profitably realized as r+r, fail. 2503 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2504 return false; 2505 2506 if (N.getOpcode() == ISD::ADD) { 2507 int16_t imm = 0; 2508 if (isIntS16Immediate(N.getOperand(1), imm) && 2509 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2510 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2511 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2512 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2513 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2514 } else { 2515 Base = N.getOperand(0); 2516 } 2517 return true; // [r+i] 2518 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2519 // Match LOAD (ADD (X, Lo(G))). 2520 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2521 && "Cannot handle constant offsets yet!"); 2522 Disp = N.getOperand(1).getOperand(0); // The global address. 2523 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2524 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2525 Disp.getOpcode() == ISD::TargetConstantPool || 2526 Disp.getOpcode() == ISD::TargetJumpTable); 2527 Base = N.getOperand(0); 2528 return true; // [&g+r] 2529 } 2530 } else if (N.getOpcode() == ISD::OR) { 2531 int16_t imm = 0; 2532 if (isIntS16Immediate(N.getOperand(1), imm) && 2533 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2534 // If this is an or of disjoint bitfields, we can codegen this as an add 2535 // (for better address arithmetic) if the LHS and RHS of the OR are 2536 // provably disjoint. 2537 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2538 2539 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2540 // If all of the bits are known zero on the LHS or RHS, the add won't 2541 // carry. 2542 if (FrameIndexSDNode *FI = 2543 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2544 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2545 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2546 } else { 2547 Base = N.getOperand(0); 2548 } 2549 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2550 return true; 2551 } 2552 } 2553 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2554 // Loading from a constant address. 2555 2556 // If this address fits entirely in a 16-bit sext immediate field, codegen 2557 // this as "d, 0" 2558 int16_t Imm; 2559 if (isIntS16Immediate(CN, Imm) && 2560 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2561 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2562 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2563 CN->getValueType(0)); 2564 return true; 2565 } 2566 2567 // Handle 32-bit sext immediates with LIS + addr mode. 2568 if ((CN->getValueType(0) == MVT::i32 || 2569 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2570 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2571 int Addr = (int)CN->getZExtValue(); 2572 2573 // Otherwise, break this down into an LIS + disp. 2574 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2575 2576 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2577 MVT::i32); 2578 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2579 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2580 return true; 2581 } 2582 } 2583 2584 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2585 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2586 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2587 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2588 } else 2589 Base = N; 2590 return true; // [r+0] 2591 } 2592 2593 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2594 /// represented as an indexed [r+r] operation. 2595 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2596 SDValue &Index, 2597 SelectionDAG &DAG) const { 2598 // Check to see if we can easily represent this as an [r+r] address. This 2599 // will fail if it thinks that the address is more profitably represented as 2600 // reg+imm, e.g. where imm = 0. 2601 if (SelectAddressRegReg(N, Base, Index, DAG)) 2602 return true; 2603 2604 // If the address is the result of an add, we will utilize the fact that the 2605 // address calculation includes an implicit add. However, we can reduce 2606 // register pressure if we do not materialize a constant just for use as the 2607 // index register. We only get rid of the add if it is not an add of a 2608 // value and a 16-bit signed constant and both have a single use. 2609 int16_t imm = 0; 2610 if (N.getOpcode() == ISD::ADD && 2611 (!isIntS16Immediate(N.getOperand(1), imm) || 2612 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2613 Base = N.getOperand(0); 2614 Index = N.getOperand(1); 2615 return true; 2616 } 2617 2618 // Otherwise, do it the hard way, using R0 as the base register. 2619 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2620 N.getValueType()); 2621 Index = N; 2622 return true; 2623 } 2624 2625 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2626 Ty *PCRelCand = dyn_cast<Ty>(N); 2627 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2628 } 2629 2630 /// Returns true if this address is a PC Relative address. 2631 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2632 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2633 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2634 // This is a materialize PC Relative node. Always select this as PC Relative. 2635 Base = N; 2636 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2637 return true; 2638 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2639 isValidPCRelNode<GlobalAddressSDNode>(N) || 2640 isValidPCRelNode<JumpTableSDNode>(N) || 2641 isValidPCRelNode<BlockAddressSDNode>(N)) 2642 return true; 2643 return false; 2644 } 2645 2646 /// Returns true if we should use a direct load into vector instruction 2647 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2648 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2649 2650 // If there are any other uses other than scalar to vector, then we should 2651 // keep it as a scalar load -> direct move pattern to prevent multiple 2652 // loads. 2653 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2654 if (!LD) 2655 return false; 2656 2657 EVT MemVT = LD->getMemoryVT(); 2658 if (!MemVT.isSimple()) 2659 return false; 2660 switch(MemVT.getSimpleVT().SimpleTy) { 2661 case MVT::i64: 2662 break; 2663 case MVT::i32: 2664 if (!ST.hasP8Vector()) 2665 return false; 2666 break; 2667 case MVT::i16: 2668 case MVT::i8: 2669 if (!ST.hasP9Vector()) 2670 return false; 2671 break; 2672 default: 2673 return false; 2674 } 2675 2676 SDValue LoadedVal(N, 0); 2677 if (!LoadedVal.hasOneUse()) 2678 return false; 2679 2680 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2681 UI != UE; ++UI) 2682 if (UI.getUse().get().getResNo() == 0 && 2683 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2684 return false; 2685 2686 return true; 2687 } 2688 2689 /// getPreIndexedAddressParts - returns true by value, base pointer and 2690 /// offset pointer and addressing mode by reference if the node's address 2691 /// can be legally represented as pre-indexed load / store address. 2692 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2693 SDValue &Offset, 2694 ISD::MemIndexedMode &AM, 2695 SelectionDAG &DAG) const { 2696 if (DisablePPCPreinc) return false; 2697 2698 bool isLoad = true; 2699 SDValue Ptr; 2700 EVT VT; 2701 unsigned Alignment; 2702 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2703 Ptr = LD->getBasePtr(); 2704 VT = LD->getMemoryVT(); 2705 Alignment = LD->getAlignment(); 2706 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2707 Ptr = ST->getBasePtr(); 2708 VT = ST->getMemoryVT(); 2709 Alignment = ST->getAlignment(); 2710 isLoad = false; 2711 } else 2712 return false; 2713 2714 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2715 // instructions because we can fold these into a more efficient instruction 2716 // instead, (such as LXSD). 2717 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2718 return false; 2719 } 2720 2721 // PowerPC doesn't have preinc load/store instructions for vectors (except 2722 // for QPX, which does have preinc r+r forms). 2723 if (VT.isVector()) { 2724 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2725 return false; 2726 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2727 AM = ISD::PRE_INC; 2728 return true; 2729 } 2730 } 2731 2732 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2733 // Common code will reject creating a pre-inc form if the base pointer 2734 // is a frame index, or if N is a store and the base pointer is either 2735 // the same as or a predecessor of the value being stored. Check for 2736 // those situations here, and try with swapped Base/Offset instead. 2737 bool Swap = false; 2738 2739 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2740 Swap = true; 2741 else if (!isLoad) { 2742 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2743 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2744 Swap = true; 2745 } 2746 2747 if (Swap) 2748 std::swap(Base, Offset); 2749 2750 AM = ISD::PRE_INC; 2751 return true; 2752 } 2753 2754 // LDU/STU can only handle immediates that are a multiple of 4. 2755 if (VT != MVT::i64) { 2756 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2757 return false; 2758 } else { 2759 // LDU/STU need an address with at least 4-byte alignment. 2760 if (Alignment < 4) 2761 return false; 2762 2763 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2764 return false; 2765 } 2766 2767 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2768 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2769 // sext i32 to i64 when addr mode is r+i. 2770 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2771 LD->getExtensionType() == ISD::SEXTLOAD && 2772 isa<ConstantSDNode>(Offset)) 2773 return false; 2774 } 2775 2776 AM = ISD::PRE_INC; 2777 return true; 2778 } 2779 2780 //===----------------------------------------------------------------------===// 2781 // LowerOperation implementation 2782 //===----------------------------------------------------------------------===// 2783 2784 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2785 /// and LoOpFlags to the target MO flags. 2786 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2787 unsigned &HiOpFlags, unsigned &LoOpFlags, 2788 const GlobalValue *GV = nullptr) { 2789 HiOpFlags = PPCII::MO_HA; 2790 LoOpFlags = PPCII::MO_LO; 2791 2792 // Don't use the pic base if not in PIC relocation model. 2793 if (IsPIC) { 2794 HiOpFlags |= PPCII::MO_PIC_FLAG; 2795 LoOpFlags |= PPCII::MO_PIC_FLAG; 2796 } 2797 } 2798 2799 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2800 SelectionDAG &DAG) { 2801 SDLoc DL(HiPart); 2802 EVT PtrVT = HiPart.getValueType(); 2803 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2804 2805 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2806 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2807 2808 // With PIC, the first instruction is actually "GR+hi(&G)". 2809 if (isPIC) 2810 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2811 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2812 2813 // Generate non-pic code that has direct accesses to the constant pool. 2814 // The address of the global is just (hi(&g)+lo(&g)). 2815 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2816 } 2817 2818 static void setUsesTOCBasePtr(MachineFunction &MF) { 2819 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2820 FuncInfo->setUsesTOCBasePtr(); 2821 } 2822 2823 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2824 setUsesTOCBasePtr(DAG.getMachineFunction()); 2825 } 2826 2827 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2828 SDValue GA) const { 2829 const bool Is64Bit = Subtarget.isPPC64(); 2830 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2831 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2832 : Subtarget.isAIXABI() 2833 ? DAG.getRegister(PPC::R2, VT) 2834 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2835 SDValue Ops[] = { GA, Reg }; 2836 return DAG.getMemIntrinsicNode( 2837 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2838 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2839 MachineMemOperand::MOLoad); 2840 } 2841 2842 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2843 SelectionDAG &DAG) const { 2844 EVT PtrVT = Op.getValueType(); 2845 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2846 const Constant *C = CP->getConstVal(); 2847 2848 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2849 // The actual address of the GlobalValue is stored in the TOC. 2850 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2851 if (Subtarget.isUsingPCRelativeCalls()) { 2852 SDLoc DL(CP); 2853 EVT Ty = getPointerTy(DAG.getDataLayout()); 2854 SDValue ConstPool = DAG.getTargetConstantPool( 2855 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2856 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2857 } 2858 setUsesTOCBasePtr(DAG); 2859 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2860 return getTOCEntry(DAG, SDLoc(CP), GA); 2861 } 2862 2863 unsigned MOHiFlag, MOLoFlag; 2864 bool IsPIC = isPositionIndependent(); 2865 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2866 2867 if (IsPIC && Subtarget.isSVR4ABI()) { 2868 SDValue GA = 2869 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2870 return getTOCEntry(DAG, SDLoc(CP), GA); 2871 } 2872 2873 SDValue CPIHi = 2874 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2875 SDValue CPILo = 2876 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2877 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2878 } 2879 2880 // For 64-bit PowerPC, prefer the more compact relative encodings. 2881 // This trades 32 bits per jump table entry for one or two instructions 2882 // on the jump site. 2883 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2884 if (isJumpTableRelative()) 2885 return MachineJumpTableInfo::EK_LabelDifference32; 2886 2887 return TargetLowering::getJumpTableEncoding(); 2888 } 2889 2890 bool PPCTargetLowering::isJumpTableRelative() const { 2891 if (UseAbsoluteJumpTables) 2892 return false; 2893 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2894 return true; 2895 return TargetLowering::isJumpTableRelative(); 2896 } 2897 2898 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2899 SelectionDAG &DAG) const { 2900 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2901 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2902 2903 switch (getTargetMachine().getCodeModel()) { 2904 case CodeModel::Small: 2905 case CodeModel::Medium: 2906 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2907 default: 2908 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2909 getPointerTy(DAG.getDataLayout())); 2910 } 2911 } 2912 2913 const MCExpr * 2914 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2915 unsigned JTI, 2916 MCContext &Ctx) const { 2917 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2918 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2919 2920 switch (getTargetMachine().getCodeModel()) { 2921 case CodeModel::Small: 2922 case CodeModel::Medium: 2923 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2924 default: 2925 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2926 } 2927 } 2928 2929 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2930 EVT PtrVT = Op.getValueType(); 2931 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2932 2933 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2934 if (Subtarget.isUsingPCRelativeCalls()) { 2935 SDLoc DL(JT); 2936 EVT Ty = getPointerTy(DAG.getDataLayout()); 2937 SDValue GA = 2938 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 2939 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2940 return MatAddr; 2941 } 2942 2943 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2944 // The actual address of the GlobalValue is stored in the TOC. 2945 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2946 setUsesTOCBasePtr(DAG); 2947 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2948 return getTOCEntry(DAG, SDLoc(JT), GA); 2949 } 2950 2951 unsigned MOHiFlag, MOLoFlag; 2952 bool IsPIC = isPositionIndependent(); 2953 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2954 2955 if (IsPIC && Subtarget.isSVR4ABI()) { 2956 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2957 PPCII::MO_PIC_FLAG); 2958 return getTOCEntry(DAG, SDLoc(GA), GA); 2959 } 2960 2961 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2962 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2963 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2964 } 2965 2966 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2967 SelectionDAG &DAG) const { 2968 EVT PtrVT = Op.getValueType(); 2969 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2970 const BlockAddress *BA = BASDN->getBlockAddress(); 2971 2972 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 2973 if (Subtarget.isUsingPCRelativeCalls()) { 2974 SDLoc DL(BASDN); 2975 EVT Ty = getPointerTy(DAG.getDataLayout()); 2976 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 2977 PPCII::MO_PCREL_FLAG); 2978 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 2979 return MatAddr; 2980 } 2981 2982 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2983 // The actual BlockAddress is stored in the TOC. 2984 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2985 setUsesTOCBasePtr(DAG); 2986 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2987 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2988 } 2989 2990 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2991 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2992 return getTOCEntry( 2993 DAG, SDLoc(BASDN), 2994 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2995 2996 unsigned MOHiFlag, MOLoFlag; 2997 bool IsPIC = isPositionIndependent(); 2998 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2999 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3000 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3001 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3002 } 3003 3004 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3005 SelectionDAG &DAG) const { 3006 // FIXME: TLS addresses currently use medium model code sequences, 3007 // which is the most useful form. Eventually support for small and 3008 // large models could be added if users need it, at the cost of 3009 // additional complexity. 3010 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3011 if (DAG.getTarget().useEmulatedTLS()) 3012 return LowerToTLSEmulatedModel(GA, DAG); 3013 3014 SDLoc dl(GA); 3015 const GlobalValue *GV = GA->getGlobal(); 3016 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3017 bool is64bit = Subtarget.isPPC64(); 3018 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3019 PICLevel::Level picLevel = M->getPICLevel(); 3020 3021 const TargetMachine &TM = getTargetMachine(); 3022 TLSModel::Model Model = TM.getTLSModel(GV); 3023 3024 if (Model == TLSModel::LocalExec) { 3025 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3026 PPCII::MO_TPREL_HA); 3027 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3028 PPCII::MO_TPREL_LO); 3029 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3030 : DAG.getRegister(PPC::R2, MVT::i32); 3031 3032 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3033 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3034 } 3035 3036 if (Model == TLSModel::InitialExec) { 3037 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3038 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3039 PPCII::MO_TLS); 3040 SDValue GOTPtr; 3041 if (is64bit) { 3042 setUsesTOCBasePtr(DAG); 3043 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3044 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 3045 PtrVT, GOTReg, TGA); 3046 } else { 3047 if (!TM.isPositionIndependent()) 3048 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3049 else if (picLevel == PICLevel::SmallPIC) 3050 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3051 else 3052 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3053 } 3054 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 3055 PtrVT, TGA, GOTPtr); 3056 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3057 } 3058 3059 if (Model == TLSModel::GeneralDynamic) { 3060 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3061 SDValue GOTPtr; 3062 if (is64bit) { 3063 setUsesTOCBasePtr(DAG); 3064 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3065 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3066 GOTReg, TGA); 3067 } else { 3068 if (picLevel == PICLevel::SmallPIC) 3069 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3070 else 3071 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3072 } 3073 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3074 GOTPtr, TGA, TGA); 3075 } 3076 3077 if (Model == TLSModel::LocalDynamic) { 3078 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3079 SDValue GOTPtr; 3080 if (is64bit) { 3081 setUsesTOCBasePtr(DAG); 3082 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3083 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3084 GOTReg, TGA); 3085 } else { 3086 if (picLevel == PICLevel::SmallPIC) 3087 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3088 else 3089 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3090 } 3091 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3092 PtrVT, GOTPtr, TGA, TGA); 3093 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3094 PtrVT, TLSAddr, TGA); 3095 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3096 } 3097 3098 llvm_unreachable("Unknown TLS model!"); 3099 } 3100 3101 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3102 SelectionDAG &DAG) const { 3103 EVT PtrVT = Op.getValueType(); 3104 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3105 SDLoc DL(GSDN); 3106 const GlobalValue *GV = GSDN->getGlobal(); 3107 3108 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3109 // The actual address of the GlobalValue is stored in the TOC. 3110 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3111 if (Subtarget.isUsingPCRelativeCalls()) { 3112 EVT Ty = getPointerTy(DAG.getDataLayout()); 3113 if (isAccessedAsGotIndirect(Op)) { 3114 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3115 PPCII::MO_PCREL_FLAG | 3116 PPCII::MO_GOT_FLAG); 3117 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3118 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3119 MachinePointerInfo()); 3120 return Load; 3121 } else { 3122 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3123 PPCII::MO_PCREL_FLAG); 3124 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3125 } 3126 } 3127 setUsesTOCBasePtr(DAG); 3128 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3129 return getTOCEntry(DAG, DL, GA); 3130 } 3131 3132 unsigned MOHiFlag, MOLoFlag; 3133 bool IsPIC = isPositionIndependent(); 3134 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3135 3136 if (IsPIC && Subtarget.isSVR4ABI()) { 3137 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3138 GSDN->getOffset(), 3139 PPCII::MO_PIC_FLAG); 3140 return getTOCEntry(DAG, DL, GA); 3141 } 3142 3143 SDValue GAHi = 3144 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3145 SDValue GALo = 3146 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3147 3148 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3149 } 3150 3151 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3152 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3153 SDLoc dl(Op); 3154 3155 if (Op.getValueType() == MVT::v2i64) { 3156 // When the operands themselves are v2i64 values, we need to do something 3157 // special because VSX has no underlying comparison operations for these. 3158 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3159 // Equality can be handled by casting to the legal type for Altivec 3160 // comparisons, everything else needs to be expanded. 3161 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3162 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3163 DAG.getSetCC(dl, MVT::v4i32, 3164 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3165 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3166 CC)); 3167 } 3168 3169 return SDValue(); 3170 } 3171 3172 // We handle most of these in the usual way. 3173 return Op; 3174 } 3175 3176 // If we're comparing for equality to zero, expose the fact that this is 3177 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3178 // fold the new nodes. 3179 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3180 return V; 3181 3182 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3183 // Leave comparisons against 0 and -1 alone for now, since they're usually 3184 // optimized. FIXME: revisit this when we can custom lower all setcc 3185 // optimizations. 3186 if (C->isAllOnesValue() || C->isNullValue()) 3187 return SDValue(); 3188 } 3189 3190 // If we have an integer seteq/setne, turn it into a compare against zero 3191 // by xor'ing the rhs with the lhs, which is faster than setting a 3192 // condition register, reading it back out, and masking the correct bit. The 3193 // normal approach here uses sub to do this instead of xor. Using xor exposes 3194 // the result to other bit-twiddling opportunities. 3195 EVT LHSVT = Op.getOperand(0).getValueType(); 3196 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3197 EVT VT = Op.getValueType(); 3198 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3199 Op.getOperand(1)); 3200 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3201 } 3202 return SDValue(); 3203 } 3204 3205 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3206 SDNode *Node = Op.getNode(); 3207 EVT VT = Node->getValueType(0); 3208 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3209 SDValue InChain = Node->getOperand(0); 3210 SDValue VAListPtr = Node->getOperand(1); 3211 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3212 SDLoc dl(Node); 3213 3214 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3215 3216 // gpr_index 3217 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3218 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3219 InChain = GprIndex.getValue(1); 3220 3221 if (VT == MVT::i64) { 3222 // Check if GprIndex is even 3223 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3224 DAG.getConstant(1, dl, MVT::i32)); 3225 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3226 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3227 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3228 DAG.getConstant(1, dl, MVT::i32)); 3229 // Align GprIndex to be even if it isn't 3230 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3231 GprIndex); 3232 } 3233 3234 // fpr index is 1 byte after gpr 3235 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3236 DAG.getConstant(1, dl, MVT::i32)); 3237 3238 // fpr 3239 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3240 FprPtr, MachinePointerInfo(SV), MVT::i8); 3241 InChain = FprIndex.getValue(1); 3242 3243 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3244 DAG.getConstant(8, dl, MVT::i32)); 3245 3246 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3247 DAG.getConstant(4, dl, MVT::i32)); 3248 3249 // areas 3250 SDValue OverflowArea = 3251 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3252 InChain = OverflowArea.getValue(1); 3253 3254 SDValue RegSaveArea = 3255 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3256 InChain = RegSaveArea.getValue(1); 3257 3258 // select overflow_area if index > 8 3259 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3260 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3261 3262 // adjustment constant gpr_index * 4/8 3263 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3264 VT.isInteger() ? GprIndex : FprIndex, 3265 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3266 MVT::i32)); 3267 3268 // OurReg = RegSaveArea + RegConstant 3269 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3270 RegConstant); 3271 3272 // Floating types are 32 bytes into RegSaveArea 3273 if (VT.isFloatingPoint()) 3274 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3275 DAG.getConstant(32, dl, MVT::i32)); 3276 3277 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3278 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3279 VT.isInteger() ? GprIndex : FprIndex, 3280 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3281 MVT::i32)); 3282 3283 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3284 VT.isInteger() ? VAListPtr : FprPtr, 3285 MachinePointerInfo(SV), MVT::i8); 3286 3287 // determine if we should load from reg_save_area or overflow_area 3288 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3289 3290 // increase overflow_area by 4/8 if gpr/fpr > 8 3291 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3292 DAG.getConstant(VT.isInteger() ? 4 : 8, 3293 dl, MVT::i32)); 3294 3295 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3296 OverflowAreaPlusN); 3297 3298 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3299 MachinePointerInfo(), MVT::i32); 3300 3301 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3302 } 3303 3304 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3305 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3306 3307 // We have to copy the entire va_list struct: 3308 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3309 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3310 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3311 false, true, false, MachinePointerInfo(), 3312 MachinePointerInfo()); 3313 } 3314 3315 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3316 SelectionDAG &DAG) const { 3317 if (Subtarget.isAIXABI()) 3318 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3319 3320 return Op.getOperand(0); 3321 } 3322 3323 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3324 SelectionDAG &DAG) const { 3325 if (Subtarget.isAIXABI()) 3326 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3327 3328 SDValue Chain = Op.getOperand(0); 3329 SDValue Trmp = Op.getOperand(1); // trampoline 3330 SDValue FPtr = Op.getOperand(2); // nested function 3331 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3332 SDLoc dl(Op); 3333 3334 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3335 bool isPPC64 = (PtrVT == MVT::i64); 3336 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3337 3338 TargetLowering::ArgListTy Args; 3339 TargetLowering::ArgListEntry Entry; 3340 3341 Entry.Ty = IntPtrTy; 3342 Entry.Node = Trmp; Args.push_back(Entry); 3343 3344 // TrampSize == (isPPC64 ? 48 : 40); 3345 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3346 isPPC64 ? MVT::i64 : MVT::i32); 3347 Args.push_back(Entry); 3348 3349 Entry.Node = FPtr; Args.push_back(Entry); 3350 Entry.Node = Nest; Args.push_back(Entry); 3351 3352 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3353 TargetLowering::CallLoweringInfo CLI(DAG); 3354 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3355 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3356 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3357 3358 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3359 return CallResult.second; 3360 } 3361 3362 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3363 MachineFunction &MF = DAG.getMachineFunction(); 3364 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3365 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3366 3367 SDLoc dl(Op); 3368 3369 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3370 // vastart just stores the address of the VarArgsFrameIndex slot into the 3371 // memory location argument. 3372 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3373 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3374 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3375 MachinePointerInfo(SV)); 3376 } 3377 3378 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3379 // We suppose the given va_list is already allocated. 3380 // 3381 // typedef struct { 3382 // char gpr; /* index into the array of 8 GPRs 3383 // * stored in the register save area 3384 // * gpr=0 corresponds to r3, 3385 // * gpr=1 to r4, etc. 3386 // */ 3387 // char fpr; /* index into the array of 8 FPRs 3388 // * stored in the register save area 3389 // * fpr=0 corresponds to f1, 3390 // * fpr=1 to f2, etc. 3391 // */ 3392 // char *overflow_arg_area; 3393 // /* location on stack that holds 3394 // * the next overflow argument 3395 // */ 3396 // char *reg_save_area; 3397 // /* where r3:r10 and f1:f8 (if saved) 3398 // * are stored 3399 // */ 3400 // } va_list[1]; 3401 3402 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3403 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3404 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3405 PtrVT); 3406 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3407 PtrVT); 3408 3409 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3410 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3411 3412 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3413 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3414 3415 uint64_t FPROffset = 1; 3416 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3417 3418 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3419 3420 // Store first byte : number of int regs 3421 SDValue firstStore = 3422 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3423 MachinePointerInfo(SV), MVT::i8); 3424 uint64_t nextOffset = FPROffset; 3425 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3426 ConstFPROffset); 3427 3428 // Store second byte : number of float regs 3429 SDValue secondStore = 3430 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3431 MachinePointerInfo(SV, nextOffset), MVT::i8); 3432 nextOffset += StackOffset; 3433 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3434 3435 // Store second word : arguments given on stack 3436 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3437 MachinePointerInfo(SV, nextOffset)); 3438 nextOffset += FrameOffset; 3439 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3440 3441 // Store third word : arguments given in registers 3442 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3443 MachinePointerInfo(SV, nextOffset)); 3444 } 3445 3446 /// FPR - The set of FP registers that should be allocated for arguments 3447 /// on Darwin and AIX. 3448 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3449 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3450 PPC::F11, PPC::F12, PPC::F13}; 3451 3452 /// QFPR - The set of QPX registers that should be allocated for arguments. 3453 static const MCPhysReg QFPR[] = { 3454 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3455 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3456 3457 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3458 /// the stack. 3459 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3460 unsigned PtrByteSize) { 3461 unsigned ArgSize = ArgVT.getStoreSize(); 3462 if (Flags.isByVal()) 3463 ArgSize = Flags.getByValSize(); 3464 3465 // Round up to multiples of the pointer size, except for array members, 3466 // which are always packed. 3467 if (!Flags.isInConsecutiveRegs()) 3468 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3469 3470 return ArgSize; 3471 } 3472 3473 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3474 /// on the stack. 3475 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3476 ISD::ArgFlagsTy Flags, 3477 unsigned PtrByteSize) { 3478 Align Alignment(PtrByteSize); 3479 3480 // Altivec parameters are padded to a 16 byte boundary. 3481 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3482 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3483 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3484 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3485 Alignment = Align(16); 3486 // QPX vector types stored in double-precision are padded to a 32 byte 3487 // boundary. 3488 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3489 Alignment = Align(32); 3490 3491 // ByVal parameters are aligned as requested. 3492 if (Flags.isByVal()) { 3493 auto BVAlign = Flags.getNonZeroByValAlign(); 3494 if (BVAlign > PtrByteSize) { 3495 if (BVAlign.value() % PtrByteSize != 0) 3496 llvm_unreachable( 3497 "ByVal alignment is not a multiple of the pointer size"); 3498 3499 Alignment = BVAlign; 3500 } 3501 } 3502 3503 // Array members are always packed to their original alignment. 3504 if (Flags.isInConsecutiveRegs()) { 3505 // If the array member was split into multiple registers, the first 3506 // needs to be aligned to the size of the full type. (Except for 3507 // ppcf128, which is only aligned as its f64 components.) 3508 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3509 Alignment = Align(OrigVT.getStoreSize()); 3510 else 3511 Alignment = Align(ArgVT.getStoreSize()); 3512 } 3513 3514 return Alignment; 3515 } 3516 3517 /// CalculateStackSlotUsed - Return whether this argument will use its 3518 /// stack slot (instead of being passed in registers). ArgOffset, 3519 /// AvailableFPRs, and AvailableVRs must hold the current argument 3520 /// position, and will be updated to account for this argument. 3521 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3522 ISD::ArgFlagsTy Flags, 3523 unsigned PtrByteSize, 3524 unsigned LinkageSize, 3525 unsigned ParamAreaSize, 3526 unsigned &ArgOffset, 3527 unsigned &AvailableFPRs, 3528 unsigned &AvailableVRs, bool HasQPX) { 3529 bool UseMemory = false; 3530 3531 // Respect alignment of argument on the stack. 3532 Align Alignment = 3533 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3534 ArgOffset = alignTo(ArgOffset, Alignment); 3535 // If there's no space left in the argument save area, we must 3536 // use memory (this check also catches zero-sized arguments). 3537 if (ArgOffset >= LinkageSize + ParamAreaSize) 3538 UseMemory = true; 3539 3540 // Allocate argument on the stack. 3541 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3542 if (Flags.isInConsecutiveRegsLast()) 3543 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3544 // If we overran the argument save area, we must use memory 3545 // (this check catches arguments passed partially in memory) 3546 if (ArgOffset > LinkageSize + ParamAreaSize) 3547 UseMemory = true; 3548 3549 // However, if the argument is actually passed in an FPR or a VR, 3550 // we don't use memory after all. 3551 if (!Flags.isByVal()) { 3552 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3553 // QPX registers overlap with the scalar FP registers. 3554 (HasQPX && (ArgVT == MVT::v4f32 || 3555 ArgVT == MVT::v4f64 || 3556 ArgVT == MVT::v4i1))) 3557 if (AvailableFPRs > 0) { 3558 --AvailableFPRs; 3559 return false; 3560 } 3561 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3562 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3563 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3564 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3565 if (AvailableVRs > 0) { 3566 --AvailableVRs; 3567 return false; 3568 } 3569 } 3570 3571 return UseMemory; 3572 } 3573 3574 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3575 /// ensure minimum alignment required for target. 3576 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3577 unsigned NumBytes) { 3578 return alignTo(NumBytes, Lowering->getStackAlign()); 3579 } 3580 3581 SDValue PPCTargetLowering::LowerFormalArguments( 3582 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3583 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3584 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3585 if (Subtarget.isAIXABI()) 3586 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3587 InVals); 3588 if (Subtarget.is64BitELFABI()) 3589 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3590 InVals); 3591 if (Subtarget.is32BitELFABI()) 3592 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3593 InVals); 3594 3595 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3596 InVals); 3597 } 3598 3599 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3600 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3601 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3602 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3603 3604 // 32-bit SVR4 ABI Stack Frame Layout: 3605 // +-----------------------------------+ 3606 // +--> | Back chain | 3607 // | +-----------------------------------+ 3608 // | | Floating-point register save area | 3609 // | +-----------------------------------+ 3610 // | | General register save area | 3611 // | +-----------------------------------+ 3612 // | | CR save word | 3613 // | +-----------------------------------+ 3614 // | | VRSAVE save word | 3615 // | +-----------------------------------+ 3616 // | | Alignment padding | 3617 // | +-----------------------------------+ 3618 // | | Vector register save area | 3619 // | +-----------------------------------+ 3620 // | | Local variable space | 3621 // | +-----------------------------------+ 3622 // | | Parameter list area | 3623 // | +-----------------------------------+ 3624 // | | LR save word | 3625 // | +-----------------------------------+ 3626 // SP--> +--- | Back chain | 3627 // +-----------------------------------+ 3628 // 3629 // Specifications: 3630 // System V Application Binary Interface PowerPC Processor Supplement 3631 // AltiVec Technology Programming Interface Manual 3632 3633 MachineFunction &MF = DAG.getMachineFunction(); 3634 MachineFrameInfo &MFI = MF.getFrameInfo(); 3635 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3636 3637 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3638 // Potential tail calls could cause overwriting of argument stack slots. 3639 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3640 (CallConv == CallingConv::Fast)); 3641 const Align PtrAlign(4); 3642 3643 // Assign locations to all of the incoming arguments. 3644 SmallVector<CCValAssign, 16> ArgLocs; 3645 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3646 *DAG.getContext()); 3647 3648 // Reserve space for the linkage area on the stack. 3649 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3650 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3651 if (useSoftFloat()) 3652 CCInfo.PreAnalyzeFormalArguments(Ins); 3653 3654 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3655 CCInfo.clearWasPPCF128(); 3656 3657 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3658 CCValAssign &VA = ArgLocs[i]; 3659 3660 // Arguments stored in registers. 3661 if (VA.isRegLoc()) { 3662 const TargetRegisterClass *RC; 3663 EVT ValVT = VA.getValVT(); 3664 3665 switch (ValVT.getSimpleVT().SimpleTy) { 3666 default: 3667 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3668 case MVT::i1: 3669 case MVT::i32: 3670 RC = &PPC::GPRCRegClass; 3671 break; 3672 case MVT::f32: 3673 if (Subtarget.hasP8Vector()) 3674 RC = &PPC::VSSRCRegClass; 3675 else if (Subtarget.hasSPE()) 3676 RC = &PPC::GPRCRegClass; 3677 else 3678 RC = &PPC::F4RCRegClass; 3679 break; 3680 case MVT::f64: 3681 if (Subtarget.hasVSX()) 3682 RC = &PPC::VSFRCRegClass; 3683 else if (Subtarget.hasSPE()) 3684 // SPE passes doubles in GPR pairs. 3685 RC = &PPC::GPRCRegClass; 3686 else 3687 RC = &PPC::F8RCRegClass; 3688 break; 3689 case MVT::v16i8: 3690 case MVT::v8i16: 3691 case MVT::v4i32: 3692 RC = &PPC::VRRCRegClass; 3693 break; 3694 case MVT::v4f32: 3695 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3696 break; 3697 case MVT::v2f64: 3698 case MVT::v2i64: 3699 RC = &PPC::VRRCRegClass; 3700 break; 3701 case MVT::v4f64: 3702 RC = &PPC::QFRCRegClass; 3703 break; 3704 case MVT::v4i1: 3705 RC = &PPC::QBRCRegClass; 3706 break; 3707 } 3708 3709 SDValue ArgValue; 3710 // Transform the arguments stored in physical registers into 3711 // virtual ones. 3712 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3713 assert(i + 1 < e && "No second half of double precision argument"); 3714 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3715 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3716 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3717 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3718 if (!Subtarget.isLittleEndian()) 3719 std::swap (ArgValueLo, ArgValueHi); 3720 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3721 ArgValueHi); 3722 } else { 3723 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3724 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3725 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3726 if (ValVT == MVT::i1) 3727 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3728 } 3729 3730 InVals.push_back(ArgValue); 3731 } else { 3732 // Argument stored in memory. 3733 assert(VA.isMemLoc()); 3734 3735 // Get the extended size of the argument type in stack 3736 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3737 // Get the actual size of the argument type 3738 unsigned ObjSize = VA.getValVT().getStoreSize(); 3739 unsigned ArgOffset = VA.getLocMemOffset(); 3740 // Stack objects in PPC32 are right justified. 3741 ArgOffset += ArgSize - ObjSize; 3742 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3743 3744 // Create load nodes to retrieve arguments from the stack. 3745 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3746 InVals.push_back( 3747 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3748 } 3749 } 3750 3751 // Assign locations to all of the incoming aggregate by value arguments. 3752 // Aggregates passed by value are stored in the local variable space of the 3753 // caller's stack frame, right above the parameter list area. 3754 SmallVector<CCValAssign, 16> ByValArgLocs; 3755 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3756 ByValArgLocs, *DAG.getContext()); 3757 3758 // Reserve stack space for the allocations in CCInfo. 3759 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3760 3761 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3762 3763 // Area that is at least reserved in the caller of this function. 3764 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3765 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3766 3767 // Set the size that is at least reserved in caller of this function. Tail 3768 // call optimized function's reserved stack space needs to be aligned so that 3769 // taking the difference between two stack areas will result in an aligned 3770 // stack. 3771 MinReservedArea = 3772 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3773 FuncInfo->setMinReservedArea(MinReservedArea); 3774 3775 SmallVector<SDValue, 8> MemOps; 3776 3777 // If the function takes variable number of arguments, make a frame index for 3778 // the start of the first vararg value... for expansion of llvm.va_start. 3779 if (isVarArg) { 3780 static const MCPhysReg GPArgRegs[] = { 3781 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3782 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3783 }; 3784 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3785 3786 static const MCPhysReg FPArgRegs[] = { 3787 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3788 PPC::F8 3789 }; 3790 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3791 3792 if (useSoftFloat() || hasSPE()) 3793 NumFPArgRegs = 0; 3794 3795 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3796 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3797 3798 // Make room for NumGPArgRegs and NumFPArgRegs. 3799 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3800 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3801 3802 FuncInfo->setVarArgsStackOffset( 3803 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3804 CCInfo.getNextStackOffset(), true)); 3805 3806 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3807 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3808 3809 // The fixed integer arguments of a variadic function are stored to the 3810 // VarArgsFrameIndex on the stack so that they may be loaded by 3811 // dereferencing the result of va_next. 3812 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3813 // Get an existing live-in vreg, or add a new one. 3814 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3815 if (!VReg) 3816 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3817 3818 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3819 SDValue Store = 3820 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3821 MemOps.push_back(Store); 3822 // Increment the address by four for the next argument to store 3823 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3824 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3825 } 3826 3827 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3828 // is set. 3829 // The double arguments are stored to the VarArgsFrameIndex 3830 // on the stack. 3831 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3832 // Get an existing live-in vreg, or add a new one. 3833 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3834 if (!VReg) 3835 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3836 3837 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3838 SDValue Store = 3839 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3840 MemOps.push_back(Store); 3841 // Increment the address by eight for the next argument to store 3842 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3843 PtrVT); 3844 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3845 } 3846 } 3847 3848 if (!MemOps.empty()) 3849 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3850 3851 return Chain; 3852 } 3853 3854 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3855 // value to MVT::i64 and then truncate to the correct register size. 3856 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3857 EVT ObjectVT, SelectionDAG &DAG, 3858 SDValue ArgVal, 3859 const SDLoc &dl) const { 3860 if (Flags.isSExt()) 3861 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3862 DAG.getValueType(ObjectVT)); 3863 else if (Flags.isZExt()) 3864 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3865 DAG.getValueType(ObjectVT)); 3866 3867 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3868 } 3869 3870 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3871 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3872 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3873 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3874 // TODO: add description of PPC stack frame format, or at least some docs. 3875 // 3876 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3877 bool isLittleEndian = Subtarget.isLittleEndian(); 3878 MachineFunction &MF = DAG.getMachineFunction(); 3879 MachineFrameInfo &MFI = MF.getFrameInfo(); 3880 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3881 3882 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3883 "fastcc not supported on varargs functions"); 3884 3885 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3886 // Potential tail calls could cause overwriting of argument stack slots. 3887 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3888 (CallConv == CallingConv::Fast)); 3889 unsigned PtrByteSize = 8; 3890 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3891 3892 static const MCPhysReg GPR[] = { 3893 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3894 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3895 }; 3896 static const MCPhysReg VR[] = { 3897 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3898 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3899 }; 3900 3901 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3902 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3903 const unsigned Num_VR_Regs = array_lengthof(VR); 3904 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3905 3906 // Do a first pass over the arguments to determine whether the ABI 3907 // guarantees that our caller has allocated the parameter save area 3908 // on its stack frame. In the ELFv1 ABI, this is always the case; 3909 // in the ELFv2 ABI, it is true if this is a vararg function or if 3910 // any parameter is located in a stack slot. 3911 3912 bool HasParameterArea = !isELFv2ABI || isVarArg; 3913 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3914 unsigned NumBytes = LinkageSize; 3915 unsigned AvailableFPRs = Num_FPR_Regs; 3916 unsigned AvailableVRs = Num_VR_Regs; 3917 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3918 if (Ins[i].Flags.isNest()) 3919 continue; 3920 3921 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3922 PtrByteSize, LinkageSize, ParamAreaSize, 3923 NumBytes, AvailableFPRs, AvailableVRs, 3924 Subtarget.hasQPX())) 3925 HasParameterArea = true; 3926 } 3927 3928 // Add DAG nodes to load the arguments or copy them out of registers. On 3929 // entry to a function on PPC, the arguments start after the linkage area, 3930 // although the first ones are often in registers. 3931 3932 unsigned ArgOffset = LinkageSize; 3933 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3934 unsigned &QFPR_idx = FPR_idx; 3935 SmallVector<SDValue, 8> MemOps; 3936 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3937 unsigned CurArgIdx = 0; 3938 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3939 SDValue ArgVal; 3940 bool needsLoad = false; 3941 EVT ObjectVT = Ins[ArgNo].VT; 3942 EVT OrigVT = Ins[ArgNo].ArgVT; 3943 unsigned ObjSize = ObjectVT.getStoreSize(); 3944 unsigned ArgSize = ObjSize; 3945 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3946 if (Ins[ArgNo].isOrigArg()) { 3947 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3948 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3949 } 3950 // We re-align the argument offset for each argument, except when using the 3951 // fast calling convention, when we need to make sure we do that only when 3952 // we'll actually use a stack slot. 3953 unsigned CurArgOffset; 3954 Align Alignment; 3955 auto ComputeArgOffset = [&]() { 3956 /* Respect alignment of argument on the stack. */ 3957 Alignment = 3958 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3959 ArgOffset = alignTo(ArgOffset, Alignment); 3960 CurArgOffset = ArgOffset; 3961 }; 3962 3963 if (CallConv != CallingConv::Fast) { 3964 ComputeArgOffset(); 3965 3966 /* Compute GPR index associated with argument offset. */ 3967 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3968 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3969 } 3970 3971 // FIXME the codegen can be much improved in some cases. 3972 // We do not have to keep everything in memory. 3973 if (Flags.isByVal()) { 3974 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3975 3976 if (CallConv == CallingConv::Fast) 3977 ComputeArgOffset(); 3978 3979 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3980 ObjSize = Flags.getByValSize(); 3981 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3982 // Empty aggregate parameters do not take up registers. Examples: 3983 // struct { } a; 3984 // union { } b; 3985 // int c[0]; 3986 // etc. However, we have to provide a place-holder in InVals, so 3987 // pretend we have an 8-byte item at the current address for that 3988 // purpose. 3989 if (!ObjSize) { 3990 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3991 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3992 InVals.push_back(FIN); 3993 continue; 3994 } 3995 3996 // Create a stack object covering all stack doublewords occupied 3997 // by the argument. If the argument is (fully or partially) on 3998 // the stack, or if the argument is fully in registers but the 3999 // caller has allocated the parameter save anyway, we can refer 4000 // directly to the caller's stack frame. Otherwise, create a 4001 // local copy in our own frame. 4002 int FI; 4003 if (HasParameterArea || 4004 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4005 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4006 else 4007 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4008 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4009 4010 // Handle aggregates smaller than 8 bytes. 4011 if (ObjSize < PtrByteSize) { 4012 // The value of the object is its address, which differs from the 4013 // address of the enclosing doubleword on big-endian systems. 4014 SDValue Arg = FIN; 4015 if (!isLittleEndian) { 4016 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4017 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4018 } 4019 InVals.push_back(Arg); 4020 4021 if (GPR_idx != Num_GPR_Regs) { 4022 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4023 FuncInfo->addLiveInAttr(VReg, Flags); 4024 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4025 SDValue Store; 4026 4027 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4028 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4029 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4030 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4031 MachinePointerInfo(&*FuncArg), ObjType); 4032 } else { 4033 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4034 // store the whole register as-is to the parameter save area 4035 // slot. 4036 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4037 MachinePointerInfo(&*FuncArg)); 4038 } 4039 4040 MemOps.push_back(Store); 4041 } 4042 // Whether we copied from a register or not, advance the offset 4043 // into the parameter save area by a full doubleword. 4044 ArgOffset += PtrByteSize; 4045 continue; 4046 } 4047 4048 // The value of the object is its address, which is the address of 4049 // its first stack doubleword. 4050 InVals.push_back(FIN); 4051 4052 // Store whatever pieces of the object are in registers to memory. 4053 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4054 if (GPR_idx == Num_GPR_Regs) 4055 break; 4056 4057 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4058 FuncInfo->addLiveInAttr(VReg, Flags); 4059 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4060 SDValue Addr = FIN; 4061 if (j) { 4062 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4063 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4064 } 4065 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4066 MachinePointerInfo(&*FuncArg, j)); 4067 MemOps.push_back(Store); 4068 ++GPR_idx; 4069 } 4070 ArgOffset += ArgSize; 4071 continue; 4072 } 4073 4074 switch (ObjectVT.getSimpleVT().SimpleTy) { 4075 default: llvm_unreachable("Unhandled argument type!"); 4076 case MVT::i1: 4077 case MVT::i32: 4078 case MVT::i64: 4079 if (Flags.isNest()) { 4080 // The 'nest' parameter, if any, is passed in R11. 4081 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4082 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4083 4084 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4085 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4086 4087 break; 4088 } 4089 4090 // These can be scalar arguments or elements of an integer array type 4091 // passed directly. Clang may use those instead of "byval" aggregate 4092 // types to avoid forcing arguments to memory unnecessarily. 4093 if (GPR_idx != Num_GPR_Regs) { 4094 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4095 FuncInfo->addLiveInAttr(VReg, Flags); 4096 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4097 4098 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4099 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4100 // value to MVT::i64 and then truncate to the correct register size. 4101 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4102 } else { 4103 if (CallConv == CallingConv::Fast) 4104 ComputeArgOffset(); 4105 4106 needsLoad = true; 4107 ArgSize = PtrByteSize; 4108 } 4109 if (CallConv != CallingConv::Fast || needsLoad) 4110 ArgOffset += 8; 4111 break; 4112 4113 case MVT::f32: 4114 case MVT::f64: 4115 // These can be scalar arguments or elements of a float array type 4116 // passed directly. The latter are used to implement ELFv2 homogenous 4117 // float aggregates. 4118 if (FPR_idx != Num_FPR_Regs) { 4119 unsigned VReg; 4120 4121 if (ObjectVT == MVT::f32) 4122 VReg = MF.addLiveIn(FPR[FPR_idx], 4123 Subtarget.hasP8Vector() 4124 ? &PPC::VSSRCRegClass 4125 : &PPC::F4RCRegClass); 4126 else 4127 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4128 ? &PPC::VSFRCRegClass 4129 : &PPC::F8RCRegClass); 4130 4131 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4132 ++FPR_idx; 4133 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4134 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4135 // once we support fp <-> gpr moves. 4136 4137 // This can only ever happen in the presence of f32 array types, 4138 // since otherwise we never run out of FPRs before running out 4139 // of GPRs. 4140 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4141 FuncInfo->addLiveInAttr(VReg, Flags); 4142 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4143 4144 if (ObjectVT == MVT::f32) { 4145 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4146 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4147 DAG.getConstant(32, dl, MVT::i32)); 4148 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4149 } 4150 4151 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4152 } else { 4153 if (CallConv == CallingConv::Fast) 4154 ComputeArgOffset(); 4155 4156 needsLoad = true; 4157 } 4158 4159 // When passing an array of floats, the array occupies consecutive 4160 // space in the argument area; only round up to the next doubleword 4161 // at the end of the array. Otherwise, each float takes 8 bytes. 4162 if (CallConv != CallingConv::Fast || needsLoad) { 4163 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4164 ArgOffset += ArgSize; 4165 if (Flags.isInConsecutiveRegsLast()) 4166 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4167 } 4168 break; 4169 case MVT::v4f32: 4170 case MVT::v4i32: 4171 case MVT::v8i16: 4172 case MVT::v16i8: 4173 case MVT::v2f64: 4174 case MVT::v2i64: 4175 case MVT::v1i128: 4176 case MVT::f128: 4177 if (!Subtarget.hasQPX()) { 4178 // These can be scalar arguments or elements of a vector array type 4179 // passed directly. The latter are used to implement ELFv2 homogenous 4180 // vector aggregates. 4181 if (VR_idx != Num_VR_Regs) { 4182 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4183 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4184 ++VR_idx; 4185 } else { 4186 if (CallConv == CallingConv::Fast) 4187 ComputeArgOffset(); 4188 needsLoad = true; 4189 } 4190 if (CallConv != CallingConv::Fast || needsLoad) 4191 ArgOffset += 16; 4192 break; 4193 } // not QPX 4194 4195 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4196 "Invalid QPX parameter type"); 4197 LLVM_FALLTHROUGH; 4198 4199 case MVT::v4f64: 4200 case MVT::v4i1: 4201 // QPX vectors are treated like their scalar floating-point subregisters 4202 // (except that they're larger). 4203 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4204 if (QFPR_idx != Num_QFPR_Regs) { 4205 const TargetRegisterClass *RC; 4206 switch (ObjectVT.getSimpleVT().SimpleTy) { 4207 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4208 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4209 default: RC = &PPC::QBRCRegClass; break; 4210 } 4211 4212 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4213 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4214 ++QFPR_idx; 4215 } else { 4216 if (CallConv == CallingConv::Fast) 4217 ComputeArgOffset(); 4218 needsLoad = true; 4219 } 4220 if (CallConv != CallingConv::Fast || needsLoad) 4221 ArgOffset += Sz; 4222 break; 4223 } 4224 4225 // We need to load the argument to a virtual register if we determined 4226 // above that we ran out of physical registers of the appropriate type. 4227 if (needsLoad) { 4228 if (ObjSize < ArgSize && !isLittleEndian) 4229 CurArgOffset += ArgSize - ObjSize; 4230 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4231 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4232 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4233 } 4234 4235 InVals.push_back(ArgVal); 4236 } 4237 4238 // Area that is at least reserved in the caller of this function. 4239 unsigned MinReservedArea; 4240 if (HasParameterArea) 4241 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4242 else 4243 MinReservedArea = LinkageSize; 4244 4245 // Set the size that is at least reserved in caller of this function. Tail 4246 // call optimized functions' reserved stack space needs to be aligned so that 4247 // taking the difference between two stack areas will result in an aligned 4248 // stack. 4249 MinReservedArea = 4250 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4251 FuncInfo->setMinReservedArea(MinReservedArea); 4252 4253 // If the function takes variable number of arguments, make a frame index for 4254 // the start of the first vararg value... for expansion of llvm.va_start. 4255 if (isVarArg) { 4256 int Depth = ArgOffset; 4257 4258 FuncInfo->setVarArgsFrameIndex( 4259 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4260 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4261 4262 // If this function is vararg, store any remaining integer argument regs 4263 // to their spots on the stack so that they may be loaded by dereferencing 4264 // the result of va_next. 4265 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4266 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4267 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4268 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4269 SDValue Store = 4270 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4271 MemOps.push_back(Store); 4272 // Increment the address by four for the next argument to store 4273 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4274 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4275 } 4276 } 4277 4278 if (!MemOps.empty()) 4279 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4280 4281 return Chain; 4282 } 4283 4284 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4285 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4286 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4287 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4288 // TODO: add description of PPC stack frame format, or at least some docs. 4289 // 4290 MachineFunction &MF = DAG.getMachineFunction(); 4291 MachineFrameInfo &MFI = MF.getFrameInfo(); 4292 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4293 4294 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4295 bool isPPC64 = PtrVT == MVT::i64; 4296 // Potential tail calls could cause overwriting of argument stack slots. 4297 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4298 (CallConv == CallingConv::Fast)); 4299 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4300 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4301 unsigned ArgOffset = LinkageSize; 4302 // Area that is at least reserved in caller of this function. 4303 unsigned MinReservedArea = ArgOffset; 4304 4305 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4306 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4307 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4308 }; 4309 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4310 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4311 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4312 }; 4313 static const MCPhysReg VR[] = { 4314 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4315 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4316 }; 4317 4318 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4319 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4320 const unsigned Num_VR_Regs = array_lengthof( VR); 4321 4322 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4323 4324 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4325 4326 // In 32-bit non-varargs functions, the stack space for vectors is after the 4327 // stack space for non-vectors. We do not use this space unless we have 4328 // too many vectors to fit in registers, something that only occurs in 4329 // constructed examples:), but we have to walk the arglist to figure 4330 // that out...for the pathological case, compute VecArgOffset as the 4331 // start of the vector parameter area. Computing VecArgOffset is the 4332 // entire point of the following loop. 4333 unsigned VecArgOffset = ArgOffset; 4334 if (!isVarArg && !isPPC64) { 4335 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4336 ++ArgNo) { 4337 EVT ObjectVT = Ins[ArgNo].VT; 4338 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4339 4340 if (Flags.isByVal()) { 4341 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4342 unsigned ObjSize = Flags.getByValSize(); 4343 unsigned ArgSize = 4344 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4345 VecArgOffset += ArgSize; 4346 continue; 4347 } 4348 4349 switch(ObjectVT.getSimpleVT().SimpleTy) { 4350 default: llvm_unreachable("Unhandled argument type!"); 4351 case MVT::i1: 4352 case MVT::i32: 4353 case MVT::f32: 4354 VecArgOffset += 4; 4355 break; 4356 case MVT::i64: // PPC64 4357 case MVT::f64: 4358 // FIXME: We are guaranteed to be !isPPC64 at this point. 4359 // Does MVT::i64 apply? 4360 VecArgOffset += 8; 4361 break; 4362 case MVT::v4f32: 4363 case MVT::v4i32: 4364 case MVT::v8i16: 4365 case MVT::v16i8: 4366 // Nothing to do, we're only looking at Nonvector args here. 4367 break; 4368 } 4369 } 4370 } 4371 // We've found where the vector parameter area in memory is. Skip the 4372 // first 12 parameters; these don't use that memory. 4373 VecArgOffset = ((VecArgOffset+15)/16)*16; 4374 VecArgOffset += 12*16; 4375 4376 // Add DAG nodes to load the arguments or copy them out of registers. On 4377 // entry to a function on PPC, the arguments start after the linkage area, 4378 // although the first ones are often in registers. 4379 4380 SmallVector<SDValue, 8> MemOps; 4381 unsigned nAltivecParamsAtEnd = 0; 4382 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4383 unsigned CurArgIdx = 0; 4384 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4385 SDValue ArgVal; 4386 bool needsLoad = false; 4387 EVT ObjectVT = Ins[ArgNo].VT; 4388 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4389 unsigned ArgSize = ObjSize; 4390 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4391 if (Ins[ArgNo].isOrigArg()) { 4392 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4393 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4394 } 4395 unsigned CurArgOffset = ArgOffset; 4396 4397 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4398 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4399 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4400 if (isVarArg || isPPC64) { 4401 MinReservedArea = ((MinReservedArea+15)/16)*16; 4402 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4403 Flags, 4404 PtrByteSize); 4405 } else nAltivecParamsAtEnd++; 4406 } else 4407 // Calculate min reserved area. 4408 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4409 Flags, 4410 PtrByteSize); 4411 4412 // FIXME the codegen can be much improved in some cases. 4413 // We do not have to keep everything in memory. 4414 if (Flags.isByVal()) { 4415 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4416 4417 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4418 ObjSize = Flags.getByValSize(); 4419 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4420 // Objects of size 1 and 2 are right justified, everything else is 4421 // left justified. This means the memory address is adjusted forwards. 4422 if (ObjSize==1 || ObjSize==2) { 4423 CurArgOffset = CurArgOffset + (4 - ObjSize); 4424 } 4425 // The value of the object is its address. 4426 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4427 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4428 InVals.push_back(FIN); 4429 if (ObjSize==1 || ObjSize==2) { 4430 if (GPR_idx != Num_GPR_Regs) { 4431 unsigned VReg; 4432 if (isPPC64) 4433 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4434 else 4435 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4436 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4437 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4438 SDValue Store = 4439 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4440 MachinePointerInfo(&*FuncArg), ObjType); 4441 MemOps.push_back(Store); 4442 ++GPR_idx; 4443 } 4444 4445 ArgOffset += PtrByteSize; 4446 4447 continue; 4448 } 4449 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4450 // Store whatever pieces of the object are in registers 4451 // to memory. ArgOffset will be the address of the beginning 4452 // of the object. 4453 if (GPR_idx != Num_GPR_Regs) { 4454 unsigned VReg; 4455 if (isPPC64) 4456 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4457 else 4458 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4459 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4460 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4461 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4462 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4463 MachinePointerInfo(&*FuncArg, j)); 4464 MemOps.push_back(Store); 4465 ++GPR_idx; 4466 ArgOffset += PtrByteSize; 4467 } else { 4468 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4469 break; 4470 } 4471 } 4472 continue; 4473 } 4474 4475 switch (ObjectVT.getSimpleVT().SimpleTy) { 4476 default: llvm_unreachable("Unhandled argument type!"); 4477 case MVT::i1: 4478 case MVT::i32: 4479 if (!isPPC64) { 4480 if (GPR_idx != Num_GPR_Regs) { 4481 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4482 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4483 4484 if (ObjectVT == MVT::i1) 4485 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4486 4487 ++GPR_idx; 4488 } else { 4489 needsLoad = true; 4490 ArgSize = PtrByteSize; 4491 } 4492 // All int arguments reserve stack space in the Darwin ABI. 4493 ArgOffset += PtrByteSize; 4494 break; 4495 } 4496 LLVM_FALLTHROUGH; 4497 case MVT::i64: // PPC64 4498 if (GPR_idx != Num_GPR_Regs) { 4499 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4500 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4501 4502 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4503 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4504 // value to MVT::i64 and then truncate to the correct register size. 4505 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4506 4507 ++GPR_idx; 4508 } else { 4509 needsLoad = true; 4510 ArgSize = PtrByteSize; 4511 } 4512 // All int arguments reserve stack space in the Darwin ABI. 4513 ArgOffset += 8; 4514 break; 4515 4516 case MVT::f32: 4517 case MVT::f64: 4518 // Every 4 bytes of argument space consumes one of the GPRs available for 4519 // argument passing. 4520 if (GPR_idx != Num_GPR_Regs) { 4521 ++GPR_idx; 4522 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4523 ++GPR_idx; 4524 } 4525 if (FPR_idx != Num_FPR_Regs) { 4526 unsigned VReg; 4527 4528 if (ObjectVT == MVT::f32) 4529 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4530 else 4531 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4532 4533 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4534 ++FPR_idx; 4535 } else { 4536 needsLoad = true; 4537 } 4538 4539 // All FP arguments reserve stack space in the Darwin ABI. 4540 ArgOffset += isPPC64 ? 8 : ObjSize; 4541 break; 4542 case MVT::v4f32: 4543 case MVT::v4i32: 4544 case MVT::v8i16: 4545 case MVT::v16i8: 4546 // Note that vector arguments in registers don't reserve stack space, 4547 // except in varargs functions. 4548 if (VR_idx != Num_VR_Regs) { 4549 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4550 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4551 if (isVarArg) { 4552 while ((ArgOffset % 16) != 0) { 4553 ArgOffset += PtrByteSize; 4554 if (GPR_idx != Num_GPR_Regs) 4555 GPR_idx++; 4556 } 4557 ArgOffset += 16; 4558 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4559 } 4560 ++VR_idx; 4561 } else { 4562 if (!isVarArg && !isPPC64) { 4563 // Vectors go after all the nonvectors. 4564 CurArgOffset = VecArgOffset; 4565 VecArgOffset += 16; 4566 } else { 4567 // Vectors are aligned. 4568 ArgOffset = ((ArgOffset+15)/16)*16; 4569 CurArgOffset = ArgOffset; 4570 ArgOffset += 16; 4571 } 4572 needsLoad = true; 4573 } 4574 break; 4575 } 4576 4577 // We need to load the argument to a virtual register if we determined above 4578 // that we ran out of physical registers of the appropriate type. 4579 if (needsLoad) { 4580 int FI = MFI.CreateFixedObject(ObjSize, 4581 CurArgOffset + (ArgSize - ObjSize), 4582 isImmutable); 4583 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4584 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4585 } 4586 4587 InVals.push_back(ArgVal); 4588 } 4589 4590 // Allow for Altivec parameters at the end, if needed. 4591 if (nAltivecParamsAtEnd) { 4592 MinReservedArea = ((MinReservedArea+15)/16)*16; 4593 MinReservedArea += 16*nAltivecParamsAtEnd; 4594 } 4595 4596 // Area that is at least reserved in the caller of this function. 4597 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4598 4599 // Set the size that is at least reserved in caller of this function. Tail 4600 // call optimized functions' reserved stack space needs to be aligned so that 4601 // taking the difference between two stack areas will result in an aligned 4602 // stack. 4603 MinReservedArea = 4604 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4605 FuncInfo->setMinReservedArea(MinReservedArea); 4606 4607 // If the function takes variable number of arguments, make a frame index for 4608 // the start of the first vararg value... for expansion of llvm.va_start. 4609 if (isVarArg) { 4610 int Depth = ArgOffset; 4611 4612 FuncInfo->setVarArgsFrameIndex( 4613 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4614 Depth, true)); 4615 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4616 4617 // If this function is vararg, store any remaining integer argument regs 4618 // to their spots on the stack so that they may be loaded by dereferencing 4619 // the result of va_next. 4620 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4621 unsigned VReg; 4622 4623 if (isPPC64) 4624 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4625 else 4626 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4627 4628 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4629 SDValue Store = 4630 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4631 MemOps.push_back(Store); 4632 // Increment the address by four for the next argument to store 4633 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4634 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4635 } 4636 } 4637 4638 if (!MemOps.empty()) 4639 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4640 4641 return Chain; 4642 } 4643 4644 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4645 /// adjusted to accommodate the arguments for the tailcall. 4646 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4647 unsigned ParamSize) { 4648 4649 if (!isTailCall) return 0; 4650 4651 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4652 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4653 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4654 // Remember only if the new adjustment is bigger. 4655 if (SPDiff < FI->getTailCallSPDelta()) 4656 FI->setTailCallSPDelta(SPDiff); 4657 4658 return SPDiff; 4659 } 4660 4661 static bool isFunctionGlobalAddress(SDValue Callee); 4662 4663 static bool 4664 callsShareTOCBase(const Function *Caller, SDValue Callee, 4665 const TargetMachine &TM) { 4666 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4667 // don't have enough information to determine if the caller and calle share 4668 // the same TOC base, so we have to pessimistically assume they don't for 4669 // correctness. 4670 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4671 if (!G) 4672 return false; 4673 4674 const GlobalValue *GV = G->getGlobal(); 4675 // The medium and large code models are expected to provide a sufficiently 4676 // large TOC to provide all data addressing needs of a module with a 4677 // single TOC. Since each module will be addressed with a single TOC then we 4678 // only need to check that caller and callee don't cross dso boundaries. 4679 if (CodeModel::Medium == TM.getCodeModel() || 4680 CodeModel::Large == TM.getCodeModel()) 4681 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4682 4683 // Otherwise we need to ensure callee and caller are in the same section, 4684 // since the linker may allocate multiple TOCs, and we don't know which 4685 // sections will belong to the same TOC base. 4686 4687 if (!GV->isStrongDefinitionForLinker()) 4688 return false; 4689 4690 // Any explicitly-specified sections and section prefixes must also match. 4691 // Also, if we're using -ffunction-sections, then each function is always in 4692 // a different section (the same is true for COMDAT functions). 4693 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4694 GV->getSection() != Caller->getSection()) 4695 return false; 4696 if (const auto *F = dyn_cast<Function>(GV)) { 4697 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4698 return false; 4699 } 4700 4701 // If the callee might be interposed, then we can't assume the ultimate call 4702 // target will be in the same section. Even in cases where we can assume that 4703 // interposition won't happen, in any case where the linker might insert a 4704 // stub to allow for interposition, we must generate code as though 4705 // interposition might occur. To understand why this matters, consider a 4706 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4707 // in the same section, but a is in a different module (i.e. has a different 4708 // TOC base pointer). If the linker allows for interposition between b and c, 4709 // then it will generate a stub for the call edge between b and c which will 4710 // save the TOC pointer into the designated stack slot allocated by b. If we 4711 // return true here, and therefore allow a tail call between b and c, that 4712 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4713 // pointer into the stack slot allocated by a (where the a -> b stub saved 4714 // a's TOC base pointer). If we're not considering a tail call, but rather, 4715 // whether a nop is needed after the call instruction in b, because the linker 4716 // will insert a stub, it might complain about a missing nop if we omit it 4717 // (although many don't complain in this case). 4718 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4719 return false; 4720 4721 return true; 4722 } 4723 4724 static bool 4725 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4726 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4727 assert(Subtarget.is64BitELFABI()); 4728 4729 const unsigned PtrByteSize = 8; 4730 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4731 4732 static const MCPhysReg GPR[] = { 4733 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4734 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4735 }; 4736 static const MCPhysReg VR[] = { 4737 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4738 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4739 }; 4740 4741 const unsigned NumGPRs = array_lengthof(GPR); 4742 const unsigned NumFPRs = 13; 4743 const unsigned NumVRs = array_lengthof(VR); 4744 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4745 4746 unsigned NumBytes = LinkageSize; 4747 unsigned AvailableFPRs = NumFPRs; 4748 unsigned AvailableVRs = NumVRs; 4749 4750 for (const ISD::OutputArg& Param : Outs) { 4751 if (Param.Flags.isNest()) continue; 4752 4753 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4754 PtrByteSize, LinkageSize, ParamAreaSize, 4755 NumBytes, AvailableFPRs, AvailableVRs, 4756 Subtarget.hasQPX())) 4757 return true; 4758 } 4759 return false; 4760 } 4761 4762 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4763 if (CB.arg_size() != CallerFn->arg_size()) 4764 return false; 4765 4766 auto CalleeArgIter = CB.arg_begin(); 4767 auto CalleeArgEnd = CB.arg_end(); 4768 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4769 4770 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4771 const Value* CalleeArg = *CalleeArgIter; 4772 const Value* CallerArg = &(*CallerArgIter); 4773 if (CalleeArg == CallerArg) 4774 continue; 4775 4776 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4777 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4778 // } 4779 // 1st argument of callee is undef and has the same type as caller. 4780 if (CalleeArg->getType() == CallerArg->getType() && 4781 isa<UndefValue>(CalleeArg)) 4782 continue; 4783 4784 return false; 4785 } 4786 4787 return true; 4788 } 4789 4790 // Returns true if TCO is possible between the callers and callees 4791 // calling conventions. 4792 static bool 4793 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4794 CallingConv::ID CalleeCC) { 4795 // Tail calls are possible with fastcc and ccc. 4796 auto isTailCallableCC = [] (CallingConv::ID CC){ 4797 return CC == CallingConv::C || CC == CallingConv::Fast; 4798 }; 4799 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4800 return false; 4801 4802 // We can safely tail call both fastcc and ccc callees from a c calling 4803 // convention caller. If the caller is fastcc, we may have less stack space 4804 // than a non-fastcc caller with the same signature so disable tail-calls in 4805 // that case. 4806 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4807 } 4808 4809 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4810 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4811 const SmallVectorImpl<ISD::OutputArg> &Outs, 4812 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4813 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4814 4815 if (DisableSCO && !TailCallOpt) return false; 4816 4817 // Variadic argument functions are not supported. 4818 if (isVarArg) return false; 4819 4820 auto &Caller = DAG.getMachineFunction().getFunction(); 4821 // Check that the calling conventions are compatible for tco. 4822 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4823 return false; 4824 4825 // Caller contains any byval parameter is not supported. 4826 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4827 return false; 4828 4829 // Callee contains any byval parameter is not supported, too. 4830 // Note: This is a quick work around, because in some cases, e.g. 4831 // caller's stack size > callee's stack size, we are still able to apply 4832 // sibling call optimization. For example, gcc is able to do SCO for caller1 4833 // in the following example, but not for caller2. 4834 // struct test { 4835 // long int a; 4836 // char ary[56]; 4837 // } gTest; 4838 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4839 // b->a = v.a; 4840 // return 0; 4841 // } 4842 // void caller1(struct test a, struct test c, struct test *b) { 4843 // callee(gTest, b); } 4844 // void caller2(struct test *b) { callee(gTest, b); } 4845 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4846 return false; 4847 4848 // If callee and caller use different calling conventions, we cannot pass 4849 // parameters on stack since offsets for the parameter area may be different. 4850 if (Caller.getCallingConv() != CalleeCC && 4851 needStackSlotPassParameters(Subtarget, Outs)) 4852 return false; 4853 4854 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4855 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4856 // callee potentially have different TOC bases then we cannot tail call since 4857 // we need to restore the TOC pointer after the call. 4858 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4859 // We cannot guarantee this for indirect calls or calls to external functions. 4860 // When PC-Relative addressing is used, the concept of the TOC is no longer 4861 // applicable so this check is not required. 4862 // Check first for indirect calls. 4863 if (!Subtarget.isUsingPCRelativeCalls() && 4864 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4865 return false; 4866 4867 // Check if we share the TOC base. 4868 if (!Subtarget.isUsingPCRelativeCalls() && 4869 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4870 return false; 4871 4872 // TCO allows altering callee ABI, so we don't have to check further. 4873 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4874 return true; 4875 4876 if (DisableSCO) return false; 4877 4878 // If callee use the same argument list that caller is using, then we can 4879 // apply SCO on this case. If it is not, then we need to check if callee needs 4880 // stack for passing arguments. 4881 // PC Relative tail calls may not have a CallBase. 4882 // If there is no CallBase we cannot verify if we have the same argument 4883 // list so assume that we don't have the same argument list. 4884 if (CB && !hasSameArgumentList(&Caller, *CB) && 4885 needStackSlotPassParameters(Subtarget, Outs)) 4886 return false; 4887 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4888 return false; 4889 4890 return true; 4891 } 4892 4893 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4894 /// for tail call optimization. Targets which want to do tail call 4895 /// optimization should implement this function. 4896 bool 4897 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4898 CallingConv::ID CalleeCC, 4899 bool isVarArg, 4900 const SmallVectorImpl<ISD::InputArg> &Ins, 4901 SelectionDAG& DAG) const { 4902 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4903 return false; 4904 4905 // Variable argument functions are not supported. 4906 if (isVarArg) 4907 return false; 4908 4909 MachineFunction &MF = DAG.getMachineFunction(); 4910 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4911 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4912 // Functions containing by val parameters are not supported. 4913 for (unsigned i = 0; i != Ins.size(); i++) { 4914 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4915 if (Flags.isByVal()) return false; 4916 } 4917 4918 // Non-PIC/GOT tail calls are supported. 4919 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4920 return true; 4921 4922 // At the moment we can only do local tail calls (in same module, hidden 4923 // or protected) if we are generating PIC. 4924 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4925 return G->getGlobal()->hasHiddenVisibility() 4926 || G->getGlobal()->hasProtectedVisibility(); 4927 } 4928 4929 return false; 4930 } 4931 4932 /// isCallCompatibleAddress - Return the immediate to use if the specified 4933 /// 32-bit value is representable in the immediate field of a BxA instruction. 4934 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4935 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4936 if (!C) return nullptr; 4937 4938 int Addr = C->getZExtValue(); 4939 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4940 SignExtend32<26>(Addr) != Addr) 4941 return nullptr; // Top 6 bits have to be sext of immediate. 4942 4943 return DAG 4944 .getConstant( 4945 (int)C->getZExtValue() >> 2, SDLoc(Op), 4946 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4947 .getNode(); 4948 } 4949 4950 namespace { 4951 4952 struct TailCallArgumentInfo { 4953 SDValue Arg; 4954 SDValue FrameIdxOp; 4955 int FrameIdx = 0; 4956 4957 TailCallArgumentInfo() = default; 4958 }; 4959 4960 } // end anonymous namespace 4961 4962 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4963 static void StoreTailCallArgumentsToStackSlot( 4964 SelectionDAG &DAG, SDValue Chain, 4965 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4966 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4967 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4968 SDValue Arg = TailCallArgs[i].Arg; 4969 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4970 int FI = TailCallArgs[i].FrameIdx; 4971 // Store relative to framepointer. 4972 MemOpChains.push_back(DAG.getStore( 4973 Chain, dl, Arg, FIN, 4974 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4975 } 4976 } 4977 4978 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4979 /// the appropriate stack slot for the tail call optimized function call. 4980 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4981 SDValue OldRetAddr, SDValue OldFP, 4982 int SPDiff, const SDLoc &dl) { 4983 if (SPDiff) { 4984 // Calculate the new stack slot for the return address. 4985 MachineFunction &MF = DAG.getMachineFunction(); 4986 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4987 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4988 bool isPPC64 = Subtarget.isPPC64(); 4989 int SlotSize = isPPC64 ? 8 : 4; 4990 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4991 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4992 NewRetAddrLoc, true); 4993 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4994 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4995 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4996 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4997 } 4998 return Chain; 4999 } 5000 5001 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5002 /// the position of the argument. 5003 static void 5004 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5005 SDValue Arg, int SPDiff, unsigned ArgOffset, 5006 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5007 int Offset = ArgOffset + SPDiff; 5008 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5009 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5010 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5011 SDValue FIN = DAG.getFrameIndex(FI, VT); 5012 TailCallArgumentInfo Info; 5013 Info.Arg = Arg; 5014 Info.FrameIdxOp = FIN; 5015 Info.FrameIdx = FI; 5016 TailCallArguments.push_back(Info); 5017 } 5018 5019 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5020 /// stack slot. Returns the chain as result and the loaded frame pointers in 5021 /// LROpOut/FPOpout. Used when tail calling. 5022 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5023 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5024 SDValue &FPOpOut, const SDLoc &dl) const { 5025 if (SPDiff) { 5026 // Load the LR and FP stack slot for later adjusting. 5027 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5028 LROpOut = getReturnAddrFrameIndex(DAG); 5029 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5030 Chain = SDValue(LROpOut.getNode(), 1); 5031 } 5032 return Chain; 5033 } 5034 5035 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5036 /// by "Src" to address "Dst" of size "Size". Alignment information is 5037 /// specified by the specific parameter attribute. The copy will be passed as 5038 /// a byval function parameter. 5039 /// Sometimes what we are copying is the end of a larger object, the part that 5040 /// does not fit in registers. 5041 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5042 SDValue Chain, ISD::ArgFlagsTy Flags, 5043 SelectionDAG &DAG, const SDLoc &dl) { 5044 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5045 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5046 Flags.getNonZeroByValAlign(), false, false, false, 5047 MachinePointerInfo(), MachinePointerInfo()); 5048 } 5049 5050 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5051 /// tail calls. 5052 static void LowerMemOpCallTo( 5053 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5054 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5055 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5056 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5057 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5058 if (!isTailCall) { 5059 if (isVector) { 5060 SDValue StackPtr; 5061 if (isPPC64) 5062 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5063 else 5064 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5065 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5066 DAG.getConstant(ArgOffset, dl, PtrVT)); 5067 } 5068 MemOpChains.push_back( 5069 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5070 // Calculate and remember argument location. 5071 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5072 TailCallArguments); 5073 } 5074 5075 static void 5076 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5077 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5078 SDValue FPOp, 5079 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5080 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5081 // might overwrite each other in case of tail call optimization. 5082 SmallVector<SDValue, 8> MemOpChains2; 5083 // Do not flag preceding copytoreg stuff together with the following stuff. 5084 InFlag = SDValue(); 5085 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5086 MemOpChains2, dl); 5087 if (!MemOpChains2.empty()) 5088 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5089 5090 // Store the return address to the appropriate stack slot. 5091 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5092 5093 // Emit callseq_end just before tailcall node. 5094 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5095 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5096 InFlag = Chain.getValue(1); 5097 } 5098 5099 // Is this global address that of a function that can be called by name? (as 5100 // opposed to something that must hold a descriptor for an indirect call). 5101 static bool isFunctionGlobalAddress(SDValue Callee) { 5102 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5103 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5104 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5105 return false; 5106 5107 return G->getGlobal()->getValueType()->isFunctionTy(); 5108 } 5109 5110 return false; 5111 } 5112 5113 SDValue PPCTargetLowering::LowerCallResult( 5114 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5115 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5116 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5117 SmallVector<CCValAssign, 16> RVLocs; 5118 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5119 *DAG.getContext()); 5120 5121 CCRetInfo.AnalyzeCallResult( 5122 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5123 ? RetCC_PPC_Cold 5124 : RetCC_PPC); 5125 5126 // Copy all of the result registers out of their specified physreg. 5127 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5128 CCValAssign &VA = RVLocs[i]; 5129 assert(VA.isRegLoc() && "Can only return in registers!"); 5130 5131 SDValue Val; 5132 5133 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5134 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5135 InFlag); 5136 Chain = Lo.getValue(1); 5137 InFlag = Lo.getValue(2); 5138 VA = RVLocs[++i]; // skip ahead to next loc 5139 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5140 InFlag); 5141 Chain = Hi.getValue(1); 5142 InFlag = Hi.getValue(2); 5143 if (!Subtarget.isLittleEndian()) 5144 std::swap (Lo, Hi); 5145 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5146 } else { 5147 Val = DAG.getCopyFromReg(Chain, dl, 5148 VA.getLocReg(), VA.getLocVT(), InFlag); 5149 Chain = Val.getValue(1); 5150 InFlag = Val.getValue(2); 5151 } 5152 5153 switch (VA.getLocInfo()) { 5154 default: llvm_unreachable("Unknown loc info!"); 5155 case CCValAssign::Full: break; 5156 case CCValAssign::AExt: 5157 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5158 break; 5159 case CCValAssign::ZExt: 5160 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5161 DAG.getValueType(VA.getValVT())); 5162 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5163 break; 5164 case CCValAssign::SExt: 5165 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5166 DAG.getValueType(VA.getValVT())); 5167 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5168 break; 5169 } 5170 5171 InVals.push_back(Val); 5172 } 5173 5174 return Chain; 5175 } 5176 5177 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5178 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5179 // PatchPoint calls are not indirect. 5180 if (isPatchPoint) 5181 return false; 5182 5183 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5184 return false; 5185 5186 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5187 // becuase the immediate function pointer points to a descriptor instead of 5188 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5189 // pointer immediate points to the global entry point, while the BLA would 5190 // need to jump to the local entry point (see rL211174). 5191 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5192 isBLACompatibleAddress(Callee, DAG)) 5193 return false; 5194 5195 return true; 5196 } 5197 5198 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5199 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5200 return Subtarget.isAIXABI() || 5201 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5202 } 5203 5204 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5205 const Function &Caller, 5206 const SDValue &Callee, 5207 const PPCSubtarget &Subtarget, 5208 const TargetMachine &TM) { 5209 if (CFlags.IsTailCall) 5210 return PPCISD::TC_RETURN; 5211 5212 // This is a call through a function pointer. 5213 if (CFlags.IsIndirect) { 5214 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5215 // indirect calls. The save of the caller's TOC pointer to the stack will be 5216 // inserted into the DAG as part of call lowering. The restore of the TOC 5217 // pointer is modeled by using a pseudo instruction for the call opcode that 5218 // represents the 2 instruction sequence of an indirect branch and link, 5219 // immediately followed by a load of the TOC pointer from the the stack save 5220 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5221 // as it is not saved or used. 5222 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5223 : PPCISD::BCTRL; 5224 } 5225 5226 if (Subtarget.isUsingPCRelativeCalls()) { 5227 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5228 return PPCISD::CALL_NOTOC; 5229 } 5230 5231 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5232 // immediately following the call instruction if the caller and callee may 5233 // have different TOC bases. At link time if the linker determines the calls 5234 // may not share a TOC base, the call is redirected to a trampoline inserted 5235 // by the linker. The trampoline will (among other things) save the callers 5236 // TOC pointer at an ABI designated offset in the linkage area and the linker 5237 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5238 // into gpr2. 5239 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5240 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5241 : PPCISD::CALL_NOP; 5242 5243 return PPCISD::CALL; 5244 } 5245 5246 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5247 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5248 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5249 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5250 return SDValue(Dest, 0); 5251 5252 // Returns true if the callee is local, and false otherwise. 5253 auto isLocalCallee = [&]() { 5254 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5255 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5256 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5257 5258 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5259 !dyn_cast_or_null<GlobalIFunc>(GV); 5260 }; 5261 5262 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5263 // a static relocation model causes some versions of GNU LD (2.17.50, at 5264 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5265 // built with secure-PLT. 5266 bool UsePlt = 5267 Subtarget.is32BitELFABI() && !isLocalCallee() && 5268 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5269 5270 // On AIX, direct function calls reference the symbol for the function's 5271 // entry point, which is named by prepending a "." before the function's 5272 // C-linkage name. 5273 const auto getAIXFuncEntryPointSymbolSDNode = 5274 [&](StringRef FuncName, bool IsDeclaration, 5275 const XCOFF::StorageClass &SC) { 5276 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5277 5278 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5279 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5280 5281 if (IsDeclaration && !S->hasRepresentedCsectSet()) { 5282 // On AIX, an undefined symbol needs to be associated with a 5283 // MCSectionXCOFF to get the correct storage mapping class. 5284 // In this case, XCOFF::XMC_PR. 5285 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5286 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5287 SectionKind::getMetadata()); 5288 S->setRepresentedCsect(Sec); 5289 } 5290 5291 MVT PtrVT = 5292 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5293 return DAG.getMCSymbol(S, PtrVT); 5294 }; 5295 5296 if (isFunctionGlobalAddress(Callee)) { 5297 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5298 const GlobalValue *GV = G->getGlobal(); 5299 5300 if (!Subtarget.isAIXABI()) 5301 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5302 UsePlt ? PPCII::MO_PLT : 0); 5303 5304 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5305 const GlobalObject *GO = cast<GlobalObject>(GV); 5306 const XCOFF::StorageClass SC = 5307 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5308 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5309 SC); 5310 } 5311 5312 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5313 const char *SymName = S->getSymbol(); 5314 if (!Subtarget.isAIXABI()) 5315 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5316 UsePlt ? PPCII::MO_PLT : 0); 5317 5318 // If there exists a user-declared function whose name is the same as the 5319 // ExternalSymbol's, then we pick up the user-declared version. 5320 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5321 if (const Function *F = 5322 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5323 const XCOFF::StorageClass SC = 5324 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5325 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5326 SC); 5327 } 5328 5329 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5330 } 5331 5332 // No transformation needed. 5333 assert(Callee.getNode() && "What no callee?"); 5334 return Callee; 5335 } 5336 5337 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5338 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5339 "Expected a CALLSEQ_STARTSDNode."); 5340 5341 // The last operand is the chain, except when the node has glue. If the node 5342 // has glue, then the last operand is the glue, and the chain is the second 5343 // last operand. 5344 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5345 if (LastValue.getValueType() != MVT::Glue) 5346 return LastValue; 5347 5348 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5349 } 5350 5351 // Creates the node that moves a functions address into the count register 5352 // to prepare for an indirect call instruction. 5353 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5354 SDValue &Glue, SDValue &Chain, 5355 const SDLoc &dl) { 5356 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5357 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5358 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5359 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5360 // The glue is the second value produced. 5361 Glue = Chain.getValue(1); 5362 } 5363 5364 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5365 SDValue &Glue, SDValue &Chain, 5366 SDValue CallSeqStart, 5367 const CallBase *CB, const SDLoc &dl, 5368 bool hasNest, 5369 const PPCSubtarget &Subtarget) { 5370 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5371 // entry point, but to the function descriptor (the function entry point 5372 // address is part of the function descriptor though). 5373 // The function descriptor is a three doubleword structure with the 5374 // following fields: function entry point, TOC base address and 5375 // environment pointer. 5376 // Thus for a call through a function pointer, the following actions need 5377 // to be performed: 5378 // 1. Save the TOC of the caller in the TOC save area of its stack 5379 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5380 // 2. Load the address of the function entry point from the function 5381 // descriptor. 5382 // 3. Load the TOC of the callee from the function descriptor into r2. 5383 // 4. Load the environment pointer from the function descriptor into 5384 // r11. 5385 // 5. Branch to the function entry point address. 5386 // 6. On return of the callee, the TOC of the caller needs to be 5387 // restored (this is done in FinishCall()). 5388 // 5389 // The loads are scheduled at the beginning of the call sequence, and the 5390 // register copies are flagged together to ensure that no other 5391 // operations can be scheduled in between. E.g. without flagging the 5392 // copies together, a TOC access in the caller could be scheduled between 5393 // the assignment of the callee TOC and the branch to the callee, which leads 5394 // to incorrect code. 5395 5396 // Start by loading the function address from the descriptor. 5397 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5398 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5399 ? (MachineMemOperand::MODereferenceable | 5400 MachineMemOperand::MOInvariant) 5401 : MachineMemOperand::MONone; 5402 5403 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5404 5405 // Registers used in building the DAG. 5406 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5407 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5408 5409 // Offsets of descriptor members. 5410 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5411 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5412 5413 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5414 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5415 5416 // One load for the functions entry point address. 5417 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5418 Alignment, MMOFlags); 5419 5420 // One for loading the TOC anchor for the module that contains the called 5421 // function. 5422 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5423 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5424 SDValue TOCPtr = 5425 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5426 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5427 5428 // One for loading the environment pointer. 5429 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5430 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5431 SDValue LoadEnvPtr = 5432 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5433 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5434 5435 5436 // Then copy the newly loaded TOC anchor to the TOC pointer. 5437 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5438 Chain = TOCVal.getValue(0); 5439 Glue = TOCVal.getValue(1); 5440 5441 // If the function call has an explicit 'nest' parameter, it takes the 5442 // place of the environment pointer. 5443 assert((!hasNest || !Subtarget.isAIXABI()) && 5444 "Nest parameter is not supported on AIX."); 5445 if (!hasNest) { 5446 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5447 Chain = EnvVal.getValue(0); 5448 Glue = EnvVal.getValue(1); 5449 } 5450 5451 // The rest of the indirect call sequence is the same as the non-descriptor 5452 // DAG. 5453 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5454 } 5455 5456 static void 5457 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5458 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5459 SelectionDAG &DAG, 5460 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5461 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5462 const PPCSubtarget &Subtarget) { 5463 const bool IsPPC64 = Subtarget.isPPC64(); 5464 // MVT for a general purpose register. 5465 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5466 5467 // First operand is always the chain. 5468 Ops.push_back(Chain); 5469 5470 // If it's a direct call pass the callee as the second operand. 5471 if (!CFlags.IsIndirect) 5472 Ops.push_back(Callee); 5473 else { 5474 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5475 5476 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5477 // on the stack (this would have been done in `LowerCall_64SVR4` or 5478 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5479 // represents both the indirect branch and a load that restores the TOC 5480 // pointer from the linkage area. The operand for the TOC restore is an add 5481 // of the TOC save offset to the stack pointer. This must be the second 5482 // operand: after the chain input but before any other variadic arguments. 5483 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5484 // saved or used. 5485 if (isTOCSaveRestoreRequired(Subtarget)) { 5486 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5487 5488 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5489 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5490 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5491 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5492 Ops.push_back(AddTOC); 5493 } 5494 5495 // Add the register used for the environment pointer. 5496 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5497 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5498 RegVT)); 5499 5500 5501 // Add CTR register as callee so a bctr can be emitted later. 5502 if (CFlags.IsTailCall) 5503 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5504 } 5505 5506 // If this is a tail call add stack pointer delta. 5507 if (CFlags.IsTailCall) 5508 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5509 5510 // Add argument registers to the end of the list so that they are known live 5511 // into the call. 5512 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5513 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5514 RegsToPass[i].second.getValueType())); 5515 5516 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5517 // no way to mark dependencies as implicit here. 5518 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5519 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5520 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5521 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5522 5523 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5524 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5525 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5526 5527 // Add a register mask operand representing the call-preserved registers. 5528 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5529 const uint32_t *Mask = 5530 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5531 assert(Mask && "Missing call preserved mask for calling convention"); 5532 Ops.push_back(DAG.getRegisterMask(Mask)); 5533 5534 // If the glue is valid, it is the last operand. 5535 if (Glue.getNode()) 5536 Ops.push_back(Glue); 5537 } 5538 5539 SDValue PPCTargetLowering::FinishCall( 5540 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5541 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5542 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5543 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5544 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5545 5546 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5547 Subtarget.isAIXABI()) 5548 setUsesTOCBasePtr(DAG); 5549 5550 unsigned CallOpc = 5551 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5552 Subtarget, DAG.getTarget()); 5553 5554 if (!CFlags.IsIndirect) 5555 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5556 else if (Subtarget.usesFunctionDescriptors()) 5557 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5558 dl, CFlags.HasNest, Subtarget); 5559 else 5560 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5561 5562 // Build the operand list for the call instruction. 5563 SmallVector<SDValue, 8> Ops; 5564 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5565 SPDiff, Subtarget); 5566 5567 // Emit tail call. 5568 if (CFlags.IsTailCall) { 5569 // Indirect tail call when using PC Relative calls do not have the same 5570 // constraints. 5571 assert(((Callee.getOpcode() == ISD::Register && 5572 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5573 Callee.getOpcode() == ISD::TargetExternalSymbol || 5574 Callee.getOpcode() == ISD::TargetGlobalAddress || 5575 isa<ConstantSDNode>(Callee) || 5576 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5577 "Expecting a global address, external symbol, absolute value, " 5578 "register or an indirect tail call when PC Relative calls are " 5579 "used."); 5580 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5581 assert(CallOpc == PPCISD::TC_RETURN && 5582 "Unexpected call opcode for a tail call."); 5583 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5584 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5585 } 5586 5587 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5588 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5589 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5590 Glue = Chain.getValue(1); 5591 5592 // When performing tail call optimization the callee pops its arguments off 5593 // the stack. Account for this here so these bytes can be pushed back on in 5594 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5595 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5596 getTargetMachine().Options.GuaranteedTailCallOpt) 5597 ? NumBytes 5598 : 0; 5599 5600 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5601 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5602 Glue, dl); 5603 Glue = Chain.getValue(1); 5604 5605 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5606 DAG, InVals); 5607 } 5608 5609 SDValue 5610 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5611 SmallVectorImpl<SDValue> &InVals) const { 5612 SelectionDAG &DAG = CLI.DAG; 5613 SDLoc &dl = CLI.DL; 5614 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5615 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5616 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5617 SDValue Chain = CLI.Chain; 5618 SDValue Callee = CLI.Callee; 5619 bool &isTailCall = CLI.IsTailCall; 5620 CallingConv::ID CallConv = CLI.CallConv; 5621 bool isVarArg = CLI.IsVarArg; 5622 bool isPatchPoint = CLI.IsPatchPoint; 5623 const CallBase *CB = CLI.CB; 5624 5625 if (isTailCall) { 5626 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5627 isTailCall = false; 5628 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5629 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5630 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5631 else 5632 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5633 Ins, DAG); 5634 if (isTailCall) { 5635 ++NumTailCalls; 5636 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5637 ++NumSiblingCalls; 5638 5639 // PC Relative calls no longer guarantee that the callee is a Global 5640 // Address Node. The callee could be an indirect tail call in which 5641 // case the SDValue for the callee could be a load (to load the address 5642 // of a function pointer) or it may be a register copy (to move the 5643 // address of the callee from a function parameter into a virtual 5644 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5645 assert((Subtarget.isUsingPCRelativeCalls() || 5646 isa<GlobalAddressSDNode>(Callee)) && 5647 "Callee should be an llvm::Function object."); 5648 5649 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5650 << "\nTCO callee: "); 5651 LLVM_DEBUG(Callee.dump()); 5652 } 5653 } 5654 5655 if (!isTailCall && CB && CB->isMustTailCall()) 5656 report_fatal_error("failed to perform tail call elimination on a call " 5657 "site marked musttail"); 5658 5659 // When long calls (i.e. indirect calls) are always used, calls are always 5660 // made via function pointer. If we have a function name, first translate it 5661 // into a pointer. 5662 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5663 !isTailCall) 5664 Callee = LowerGlobalAddress(Callee, DAG); 5665 5666 CallFlags CFlags( 5667 CallConv, isTailCall, isVarArg, isPatchPoint, 5668 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5669 // hasNest 5670 Subtarget.is64BitELFABI() && 5671 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5672 CLI.NoMerge); 5673 5674 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5675 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5676 InVals, CB); 5677 5678 if (Subtarget.isSVR4ABI()) 5679 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5680 InVals, CB); 5681 5682 if (Subtarget.isAIXABI()) 5683 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5684 InVals, CB); 5685 5686 return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5687 InVals, CB); 5688 } 5689 5690 SDValue PPCTargetLowering::LowerCall_32SVR4( 5691 SDValue Chain, SDValue Callee, CallFlags CFlags, 5692 const SmallVectorImpl<ISD::OutputArg> &Outs, 5693 const SmallVectorImpl<SDValue> &OutVals, 5694 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5695 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5696 const CallBase *CB) const { 5697 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5698 // of the 32-bit SVR4 ABI stack frame layout. 5699 5700 const CallingConv::ID CallConv = CFlags.CallConv; 5701 const bool IsVarArg = CFlags.IsVarArg; 5702 const bool IsTailCall = CFlags.IsTailCall; 5703 5704 assert((CallConv == CallingConv::C || 5705 CallConv == CallingConv::Cold || 5706 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5707 5708 const Align PtrAlign(4); 5709 5710 MachineFunction &MF = DAG.getMachineFunction(); 5711 5712 // Mark this function as potentially containing a function that contains a 5713 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5714 // and restoring the callers stack pointer in this functions epilog. This is 5715 // done because by tail calling the called function might overwrite the value 5716 // in this function's (MF) stack pointer stack slot 0(SP). 5717 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5718 CallConv == CallingConv::Fast) 5719 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5720 5721 // Count how many bytes are to be pushed on the stack, including the linkage 5722 // area, parameter list area and the part of the local variable space which 5723 // contains copies of aggregates which are passed by value. 5724 5725 // Assign locations to all of the outgoing arguments. 5726 SmallVector<CCValAssign, 16> ArgLocs; 5727 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5728 5729 // Reserve space for the linkage area on the stack. 5730 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5731 PtrAlign); 5732 if (useSoftFloat()) 5733 CCInfo.PreAnalyzeCallOperands(Outs); 5734 5735 if (IsVarArg) { 5736 // Handle fixed and variable vector arguments differently. 5737 // Fixed vector arguments go into registers as long as registers are 5738 // available. Variable vector arguments always go into memory. 5739 unsigned NumArgs = Outs.size(); 5740 5741 for (unsigned i = 0; i != NumArgs; ++i) { 5742 MVT ArgVT = Outs[i].VT; 5743 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5744 bool Result; 5745 5746 if (Outs[i].IsFixed) { 5747 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5748 CCInfo); 5749 } else { 5750 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5751 ArgFlags, CCInfo); 5752 } 5753 5754 if (Result) { 5755 #ifndef NDEBUG 5756 errs() << "Call operand #" << i << " has unhandled type " 5757 << EVT(ArgVT).getEVTString() << "\n"; 5758 #endif 5759 llvm_unreachable(nullptr); 5760 } 5761 } 5762 } else { 5763 // All arguments are treated the same. 5764 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5765 } 5766 CCInfo.clearWasPPCF128(); 5767 5768 // Assign locations to all of the outgoing aggregate by value arguments. 5769 SmallVector<CCValAssign, 16> ByValArgLocs; 5770 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5771 5772 // Reserve stack space for the allocations in CCInfo. 5773 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5774 5775 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5776 5777 // Size of the linkage area, parameter list area and the part of the local 5778 // space variable where copies of aggregates which are passed by value are 5779 // stored. 5780 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5781 5782 // Calculate by how many bytes the stack has to be adjusted in case of tail 5783 // call optimization. 5784 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5785 5786 // Adjust the stack pointer for the new arguments... 5787 // These operations are automatically eliminated by the prolog/epilog pass 5788 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5789 SDValue CallSeqStart = Chain; 5790 5791 // Load the return address and frame pointer so it can be moved somewhere else 5792 // later. 5793 SDValue LROp, FPOp; 5794 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5795 5796 // Set up a copy of the stack pointer for use loading and storing any 5797 // arguments that may not fit in the registers available for argument 5798 // passing. 5799 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5800 5801 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5802 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5803 SmallVector<SDValue, 8> MemOpChains; 5804 5805 bool seenFloatArg = false; 5806 // Walk the register/memloc assignments, inserting copies/loads. 5807 // i - Tracks the index into the list of registers allocated for the call 5808 // RealArgIdx - Tracks the index into the list of actual function arguments 5809 // j - Tracks the index into the list of byval arguments 5810 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5811 i != e; 5812 ++i, ++RealArgIdx) { 5813 CCValAssign &VA = ArgLocs[i]; 5814 SDValue Arg = OutVals[RealArgIdx]; 5815 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5816 5817 if (Flags.isByVal()) { 5818 // Argument is an aggregate which is passed by value, thus we need to 5819 // create a copy of it in the local variable space of the current stack 5820 // frame (which is the stack frame of the caller) and pass the address of 5821 // this copy to the callee. 5822 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5823 CCValAssign &ByValVA = ByValArgLocs[j++]; 5824 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5825 5826 // Memory reserved in the local variable space of the callers stack frame. 5827 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5828 5829 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5830 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5831 StackPtr, PtrOff); 5832 5833 // Create a copy of the argument in the local area of the current 5834 // stack frame. 5835 SDValue MemcpyCall = 5836 CreateCopyOfByValArgument(Arg, PtrOff, 5837 CallSeqStart.getNode()->getOperand(0), 5838 Flags, DAG, dl); 5839 5840 // This must go outside the CALLSEQ_START..END. 5841 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5842 SDLoc(MemcpyCall)); 5843 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5844 NewCallSeqStart.getNode()); 5845 Chain = CallSeqStart = NewCallSeqStart; 5846 5847 // Pass the address of the aggregate copy on the stack either in a 5848 // physical register or in the parameter list area of the current stack 5849 // frame to the callee. 5850 Arg = PtrOff; 5851 } 5852 5853 // When useCRBits() is true, there can be i1 arguments. 5854 // It is because getRegisterType(MVT::i1) => MVT::i1, 5855 // and for other integer types getRegisterType() => MVT::i32. 5856 // Extend i1 and ensure callee will get i32. 5857 if (Arg.getValueType() == MVT::i1) 5858 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5859 dl, MVT::i32, Arg); 5860 5861 if (VA.isRegLoc()) { 5862 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5863 // Put argument in a physical register. 5864 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5865 bool IsLE = Subtarget.isLittleEndian(); 5866 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5867 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5868 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5869 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5870 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5871 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5872 SVal.getValue(0))); 5873 } else 5874 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5875 } else { 5876 // Put argument in the parameter list area of the current stack frame. 5877 assert(VA.isMemLoc()); 5878 unsigned LocMemOffset = VA.getLocMemOffset(); 5879 5880 if (!IsTailCall) { 5881 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5882 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5883 StackPtr, PtrOff); 5884 5885 MemOpChains.push_back( 5886 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5887 } else { 5888 // Calculate and remember argument location. 5889 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5890 TailCallArguments); 5891 } 5892 } 5893 } 5894 5895 if (!MemOpChains.empty()) 5896 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5897 5898 // Build a sequence of copy-to-reg nodes chained together with token chain 5899 // and flag operands which copy the outgoing args into the appropriate regs. 5900 SDValue InFlag; 5901 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5902 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5903 RegsToPass[i].second, InFlag); 5904 InFlag = Chain.getValue(1); 5905 } 5906 5907 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5908 // registers. 5909 if (IsVarArg) { 5910 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5911 SDValue Ops[] = { Chain, InFlag }; 5912 5913 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5914 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5915 5916 InFlag = Chain.getValue(1); 5917 } 5918 5919 if (IsTailCall) 5920 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5921 TailCallArguments); 5922 5923 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5924 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5925 } 5926 5927 // Copy an argument into memory, being careful to do this outside the 5928 // call sequence for the call to which the argument belongs. 5929 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5930 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5931 SelectionDAG &DAG, const SDLoc &dl) const { 5932 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5933 CallSeqStart.getNode()->getOperand(0), 5934 Flags, DAG, dl); 5935 // The MEMCPY must go outside the CALLSEQ_START..END. 5936 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5937 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5938 SDLoc(MemcpyCall)); 5939 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5940 NewCallSeqStart.getNode()); 5941 return NewCallSeqStart; 5942 } 5943 5944 SDValue PPCTargetLowering::LowerCall_64SVR4( 5945 SDValue Chain, SDValue Callee, CallFlags CFlags, 5946 const SmallVectorImpl<ISD::OutputArg> &Outs, 5947 const SmallVectorImpl<SDValue> &OutVals, 5948 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5949 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5950 const CallBase *CB) const { 5951 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5952 bool isLittleEndian = Subtarget.isLittleEndian(); 5953 unsigned NumOps = Outs.size(); 5954 bool IsSibCall = false; 5955 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5956 5957 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5958 unsigned PtrByteSize = 8; 5959 5960 MachineFunction &MF = DAG.getMachineFunction(); 5961 5962 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5963 IsSibCall = true; 5964 5965 // Mark this function as potentially containing a function that contains a 5966 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5967 // and restoring the callers stack pointer in this functions epilog. This is 5968 // done because by tail calling the called function might overwrite the value 5969 // in this function's (MF) stack pointer stack slot 0(SP). 5970 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5971 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5972 5973 assert(!(IsFastCall && CFlags.IsVarArg) && 5974 "fastcc not supported on varargs functions"); 5975 5976 // Count how many bytes are to be pushed on the stack, including the linkage 5977 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5978 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5979 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5980 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5981 unsigned NumBytes = LinkageSize; 5982 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5983 unsigned &QFPR_idx = FPR_idx; 5984 5985 static const MCPhysReg GPR[] = { 5986 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5987 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5988 }; 5989 static const MCPhysReg VR[] = { 5990 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5991 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5992 }; 5993 5994 const unsigned NumGPRs = array_lengthof(GPR); 5995 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5996 const unsigned NumVRs = array_lengthof(VR); 5997 const unsigned NumQFPRs = NumFPRs; 5998 5999 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6000 // can be passed to the callee in registers. 6001 // For the fast calling convention, there is another check below. 6002 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6003 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6004 if (!HasParameterArea) { 6005 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6006 unsigned AvailableFPRs = NumFPRs; 6007 unsigned AvailableVRs = NumVRs; 6008 unsigned NumBytesTmp = NumBytes; 6009 for (unsigned i = 0; i != NumOps; ++i) { 6010 if (Outs[i].Flags.isNest()) continue; 6011 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6012 PtrByteSize, LinkageSize, ParamAreaSize, 6013 NumBytesTmp, AvailableFPRs, AvailableVRs, 6014 Subtarget.hasQPX())) 6015 HasParameterArea = true; 6016 } 6017 } 6018 6019 // When using the fast calling convention, we don't provide backing for 6020 // arguments that will be in registers. 6021 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6022 6023 // Avoid allocating parameter area for fastcc functions if all the arguments 6024 // can be passed in the registers. 6025 if (IsFastCall) 6026 HasParameterArea = false; 6027 6028 // Add up all the space actually used. 6029 for (unsigned i = 0; i != NumOps; ++i) { 6030 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6031 EVT ArgVT = Outs[i].VT; 6032 EVT OrigVT = Outs[i].ArgVT; 6033 6034 if (Flags.isNest()) 6035 continue; 6036 6037 if (IsFastCall) { 6038 if (Flags.isByVal()) { 6039 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6040 if (NumGPRsUsed > NumGPRs) 6041 HasParameterArea = true; 6042 } else { 6043 switch (ArgVT.getSimpleVT().SimpleTy) { 6044 default: llvm_unreachable("Unexpected ValueType for argument!"); 6045 case MVT::i1: 6046 case MVT::i32: 6047 case MVT::i64: 6048 if (++NumGPRsUsed <= NumGPRs) 6049 continue; 6050 break; 6051 case MVT::v4i32: 6052 case MVT::v8i16: 6053 case MVT::v16i8: 6054 case MVT::v2f64: 6055 case MVT::v2i64: 6056 case MVT::v1i128: 6057 case MVT::f128: 6058 if (++NumVRsUsed <= NumVRs) 6059 continue; 6060 break; 6061 case MVT::v4f32: 6062 // When using QPX, this is handled like a FP register, otherwise, it 6063 // is an Altivec register. 6064 if (Subtarget.hasQPX()) { 6065 if (++NumFPRsUsed <= NumFPRs) 6066 continue; 6067 } else { 6068 if (++NumVRsUsed <= NumVRs) 6069 continue; 6070 } 6071 break; 6072 case MVT::f32: 6073 case MVT::f64: 6074 case MVT::v4f64: // QPX 6075 case MVT::v4i1: // QPX 6076 if (++NumFPRsUsed <= NumFPRs) 6077 continue; 6078 break; 6079 } 6080 HasParameterArea = true; 6081 } 6082 } 6083 6084 /* Respect alignment of argument on the stack. */ 6085 auto Alignement = 6086 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6087 NumBytes = alignTo(NumBytes, Alignement); 6088 6089 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6090 if (Flags.isInConsecutiveRegsLast()) 6091 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6092 } 6093 6094 unsigned NumBytesActuallyUsed = NumBytes; 6095 6096 // In the old ELFv1 ABI, 6097 // the prolog code of the callee may store up to 8 GPR argument registers to 6098 // the stack, allowing va_start to index over them in memory if its varargs. 6099 // Because we cannot tell if this is needed on the caller side, we have to 6100 // conservatively assume that it is needed. As such, make sure we have at 6101 // least enough stack space for the caller to store the 8 GPRs. 6102 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6103 // really requires memory operands, e.g. a vararg function. 6104 if (HasParameterArea) 6105 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6106 else 6107 NumBytes = LinkageSize; 6108 6109 // Tail call needs the stack to be aligned. 6110 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6111 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6112 6113 int SPDiff = 0; 6114 6115 // Calculate by how many bytes the stack has to be adjusted in case of tail 6116 // call optimization. 6117 if (!IsSibCall) 6118 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6119 6120 // To protect arguments on the stack from being clobbered in a tail call, 6121 // force all the loads to happen before doing any other lowering. 6122 if (CFlags.IsTailCall) 6123 Chain = DAG.getStackArgumentTokenFactor(Chain); 6124 6125 // Adjust the stack pointer for the new arguments... 6126 // These operations are automatically eliminated by the prolog/epilog pass 6127 if (!IsSibCall) 6128 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6129 SDValue CallSeqStart = Chain; 6130 6131 // Load the return address and frame pointer so it can be move somewhere else 6132 // later. 6133 SDValue LROp, FPOp; 6134 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6135 6136 // Set up a copy of the stack pointer for use loading and storing any 6137 // arguments that may not fit in the registers available for argument 6138 // passing. 6139 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6140 6141 // Figure out which arguments are going to go in registers, and which in 6142 // memory. Also, if this is a vararg function, floating point operations 6143 // must be stored to our stack, and loaded into integer regs as well, if 6144 // any integer regs are available for argument passing. 6145 unsigned ArgOffset = LinkageSize; 6146 6147 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6148 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6149 6150 SmallVector<SDValue, 8> MemOpChains; 6151 for (unsigned i = 0; i != NumOps; ++i) { 6152 SDValue Arg = OutVals[i]; 6153 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6154 EVT ArgVT = Outs[i].VT; 6155 EVT OrigVT = Outs[i].ArgVT; 6156 6157 // PtrOff will be used to store the current argument to the stack if a 6158 // register cannot be found for it. 6159 SDValue PtrOff; 6160 6161 // We re-align the argument offset for each argument, except when using the 6162 // fast calling convention, when we need to make sure we do that only when 6163 // we'll actually use a stack slot. 6164 auto ComputePtrOff = [&]() { 6165 /* Respect alignment of argument on the stack. */ 6166 auto Alignment = 6167 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6168 ArgOffset = alignTo(ArgOffset, Alignment); 6169 6170 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6171 6172 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6173 }; 6174 6175 if (!IsFastCall) { 6176 ComputePtrOff(); 6177 6178 /* Compute GPR index associated with argument offset. */ 6179 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6180 GPR_idx = std::min(GPR_idx, NumGPRs); 6181 } 6182 6183 // Promote integers to 64-bit values. 6184 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6185 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6186 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6187 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6188 } 6189 6190 // FIXME memcpy is used way more than necessary. Correctness first. 6191 // Note: "by value" is code for passing a structure by value, not 6192 // basic types. 6193 if (Flags.isByVal()) { 6194 // Note: Size includes alignment padding, so 6195 // struct x { short a; char b; } 6196 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6197 // These are the proper values we need for right-justifying the 6198 // aggregate in a parameter register. 6199 unsigned Size = Flags.getByValSize(); 6200 6201 // An empty aggregate parameter takes up no storage and no 6202 // registers. 6203 if (Size == 0) 6204 continue; 6205 6206 if (IsFastCall) 6207 ComputePtrOff(); 6208 6209 // All aggregates smaller than 8 bytes must be passed right-justified. 6210 if (Size==1 || Size==2 || Size==4) { 6211 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6212 if (GPR_idx != NumGPRs) { 6213 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6214 MachinePointerInfo(), VT); 6215 MemOpChains.push_back(Load.getValue(1)); 6216 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6217 6218 ArgOffset += PtrByteSize; 6219 continue; 6220 } 6221 } 6222 6223 if (GPR_idx == NumGPRs && Size < 8) { 6224 SDValue AddPtr = PtrOff; 6225 if (!isLittleEndian) { 6226 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6227 PtrOff.getValueType()); 6228 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6229 } 6230 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6231 CallSeqStart, 6232 Flags, DAG, dl); 6233 ArgOffset += PtrByteSize; 6234 continue; 6235 } 6236 // Copy entire object into memory. There are cases where gcc-generated 6237 // code assumes it is there, even if it could be put entirely into 6238 // registers. (This is not what the doc says.) 6239 6240 // FIXME: The above statement is likely due to a misunderstanding of the 6241 // documents. All arguments must be copied into the parameter area BY 6242 // THE CALLEE in the event that the callee takes the address of any 6243 // formal argument. That has not yet been implemented. However, it is 6244 // reasonable to use the stack area as a staging area for the register 6245 // load. 6246 6247 // Skip this for small aggregates, as we will use the same slot for a 6248 // right-justified copy, below. 6249 if (Size >= 8) 6250 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6251 CallSeqStart, 6252 Flags, DAG, dl); 6253 6254 // When a register is available, pass a small aggregate right-justified. 6255 if (Size < 8 && GPR_idx != NumGPRs) { 6256 // The easiest way to get this right-justified in a register 6257 // is to copy the structure into the rightmost portion of a 6258 // local variable slot, then load the whole slot into the 6259 // register. 6260 // FIXME: The memcpy seems to produce pretty awful code for 6261 // small aggregates, particularly for packed ones. 6262 // FIXME: It would be preferable to use the slot in the 6263 // parameter save area instead of a new local variable. 6264 SDValue AddPtr = PtrOff; 6265 if (!isLittleEndian) { 6266 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6267 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6268 } 6269 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6270 CallSeqStart, 6271 Flags, DAG, dl); 6272 6273 // Load the slot into the register. 6274 SDValue Load = 6275 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6276 MemOpChains.push_back(Load.getValue(1)); 6277 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6278 6279 // Done with this argument. 6280 ArgOffset += PtrByteSize; 6281 continue; 6282 } 6283 6284 // For aggregates larger than PtrByteSize, copy the pieces of the 6285 // object that fit into registers from the parameter save area. 6286 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6287 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6288 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6289 if (GPR_idx != NumGPRs) { 6290 SDValue Load = 6291 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6292 MemOpChains.push_back(Load.getValue(1)); 6293 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6294 ArgOffset += PtrByteSize; 6295 } else { 6296 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6297 break; 6298 } 6299 } 6300 continue; 6301 } 6302 6303 switch (Arg.getSimpleValueType().SimpleTy) { 6304 default: llvm_unreachable("Unexpected ValueType for argument!"); 6305 case MVT::i1: 6306 case MVT::i32: 6307 case MVT::i64: 6308 if (Flags.isNest()) { 6309 // The 'nest' parameter, if any, is passed in R11. 6310 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6311 break; 6312 } 6313 6314 // These can be scalar arguments or elements of an integer array type 6315 // passed directly. Clang may use those instead of "byval" aggregate 6316 // types to avoid forcing arguments to memory unnecessarily. 6317 if (GPR_idx != NumGPRs) { 6318 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6319 } else { 6320 if (IsFastCall) 6321 ComputePtrOff(); 6322 6323 assert(HasParameterArea && 6324 "Parameter area must exist to pass an argument in memory."); 6325 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6326 true, CFlags.IsTailCall, false, MemOpChains, 6327 TailCallArguments, dl); 6328 if (IsFastCall) 6329 ArgOffset += PtrByteSize; 6330 } 6331 if (!IsFastCall) 6332 ArgOffset += PtrByteSize; 6333 break; 6334 case MVT::f32: 6335 case MVT::f64: { 6336 // These can be scalar arguments or elements of a float array type 6337 // passed directly. The latter are used to implement ELFv2 homogenous 6338 // float aggregates. 6339 6340 // Named arguments go into FPRs first, and once they overflow, the 6341 // remaining arguments go into GPRs and then the parameter save area. 6342 // Unnamed arguments for vararg functions always go to GPRs and 6343 // then the parameter save area. For now, put all arguments to vararg 6344 // routines always in both locations (FPR *and* GPR or stack slot). 6345 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6346 bool NeededLoad = false; 6347 6348 // First load the argument into the next available FPR. 6349 if (FPR_idx != NumFPRs) 6350 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6351 6352 // Next, load the argument into GPR or stack slot if needed. 6353 if (!NeedGPROrStack) 6354 ; 6355 else if (GPR_idx != NumGPRs && !IsFastCall) { 6356 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6357 // once we support fp <-> gpr moves. 6358 6359 // In the non-vararg case, this can only ever happen in the 6360 // presence of f32 array types, since otherwise we never run 6361 // out of FPRs before running out of GPRs. 6362 SDValue ArgVal; 6363 6364 // Double values are always passed in a single GPR. 6365 if (Arg.getValueType() != MVT::f32) { 6366 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6367 6368 // Non-array float values are extended and passed in a GPR. 6369 } else if (!Flags.isInConsecutiveRegs()) { 6370 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6371 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6372 6373 // If we have an array of floats, we collect every odd element 6374 // together with its predecessor into one GPR. 6375 } else if (ArgOffset % PtrByteSize != 0) { 6376 SDValue Lo, Hi; 6377 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6378 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6379 if (!isLittleEndian) 6380 std::swap(Lo, Hi); 6381 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6382 6383 // The final element, if even, goes into the first half of a GPR. 6384 } else if (Flags.isInConsecutiveRegsLast()) { 6385 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6386 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6387 if (!isLittleEndian) 6388 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6389 DAG.getConstant(32, dl, MVT::i32)); 6390 6391 // Non-final even elements are skipped; they will be handled 6392 // together the with subsequent argument on the next go-around. 6393 } else 6394 ArgVal = SDValue(); 6395 6396 if (ArgVal.getNode()) 6397 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6398 } else { 6399 if (IsFastCall) 6400 ComputePtrOff(); 6401 6402 // Single-precision floating-point values are mapped to the 6403 // second (rightmost) word of the stack doubleword. 6404 if (Arg.getValueType() == MVT::f32 && 6405 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6406 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6407 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6408 } 6409 6410 assert(HasParameterArea && 6411 "Parameter area must exist to pass an argument in memory."); 6412 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6413 true, CFlags.IsTailCall, false, MemOpChains, 6414 TailCallArguments, dl); 6415 6416 NeededLoad = true; 6417 } 6418 // When passing an array of floats, the array occupies consecutive 6419 // space in the argument area; only round up to the next doubleword 6420 // at the end of the array. Otherwise, each float takes 8 bytes. 6421 if (!IsFastCall || NeededLoad) { 6422 ArgOffset += (Arg.getValueType() == MVT::f32 && 6423 Flags.isInConsecutiveRegs()) ? 4 : 8; 6424 if (Flags.isInConsecutiveRegsLast()) 6425 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6426 } 6427 break; 6428 } 6429 case MVT::v4f32: 6430 case MVT::v4i32: 6431 case MVT::v8i16: 6432 case MVT::v16i8: 6433 case MVT::v2f64: 6434 case MVT::v2i64: 6435 case MVT::v1i128: 6436 case MVT::f128: 6437 if (!Subtarget.hasQPX()) { 6438 // These can be scalar arguments or elements of a vector array type 6439 // passed directly. The latter are used to implement ELFv2 homogenous 6440 // vector aggregates. 6441 6442 // For a varargs call, named arguments go into VRs or on the stack as 6443 // usual; unnamed arguments always go to the stack or the corresponding 6444 // GPRs when within range. For now, we always put the value in both 6445 // locations (or even all three). 6446 if (CFlags.IsVarArg) { 6447 assert(HasParameterArea && 6448 "Parameter area must exist if we have a varargs call."); 6449 // We could elide this store in the case where the object fits 6450 // entirely in R registers. Maybe later. 6451 SDValue Store = 6452 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6453 MemOpChains.push_back(Store); 6454 if (VR_idx != NumVRs) { 6455 SDValue Load = 6456 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6457 MemOpChains.push_back(Load.getValue(1)); 6458 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6459 } 6460 ArgOffset += 16; 6461 for (unsigned i=0; i<16; i+=PtrByteSize) { 6462 if (GPR_idx == NumGPRs) 6463 break; 6464 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6465 DAG.getConstant(i, dl, PtrVT)); 6466 SDValue Load = 6467 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6468 MemOpChains.push_back(Load.getValue(1)); 6469 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6470 } 6471 break; 6472 } 6473 6474 // Non-varargs Altivec params go into VRs or on the stack. 6475 if (VR_idx != NumVRs) { 6476 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6477 } else { 6478 if (IsFastCall) 6479 ComputePtrOff(); 6480 6481 assert(HasParameterArea && 6482 "Parameter area must exist to pass an argument in memory."); 6483 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6484 true, CFlags.IsTailCall, true, MemOpChains, 6485 TailCallArguments, dl); 6486 if (IsFastCall) 6487 ArgOffset += 16; 6488 } 6489 6490 if (!IsFastCall) 6491 ArgOffset += 16; 6492 break; 6493 } // not QPX 6494 6495 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6496 "Invalid QPX parameter type"); 6497 6498 LLVM_FALLTHROUGH; 6499 case MVT::v4f64: 6500 case MVT::v4i1: { 6501 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6502 if (CFlags.IsVarArg) { 6503 assert(HasParameterArea && 6504 "Parameter area must exist if we have a varargs call."); 6505 // We could elide this store in the case where the object fits 6506 // entirely in R registers. Maybe later. 6507 SDValue Store = 6508 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6509 MemOpChains.push_back(Store); 6510 if (QFPR_idx != NumQFPRs) { 6511 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6512 PtrOff, MachinePointerInfo()); 6513 MemOpChains.push_back(Load.getValue(1)); 6514 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6515 } 6516 ArgOffset += (IsF32 ? 16 : 32); 6517 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6518 if (GPR_idx == NumGPRs) 6519 break; 6520 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6521 DAG.getConstant(i, dl, PtrVT)); 6522 SDValue Load = 6523 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6524 MemOpChains.push_back(Load.getValue(1)); 6525 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6526 } 6527 break; 6528 } 6529 6530 // Non-varargs QPX params go into registers or on the stack. 6531 if (QFPR_idx != NumQFPRs) { 6532 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6533 } else { 6534 if (IsFastCall) 6535 ComputePtrOff(); 6536 6537 assert(HasParameterArea && 6538 "Parameter area must exist to pass an argument in memory."); 6539 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6540 true, CFlags.IsTailCall, true, MemOpChains, 6541 TailCallArguments, dl); 6542 if (IsFastCall) 6543 ArgOffset += (IsF32 ? 16 : 32); 6544 } 6545 6546 if (!IsFastCall) 6547 ArgOffset += (IsF32 ? 16 : 32); 6548 break; 6549 } 6550 } 6551 } 6552 6553 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6554 "mismatch in size of parameter area"); 6555 (void)NumBytesActuallyUsed; 6556 6557 if (!MemOpChains.empty()) 6558 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6559 6560 // Check if this is an indirect call (MTCTR/BCTRL). 6561 // See prepareDescriptorIndirectCall and buildCallOperands for more 6562 // information about calls through function pointers in the 64-bit SVR4 ABI. 6563 if (CFlags.IsIndirect) { 6564 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6565 // caller in the TOC save area. 6566 if (isTOCSaveRestoreRequired(Subtarget)) { 6567 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6568 // Load r2 into a virtual register and store it to the TOC save area. 6569 setUsesTOCBasePtr(DAG); 6570 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6571 // TOC save area offset. 6572 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6573 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6574 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6575 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6576 MachinePointerInfo::getStack( 6577 DAG.getMachineFunction(), TOCSaveOffset)); 6578 } 6579 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6580 // This does not mean the MTCTR instruction must use R12; it's easier 6581 // to model this as an extra parameter, so do that. 6582 if (isELFv2ABI && !CFlags.IsPatchPoint) 6583 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6584 } 6585 6586 // Build a sequence of copy-to-reg nodes chained together with token chain 6587 // and flag operands which copy the outgoing args into the appropriate regs. 6588 SDValue InFlag; 6589 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6590 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6591 RegsToPass[i].second, InFlag); 6592 InFlag = Chain.getValue(1); 6593 } 6594 6595 if (CFlags.IsTailCall && !IsSibCall) 6596 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6597 TailCallArguments); 6598 6599 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6600 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6601 } 6602 6603 SDValue PPCTargetLowering::LowerCall_Darwin( 6604 SDValue Chain, SDValue Callee, CallFlags CFlags, 6605 const SmallVectorImpl<ISD::OutputArg> &Outs, 6606 const SmallVectorImpl<SDValue> &OutVals, 6607 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6608 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6609 const CallBase *CB) const { 6610 unsigned NumOps = Outs.size(); 6611 6612 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6613 bool isPPC64 = PtrVT == MVT::i64; 6614 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6615 6616 MachineFunction &MF = DAG.getMachineFunction(); 6617 6618 // Mark this function as potentially containing a function that contains a 6619 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6620 // and restoring the callers stack pointer in this functions epilog. This is 6621 // done because by tail calling the called function might overwrite the value 6622 // in this function's (MF) stack pointer stack slot 0(SP). 6623 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6624 CFlags.CallConv == CallingConv::Fast) 6625 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6626 6627 // Count how many bytes are to be pushed on the stack, including the linkage 6628 // area, and parameter passing area. We start with 24/48 bytes, which is 6629 // prereserved space for [SP][CR][LR][3 x unused]. 6630 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6631 unsigned NumBytes = LinkageSize; 6632 6633 // Add up all the space actually used. 6634 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6635 // they all go in registers, but we must reserve stack space for them for 6636 // possible use by the caller. In varargs or 64-bit calls, parameters are 6637 // assigned stack space in order, with padding so Altivec parameters are 6638 // 16-byte aligned. 6639 unsigned nAltivecParamsAtEnd = 0; 6640 for (unsigned i = 0; i != NumOps; ++i) { 6641 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6642 EVT ArgVT = Outs[i].VT; 6643 // Varargs Altivec parameters are padded to a 16 byte boundary. 6644 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6645 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6646 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6647 if (!CFlags.IsVarArg && !isPPC64) { 6648 // Non-varargs Altivec parameters go after all the non-Altivec 6649 // parameters; handle those later so we know how much padding we need. 6650 nAltivecParamsAtEnd++; 6651 continue; 6652 } 6653 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6654 NumBytes = ((NumBytes+15)/16)*16; 6655 } 6656 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6657 } 6658 6659 // Allow for Altivec parameters at the end, if needed. 6660 if (nAltivecParamsAtEnd) { 6661 NumBytes = ((NumBytes+15)/16)*16; 6662 NumBytes += 16*nAltivecParamsAtEnd; 6663 } 6664 6665 // The prolog code of the callee may store up to 8 GPR argument registers to 6666 // the stack, allowing va_start to index over them in memory if its varargs. 6667 // Because we cannot tell if this is needed on the caller side, we have to 6668 // conservatively assume that it is needed. As such, make sure we have at 6669 // least enough stack space for the caller to store the 8 GPRs. 6670 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6671 6672 // Tail call needs the stack to be aligned. 6673 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6674 CFlags.CallConv == CallingConv::Fast) 6675 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6676 6677 // Calculate by how many bytes the stack has to be adjusted in case of tail 6678 // call optimization. 6679 int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6680 6681 // To protect arguments on the stack from being clobbered in a tail call, 6682 // force all the loads to happen before doing any other lowering. 6683 if (CFlags.IsTailCall) 6684 Chain = DAG.getStackArgumentTokenFactor(Chain); 6685 6686 // Adjust the stack pointer for the new arguments... 6687 // These operations are automatically eliminated by the prolog/epilog pass 6688 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6689 SDValue CallSeqStart = Chain; 6690 6691 // Load the return address and frame pointer so it can be move somewhere else 6692 // later. 6693 SDValue LROp, FPOp; 6694 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6695 6696 // Set up a copy of the stack pointer for use loading and storing any 6697 // arguments that may not fit in the registers available for argument 6698 // passing. 6699 SDValue StackPtr; 6700 if (isPPC64) 6701 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6702 else 6703 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6704 6705 // Figure out which arguments are going to go in registers, and which in 6706 // memory. Also, if this is a vararg function, floating point operations 6707 // must be stored to our stack, and loaded into integer regs as well, if 6708 // any integer regs are available for argument passing. 6709 unsigned ArgOffset = LinkageSize; 6710 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6711 6712 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6713 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6714 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6715 }; 6716 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6717 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6718 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6719 }; 6720 static const MCPhysReg VR[] = { 6721 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6722 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6723 }; 6724 const unsigned NumGPRs = array_lengthof(GPR_32); 6725 const unsigned NumFPRs = 13; 6726 const unsigned NumVRs = array_lengthof(VR); 6727 6728 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6729 6730 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6731 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6732 6733 SmallVector<SDValue, 8> MemOpChains; 6734 for (unsigned i = 0; i != NumOps; ++i) { 6735 SDValue Arg = OutVals[i]; 6736 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6737 6738 // PtrOff will be used to store the current argument to the stack if a 6739 // register cannot be found for it. 6740 SDValue PtrOff; 6741 6742 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6743 6744 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6745 6746 // On PPC64, promote integers to 64-bit values. 6747 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6748 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6749 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6750 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6751 } 6752 6753 // FIXME memcpy is used way more than necessary. Correctness first. 6754 // Note: "by value" is code for passing a structure by value, not 6755 // basic types. 6756 if (Flags.isByVal()) { 6757 unsigned Size = Flags.getByValSize(); 6758 // Very small objects are passed right-justified. Everything else is 6759 // passed left-justified. 6760 if (Size==1 || Size==2) { 6761 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6762 if (GPR_idx != NumGPRs) { 6763 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6764 MachinePointerInfo(), VT); 6765 MemOpChains.push_back(Load.getValue(1)); 6766 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6767 6768 ArgOffset += PtrByteSize; 6769 } else { 6770 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6771 PtrOff.getValueType()); 6772 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6773 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6774 CallSeqStart, 6775 Flags, DAG, dl); 6776 ArgOffset += PtrByteSize; 6777 } 6778 continue; 6779 } 6780 // Copy entire object into memory. There are cases where gcc-generated 6781 // code assumes it is there, even if it could be put entirely into 6782 // registers. (This is not what the doc says.) 6783 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6784 CallSeqStart, 6785 Flags, DAG, dl); 6786 6787 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6788 // copy the pieces of the object that fit into registers from the 6789 // parameter save area. 6790 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6791 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6792 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6793 if (GPR_idx != NumGPRs) { 6794 SDValue Load = 6795 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6796 MemOpChains.push_back(Load.getValue(1)); 6797 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6798 ArgOffset += PtrByteSize; 6799 } else { 6800 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6801 break; 6802 } 6803 } 6804 continue; 6805 } 6806 6807 switch (Arg.getSimpleValueType().SimpleTy) { 6808 default: llvm_unreachable("Unexpected ValueType for argument!"); 6809 case MVT::i1: 6810 case MVT::i32: 6811 case MVT::i64: 6812 if (GPR_idx != NumGPRs) { 6813 if (Arg.getValueType() == MVT::i1) 6814 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6815 6816 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6817 } else { 6818 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6819 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6820 TailCallArguments, dl); 6821 } 6822 ArgOffset += PtrByteSize; 6823 break; 6824 case MVT::f32: 6825 case MVT::f64: 6826 if (FPR_idx != NumFPRs) { 6827 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6828 6829 if (CFlags.IsVarArg) { 6830 SDValue Store = 6831 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6832 MemOpChains.push_back(Store); 6833 6834 // Float varargs are always shadowed in available integer registers 6835 if (GPR_idx != NumGPRs) { 6836 SDValue Load = 6837 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6838 MemOpChains.push_back(Load.getValue(1)); 6839 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6840 } 6841 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6842 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6843 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6844 SDValue Load = 6845 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6846 MemOpChains.push_back(Load.getValue(1)); 6847 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6848 } 6849 } else { 6850 // If we have any FPRs remaining, we may also have GPRs remaining. 6851 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6852 // GPRs. 6853 if (GPR_idx != NumGPRs) 6854 ++GPR_idx; 6855 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6856 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6857 ++GPR_idx; 6858 } 6859 } else 6860 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6861 isPPC64, CFlags.IsTailCall, false, MemOpChains, 6862 TailCallArguments, dl); 6863 if (isPPC64) 6864 ArgOffset += 8; 6865 else 6866 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6867 break; 6868 case MVT::v4f32: 6869 case MVT::v4i32: 6870 case MVT::v8i16: 6871 case MVT::v16i8: 6872 if (CFlags.IsVarArg) { 6873 // These go aligned on the stack, or in the corresponding R registers 6874 // when within range. The Darwin PPC ABI doc claims they also go in 6875 // V registers; in fact gcc does this only for arguments that are 6876 // prototyped, not for those that match the ... We do it for all 6877 // arguments, seems to work. 6878 while (ArgOffset % 16 !=0) { 6879 ArgOffset += PtrByteSize; 6880 if (GPR_idx != NumGPRs) 6881 GPR_idx++; 6882 } 6883 // We could elide this store in the case where the object fits 6884 // entirely in R registers. Maybe later. 6885 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6886 DAG.getConstant(ArgOffset, dl, PtrVT)); 6887 SDValue Store = 6888 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6889 MemOpChains.push_back(Store); 6890 if (VR_idx != NumVRs) { 6891 SDValue Load = 6892 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6893 MemOpChains.push_back(Load.getValue(1)); 6894 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6895 } 6896 ArgOffset += 16; 6897 for (unsigned i=0; i<16; i+=PtrByteSize) { 6898 if (GPR_idx == NumGPRs) 6899 break; 6900 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6901 DAG.getConstant(i, dl, PtrVT)); 6902 SDValue Load = 6903 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6904 MemOpChains.push_back(Load.getValue(1)); 6905 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6906 } 6907 break; 6908 } 6909 6910 // Non-varargs Altivec params generally go in registers, but have 6911 // stack space allocated at the end. 6912 if (VR_idx != NumVRs) { 6913 // Doesn't have GPR space allocated. 6914 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6915 } else if (nAltivecParamsAtEnd==0) { 6916 // We are emitting Altivec params in order. 6917 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6918 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6919 TailCallArguments, dl); 6920 ArgOffset += 16; 6921 } 6922 break; 6923 } 6924 } 6925 // If all Altivec parameters fit in registers, as they usually do, 6926 // they get stack space following the non-Altivec parameters. We 6927 // don't track this here because nobody below needs it. 6928 // If there are more Altivec parameters than fit in registers emit 6929 // the stores here. 6930 if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) { 6931 unsigned j = 0; 6932 // Offset is aligned; skip 1st 12 params which go in V registers. 6933 ArgOffset = ((ArgOffset+15)/16)*16; 6934 ArgOffset += 12*16; 6935 for (unsigned i = 0; i != NumOps; ++i) { 6936 SDValue Arg = OutVals[i]; 6937 EVT ArgType = Outs[i].VT; 6938 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6939 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6940 if (++j > NumVRs) { 6941 SDValue PtrOff; 6942 // We are emitting Altivec params in order. 6943 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6944 isPPC64, CFlags.IsTailCall, true, MemOpChains, 6945 TailCallArguments, dl); 6946 ArgOffset += 16; 6947 } 6948 } 6949 } 6950 } 6951 6952 if (!MemOpChains.empty()) 6953 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6954 6955 // On Darwin, R12 must contain the address of an indirect callee. This does 6956 // not mean the MTCTR instruction must use R12; it's easier to model this as 6957 // an extra parameter, so do that. 6958 if (CFlags.IsIndirect) { 6959 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6960 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6961 PPC::R12), Callee)); 6962 } 6963 6964 // Build a sequence of copy-to-reg nodes chained together with token chain 6965 // and flag operands which copy the outgoing args into the appropriate regs. 6966 SDValue InFlag; 6967 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6968 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6969 RegsToPass[i].second, InFlag); 6970 InFlag = Chain.getValue(1); 6971 } 6972 6973 if (CFlags.IsTailCall) 6974 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6975 TailCallArguments); 6976 6977 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6978 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6979 } 6980 6981 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6982 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6983 CCState &State) { 6984 6985 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6986 State.getMachineFunction().getSubtarget()); 6987 const bool IsPPC64 = Subtarget.isPPC64(); 6988 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6989 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6990 6991 assert((!ValVT.isInteger() || 6992 (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) && 6993 "Integer argument exceeds register size: should have been legalized"); 6994 6995 if (ValVT == MVT::f128) 6996 report_fatal_error("f128 is unimplemented on AIX."); 6997 6998 if (ArgFlags.isNest()) 6999 report_fatal_error("Nest arguments are unimplemented."); 7000 7001 if (ValVT.isVector() || LocVT.isVector()) 7002 report_fatal_error("Vector arguments are unimplemented on AIX."); 7003 7004 static const MCPhysReg GPR_32[] = {// 32-bit registers. 7005 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7006 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7007 static const MCPhysReg GPR_64[] = {// 64-bit registers. 7008 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7009 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7010 7011 if (ArgFlags.isByVal()) { 7012 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 7013 report_fatal_error("Pass-by-value arguments with alignment greater than " 7014 "register width are not supported."); 7015 7016 const unsigned ByValSize = ArgFlags.getByValSize(); 7017 7018 // An empty aggregate parameter takes up no storage and no registers, 7019 // but needs a MemLoc for a stack slot for the formal arguments side. 7020 if (ByValSize == 0) { 7021 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7022 State.getNextStackOffset(), RegVT, 7023 LocInfo)); 7024 return false; 7025 } 7026 7027 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 7028 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 7029 for (const unsigned E = Offset + StackSize; Offset < E; 7030 Offset += PtrAlign.value()) { 7031 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7032 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7033 else { 7034 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 7035 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 7036 LocInfo)); 7037 break; 7038 } 7039 } 7040 return false; 7041 } 7042 7043 // Arguments always reserve parameter save area. 7044 switch (ValVT.SimpleTy) { 7045 default: 7046 report_fatal_error("Unhandled value type for argument."); 7047 case MVT::i64: 7048 // i64 arguments should have been split to i32 for PPC32. 7049 assert(IsPPC64 && "PPC32 should have split i64 values."); 7050 LLVM_FALLTHROUGH; 7051 case MVT::i1: 7052 case MVT::i32: { 7053 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 7054 // AIX integer arguments are always passed in register width. 7055 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 7056 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 7057 : CCValAssign::LocInfo::ZExt; 7058 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 7059 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7060 else 7061 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 7062 7063 return false; 7064 } 7065 case MVT::f32: 7066 case MVT::f64: { 7067 // Parameter save area (PSA) is reserved even if the float passes in fpr. 7068 const unsigned StoreSize = LocVT.getStoreSize(); 7069 // Floats are always 4-byte aligned in the PSA on AIX. 7070 // This includes f64 in 64-bit mode for ABI compatibility. 7071 const unsigned Offset = 7072 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 7073 unsigned FReg = State.AllocateReg(FPR); 7074 if (FReg) 7075 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 7076 7077 // Reserve and initialize GPRs or initialize the PSA as required. 7078 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 7079 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 7080 assert(FReg && "An FPR should be available when a GPR is reserved."); 7081 if (State.isVarArg()) { 7082 // Successfully reserved GPRs are only initialized for vararg calls. 7083 // Custom handling is required for: 7084 // f64 in PPC32 needs to be split into 2 GPRs. 7085 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 7086 State.addLoc( 7087 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 7088 } 7089 } else { 7090 // If there are insufficient GPRs, the PSA needs to be initialized. 7091 // Initialization occurs even if an FPR was initialized for 7092 // compatibility with the AIX XL compiler. The full memory for the 7093 // argument will be initialized even if a prior word is saved in GPR. 7094 // A custom memLoc is used when the argument also passes in FPR so 7095 // that the callee handling can skip over it easily. 7096 State.addLoc( 7097 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 7098 LocInfo) 7099 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 7100 break; 7101 } 7102 } 7103 7104 return false; 7105 } 7106 } 7107 return true; 7108 } 7109 7110 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 7111 bool IsPPC64) { 7112 assert((IsPPC64 || SVT != MVT::i64) && 7113 "i64 should have been split for 32-bit codegen."); 7114 7115 switch (SVT) { 7116 default: 7117 report_fatal_error("Unexpected value type for formal argument"); 7118 case MVT::i1: 7119 case MVT::i32: 7120 case MVT::i64: 7121 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7122 case MVT::f32: 7123 return &PPC::F4RCRegClass; 7124 case MVT::f64: 7125 return &PPC::F8RCRegClass; 7126 } 7127 } 7128 7129 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 7130 SelectionDAG &DAG, SDValue ArgValue, 7131 MVT LocVT, const SDLoc &dl) { 7132 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 7133 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 7134 7135 if (Flags.isSExt()) 7136 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 7137 DAG.getValueType(ValVT)); 7138 else if (Flags.isZExt()) 7139 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7140 DAG.getValueType(ValVT)); 7141 7142 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7143 } 7144 7145 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 7146 const unsigned LASize = FL->getLinkageSize(); 7147 7148 if (PPC::GPRCRegClass.contains(Reg)) { 7149 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 7150 "Reg must be a valid argument register!"); 7151 return LASize + 4 * (Reg - PPC::R3); 7152 } 7153 7154 if (PPC::G8RCRegClass.contains(Reg)) { 7155 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 7156 "Reg must be a valid argument register!"); 7157 return LASize + 8 * (Reg - PPC::X3); 7158 } 7159 7160 llvm_unreachable("Only general purpose registers expected."); 7161 } 7162 7163 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7164 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7165 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7166 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7167 7168 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7169 CallConv == CallingConv::Fast) && 7170 "Unexpected calling convention!"); 7171 7172 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7173 report_fatal_error("Tail call support is unimplemented on AIX."); 7174 7175 if (useSoftFloat()) 7176 report_fatal_error("Soft float support is unimplemented on AIX."); 7177 7178 const PPCSubtarget &Subtarget = 7179 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7180 if (Subtarget.hasQPX()) 7181 report_fatal_error("QPX support is not supported on AIX."); 7182 7183 const bool IsPPC64 = Subtarget.isPPC64(); 7184 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7185 7186 // Assign locations to all of the incoming arguments. 7187 SmallVector<CCValAssign, 16> ArgLocs; 7188 MachineFunction &MF = DAG.getMachineFunction(); 7189 MachineFrameInfo &MFI = MF.getFrameInfo(); 7190 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7191 7192 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 7193 // Reserve space for the linkage area on the stack. 7194 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7195 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7196 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7197 7198 SmallVector<SDValue, 8> MemOps; 7199 7200 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 7201 CCValAssign &VA = ArgLocs[I++]; 7202 MVT LocVT = VA.getLocVT(); 7203 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 7204 7205 // For compatibility with the AIX XL compiler, the float args in the 7206 // parameter save area are initialized even if the argument is available 7207 // in register. The caller is required to initialize both the register 7208 // and memory, however, the callee can choose to expect it in either. 7209 // The memloc is dismissed here because the argument is retrieved from 7210 // the register. 7211 if (VA.isMemLoc() && VA.needsCustom()) 7212 continue; 7213 7214 if (Flags.isByVal() && VA.isMemLoc()) { 7215 const unsigned Size = 7216 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7217 PtrByteSize); 7218 const int FI = MF.getFrameInfo().CreateFixedObject( 7219 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7220 /* IsAliased */ true); 7221 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7222 InVals.push_back(FIN); 7223 7224 continue; 7225 } 7226 7227 if (Flags.isByVal()) { 7228 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7229 7230 const MCPhysReg ArgReg = VA.getLocReg(); 7231 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7232 7233 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7234 report_fatal_error("Over aligned byvals not supported yet."); 7235 7236 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7237 const int FI = MF.getFrameInfo().CreateFixedObject( 7238 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7239 /* IsAliased */ true); 7240 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7241 InVals.push_back(FIN); 7242 7243 // Add live ins for all the RegLocs for the same ByVal. 7244 const TargetRegisterClass *RegClass = 7245 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7246 7247 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7248 unsigned Offset) { 7249 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7250 // Since the callers side has left justified the aggregate in the 7251 // register, we can simply store the entire register into the stack 7252 // slot. 7253 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7254 // The store to the fixedstack object is needed becuase accessing a 7255 // field of the ByVal will use a gep and load. Ideally we will optimize 7256 // to extracting the value from the register directly, and elide the 7257 // stores when the arguments address is not taken, but that will need to 7258 // be future work. 7259 SDValue Store = 7260 DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom, 7261 DAG.getObjectPtrOffset(dl, FIN, Offset), 7262 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7263 7264 MemOps.push_back(Store); 7265 }; 7266 7267 unsigned Offset = 0; 7268 HandleRegLoc(VA.getLocReg(), Offset); 7269 Offset += PtrByteSize; 7270 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7271 Offset += PtrByteSize) { 7272 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7273 "RegLocs should be for ByVal argument."); 7274 7275 const CCValAssign RL = ArgLocs[I++]; 7276 HandleRegLoc(RL.getLocReg(), Offset); 7277 } 7278 7279 if (Offset != StackSize) { 7280 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7281 "Expected MemLoc for remaining bytes."); 7282 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7283 // Consume the MemLoc.The InVal has already been emitted, so nothing 7284 // more needs to be done. 7285 ++I; 7286 } 7287 7288 continue; 7289 } 7290 7291 EVT ValVT = VA.getValVT(); 7292 if (VA.isRegLoc() && !VA.needsCustom()) { 7293 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7294 unsigned VReg = 7295 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7296 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7297 if (ValVT.isScalarInteger() && 7298 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7299 ArgValue = 7300 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7301 } 7302 InVals.push_back(ArgValue); 7303 continue; 7304 } 7305 if (VA.isMemLoc()) { 7306 const unsigned LocSize = LocVT.getStoreSize(); 7307 const unsigned ValSize = ValVT.getStoreSize(); 7308 assert((ValSize <= LocSize) && 7309 "Object size is larger than size of MemLoc"); 7310 int CurArgOffset = VA.getLocMemOffset(); 7311 // Objects are right-justified because AIX is big-endian. 7312 if (LocSize > ValSize) 7313 CurArgOffset += LocSize - ValSize; 7314 // Potential tail calls could cause overwriting of argument stack slots. 7315 const bool IsImmutable = 7316 !(getTargetMachine().Options.GuaranteedTailCallOpt && 7317 (CallConv == CallingConv::Fast)); 7318 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 7319 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7320 SDValue ArgValue = 7321 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 7322 InVals.push_back(ArgValue); 7323 continue; 7324 } 7325 } 7326 7327 // On AIX a minimum of 8 words is saved to the parameter save area. 7328 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7329 // Area that is at least reserved in the caller of this function. 7330 unsigned CallerReservedArea = 7331 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7332 7333 // Set the size that is at least reserved in caller of this function. Tail 7334 // call optimized function's reserved stack space needs to be aligned so 7335 // that taking the difference between two stack areas will result in an 7336 // aligned stack. 7337 CallerReservedArea = 7338 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7339 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7340 FuncInfo->setMinReservedArea(CallerReservedArea); 7341 7342 if (isVarArg) { 7343 FuncInfo->setVarArgsFrameIndex( 7344 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7345 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7346 7347 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7348 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7349 7350 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7351 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7352 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7353 7354 // The fixed integer arguments of a variadic function are stored to the 7355 // VarArgsFrameIndex on the stack so that they may be loaded by 7356 // dereferencing the result of va_next. 7357 for (unsigned GPRIndex = 7358 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7359 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7360 7361 const unsigned VReg = 7362 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7363 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7364 7365 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7366 SDValue Store = 7367 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7368 MemOps.push_back(Store); 7369 // Increment the address for the next argument to store. 7370 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7371 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7372 } 7373 } 7374 7375 if (!MemOps.empty()) 7376 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7377 7378 return Chain; 7379 } 7380 7381 SDValue PPCTargetLowering::LowerCall_AIX( 7382 SDValue Chain, SDValue Callee, CallFlags CFlags, 7383 const SmallVectorImpl<ISD::OutputArg> &Outs, 7384 const SmallVectorImpl<SDValue> &OutVals, 7385 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7386 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7387 const CallBase *CB) const { 7388 7389 assert((CFlags.CallConv == CallingConv::C || 7390 CFlags.CallConv == CallingConv::Cold || 7391 CFlags.CallConv == CallingConv::Fast) && 7392 "Unexpected calling convention!"); 7393 7394 if (CFlags.IsPatchPoint) 7395 report_fatal_error("This call type is unimplemented on AIX."); 7396 7397 const PPCSubtarget& Subtarget = 7398 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7399 if (Subtarget.hasQPX()) 7400 report_fatal_error("QPX is not supported on AIX."); 7401 if (Subtarget.hasAltivec()) 7402 report_fatal_error("Altivec support is unimplemented on AIX."); 7403 7404 MachineFunction &MF = DAG.getMachineFunction(); 7405 SmallVector<CCValAssign, 16> ArgLocs; 7406 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7407 *DAG.getContext()); 7408 7409 // Reserve space for the linkage save area (LSA) on the stack. 7410 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7411 // [SP][CR][LR][2 x reserved][TOC]. 7412 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7413 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7414 const bool IsPPC64 = Subtarget.isPPC64(); 7415 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7416 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7417 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7418 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7419 7420 // The prolog code of the callee may store up to 8 GPR argument registers to 7421 // the stack, allowing va_start to index over them in memory if the callee 7422 // is variadic. 7423 // Because we cannot tell if this is needed on the caller side, we have to 7424 // conservatively assume that it is needed. As such, make sure we have at 7425 // least enough stack space for the caller to store the 8 GPRs. 7426 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7427 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7428 CCInfo.getNextStackOffset()); 7429 7430 // Adjust the stack pointer for the new arguments... 7431 // These operations are automatically eliminated by the prolog/epilog pass. 7432 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7433 SDValue CallSeqStart = Chain; 7434 7435 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7436 SmallVector<SDValue, 8> MemOpChains; 7437 7438 // Set up a copy of the stack pointer for loading and storing any 7439 // arguments that may not fit in the registers available for argument 7440 // passing. 7441 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7442 : DAG.getRegister(PPC::R1, MVT::i32); 7443 7444 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7445 const unsigned ValNo = ArgLocs[I].getValNo(); 7446 SDValue Arg = OutVals[ValNo]; 7447 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7448 7449 if (Flags.isByVal()) { 7450 const unsigned ByValSize = Flags.getByValSize(); 7451 7452 // Nothing to do for zero-sized ByVals on the caller side. 7453 if (!ByValSize) { 7454 ++I; 7455 continue; 7456 } 7457 7458 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7459 return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, 7460 (LoadOffset != 0) 7461 ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7462 : Arg, 7463 MachinePointerInfo(), VT); 7464 }; 7465 7466 unsigned LoadOffset = 0; 7467 7468 // Initialize registers, which are fully occupied by the by-val argument. 7469 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7470 SDValue Load = GetLoad(PtrVT, LoadOffset); 7471 MemOpChains.push_back(Load.getValue(1)); 7472 LoadOffset += PtrByteSize; 7473 const CCValAssign &ByValVA = ArgLocs[I++]; 7474 assert(ByValVA.getValNo() == ValNo && 7475 "Unexpected location for pass-by-value argument."); 7476 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7477 } 7478 7479 if (LoadOffset == ByValSize) 7480 continue; 7481 7482 // There must be one more loc to handle the remainder. 7483 assert(ArgLocs[I].getValNo() == ValNo && 7484 "Expected additional location for by-value argument."); 7485 7486 if (ArgLocs[I].isMemLoc()) { 7487 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7488 const CCValAssign &ByValVA = ArgLocs[I++]; 7489 ISD::ArgFlagsTy MemcpyFlags = Flags; 7490 // Only memcpy the bytes that don't pass in register. 7491 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7492 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7493 (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset) 7494 : Arg, 7495 DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()), 7496 CallSeqStart, MemcpyFlags, DAG, dl); 7497 continue; 7498 } 7499 7500 // Initialize the final register residue. 7501 // Any residue that occupies the final by-val arg register must be 7502 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7503 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7504 // 2 and 1 byte loads. 7505 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7506 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7507 "Unexpected register residue for by-value argument."); 7508 SDValue ResidueVal; 7509 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7510 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7511 const MVT VT = 7512 N == 1 ? MVT::i8 7513 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7514 SDValue Load = GetLoad(VT, LoadOffset); 7515 MemOpChains.push_back(Load.getValue(1)); 7516 LoadOffset += N; 7517 Bytes += N; 7518 7519 // By-val arguments are passed left-justfied in register. 7520 // Every load here needs to be shifted, otherwise a full register load 7521 // should have been used. 7522 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7523 "Unexpected load emitted during handling of pass-by-value " 7524 "argument."); 7525 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7526 EVT ShiftAmountTy = 7527 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7528 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7529 SDValue ShiftedLoad = 7530 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7531 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7532 ShiftedLoad) 7533 : ShiftedLoad; 7534 } 7535 7536 const CCValAssign &ByValVA = ArgLocs[I++]; 7537 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7538 continue; 7539 } 7540 7541 CCValAssign &VA = ArgLocs[I++]; 7542 const MVT LocVT = VA.getLocVT(); 7543 const MVT ValVT = VA.getValVT(); 7544 7545 switch (VA.getLocInfo()) { 7546 default: 7547 report_fatal_error("Unexpected argument extension type."); 7548 case CCValAssign::Full: 7549 break; 7550 case CCValAssign::ZExt: 7551 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7552 break; 7553 case CCValAssign::SExt: 7554 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7555 break; 7556 } 7557 7558 if (VA.isRegLoc() && !VA.needsCustom()) { 7559 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7560 continue; 7561 } 7562 7563 if (VA.isMemLoc()) { 7564 SDValue PtrOff = 7565 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7566 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7567 MemOpChains.push_back( 7568 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7569 7570 continue; 7571 } 7572 7573 // Custom handling is used for GPR initializations for vararg float 7574 // arguments. 7575 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7576 ValVT.isFloatingPoint() && LocVT.isInteger() && 7577 "Unexpected register handling for calling convention."); 7578 7579 SDValue ArgAsInt = 7580 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7581 7582 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7583 // f32 in 32-bit GPR 7584 // f64 in 64-bit GPR 7585 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7586 else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits()) 7587 // f32 in 64-bit GPR. 7588 RegsToPass.push_back(std::make_pair( 7589 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7590 else { 7591 // f64 in two 32-bit GPRs 7592 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7593 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7594 "Unexpected custom register for argument!"); 7595 CCValAssign &GPR1 = VA; 7596 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7597 DAG.getConstant(32, dl, MVT::i8)); 7598 RegsToPass.push_back(std::make_pair( 7599 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7600 7601 if (I != E) { 7602 // If only 1 GPR was available, there will only be one custom GPR and 7603 // the argument will also pass in memory. 7604 CCValAssign &PeekArg = ArgLocs[I]; 7605 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7606 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7607 CCValAssign &GPR2 = ArgLocs[I++]; 7608 RegsToPass.push_back(std::make_pair( 7609 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7610 } 7611 } 7612 } 7613 } 7614 7615 if (!MemOpChains.empty()) 7616 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7617 7618 // For indirect calls, we need to save the TOC base to the stack for 7619 // restoration after the call. 7620 if (CFlags.IsIndirect) { 7621 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7622 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7623 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7624 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7625 const unsigned TOCSaveOffset = 7626 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7627 7628 setUsesTOCBasePtr(DAG); 7629 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7630 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7631 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7632 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7633 Chain = DAG.getStore( 7634 Val.getValue(1), dl, Val, AddPtr, 7635 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7636 } 7637 7638 // Build a sequence of copy-to-reg nodes chained together with token chain 7639 // and flag operands which copy the outgoing args into the appropriate regs. 7640 SDValue InFlag; 7641 for (auto Reg : RegsToPass) { 7642 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7643 InFlag = Chain.getValue(1); 7644 } 7645 7646 const int SPDiff = 0; 7647 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7648 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7649 } 7650 7651 bool 7652 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7653 MachineFunction &MF, bool isVarArg, 7654 const SmallVectorImpl<ISD::OutputArg> &Outs, 7655 LLVMContext &Context) const { 7656 SmallVector<CCValAssign, 16> RVLocs; 7657 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7658 return CCInfo.CheckReturn( 7659 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7660 ? RetCC_PPC_Cold 7661 : RetCC_PPC); 7662 } 7663 7664 SDValue 7665 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7666 bool isVarArg, 7667 const SmallVectorImpl<ISD::OutputArg> &Outs, 7668 const SmallVectorImpl<SDValue> &OutVals, 7669 const SDLoc &dl, SelectionDAG &DAG) const { 7670 SmallVector<CCValAssign, 16> RVLocs; 7671 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7672 *DAG.getContext()); 7673 CCInfo.AnalyzeReturn(Outs, 7674 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7675 ? RetCC_PPC_Cold 7676 : RetCC_PPC); 7677 7678 SDValue Flag; 7679 SmallVector<SDValue, 4> RetOps(1, Chain); 7680 7681 // Copy the result values into the output registers. 7682 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7683 CCValAssign &VA = RVLocs[i]; 7684 assert(VA.isRegLoc() && "Can only return in registers!"); 7685 7686 SDValue Arg = OutVals[RealResIdx]; 7687 7688 switch (VA.getLocInfo()) { 7689 default: llvm_unreachable("Unknown loc info!"); 7690 case CCValAssign::Full: break; 7691 case CCValAssign::AExt: 7692 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7693 break; 7694 case CCValAssign::ZExt: 7695 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7696 break; 7697 case CCValAssign::SExt: 7698 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7699 break; 7700 } 7701 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7702 bool isLittleEndian = Subtarget.isLittleEndian(); 7703 // Legalize ret f64 -> ret 2 x i32. 7704 SDValue SVal = 7705 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7706 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7707 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7708 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7709 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7710 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7711 Flag = Chain.getValue(1); 7712 VA = RVLocs[++i]; // skip ahead to next loc 7713 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7714 } else 7715 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7716 Flag = Chain.getValue(1); 7717 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7718 } 7719 7720 RetOps[0] = Chain; // Update chain. 7721 7722 // Add the flag if we have it. 7723 if (Flag.getNode()) 7724 RetOps.push_back(Flag); 7725 7726 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7727 } 7728 7729 SDValue 7730 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7731 SelectionDAG &DAG) const { 7732 SDLoc dl(Op); 7733 7734 // Get the correct type for integers. 7735 EVT IntVT = Op.getValueType(); 7736 7737 // Get the inputs. 7738 SDValue Chain = Op.getOperand(0); 7739 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7740 // Build a DYNAREAOFFSET node. 7741 SDValue Ops[2] = {Chain, FPSIdx}; 7742 SDVTList VTs = DAG.getVTList(IntVT); 7743 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7744 } 7745 7746 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7747 SelectionDAG &DAG) const { 7748 // When we pop the dynamic allocation we need to restore the SP link. 7749 SDLoc dl(Op); 7750 7751 // Get the correct type for pointers. 7752 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7753 7754 // Construct the stack pointer operand. 7755 bool isPPC64 = Subtarget.isPPC64(); 7756 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7757 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7758 7759 // Get the operands for the STACKRESTORE. 7760 SDValue Chain = Op.getOperand(0); 7761 SDValue SaveSP = Op.getOperand(1); 7762 7763 // Load the old link SP. 7764 SDValue LoadLinkSP = 7765 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7766 7767 // Restore the stack pointer. 7768 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7769 7770 // Store the old link SP. 7771 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7772 } 7773 7774 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7775 MachineFunction &MF = DAG.getMachineFunction(); 7776 bool isPPC64 = Subtarget.isPPC64(); 7777 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7778 7779 // Get current frame pointer save index. The users of this index will be 7780 // primarily DYNALLOC instructions. 7781 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7782 int RASI = FI->getReturnAddrSaveIndex(); 7783 7784 // If the frame pointer save index hasn't been defined yet. 7785 if (!RASI) { 7786 // Find out what the fix offset of the frame pointer save area. 7787 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7788 // Allocate the frame index for frame pointer save area. 7789 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7790 // Save the result. 7791 FI->setReturnAddrSaveIndex(RASI); 7792 } 7793 return DAG.getFrameIndex(RASI, PtrVT); 7794 } 7795 7796 SDValue 7797 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7798 MachineFunction &MF = DAG.getMachineFunction(); 7799 bool isPPC64 = Subtarget.isPPC64(); 7800 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7801 7802 // Get current frame pointer save index. The users of this index will be 7803 // primarily DYNALLOC instructions. 7804 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7805 int FPSI = FI->getFramePointerSaveIndex(); 7806 7807 // If the frame pointer save index hasn't been defined yet. 7808 if (!FPSI) { 7809 // Find out what the fix offset of the frame pointer save area. 7810 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7811 // Allocate the frame index for frame pointer save area. 7812 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7813 // Save the result. 7814 FI->setFramePointerSaveIndex(FPSI); 7815 } 7816 return DAG.getFrameIndex(FPSI, PtrVT); 7817 } 7818 7819 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7820 SelectionDAG &DAG) const { 7821 // Get the inputs. 7822 SDValue Chain = Op.getOperand(0); 7823 SDValue Size = Op.getOperand(1); 7824 SDLoc dl(Op); 7825 7826 // Get the correct type for pointers. 7827 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7828 // Negate the size. 7829 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7830 DAG.getConstant(0, dl, PtrVT), Size); 7831 // Construct a node for the frame pointer save index. 7832 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7833 // Build a DYNALLOC node. 7834 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7835 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7836 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7837 } 7838 7839 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7840 SelectionDAG &DAG) const { 7841 MachineFunction &MF = DAG.getMachineFunction(); 7842 7843 bool isPPC64 = Subtarget.isPPC64(); 7844 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7845 7846 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7847 return DAG.getFrameIndex(FI, PtrVT); 7848 } 7849 7850 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7851 SelectionDAG &DAG) const { 7852 SDLoc DL(Op); 7853 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7854 DAG.getVTList(MVT::i32, MVT::Other), 7855 Op.getOperand(0), Op.getOperand(1)); 7856 } 7857 7858 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7859 SelectionDAG &DAG) const { 7860 SDLoc DL(Op); 7861 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7862 Op.getOperand(0), Op.getOperand(1)); 7863 } 7864 7865 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7866 if (Op.getValueType().isVector()) 7867 return LowerVectorLoad(Op, DAG); 7868 7869 assert(Op.getValueType() == MVT::i1 && 7870 "Custom lowering only for i1 loads"); 7871 7872 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7873 7874 SDLoc dl(Op); 7875 LoadSDNode *LD = cast<LoadSDNode>(Op); 7876 7877 SDValue Chain = LD->getChain(); 7878 SDValue BasePtr = LD->getBasePtr(); 7879 MachineMemOperand *MMO = LD->getMemOperand(); 7880 7881 SDValue NewLD = 7882 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7883 BasePtr, MVT::i8, MMO); 7884 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7885 7886 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7887 return DAG.getMergeValues(Ops, dl); 7888 } 7889 7890 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7891 if (Op.getOperand(1).getValueType().isVector()) 7892 return LowerVectorStore(Op, DAG); 7893 7894 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7895 "Custom lowering only for i1 stores"); 7896 7897 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7898 7899 SDLoc dl(Op); 7900 StoreSDNode *ST = cast<StoreSDNode>(Op); 7901 7902 SDValue Chain = ST->getChain(); 7903 SDValue BasePtr = ST->getBasePtr(); 7904 SDValue Value = ST->getValue(); 7905 MachineMemOperand *MMO = ST->getMemOperand(); 7906 7907 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7908 Value); 7909 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7910 } 7911 7912 // FIXME: Remove this once the ANDI glue bug is fixed: 7913 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7914 assert(Op.getValueType() == MVT::i1 && 7915 "Custom lowering only for i1 results"); 7916 7917 SDLoc DL(Op); 7918 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7919 } 7920 7921 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7922 SelectionDAG &DAG) const { 7923 7924 // Implements a vector truncate that fits in a vector register as a shuffle. 7925 // We want to legalize vector truncates down to where the source fits in 7926 // a vector register (and target is therefore smaller than vector register 7927 // size). At that point legalization will try to custom lower the sub-legal 7928 // result and get here - where we can contain the truncate as a single target 7929 // operation. 7930 7931 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7932 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7933 // 7934 // We will implement it for big-endian ordering as this (where x denotes 7935 // undefined): 7936 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7937 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7938 // 7939 // The same operation in little-endian ordering will be: 7940 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7941 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7942 7943 assert(Op.getValueType().isVector() && "Vector type expected."); 7944 7945 SDLoc DL(Op); 7946 SDValue N1 = Op.getOperand(0); 7947 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7948 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7949 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7950 7951 EVT TrgVT = Op.getValueType(); 7952 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7953 EVT EltVT = TrgVT.getVectorElementType(); 7954 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7955 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7956 7957 // First list the elements we want to keep. 7958 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7959 SmallVector<int, 16> ShuffV; 7960 if (Subtarget.isLittleEndian()) 7961 for (unsigned i = 0; i < TrgNumElts; ++i) 7962 ShuffV.push_back(i * SizeMult); 7963 else 7964 for (unsigned i = 1; i <= TrgNumElts; ++i) 7965 ShuffV.push_back(i * SizeMult - 1); 7966 7967 // Populate the remaining elements with undefs. 7968 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7969 // ShuffV.push_back(i + WideNumElts); 7970 ShuffV.push_back(WideNumElts + 1); 7971 7972 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7973 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7974 } 7975 7976 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7977 /// possible. 7978 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7979 // Not FP? Not a fsel. 7980 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7981 !Op.getOperand(2).getValueType().isFloatingPoint()) 7982 return Op; 7983 7984 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7985 7986 EVT ResVT = Op.getValueType(); 7987 EVT CmpVT = Op.getOperand(0).getValueType(); 7988 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7989 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7990 SDLoc dl(Op); 7991 SDNodeFlags Flags = Op.getNode()->getFlags(); 7992 7993 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7994 // presence of infinities. 7995 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7996 switch (CC) { 7997 default: 7998 break; 7999 case ISD::SETOGT: 8000 case ISD::SETGT: 8001 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 8002 case ISD::SETOLT: 8003 case ISD::SETLT: 8004 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 8005 } 8006 } 8007 8008 // We might be able to do better than this under some circumstances, but in 8009 // general, fsel-based lowering of select is a finite-math-only optimization. 8010 // For more information, see section F.3 of the 2.06 ISA specification. 8011 // With ISA 3.0 8012 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 8013 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 8014 return Op; 8015 8016 // If the RHS of the comparison is a 0.0, we don't need to do the 8017 // subtraction at all. 8018 SDValue Sel1; 8019 if (isFloatingPointZero(RHS)) 8020 switch (CC) { 8021 default: break; // SETUO etc aren't handled by fsel. 8022 case ISD::SETNE: 8023 std::swap(TV, FV); 8024 LLVM_FALLTHROUGH; 8025 case ISD::SETEQ: 8026 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8027 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8028 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8029 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8030 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8031 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8032 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 8033 case ISD::SETULT: 8034 case ISD::SETLT: 8035 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8036 LLVM_FALLTHROUGH; 8037 case ISD::SETOGE: 8038 case ISD::SETGE: 8039 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8040 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8041 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 8042 case ISD::SETUGT: 8043 case ISD::SETGT: 8044 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 8045 LLVM_FALLTHROUGH; 8046 case ISD::SETOLE: 8047 case ISD::SETLE: 8048 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 8049 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 8050 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8051 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 8052 } 8053 8054 SDValue Cmp; 8055 switch (CC) { 8056 default: break; // SETUO etc aren't handled by fsel. 8057 case ISD::SETNE: 8058 std::swap(TV, FV); 8059 LLVM_FALLTHROUGH; 8060 case ISD::SETEQ: 8061 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8062 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8063 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8064 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8065 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 8066 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 8067 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 8068 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 8069 case ISD::SETULT: 8070 case ISD::SETLT: 8071 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8072 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8073 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8074 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8075 case ISD::SETOGE: 8076 case ISD::SETGE: 8077 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 8078 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8079 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8080 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8081 case ISD::SETUGT: 8082 case ISD::SETGT: 8083 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8084 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8085 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8086 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 8087 case ISD::SETOLE: 8088 case ISD::SETLE: 8089 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8090 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8091 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8092 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8093 } 8094 return Op; 8095 } 8096 8097 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8098 SelectionDAG &DAG, 8099 const SDLoc &dl) const { 8100 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8101 SDValue Src = Op.getOperand(0); 8102 if (Src.getValueType() == MVT::f32) 8103 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8104 8105 SDValue Tmp; 8106 switch (Op.getSimpleValueType().SimpleTy) { 8107 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8108 case MVT::i32: 8109 Tmp = DAG.getNode( 8110 Op.getOpcode() == ISD::FP_TO_SINT 8111 ? PPCISD::FCTIWZ 8112 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8113 dl, MVT::f64, Src); 8114 break; 8115 case MVT::i64: 8116 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8117 "i64 FP_TO_UINT is supported only with FPCVT"); 8118 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8119 PPCISD::FCTIDUZ, 8120 dl, MVT::f64, Src); 8121 break; 8122 } 8123 8124 // Convert the FP value to an int value through memory. 8125 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8126 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 8127 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8128 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8129 MachinePointerInfo MPI = 8130 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8131 8132 // Emit a store to the stack slot. 8133 SDValue Chain; 8134 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8135 if (i32Stack) { 8136 MachineFunction &MF = DAG.getMachineFunction(); 8137 Alignment = Align(4); 8138 MachineMemOperand *MMO = 8139 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8140 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 8141 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8142 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8143 } else 8144 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 8145 8146 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8147 // add in a bias on big endian. 8148 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8149 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8150 DAG.getConstant(4, dl, FIPtr.getValueType())); 8151 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8152 } 8153 8154 RLI.Chain = Chain; 8155 RLI.Ptr = FIPtr; 8156 RLI.MPI = MPI; 8157 RLI.Alignment = Alignment; 8158 } 8159 8160 /// Custom lowers floating point to integer conversions to use 8161 /// the direct move instructions available in ISA 2.07 to avoid the 8162 /// need for load/store combinations. 8163 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8164 SelectionDAG &DAG, 8165 const SDLoc &dl) const { 8166 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 8167 SDValue Src = Op.getOperand(0); 8168 8169 if (Src.getValueType() == MVT::f32) 8170 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8171 8172 SDValue Tmp; 8173 switch (Op.getSimpleValueType().SimpleTy) { 8174 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8175 case MVT::i32: 8176 Tmp = DAG.getNode( 8177 Op.getOpcode() == ISD::FP_TO_SINT 8178 ? PPCISD::FCTIWZ 8179 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 8180 dl, MVT::f64, Src); 8181 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 8182 break; 8183 case MVT::i64: 8184 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 8185 "i64 FP_TO_UINT is supported only with FPCVT"); 8186 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 8187 PPCISD::FCTIDUZ, 8188 dl, MVT::f64, Src); 8189 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 8190 break; 8191 } 8192 return Tmp; 8193 } 8194 8195 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8196 const SDLoc &dl) const { 8197 8198 // FP to INT conversions are legal for f128. 8199 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 8200 return Op; 8201 8202 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8203 // PPC (the libcall is not available). 8204 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 8205 if (Op.getValueType() == MVT::i32) { 8206 if (Op.getOpcode() == ISD::FP_TO_SINT) { 8207 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8208 MVT::f64, Op.getOperand(0), 8209 DAG.getIntPtrConstant(0, dl)); 8210 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8211 MVT::f64, Op.getOperand(0), 8212 DAG.getIntPtrConstant(1, dl)); 8213 8214 // Add the two halves of the long double in round-to-zero mode. 8215 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8216 8217 // Now use a smaller FP_TO_SINT. 8218 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8219 } 8220 if (Op.getOpcode() == ISD::FP_TO_UINT) { 8221 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8222 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8223 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 8224 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8225 // FIXME: generated code sucks. 8226 // TODO: Are there fast-math-flags to propagate to this FSUB? 8227 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 8228 Op.getOperand(0), Tmp); 8229 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8230 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 8231 DAG.getConstant(0x80000000, dl, MVT::i32)); 8232 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 8233 Op.getOperand(0)); 8234 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 8235 ISD::SETGE); 8236 } 8237 } 8238 8239 return SDValue(); 8240 } 8241 8242 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8243 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8244 8245 ReuseLoadInfo RLI; 8246 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8247 8248 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8249 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8250 } 8251 8252 // We're trying to insert a regular store, S, and then a load, L. If the 8253 // incoming value, O, is a load, we might just be able to have our load use the 8254 // address used by O. However, we don't know if anything else will store to 8255 // that address before we can load from it. To prevent this situation, we need 8256 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8257 // the same chain operand as O, we create a token factor from the chain results 8258 // of O and L, and we replace all uses of O's chain result with that token 8259 // factor (see spliceIntoChain below for this last part). 8260 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8261 ReuseLoadInfo &RLI, 8262 SelectionDAG &DAG, 8263 ISD::LoadExtType ET) const { 8264 SDLoc dl(Op); 8265 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8266 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8267 if (ET == ISD::NON_EXTLOAD && 8268 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8269 isOperationLegalOrCustom(Op.getOpcode(), 8270 Op.getOperand(0).getValueType())) { 8271 8272 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8273 return true; 8274 } 8275 8276 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8277 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8278 LD->isNonTemporal()) 8279 return false; 8280 if (LD->getMemoryVT() != MemVT) 8281 return false; 8282 8283 RLI.Ptr = LD->getBasePtr(); 8284 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8285 assert(LD->getAddressingMode() == ISD::PRE_INC && 8286 "Non-pre-inc AM on PPC?"); 8287 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8288 LD->getOffset()); 8289 } 8290 8291 RLI.Chain = LD->getChain(); 8292 RLI.MPI = LD->getPointerInfo(); 8293 RLI.IsDereferenceable = LD->isDereferenceable(); 8294 RLI.IsInvariant = LD->isInvariant(); 8295 RLI.Alignment = LD->getAlign(); 8296 RLI.AAInfo = LD->getAAInfo(); 8297 RLI.Ranges = LD->getRanges(); 8298 8299 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8300 return true; 8301 } 8302 8303 // Given the head of the old chain, ResChain, insert a token factor containing 8304 // it and NewResChain, and make users of ResChain now be users of that token 8305 // factor. 8306 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8307 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8308 SDValue NewResChain, 8309 SelectionDAG &DAG) const { 8310 if (!ResChain) 8311 return; 8312 8313 SDLoc dl(NewResChain); 8314 8315 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8316 NewResChain, DAG.getUNDEF(MVT::Other)); 8317 assert(TF.getNode() != NewResChain.getNode() && 8318 "A new TF really is required here"); 8319 8320 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8321 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8322 } 8323 8324 /// Analyze profitability of direct move 8325 /// prefer float load to int load plus direct move 8326 /// when there is no integer use of int load 8327 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8328 SDNode *Origin = Op.getOperand(0).getNode(); 8329 if (Origin->getOpcode() != ISD::LOAD) 8330 return true; 8331 8332 // If there is no LXSIBZX/LXSIHZX, like Power8, 8333 // prefer direct move if the memory size is 1 or 2 bytes. 8334 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8335 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8336 return true; 8337 8338 for (SDNode::use_iterator UI = Origin->use_begin(), 8339 UE = Origin->use_end(); 8340 UI != UE; ++UI) { 8341 8342 // Only look at the users of the loaded value. 8343 if (UI.getUse().get().getResNo() != 0) 8344 continue; 8345 8346 if (UI->getOpcode() != ISD::SINT_TO_FP && 8347 UI->getOpcode() != ISD::UINT_TO_FP) 8348 return true; 8349 } 8350 8351 return false; 8352 } 8353 8354 /// Custom lowers integer to floating point conversions to use 8355 /// the direct move instructions available in ISA 2.07 to avoid the 8356 /// need for load/store combinations. 8357 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8358 SelectionDAG &DAG, 8359 const SDLoc &dl) const { 8360 assert((Op.getValueType() == MVT::f32 || 8361 Op.getValueType() == MVT::f64) && 8362 "Invalid floating point type as target of conversion"); 8363 assert(Subtarget.hasFPCVT() && 8364 "Int to FP conversions with direct moves require FPCVT"); 8365 SDValue FP; 8366 SDValue Src = Op.getOperand(0); 8367 bool SinglePrec = Op.getValueType() == MVT::f32; 8368 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8369 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 8370 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 8371 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 8372 8373 if (WordInt) { 8374 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 8375 dl, MVT::f64, Src); 8376 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8377 } 8378 else { 8379 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 8380 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 8381 } 8382 8383 return FP; 8384 } 8385 8386 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8387 8388 EVT VecVT = Vec.getValueType(); 8389 assert(VecVT.isVector() && "Expected a vector type."); 8390 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8391 8392 EVT EltVT = VecVT.getVectorElementType(); 8393 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8394 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8395 8396 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8397 SmallVector<SDValue, 16> Ops(NumConcat); 8398 Ops[0] = Vec; 8399 SDValue UndefVec = DAG.getUNDEF(VecVT); 8400 for (unsigned i = 1; i < NumConcat; ++i) 8401 Ops[i] = UndefVec; 8402 8403 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8404 } 8405 8406 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8407 const SDLoc &dl) const { 8408 8409 unsigned Opc = Op.getOpcode(); 8410 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8411 "Unexpected conversion type"); 8412 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8413 "Supports conversions to v2f64/v4f32 only."); 8414 8415 bool SignedConv = Opc == ISD::SINT_TO_FP; 8416 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8417 8418 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8419 EVT WideVT = Wide.getValueType(); 8420 unsigned WideNumElts = WideVT.getVectorNumElements(); 8421 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8422 8423 SmallVector<int, 16> ShuffV; 8424 for (unsigned i = 0; i < WideNumElts; ++i) 8425 ShuffV.push_back(i + WideNumElts); 8426 8427 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8428 int SaveElts = FourEltRes ? 4 : 2; 8429 if (Subtarget.isLittleEndian()) 8430 for (int i = 0; i < SaveElts; i++) 8431 ShuffV[i * Stride] = i; 8432 else 8433 for (int i = 1; i <= SaveElts; i++) 8434 ShuffV[i * Stride - 1] = i - 1; 8435 8436 SDValue ShuffleSrc2 = 8437 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8438 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8439 8440 SDValue Extend; 8441 if (SignedConv) { 8442 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8443 EVT ExtVT = Op.getOperand(0).getValueType(); 8444 if (Subtarget.hasP9Altivec()) 8445 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8446 IntermediateVT.getVectorNumElements()); 8447 8448 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8449 DAG.getValueType(ExtVT)); 8450 } else 8451 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8452 8453 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8454 } 8455 8456 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8457 SelectionDAG &DAG) const { 8458 SDLoc dl(Op); 8459 8460 EVT InVT = Op.getOperand(0).getValueType(); 8461 EVT OutVT = Op.getValueType(); 8462 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8463 isOperationCustom(Op.getOpcode(), InVT)) 8464 return LowerINT_TO_FPVector(Op, DAG, dl); 8465 8466 // Conversions to f128 are legal. 8467 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8468 return Op; 8469 8470 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8471 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8472 return SDValue(); 8473 8474 SDValue Value = Op.getOperand(0); 8475 // The values are now known to be -1 (false) or 1 (true). To convert this 8476 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8477 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8478 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8479 8480 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8481 8482 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8483 8484 if (Op.getValueType() != MVT::v4f64) 8485 Value = DAG.getNode(ISD::FP_ROUND, dl, 8486 Op.getValueType(), Value, 8487 DAG.getIntPtrConstant(1, dl)); 8488 return Value; 8489 } 8490 8491 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8492 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8493 return SDValue(); 8494 8495 if (Op.getOperand(0).getValueType() == MVT::i1) 8496 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8497 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8498 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8499 8500 // If we have direct moves, we can do all the conversion, skip the store/load 8501 // however, without FPCVT we can't do most conversions. 8502 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8503 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8504 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8505 8506 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8507 "UINT_TO_FP is supported only with FPCVT"); 8508 8509 // If we have FCFIDS, then use it when converting to single-precision. 8510 // Otherwise, convert to double-precision and then round. 8511 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8512 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8513 : PPCISD::FCFIDS) 8514 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8515 : PPCISD::FCFID); 8516 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8517 ? MVT::f32 8518 : MVT::f64; 8519 8520 if (Op.getOperand(0).getValueType() == MVT::i64) { 8521 SDValue SINT = Op.getOperand(0); 8522 // When converting to single-precision, we actually need to convert 8523 // to double-precision first and then round to single-precision. 8524 // To avoid double-rounding effects during that operation, we have 8525 // to prepare the input operand. Bits that might be truncated when 8526 // converting to double-precision are replaced by a bit that won't 8527 // be lost at this stage, but is below the single-precision rounding 8528 // position. 8529 // 8530 // However, if -enable-unsafe-fp-math is in effect, accept double 8531 // rounding to avoid the extra overhead. 8532 if (Op.getValueType() == MVT::f32 && 8533 !Subtarget.hasFPCVT() && 8534 !DAG.getTarget().Options.UnsafeFPMath) { 8535 8536 // Twiddle input to make sure the low 11 bits are zero. (If this 8537 // is the case, we are guaranteed the value will fit into the 53 bit 8538 // mantissa of an IEEE double-precision value without rounding.) 8539 // If any of those low 11 bits were not zero originally, make sure 8540 // bit 12 (value 2048) is set instead, so that the final rounding 8541 // to single-precision gets the correct result. 8542 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8543 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8544 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8545 Round, DAG.getConstant(2047, dl, MVT::i64)); 8546 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8547 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8548 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8549 8550 // However, we cannot use that value unconditionally: if the magnitude 8551 // of the input value is small, the bit-twiddling we did above might 8552 // end up visibly changing the output. Fortunately, in that case, we 8553 // don't need to twiddle bits since the original input will convert 8554 // exactly to double-precision floating-point already. Therefore, 8555 // construct a conditional to use the original value if the top 11 8556 // bits are all sign-bit copies, and use the rounded value computed 8557 // above otherwise. 8558 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8559 SINT, DAG.getConstant(53, dl, MVT::i32)); 8560 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8561 Cond, DAG.getConstant(1, dl, MVT::i64)); 8562 Cond = DAG.getSetCC( 8563 dl, 8564 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8565 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8566 8567 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8568 } 8569 8570 ReuseLoadInfo RLI; 8571 SDValue Bits; 8572 8573 MachineFunction &MF = DAG.getMachineFunction(); 8574 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8575 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8576 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8577 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8578 } else if (Subtarget.hasLFIWAX() && 8579 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8580 MachineMemOperand *MMO = 8581 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8582 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8583 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8584 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8585 DAG.getVTList(MVT::f64, MVT::Other), 8586 Ops, MVT::i32, MMO); 8587 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8588 } else if (Subtarget.hasFPCVT() && 8589 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8590 MachineMemOperand *MMO = 8591 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8592 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8593 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8594 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8595 DAG.getVTList(MVT::f64, MVT::Other), 8596 Ops, MVT::i32, MMO); 8597 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8598 } else if (((Subtarget.hasLFIWAX() && 8599 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8600 (Subtarget.hasFPCVT() && 8601 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8602 SINT.getOperand(0).getValueType() == MVT::i32) { 8603 MachineFrameInfo &MFI = MF.getFrameInfo(); 8604 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8605 8606 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8607 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8608 8609 SDValue Store = 8610 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8611 MachinePointerInfo::getFixedStack( 8612 DAG.getMachineFunction(), FrameIdx)); 8613 8614 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8615 "Expected an i32 store"); 8616 8617 RLI.Ptr = FIdx; 8618 RLI.Chain = Store; 8619 RLI.MPI = 8620 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8621 RLI.Alignment = Align(4); 8622 8623 MachineMemOperand *MMO = 8624 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8625 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8626 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8627 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8628 PPCISD::LFIWZX : PPCISD::LFIWAX, 8629 dl, DAG.getVTList(MVT::f64, MVT::Other), 8630 Ops, MVT::i32, MMO); 8631 } else 8632 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8633 8634 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8635 8636 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8637 FP = DAG.getNode(ISD::FP_ROUND, dl, 8638 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8639 return FP; 8640 } 8641 8642 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8643 "Unhandled INT_TO_FP type in custom expander!"); 8644 // Since we only generate this in 64-bit mode, we can take advantage of 8645 // 64-bit registers. In particular, sign extend the input value into the 8646 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8647 // then lfd it and fcfid it. 8648 MachineFunction &MF = DAG.getMachineFunction(); 8649 MachineFrameInfo &MFI = MF.getFrameInfo(); 8650 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8651 8652 SDValue Ld; 8653 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8654 ReuseLoadInfo RLI; 8655 bool ReusingLoad; 8656 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8657 DAG))) { 8658 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8659 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8660 8661 SDValue Store = 8662 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8663 MachinePointerInfo::getFixedStack( 8664 DAG.getMachineFunction(), FrameIdx)); 8665 8666 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8667 "Expected an i32 store"); 8668 8669 RLI.Ptr = FIdx; 8670 RLI.Chain = Store; 8671 RLI.MPI = 8672 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8673 RLI.Alignment = Align(4); 8674 } 8675 8676 MachineMemOperand *MMO = 8677 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8678 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8679 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8680 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8681 PPCISD::LFIWZX : PPCISD::LFIWAX, 8682 dl, DAG.getVTList(MVT::f64, MVT::Other), 8683 Ops, MVT::i32, MMO); 8684 if (ReusingLoad) 8685 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8686 } else { 8687 assert(Subtarget.isPPC64() && 8688 "i32->FP without LFIWAX supported only on PPC64"); 8689 8690 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8691 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8692 8693 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8694 Op.getOperand(0)); 8695 8696 // STD the extended value into the stack slot. 8697 SDValue Store = DAG.getStore( 8698 DAG.getEntryNode(), dl, Ext64, FIdx, 8699 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8700 8701 // Load the value as a double. 8702 Ld = DAG.getLoad( 8703 MVT::f64, dl, Store, FIdx, 8704 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8705 } 8706 8707 // FCFID it and return it. 8708 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8709 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8710 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8711 DAG.getIntPtrConstant(0, dl)); 8712 return FP; 8713 } 8714 8715 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8716 SelectionDAG &DAG) const { 8717 SDLoc dl(Op); 8718 /* 8719 The rounding mode is in bits 30:31 of FPSR, and has the following 8720 settings: 8721 00 Round to nearest 8722 01 Round to 0 8723 10 Round to +inf 8724 11 Round to -inf 8725 8726 FLT_ROUNDS, on the other hand, expects the following: 8727 -1 Undefined 8728 0 Round to 0 8729 1 Round to nearest 8730 2 Round to +inf 8731 3 Round to -inf 8732 8733 To perform the conversion, we do: 8734 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8735 */ 8736 8737 MachineFunction &MF = DAG.getMachineFunction(); 8738 EVT VT = Op.getValueType(); 8739 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8740 8741 // Save FP Control Word to register 8742 SDValue Chain = Op.getOperand(0); 8743 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8744 Chain = MFFS.getValue(1); 8745 8746 // Save FP register to stack slot 8747 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8748 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8749 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8750 8751 // Load FP Control Word from low 32 bits of stack slot. 8752 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8753 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8754 SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8755 Chain = CWD.getValue(1); 8756 8757 // Transform as necessary 8758 SDValue CWD1 = 8759 DAG.getNode(ISD::AND, dl, MVT::i32, 8760 CWD, DAG.getConstant(3, dl, MVT::i32)); 8761 SDValue CWD2 = 8762 DAG.getNode(ISD::SRL, dl, MVT::i32, 8763 DAG.getNode(ISD::AND, dl, MVT::i32, 8764 DAG.getNode(ISD::XOR, dl, MVT::i32, 8765 CWD, DAG.getConstant(3, dl, MVT::i32)), 8766 DAG.getConstant(3, dl, MVT::i32)), 8767 DAG.getConstant(1, dl, MVT::i32)); 8768 8769 SDValue RetVal = 8770 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8771 8772 RetVal = 8773 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8774 dl, VT, RetVal); 8775 8776 return DAG.getMergeValues({RetVal, Chain}, dl); 8777 } 8778 8779 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8780 EVT VT = Op.getValueType(); 8781 unsigned BitWidth = VT.getSizeInBits(); 8782 SDLoc dl(Op); 8783 assert(Op.getNumOperands() == 3 && 8784 VT == Op.getOperand(1).getValueType() && 8785 "Unexpected SHL!"); 8786 8787 // Expand into a bunch of logical ops. Note that these ops 8788 // depend on the PPC behavior for oversized shift amounts. 8789 SDValue Lo = Op.getOperand(0); 8790 SDValue Hi = Op.getOperand(1); 8791 SDValue Amt = Op.getOperand(2); 8792 EVT AmtVT = Amt.getValueType(); 8793 8794 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8795 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8796 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8797 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8798 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8799 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8800 DAG.getConstant(-BitWidth, dl, AmtVT)); 8801 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8802 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8803 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8804 SDValue OutOps[] = { OutLo, OutHi }; 8805 return DAG.getMergeValues(OutOps, dl); 8806 } 8807 8808 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8809 EVT VT = Op.getValueType(); 8810 SDLoc dl(Op); 8811 unsigned BitWidth = VT.getSizeInBits(); 8812 assert(Op.getNumOperands() == 3 && 8813 VT == Op.getOperand(1).getValueType() && 8814 "Unexpected SRL!"); 8815 8816 // Expand into a bunch of logical ops. Note that these ops 8817 // depend on the PPC behavior for oversized shift amounts. 8818 SDValue Lo = Op.getOperand(0); 8819 SDValue Hi = Op.getOperand(1); 8820 SDValue Amt = Op.getOperand(2); 8821 EVT AmtVT = Amt.getValueType(); 8822 8823 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8824 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8825 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8826 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8827 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8828 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8829 DAG.getConstant(-BitWidth, dl, AmtVT)); 8830 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8831 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8832 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8833 SDValue OutOps[] = { OutLo, OutHi }; 8834 return DAG.getMergeValues(OutOps, dl); 8835 } 8836 8837 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8838 SDLoc dl(Op); 8839 EVT VT = Op.getValueType(); 8840 unsigned BitWidth = VT.getSizeInBits(); 8841 assert(Op.getNumOperands() == 3 && 8842 VT == Op.getOperand(1).getValueType() && 8843 "Unexpected SRA!"); 8844 8845 // Expand into a bunch of logical ops, followed by a select_cc. 8846 SDValue Lo = Op.getOperand(0); 8847 SDValue Hi = Op.getOperand(1); 8848 SDValue Amt = Op.getOperand(2); 8849 EVT AmtVT = Amt.getValueType(); 8850 8851 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8852 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8853 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8854 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8855 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8856 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8857 DAG.getConstant(-BitWidth, dl, AmtVT)); 8858 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8859 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8860 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8861 Tmp4, Tmp6, ISD::SETLE); 8862 SDValue OutOps[] = { OutLo, OutHi }; 8863 return DAG.getMergeValues(OutOps, dl); 8864 } 8865 8866 //===----------------------------------------------------------------------===// 8867 // Vector related lowering. 8868 // 8869 8870 /// BuildSplatI - Build a canonical splati of Val with an element size of 8871 /// SplatSize. Cast the result to VT. 8872 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8873 SelectionDAG &DAG, const SDLoc &dl) { 8874 static const MVT VTys[] = { // canonical VT to use for each size. 8875 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8876 }; 8877 8878 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8879 8880 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8881 if (Val == -1) 8882 SplatSize = 1; 8883 8884 EVT CanonicalVT = VTys[SplatSize-1]; 8885 8886 // Build a canonical splat for this value. 8887 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8888 } 8889 8890 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8891 /// specified intrinsic ID. 8892 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8893 const SDLoc &dl, EVT DestVT = MVT::Other) { 8894 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8895 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8896 DAG.getConstant(IID, dl, MVT::i32), Op); 8897 } 8898 8899 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8900 /// specified intrinsic ID. 8901 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8902 SelectionDAG &DAG, const SDLoc &dl, 8903 EVT DestVT = MVT::Other) { 8904 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8905 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8906 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8907 } 8908 8909 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8910 /// specified intrinsic ID. 8911 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8912 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8913 EVT DestVT = MVT::Other) { 8914 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8915 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8916 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8917 } 8918 8919 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8920 /// amount. The result has the specified value type. 8921 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8922 SelectionDAG &DAG, const SDLoc &dl) { 8923 // Force LHS/RHS to be the right type. 8924 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8925 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8926 8927 int Ops[16]; 8928 for (unsigned i = 0; i != 16; ++i) 8929 Ops[i] = i + Amt; 8930 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8931 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8932 } 8933 8934 /// Do we have an efficient pattern in a .td file for this node? 8935 /// 8936 /// \param V - pointer to the BuildVectorSDNode being matched 8937 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8938 /// 8939 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8940 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8941 /// the opposite is true (expansion is beneficial) are: 8942 /// - The node builds a vector out of integers that are not 32 or 64-bits 8943 /// - The node builds a vector out of constants 8944 /// - The node is a "load-and-splat" 8945 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8946 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8947 bool HasDirectMove, 8948 bool HasP8Vector) { 8949 EVT VecVT = V->getValueType(0); 8950 bool RightType = VecVT == MVT::v2f64 || 8951 (HasP8Vector && VecVT == MVT::v4f32) || 8952 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8953 if (!RightType) 8954 return false; 8955 8956 bool IsSplat = true; 8957 bool IsLoad = false; 8958 SDValue Op0 = V->getOperand(0); 8959 8960 // This function is called in a block that confirms the node is not a constant 8961 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8962 // different constants. 8963 if (V->isConstant()) 8964 return false; 8965 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8966 if (V->getOperand(i).isUndef()) 8967 return false; 8968 // We want to expand nodes that represent load-and-splat even if the 8969 // loaded value is a floating point truncation or conversion to int. 8970 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8971 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8972 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8973 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8974 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8975 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8976 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8977 IsLoad = true; 8978 // If the operands are different or the input is not a load and has more 8979 // uses than just this BV node, then it isn't a splat. 8980 if (V->getOperand(i) != Op0 || 8981 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8982 IsSplat = false; 8983 } 8984 return !(IsSplat && IsLoad); 8985 } 8986 8987 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8988 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8989 8990 SDLoc dl(Op); 8991 SDValue Op0 = Op->getOperand(0); 8992 8993 if (!EnableQuadPrecision || 8994 (Op.getValueType() != MVT::f128 ) || 8995 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8996 (Op0.getOperand(0).getValueType() != MVT::i64) || 8997 (Op0.getOperand(1).getValueType() != MVT::i64)) 8998 return SDValue(); 8999 9000 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9001 Op0.getOperand(1)); 9002 } 9003 9004 static const SDValue *getNormalLoadInput(const SDValue &Op) { 9005 const SDValue *InputLoad = &Op; 9006 if (InputLoad->getOpcode() == ISD::BITCAST) 9007 InputLoad = &InputLoad->getOperand(0); 9008 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 9009 InputLoad = &InputLoad->getOperand(0); 9010 if (InputLoad->getOpcode() != ISD::LOAD) 9011 return nullptr; 9012 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9013 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9014 } 9015 9016 // If this is a case we can't handle, return null and let the default 9017 // expansion code take care of it. If we CAN select this case, and if it 9018 // selects to a single instruction, return Op. Otherwise, if we can codegen 9019 // this case more efficiently than a constant pool load, lower it to the 9020 // sequence of ops that should be used. 9021 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9022 SelectionDAG &DAG) const { 9023 SDLoc dl(Op); 9024 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9025 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9026 9027 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 9028 // We first build an i32 vector, load it into a QPX register, 9029 // then convert it to a floating-point vector and compare it 9030 // to a zero vector to get the boolean result. 9031 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9032 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9033 MachinePointerInfo PtrInfo = 9034 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 9035 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9036 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9037 9038 assert(BVN->getNumOperands() == 4 && 9039 "BUILD_VECTOR for v4i1 does not have 4 operands"); 9040 9041 bool IsConst = true; 9042 for (unsigned i = 0; i < 4; ++i) { 9043 if (BVN->getOperand(i).isUndef()) continue; 9044 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 9045 IsConst = false; 9046 break; 9047 } 9048 } 9049 9050 if (IsConst) { 9051 Constant *One = 9052 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 9053 Constant *NegOne = 9054 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 9055 9056 Constant *CV[4]; 9057 for (unsigned i = 0; i < 4; ++i) { 9058 if (BVN->getOperand(i).isUndef()) 9059 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 9060 else if (isNullConstant(BVN->getOperand(i))) 9061 CV[i] = NegOne; 9062 else 9063 CV[i] = One; 9064 } 9065 9066 Constant *CP = ConstantVector::get(CV); 9067 SDValue CPIdx = 9068 DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16)); 9069 9070 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 9071 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 9072 return DAG.getMemIntrinsicNode( 9073 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 9074 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 9075 } 9076 9077 SmallVector<SDValue, 4> Stores; 9078 for (unsigned i = 0; i < 4; ++i) { 9079 if (BVN->getOperand(i).isUndef()) continue; 9080 9081 unsigned Offset = 4*i; 9082 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 9083 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 9084 9085 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 9086 if (StoreSize > 4) { 9087 Stores.push_back( 9088 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 9089 PtrInfo.getWithOffset(Offset), MVT::i32)); 9090 } else { 9091 SDValue StoreValue = BVN->getOperand(i); 9092 if (StoreSize < 4) 9093 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 9094 9095 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 9096 PtrInfo.getWithOffset(Offset))); 9097 } 9098 } 9099 9100 SDValue StoreChain; 9101 if (!Stores.empty()) 9102 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9103 else 9104 StoreChain = DAG.getEntryNode(); 9105 9106 // Now load from v4i32 into the QPX register; this will extend it to 9107 // v4i64 but not yet convert it to a floating point. Nevertheless, this 9108 // is typed as v4f64 because the QPX register integer states are not 9109 // explicitly represented. 9110 9111 SDValue Ops[] = {StoreChain, 9112 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 9113 FIdx}; 9114 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 9115 9116 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 9117 dl, VTs, Ops, MVT::v4i32, PtrInfo); 9118 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 9119 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 9120 LoadedVect); 9121 9122 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 9123 9124 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 9125 } 9126 9127 // All other QPX vectors are handled by generic code. 9128 if (Subtarget.hasQPX()) 9129 return SDValue(); 9130 9131 // Check if this is a splat of a constant value. 9132 APInt APSplatBits, APSplatUndef; 9133 unsigned SplatBitSize; 9134 bool HasAnyUndefs; 9135 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9136 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9137 SplatBitSize > 32) { 9138 9139 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 9140 // Handle load-and-splat patterns as we have instructions that will do this 9141 // in one go. 9142 if (InputLoad && DAG.isSplatValue(Op, true)) { 9143 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9144 9145 // We have handling for 4 and 8 byte elements. 9146 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9147 9148 // Checking for a single use of this load, we have to check for vector 9149 // width (128 bits) / ElementSize uses (since each operand of the 9150 // BUILD_VECTOR is a separate use of the value. 9151 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 9152 ((Subtarget.hasVSX() && ElementSize == 64) || 9153 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9154 SDValue Ops[] = { 9155 LD->getChain(), // Chain 9156 LD->getBasePtr(), // Ptr 9157 DAG.getValueType(Op.getValueType()) // VT 9158 }; 9159 return 9160 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 9161 DAG.getVTList(Op.getValueType(), MVT::Other), 9162 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9163 } 9164 } 9165 9166 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 9167 // lowered to VSX instructions under certain conditions. 9168 // Without VSX, there is no pattern more efficient than expanding the node. 9169 if (Subtarget.hasVSX() && 9170 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9171 Subtarget.hasP8Vector())) 9172 return Op; 9173 return SDValue(); 9174 } 9175 9176 unsigned SplatBits = APSplatBits.getZExtValue(); 9177 unsigned SplatUndef = APSplatUndef.getZExtValue(); 9178 unsigned SplatSize = SplatBitSize / 8; 9179 9180 // First, handle single instruction cases. 9181 9182 // All zeros? 9183 if (SplatBits == 0) { 9184 // Canonicalize all zero vectors to be v4i32. 9185 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9186 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9187 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9188 } 9189 return Op; 9190 } 9191 9192 // We have XXSPLTIB for constant splats one byte wide 9193 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 9194 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 9195 if (Subtarget.hasP9Vector() && SplatSize == 1) 9196 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 9197 9198 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9199 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9200 (32-SplatBitSize)); 9201 if (SextVal >= -16 && SextVal <= 15) 9202 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 9203 9204 // Two instruction sequences. 9205 9206 // If this value is in the range [-32,30] and is even, use: 9207 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9208 // If this value is in the range [17,31] and is odd, use: 9209 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9210 // If this value is in the range [-31,-17] and is odd, use: 9211 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9212 // Note the last two are three-instruction sequences. 9213 if (SextVal >= -32 && SextVal <= 31) { 9214 // To avoid having these optimizations undone by constant folding, 9215 // we convert to a pseudo that will be expanded later into one of 9216 // the above forms. 9217 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9218 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9219 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9220 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9221 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9222 if (VT == Op.getValueType()) 9223 return RetVal; 9224 else 9225 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9226 } 9227 9228 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9229 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9230 // for fneg/fabs. 9231 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9232 // Make -1 and vspltisw -1: 9233 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 9234 9235 // Make the VSLW intrinsic, computing 0x8000_0000. 9236 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9237 OnesV, DAG, dl); 9238 9239 // xor by OnesV to invert it. 9240 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9241 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9242 } 9243 9244 // Check to see if this is a wide variety of vsplti*, binop self cases. 9245 static const signed char SplatCsts[] = { 9246 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9247 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9248 }; 9249 9250 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9251 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9252 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9253 int i = SplatCsts[idx]; 9254 9255 // Figure out what shift amount will be used by altivec if shifted by i in 9256 // this splat size. 9257 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9258 9259 // vsplti + shl self. 9260 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9261 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9262 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9263 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9264 Intrinsic::ppc_altivec_vslw 9265 }; 9266 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9267 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9268 } 9269 9270 // vsplti + srl self. 9271 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9272 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9273 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9274 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9275 Intrinsic::ppc_altivec_vsrw 9276 }; 9277 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9278 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9279 } 9280 9281 // vsplti + sra self. 9282 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9283 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9284 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9285 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 9286 Intrinsic::ppc_altivec_vsraw 9287 }; 9288 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9289 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9290 } 9291 9292 // vsplti + rol self. 9293 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9294 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9295 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 9296 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9297 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9298 Intrinsic::ppc_altivec_vrlw 9299 }; 9300 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9301 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9302 } 9303 9304 // t = vsplti c, result = vsldoi t, t, 1 9305 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9306 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9307 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9308 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9309 } 9310 // t = vsplti c, result = vsldoi t, t, 2 9311 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9312 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9313 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9314 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9315 } 9316 // t = vsplti c, result = vsldoi t, t, 3 9317 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9318 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 9319 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9320 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9321 } 9322 } 9323 9324 return SDValue(); 9325 } 9326 9327 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9328 /// the specified operations to build the shuffle. 9329 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9330 SDValue RHS, SelectionDAG &DAG, 9331 const SDLoc &dl) { 9332 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9333 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9334 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9335 9336 enum { 9337 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9338 OP_VMRGHW, 9339 OP_VMRGLW, 9340 OP_VSPLTISW0, 9341 OP_VSPLTISW1, 9342 OP_VSPLTISW2, 9343 OP_VSPLTISW3, 9344 OP_VSLDOI4, 9345 OP_VSLDOI8, 9346 OP_VSLDOI12 9347 }; 9348 9349 if (OpNum == OP_COPY) { 9350 if (LHSID == (1*9+2)*9+3) return LHS; 9351 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9352 return RHS; 9353 } 9354 9355 SDValue OpLHS, OpRHS; 9356 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9357 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9358 9359 int ShufIdxs[16]; 9360 switch (OpNum) { 9361 default: llvm_unreachable("Unknown i32 permute!"); 9362 case OP_VMRGHW: 9363 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9364 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9365 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9366 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9367 break; 9368 case OP_VMRGLW: 9369 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9370 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9371 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9372 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9373 break; 9374 case OP_VSPLTISW0: 9375 for (unsigned i = 0; i != 16; ++i) 9376 ShufIdxs[i] = (i&3)+0; 9377 break; 9378 case OP_VSPLTISW1: 9379 for (unsigned i = 0; i != 16; ++i) 9380 ShufIdxs[i] = (i&3)+4; 9381 break; 9382 case OP_VSPLTISW2: 9383 for (unsigned i = 0; i != 16; ++i) 9384 ShufIdxs[i] = (i&3)+8; 9385 break; 9386 case OP_VSPLTISW3: 9387 for (unsigned i = 0; i != 16; ++i) 9388 ShufIdxs[i] = (i&3)+12; 9389 break; 9390 case OP_VSLDOI4: 9391 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9392 case OP_VSLDOI8: 9393 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9394 case OP_VSLDOI12: 9395 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9396 } 9397 EVT VT = OpLHS.getValueType(); 9398 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9399 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9400 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9401 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9402 } 9403 9404 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9405 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9406 /// SDValue. 9407 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9408 SelectionDAG &DAG) const { 9409 const unsigned BytesInVector = 16; 9410 bool IsLE = Subtarget.isLittleEndian(); 9411 SDLoc dl(N); 9412 SDValue V1 = N->getOperand(0); 9413 SDValue V2 = N->getOperand(1); 9414 unsigned ShiftElts = 0, InsertAtByte = 0; 9415 bool Swap = false; 9416 9417 // Shifts required to get the byte we want at element 7. 9418 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9419 0, 15, 14, 13, 12, 11, 10, 9}; 9420 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9421 1, 2, 3, 4, 5, 6, 7, 8}; 9422 9423 ArrayRef<int> Mask = N->getMask(); 9424 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9425 9426 // For each mask element, find out if we're just inserting something 9427 // from V2 into V1 or vice versa. 9428 // Possible permutations inserting an element from V2 into V1: 9429 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9430 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9431 // ... 9432 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9433 // Inserting from V1 into V2 will be similar, except mask range will be 9434 // [16,31]. 9435 9436 bool FoundCandidate = false; 9437 // If both vector operands for the shuffle are the same vector, the mask 9438 // will contain only elements from the first one and the second one will be 9439 // undef. 9440 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9441 // Go through the mask of half-words to find an element that's being moved 9442 // from one vector to the other. 9443 for (unsigned i = 0; i < BytesInVector; ++i) { 9444 unsigned CurrentElement = Mask[i]; 9445 // If 2nd operand is undefined, we should only look for element 7 in the 9446 // Mask. 9447 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9448 continue; 9449 9450 bool OtherElementsInOrder = true; 9451 // Examine the other elements in the Mask to see if they're in original 9452 // order. 9453 for (unsigned j = 0; j < BytesInVector; ++j) { 9454 if (j == i) 9455 continue; 9456 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9457 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9458 // in which we always assume we're always picking from the 1st operand. 9459 int MaskOffset = 9460 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9461 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9462 OtherElementsInOrder = false; 9463 break; 9464 } 9465 } 9466 // If other elements are in original order, we record the number of shifts 9467 // we need to get the element we want into element 7. Also record which byte 9468 // in the vector we should insert into. 9469 if (OtherElementsInOrder) { 9470 // If 2nd operand is undefined, we assume no shifts and no swapping. 9471 if (V2.isUndef()) { 9472 ShiftElts = 0; 9473 Swap = false; 9474 } else { 9475 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9476 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9477 : BigEndianShifts[CurrentElement & 0xF]; 9478 Swap = CurrentElement < BytesInVector; 9479 } 9480 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9481 FoundCandidate = true; 9482 break; 9483 } 9484 } 9485 9486 if (!FoundCandidate) 9487 return SDValue(); 9488 9489 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9490 // optionally with VECSHL if shift is required. 9491 if (Swap) 9492 std::swap(V1, V2); 9493 if (V2.isUndef()) 9494 V2 = V1; 9495 if (ShiftElts) { 9496 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9497 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9498 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9499 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9500 } 9501 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9502 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9503 } 9504 9505 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9506 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9507 /// SDValue. 9508 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9509 SelectionDAG &DAG) const { 9510 const unsigned NumHalfWords = 8; 9511 const unsigned BytesInVector = NumHalfWords * 2; 9512 // Check that the shuffle is on half-words. 9513 if (!isNByteElemShuffleMask(N, 2, 1)) 9514 return SDValue(); 9515 9516 bool IsLE = Subtarget.isLittleEndian(); 9517 SDLoc dl(N); 9518 SDValue V1 = N->getOperand(0); 9519 SDValue V2 = N->getOperand(1); 9520 unsigned ShiftElts = 0, InsertAtByte = 0; 9521 bool Swap = false; 9522 9523 // Shifts required to get the half-word we want at element 3. 9524 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9525 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9526 9527 uint32_t Mask = 0; 9528 uint32_t OriginalOrderLow = 0x1234567; 9529 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9530 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9531 // 32-bit space, only need 4-bit nibbles per element. 9532 for (unsigned i = 0; i < NumHalfWords; ++i) { 9533 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9534 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9535 } 9536 9537 // For each mask element, find out if we're just inserting something 9538 // from V2 into V1 or vice versa. Possible permutations inserting an element 9539 // from V2 into V1: 9540 // X, 1, 2, 3, 4, 5, 6, 7 9541 // 0, X, 2, 3, 4, 5, 6, 7 9542 // 0, 1, X, 3, 4, 5, 6, 7 9543 // 0, 1, 2, X, 4, 5, 6, 7 9544 // 0, 1, 2, 3, X, 5, 6, 7 9545 // 0, 1, 2, 3, 4, X, 6, 7 9546 // 0, 1, 2, 3, 4, 5, X, 7 9547 // 0, 1, 2, 3, 4, 5, 6, X 9548 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9549 9550 bool FoundCandidate = false; 9551 // Go through the mask of half-words to find an element that's being moved 9552 // from one vector to the other. 9553 for (unsigned i = 0; i < NumHalfWords; ++i) { 9554 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9555 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9556 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9557 uint32_t TargetOrder = 0x0; 9558 9559 // If both vector operands for the shuffle are the same vector, the mask 9560 // will contain only elements from the first one and the second one will be 9561 // undef. 9562 if (V2.isUndef()) { 9563 ShiftElts = 0; 9564 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9565 TargetOrder = OriginalOrderLow; 9566 Swap = false; 9567 // Skip if not the correct element or mask of other elements don't equal 9568 // to our expected order. 9569 if (MaskOneElt == VINSERTHSrcElem && 9570 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9571 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9572 FoundCandidate = true; 9573 break; 9574 } 9575 } else { // If both operands are defined. 9576 // Target order is [8,15] if the current mask is between [0,7]. 9577 TargetOrder = 9578 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9579 // Skip if mask of other elements don't equal our expected order. 9580 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9581 // We only need the last 3 bits for the number of shifts. 9582 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9583 : BigEndianShifts[MaskOneElt & 0x7]; 9584 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9585 Swap = MaskOneElt < NumHalfWords; 9586 FoundCandidate = true; 9587 break; 9588 } 9589 } 9590 } 9591 9592 if (!FoundCandidate) 9593 return SDValue(); 9594 9595 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9596 // optionally with VECSHL if shift is required. 9597 if (Swap) 9598 std::swap(V1, V2); 9599 if (V2.isUndef()) 9600 V2 = V1; 9601 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9602 if (ShiftElts) { 9603 // Double ShiftElts because we're left shifting on v16i8 type. 9604 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9605 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9606 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9607 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9608 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9609 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9610 } 9611 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9612 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9613 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9614 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9615 } 9616 9617 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9618 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9619 /// return the code it can be lowered into. Worst case, it can always be 9620 /// lowered into a vperm. 9621 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9622 SelectionDAG &DAG) const { 9623 SDLoc dl(Op); 9624 SDValue V1 = Op.getOperand(0); 9625 SDValue V2 = Op.getOperand(1); 9626 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9627 EVT VT = Op.getValueType(); 9628 bool isLittleEndian = Subtarget.isLittleEndian(); 9629 9630 unsigned ShiftElts, InsertAtByte; 9631 bool Swap = false; 9632 9633 // If this is a load-and-splat, we can do that with a single instruction 9634 // in some cases. However if the load has multiple uses, we don't want to 9635 // combine it because that will just produce multiple loads. 9636 const SDValue *InputLoad = getNormalLoadInput(V1); 9637 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9638 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9639 InputLoad->hasOneUse()) { 9640 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9641 int SplatIdx = 9642 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9643 9644 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9645 // For 4-byte load-and-splat, we need Power9. 9646 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9647 uint64_t Offset = 0; 9648 if (IsFourByte) 9649 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9650 else 9651 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9652 SDValue BasePtr = LD->getBasePtr(); 9653 if (Offset != 0) 9654 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9655 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9656 SDValue Ops[] = { 9657 LD->getChain(), // Chain 9658 BasePtr, // BasePtr 9659 DAG.getValueType(Op.getValueType()) // VT 9660 }; 9661 SDVTList VTL = 9662 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9663 SDValue LdSplt = 9664 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9665 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9666 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9667 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9668 return LdSplt; 9669 } 9670 } 9671 if (Subtarget.hasP9Vector() && 9672 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9673 isLittleEndian)) { 9674 if (Swap) 9675 std::swap(V1, V2); 9676 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9677 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9678 if (ShiftElts) { 9679 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9680 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9681 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9682 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9683 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9684 } 9685 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9686 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9687 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9688 } 9689 9690 if (Subtarget.hasP9Altivec()) { 9691 SDValue NewISDNode; 9692 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9693 return NewISDNode; 9694 9695 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9696 return NewISDNode; 9697 } 9698 9699 if (Subtarget.hasVSX() && 9700 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9701 if (Swap) 9702 std::swap(V1, V2); 9703 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9704 SDValue Conv2 = 9705 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9706 9707 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9708 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9709 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9710 } 9711 9712 if (Subtarget.hasVSX() && 9713 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9714 if (Swap) 9715 std::swap(V1, V2); 9716 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9717 SDValue Conv2 = 9718 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9719 9720 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9721 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9722 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9723 } 9724 9725 if (Subtarget.hasP9Vector()) { 9726 if (PPC::isXXBRHShuffleMask(SVOp)) { 9727 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9728 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9729 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9730 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9731 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9732 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9733 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9734 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9735 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9736 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9737 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9738 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9739 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9740 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9741 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9742 } 9743 } 9744 9745 if (Subtarget.hasVSX()) { 9746 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9747 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9748 9749 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9750 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9751 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9752 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9753 } 9754 9755 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9756 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9757 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9758 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9759 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9760 } 9761 } 9762 9763 if (Subtarget.hasQPX()) { 9764 if (VT.getVectorNumElements() != 4) 9765 return SDValue(); 9766 9767 if (V2.isUndef()) V2 = V1; 9768 9769 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9770 if (AlignIdx != -1) { 9771 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9772 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9773 } else if (SVOp->isSplat()) { 9774 int SplatIdx = SVOp->getSplatIndex(); 9775 if (SplatIdx >= 4) { 9776 std::swap(V1, V2); 9777 SplatIdx -= 4; 9778 } 9779 9780 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9781 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9782 } 9783 9784 // Lower this into a qvgpci/qvfperm pair. 9785 9786 // Compute the qvgpci literal 9787 unsigned idx = 0; 9788 for (unsigned i = 0; i < 4; ++i) { 9789 int m = SVOp->getMaskElt(i); 9790 unsigned mm = m >= 0 ? (unsigned) m : i; 9791 idx |= mm << (3-i)*3; 9792 } 9793 9794 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9795 DAG.getConstant(idx, dl, MVT::i32)); 9796 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9797 } 9798 9799 // Cases that are handled by instructions that take permute immediates 9800 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9801 // selected by the instruction selector. 9802 if (V2.isUndef()) { 9803 if (PPC::isSplatShuffleMask(SVOp, 1) || 9804 PPC::isSplatShuffleMask(SVOp, 2) || 9805 PPC::isSplatShuffleMask(SVOp, 4) || 9806 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9807 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9808 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9809 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9810 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9811 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9812 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9813 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9814 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9815 (Subtarget.hasP8Altivec() && ( 9816 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9817 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9818 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9819 return Op; 9820 } 9821 } 9822 9823 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9824 // and produce a fixed permutation. If any of these match, do not lower to 9825 // VPERM. 9826 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9827 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9828 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9829 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9830 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9831 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9832 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9833 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9834 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9835 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9836 (Subtarget.hasP8Altivec() && ( 9837 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9838 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9839 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9840 return Op; 9841 9842 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9843 // perfect shuffle table to emit an optimal matching sequence. 9844 ArrayRef<int> PermMask = SVOp->getMask(); 9845 9846 unsigned PFIndexes[4]; 9847 bool isFourElementShuffle = true; 9848 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9849 unsigned EltNo = 8; // Start out undef. 9850 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9851 if (PermMask[i*4+j] < 0) 9852 continue; // Undef, ignore it. 9853 9854 unsigned ByteSource = PermMask[i*4+j]; 9855 if ((ByteSource & 3) != j) { 9856 isFourElementShuffle = false; 9857 break; 9858 } 9859 9860 if (EltNo == 8) { 9861 EltNo = ByteSource/4; 9862 } else if (EltNo != ByteSource/4) { 9863 isFourElementShuffle = false; 9864 break; 9865 } 9866 } 9867 PFIndexes[i] = EltNo; 9868 } 9869 9870 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9871 // perfect shuffle vector to determine if it is cost effective to do this as 9872 // discrete instructions, or whether we should use a vperm. 9873 // For now, we skip this for little endian until such time as we have a 9874 // little-endian perfect shuffle table. 9875 if (isFourElementShuffle && !isLittleEndian) { 9876 // Compute the index in the perfect shuffle table. 9877 unsigned PFTableIndex = 9878 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9879 9880 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9881 unsigned Cost = (PFEntry >> 30); 9882 9883 // Determining when to avoid vperm is tricky. Many things affect the cost 9884 // of vperm, particularly how many times the perm mask needs to be computed. 9885 // For example, if the perm mask can be hoisted out of a loop or is already 9886 // used (perhaps because there are multiple permutes with the same shuffle 9887 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9888 // the loop requires an extra register. 9889 // 9890 // As a compromise, we only emit discrete instructions if the shuffle can be 9891 // generated in 3 or fewer operations. When we have loop information 9892 // available, if this block is within a loop, we should avoid using vperm 9893 // for 3-operation perms and use a constant pool load instead. 9894 if (Cost < 3) 9895 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9896 } 9897 9898 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9899 // vector that will get spilled to the constant pool. 9900 if (V2.isUndef()) V2 = V1; 9901 9902 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9903 // that it is in input element units, not in bytes. Convert now. 9904 9905 // For little endian, the order of the input vectors is reversed, and 9906 // the permutation mask is complemented with respect to 31. This is 9907 // necessary to produce proper semantics with the big-endian-biased vperm 9908 // instruction. 9909 EVT EltVT = V1.getValueType().getVectorElementType(); 9910 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9911 9912 SmallVector<SDValue, 16> ResultMask; 9913 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9914 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9915 9916 for (unsigned j = 0; j != BytesPerElement; ++j) 9917 if (isLittleEndian) 9918 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9919 dl, MVT::i32)); 9920 else 9921 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9922 MVT::i32)); 9923 } 9924 9925 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9926 if (isLittleEndian) 9927 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9928 V2, V1, VPermMask); 9929 else 9930 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9931 V1, V2, VPermMask); 9932 } 9933 9934 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9935 /// vector comparison. If it is, return true and fill in Opc/isDot with 9936 /// information about the intrinsic. 9937 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9938 bool &isDot, const PPCSubtarget &Subtarget) { 9939 unsigned IntrinsicID = 9940 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9941 CompareOpc = -1; 9942 isDot = false; 9943 switch (IntrinsicID) { 9944 default: 9945 return false; 9946 // Comparison predicates. 9947 case Intrinsic::ppc_altivec_vcmpbfp_p: 9948 CompareOpc = 966; 9949 isDot = true; 9950 break; 9951 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9952 CompareOpc = 198; 9953 isDot = true; 9954 break; 9955 case Intrinsic::ppc_altivec_vcmpequb_p: 9956 CompareOpc = 6; 9957 isDot = true; 9958 break; 9959 case Intrinsic::ppc_altivec_vcmpequh_p: 9960 CompareOpc = 70; 9961 isDot = true; 9962 break; 9963 case Intrinsic::ppc_altivec_vcmpequw_p: 9964 CompareOpc = 134; 9965 isDot = true; 9966 break; 9967 case Intrinsic::ppc_altivec_vcmpequd_p: 9968 if (Subtarget.hasP8Altivec()) { 9969 CompareOpc = 199; 9970 isDot = true; 9971 } else 9972 return false; 9973 break; 9974 case Intrinsic::ppc_altivec_vcmpneb_p: 9975 case Intrinsic::ppc_altivec_vcmpneh_p: 9976 case Intrinsic::ppc_altivec_vcmpnew_p: 9977 case Intrinsic::ppc_altivec_vcmpnezb_p: 9978 case Intrinsic::ppc_altivec_vcmpnezh_p: 9979 case Intrinsic::ppc_altivec_vcmpnezw_p: 9980 if (Subtarget.hasP9Altivec()) { 9981 switch (IntrinsicID) { 9982 default: 9983 llvm_unreachable("Unknown comparison intrinsic."); 9984 case Intrinsic::ppc_altivec_vcmpneb_p: 9985 CompareOpc = 7; 9986 break; 9987 case Intrinsic::ppc_altivec_vcmpneh_p: 9988 CompareOpc = 71; 9989 break; 9990 case Intrinsic::ppc_altivec_vcmpnew_p: 9991 CompareOpc = 135; 9992 break; 9993 case Intrinsic::ppc_altivec_vcmpnezb_p: 9994 CompareOpc = 263; 9995 break; 9996 case Intrinsic::ppc_altivec_vcmpnezh_p: 9997 CompareOpc = 327; 9998 break; 9999 case Intrinsic::ppc_altivec_vcmpnezw_p: 10000 CompareOpc = 391; 10001 break; 10002 } 10003 isDot = true; 10004 } else 10005 return false; 10006 break; 10007 case Intrinsic::ppc_altivec_vcmpgefp_p: 10008 CompareOpc = 454; 10009 isDot = true; 10010 break; 10011 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10012 CompareOpc = 710; 10013 isDot = true; 10014 break; 10015 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10016 CompareOpc = 774; 10017 isDot = true; 10018 break; 10019 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10020 CompareOpc = 838; 10021 isDot = true; 10022 break; 10023 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10024 CompareOpc = 902; 10025 isDot = true; 10026 break; 10027 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10028 if (Subtarget.hasP8Altivec()) { 10029 CompareOpc = 967; 10030 isDot = true; 10031 } else 10032 return false; 10033 break; 10034 case Intrinsic::ppc_altivec_vcmpgtub_p: 10035 CompareOpc = 518; 10036 isDot = true; 10037 break; 10038 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10039 CompareOpc = 582; 10040 isDot = true; 10041 break; 10042 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10043 CompareOpc = 646; 10044 isDot = true; 10045 break; 10046 case Intrinsic::ppc_altivec_vcmpgtud_p: 10047 if (Subtarget.hasP8Altivec()) { 10048 CompareOpc = 711; 10049 isDot = true; 10050 } else 10051 return false; 10052 break; 10053 10054 // VSX predicate comparisons use the same infrastructure 10055 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10056 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10057 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10058 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10059 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10060 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10061 if (Subtarget.hasVSX()) { 10062 switch (IntrinsicID) { 10063 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10064 CompareOpc = 99; 10065 break; 10066 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10067 CompareOpc = 115; 10068 break; 10069 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10070 CompareOpc = 107; 10071 break; 10072 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10073 CompareOpc = 67; 10074 break; 10075 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10076 CompareOpc = 83; 10077 break; 10078 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10079 CompareOpc = 75; 10080 break; 10081 } 10082 isDot = true; 10083 } else 10084 return false; 10085 break; 10086 10087 // Normal Comparisons. 10088 case Intrinsic::ppc_altivec_vcmpbfp: 10089 CompareOpc = 966; 10090 break; 10091 case Intrinsic::ppc_altivec_vcmpeqfp: 10092 CompareOpc = 198; 10093 break; 10094 case Intrinsic::ppc_altivec_vcmpequb: 10095 CompareOpc = 6; 10096 break; 10097 case Intrinsic::ppc_altivec_vcmpequh: 10098 CompareOpc = 70; 10099 break; 10100 case Intrinsic::ppc_altivec_vcmpequw: 10101 CompareOpc = 134; 10102 break; 10103 case Intrinsic::ppc_altivec_vcmpequd: 10104 if (Subtarget.hasP8Altivec()) 10105 CompareOpc = 199; 10106 else 10107 return false; 10108 break; 10109 case Intrinsic::ppc_altivec_vcmpneb: 10110 case Intrinsic::ppc_altivec_vcmpneh: 10111 case Intrinsic::ppc_altivec_vcmpnew: 10112 case Intrinsic::ppc_altivec_vcmpnezb: 10113 case Intrinsic::ppc_altivec_vcmpnezh: 10114 case Intrinsic::ppc_altivec_vcmpnezw: 10115 if (Subtarget.hasP9Altivec()) 10116 switch (IntrinsicID) { 10117 default: 10118 llvm_unreachable("Unknown comparison intrinsic."); 10119 case Intrinsic::ppc_altivec_vcmpneb: 10120 CompareOpc = 7; 10121 break; 10122 case Intrinsic::ppc_altivec_vcmpneh: 10123 CompareOpc = 71; 10124 break; 10125 case Intrinsic::ppc_altivec_vcmpnew: 10126 CompareOpc = 135; 10127 break; 10128 case Intrinsic::ppc_altivec_vcmpnezb: 10129 CompareOpc = 263; 10130 break; 10131 case Intrinsic::ppc_altivec_vcmpnezh: 10132 CompareOpc = 327; 10133 break; 10134 case Intrinsic::ppc_altivec_vcmpnezw: 10135 CompareOpc = 391; 10136 break; 10137 } 10138 else 10139 return false; 10140 break; 10141 case Intrinsic::ppc_altivec_vcmpgefp: 10142 CompareOpc = 454; 10143 break; 10144 case Intrinsic::ppc_altivec_vcmpgtfp: 10145 CompareOpc = 710; 10146 break; 10147 case Intrinsic::ppc_altivec_vcmpgtsb: 10148 CompareOpc = 774; 10149 break; 10150 case Intrinsic::ppc_altivec_vcmpgtsh: 10151 CompareOpc = 838; 10152 break; 10153 case Intrinsic::ppc_altivec_vcmpgtsw: 10154 CompareOpc = 902; 10155 break; 10156 case Intrinsic::ppc_altivec_vcmpgtsd: 10157 if (Subtarget.hasP8Altivec()) 10158 CompareOpc = 967; 10159 else 10160 return false; 10161 break; 10162 case Intrinsic::ppc_altivec_vcmpgtub: 10163 CompareOpc = 518; 10164 break; 10165 case Intrinsic::ppc_altivec_vcmpgtuh: 10166 CompareOpc = 582; 10167 break; 10168 case Intrinsic::ppc_altivec_vcmpgtuw: 10169 CompareOpc = 646; 10170 break; 10171 case Intrinsic::ppc_altivec_vcmpgtud: 10172 if (Subtarget.hasP8Altivec()) 10173 CompareOpc = 711; 10174 else 10175 return false; 10176 break; 10177 } 10178 return true; 10179 } 10180 10181 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10182 /// lower, do it, otherwise return null. 10183 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10184 SelectionDAG &DAG) const { 10185 unsigned IntrinsicID = 10186 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10187 10188 SDLoc dl(Op); 10189 10190 if (IntrinsicID == Intrinsic::thread_pointer) { 10191 // Reads the thread pointer register, used for __builtin_thread_pointer. 10192 if (Subtarget.isPPC64()) 10193 return DAG.getRegister(PPC::X13, MVT::i64); 10194 return DAG.getRegister(PPC::R2, MVT::i32); 10195 } 10196 10197 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10198 // opcode number of the comparison. 10199 int CompareOpc; 10200 bool isDot; 10201 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10202 return SDValue(); // Don't custom lower most intrinsics. 10203 10204 // If this is a non-dot comparison, make the VCMP node and we are done. 10205 if (!isDot) { 10206 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10207 Op.getOperand(1), Op.getOperand(2), 10208 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10209 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10210 } 10211 10212 // Create the PPCISD altivec 'dot' comparison node. 10213 SDValue Ops[] = { 10214 Op.getOperand(2), // LHS 10215 Op.getOperand(3), // RHS 10216 DAG.getConstant(CompareOpc, dl, MVT::i32) 10217 }; 10218 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10219 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 10220 10221 // Now that we have the comparison, emit a copy from the CR to a GPR. 10222 // This is flagged to the above dot comparison. 10223 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10224 DAG.getRegister(PPC::CR6, MVT::i32), 10225 CompNode.getValue(1)); 10226 10227 // Unpack the result based on how the target uses it. 10228 unsigned BitNo; // Bit # of CR6. 10229 bool InvertBit; // Invert result? 10230 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10231 default: // Can't happen, don't crash on invalid number though. 10232 case 0: // Return the value of the EQ bit of CR6. 10233 BitNo = 0; InvertBit = false; 10234 break; 10235 case 1: // Return the inverted value of the EQ bit of CR6. 10236 BitNo = 0; InvertBit = true; 10237 break; 10238 case 2: // Return the value of the LT bit of CR6. 10239 BitNo = 2; InvertBit = false; 10240 break; 10241 case 3: // Return the inverted value of the LT bit of CR6. 10242 BitNo = 2; InvertBit = true; 10243 break; 10244 } 10245 10246 // Shift the bit into the low position. 10247 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10248 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10249 // Isolate the bit. 10250 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10251 DAG.getConstant(1, dl, MVT::i32)); 10252 10253 // If we are supposed to, toggle the bit. 10254 if (InvertBit) 10255 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10256 DAG.getConstant(1, dl, MVT::i32)); 10257 return Flags; 10258 } 10259 10260 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10261 SelectionDAG &DAG) const { 10262 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10263 // the beginning of the argument list. 10264 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10265 SDLoc DL(Op); 10266 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10267 case Intrinsic::ppc_cfence: { 10268 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10269 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10270 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10271 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10272 Op.getOperand(ArgStart + 1)), 10273 Op.getOperand(0)), 10274 0); 10275 } 10276 default: 10277 break; 10278 } 10279 return SDValue(); 10280 } 10281 10282 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 10283 // Check for a DIV with the same operands as this REM. 10284 for (auto UI : Op.getOperand(1)->uses()) { 10285 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 10286 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 10287 if (UI->getOperand(0) == Op.getOperand(0) && 10288 UI->getOperand(1) == Op.getOperand(1)) 10289 return SDValue(); 10290 } 10291 return Op; 10292 } 10293 10294 // Lower scalar BSWAP64 to xxbrd. 10295 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10296 SDLoc dl(Op); 10297 // MTVSRDD 10298 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10299 Op.getOperand(0)); 10300 // XXBRD 10301 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10302 // MFVSRD 10303 int VectorIndex = 0; 10304 if (Subtarget.isLittleEndian()) 10305 VectorIndex = 1; 10306 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10307 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10308 return Op; 10309 } 10310 10311 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10312 // compared to a value that is atomically loaded (atomic loads zero-extend). 10313 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10314 SelectionDAG &DAG) const { 10315 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10316 "Expecting an atomic compare-and-swap here."); 10317 SDLoc dl(Op); 10318 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10319 EVT MemVT = AtomicNode->getMemoryVT(); 10320 if (MemVT.getSizeInBits() >= 32) 10321 return Op; 10322 10323 SDValue CmpOp = Op.getOperand(2); 10324 // If this is already correctly zero-extended, leave it alone. 10325 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10326 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10327 return Op; 10328 10329 // Clear the high bits of the compare operand. 10330 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10331 SDValue NewCmpOp = 10332 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10333 DAG.getConstant(MaskVal, dl, MVT::i32)); 10334 10335 // Replace the existing compare operand with the properly zero-extended one. 10336 SmallVector<SDValue, 4> Ops; 10337 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10338 Ops.push_back(AtomicNode->getOperand(i)); 10339 Ops[2] = NewCmpOp; 10340 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10341 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10342 auto NodeTy = 10343 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10344 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10345 } 10346 10347 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10348 SelectionDAG &DAG) const { 10349 SDLoc dl(Op); 10350 // Create a stack slot that is 16-byte aligned. 10351 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10352 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10353 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10354 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10355 10356 // Store the input value into Value#0 of the stack slot. 10357 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10358 MachinePointerInfo()); 10359 // Load it out. 10360 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10361 } 10362 10363 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10364 SelectionDAG &DAG) const { 10365 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10366 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10367 10368 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10369 // We have legal lowering for constant indices but not for variable ones. 10370 if (!C) 10371 return SDValue(); 10372 10373 EVT VT = Op.getValueType(); 10374 SDLoc dl(Op); 10375 SDValue V1 = Op.getOperand(0); 10376 SDValue V2 = Op.getOperand(1); 10377 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10378 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10379 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10380 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10381 unsigned InsertAtElement = C->getZExtValue(); 10382 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10383 if (Subtarget.isLittleEndian()) { 10384 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10385 } 10386 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10387 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10388 } 10389 return Op; 10390 } 10391 10392 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 10393 SelectionDAG &DAG) const { 10394 SDLoc dl(Op); 10395 SDNode *N = Op.getNode(); 10396 10397 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10398 "Unknown extract_vector_elt type"); 10399 10400 SDValue Value = N->getOperand(0); 10401 10402 // The first part of this is like the store lowering except that we don't 10403 // need to track the chain. 10404 10405 // The values are now known to be -1 (false) or 1 (true). To convert this 10406 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10407 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10408 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10409 10410 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10411 // understand how to form the extending load. 10412 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10413 10414 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10415 10416 // Now convert to an integer and store. 10417 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10418 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10419 Value); 10420 10421 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10422 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10423 MachinePointerInfo PtrInfo = 10424 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10425 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10426 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10427 10428 SDValue StoreChain = DAG.getEntryNode(); 10429 SDValue Ops[] = {StoreChain, 10430 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10431 Value, FIdx}; 10432 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10433 10434 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10435 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10436 10437 // Extract the value requested. 10438 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10439 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10440 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10441 10442 SDValue IntVal = 10443 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10444 10445 if (!Subtarget.useCRBits()) 10446 return IntVal; 10447 10448 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10449 } 10450 10451 /// Lowering for QPX v4i1 loads 10452 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10453 SelectionDAG &DAG) const { 10454 SDLoc dl(Op); 10455 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10456 SDValue LoadChain = LN->getChain(); 10457 SDValue BasePtr = LN->getBasePtr(); 10458 10459 if (Op.getValueType() == MVT::v4f64 || 10460 Op.getValueType() == MVT::v4f32) { 10461 EVT MemVT = LN->getMemoryVT(); 10462 unsigned Alignment = LN->getAlignment(); 10463 10464 // If this load is properly aligned, then it is legal. 10465 if (Alignment >= MemVT.getStoreSize()) 10466 return Op; 10467 10468 EVT ScalarVT = Op.getValueType().getScalarType(), 10469 ScalarMemVT = MemVT.getScalarType(); 10470 unsigned Stride = ScalarMemVT.getStoreSize(); 10471 10472 SDValue Vals[4], LoadChains[4]; 10473 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10474 SDValue Load; 10475 if (ScalarVT != ScalarMemVT) 10476 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10477 BasePtr, 10478 LN->getPointerInfo().getWithOffset(Idx * Stride), 10479 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10480 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10481 else 10482 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10483 LN->getPointerInfo().getWithOffset(Idx * Stride), 10484 MinAlign(Alignment, Idx * Stride), 10485 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10486 10487 if (Idx == 0 && LN->isIndexed()) { 10488 assert(LN->getAddressingMode() == ISD::PRE_INC && 10489 "Unknown addressing mode on vector load"); 10490 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10491 LN->getAddressingMode()); 10492 } 10493 10494 Vals[Idx] = Load; 10495 LoadChains[Idx] = Load.getValue(1); 10496 10497 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10498 DAG.getConstant(Stride, dl, 10499 BasePtr.getValueType())); 10500 } 10501 10502 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10503 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10504 10505 if (LN->isIndexed()) { 10506 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10507 return DAG.getMergeValues(RetOps, dl); 10508 } 10509 10510 SDValue RetOps[] = { Value, TF }; 10511 return DAG.getMergeValues(RetOps, dl); 10512 } 10513 10514 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10515 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10516 10517 // To lower v4i1 from a byte array, we load the byte elements of the 10518 // vector and then reuse the BUILD_VECTOR logic. 10519 10520 SDValue VectElmts[4], VectElmtChains[4]; 10521 for (unsigned i = 0; i < 4; ++i) { 10522 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10523 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10524 10525 VectElmts[i] = DAG.getExtLoad( 10526 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10527 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10528 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10529 VectElmtChains[i] = VectElmts[i].getValue(1); 10530 } 10531 10532 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10533 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10534 10535 SDValue RVals[] = { Value, LoadChain }; 10536 return DAG.getMergeValues(RVals, dl); 10537 } 10538 10539 /// Lowering for QPX v4i1 stores 10540 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10541 SelectionDAG &DAG) const { 10542 SDLoc dl(Op); 10543 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10544 SDValue StoreChain = SN->getChain(); 10545 SDValue BasePtr = SN->getBasePtr(); 10546 SDValue Value = SN->getValue(); 10547 10548 if (Value.getValueType() == MVT::v4f64 || 10549 Value.getValueType() == MVT::v4f32) { 10550 EVT MemVT = SN->getMemoryVT(); 10551 unsigned Alignment = SN->getAlignment(); 10552 10553 // If this store is properly aligned, then it is legal. 10554 if (Alignment >= MemVT.getStoreSize()) 10555 return Op; 10556 10557 EVT ScalarVT = Value.getValueType().getScalarType(), 10558 ScalarMemVT = MemVT.getScalarType(); 10559 unsigned Stride = ScalarMemVT.getStoreSize(); 10560 10561 SDValue Stores[4]; 10562 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10563 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10564 DAG.getVectorIdxConstant(Idx, dl)); 10565 SDValue Store; 10566 if (ScalarVT != ScalarMemVT) 10567 Store = 10568 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10569 SN->getPointerInfo().getWithOffset(Idx * Stride), 10570 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10571 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10572 else 10573 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10574 SN->getPointerInfo().getWithOffset(Idx * Stride), 10575 MinAlign(Alignment, Idx * Stride), 10576 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10577 10578 if (Idx == 0 && SN->isIndexed()) { 10579 assert(SN->getAddressingMode() == ISD::PRE_INC && 10580 "Unknown addressing mode on vector store"); 10581 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10582 SN->getAddressingMode()); 10583 } 10584 10585 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10586 DAG.getConstant(Stride, dl, 10587 BasePtr.getValueType())); 10588 Stores[Idx] = Store; 10589 } 10590 10591 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10592 10593 if (SN->isIndexed()) { 10594 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10595 return DAG.getMergeValues(RetOps, dl); 10596 } 10597 10598 return TF; 10599 } 10600 10601 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10602 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10603 10604 // The values are now known to be -1 (false) or 1 (true). To convert this 10605 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10606 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10607 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10608 10609 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10610 // understand how to form the extending load. 10611 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10612 10613 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10614 10615 // Now convert to an integer and store. 10616 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10617 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10618 Value); 10619 10620 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10621 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10622 MachinePointerInfo PtrInfo = 10623 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10624 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10625 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10626 10627 SDValue Ops[] = {StoreChain, 10628 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10629 Value, FIdx}; 10630 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10631 10632 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10633 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10634 10635 // Move data into the byte array. 10636 SDValue Loads[4], LoadChains[4]; 10637 for (unsigned i = 0; i < 4; ++i) { 10638 unsigned Offset = 4*i; 10639 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10640 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10641 10642 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10643 PtrInfo.getWithOffset(Offset)); 10644 LoadChains[i] = Loads[i].getValue(1); 10645 } 10646 10647 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10648 10649 SDValue Stores[4]; 10650 for (unsigned i = 0; i < 4; ++i) { 10651 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10652 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10653 10654 Stores[i] = DAG.getTruncStore( 10655 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10656 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10657 SN->getAAInfo()); 10658 } 10659 10660 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10661 10662 return StoreChain; 10663 } 10664 10665 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10666 SDLoc dl(Op); 10667 if (Op.getValueType() == MVT::v4i32) { 10668 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10669 10670 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10671 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10672 10673 SDValue RHSSwap = // = vrlw RHS, 16 10674 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10675 10676 // Shrinkify inputs to v8i16. 10677 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10678 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10679 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10680 10681 // Low parts multiplied together, generating 32-bit results (we ignore the 10682 // top parts). 10683 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10684 LHS, RHS, DAG, dl, MVT::v4i32); 10685 10686 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10687 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10688 // Shift the high parts up 16 bits. 10689 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10690 Neg16, DAG, dl); 10691 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10692 } else if (Op.getValueType() == MVT::v16i8) { 10693 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10694 bool isLittleEndian = Subtarget.isLittleEndian(); 10695 10696 // Multiply the even 8-bit parts, producing 16-bit sums. 10697 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10698 LHS, RHS, DAG, dl, MVT::v8i16); 10699 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10700 10701 // Multiply the odd 8-bit parts, producing 16-bit sums. 10702 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10703 LHS, RHS, DAG, dl, MVT::v8i16); 10704 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10705 10706 // Merge the results together. Because vmuleub and vmuloub are 10707 // instructions with a big-endian bias, we must reverse the 10708 // element numbering and reverse the meaning of "odd" and "even" 10709 // when generating little endian code. 10710 int Ops[16]; 10711 for (unsigned i = 0; i != 8; ++i) { 10712 if (isLittleEndian) { 10713 Ops[i*2 ] = 2*i; 10714 Ops[i*2+1] = 2*i+16; 10715 } else { 10716 Ops[i*2 ] = 2*i+1; 10717 Ops[i*2+1] = 2*i+1+16; 10718 } 10719 } 10720 if (isLittleEndian) 10721 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10722 else 10723 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10724 } else { 10725 llvm_unreachable("Unknown mul to lower!"); 10726 } 10727 } 10728 10729 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10730 10731 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10732 10733 EVT VT = Op.getValueType(); 10734 assert(VT.isVector() && 10735 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10736 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10737 VT == MVT::v16i8) && 10738 "Unexpected vector element type!"); 10739 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10740 "Current subtarget doesn't support smax v2i64!"); 10741 10742 // For vector abs, it can be lowered to: 10743 // abs x 10744 // ==> 10745 // y = -x 10746 // smax(x, y) 10747 10748 SDLoc dl(Op); 10749 SDValue X = Op.getOperand(0); 10750 SDValue Zero = DAG.getConstant(0, dl, VT); 10751 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10752 10753 // SMAX patch https://reviews.llvm.org/D47332 10754 // hasn't landed yet, so use intrinsic first here. 10755 // TODO: Should use SMAX directly once SMAX patch landed 10756 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10757 if (VT == MVT::v2i64) 10758 BifID = Intrinsic::ppc_altivec_vmaxsd; 10759 else if (VT == MVT::v8i16) 10760 BifID = Intrinsic::ppc_altivec_vmaxsh; 10761 else if (VT == MVT::v16i8) 10762 BifID = Intrinsic::ppc_altivec_vmaxsb; 10763 10764 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10765 } 10766 10767 // Custom lowering for fpext vf32 to v2f64 10768 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10769 10770 assert(Op.getOpcode() == ISD::FP_EXTEND && 10771 "Should only be called for ISD::FP_EXTEND"); 10772 10773 // FIXME: handle extends from half precision float vectors on P9. 10774 // We only want to custom lower an extend from v2f32 to v2f64. 10775 if (Op.getValueType() != MVT::v2f64 || 10776 Op.getOperand(0).getValueType() != MVT::v2f32) 10777 return SDValue(); 10778 10779 SDLoc dl(Op); 10780 SDValue Op0 = Op.getOperand(0); 10781 10782 switch (Op0.getOpcode()) { 10783 default: 10784 return SDValue(); 10785 case ISD::EXTRACT_SUBVECTOR: { 10786 assert(Op0.getNumOperands() == 2 && 10787 isa<ConstantSDNode>(Op0->getOperand(1)) && 10788 "Node should have 2 operands with second one being a constant!"); 10789 10790 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10791 return SDValue(); 10792 10793 // Custom lower is only done for high or low doubleword. 10794 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10795 if (Idx % 2 != 0) 10796 return SDValue(); 10797 10798 // Since input is v4f32, at this point Idx is either 0 or 2. 10799 // Shift to get the doubleword position we want. 10800 int DWord = Idx >> 1; 10801 10802 // High and low word positions are different on little endian. 10803 if (Subtarget.isLittleEndian()) 10804 DWord ^= 0x1; 10805 10806 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10807 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10808 } 10809 case ISD::FADD: 10810 case ISD::FMUL: 10811 case ISD::FSUB: { 10812 SDValue NewLoad[2]; 10813 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10814 // Ensure both input are loads. 10815 SDValue LdOp = Op0.getOperand(i); 10816 if (LdOp.getOpcode() != ISD::LOAD) 10817 return SDValue(); 10818 // Generate new load node. 10819 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10820 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10821 NewLoad[i] = DAG.getMemIntrinsicNode( 10822 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10823 LD->getMemoryVT(), LD->getMemOperand()); 10824 } 10825 SDValue NewOp = 10826 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10827 NewLoad[1], Op0.getNode()->getFlags()); 10828 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10829 DAG.getConstant(0, dl, MVT::i32)); 10830 } 10831 case ISD::LOAD: { 10832 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10833 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10834 SDValue NewLd = DAG.getMemIntrinsicNode( 10835 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10836 LD->getMemoryVT(), LD->getMemOperand()); 10837 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10838 DAG.getConstant(0, dl, MVT::i32)); 10839 } 10840 } 10841 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10842 } 10843 10844 /// LowerOperation - Provide custom lowering hooks for some operations. 10845 /// 10846 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10847 switch (Op.getOpcode()) { 10848 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10849 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10850 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10851 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10852 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10853 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10854 case ISD::SETCC: return LowerSETCC(Op, DAG); 10855 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10856 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10857 10858 // Variable argument lowering. 10859 case ISD::VASTART: return LowerVASTART(Op, DAG); 10860 case ISD::VAARG: return LowerVAARG(Op, DAG); 10861 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10862 10863 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10864 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10865 case ISD::GET_DYNAMIC_AREA_OFFSET: 10866 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10867 10868 // Exception handling lowering. 10869 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10870 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10871 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10872 10873 case ISD::LOAD: return LowerLOAD(Op, DAG); 10874 case ISD::STORE: return LowerSTORE(Op, DAG); 10875 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10876 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10877 case ISD::FP_TO_UINT: 10878 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10879 case ISD::UINT_TO_FP: 10880 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10881 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10882 10883 // Lower 64-bit shifts. 10884 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10885 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10886 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10887 10888 // Vector-related lowering. 10889 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10890 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10891 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10892 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10893 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10894 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10895 case ISD::MUL: return LowerMUL(Op, DAG); 10896 case ISD::ABS: return LowerABS(Op, DAG); 10897 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10898 10899 // For counter-based loop handling. 10900 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10901 10902 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10903 10904 // Frame & Return address. 10905 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10906 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10907 10908 case ISD::INTRINSIC_VOID: 10909 return LowerINTRINSIC_VOID(Op, DAG); 10910 case ISD::SREM: 10911 case ISD::UREM: 10912 return LowerREM(Op, DAG); 10913 case ISD::BSWAP: 10914 return LowerBSWAP(Op, DAG); 10915 case ISD::ATOMIC_CMP_SWAP: 10916 return LowerATOMIC_CMP_SWAP(Op, DAG); 10917 } 10918 } 10919 10920 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10921 SmallVectorImpl<SDValue>&Results, 10922 SelectionDAG &DAG) const { 10923 SDLoc dl(N); 10924 switch (N->getOpcode()) { 10925 default: 10926 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10927 case ISD::READCYCLECOUNTER: { 10928 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10929 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10930 10931 Results.push_back( 10932 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10933 Results.push_back(RTB.getValue(2)); 10934 break; 10935 } 10936 case ISD::INTRINSIC_W_CHAIN: { 10937 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10938 Intrinsic::loop_decrement) 10939 break; 10940 10941 assert(N->getValueType(0) == MVT::i1 && 10942 "Unexpected result type for CTR decrement intrinsic"); 10943 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10944 N->getValueType(0)); 10945 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10946 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10947 N->getOperand(1)); 10948 10949 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10950 Results.push_back(NewInt.getValue(1)); 10951 break; 10952 } 10953 case ISD::VAARG: { 10954 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10955 return; 10956 10957 EVT VT = N->getValueType(0); 10958 10959 if (VT == MVT::i64) { 10960 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10961 10962 Results.push_back(NewNode); 10963 Results.push_back(NewNode.getValue(1)); 10964 } 10965 return; 10966 } 10967 case ISD::FP_TO_SINT: 10968 case ISD::FP_TO_UINT: 10969 // LowerFP_TO_INT() can only handle f32 and f64. 10970 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10971 return; 10972 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10973 return; 10974 case ISD::TRUNCATE: { 10975 EVT TrgVT = N->getValueType(0); 10976 EVT OpVT = N->getOperand(0).getValueType(); 10977 if (TrgVT.isVector() && 10978 isOperationCustom(N->getOpcode(), TrgVT) && 10979 OpVT.getSizeInBits() <= 128 && 10980 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10981 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10982 return; 10983 } 10984 case ISD::BITCAST: 10985 // Don't handle bitcast here. 10986 return; 10987 case ISD::FP_EXTEND: 10988 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10989 if (Lowered) 10990 Results.push_back(Lowered); 10991 return; 10992 } 10993 } 10994 10995 //===----------------------------------------------------------------------===// 10996 // Other Lowering Code 10997 //===----------------------------------------------------------------------===// 10998 10999 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 11000 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11001 Function *Func = Intrinsic::getDeclaration(M, Id); 11002 return Builder.CreateCall(Func, {}); 11003 } 11004 11005 // The mappings for emitLeading/TrailingFence is taken from 11006 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11007 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11008 Instruction *Inst, 11009 AtomicOrdering Ord) const { 11010 if (Ord == AtomicOrdering::SequentiallyConsistent) 11011 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11012 if (isReleaseOrStronger(Ord)) 11013 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11014 return nullptr; 11015 } 11016 11017 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11018 Instruction *Inst, 11019 AtomicOrdering Ord) const { 11020 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11021 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11022 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11023 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11024 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11025 return Builder.CreateCall( 11026 Intrinsic::getDeclaration( 11027 Builder.GetInsertBlock()->getParent()->getParent(), 11028 Intrinsic::ppc_cfence, {Inst->getType()}), 11029 {Inst}); 11030 // FIXME: Can use isync for rmw operation. 11031 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11032 } 11033 return nullptr; 11034 } 11035 11036 MachineBasicBlock * 11037 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11038 unsigned AtomicSize, 11039 unsigned BinOpcode, 11040 unsigned CmpOpcode, 11041 unsigned CmpPred) const { 11042 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11043 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11044 11045 auto LoadMnemonic = PPC::LDARX; 11046 auto StoreMnemonic = PPC::STDCX; 11047 switch (AtomicSize) { 11048 default: 11049 llvm_unreachable("Unexpected size of atomic entity"); 11050 case 1: 11051 LoadMnemonic = PPC::LBARX; 11052 StoreMnemonic = PPC::STBCX; 11053 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11054 break; 11055 case 2: 11056 LoadMnemonic = PPC::LHARX; 11057 StoreMnemonic = PPC::STHCX; 11058 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11059 break; 11060 case 4: 11061 LoadMnemonic = PPC::LWARX; 11062 StoreMnemonic = PPC::STWCX; 11063 break; 11064 case 8: 11065 LoadMnemonic = PPC::LDARX; 11066 StoreMnemonic = PPC::STDCX; 11067 break; 11068 } 11069 11070 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11071 MachineFunction *F = BB->getParent(); 11072 MachineFunction::iterator It = ++BB->getIterator(); 11073 11074 Register dest = MI.getOperand(0).getReg(); 11075 Register ptrA = MI.getOperand(1).getReg(); 11076 Register ptrB = MI.getOperand(2).getReg(); 11077 Register incr = MI.getOperand(3).getReg(); 11078 DebugLoc dl = MI.getDebugLoc(); 11079 11080 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11081 MachineBasicBlock *loop2MBB = 11082 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11083 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11084 F->insert(It, loopMBB); 11085 if (CmpOpcode) 11086 F->insert(It, loop2MBB); 11087 F->insert(It, exitMBB); 11088 exitMBB->splice(exitMBB->begin(), BB, 11089 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11090 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11091 11092 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11093 Register TmpReg = (!BinOpcode) ? incr : 11094 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11095 : &PPC::GPRCRegClass); 11096 11097 // thisMBB: 11098 // ... 11099 // fallthrough --> loopMBB 11100 BB->addSuccessor(loopMBB); 11101 11102 // loopMBB: 11103 // l[wd]arx dest, ptr 11104 // add r0, dest, incr 11105 // st[wd]cx. r0, ptr 11106 // bne- loopMBB 11107 // fallthrough --> exitMBB 11108 11109 // For max/min... 11110 // loopMBB: 11111 // l[wd]arx dest, ptr 11112 // cmpl?[wd] incr, dest 11113 // bgt exitMBB 11114 // loop2MBB: 11115 // st[wd]cx. dest, ptr 11116 // bne- loopMBB 11117 // fallthrough --> exitMBB 11118 11119 BB = loopMBB; 11120 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11121 .addReg(ptrA).addReg(ptrB); 11122 if (BinOpcode) 11123 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11124 if (CmpOpcode) { 11125 // Signed comparisons of byte or halfword values must be sign-extended. 11126 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11127 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11128 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11129 ExtReg).addReg(dest); 11130 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11131 .addReg(incr).addReg(ExtReg); 11132 } else 11133 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11134 .addReg(incr).addReg(dest); 11135 11136 BuildMI(BB, dl, TII->get(PPC::BCC)) 11137 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11138 BB->addSuccessor(loop2MBB); 11139 BB->addSuccessor(exitMBB); 11140 BB = loop2MBB; 11141 } 11142 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11143 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11144 BuildMI(BB, dl, TII->get(PPC::BCC)) 11145 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11146 BB->addSuccessor(loopMBB); 11147 BB->addSuccessor(exitMBB); 11148 11149 // exitMBB: 11150 // ... 11151 BB = exitMBB; 11152 return BB; 11153 } 11154 11155 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11156 MachineInstr &MI, MachineBasicBlock *BB, 11157 bool is8bit, // operation 11158 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11159 // If we support part-word atomic mnemonics, just use them 11160 if (Subtarget.hasPartwordAtomics()) 11161 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11162 CmpPred); 11163 11164 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11165 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11166 // In 64 bit mode we have to use 64 bits for addresses, even though the 11167 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11168 // registers without caring whether they're 32 or 64, but here we're 11169 // doing actual arithmetic on the addresses. 11170 bool is64bit = Subtarget.isPPC64(); 11171 bool isLittleEndian = Subtarget.isLittleEndian(); 11172 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11173 11174 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11175 MachineFunction *F = BB->getParent(); 11176 MachineFunction::iterator It = ++BB->getIterator(); 11177 11178 Register dest = MI.getOperand(0).getReg(); 11179 Register ptrA = MI.getOperand(1).getReg(); 11180 Register ptrB = MI.getOperand(2).getReg(); 11181 Register incr = MI.getOperand(3).getReg(); 11182 DebugLoc dl = MI.getDebugLoc(); 11183 11184 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11185 MachineBasicBlock *loop2MBB = 11186 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11187 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11188 F->insert(It, loopMBB); 11189 if (CmpOpcode) 11190 F->insert(It, loop2MBB); 11191 F->insert(It, exitMBB); 11192 exitMBB->splice(exitMBB->begin(), BB, 11193 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11194 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11195 11196 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11197 const TargetRegisterClass *RC = 11198 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11199 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11200 11201 Register PtrReg = RegInfo.createVirtualRegister(RC); 11202 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11203 Register ShiftReg = 11204 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11205 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11206 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11207 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11208 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11209 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11210 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11211 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11212 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11213 Register Ptr1Reg; 11214 Register TmpReg = 11215 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11216 11217 // thisMBB: 11218 // ... 11219 // fallthrough --> loopMBB 11220 BB->addSuccessor(loopMBB); 11221 11222 // The 4-byte load must be aligned, while a char or short may be 11223 // anywhere in the word. Hence all this nasty bookkeeping code. 11224 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11225 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11226 // xori shift, shift1, 24 [16] 11227 // rlwinm ptr, ptr1, 0, 0, 29 11228 // slw incr2, incr, shift 11229 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11230 // slw mask, mask2, shift 11231 // loopMBB: 11232 // lwarx tmpDest, ptr 11233 // add tmp, tmpDest, incr2 11234 // andc tmp2, tmpDest, mask 11235 // and tmp3, tmp, mask 11236 // or tmp4, tmp3, tmp2 11237 // stwcx. tmp4, ptr 11238 // bne- loopMBB 11239 // fallthrough --> exitMBB 11240 // srw dest, tmpDest, shift 11241 if (ptrA != ZeroReg) { 11242 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11243 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11244 .addReg(ptrA) 11245 .addReg(ptrB); 11246 } else { 11247 Ptr1Reg = ptrB; 11248 } 11249 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11250 // mode. 11251 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11252 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11253 .addImm(3) 11254 .addImm(27) 11255 .addImm(is8bit ? 28 : 27); 11256 if (!isLittleEndian) 11257 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11258 .addReg(Shift1Reg) 11259 .addImm(is8bit ? 24 : 16); 11260 if (is64bit) 11261 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11262 .addReg(Ptr1Reg) 11263 .addImm(0) 11264 .addImm(61); 11265 else 11266 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11267 .addReg(Ptr1Reg) 11268 .addImm(0) 11269 .addImm(0) 11270 .addImm(29); 11271 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11272 if (is8bit) 11273 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11274 else { 11275 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11276 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11277 .addReg(Mask3Reg) 11278 .addImm(65535); 11279 } 11280 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11281 .addReg(Mask2Reg) 11282 .addReg(ShiftReg); 11283 11284 BB = loopMBB; 11285 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11286 .addReg(ZeroReg) 11287 .addReg(PtrReg); 11288 if (BinOpcode) 11289 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11290 .addReg(Incr2Reg) 11291 .addReg(TmpDestReg); 11292 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11293 .addReg(TmpDestReg) 11294 .addReg(MaskReg); 11295 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11296 if (CmpOpcode) { 11297 // For unsigned comparisons, we can directly compare the shifted values. 11298 // For signed comparisons we shift and sign extend. 11299 Register SReg = RegInfo.createVirtualRegister(GPRC); 11300 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11301 .addReg(TmpDestReg) 11302 .addReg(MaskReg); 11303 unsigned ValueReg = SReg; 11304 unsigned CmpReg = Incr2Reg; 11305 if (CmpOpcode == PPC::CMPW) { 11306 ValueReg = RegInfo.createVirtualRegister(GPRC); 11307 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11308 .addReg(SReg) 11309 .addReg(ShiftReg); 11310 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11311 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11312 .addReg(ValueReg); 11313 ValueReg = ValueSReg; 11314 CmpReg = incr; 11315 } 11316 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11317 .addReg(CmpReg) 11318 .addReg(ValueReg); 11319 BuildMI(BB, dl, TII->get(PPC::BCC)) 11320 .addImm(CmpPred) 11321 .addReg(PPC::CR0) 11322 .addMBB(exitMBB); 11323 BB->addSuccessor(loop2MBB); 11324 BB->addSuccessor(exitMBB); 11325 BB = loop2MBB; 11326 } 11327 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11328 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11329 .addReg(Tmp4Reg) 11330 .addReg(ZeroReg) 11331 .addReg(PtrReg); 11332 BuildMI(BB, dl, TII->get(PPC::BCC)) 11333 .addImm(PPC::PRED_NE) 11334 .addReg(PPC::CR0) 11335 .addMBB(loopMBB); 11336 BB->addSuccessor(loopMBB); 11337 BB->addSuccessor(exitMBB); 11338 11339 // exitMBB: 11340 // ... 11341 BB = exitMBB; 11342 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11343 .addReg(TmpDestReg) 11344 .addReg(ShiftReg); 11345 return BB; 11346 } 11347 11348 llvm::MachineBasicBlock * 11349 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11350 MachineBasicBlock *MBB) const { 11351 DebugLoc DL = MI.getDebugLoc(); 11352 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11353 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11354 11355 MachineFunction *MF = MBB->getParent(); 11356 MachineRegisterInfo &MRI = MF->getRegInfo(); 11357 11358 const BasicBlock *BB = MBB->getBasicBlock(); 11359 MachineFunction::iterator I = ++MBB->getIterator(); 11360 11361 Register DstReg = MI.getOperand(0).getReg(); 11362 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11363 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11364 Register mainDstReg = MRI.createVirtualRegister(RC); 11365 Register restoreDstReg = MRI.createVirtualRegister(RC); 11366 11367 MVT PVT = getPointerTy(MF->getDataLayout()); 11368 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11369 "Invalid Pointer Size!"); 11370 // For v = setjmp(buf), we generate 11371 // 11372 // thisMBB: 11373 // SjLjSetup mainMBB 11374 // bl mainMBB 11375 // v_restore = 1 11376 // b sinkMBB 11377 // 11378 // mainMBB: 11379 // buf[LabelOffset] = LR 11380 // v_main = 0 11381 // 11382 // sinkMBB: 11383 // v = phi(main, restore) 11384 // 11385 11386 MachineBasicBlock *thisMBB = MBB; 11387 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11388 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11389 MF->insert(I, mainMBB); 11390 MF->insert(I, sinkMBB); 11391 11392 MachineInstrBuilder MIB; 11393 11394 // Transfer the remainder of BB and its successor edges to sinkMBB. 11395 sinkMBB->splice(sinkMBB->begin(), MBB, 11396 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11397 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11398 11399 // Note that the structure of the jmp_buf used here is not compatible 11400 // with that used by libc, and is not designed to be. Specifically, it 11401 // stores only those 'reserved' registers that LLVM does not otherwise 11402 // understand how to spill. Also, by convention, by the time this 11403 // intrinsic is called, Clang has already stored the frame address in the 11404 // first slot of the buffer and stack address in the third. Following the 11405 // X86 target code, we'll store the jump address in the second slot. We also 11406 // need to save the TOC pointer (R2) to handle jumps between shared 11407 // libraries, and that will be stored in the fourth slot. The thread 11408 // identifier (R13) is not affected. 11409 11410 // thisMBB: 11411 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11412 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11413 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11414 11415 // Prepare IP either in reg. 11416 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11417 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11418 Register BufReg = MI.getOperand(1).getReg(); 11419 11420 if (Subtarget.is64BitELFABI()) { 11421 setUsesTOCBasePtr(*MBB->getParent()); 11422 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11423 .addReg(PPC::X2) 11424 .addImm(TOCOffset) 11425 .addReg(BufReg) 11426 .cloneMemRefs(MI); 11427 } 11428 11429 // Naked functions never have a base pointer, and so we use r1. For all 11430 // other functions, this decision must be delayed until during PEI. 11431 unsigned BaseReg; 11432 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11433 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11434 else 11435 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11436 11437 MIB = BuildMI(*thisMBB, MI, DL, 11438 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11439 .addReg(BaseReg) 11440 .addImm(BPOffset) 11441 .addReg(BufReg) 11442 .cloneMemRefs(MI); 11443 11444 // Setup 11445 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11446 MIB.addRegMask(TRI->getNoPreservedMask()); 11447 11448 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11449 11450 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11451 .addMBB(mainMBB); 11452 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11453 11454 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11455 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11456 11457 // mainMBB: 11458 // mainDstReg = 0 11459 MIB = 11460 BuildMI(mainMBB, DL, 11461 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11462 11463 // Store IP 11464 if (Subtarget.isPPC64()) { 11465 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11466 .addReg(LabelReg) 11467 .addImm(LabelOffset) 11468 .addReg(BufReg); 11469 } else { 11470 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11471 .addReg(LabelReg) 11472 .addImm(LabelOffset) 11473 .addReg(BufReg); 11474 } 11475 MIB.cloneMemRefs(MI); 11476 11477 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11478 mainMBB->addSuccessor(sinkMBB); 11479 11480 // sinkMBB: 11481 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11482 TII->get(PPC::PHI), DstReg) 11483 .addReg(mainDstReg).addMBB(mainMBB) 11484 .addReg(restoreDstReg).addMBB(thisMBB); 11485 11486 MI.eraseFromParent(); 11487 return sinkMBB; 11488 } 11489 11490 MachineBasicBlock * 11491 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11492 MachineBasicBlock *MBB) const { 11493 DebugLoc DL = MI.getDebugLoc(); 11494 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11495 11496 MachineFunction *MF = MBB->getParent(); 11497 MachineRegisterInfo &MRI = MF->getRegInfo(); 11498 11499 MVT PVT = getPointerTy(MF->getDataLayout()); 11500 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11501 "Invalid Pointer Size!"); 11502 11503 const TargetRegisterClass *RC = 11504 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11505 Register Tmp = MRI.createVirtualRegister(RC); 11506 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11507 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11508 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11509 unsigned BP = 11510 (PVT == MVT::i64) 11511 ? PPC::X30 11512 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11513 : PPC::R30); 11514 11515 MachineInstrBuilder MIB; 11516 11517 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11518 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11519 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11520 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11521 11522 Register BufReg = MI.getOperand(0).getReg(); 11523 11524 // Reload FP (the jumped-to function may not have had a 11525 // frame pointer, and if so, then its r31 will be restored 11526 // as necessary). 11527 if (PVT == MVT::i64) { 11528 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11529 .addImm(0) 11530 .addReg(BufReg); 11531 } else { 11532 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11533 .addImm(0) 11534 .addReg(BufReg); 11535 } 11536 MIB.cloneMemRefs(MI); 11537 11538 // Reload IP 11539 if (PVT == MVT::i64) { 11540 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11541 .addImm(LabelOffset) 11542 .addReg(BufReg); 11543 } else { 11544 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11545 .addImm(LabelOffset) 11546 .addReg(BufReg); 11547 } 11548 MIB.cloneMemRefs(MI); 11549 11550 // Reload SP 11551 if (PVT == MVT::i64) { 11552 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11553 .addImm(SPOffset) 11554 .addReg(BufReg); 11555 } else { 11556 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11557 .addImm(SPOffset) 11558 .addReg(BufReg); 11559 } 11560 MIB.cloneMemRefs(MI); 11561 11562 // Reload BP 11563 if (PVT == MVT::i64) { 11564 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11565 .addImm(BPOffset) 11566 .addReg(BufReg); 11567 } else { 11568 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11569 .addImm(BPOffset) 11570 .addReg(BufReg); 11571 } 11572 MIB.cloneMemRefs(MI); 11573 11574 // Reload TOC 11575 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11576 setUsesTOCBasePtr(*MBB->getParent()); 11577 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11578 .addImm(TOCOffset) 11579 .addReg(BufReg) 11580 .cloneMemRefs(MI); 11581 } 11582 11583 // Jump 11584 BuildMI(*MBB, MI, DL, 11585 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11586 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11587 11588 MI.eraseFromParent(); 11589 return MBB; 11590 } 11591 11592 MachineBasicBlock * 11593 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11594 MachineBasicBlock *BB) const { 11595 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11596 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11597 if (Subtarget.is64BitELFABI() && 11598 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11599 !Subtarget.isUsingPCRelativeCalls()) { 11600 // Call lowering should have added an r2 operand to indicate a dependence 11601 // on the TOC base pointer value. It can't however, because there is no 11602 // way to mark the dependence as implicit there, and so the stackmap code 11603 // will confuse it with a regular operand. Instead, add the dependence 11604 // here. 11605 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11606 } 11607 11608 return emitPatchPoint(MI, BB); 11609 } 11610 11611 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11612 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11613 return emitEHSjLjSetJmp(MI, BB); 11614 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11615 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11616 return emitEHSjLjLongJmp(MI, BB); 11617 } 11618 11619 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11620 11621 // To "insert" these instructions we actually have to insert their 11622 // control-flow patterns. 11623 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11624 MachineFunction::iterator It = ++BB->getIterator(); 11625 11626 MachineFunction *F = BB->getParent(); 11627 11628 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11629 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11630 MI.getOpcode() == PPC::SELECT_I8) { 11631 SmallVector<MachineOperand, 2> Cond; 11632 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11633 MI.getOpcode() == PPC::SELECT_CC_I8) 11634 Cond.push_back(MI.getOperand(4)); 11635 else 11636 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11637 Cond.push_back(MI.getOperand(1)); 11638 11639 DebugLoc dl = MI.getDebugLoc(); 11640 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11641 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11642 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11643 MI.getOpcode() == PPC::SELECT_CC_F8 || 11644 MI.getOpcode() == PPC::SELECT_CC_F16 || 11645 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11646 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11647 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11648 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11649 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11650 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11651 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11652 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11653 MI.getOpcode() == PPC::SELECT_CC_SPE || 11654 MI.getOpcode() == PPC::SELECT_F4 || 11655 MI.getOpcode() == PPC::SELECT_F8 || 11656 MI.getOpcode() == PPC::SELECT_F16 || 11657 MI.getOpcode() == PPC::SELECT_QFRC || 11658 MI.getOpcode() == PPC::SELECT_QSRC || 11659 MI.getOpcode() == PPC::SELECT_QBRC || 11660 MI.getOpcode() == PPC::SELECT_SPE || 11661 MI.getOpcode() == PPC::SELECT_SPE4 || 11662 MI.getOpcode() == PPC::SELECT_VRRC || 11663 MI.getOpcode() == PPC::SELECT_VSFRC || 11664 MI.getOpcode() == PPC::SELECT_VSSRC || 11665 MI.getOpcode() == PPC::SELECT_VSRC) { 11666 // The incoming instruction knows the destination vreg to set, the 11667 // condition code register to branch on, the true/false values to 11668 // select between, and a branch opcode to use. 11669 11670 // thisMBB: 11671 // ... 11672 // TrueVal = ... 11673 // cmpTY ccX, r1, r2 11674 // bCC copy1MBB 11675 // fallthrough --> copy0MBB 11676 MachineBasicBlock *thisMBB = BB; 11677 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11678 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11679 DebugLoc dl = MI.getDebugLoc(); 11680 F->insert(It, copy0MBB); 11681 F->insert(It, sinkMBB); 11682 11683 // Transfer the remainder of BB and its successor edges to sinkMBB. 11684 sinkMBB->splice(sinkMBB->begin(), BB, 11685 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11686 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11687 11688 // Next, add the true and fallthrough blocks as its successors. 11689 BB->addSuccessor(copy0MBB); 11690 BB->addSuccessor(sinkMBB); 11691 11692 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11693 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11694 MI.getOpcode() == PPC::SELECT_F16 || 11695 MI.getOpcode() == PPC::SELECT_SPE4 || 11696 MI.getOpcode() == PPC::SELECT_SPE || 11697 MI.getOpcode() == PPC::SELECT_QFRC || 11698 MI.getOpcode() == PPC::SELECT_QSRC || 11699 MI.getOpcode() == PPC::SELECT_QBRC || 11700 MI.getOpcode() == PPC::SELECT_VRRC || 11701 MI.getOpcode() == PPC::SELECT_VSFRC || 11702 MI.getOpcode() == PPC::SELECT_VSSRC || 11703 MI.getOpcode() == PPC::SELECT_VSRC) { 11704 BuildMI(BB, dl, TII->get(PPC::BC)) 11705 .addReg(MI.getOperand(1).getReg()) 11706 .addMBB(sinkMBB); 11707 } else { 11708 unsigned SelectPred = MI.getOperand(4).getImm(); 11709 BuildMI(BB, dl, TII->get(PPC::BCC)) 11710 .addImm(SelectPred) 11711 .addReg(MI.getOperand(1).getReg()) 11712 .addMBB(sinkMBB); 11713 } 11714 11715 // copy0MBB: 11716 // %FalseValue = ... 11717 // # fallthrough to sinkMBB 11718 BB = copy0MBB; 11719 11720 // Update machine-CFG edges 11721 BB->addSuccessor(sinkMBB); 11722 11723 // sinkMBB: 11724 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11725 // ... 11726 BB = sinkMBB; 11727 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11728 .addReg(MI.getOperand(3).getReg()) 11729 .addMBB(copy0MBB) 11730 .addReg(MI.getOperand(2).getReg()) 11731 .addMBB(thisMBB); 11732 } else if (MI.getOpcode() == PPC::ReadTB) { 11733 // To read the 64-bit time-base register on a 32-bit target, we read the 11734 // two halves. Should the counter have wrapped while it was being read, we 11735 // need to try again. 11736 // ... 11737 // readLoop: 11738 // mfspr Rx,TBU # load from TBU 11739 // mfspr Ry,TB # load from TB 11740 // mfspr Rz,TBU # load from TBU 11741 // cmpw crX,Rx,Rz # check if 'old'='new' 11742 // bne readLoop # branch if they're not equal 11743 // ... 11744 11745 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11746 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11747 DebugLoc dl = MI.getDebugLoc(); 11748 F->insert(It, readMBB); 11749 F->insert(It, sinkMBB); 11750 11751 // Transfer the remainder of BB and its successor edges to sinkMBB. 11752 sinkMBB->splice(sinkMBB->begin(), BB, 11753 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11754 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11755 11756 BB->addSuccessor(readMBB); 11757 BB = readMBB; 11758 11759 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11760 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11761 Register LoReg = MI.getOperand(0).getReg(); 11762 Register HiReg = MI.getOperand(1).getReg(); 11763 11764 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11765 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11766 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11767 11768 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11769 11770 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11771 .addReg(HiReg) 11772 .addReg(ReadAgainReg); 11773 BuildMI(BB, dl, TII->get(PPC::BCC)) 11774 .addImm(PPC::PRED_NE) 11775 .addReg(CmpReg) 11776 .addMBB(readMBB); 11777 11778 BB->addSuccessor(readMBB); 11779 BB->addSuccessor(sinkMBB); 11780 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11781 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11782 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11783 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11784 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11785 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11786 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11787 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11788 11789 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11790 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11791 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11792 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11793 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11794 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11795 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11796 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11797 11798 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11799 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11800 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11801 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11802 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11803 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11804 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11805 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11806 11807 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11808 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11809 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11810 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11811 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11812 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11813 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11814 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11815 11816 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11817 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11818 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11819 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11820 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11821 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11822 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11823 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11824 11825 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11826 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11827 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11828 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11829 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11830 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11831 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11832 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11833 11834 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11835 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11836 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11837 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11838 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11839 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11840 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11841 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11842 11843 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11844 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11845 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11846 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11847 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11848 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11849 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11850 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11851 11852 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11853 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11854 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11855 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11856 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11857 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11858 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11859 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11860 11861 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11862 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11863 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11864 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11865 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11866 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11867 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11868 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11869 11870 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11871 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11872 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11873 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11874 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11875 BB = EmitAtomicBinary(MI, BB, 4, 0); 11876 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11877 BB = EmitAtomicBinary(MI, BB, 8, 0); 11878 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11879 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11880 (Subtarget.hasPartwordAtomics() && 11881 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11882 (Subtarget.hasPartwordAtomics() && 11883 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11884 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11885 11886 auto LoadMnemonic = PPC::LDARX; 11887 auto StoreMnemonic = PPC::STDCX; 11888 switch (MI.getOpcode()) { 11889 default: 11890 llvm_unreachable("Compare and swap of unknown size"); 11891 case PPC::ATOMIC_CMP_SWAP_I8: 11892 LoadMnemonic = PPC::LBARX; 11893 StoreMnemonic = PPC::STBCX; 11894 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11895 break; 11896 case PPC::ATOMIC_CMP_SWAP_I16: 11897 LoadMnemonic = PPC::LHARX; 11898 StoreMnemonic = PPC::STHCX; 11899 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11900 break; 11901 case PPC::ATOMIC_CMP_SWAP_I32: 11902 LoadMnemonic = PPC::LWARX; 11903 StoreMnemonic = PPC::STWCX; 11904 break; 11905 case PPC::ATOMIC_CMP_SWAP_I64: 11906 LoadMnemonic = PPC::LDARX; 11907 StoreMnemonic = PPC::STDCX; 11908 break; 11909 } 11910 Register dest = MI.getOperand(0).getReg(); 11911 Register ptrA = MI.getOperand(1).getReg(); 11912 Register ptrB = MI.getOperand(2).getReg(); 11913 Register oldval = MI.getOperand(3).getReg(); 11914 Register newval = MI.getOperand(4).getReg(); 11915 DebugLoc dl = MI.getDebugLoc(); 11916 11917 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11918 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11919 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11920 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11921 F->insert(It, loop1MBB); 11922 F->insert(It, loop2MBB); 11923 F->insert(It, midMBB); 11924 F->insert(It, exitMBB); 11925 exitMBB->splice(exitMBB->begin(), BB, 11926 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11927 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11928 11929 // thisMBB: 11930 // ... 11931 // fallthrough --> loopMBB 11932 BB->addSuccessor(loop1MBB); 11933 11934 // loop1MBB: 11935 // l[bhwd]arx dest, ptr 11936 // cmp[wd] dest, oldval 11937 // bne- midMBB 11938 // loop2MBB: 11939 // st[bhwd]cx. newval, ptr 11940 // bne- loopMBB 11941 // b exitBB 11942 // midMBB: 11943 // st[bhwd]cx. dest, ptr 11944 // exitBB: 11945 BB = loop1MBB; 11946 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11947 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11948 .addReg(oldval) 11949 .addReg(dest); 11950 BuildMI(BB, dl, TII->get(PPC::BCC)) 11951 .addImm(PPC::PRED_NE) 11952 .addReg(PPC::CR0) 11953 .addMBB(midMBB); 11954 BB->addSuccessor(loop2MBB); 11955 BB->addSuccessor(midMBB); 11956 11957 BB = loop2MBB; 11958 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11959 .addReg(newval) 11960 .addReg(ptrA) 11961 .addReg(ptrB); 11962 BuildMI(BB, dl, TII->get(PPC::BCC)) 11963 .addImm(PPC::PRED_NE) 11964 .addReg(PPC::CR0) 11965 .addMBB(loop1MBB); 11966 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11967 BB->addSuccessor(loop1MBB); 11968 BB->addSuccessor(exitMBB); 11969 11970 BB = midMBB; 11971 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11972 .addReg(dest) 11973 .addReg(ptrA) 11974 .addReg(ptrB); 11975 BB->addSuccessor(exitMBB); 11976 11977 // exitMBB: 11978 // ... 11979 BB = exitMBB; 11980 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11981 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11982 // We must use 64-bit registers for addresses when targeting 64-bit, 11983 // since we're actually doing arithmetic on them. Other registers 11984 // can be 32-bit. 11985 bool is64bit = Subtarget.isPPC64(); 11986 bool isLittleEndian = Subtarget.isLittleEndian(); 11987 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11988 11989 Register dest = MI.getOperand(0).getReg(); 11990 Register ptrA = MI.getOperand(1).getReg(); 11991 Register ptrB = MI.getOperand(2).getReg(); 11992 Register oldval = MI.getOperand(3).getReg(); 11993 Register newval = MI.getOperand(4).getReg(); 11994 DebugLoc dl = MI.getDebugLoc(); 11995 11996 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11997 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11998 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11999 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12000 F->insert(It, loop1MBB); 12001 F->insert(It, loop2MBB); 12002 F->insert(It, midMBB); 12003 F->insert(It, exitMBB); 12004 exitMBB->splice(exitMBB->begin(), BB, 12005 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12006 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12007 12008 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12009 const TargetRegisterClass *RC = 12010 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12011 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12012 12013 Register PtrReg = RegInfo.createVirtualRegister(RC); 12014 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12015 Register ShiftReg = 12016 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12017 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12018 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12019 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12020 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12021 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12022 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12023 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12024 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12025 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12026 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12027 Register Ptr1Reg; 12028 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12029 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12030 // thisMBB: 12031 // ... 12032 // fallthrough --> loopMBB 12033 BB->addSuccessor(loop1MBB); 12034 12035 // The 4-byte load must be aligned, while a char or short may be 12036 // anywhere in the word. Hence all this nasty bookkeeping code. 12037 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12038 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12039 // xori shift, shift1, 24 [16] 12040 // rlwinm ptr, ptr1, 0, 0, 29 12041 // slw newval2, newval, shift 12042 // slw oldval2, oldval,shift 12043 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12044 // slw mask, mask2, shift 12045 // and newval3, newval2, mask 12046 // and oldval3, oldval2, mask 12047 // loop1MBB: 12048 // lwarx tmpDest, ptr 12049 // and tmp, tmpDest, mask 12050 // cmpw tmp, oldval3 12051 // bne- midMBB 12052 // loop2MBB: 12053 // andc tmp2, tmpDest, mask 12054 // or tmp4, tmp2, newval3 12055 // stwcx. tmp4, ptr 12056 // bne- loop1MBB 12057 // b exitBB 12058 // midMBB: 12059 // stwcx. tmpDest, ptr 12060 // exitBB: 12061 // srw dest, tmpDest, shift 12062 if (ptrA != ZeroReg) { 12063 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12064 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12065 .addReg(ptrA) 12066 .addReg(ptrB); 12067 } else { 12068 Ptr1Reg = ptrB; 12069 } 12070 12071 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12072 // mode. 12073 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12074 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12075 .addImm(3) 12076 .addImm(27) 12077 .addImm(is8bit ? 28 : 27); 12078 if (!isLittleEndian) 12079 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12080 .addReg(Shift1Reg) 12081 .addImm(is8bit ? 24 : 16); 12082 if (is64bit) 12083 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12084 .addReg(Ptr1Reg) 12085 .addImm(0) 12086 .addImm(61); 12087 else 12088 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12089 .addReg(Ptr1Reg) 12090 .addImm(0) 12091 .addImm(0) 12092 .addImm(29); 12093 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12094 .addReg(newval) 12095 .addReg(ShiftReg); 12096 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12097 .addReg(oldval) 12098 .addReg(ShiftReg); 12099 if (is8bit) 12100 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12101 else { 12102 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12103 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12104 .addReg(Mask3Reg) 12105 .addImm(65535); 12106 } 12107 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12108 .addReg(Mask2Reg) 12109 .addReg(ShiftReg); 12110 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12111 .addReg(NewVal2Reg) 12112 .addReg(MaskReg); 12113 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12114 .addReg(OldVal2Reg) 12115 .addReg(MaskReg); 12116 12117 BB = loop1MBB; 12118 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12119 .addReg(ZeroReg) 12120 .addReg(PtrReg); 12121 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12122 .addReg(TmpDestReg) 12123 .addReg(MaskReg); 12124 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12125 .addReg(TmpReg) 12126 .addReg(OldVal3Reg); 12127 BuildMI(BB, dl, TII->get(PPC::BCC)) 12128 .addImm(PPC::PRED_NE) 12129 .addReg(PPC::CR0) 12130 .addMBB(midMBB); 12131 BB->addSuccessor(loop2MBB); 12132 BB->addSuccessor(midMBB); 12133 12134 BB = loop2MBB; 12135 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12136 .addReg(TmpDestReg) 12137 .addReg(MaskReg); 12138 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12139 .addReg(Tmp2Reg) 12140 .addReg(NewVal3Reg); 12141 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12142 .addReg(Tmp4Reg) 12143 .addReg(ZeroReg) 12144 .addReg(PtrReg); 12145 BuildMI(BB, dl, TII->get(PPC::BCC)) 12146 .addImm(PPC::PRED_NE) 12147 .addReg(PPC::CR0) 12148 .addMBB(loop1MBB); 12149 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12150 BB->addSuccessor(loop1MBB); 12151 BB->addSuccessor(exitMBB); 12152 12153 BB = midMBB; 12154 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12155 .addReg(TmpDestReg) 12156 .addReg(ZeroReg) 12157 .addReg(PtrReg); 12158 BB->addSuccessor(exitMBB); 12159 12160 // exitMBB: 12161 // ... 12162 BB = exitMBB; 12163 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12164 .addReg(TmpReg) 12165 .addReg(ShiftReg); 12166 } else if (MI.getOpcode() == PPC::FADDrtz) { 12167 // This pseudo performs an FADD with rounding mode temporarily forced 12168 // to round-to-zero. We emit this via custom inserter since the FPSCR 12169 // is not modeled at the SelectionDAG level. 12170 Register Dest = MI.getOperand(0).getReg(); 12171 Register Src1 = MI.getOperand(1).getReg(); 12172 Register Src2 = MI.getOperand(2).getReg(); 12173 DebugLoc dl = MI.getDebugLoc(); 12174 12175 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12176 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12177 12178 // Save FPSCR value. 12179 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12180 12181 // Set rounding mode to round-to-zero. 12182 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 12183 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 12184 12185 // Perform addition. 12186 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 12187 12188 // Restore FPSCR value. 12189 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12190 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12191 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12192 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12193 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12194 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12195 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12196 ? PPC::ANDI8_rec 12197 : PPC::ANDI_rec; 12198 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12199 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12200 12201 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12202 Register Dest = RegInfo.createVirtualRegister( 12203 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12204 12205 DebugLoc Dl = MI.getDebugLoc(); 12206 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12207 .addReg(MI.getOperand(1).getReg()) 12208 .addImm(1); 12209 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12210 MI.getOperand(0).getReg()) 12211 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12212 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12213 DebugLoc Dl = MI.getDebugLoc(); 12214 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12215 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12216 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12217 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12218 MI.getOperand(0).getReg()) 12219 .addReg(CRReg); 12220 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12221 DebugLoc Dl = MI.getDebugLoc(); 12222 unsigned Imm = MI.getOperand(1).getImm(); 12223 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12224 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12225 MI.getOperand(0).getReg()) 12226 .addReg(PPC::CR0EQ); 12227 } else if (MI.getOpcode() == PPC::SETRNDi) { 12228 DebugLoc dl = MI.getDebugLoc(); 12229 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12230 12231 // Save FPSCR value. 12232 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12233 12234 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12235 // the following settings: 12236 // 00 Round to nearest 12237 // 01 Round to 0 12238 // 10 Round to +inf 12239 // 11 Round to -inf 12240 12241 // When the operand is immediate, using the two least significant bits of 12242 // the immediate to set the bits 62:63 of FPSCR. 12243 unsigned Mode = MI.getOperand(1).getImm(); 12244 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12245 .addImm(31); 12246 12247 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12248 .addImm(30); 12249 } else if (MI.getOpcode() == PPC::SETRND) { 12250 DebugLoc dl = MI.getDebugLoc(); 12251 12252 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12253 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12254 // If the target doesn't have DirectMove, we should use stack to do the 12255 // conversion, because the target doesn't have the instructions like mtvsrd 12256 // or mfvsrd to do this conversion directly. 12257 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12258 if (Subtarget.hasDirectMove()) { 12259 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12260 .addReg(SrcReg); 12261 } else { 12262 // Use stack to do the register copy. 12263 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12264 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12265 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12266 if (RC == &PPC::F8RCRegClass) { 12267 // Copy register from F8RCRegClass to G8RCRegclass. 12268 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12269 "Unsupported RegClass."); 12270 12271 StoreOp = PPC::STFD; 12272 LoadOp = PPC::LD; 12273 } else { 12274 // Copy register from G8RCRegClass to F8RCRegclass. 12275 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12276 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12277 "Unsupported RegClass."); 12278 } 12279 12280 MachineFrameInfo &MFI = F->getFrameInfo(); 12281 int FrameIdx = MFI.CreateStackObject(8, 8, false); 12282 12283 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12284 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12285 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12286 MFI.getObjectAlign(FrameIdx)); 12287 12288 // Store the SrcReg into the stack. 12289 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12290 .addReg(SrcReg) 12291 .addImm(0) 12292 .addFrameIndex(FrameIdx) 12293 .addMemOperand(MMOStore); 12294 12295 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12296 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12297 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12298 MFI.getObjectAlign(FrameIdx)); 12299 12300 // Load from the stack where SrcReg is stored, and save to DestReg, 12301 // so we have done the RegClass conversion from RegClass::SrcReg to 12302 // RegClass::DestReg. 12303 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12304 .addImm(0) 12305 .addFrameIndex(FrameIdx) 12306 .addMemOperand(MMOLoad); 12307 } 12308 }; 12309 12310 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12311 12312 // Save FPSCR value. 12313 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12314 12315 // When the operand is gprc register, use two least significant bits of the 12316 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12317 // 12318 // copy OldFPSCRTmpReg, OldFPSCRReg 12319 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12320 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12321 // copy NewFPSCRReg, NewFPSCRTmpReg 12322 // mtfsf 255, NewFPSCRReg 12323 MachineOperand SrcOp = MI.getOperand(1); 12324 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12325 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12326 12327 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12328 12329 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12330 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12331 12332 // The first operand of INSERT_SUBREG should be a register which has 12333 // subregisters, we only care about its RegClass, so we should use an 12334 // IMPLICIT_DEF register. 12335 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12336 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12337 .addReg(ImDefReg) 12338 .add(SrcOp) 12339 .addImm(1); 12340 12341 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12342 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12343 .addReg(OldFPSCRTmpReg) 12344 .addReg(ExtSrcReg) 12345 .addImm(0) 12346 .addImm(62); 12347 12348 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12349 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12350 12351 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12352 // bits of FPSCR. 12353 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12354 .addImm(255) 12355 .addReg(NewFPSCRReg) 12356 .addImm(0) 12357 .addImm(0); 12358 } else { 12359 llvm_unreachable("Unexpected instr type to insert"); 12360 } 12361 12362 MI.eraseFromParent(); // The pseudo instruction is gone now. 12363 return BB; 12364 } 12365 12366 //===----------------------------------------------------------------------===// 12367 // Target Optimization Hooks 12368 //===----------------------------------------------------------------------===// 12369 12370 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12371 // For the estimates, convergence is quadratic, so we essentially double the 12372 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12373 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12374 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12375 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12376 if (VT.getScalarType() == MVT::f64) 12377 RefinementSteps++; 12378 return RefinementSteps; 12379 } 12380 12381 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12382 int Enabled, int &RefinementSteps, 12383 bool &UseOneConstNR, 12384 bool Reciprocal) const { 12385 EVT VT = Operand.getValueType(); 12386 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12387 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12388 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12389 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12390 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12391 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12392 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12393 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12394 12395 // The Newton-Raphson computation with a single constant does not provide 12396 // enough accuracy on some CPUs. 12397 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12398 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12399 } 12400 return SDValue(); 12401 } 12402 12403 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12404 int Enabled, 12405 int &RefinementSteps) const { 12406 EVT VT = Operand.getValueType(); 12407 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12408 (VT == MVT::f64 && Subtarget.hasFRE()) || 12409 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12410 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12411 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12412 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12413 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12414 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12415 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12416 } 12417 return SDValue(); 12418 } 12419 12420 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12421 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12422 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12423 // enabled for division), this functionality is redundant with the default 12424 // combiner logic (once the division -> reciprocal/multiply transformation 12425 // has taken place). As a result, this matters more for older cores than for 12426 // newer ones. 12427 12428 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12429 // reciprocal if there are two or more FDIVs (for embedded cores with only 12430 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12431 switch (Subtarget.getCPUDirective()) { 12432 default: 12433 return 3; 12434 case PPC::DIR_440: 12435 case PPC::DIR_A2: 12436 case PPC::DIR_E500: 12437 case PPC::DIR_E500mc: 12438 case PPC::DIR_E5500: 12439 return 2; 12440 } 12441 } 12442 12443 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12444 // collapsed, and so we need to look through chains of them. 12445 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12446 int64_t& Offset, SelectionDAG &DAG) { 12447 if (DAG.isBaseWithConstantOffset(Loc)) { 12448 Base = Loc.getOperand(0); 12449 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12450 12451 // The base might itself be a base plus an offset, and if so, accumulate 12452 // that as well. 12453 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12454 } 12455 } 12456 12457 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12458 unsigned Bytes, int Dist, 12459 SelectionDAG &DAG) { 12460 if (VT.getSizeInBits() / 8 != Bytes) 12461 return false; 12462 12463 SDValue BaseLoc = Base->getBasePtr(); 12464 if (Loc.getOpcode() == ISD::FrameIndex) { 12465 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12466 return false; 12467 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12468 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12469 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12470 int FS = MFI.getObjectSize(FI); 12471 int BFS = MFI.getObjectSize(BFI); 12472 if (FS != BFS || FS != (int)Bytes) return false; 12473 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12474 } 12475 12476 SDValue Base1 = Loc, Base2 = BaseLoc; 12477 int64_t Offset1 = 0, Offset2 = 0; 12478 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12479 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12480 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12481 return true; 12482 12483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12484 const GlobalValue *GV1 = nullptr; 12485 const GlobalValue *GV2 = nullptr; 12486 Offset1 = 0; 12487 Offset2 = 0; 12488 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12489 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12490 if (isGA1 && isGA2 && GV1 == GV2) 12491 return Offset1 == (Offset2 + Dist*Bytes); 12492 return false; 12493 } 12494 12495 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12496 // not enforce equality of the chain operands. 12497 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12498 unsigned Bytes, int Dist, 12499 SelectionDAG &DAG) { 12500 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12501 EVT VT = LS->getMemoryVT(); 12502 SDValue Loc = LS->getBasePtr(); 12503 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12504 } 12505 12506 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12507 EVT VT; 12508 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12509 default: return false; 12510 case Intrinsic::ppc_qpx_qvlfd: 12511 case Intrinsic::ppc_qpx_qvlfda: 12512 VT = MVT::v4f64; 12513 break; 12514 case Intrinsic::ppc_qpx_qvlfs: 12515 case Intrinsic::ppc_qpx_qvlfsa: 12516 VT = MVT::v4f32; 12517 break; 12518 case Intrinsic::ppc_qpx_qvlfcd: 12519 case Intrinsic::ppc_qpx_qvlfcda: 12520 VT = MVT::v2f64; 12521 break; 12522 case Intrinsic::ppc_qpx_qvlfcs: 12523 case Intrinsic::ppc_qpx_qvlfcsa: 12524 VT = MVT::v2f32; 12525 break; 12526 case Intrinsic::ppc_qpx_qvlfiwa: 12527 case Intrinsic::ppc_qpx_qvlfiwz: 12528 case Intrinsic::ppc_altivec_lvx: 12529 case Intrinsic::ppc_altivec_lvxl: 12530 case Intrinsic::ppc_vsx_lxvw4x: 12531 case Intrinsic::ppc_vsx_lxvw4x_be: 12532 VT = MVT::v4i32; 12533 break; 12534 case Intrinsic::ppc_vsx_lxvd2x: 12535 case Intrinsic::ppc_vsx_lxvd2x_be: 12536 VT = MVT::v2f64; 12537 break; 12538 case Intrinsic::ppc_altivec_lvebx: 12539 VT = MVT::i8; 12540 break; 12541 case Intrinsic::ppc_altivec_lvehx: 12542 VT = MVT::i16; 12543 break; 12544 case Intrinsic::ppc_altivec_lvewx: 12545 VT = MVT::i32; 12546 break; 12547 } 12548 12549 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12550 } 12551 12552 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12553 EVT VT; 12554 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12555 default: return false; 12556 case Intrinsic::ppc_qpx_qvstfd: 12557 case Intrinsic::ppc_qpx_qvstfda: 12558 VT = MVT::v4f64; 12559 break; 12560 case Intrinsic::ppc_qpx_qvstfs: 12561 case Intrinsic::ppc_qpx_qvstfsa: 12562 VT = MVT::v4f32; 12563 break; 12564 case Intrinsic::ppc_qpx_qvstfcd: 12565 case Intrinsic::ppc_qpx_qvstfcda: 12566 VT = MVT::v2f64; 12567 break; 12568 case Intrinsic::ppc_qpx_qvstfcs: 12569 case Intrinsic::ppc_qpx_qvstfcsa: 12570 VT = MVT::v2f32; 12571 break; 12572 case Intrinsic::ppc_qpx_qvstfiw: 12573 case Intrinsic::ppc_qpx_qvstfiwa: 12574 case Intrinsic::ppc_altivec_stvx: 12575 case Intrinsic::ppc_altivec_stvxl: 12576 case Intrinsic::ppc_vsx_stxvw4x: 12577 VT = MVT::v4i32; 12578 break; 12579 case Intrinsic::ppc_vsx_stxvd2x: 12580 VT = MVT::v2f64; 12581 break; 12582 case Intrinsic::ppc_vsx_stxvw4x_be: 12583 VT = MVT::v4i32; 12584 break; 12585 case Intrinsic::ppc_vsx_stxvd2x_be: 12586 VT = MVT::v2f64; 12587 break; 12588 case Intrinsic::ppc_altivec_stvebx: 12589 VT = MVT::i8; 12590 break; 12591 case Intrinsic::ppc_altivec_stvehx: 12592 VT = MVT::i16; 12593 break; 12594 case Intrinsic::ppc_altivec_stvewx: 12595 VT = MVT::i32; 12596 break; 12597 } 12598 12599 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12600 } 12601 12602 return false; 12603 } 12604 12605 // Return true is there is a nearyby consecutive load to the one provided 12606 // (regardless of alignment). We search up and down the chain, looking though 12607 // token factors and other loads (but nothing else). As a result, a true result 12608 // indicates that it is safe to create a new consecutive load adjacent to the 12609 // load provided. 12610 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12611 SDValue Chain = LD->getChain(); 12612 EVT VT = LD->getMemoryVT(); 12613 12614 SmallSet<SDNode *, 16> LoadRoots; 12615 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12616 SmallSet<SDNode *, 16> Visited; 12617 12618 // First, search up the chain, branching to follow all token-factor operands. 12619 // If we find a consecutive load, then we're done, otherwise, record all 12620 // nodes just above the top-level loads and token factors. 12621 while (!Queue.empty()) { 12622 SDNode *ChainNext = Queue.pop_back_val(); 12623 if (!Visited.insert(ChainNext).second) 12624 continue; 12625 12626 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12627 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12628 return true; 12629 12630 if (!Visited.count(ChainLD->getChain().getNode())) 12631 Queue.push_back(ChainLD->getChain().getNode()); 12632 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12633 for (const SDUse &O : ChainNext->ops()) 12634 if (!Visited.count(O.getNode())) 12635 Queue.push_back(O.getNode()); 12636 } else 12637 LoadRoots.insert(ChainNext); 12638 } 12639 12640 // Second, search down the chain, starting from the top-level nodes recorded 12641 // in the first phase. These top-level nodes are the nodes just above all 12642 // loads and token factors. Starting with their uses, recursively look though 12643 // all loads (just the chain uses) and token factors to find a consecutive 12644 // load. 12645 Visited.clear(); 12646 Queue.clear(); 12647 12648 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12649 IE = LoadRoots.end(); I != IE; ++I) { 12650 Queue.push_back(*I); 12651 12652 while (!Queue.empty()) { 12653 SDNode *LoadRoot = Queue.pop_back_val(); 12654 if (!Visited.insert(LoadRoot).second) 12655 continue; 12656 12657 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12658 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12659 return true; 12660 12661 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12662 UE = LoadRoot->use_end(); UI != UE; ++UI) 12663 if (((isa<MemSDNode>(*UI) && 12664 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12665 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12666 Queue.push_back(*UI); 12667 } 12668 } 12669 12670 return false; 12671 } 12672 12673 /// This function is called when we have proved that a SETCC node can be replaced 12674 /// by subtraction (and other supporting instructions) so that the result of 12675 /// comparison is kept in a GPR instead of CR. This function is purely for 12676 /// codegen purposes and has some flags to guide the codegen process. 12677 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12678 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12679 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12680 12681 // Zero extend the operands to the largest legal integer. Originally, they 12682 // must be of a strictly smaller size. 12683 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12684 DAG.getConstant(Size, DL, MVT::i32)); 12685 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12686 DAG.getConstant(Size, DL, MVT::i32)); 12687 12688 // Swap if needed. Depends on the condition code. 12689 if (Swap) 12690 std::swap(Op0, Op1); 12691 12692 // Subtract extended integers. 12693 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12694 12695 // Move the sign bit to the least significant position and zero out the rest. 12696 // Now the least significant bit carries the result of original comparison. 12697 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12698 DAG.getConstant(Size - 1, DL, MVT::i32)); 12699 auto Final = Shifted; 12700 12701 // Complement the result if needed. Based on the condition code. 12702 if (Complement) 12703 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12704 DAG.getConstant(1, DL, MVT::i64)); 12705 12706 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12707 } 12708 12709 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12710 DAGCombinerInfo &DCI) const { 12711 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12712 12713 SelectionDAG &DAG = DCI.DAG; 12714 SDLoc DL(N); 12715 12716 // Size of integers being compared has a critical role in the following 12717 // analysis, so we prefer to do this when all types are legal. 12718 if (!DCI.isAfterLegalizeDAG()) 12719 return SDValue(); 12720 12721 // If all users of SETCC extend its value to a legal integer type 12722 // then we replace SETCC with a subtraction 12723 for (SDNode::use_iterator UI = N->use_begin(), 12724 UE = N->use_end(); UI != UE; ++UI) { 12725 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12726 return SDValue(); 12727 } 12728 12729 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12730 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12731 12732 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12733 12734 if (OpSize < Size) { 12735 switch (CC) { 12736 default: break; 12737 case ISD::SETULT: 12738 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12739 case ISD::SETULE: 12740 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12741 case ISD::SETUGT: 12742 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12743 case ISD::SETUGE: 12744 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12745 } 12746 } 12747 12748 return SDValue(); 12749 } 12750 12751 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12752 DAGCombinerInfo &DCI) const { 12753 SelectionDAG &DAG = DCI.DAG; 12754 SDLoc dl(N); 12755 12756 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12757 // If we're tracking CR bits, we need to be careful that we don't have: 12758 // trunc(binary-ops(zext(x), zext(y))) 12759 // or 12760 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12761 // such that we're unnecessarily moving things into GPRs when it would be 12762 // better to keep them in CR bits. 12763 12764 // Note that trunc here can be an actual i1 trunc, or can be the effective 12765 // truncation that comes from a setcc or select_cc. 12766 if (N->getOpcode() == ISD::TRUNCATE && 12767 N->getValueType(0) != MVT::i1) 12768 return SDValue(); 12769 12770 if (N->getOperand(0).getValueType() != MVT::i32 && 12771 N->getOperand(0).getValueType() != MVT::i64) 12772 return SDValue(); 12773 12774 if (N->getOpcode() == ISD::SETCC || 12775 N->getOpcode() == ISD::SELECT_CC) { 12776 // If we're looking at a comparison, then we need to make sure that the 12777 // high bits (all except for the first) don't matter the result. 12778 ISD::CondCode CC = 12779 cast<CondCodeSDNode>(N->getOperand( 12780 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12781 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12782 12783 if (ISD::isSignedIntSetCC(CC)) { 12784 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12785 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12786 return SDValue(); 12787 } else if (ISD::isUnsignedIntSetCC(CC)) { 12788 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12789 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12790 !DAG.MaskedValueIsZero(N->getOperand(1), 12791 APInt::getHighBitsSet(OpBits, OpBits-1))) 12792 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12793 : SDValue()); 12794 } else { 12795 // This is neither a signed nor an unsigned comparison, just make sure 12796 // that the high bits are equal. 12797 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12798 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12799 12800 // We don't really care about what is known about the first bit (if 12801 // anything), so clear it in all masks prior to comparing them. 12802 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12803 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12804 12805 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12806 return SDValue(); 12807 } 12808 } 12809 12810 // We now know that the higher-order bits are irrelevant, we just need to 12811 // make sure that all of the intermediate operations are bit operations, and 12812 // all inputs are extensions. 12813 if (N->getOperand(0).getOpcode() != ISD::AND && 12814 N->getOperand(0).getOpcode() != ISD::OR && 12815 N->getOperand(0).getOpcode() != ISD::XOR && 12816 N->getOperand(0).getOpcode() != ISD::SELECT && 12817 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12818 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12819 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12820 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12821 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12822 return SDValue(); 12823 12824 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12825 N->getOperand(1).getOpcode() != ISD::AND && 12826 N->getOperand(1).getOpcode() != ISD::OR && 12827 N->getOperand(1).getOpcode() != ISD::XOR && 12828 N->getOperand(1).getOpcode() != ISD::SELECT && 12829 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12830 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12831 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12832 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12833 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12834 return SDValue(); 12835 12836 SmallVector<SDValue, 4> Inputs; 12837 SmallVector<SDValue, 8> BinOps, PromOps; 12838 SmallPtrSet<SDNode *, 16> Visited; 12839 12840 for (unsigned i = 0; i < 2; ++i) { 12841 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12842 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12843 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12844 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12845 isa<ConstantSDNode>(N->getOperand(i))) 12846 Inputs.push_back(N->getOperand(i)); 12847 else 12848 BinOps.push_back(N->getOperand(i)); 12849 12850 if (N->getOpcode() == ISD::TRUNCATE) 12851 break; 12852 } 12853 12854 // Visit all inputs, collect all binary operations (and, or, xor and 12855 // select) that are all fed by extensions. 12856 while (!BinOps.empty()) { 12857 SDValue BinOp = BinOps.back(); 12858 BinOps.pop_back(); 12859 12860 if (!Visited.insert(BinOp.getNode()).second) 12861 continue; 12862 12863 PromOps.push_back(BinOp); 12864 12865 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12866 // The condition of the select is not promoted. 12867 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12868 continue; 12869 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12870 continue; 12871 12872 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12873 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12874 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12875 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12876 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12877 Inputs.push_back(BinOp.getOperand(i)); 12878 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12879 BinOp.getOperand(i).getOpcode() == ISD::OR || 12880 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12881 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12882 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12883 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12884 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12885 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12886 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12887 BinOps.push_back(BinOp.getOperand(i)); 12888 } else { 12889 // We have an input that is not an extension or another binary 12890 // operation; we'll abort this transformation. 12891 return SDValue(); 12892 } 12893 } 12894 } 12895 12896 // Make sure that this is a self-contained cluster of operations (which 12897 // is not quite the same thing as saying that everything has only one 12898 // use). 12899 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12900 if (isa<ConstantSDNode>(Inputs[i])) 12901 continue; 12902 12903 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12904 UE = Inputs[i].getNode()->use_end(); 12905 UI != UE; ++UI) { 12906 SDNode *User = *UI; 12907 if (User != N && !Visited.count(User)) 12908 return SDValue(); 12909 12910 // Make sure that we're not going to promote the non-output-value 12911 // operand(s) or SELECT or SELECT_CC. 12912 // FIXME: Although we could sometimes handle this, and it does occur in 12913 // practice that one of the condition inputs to the select is also one of 12914 // the outputs, we currently can't deal with this. 12915 if (User->getOpcode() == ISD::SELECT) { 12916 if (User->getOperand(0) == Inputs[i]) 12917 return SDValue(); 12918 } else if (User->getOpcode() == ISD::SELECT_CC) { 12919 if (User->getOperand(0) == Inputs[i] || 12920 User->getOperand(1) == Inputs[i]) 12921 return SDValue(); 12922 } 12923 } 12924 } 12925 12926 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12927 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12928 UE = PromOps[i].getNode()->use_end(); 12929 UI != UE; ++UI) { 12930 SDNode *User = *UI; 12931 if (User != N && !Visited.count(User)) 12932 return SDValue(); 12933 12934 // Make sure that we're not going to promote the non-output-value 12935 // operand(s) or SELECT or SELECT_CC. 12936 // FIXME: Although we could sometimes handle this, and it does occur in 12937 // practice that one of the condition inputs to the select is also one of 12938 // the outputs, we currently can't deal with this. 12939 if (User->getOpcode() == ISD::SELECT) { 12940 if (User->getOperand(0) == PromOps[i]) 12941 return SDValue(); 12942 } else if (User->getOpcode() == ISD::SELECT_CC) { 12943 if (User->getOperand(0) == PromOps[i] || 12944 User->getOperand(1) == PromOps[i]) 12945 return SDValue(); 12946 } 12947 } 12948 } 12949 12950 // Replace all inputs with the extension operand. 12951 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12952 // Constants may have users outside the cluster of to-be-promoted nodes, 12953 // and so we need to replace those as we do the promotions. 12954 if (isa<ConstantSDNode>(Inputs[i])) 12955 continue; 12956 else 12957 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12958 } 12959 12960 std::list<HandleSDNode> PromOpHandles; 12961 for (auto &PromOp : PromOps) 12962 PromOpHandles.emplace_back(PromOp); 12963 12964 // Replace all operations (these are all the same, but have a different 12965 // (i1) return type). DAG.getNode will validate that the types of 12966 // a binary operator match, so go through the list in reverse so that 12967 // we've likely promoted both operands first. Any intermediate truncations or 12968 // extensions disappear. 12969 while (!PromOpHandles.empty()) { 12970 SDValue PromOp = PromOpHandles.back().getValue(); 12971 PromOpHandles.pop_back(); 12972 12973 if (PromOp.getOpcode() == ISD::TRUNCATE || 12974 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12975 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12976 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12977 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12978 PromOp.getOperand(0).getValueType() != MVT::i1) { 12979 // The operand is not yet ready (see comment below). 12980 PromOpHandles.emplace_front(PromOp); 12981 continue; 12982 } 12983 12984 SDValue RepValue = PromOp.getOperand(0); 12985 if (isa<ConstantSDNode>(RepValue)) 12986 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12987 12988 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12989 continue; 12990 } 12991 12992 unsigned C; 12993 switch (PromOp.getOpcode()) { 12994 default: C = 0; break; 12995 case ISD::SELECT: C = 1; break; 12996 case ISD::SELECT_CC: C = 2; break; 12997 } 12998 12999 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13000 PromOp.getOperand(C).getValueType() != MVT::i1) || 13001 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13002 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13003 // The to-be-promoted operands of this node have not yet been 13004 // promoted (this should be rare because we're going through the 13005 // list backward, but if one of the operands has several users in 13006 // this cluster of to-be-promoted nodes, it is possible). 13007 PromOpHandles.emplace_front(PromOp); 13008 continue; 13009 } 13010 13011 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13012 PromOp.getNode()->op_end()); 13013 13014 // If there are any constant inputs, make sure they're replaced now. 13015 for (unsigned i = 0; i < 2; ++i) 13016 if (isa<ConstantSDNode>(Ops[C+i])) 13017 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13018 13019 DAG.ReplaceAllUsesOfValueWith(PromOp, 13020 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13021 } 13022 13023 // Now we're left with the initial truncation itself. 13024 if (N->getOpcode() == ISD::TRUNCATE) 13025 return N->getOperand(0); 13026 13027 // Otherwise, this is a comparison. The operands to be compared have just 13028 // changed type (to i1), but everything else is the same. 13029 return SDValue(N, 0); 13030 } 13031 13032 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13033 DAGCombinerInfo &DCI) const { 13034 SelectionDAG &DAG = DCI.DAG; 13035 SDLoc dl(N); 13036 13037 // If we're tracking CR bits, we need to be careful that we don't have: 13038 // zext(binary-ops(trunc(x), trunc(y))) 13039 // or 13040 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13041 // such that we're unnecessarily moving things into CR bits that can more 13042 // efficiently stay in GPRs. Note that if we're not certain that the high 13043 // bits are set as required by the final extension, we still may need to do 13044 // some masking to get the proper behavior. 13045 13046 // This same functionality is important on PPC64 when dealing with 13047 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13048 // the return values of functions. Because it is so similar, it is handled 13049 // here as well. 13050 13051 if (N->getValueType(0) != MVT::i32 && 13052 N->getValueType(0) != MVT::i64) 13053 return SDValue(); 13054 13055 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13056 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13057 return SDValue(); 13058 13059 if (N->getOperand(0).getOpcode() != ISD::AND && 13060 N->getOperand(0).getOpcode() != ISD::OR && 13061 N->getOperand(0).getOpcode() != ISD::XOR && 13062 N->getOperand(0).getOpcode() != ISD::SELECT && 13063 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13064 return SDValue(); 13065 13066 SmallVector<SDValue, 4> Inputs; 13067 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13068 SmallPtrSet<SDNode *, 16> Visited; 13069 13070 // Visit all inputs, collect all binary operations (and, or, xor and 13071 // select) that are all fed by truncations. 13072 while (!BinOps.empty()) { 13073 SDValue BinOp = BinOps.back(); 13074 BinOps.pop_back(); 13075 13076 if (!Visited.insert(BinOp.getNode()).second) 13077 continue; 13078 13079 PromOps.push_back(BinOp); 13080 13081 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13082 // The condition of the select is not promoted. 13083 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13084 continue; 13085 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13086 continue; 13087 13088 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13089 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13090 Inputs.push_back(BinOp.getOperand(i)); 13091 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13092 BinOp.getOperand(i).getOpcode() == ISD::OR || 13093 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13094 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13095 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13096 BinOps.push_back(BinOp.getOperand(i)); 13097 } else { 13098 // We have an input that is not a truncation or another binary 13099 // operation; we'll abort this transformation. 13100 return SDValue(); 13101 } 13102 } 13103 } 13104 13105 // The operands of a select that must be truncated when the select is 13106 // promoted because the operand is actually part of the to-be-promoted set. 13107 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13108 13109 // Make sure that this is a self-contained cluster of operations (which 13110 // is not quite the same thing as saying that everything has only one 13111 // use). 13112 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13113 if (isa<ConstantSDNode>(Inputs[i])) 13114 continue; 13115 13116 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13117 UE = Inputs[i].getNode()->use_end(); 13118 UI != UE; ++UI) { 13119 SDNode *User = *UI; 13120 if (User != N && !Visited.count(User)) 13121 return SDValue(); 13122 13123 // If we're going to promote the non-output-value operand(s) or SELECT or 13124 // SELECT_CC, record them for truncation. 13125 if (User->getOpcode() == ISD::SELECT) { 13126 if (User->getOperand(0) == Inputs[i]) 13127 SelectTruncOp[0].insert(std::make_pair(User, 13128 User->getOperand(0).getValueType())); 13129 } else if (User->getOpcode() == ISD::SELECT_CC) { 13130 if (User->getOperand(0) == Inputs[i]) 13131 SelectTruncOp[0].insert(std::make_pair(User, 13132 User->getOperand(0).getValueType())); 13133 if (User->getOperand(1) == Inputs[i]) 13134 SelectTruncOp[1].insert(std::make_pair(User, 13135 User->getOperand(1).getValueType())); 13136 } 13137 } 13138 } 13139 13140 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13141 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13142 UE = PromOps[i].getNode()->use_end(); 13143 UI != UE; ++UI) { 13144 SDNode *User = *UI; 13145 if (User != N && !Visited.count(User)) 13146 return SDValue(); 13147 13148 // If we're going to promote the non-output-value operand(s) or SELECT or 13149 // SELECT_CC, record them for truncation. 13150 if (User->getOpcode() == ISD::SELECT) { 13151 if (User->getOperand(0) == PromOps[i]) 13152 SelectTruncOp[0].insert(std::make_pair(User, 13153 User->getOperand(0).getValueType())); 13154 } else if (User->getOpcode() == ISD::SELECT_CC) { 13155 if (User->getOperand(0) == PromOps[i]) 13156 SelectTruncOp[0].insert(std::make_pair(User, 13157 User->getOperand(0).getValueType())); 13158 if (User->getOperand(1) == PromOps[i]) 13159 SelectTruncOp[1].insert(std::make_pair(User, 13160 User->getOperand(1).getValueType())); 13161 } 13162 } 13163 } 13164 13165 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13166 bool ReallyNeedsExt = false; 13167 if (N->getOpcode() != ISD::ANY_EXTEND) { 13168 // If all of the inputs are not already sign/zero extended, then 13169 // we'll still need to do that at the end. 13170 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13171 if (isa<ConstantSDNode>(Inputs[i])) 13172 continue; 13173 13174 unsigned OpBits = 13175 Inputs[i].getOperand(0).getValueSizeInBits(); 13176 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13177 13178 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13179 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13180 APInt::getHighBitsSet(OpBits, 13181 OpBits-PromBits))) || 13182 (N->getOpcode() == ISD::SIGN_EXTEND && 13183 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13184 (OpBits-(PromBits-1)))) { 13185 ReallyNeedsExt = true; 13186 break; 13187 } 13188 } 13189 } 13190 13191 // Replace all inputs, either with the truncation operand, or a 13192 // truncation or extension to the final output type. 13193 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13194 // Constant inputs need to be replaced with the to-be-promoted nodes that 13195 // use them because they might have users outside of the cluster of 13196 // promoted nodes. 13197 if (isa<ConstantSDNode>(Inputs[i])) 13198 continue; 13199 13200 SDValue InSrc = Inputs[i].getOperand(0); 13201 if (Inputs[i].getValueType() == N->getValueType(0)) 13202 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13203 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13204 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13205 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13206 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13207 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13208 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13209 else 13210 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13211 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13212 } 13213 13214 std::list<HandleSDNode> PromOpHandles; 13215 for (auto &PromOp : PromOps) 13216 PromOpHandles.emplace_back(PromOp); 13217 13218 // Replace all operations (these are all the same, but have a different 13219 // (promoted) return type). DAG.getNode will validate that the types of 13220 // a binary operator match, so go through the list in reverse so that 13221 // we've likely promoted both operands first. 13222 while (!PromOpHandles.empty()) { 13223 SDValue PromOp = PromOpHandles.back().getValue(); 13224 PromOpHandles.pop_back(); 13225 13226 unsigned C; 13227 switch (PromOp.getOpcode()) { 13228 default: C = 0; break; 13229 case ISD::SELECT: C = 1; break; 13230 case ISD::SELECT_CC: C = 2; break; 13231 } 13232 13233 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13234 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13235 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13236 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13237 // The to-be-promoted operands of this node have not yet been 13238 // promoted (this should be rare because we're going through the 13239 // list backward, but if one of the operands has several users in 13240 // this cluster of to-be-promoted nodes, it is possible). 13241 PromOpHandles.emplace_front(PromOp); 13242 continue; 13243 } 13244 13245 // For SELECT and SELECT_CC nodes, we do a similar check for any 13246 // to-be-promoted comparison inputs. 13247 if (PromOp.getOpcode() == ISD::SELECT || 13248 PromOp.getOpcode() == ISD::SELECT_CC) { 13249 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13250 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13251 (SelectTruncOp[1].count(PromOp.getNode()) && 13252 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13253 PromOpHandles.emplace_front(PromOp); 13254 continue; 13255 } 13256 } 13257 13258 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13259 PromOp.getNode()->op_end()); 13260 13261 // If this node has constant inputs, then they'll need to be promoted here. 13262 for (unsigned i = 0; i < 2; ++i) { 13263 if (!isa<ConstantSDNode>(Ops[C+i])) 13264 continue; 13265 if (Ops[C+i].getValueType() == N->getValueType(0)) 13266 continue; 13267 13268 if (N->getOpcode() == ISD::SIGN_EXTEND) 13269 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13270 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13271 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13272 else 13273 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13274 } 13275 13276 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13277 // truncate them again to the original value type. 13278 if (PromOp.getOpcode() == ISD::SELECT || 13279 PromOp.getOpcode() == ISD::SELECT_CC) { 13280 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13281 if (SI0 != SelectTruncOp[0].end()) 13282 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13283 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13284 if (SI1 != SelectTruncOp[1].end()) 13285 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13286 } 13287 13288 DAG.ReplaceAllUsesOfValueWith(PromOp, 13289 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13290 } 13291 13292 // Now we're left with the initial extension itself. 13293 if (!ReallyNeedsExt) 13294 return N->getOperand(0); 13295 13296 // To zero extend, just mask off everything except for the first bit (in the 13297 // i1 case). 13298 if (N->getOpcode() == ISD::ZERO_EXTEND) 13299 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13300 DAG.getConstant(APInt::getLowBitsSet( 13301 N->getValueSizeInBits(0), PromBits), 13302 dl, N->getValueType(0))); 13303 13304 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13305 "Invalid extension type"); 13306 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13307 SDValue ShiftCst = 13308 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13309 return DAG.getNode( 13310 ISD::SRA, dl, N->getValueType(0), 13311 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13312 ShiftCst); 13313 } 13314 13315 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13316 DAGCombinerInfo &DCI) const { 13317 assert(N->getOpcode() == ISD::SETCC && 13318 "Should be called with a SETCC node"); 13319 13320 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13321 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13322 SDValue LHS = N->getOperand(0); 13323 SDValue RHS = N->getOperand(1); 13324 13325 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13326 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13327 LHS.hasOneUse()) 13328 std::swap(LHS, RHS); 13329 13330 // x == 0-y --> x+y == 0 13331 // x != 0-y --> x+y != 0 13332 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13333 RHS.hasOneUse()) { 13334 SDLoc DL(N); 13335 SelectionDAG &DAG = DCI.DAG; 13336 EVT VT = N->getValueType(0); 13337 EVT OpVT = LHS.getValueType(); 13338 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13339 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13340 } 13341 } 13342 13343 return DAGCombineTruncBoolExt(N, DCI); 13344 } 13345 13346 // Is this an extending load from an f32 to an f64? 13347 static bool isFPExtLoad(SDValue Op) { 13348 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13349 return LD->getExtensionType() == ISD::EXTLOAD && 13350 Op.getValueType() == MVT::f64; 13351 return false; 13352 } 13353 13354 /// Reduces the number of fp-to-int conversion when building a vector. 13355 /// 13356 /// If this vector is built out of floating to integer conversions, 13357 /// transform it to a vector built out of floating point values followed by a 13358 /// single floating to integer conversion of the vector. 13359 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13360 /// becomes (fptosi (build_vector ($A, $B, ...))) 13361 SDValue PPCTargetLowering:: 13362 combineElementTruncationToVectorTruncation(SDNode *N, 13363 DAGCombinerInfo &DCI) const { 13364 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13365 "Should be called with a BUILD_VECTOR node"); 13366 13367 SelectionDAG &DAG = DCI.DAG; 13368 SDLoc dl(N); 13369 13370 SDValue FirstInput = N->getOperand(0); 13371 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13372 "The input operand must be an fp-to-int conversion."); 13373 13374 // This combine happens after legalization so the fp_to_[su]i nodes are 13375 // already converted to PPCSISD nodes. 13376 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13377 if (FirstConversion == PPCISD::FCTIDZ || 13378 FirstConversion == PPCISD::FCTIDUZ || 13379 FirstConversion == PPCISD::FCTIWZ || 13380 FirstConversion == PPCISD::FCTIWUZ) { 13381 bool IsSplat = true; 13382 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13383 FirstConversion == PPCISD::FCTIWUZ; 13384 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13385 SmallVector<SDValue, 4> Ops; 13386 EVT TargetVT = N->getValueType(0); 13387 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13388 SDValue NextOp = N->getOperand(i); 13389 if (NextOp.getOpcode() != PPCISD::MFVSR) 13390 return SDValue(); 13391 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13392 if (NextConversion != FirstConversion) 13393 return SDValue(); 13394 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13395 // This is not valid if the input was originally double precision. It is 13396 // also not profitable to do unless this is an extending load in which 13397 // case doing this combine will allow us to combine consecutive loads. 13398 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13399 return SDValue(); 13400 if (N->getOperand(i) != FirstInput) 13401 IsSplat = false; 13402 } 13403 13404 // If this is a splat, we leave it as-is since there will be only a single 13405 // fp-to-int conversion followed by a splat of the integer. This is better 13406 // for 32-bit and smaller ints and neutral for 64-bit ints. 13407 if (IsSplat) 13408 return SDValue(); 13409 13410 // Now that we know we have the right type of node, get its operands 13411 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13412 SDValue In = N->getOperand(i).getOperand(0); 13413 if (Is32Bit) { 13414 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13415 // here, we know that all inputs are extending loads so this is safe). 13416 if (In.isUndef()) 13417 Ops.push_back(DAG.getUNDEF(SrcVT)); 13418 else { 13419 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13420 MVT::f32, In.getOperand(0), 13421 DAG.getIntPtrConstant(1, dl)); 13422 Ops.push_back(Trunc); 13423 } 13424 } else 13425 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13426 } 13427 13428 unsigned Opcode; 13429 if (FirstConversion == PPCISD::FCTIDZ || 13430 FirstConversion == PPCISD::FCTIWZ) 13431 Opcode = ISD::FP_TO_SINT; 13432 else 13433 Opcode = ISD::FP_TO_UINT; 13434 13435 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13436 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13437 return DAG.getNode(Opcode, dl, TargetVT, BV); 13438 } 13439 return SDValue(); 13440 } 13441 13442 /// Reduce the number of loads when building a vector. 13443 /// 13444 /// Building a vector out of multiple loads can be converted to a load 13445 /// of the vector type if the loads are consecutive. If the loads are 13446 /// consecutive but in descending order, a shuffle is added at the end 13447 /// to reorder the vector. 13448 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13449 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13450 "Should be called with a BUILD_VECTOR node"); 13451 13452 SDLoc dl(N); 13453 13454 // Return early for non byte-sized type, as they can't be consecutive. 13455 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13456 return SDValue(); 13457 13458 bool InputsAreConsecutiveLoads = true; 13459 bool InputsAreReverseConsecutive = true; 13460 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13461 SDValue FirstInput = N->getOperand(0); 13462 bool IsRoundOfExtLoad = false; 13463 13464 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13465 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13466 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13467 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13468 } 13469 // Not a build vector of (possibly fp_rounded) loads. 13470 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13471 N->getNumOperands() == 1) 13472 return SDValue(); 13473 13474 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13475 // If any inputs are fp_round(extload), they all must be. 13476 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13477 return SDValue(); 13478 13479 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13480 N->getOperand(i); 13481 if (NextInput.getOpcode() != ISD::LOAD) 13482 return SDValue(); 13483 13484 SDValue PreviousInput = 13485 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13486 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13487 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13488 13489 // If any inputs are fp_round(extload), they all must be. 13490 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13491 return SDValue(); 13492 13493 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13494 InputsAreConsecutiveLoads = false; 13495 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13496 InputsAreReverseConsecutive = false; 13497 13498 // Exit early if the loads are neither consecutive nor reverse consecutive. 13499 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13500 return SDValue(); 13501 } 13502 13503 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13504 "The loads cannot be both consecutive and reverse consecutive."); 13505 13506 SDValue FirstLoadOp = 13507 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13508 SDValue LastLoadOp = 13509 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13510 N->getOperand(N->getNumOperands()-1); 13511 13512 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13513 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13514 if (InputsAreConsecutiveLoads) { 13515 assert(LD1 && "Input needs to be a LoadSDNode."); 13516 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13517 LD1->getBasePtr(), LD1->getPointerInfo(), 13518 LD1->getAlignment()); 13519 } 13520 if (InputsAreReverseConsecutive) { 13521 assert(LDL && "Input needs to be a LoadSDNode."); 13522 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13523 LDL->getBasePtr(), LDL->getPointerInfo(), 13524 LDL->getAlignment()); 13525 SmallVector<int, 16> Ops; 13526 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13527 Ops.push_back(i); 13528 13529 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13530 DAG.getUNDEF(N->getValueType(0)), Ops); 13531 } 13532 return SDValue(); 13533 } 13534 13535 // This function adds the required vector_shuffle needed to get 13536 // the elements of the vector extract in the correct position 13537 // as specified by the CorrectElems encoding. 13538 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13539 SDValue Input, uint64_t Elems, 13540 uint64_t CorrectElems) { 13541 SDLoc dl(N); 13542 13543 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13544 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13545 13546 // Knowing the element indices being extracted from the original 13547 // vector and the order in which they're being inserted, just put 13548 // them at element indices required for the instruction. 13549 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13550 if (DAG.getDataLayout().isLittleEndian()) 13551 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13552 else 13553 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13554 CorrectElems = CorrectElems >> 8; 13555 Elems = Elems >> 8; 13556 } 13557 13558 SDValue Shuffle = 13559 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13560 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13561 13562 EVT VT = N->getValueType(0); 13563 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13564 13565 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13566 Input.getValueType().getVectorElementType(), 13567 VT.getVectorNumElements()); 13568 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13569 DAG.getValueType(ExtVT)); 13570 } 13571 13572 // Look for build vector patterns where input operands come from sign 13573 // extended vector_extract elements of specific indices. If the correct indices 13574 // aren't used, add a vector shuffle to fix up the indices and create 13575 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13576 // during instruction selection. 13577 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13578 // This array encodes the indices that the vector sign extend instructions 13579 // extract from when extending from one type to another for both BE and LE. 13580 // The right nibble of each byte corresponds to the LE incides. 13581 // and the left nibble of each byte corresponds to the BE incides. 13582 // For example: 0x3074B8FC byte->word 13583 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13584 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13585 // For example: 0x000070F8 byte->double word 13586 // For LE: the allowed indices are: 0x0,0x8 13587 // For BE: the allowed indices are: 0x7,0xF 13588 uint64_t TargetElems[] = { 13589 0x3074B8FC, // b->w 13590 0x000070F8, // b->d 13591 0x10325476, // h->w 13592 0x00003074, // h->d 13593 0x00001032, // w->d 13594 }; 13595 13596 uint64_t Elems = 0; 13597 int Index; 13598 SDValue Input; 13599 13600 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13601 if (!Op) 13602 return false; 13603 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13604 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13605 return false; 13606 13607 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13608 // of the right width. 13609 SDValue Extract = Op.getOperand(0); 13610 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13611 Extract = Extract.getOperand(0); 13612 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13613 return false; 13614 13615 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13616 if (!ExtOp) 13617 return false; 13618 13619 Index = ExtOp->getZExtValue(); 13620 if (Input && Input != Extract.getOperand(0)) 13621 return false; 13622 13623 if (!Input) 13624 Input = Extract.getOperand(0); 13625 13626 Elems = Elems << 8; 13627 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13628 Elems |= Index; 13629 13630 return true; 13631 }; 13632 13633 // If the build vector operands aren't sign extended vector extracts, 13634 // of the same input vector, then return. 13635 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13636 if (!isSExtOfVecExtract(N->getOperand(i))) { 13637 return SDValue(); 13638 } 13639 } 13640 13641 // If the vector extract indicies are not correct, add the appropriate 13642 // vector_shuffle. 13643 int TgtElemArrayIdx; 13644 int InputSize = Input.getValueType().getScalarSizeInBits(); 13645 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13646 if (InputSize + OutputSize == 40) 13647 TgtElemArrayIdx = 0; 13648 else if (InputSize + OutputSize == 72) 13649 TgtElemArrayIdx = 1; 13650 else if (InputSize + OutputSize == 48) 13651 TgtElemArrayIdx = 2; 13652 else if (InputSize + OutputSize == 80) 13653 TgtElemArrayIdx = 3; 13654 else if (InputSize + OutputSize == 96) 13655 TgtElemArrayIdx = 4; 13656 else 13657 return SDValue(); 13658 13659 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13660 CorrectElems = DAG.getDataLayout().isLittleEndian() 13661 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13662 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13663 if (Elems != CorrectElems) { 13664 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13665 } 13666 13667 // Regular lowering will catch cases where a shuffle is not needed. 13668 return SDValue(); 13669 } 13670 13671 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13672 DAGCombinerInfo &DCI) const { 13673 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13674 "Should be called with a BUILD_VECTOR node"); 13675 13676 SelectionDAG &DAG = DCI.DAG; 13677 SDLoc dl(N); 13678 13679 if (!Subtarget.hasVSX()) 13680 return SDValue(); 13681 13682 // The target independent DAG combiner will leave a build_vector of 13683 // float-to-int conversions intact. We can generate MUCH better code for 13684 // a float-to-int conversion of a vector of floats. 13685 SDValue FirstInput = N->getOperand(0); 13686 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13687 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13688 if (Reduced) 13689 return Reduced; 13690 } 13691 13692 // If we're building a vector out of consecutive loads, just load that 13693 // vector type. 13694 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13695 if (Reduced) 13696 return Reduced; 13697 13698 // If we're building a vector out of extended elements from another vector 13699 // we have P9 vector integer extend instructions. The code assumes legal 13700 // input types (i.e. it can't handle things like v4i16) so do not run before 13701 // legalization. 13702 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13703 Reduced = combineBVOfVecSExt(N, DAG); 13704 if (Reduced) 13705 return Reduced; 13706 } 13707 13708 13709 if (N->getValueType(0) != MVT::v2f64) 13710 return SDValue(); 13711 13712 // Looking for: 13713 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13714 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13715 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13716 return SDValue(); 13717 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13718 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13719 return SDValue(); 13720 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13721 return SDValue(); 13722 13723 SDValue Ext1 = FirstInput.getOperand(0); 13724 SDValue Ext2 = N->getOperand(1).getOperand(0); 13725 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13726 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13727 return SDValue(); 13728 13729 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13730 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13731 if (!Ext1Op || !Ext2Op) 13732 return SDValue(); 13733 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13734 Ext1.getOperand(0) != Ext2.getOperand(0)) 13735 return SDValue(); 13736 13737 int FirstElem = Ext1Op->getZExtValue(); 13738 int SecondElem = Ext2Op->getZExtValue(); 13739 int SubvecIdx; 13740 if (FirstElem == 0 && SecondElem == 1) 13741 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13742 else if (FirstElem == 2 && SecondElem == 3) 13743 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13744 else 13745 return SDValue(); 13746 13747 SDValue SrcVec = Ext1.getOperand(0); 13748 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13749 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13750 return DAG.getNode(NodeType, dl, MVT::v2f64, 13751 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13752 } 13753 13754 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13755 DAGCombinerInfo &DCI) const { 13756 assert((N->getOpcode() == ISD::SINT_TO_FP || 13757 N->getOpcode() == ISD::UINT_TO_FP) && 13758 "Need an int -> FP conversion node here"); 13759 13760 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13761 return SDValue(); 13762 13763 SelectionDAG &DAG = DCI.DAG; 13764 SDLoc dl(N); 13765 SDValue Op(N, 0); 13766 13767 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13768 // from the hardware. 13769 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13770 return SDValue(); 13771 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13772 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13773 return SDValue(); 13774 13775 SDValue FirstOperand(Op.getOperand(0)); 13776 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13777 (FirstOperand.getValueType() == MVT::i8 || 13778 FirstOperand.getValueType() == MVT::i16); 13779 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13780 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13781 bool DstDouble = Op.getValueType() == MVT::f64; 13782 unsigned ConvOp = Signed ? 13783 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13784 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13785 SDValue WidthConst = 13786 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13787 dl, false); 13788 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13789 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13790 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13791 DAG.getVTList(MVT::f64, MVT::Other), 13792 Ops, MVT::i8, LDN->getMemOperand()); 13793 13794 // For signed conversion, we need to sign-extend the value in the VSR 13795 if (Signed) { 13796 SDValue ExtOps[] = { Ld, WidthConst }; 13797 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13798 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13799 } else 13800 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13801 } 13802 13803 13804 // For i32 intermediate values, unfortunately, the conversion functions 13805 // leave the upper 32 bits of the value are undefined. Within the set of 13806 // scalar instructions, we have no method for zero- or sign-extending the 13807 // value. Thus, we cannot handle i32 intermediate values here. 13808 if (Op.getOperand(0).getValueType() == MVT::i32) 13809 return SDValue(); 13810 13811 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13812 "UINT_TO_FP is supported only with FPCVT"); 13813 13814 // If we have FCFIDS, then use it when converting to single-precision. 13815 // Otherwise, convert to double-precision and then round. 13816 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13817 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13818 : PPCISD::FCFIDS) 13819 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13820 : PPCISD::FCFID); 13821 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13822 ? MVT::f32 13823 : MVT::f64; 13824 13825 // If we're converting from a float, to an int, and back to a float again, 13826 // then we don't need the store/load pair at all. 13827 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13828 Subtarget.hasFPCVT()) || 13829 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13830 SDValue Src = Op.getOperand(0).getOperand(0); 13831 if (Src.getValueType() == MVT::f32) { 13832 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13833 DCI.AddToWorklist(Src.getNode()); 13834 } else if (Src.getValueType() != MVT::f64) { 13835 // Make sure that we don't pick up a ppc_fp128 source value. 13836 return SDValue(); 13837 } 13838 13839 unsigned FCTOp = 13840 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13841 PPCISD::FCTIDUZ; 13842 13843 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13844 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13845 13846 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13847 FP = DAG.getNode(ISD::FP_ROUND, dl, 13848 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13849 DCI.AddToWorklist(FP.getNode()); 13850 } 13851 13852 return FP; 13853 } 13854 13855 return SDValue(); 13856 } 13857 13858 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13859 // builtins) into loads with swaps. 13860 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13861 DAGCombinerInfo &DCI) const { 13862 SelectionDAG &DAG = DCI.DAG; 13863 SDLoc dl(N); 13864 SDValue Chain; 13865 SDValue Base; 13866 MachineMemOperand *MMO; 13867 13868 switch (N->getOpcode()) { 13869 default: 13870 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13871 case ISD::LOAD: { 13872 LoadSDNode *LD = cast<LoadSDNode>(N); 13873 Chain = LD->getChain(); 13874 Base = LD->getBasePtr(); 13875 MMO = LD->getMemOperand(); 13876 // If the MMO suggests this isn't a load of a full vector, leave 13877 // things alone. For a built-in, we have to make the change for 13878 // correctness, so if there is a size problem that will be a bug. 13879 if (MMO->getSize() < 16) 13880 return SDValue(); 13881 break; 13882 } 13883 case ISD::INTRINSIC_W_CHAIN: { 13884 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13885 Chain = Intrin->getChain(); 13886 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13887 // us what we want. Get operand 2 instead. 13888 Base = Intrin->getOperand(2); 13889 MMO = Intrin->getMemOperand(); 13890 break; 13891 } 13892 } 13893 13894 MVT VecTy = N->getValueType(0).getSimpleVT(); 13895 13896 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13897 // aligned and the type is a vector with elements up to 4 bytes 13898 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13899 VecTy.getScalarSizeInBits() <= 32) { 13900 return SDValue(); 13901 } 13902 13903 SDValue LoadOps[] = { Chain, Base }; 13904 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13905 DAG.getVTList(MVT::v2f64, MVT::Other), 13906 LoadOps, MVT::v2f64, MMO); 13907 13908 DCI.AddToWorklist(Load.getNode()); 13909 Chain = Load.getValue(1); 13910 SDValue Swap = DAG.getNode( 13911 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13912 DCI.AddToWorklist(Swap.getNode()); 13913 13914 // Add a bitcast if the resulting load type doesn't match v2f64. 13915 if (VecTy != MVT::v2f64) { 13916 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13917 DCI.AddToWorklist(N.getNode()); 13918 // Package {bitcast value, swap's chain} to match Load's shape. 13919 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13920 N, Swap.getValue(1)); 13921 } 13922 13923 return Swap; 13924 } 13925 13926 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13927 // builtins) into stores with swaps. 13928 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13929 DAGCombinerInfo &DCI) const { 13930 SelectionDAG &DAG = DCI.DAG; 13931 SDLoc dl(N); 13932 SDValue Chain; 13933 SDValue Base; 13934 unsigned SrcOpnd; 13935 MachineMemOperand *MMO; 13936 13937 switch (N->getOpcode()) { 13938 default: 13939 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13940 case ISD::STORE: { 13941 StoreSDNode *ST = cast<StoreSDNode>(N); 13942 Chain = ST->getChain(); 13943 Base = ST->getBasePtr(); 13944 MMO = ST->getMemOperand(); 13945 SrcOpnd = 1; 13946 // If the MMO suggests this isn't a store of a full vector, leave 13947 // things alone. For a built-in, we have to make the change for 13948 // correctness, so if there is a size problem that will be a bug. 13949 if (MMO->getSize() < 16) 13950 return SDValue(); 13951 break; 13952 } 13953 case ISD::INTRINSIC_VOID: { 13954 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13955 Chain = Intrin->getChain(); 13956 // Intrin->getBasePtr() oddly does not get what we want. 13957 Base = Intrin->getOperand(3); 13958 MMO = Intrin->getMemOperand(); 13959 SrcOpnd = 2; 13960 break; 13961 } 13962 } 13963 13964 SDValue Src = N->getOperand(SrcOpnd); 13965 MVT VecTy = Src.getValueType().getSimpleVT(); 13966 13967 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13968 // aligned and the type is a vector with elements up to 4 bytes 13969 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13970 VecTy.getScalarSizeInBits() <= 32) { 13971 return SDValue(); 13972 } 13973 13974 // All stores are done as v2f64 and possible bit cast. 13975 if (VecTy != MVT::v2f64) { 13976 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13977 DCI.AddToWorklist(Src.getNode()); 13978 } 13979 13980 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13981 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13982 DCI.AddToWorklist(Swap.getNode()); 13983 Chain = Swap.getValue(1); 13984 SDValue StoreOps[] = { Chain, Swap, Base }; 13985 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13986 DAG.getVTList(MVT::Other), 13987 StoreOps, VecTy, MMO); 13988 DCI.AddToWorklist(Store.getNode()); 13989 return Store; 13990 } 13991 13992 // Handle DAG combine for STORE (FP_TO_INT F). 13993 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13994 DAGCombinerInfo &DCI) const { 13995 13996 SelectionDAG &DAG = DCI.DAG; 13997 SDLoc dl(N); 13998 unsigned Opcode = N->getOperand(1).getOpcode(); 13999 14000 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14001 && "Not a FP_TO_INT Instruction!"); 14002 14003 SDValue Val = N->getOperand(1).getOperand(0); 14004 EVT Op1VT = N->getOperand(1).getValueType(); 14005 EVT ResVT = Val.getValueType(); 14006 14007 // Floating point types smaller than 32 bits are not legal on Power. 14008 if (ResVT.getScalarSizeInBits() < 32) 14009 return SDValue(); 14010 14011 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14012 bool ValidTypeForStoreFltAsInt = 14013 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14014 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14015 14016 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14017 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14018 return SDValue(); 14019 14020 // Extend f32 values to f64 14021 if (ResVT.getScalarSizeInBits() == 32) { 14022 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14023 DCI.AddToWorklist(Val.getNode()); 14024 } 14025 14026 // Set signed or unsigned conversion opcode. 14027 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14028 PPCISD::FP_TO_SINT_IN_VSR : 14029 PPCISD::FP_TO_UINT_IN_VSR; 14030 14031 Val = DAG.getNode(ConvOpcode, 14032 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14033 DCI.AddToWorklist(Val.getNode()); 14034 14035 // Set number of bytes being converted. 14036 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14037 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14038 DAG.getIntPtrConstant(ByteSize, dl, false), 14039 DAG.getValueType(Op1VT) }; 14040 14041 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14042 DAG.getVTList(MVT::Other), Ops, 14043 cast<StoreSDNode>(N)->getMemoryVT(), 14044 cast<StoreSDNode>(N)->getMemOperand()); 14045 14046 DCI.AddToWorklist(Val.getNode()); 14047 return Val; 14048 } 14049 14050 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14051 LSBaseSDNode *LSBase, 14052 DAGCombinerInfo &DCI) const { 14053 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14054 "Not a reverse memop pattern!"); 14055 14056 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14057 auto Mask = SVN->getMask(); 14058 int i = 0; 14059 auto I = Mask.rbegin(); 14060 auto E = Mask.rend(); 14061 14062 for (; I != E; ++I) { 14063 if (*I != i) 14064 return false; 14065 i++; 14066 } 14067 return true; 14068 }; 14069 14070 SelectionDAG &DAG = DCI.DAG; 14071 EVT VT = SVN->getValueType(0); 14072 14073 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14074 return SDValue(); 14075 14076 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14077 // See comment in PPCVSXSwapRemoval.cpp. 14078 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14079 if (!Subtarget.hasP9Vector()) 14080 return SDValue(); 14081 14082 if(!IsElementReverse(SVN)) 14083 return SDValue(); 14084 14085 if (LSBase->getOpcode() == ISD::LOAD) { 14086 SDLoc dl(SVN); 14087 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14088 return DAG.getMemIntrinsicNode( 14089 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14090 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14091 } 14092 14093 if (LSBase->getOpcode() == ISD::STORE) { 14094 SDLoc dl(LSBase); 14095 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14096 LSBase->getBasePtr()}; 14097 return DAG.getMemIntrinsicNode( 14098 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14099 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14100 } 14101 14102 llvm_unreachable("Expected a load or store node here"); 14103 } 14104 14105 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14106 DAGCombinerInfo &DCI) const { 14107 SelectionDAG &DAG = DCI.DAG; 14108 SDLoc dl(N); 14109 switch (N->getOpcode()) { 14110 default: break; 14111 case ISD::ADD: 14112 return combineADD(N, DCI); 14113 case ISD::SHL: 14114 return combineSHL(N, DCI); 14115 case ISD::SRA: 14116 return combineSRA(N, DCI); 14117 case ISD::SRL: 14118 return combineSRL(N, DCI); 14119 case ISD::MUL: 14120 return combineMUL(N, DCI); 14121 case ISD::FMA: 14122 case PPCISD::FNMSUB: 14123 return combineFMALike(N, DCI); 14124 case PPCISD::SHL: 14125 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14126 return N->getOperand(0); 14127 break; 14128 case PPCISD::SRL: 14129 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14130 return N->getOperand(0); 14131 break; 14132 case PPCISD::SRA: 14133 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14134 if (C->isNullValue() || // 0 >>s V -> 0. 14135 C->isAllOnesValue()) // -1 >>s V -> -1. 14136 return N->getOperand(0); 14137 } 14138 break; 14139 case ISD::SIGN_EXTEND: 14140 case ISD::ZERO_EXTEND: 14141 case ISD::ANY_EXTEND: 14142 return DAGCombineExtBoolTrunc(N, DCI); 14143 case ISD::TRUNCATE: 14144 return combineTRUNCATE(N, DCI); 14145 case ISD::SETCC: 14146 if (SDValue CSCC = combineSetCC(N, DCI)) 14147 return CSCC; 14148 LLVM_FALLTHROUGH; 14149 case ISD::SELECT_CC: 14150 return DAGCombineTruncBoolExt(N, DCI); 14151 case ISD::SINT_TO_FP: 14152 case ISD::UINT_TO_FP: 14153 return combineFPToIntToFP(N, DCI); 14154 case ISD::VECTOR_SHUFFLE: 14155 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14156 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14157 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14158 } 14159 break; 14160 case ISD::STORE: { 14161 14162 EVT Op1VT = N->getOperand(1).getValueType(); 14163 unsigned Opcode = N->getOperand(1).getOpcode(); 14164 14165 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14166 SDValue Val= combineStoreFPToInt(N, DCI); 14167 if (Val) 14168 return Val; 14169 } 14170 14171 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14172 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14173 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14174 if (Val) 14175 return Val; 14176 } 14177 14178 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14179 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14180 N->getOperand(1).getNode()->hasOneUse() && 14181 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14182 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14183 14184 // STBRX can only handle simple types and it makes no sense to store less 14185 // two bytes in byte-reversed order. 14186 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14187 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14188 break; 14189 14190 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14191 // Do an any-extend to 32-bits if this is a half-word input. 14192 if (BSwapOp.getValueType() == MVT::i16) 14193 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14194 14195 // If the type of BSWAP operand is wider than stored memory width 14196 // it need to be shifted to the right side before STBRX. 14197 if (Op1VT.bitsGT(mVT)) { 14198 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14199 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14200 DAG.getConstant(Shift, dl, MVT::i32)); 14201 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14202 if (Op1VT == MVT::i64) 14203 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14204 } 14205 14206 SDValue Ops[] = { 14207 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14208 }; 14209 return 14210 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14211 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14212 cast<StoreSDNode>(N)->getMemOperand()); 14213 } 14214 14215 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14216 // So it can increase the chance of CSE constant construction. 14217 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14218 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14219 // Need to sign-extended to 64-bits to handle negative values. 14220 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14221 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14222 MemVT.getSizeInBits()); 14223 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14224 14225 // DAG.getTruncStore() can't be used here because it doesn't accept 14226 // the general (base + offset) addressing mode. 14227 // So we use UpdateNodeOperands and setTruncatingStore instead. 14228 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14229 N->getOperand(3)); 14230 cast<StoreSDNode>(N)->setTruncatingStore(true); 14231 return SDValue(N, 0); 14232 } 14233 14234 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14235 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14236 if (Op1VT.isSimple()) { 14237 MVT StoreVT = Op1VT.getSimpleVT(); 14238 if (Subtarget.needsSwapsForVSXMemOps() && 14239 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14240 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14241 return expandVSXStoreForLE(N, DCI); 14242 } 14243 break; 14244 } 14245 case ISD::LOAD: { 14246 LoadSDNode *LD = cast<LoadSDNode>(N); 14247 EVT VT = LD->getValueType(0); 14248 14249 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14250 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14251 if (VT.isSimple()) { 14252 MVT LoadVT = VT.getSimpleVT(); 14253 if (Subtarget.needsSwapsForVSXMemOps() && 14254 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14255 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14256 return expandVSXLoadForLE(N, DCI); 14257 } 14258 14259 // We sometimes end up with a 64-bit integer load, from which we extract 14260 // two single-precision floating-point numbers. This happens with 14261 // std::complex<float>, and other similar structures, because of the way we 14262 // canonicalize structure copies. However, if we lack direct moves, 14263 // then the final bitcasts from the extracted integer values to the 14264 // floating-point numbers turn into store/load pairs. Even with direct moves, 14265 // just loading the two floating-point numbers is likely better. 14266 auto ReplaceTwoFloatLoad = [&]() { 14267 if (VT != MVT::i64) 14268 return false; 14269 14270 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14271 LD->isVolatile()) 14272 return false; 14273 14274 // We're looking for a sequence like this: 14275 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14276 // t16: i64 = srl t13, Constant:i32<32> 14277 // t17: i32 = truncate t16 14278 // t18: f32 = bitcast t17 14279 // t19: i32 = truncate t13 14280 // t20: f32 = bitcast t19 14281 14282 if (!LD->hasNUsesOfValue(2, 0)) 14283 return false; 14284 14285 auto UI = LD->use_begin(); 14286 while (UI.getUse().getResNo() != 0) ++UI; 14287 SDNode *Trunc = *UI++; 14288 while (UI.getUse().getResNo() != 0) ++UI; 14289 SDNode *RightShift = *UI; 14290 if (Trunc->getOpcode() != ISD::TRUNCATE) 14291 std::swap(Trunc, RightShift); 14292 14293 if (Trunc->getOpcode() != ISD::TRUNCATE || 14294 Trunc->getValueType(0) != MVT::i32 || 14295 !Trunc->hasOneUse()) 14296 return false; 14297 if (RightShift->getOpcode() != ISD::SRL || 14298 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14299 RightShift->getConstantOperandVal(1) != 32 || 14300 !RightShift->hasOneUse()) 14301 return false; 14302 14303 SDNode *Trunc2 = *RightShift->use_begin(); 14304 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14305 Trunc2->getValueType(0) != MVT::i32 || 14306 !Trunc2->hasOneUse()) 14307 return false; 14308 14309 SDNode *Bitcast = *Trunc->use_begin(); 14310 SDNode *Bitcast2 = *Trunc2->use_begin(); 14311 14312 if (Bitcast->getOpcode() != ISD::BITCAST || 14313 Bitcast->getValueType(0) != MVT::f32) 14314 return false; 14315 if (Bitcast2->getOpcode() != ISD::BITCAST || 14316 Bitcast2->getValueType(0) != MVT::f32) 14317 return false; 14318 14319 if (Subtarget.isLittleEndian()) 14320 std::swap(Bitcast, Bitcast2); 14321 14322 // Bitcast has the second float (in memory-layout order) and Bitcast2 14323 // has the first one. 14324 14325 SDValue BasePtr = LD->getBasePtr(); 14326 if (LD->isIndexed()) { 14327 assert(LD->getAddressingMode() == ISD::PRE_INC && 14328 "Non-pre-inc AM on PPC?"); 14329 BasePtr = 14330 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14331 LD->getOffset()); 14332 } 14333 14334 auto MMOFlags = 14335 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14336 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14337 LD->getPointerInfo(), LD->getAlignment(), 14338 MMOFlags, LD->getAAInfo()); 14339 SDValue AddPtr = 14340 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14341 BasePtr, DAG.getIntPtrConstant(4, dl)); 14342 SDValue FloatLoad2 = DAG.getLoad( 14343 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14344 LD->getPointerInfo().getWithOffset(4), 14345 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14346 14347 if (LD->isIndexed()) { 14348 // Note that DAGCombine should re-form any pre-increment load(s) from 14349 // what is produced here if that makes sense. 14350 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14351 } 14352 14353 DCI.CombineTo(Bitcast2, FloatLoad); 14354 DCI.CombineTo(Bitcast, FloatLoad2); 14355 14356 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14357 SDValue(FloatLoad2.getNode(), 1)); 14358 return true; 14359 }; 14360 14361 if (ReplaceTwoFloatLoad()) 14362 return SDValue(N, 0); 14363 14364 EVT MemVT = LD->getMemoryVT(); 14365 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14366 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 14367 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 14368 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 14369 if (LD->isUnindexed() && VT.isVector() && 14370 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14371 // P8 and later hardware should just use LOAD. 14372 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 14373 VT == MVT::v4i32 || VT == MVT::v4f32)) || 14374 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 14375 LD->getAlignment() >= ScalarABIAlignment)) && 14376 LD->getAlignment() < ABIAlignment) { 14377 // This is a type-legal unaligned Altivec or QPX load. 14378 SDValue Chain = LD->getChain(); 14379 SDValue Ptr = LD->getBasePtr(); 14380 bool isLittleEndian = Subtarget.isLittleEndian(); 14381 14382 // This implements the loading of unaligned vectors as described in 14383 // the venerable Apple Velocity Engine overview. Specifically: 14384 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14385 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14386 // 14387 // The general idea is to expand a sequence of one or more unaligned 14388 // loads into an alignment-based permutation-control instruction (lvsl 14389 // or lvsr), a series of regular vector loads (which always truncate 14390 // their input address to an aligned address), and a series of 14391 // permutations. The results of these permutations are the requested 14392 // loaded values. The trick is that the last "extra" load is not taken 14393 // from the address you might suspect (sizeof(vector) bytes after the 14394 // last requested load), but rather sizeof(vector) - 1 bytes after the 14395 // last requested vector. The point of this is to avoid a page fault if 14396 // the base address happened to be aligned. This works because if the 14397 // base address is aligned, then adding less than a full vector length 14398 // will cause the last vector in the sequence to be (re)loaded. 14399 // Otherwise, the next vector will be fetched as you might suspect was 14400 // necessary. 14401 14402 // We might be able to reuse the permutation generation from 14403 // a different base address offset from this one by an aligned amount. 14404 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14405 // optimization later. 14406 Intrinsic::ID Intr, IntrLD, IntrPerm; 14407 MVT PermCntlTy, PermTy, LDTy; 14408 if (Subtarget.hasAltivec()) { 14409 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14410 Intrinsic::ppc_altivec_lvsl; 14411 IntrLD = Intrinsic::ppc_altivec_lvx; 14412 IntrPerm = Intrinsic::ppc_altivec_vperm; 14413 PermCntlTy = MVT::v16i8; 14414 PermTy = MVT::v4i32; 14415 LDTy = MVT::v4i32; 14416 } else { 14417 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14418 Intrinsic::ppc_qpx_qvlpcls; 14419 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14420 Intrinsic::ppc_qpx_qvlfs; 14421 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14422 PermCntlTy = MVT::v4f64; 14423 PermTy = MVT::v4f64; 14424 LDTy = MemVT.getSimpleVT(); 14425 } 14426 14427 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14428 14429 // Create the new MMO for the new base load. It is like the original MMO, 14430 // but represents an area in memory almost twice the vector size centered 14431 // on the original address. If the address is unaligned, we might start 14432 // reading up to (sizeof(vector)-1) bytes below the address of the 14433 // original unaligned load. 14434 MachineFunction &MF = DAG.getMachineFunction(); 14435 MachineMemOperand *BaseMMO = 14436 MF.getMachineMemOperand(LD->getMemOperand(), 14437 -(long)MemVT.getStoreSize()+1, 14438 2*MemVT.getStoreSize()-1); 14439 14440 // Create the new base load. 14441 SDValue LDXIntID = 14442 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14443 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14444 SDValue BaseLoad = 14445 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14446 DAG.getVTList(PermTy, MVT::Other), 14447 BaseLoadOps, LDTy, BaseMMO); 14448 14449 // Note that the value of IncOffset (which is provided to the next 14450 // load's pointer info offset value, and thus used to calculate the 14451 // alignment), and the value of IncValue (which is actually used to 14452 // increment the pointer value) are different! This is because we 14453 // require the next load to appear to be aligned, even though it 14454 // is actually offset from the base pointer by a lesser amount. 14455 int IncOffset = VT.getSizeInBits() / 8; 14456 int IncValue = IncOffset; 14457 14458 // Walk (both up and down) the chain looking for another load at the real 14459 // (aligned) offset (the alignment of the other load does not matter in 14460 // this case). If found, then do not use the offset reduction trick, as 14461 // that will prevent the loads from being later combined (as they would 14462 // otherwise be duplicates). 14463 if (!findConsecutiveLoad(LD, DAG)) 14464 --IncValue; 14465 14466 SDValue Increment = 14467 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14468 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14469 14470 MachineMemOperand *ExtraMMO = 14471 MF.getMachineMemOperand(LD->getMemOperand(), 14472 1, 2*MemVT.getStoreSize()-1); 14473 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14474 SDValue ExtraLoad = 14475 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14476 DAG.getVTList(PermTy, MVT::Other), 14477 ExtraLoadOps, LDTy, ExtraMMO); 14478 14479 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14480 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14481 14482 // Because vperm has a big-endian bias, we must reverse the order 14483 // of the input vectors and complement the permute control vector 14484 // when generating little endian code. We have already handled the 14485 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14486 // and ExtraLoad here. 14487 SDValue Perm; 14488 if (isLittleEndian) 14489 Perm = BuildIntrinsicOp(IntrPerm, 14490 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14491 else 14492 Perm = BuildIntrinsicOp(IntrPerm, 14493 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14494 14495 if (VT != PermTy) 14496 Perm = Subtarget.hasAltivec() ? 14497 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14498 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14499 DAG.getTargetConstant(1, dl, MVT::i64)); 14500 // second argument is 1 because this rounding 14501 // is always exact. 14502 14503 // The output of the permutation is our loaded result, the TokenFactor is 14504 // our new chain. 14505 DCI.CombineTo(N, Perm, TF); 14506 return SDValue(N, 0); 14507 } 14508 } 14509 break; 14510 case ISD::INTRINSIC_WO_CHAIN: { 14511 bool isLittleEndian = Subtarget.isLittleEndian(); 14512 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14513 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14514 : Intrinsic::ppc_altivec_lvsl); 14515 if ((IID == Intr || 14516 IID == Intrinsic::ppc_qpx_qvlpcld || 14517 IID == Intrinsic::ppc_qpx_qvlpcls) && 14518 N->getOperand(1)->getOpcode() == ISD::ADD) { 14519 SDValue Add = N->getOperand(1); 14520 14521 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14522 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14523 14524 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14525 APInt::getAllOnesValue(Bits /* alignment */) 14526 .zext(Add.getScalarValueSizeInBits()))) { 14527 SDNode *BasePtr = Add->getOperand(0).getNode(); 14528 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14529 UE = BasePtr->use_end(); 14530 UI != UE; ++UI) { 14531 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14532 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14533 // We've found another LVSL/LVSR, and this address is an aligned 14534 // multiple of that one. The results will be the same, so use the 14535 // one we've just found instead. 14536 14537 return SDValue(*UI, 0); 14538 } 14539 } 14540 } 14541 14542 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14543 SDNode *BasePtr = Add->getOperand(0).getNode(); 14544 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14545 UE = BasePtr->use_end(); UI != UE; ++UI) { 14546 if (UI->getOpcode() == ISD::ADD && 14547 isa<ConstantSDNode>(UI->getOperand(1)) && 14548 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14549 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14550 (1ULL << Bits) == 0) { 14551 SDNode *OtherAdd = *UI; 14552 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14553 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14554 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14555 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14556 return SDValue(*VI, 0); 14557 } 14558 } 14559 } 14560 } 14561 } 14562 } 14563 14564 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14565 // Expose the vabsduw/h/b opportunity for down stream 14566 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14567 (IID == Intrinsic::ppc_altivec_vmaxsw || 14568 IID == Intrinsic::ppc_altivec_vmaxsh || 14569 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14570 SDValue V1 = N->getOperand(1); 14571 SDValue V2 = N->getOperand(2); 14572 if ((V1.getSimpleValueType() == MVT::v4i32 || 14573 V1.getSimpleValueType() == MVT::v8i16 || 14574 V1.getSimpleValueType() == MVT::v16i8) && 14575 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14576 // (0-a, a) 14577 if (V1.getOpcode() == ISD::SUB && 14578 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14579 V1.getOperand(1) == V2) { 14580 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14581 } 14582 // (a, 0-a) 14583 if (V2.getOpcode() == ISD::SUB && 14584 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14585 V2.getOperand(1) == V1) { 14586 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14587 } 14588 // (x-y, y-x) 14589 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14590 V1.getOperand(0) == V2.getOperand(1) && 14591 V1.getOperand(1) == V2.getOperand(0)) { 14592 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14593 } 14594 } 14595 } 14596 } 14597 14598 break; 14599 case ISD::INTRINSIC_W_CHAIN: 14600 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14601 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14602 if (Subtarget.needsSwapsForVSXMemOps()) { 14603 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14604 default: 14605 break; 14606 case Intrinsic::ppc_vsx_lxvw4x: 14607 case Intrinsic::ppc_vsx_lxvd2x: 14608 return expandVSXLoadForLE(N, DCI); 14609 } 14610 } 14611 break; 14612 case ISD::INTRINSIC_VOID: 14613 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14614 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14615 if (Subtarget.needsSwapsForVSXMemOps()) { 14616 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14617 default: 14618 break; 14619 case Intrinsic::ppc_vsx_stxvw4x: 14620 case Intrinsic::ppc_vsx_stxvd2x: 14621 return expandVSXStoreForLE(N, DCI); 14622 } 14623 } 14624 break; 14625 case ISD::BSWAP: 14626 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14627 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14628 N->getOperand(0).hasOneUse() && 14629 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14630 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14631 N->getValueType(0) == MVT::i64))) { 14632 SDValue Load = N->getOperand(0); 14633 LoadSDNode *LD = cast<LoadSDNode>(Load); 14634 // Create the byte-swapping load. 14635 SDValue Ops[] = { 14636 LD->getChain(), // Chain 14637 LD->getBasePtr(), // Ptr 14638 DAG.getValueType(N->getValueType(0)) // VT 14639 }; 14640 SDValue BSLoad = 14641 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14642 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14643 MVT::i64 : MVT::i32, MVT::Other), 14644 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14645 14646 // If this is an i16 load, insert the truncate. 14647 SDValue ResVal = BSLoad; 14648 if (N->getValueType(0) == MVT::i16) 14649 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14650 14651 // First, combine the bswap away. This makes the value produced by the 14652 // load dead. 14653 DCI.CombineTo(N, ResVal); 14654 14655 // Next, combine the load away, we give it a bogus result value but a real 14656 // chain result. The result value is dead because the bswap is dead. 14657 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14658 14659 // Return N so it doesn't get rechecked! 14660 return SDValue(N, 0); 14661 } 14662 break; 14663 case PPCISD::VCMP: 14664 // If a VCMPo node already exists with exactly the same operands as this 14665 // node, use its result instead of this node (VCMPo computes both a CR6 and 14666 // a normal output). 14667 // 14668 if (!N->getOperand(0).hasOneUse() && 14669 !N->getOperand(1).hasOneUse() && 14670 !N->getOperand(2).hasOneUse()) { 14671 14672 // Scan all of the users of the LHS, looking for VCMPo's that match. 14673 SDNode *VCMPoNode = nullptr; 14674 14675 SDNode *LHSN = N->getOperand(0).getNode(); 14676 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14677 UI != E; ++UI) 14678 if (UI->getOpcode() == PPCISD::VCMPo && 14679 UI->getOperand(1) == N->getOperand(1) && 14680 UI->getOperand(2) == N->getOperand(2) && 14681 UI->getOperand(0) == N->getOperand(0)) { 14682 VCMPoNode = *UI; 14683 break; 14684 } 14685 14686 // If there is no VCMPo node, or if the flag value has a single use, don't 14687 // transform this. 14688 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14689 break; 14690 14691 // Look at the (necessarily single) use of the flag value. If it has a 14692 // chain, this transformation is more complex. Note that multiple things 14693 // could use the value result, which we should ignore. 14694 SDNode *FlagUser = nullptr; 14695 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14696 FlagUser == nullptr; ++UI) { 14697 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14698 SDNode *User = *UI; 14699 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14700 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14701 FlagUser = User; 14702 break; 14703 } 14704 } 14705 } 14706 14707 // If the user is a MFOCRF instruction, we know this is safe. 14708 // Otherwise we give up for right now. 14709 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14710 return SDValue(VCMPoNode, 0); 14711 } 14712 break; 14713 case ISD::BRCOND: { 14714 SDValue Cond = N->getOperand(1); 14715 SDValue Target = N->getOperand(2); 14716 14717 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14718 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14719 Intrinsic::loop_decrement) { 14720 14721 // We now need to make the intrinsic dead (it cannot be instruction 14722 // selected). 14723 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14724 assert(Cond.getNode()->hasOneUse() && 14725 "Counter decrement has more than one use"); 14726 14727 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14728 N->getOperand(0), Target); 14729 } 14730 } 14731 break; 14732 case ISD::BR_CC: { 14733 // If this is a branch on an altivec predicate comparison, lower this so 14734 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14735 // lowering is done pre-legalize, because the legalizer lowers the predicate 14736 // compare down to code that is difficult to reassemble. 14737 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14738 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14739 14740 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14741 // value. If so, pass-through the AND to get to the intrinsic. 14742 if (LHS.getOpcode() == ISD::AND && 14743 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14744 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14745 Intrinsic::loop_decrement && 14746 isa<ConstantSDNode>(LHS.getOperand(1)) && 14747 !isNullConstant(LHS.getOperand(1))) 14748 LHS = LHS.getOperand(0); 14749 14750 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14751 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14752 Intrinsic::loop_decrement && 14753 isa<ConstantSDNode>(RHS)) { 14754 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14755 "Counter decrement comparison is not EQ or NE"); 14756 14757 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14758 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14759 (CC == ISD::SETNE && !Val); 14760 14761 // We now need to make the intrinsic dead (it cannot be instruction 14762 // selected). 14763 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14764 assert(LHS.getNode()->hasOneUse() && 14765 "Counter decrement has more than one use"); 14766 14767 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14768 N->getOperand(0), N->getOperand(4)); 14769 } 14770 14771 int CompareOpc; 14772 bool isDot; 14773 14774 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14775 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14776 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14777 assert(isDot && "Can't compare against a vector result!"); 14778 14779 // If this is a comparison against something other than 0/1, then we know 14780 // that the condition is never/always true. 14781 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14782 if (Val != 0 && Val != 1) { 14783 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14784 return N->getOperand(0); 14785 // Always !=, turn it into an unconditional branch. 14786 return DAG.getNode(ISD::BR, dl, MVT::Other, 14787 N->getOperand(0), N->getOperand(4)); 14788 } 14789 14790 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14791 14792 // Create the PPCISD altivec 'dot' comparison node. 14793 SDValue Ops[] = { 14794 LHS.getOperand(2), // LHS of compare 14795 LHS.getOperand(3), // RHS of compare 14796 DAG.getConstant(CompareOpc, dl, MVT::i32) 14797 }; 14798 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14799 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14800 14801 // Unpack the result based on how the target uses it. 14802 PPC::Predicate CompOpc; 14803 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14804 default: // Can't happen, don't crash on invalid number though. 14805 case 0: // Branch on the value of the EQ bit of CR6. 14806 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14807 break; 14808 case 1: // Branch on the inverted value of the EQ bit of CR6. 14809 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14810 break; 14811 case 2: // Branch on the value of the LT bit of CR6. 14812 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14813 break; 14814 case 3: // Branch on the inverted value of the LT bit of CR6. 14815 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14816 break; 14817 } 14818 14819 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14820 DAG.getConstant(CompOpc, dl, MVT::i32), 14821 DAG.getRegister(PPC::CR6, MVT::i32), 14822 N->getOperand(4), CompNode.getValue(1)); 14823 } 14824 break; 14825 } 14826 case ISD::BUILD_VECTOR: 14827 return DAGCombineBuildVector(N, DCI); 14828 case ISD::ABS: 14829 return combineABS(N, DCI); 14830 case ISD::VSELECT: 14831 return combineVSelect(N, DCI); 14832 } 14833 14834 return SDValue(); 14835 } 14836 14837 SDValue 14838 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14839 SelectionDAG &DAG, 14840 SmallVectorImpl<SDNode *> &Created) const { 14841 // fold (sdiv X, pow2) 14842 EVT VT = N->getValueType(0); 14843 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14844 return SDValue(); 14845 if ((VT != MVT::i32 && VT != MVT::i64) || 14846 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14847 return SDValue(); 14848 14849 SDLoc DL(N); 14850 SDValue N0 = N->getOperand(0); 14851 14852 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14853 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14854 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14855 14856 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14857 Created.push_back(Op.getNode()); 14858 14859 if (IsNegPow2) { 14860 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14861 Created.push_back(Op.getNode()); 14862 } 14863 14864 return Op; 14865 } 14866 14867 //===----------------------------------------------------------------------===// 14868 // Inline Assembly Support 14869 //===----------------------------------------------------------------------===// 14870 14871 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14872 KnownBits &Known, 14873 const APInt &DemandedElts, 14874 const SelectionDAG &DAG, 14875 unsigned Depth) const { 14876 Known.resetAll(); 14877 switch (Op.getOpcode()) { 14878 default: break; 14879 case PPCISD::LBRX: { 14880 // lhbrx is known to have the top bits cleared out. 14881 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14882 Known.Zero = 0xFFFF0000; 14883 break; 14884 } 14885 case ISD::INTRINSIC_WO_CHAIN: { 14886 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14887 default: break; 14888 case Intrinsic::ppc_altivec_vcmpbfp_p: 14889 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14890 case Intrinsic::ppc_altivec_vcmpequb_p: 14891 case Intrinsic::ppc_altivec_vcmpequh_p: 14892 case Intrinsic::ppc_altivec_vcmpequw_p: 14893 case Intrinsic::ppc_altivec_vcmpequd_p: 14894 case Intrinsic::ppc_altivec_vcmpgefp_p: 14895 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14896 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14897 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14898 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14899 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14900 case Intrinsic::ppc_altivec_vcmpgtub_p: 14901 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14902 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14903 case Intrinsic::ppc_altivec_vcmpgtud_p: 14904 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14905 break; 14906 } 14907 } 14908 } 14909 } 14910 14911 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14912 switch (Subtarget.getCPUDirective()) { 14913 default: break; 14914 case PPC::DIR_970: 14915 case PPC::DIR_PWR4: 14916 case PPC::DIR_PWR5: 14917 case PPC::DIR_PWR5X: 14918 case PPC::DIR_PWR6: 14919 case PPC::DIR_PWR6X: 14920 case PPC::DIR_PWR7: 14921 case PPC::DIR_PWR8: 14922 case PPC::DIR_PWR9: 14923 case PPC::DIR_PWR10: 14924 case PPC::DIR_PWR_FUTURE: { 14925 if (!ML) 14926 break; 14927 14928 if (!DisableInnermostLoopAlign32) { 14929 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14930 // so that we can decrease cache misses and branch-prediction misses. 14931 // Actual alignment of the loop will depend on the hotness check and other 14932 // logic in alignBlocks. 14933 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14934 return Align(32); 14935 } 14936 14937 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14938 14939 // For small loops (between 5 and 8 instructions), align to a 32-byte 14940 // boundary so that the entire loop fits in one instruction-cache line. 14941 uint64_t LoopSize = 0; 14942 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14943 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14944 LoopSize += TII->getInstSizeInBytes(*J); 14945 if (LoopSize > 32) 14946 break; 14947 } 14948 14949 if (LoopSize > 16 && LoopSize <= 32) 14950 return Align(32); 14951 14952 break; 14953 } 14954 } 14955 14956 return TargetLowering::getPrefLoopAlignment(ML); 14957 } 14958 14959 /// getConstraintType - Given a constraint, return the type of 14960 /// constraint it is for this target. 14961 PPCTargetLowering::ConstraintType 14962 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14963 if (Constraint.size() == 1) { 14964 switch (Constraint[0]) { 14965 default: break; 14966 case 'b': 14967 case 'r': 14968 case 'f': 14969 case 'd': 14970 case 'v': 14971 case 'y': 14972 return C_RegisterClass; 14973 case 'Z': 14974 // FIXME: While Z does indicate a memory constraint, it specifically 14975 // indicates an r+r address (used in conjunction with the 'y' modifier 14976 // in the replacement string). Currently, we're forcing the base 14977 // register to be r0 in the asm printer (which is interpreted as zero) 14978 // and forming the complete address in the second register. This is 14979 // suboptimal. 14980 return C_Memory; 14981 } 14982 } else if (Constraint == "wc") { // individual CR bits. 14983 return C_RegisterClass; 14984 } else if (Constraint == "wa" || Constraint == "wd" || 14985 Constraint == "wf" || Constraint == "ws" || 14986 Constraint == "wi" || Constraint == "ww") { 14987 return C_RegisterClass; // VSX registers. 14988 } 14989 return TargetLowering::getConstraintType(Constraint); 14990 } 14991 14992 /// Examine constraint type and operand type and determine a weight value. 14993 /// This object must already have been set up with the operand type 14994 /// and the current alternative constraint selected. 14995 TargetLowering::ConstraintWeight 14996 PPCTargetLowering::getSingleConstraintMatchWeight( 14997 AsmOperandInfo &info, const char *constraint) const { 14998 ConstraintWeight weight = CW_Invalid; 14999 Value *CallOperandVal = info.CallOperandVal; 15000 // If we don't have a value, we can't do a match, 15001 // but allow it at the lowest weight. 15002 if (!CallOperandVal) 15003 return CW_Default; 15004 Type *type = CallOperandVal->getType(); 15005 15006 // Look at the constraint type. 15007 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15008 return CW_Register; // an individual CR bit. 15009 else if ((StringRef(constraint) == "wa" || 15010 StringRef(constraint) == "wd" || 15011 StringRef(constraint) == "wf") && 15012 type->isVectorTy()) 15013 return CW_Register; 15014 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15015 return CW_Register; // just hold 64-bit integers data. 15016 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15017 return CW_Register; 15018 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15019 return CW_Register; 15020 15021 switch (*constraint) { 15022 default: 15023 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15024 break; 15025 case 'b': 15026 if (type->isIntegerTy()) 15027 weight = CW_Register; 15028 break; 15029 case 'f': 15030 if (type->isFloatTy()) 15031 weight = CW_Register; 15032 break; 15033 case 'd': 15034 if (type->isDoubleTy()) 15035 weight = CW_Register; 15036 break; 15037 case 'v': 15038 if (type->isVectorTy()) 15039 weight = CW_Register; 15040 break; 15041 case 'y': 15042 weight = CW_Register; 15043 break; 15044 case 'Z': 15045 weight = CW_Memory; 15046 break; 15047 } 15048 return weight; 15049 } 15050 15051 std::pair<unsigned, const TargetRegisterClass *> 15052 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15053 StringRef Constraint, 15054 MVT VT) const { 15055 if (Constraint.size() == 1) { 15056 // GCC RS6000 Constraint Letters 15057 switch (Constraint[0]) { 15058 case 'b': // R1-R31 15059 if (VT == MVT::i64 && Subtarget.isPPC64()) 15060 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15061 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15062 case 'r': // R0-R31 15063 if (VT == MVT::i64 && Subtarget.isPPC64()) 15064 return std::make_pair(0U, &PPC::G8RCRegClass); 15065 return std::make_pair(0U, &PPC::GPRCRegClass); 15066 // 'd' and 'f' constraints are both defined to be "the floating point 15067 // registers", where one is for 32-bit and the other for 64-bit. We don't 15068 // really care overly much here so just give them all the same reg classes. 15069 case 'd': 15070 case 'f': 15071 if (Subtarget.hasSPE()) { 15072 if (VT == MVT::f32 || VT == MVT::i32) 15073 return std::make_pair(0U, &PPC::GPRCRegClass); 15074 if (VT == MVT::f64 || VT == MVT::i64) 15075 return std::make_pair(0U, &PPC::SPERCRegClass); 15076 } else { 15077 if (VT == MVT::f32 || VT == MVT::i32) 15078 return std::make_pair(0U, &PPC::F4RCRegClass); 15079 if (VT == MVT::f64 || VT == MVT::i64) 15080 return std::make_pair(0U, &PPC::F8RCRegClass); 15081 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15082 return std::make_pair(0U, &PPC::QFRCRegClass); 15083 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15084 return std::make_pair(0U, &PPC::QSRCRegClass); 15085 } 15086 break; 15087 case 'v': 15088 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 15089 return std::make_pair(0U, &PPC::QFRCRegClass); 15090 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 15091 return std::make_pair(0U, &PPC::QSRCRegClass); 15092 if (Subtarget.hasAltivec()) 15093 return std::make_pair(0U, &PPC::VRRCRegClass); 15094 break; 15095 case 'y': // crrc 15096 return std::make_pair(0U, &PPC::CRRCRegClass); 15097 } 15098 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15099 // An individual CR bit. 15100 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15101 } else if ((Constraint == "wa" || Constraint == "wd" || 15102 Constraint == "wf" || Constraint == "wi") && 15103 Subtarget.hasVSX()) { 15104 return std::make_pair(0U, &PPC::VSRCRegClass); 15105 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15106 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15107 return std::make_pair(0U, &PPC::VSSRCRegClass); 15108 else 15109 return std::make_pair(0U, &PPC::VSFRCRegClass); 15110 } 15111 15112 // If we name a VSX register, we can't defer to the base class because it 15113 // will not recognize the correct register (their names will be VSL{0-31} 15114 // and V{0-31} so they won't match). So we match them here. 15115 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15116 int VSNum = atoi(Constraint.data() + 3); 15117 assert(VSNum >= 0 && VSNum <= 63 && 15118 "Attempted to access a vsr out of range"); 15119 if (VSNum < 32) 15120 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15121 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15122 } 15123 std::pair<unsigned, const TargetRegisterClass *> R = 15124 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15125 15126 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15127 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15128 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15129 // register. 15130 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15131 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15132 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15133 PPC::GPRCRegClass.contains(R.first)) 15134 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15135 PPC::sub_32, &PPC::G8RCRegClass), 15136 &PPC::G8RCRegClass); 15137 15138 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15139 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15140 R.first = PPC::CR0; 15141 R.second = &PPC::CRRCRegClass; 15142 } 15143 15144 return R; 15145 } 15146 15147 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15148 /// vector. If it is invalid, don't add anything to Ops. 15149 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15150 std::string &Constraint, 15151 std::vector<SDValue>&Ops, 15152 SelectionDAG &DAG) const { 15153 SDValue Result; 15154 15155 // Only support length 1 constraints. 15156 if (Constraint.length() > 1) return; 15157 15158 char Letter = Constraint[0]; 15159 switch (Letter) { 15160 default: break; 15161 case 'I': 15162 case 'J': 15163 case 'K': 15164 case 'L': 15165 case 'M': 15166 case 'N': 15167 case 'O': 15168 case 'P': { 15169 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15170 if (!CST) return; // Must be an immediate to match. 15171 SDLoc dl(Op); 15172 int64_t Value = CST->getSExtValue(); 15173 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15174 // numbers are printed as such. 15175 switch (Letter) { 15176 default: llvm_unreachable("Unknown constraint letter!"); 15177 case 'I': // "I" is a signed 16-bit constant. 15178 if (isInt<16>(Value)) 15179 Result = DAG.getTargetConstant(Value, dl, TCVT); 15180 break; 15181 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15182 if (isShiftedUInt<16, 16>(Value)) 15183 Result = DAG.getTargetConstant(Value, dl, TCVT); 15184 break; 15185 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15186 if (isShiftedInt<16, 16>(Value)) 15187 Result = DAG.getTargetConstant(Value, dl, TCVT); 15188 break; 15189 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15190 if (isUInt<16>(Value)) 15191 Result = DAG.getTargetConstant(Value, dl, TCVT); 15192 break; 15193 case 'M': // "M" is a constant that is greater than 31. 15194 if (Value > 31) 15195 Result = DAG.getTargetConstant(Value, dl, TCVT); 15196 break; 15197 case 'N': // "N" is a positive constant that is an exact power of two. 15198 if (Value > 0 && isPowerOf2_64(Value)) 15199 Result = DAG.getTargetConstant(Value, dl, TCVT); 15200 break; 15201 case 'O': // "O" is the constant zero. 15202 if (Value == 0) 15203 Result = DAG.getTargetConstant(Value, dl, TCVT); 15204 break; 15205 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15206 if (isInt<16>(-Value)) 15207 Result = DAG.getTargetConstant(Value, dl, TCVT); 15208 break; 15209 } 15210 break; 15211 } 15212 } 15213 15214 if (Result.getNode()) { 15215 Ops.push_back(Result); 15216 return; 15217 } 15218 15219 // Handle standard constraint letters. 15220 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15221 } 15222 15223 // isLegalAddressingMode - Return true if the addressing mode represented 15224 // by AM is legal for this target, for a load/store of the specified type. 15225 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15226 const AddrMode &AM, Type *Ty, 15227 unsigned AS, Instruction *I) const { 15228 // PPC does not allow r+i addressing modes for vectors! 15229 if (Ty->isVectorTy() && AM.BaseOffs != 0) 15230 return false; 15231 15232 // PPC allows a sign-extended 16-bit immediate field. 15233 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15234 return false; 15235 15236 // No global is ever allowed as a base. 15237 if (AM.BaseGV) 15238 return false; 15239 15240 // PPC only support r+r, 15241 switch (AM.Scale) { 15242 case 0: // "r+i" or just "i", depending on HasBaseReg. 15243 break; 15244 case 1: 15245 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15246 return false; 15247 // Otherwise we have r+r or r+i. 15248 break; 15249 case 2: 15250 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15251 return false; 15252 // Allow 2*r as r+r. 15253 break; 15254 default: 15255 // No other scales are supported. 15256 return false; 15257 } 15258 15259 return true; 15260 } 15261 15262 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15263 SelectionDAG &DAG) const { 15264 MachineFunction &MF = DAG.getMachineFunction(); 15265 MachineFrameInfo &MFI = MF.getFrameInfo(); 15266 MFI.setReturnAddressIsTaken(true); 15267 15268 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15269 return SDValue(); 15270 15271 SDLoc dl(Op); 15272 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15273 15274 // Make sure the function does not optimize away the store of the RA to 15275 // the stack. 15276 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15277 FuncInfo->setLRStoreRequired(); 15278 bool isPPC64 = Subtarget.isPPC64(); 15279 auto PtrVT = getPointerTy(MF.getDataLayout()); 15280 15281 if (Depth > 0) { 15282 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15283 SDValue Offset = 15284 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15285 isPPC64 ? MVT::i64 : MVT::i32); 15286 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15287 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15288 MachinePointerInfo()); 15289 } 15290 15291 // Just load the return address off the stack. 15292 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15293 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15294 MachinePointerInfo()); 15295 } 15296 15297 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15298 SelectionDAG &DAG) const { 15299 SDLoc dl(Op); 15300 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15301 15302 MachineFunction &MF = DAG.getMachineFunction(); 15303 MachineFrameInfo &MFI = MF.getFrameInfo(); 15304 MFI.setFrameAddressIsTaken(true); 15305 15306 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15307 bool isPPC64 = PtrVT == MVT::i64; 15308 15309 // Naked functions never have a frame pointer, and so we use r1. For all 15310 // other functions, this decision must be delayed until during PEI. 15311 unsigned FrameReg; 15312 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15313 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15314 else 15315 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15316 15317 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15318 PtrVT); 15319 while (Depth--) 15320 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15321 FrameAddr, MachinePointerInfo()); 15322 return FrameAddr; 15323 } 15324 15325 // FIXME? Maybe this could be a TableGen attribute on some registers and 15326 // this table could be generated automatically from RegInfo. 15327 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15328 const MachineFunction &MF) const { 15329 bool isPPC64 = Subtarget.isPPC64(); 15330 15331 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15332 if (!is64Bit && VT != LLT::scalar(32)) 15333 report_fatal_error("Invalid register global variable type"); 15334 15335 Register Reg = StringSwitch<Register>(RegName) 15336 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15337 .Case("r2", isPPC64 ? Register() : PPC::R2) 15338 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15339 .Default(Register()); 15340 15341 if (Reg) 15342 return Reg; 15343 report_fatal_error("Invalid register name global variable"); 15344 } 15345 15346 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15347 // 32-bit SVR4 ABI access everything as got-indirect. 15348 if (Subtarget.is32BitELFABI()) 15349 return true; 15350 15351 // AIX accesses everything indirectly through the TOC, which is similar to 15352 // the GOT. 15353 if (Subtarget.isAIXABI()) 15354 return true; 15355 15356 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15357 // If it is small or large code model, module locals are accessed 15358 // indirectly by loading their address from .toc/.got. 15359 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15360 return true; 15361 15362 // JumpTable and BlockAddress are accessed as got-indirect. 15363 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15364 return true; 15365 15366 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15367 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15368 15369 return false; 15370 } 15371 15372 bool 15373 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15374 // The PowerPC target isn't yet aware of offsets. 15375 return false; 15376 } 15377 15378 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15379 const CallInst &I, 15380 MachineFunction &MF, 15381 unsigned Intrinsic) const { 15382 switch (Intrinsic) { 15383 case Intrinsic::ppc_qpx_qvlfd: 15384 case Intrinsic::ppc_qpx_qvlfs: 15385 case Intrinsic::ppc_qpx_qvlfcd: 15386 case Intrinsic::ppc_qpx_qvlfcs: 15387 case Intrinsic::ppc_qpx_qvlfiwa: 15388 case Intrinsic::ppc_qpx_qvlfiwz: 15389 case Intrinsic::ppc_altivec_lvx: 15390 case Intrinsic::ppc_altivec_lvxl: 15391 case Intrinsic::ppc_altivec_lvebx: 15392 case Intrinsic::ppc_altivec_lvehx: 15393 case Intrinsic::ppc_altivec_lvewx: 15394 case Intrinsic::ppc_vsx_lxvd2x: 15395 case Intrinsic::ppc_vsx_lxvw4x: { 15396 EVT VT; 15397 switch (Intrinsic) { 15398 case Intrinsic::ppc_altivec_lvebx: 15399 VT = MVT::i8; 15400 break; 15401 case Intrinsic::ppc_altivec_lvehx: 15402 VT = MVT::i16; 15403 break; 15404 case Intrinsic::ppc_altivec_lvewx: 15405 VT = MVT::i32; 15406 break; 15407 case Intrinsic::ppc_vsx_lxvd2x: 15408 VT = MVT::v2f64; 15409 break; 15410 case Intrinsic::ppc_qpx_qvlfd: 15411 VT = MVT::v4f64; 15412 break; 15413 case Intrinsic::ppc_qpx_qvlfs: 15414 VT = MVT::v4f32; 15415 break; 15416 case Intrinsic::ppc_qpx_qvlfcd: 15417 VT = MVT::v2f64; 15418 break; 15419 case Intrinsic::ppc_qpx_qvlfcs: 15420 VT = MVT::v2f32; 15421 break; 15422 default: 15423 VT = MVT::v4i32; 15424 break; 15425 } 15426 15427 Info.opc = ISD::INTRINSIC_W_CHAIN; 15428 Info.memVT = VT; 15429 Info.ptrVal = I.getArgOperand(0); 15430 Info.offset = -VT.getStoreSize()+1; 15431 Info.size = 2*VT.getStoreSize()-1; 15432 Info.align = Align(1); 15433 Info.flags = MachineMemOperand::MOLoad; 15434 return true; 15435 } 15436 case Intrinsic::ppc_qpx_qvlfda: 15437 case Intrinsic::ppc_qpx_qvlfsa: 15438 case Intrinsic::ppc_qpx_qvlfcda: 15439 case Intrinsic::ppc_qpx_qvlfcsa: 15440 case Intrinsic::ppc_qpx_qvlfiwaa: 15441 case Intrinsic::ppc_qpx_qvlfiwza: { 15442 EVT VT; 15443 switch (Intrinsic) { 15444 case Intrinsic::ppc_qpx_qvlfda: 15445 VT = MVT::v4f64; 15446 break; 15447 case Intrinsic::ppc_qpx_qvlfsa: 15448 VT = MVT::v4f32; 15449 break; 15450 case Intrinsic::ppc_qpx_qvlfcda: 15451 VT = MVT::v2f64; 15452 break; 15453 case Intrinsic::ppc_qpx_qvlfcsa: 15454 VT = MVT::v2f32; 15455 break; 15456 default: 15457 VT = MVT::v4i32; 15458 break; 15459 } 15460 15461 Info.opc = ISD::INTRINSIC_W_CHAIN; 15462 Info.memVT = VT; 15463 Info.ptrVal = I.getArgOperand(0); 15464 Info.offset = 0; 15465 Info.size = VT.getStoreSize(); 15466 Info.align = Align(1); 15467 Info.flags = MachineMemOperand::MOLoad; 15468 return true; 15469 } 15470 case Intrinsic::ppc_qpx_qvstfd: 15471 case Intrinsic::ppc_qpx_qvstfs: 15472 case Intrinsic::ppc_qpx_qvstfcd: 15473 case Intrinsic::ppc_qpx_qvstfcs: 15474 case Intrinsic::ppc_qpx_qvstfiw: 15475 case Intrinsic::ppc_altivec_stvx: 15476 case Intrinsic::ppc_altivec_stvxl: 15477 case Intrinsic::ppc_altivec_stvebx: 15478 case Intrinsic::ppc_altivec_stvehx: 15479 case Intrinsic::ppc_altivec_stvewx: 15480 case Intrinsic::ppc_vsx_stxvd2x: 15481 case Intrinsic::ppc_vsx_stxvw4x: { 15482 EVT VT; 15483 switch (Intrinsic) { 15484 case Intrinsic::ppc_altivec_stvebx: 15485 VT = MVT::i8; 15486 break; 15487 case Intrinsic::ppc_altivec_stvehx: 15488 VT = MVT::i16; 15489 break; 15490 case Intrinsic::ppc_altivec_stvewx: 15491 VT = MVT::i32; 15492 break; 15493 case Intrinsic::ppc_vsx_stxvd2x: 15494 VT = MVT::v2f64; 15495 break; 15496 case Intrinsic::ppc_qpx_qvstfd: 15497 VT = MVT::v4f64; 15498 break; 15499 case Intrinsic::ppc_qpx_qvstfs: 15500 VT = MVT::v4f32; 15501 break; 15502 case Intrinsic::ppc_qpx_qvstfcd: 15503 VT = MVT::v2f64; 15504 break; 15505 case Intrinsic::ppc_qpx_qvstfcs: 15506 VT = MVT::v2f32; 15507 break; 15508 default: 15509 VT = MVT::v4i32; 15510 break; 15511 } 15512 15513 Info.opc = ISD::INTRINSIC_VOID; 15514 Info.memVT = VT; 15515 Info.ptrVal = I.getArgOperand(1); 15516 Info.offset = -VT.getStoreSize()+1; 15517 Info.size = 2*VT.getStoreSize()-1; 15518 Info.align = Align(1); 15519 Info.flags = MachineMemOperand::MOStore; 15520 return true; 15521 } 15522 case Intrinsic::ppc_qpx_qvstfda: 15523 case Intrinsic::ppc_qpx_qvstfsa: 15524 case Intrinsic::ppc_qpx_qvstfcda: 15525 case Intrinsic::ppc_qpx_qvstfcsa: 15526 case Intrinsic::ppc_qpx_qvstfiwa: { 15527 EVT VT; 15528 switch (Intrinsic) { 15529 case Intrinsic::ppc_qpx_qvstfda: 15530 VT = MVT::v4f64; 15531 break; 15532 case Intrinsic::ppc_qpx_qvstfsa: 15533 VT = MVT::v4f32; 15534 break; 15535 case Intrinsic::ppc_qpx_qvstfcda: 15536 VT = MVT::v2f64; 15537 break; 15538 case Intrinsic::ppc_qpx_qvstfcsa: 15539 VT = MVT::v2f32; 15540 break; 15541 default: 15542 VT = MVT::v4i32; 15543 break; 15544 } 15545 15546 Info.opc = ISD::INTRINSIC_VOID; 15547 Info.memVT = VT; 15548 Info.ptrVal = I.getArgOperand(1); 15549 Info.offset = 0; 15550 Info.size = VT.getStoreSize(); 15551 Info.align = Align(1); 15552 Info.flags = MachineMemOperand::MOStore; 15553 return true; 15554 } 15555 default: 15556 break; 15557 } 15558 15559 return false; 15560 } 15561 15562 /// It returns EVT::Other if the type should be determined using generic 15563 /// target-independent logic. 15564 EVT PPCTargetLowering::getOptimalMemOpType( 15565 const MemOp &Op, const AttributeList &FuncAttributes) const { 15566 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15567 // When expanding a memset, require at least two QPX instructions to cover 15568 // the cost of loading the value to be stored from the constant pool. 15569 if (Subtarget.hasQPX() && Op.size() >= 32 && 15570 (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) && 15571 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15572 return MVT::v4f64; 15573 } 15574 15575 // We should use Altivec/VSX loads and stores when available. For unaligned 15576 // addresses, unaligned VSX loads are only fast starting with the P8. 15577 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15578 (Op.isAligned(Align(16)) || 15579 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15580 return MVT::v4i32; 15581 } 15582 15583 if (Subtarget.isPPC64()) { 15584 return MVT::i64; 15585 } 15586 15587 return MVT::i32; 15588 } 15589 15590 /// Returns true if it is beneficial to convert a load of a constant 15591 /// to just the constant itself. 15592 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15593 Type *Ty) const { 15594 assert(Ty->isIntegerTy()); 15595 15596 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15597 return !(BitSize == 0 || BitSize > 64); 15598 } 15599 15600 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15601 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15602 return false; 15603 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15604 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15605 return NumBits1 == 64 && NumBits2 == 32; 15606 } 15607 15608 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15609 if (!VT1.isInteger() || !VT2.isInteger()) 15610 return false; 15611 unsigned NumBits1 = VT1.getSizeInBits(); 15612 unsigned NumBits2 = VT2.getSizeInBits(); 15613 return NumBits1 == 64 && NumBits2 == 32; 15614 } 15615 15616 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15617 // Generally speaking, zexts are not free, but they are free when they can be 15618 // folded with other operations. 15619 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15620 EVT MemVT = LD->getMemoryVT(); 15621 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15622 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15623 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15624 LD->getExtensionType() == ISD::ZEXTLOAD)) 15625 return true; 15626 } 15627 15628 // FIXME: Add other cases... 15629 // - 32-bit shifts with a zext to i64 15630 // - zext after ctlz, bswap, etc. 15631 // - zext after and by a constant mask 15632 15633 return TargetLowering::isZExtFree(Val, VT2); 15634 } 15635 15636 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15637 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15638 "invalid fpext types"); 15639 // Extending to float128 is not free. 15640 if (DestVT == MVT::f128) 15641 return false; 15642 return true; 15643 } 15644 15645 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15646 return isInt<16>(Imm) || isUInt<16>(Imm); 15647 } 15648 15649 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15650 return isInt<16>(Imm) || isUInt<16>(Imm); 15651 } 15652 15653 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15654 unsigned, 15655 unsigned, 15656 MachineMemOperand::Flags, 15657 bool *Fast) const { 15658 if (DisablePPCUnaligned) 15659 return false; 15660 15661 // PowerPC supports unaligned memory access for simple non-vector types. 15662 // Although accessing unaligned addresses is not as efficient as accessing 15663 // aligned addresses, it is generally more efficient than manual expansion, 15664 // and generally only traps for software emulation when crossing page 15665 // boundaries. 15666 15667 if (!VT.isSimple()) 15668 return false; 15669 15670 if (VT.isFloatingPoint() && !VT.isVector() && 15671 !Subtarget.allowsUnalignedFPAccess()) 15672 return false; 15673 15674 if (VT.getSimpleVT().isVector()) { 15675 if (Subtarget.hasVSX()) { 15676 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15677 VT != MVT::v4f32 && VT != MVT::v4i32) 15678 return false; 15679 } else { 15680 return false; 15681 } 15682 } 15683 15684 if (VT == MVT::ppcf128) 15685 return false; 15686 15687 if (Fast) 15688 *Fast = true; 15689 15690 return true; 15691 } 15692 15693 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15694 EVT VT) const { 15695 return isFMAFasterThanFMulAndFAdd( 15696 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15697 } 15698 15699 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15700 Type *Ty) const { 15701 switch (Ty->getScalarType()->getTypeID()) { 15702 case Type::FloatTyID: 15703 case Type::DoubleTyID: 15704 return true; 15705 case Type::FP128TyID: 15706 return EnableQuadPrecision && Subtarget.hasP9Vector(); 15707 default: 15708 return false; 15709 } 15710 } 15711 15712 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist. 15713 // FIXME: add more patterns which are profitable to hoist. 15714 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15715 if (I->getOpcode() != Instruction::FMul) 15716 return true; 15717 15718 if (!I->hasOneUse()) 15719 return true; 15720 15721 Instruction *User = I->user_back(); 15722 assert(User && "A single use instruction with no uses."); 15723 15724 if (User->getOpcode() != Instruction::FSub && 15725 User->getOpcode() != Instruction::FAdd) 15726 return true; 15727 15728 const TargetOptions &Options = getTargetMachine().Options; 15729 const Function *F = I->getFunction(); 15730 const DataLayout &DL = F->getParent()->getDataLayout(); 15731 Type *Ty = User->getOperand(0)->getType(); 15732 15733 return !( 15734 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15735 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15736 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15737 } 15738 15739 const MCPhysReg * 15740 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15741 // LR is a callee-save register, but we must treat it as clobbered by any call 15742 // site. Hence we include LR in the scratch registers, which are in turn added 15743 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15744 // to CTR, which is used by any indirect call. 15745 static const MCPhysReg ScratchRegs[] = { 15746 PPC::X12, PPC::LR8, PPC::CTR8, 0 15747 }; 15748 15749 return ScratchRegs; 15750 } 15751 15752 Register PPCTargetLowering::getExceptionPointerRegister( 15753 const Constant *PersonalityFn) const { 15754 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15755 } 15756 15757 Register PPCTargetLowering::getExceptionSelectorRegister( 15758 const Constant *PersonalityFn) const { 15759 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15760 } 15761 15762 bool 15763 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15764 EVT VT , unsigned DefinedValues) const { 15765 if (VT == MVT::v2i64) 15766 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15767 15768 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15769 return true; 15770 15771 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15772 } 15773 15774 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15775 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15776 return TargetLowering::getSchedulingPreference(N); 15777 15778 return Sched::ILP; 15779 } 15780 15781 // Create a fast isel object. 15782 FastISel * 15783 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15784 const TargetLibraryInfo *LibInfo) const { 15785 return PPC::createFastISel(FuncInfo, LibInfo); 15786 } 15787 15788 // 'Inverted' means the FMA opcode after negating one multiplicand. 15789 // For example, (fma -a b c) = (fnmsub a b c) 15790 static unsigned invertFMAOpcode(unsigned Opc) { 15791 switch (Opc) { 15792 default: 15793 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 15794 case ISD::FMA: 15795 return PPCISD::FNMSUB; 15796 case PPCISD::FNMSUB: 15797 return ISD::FMA; 15798 } 15799 } 15800 15801 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 15802 bool LegalOps, bool OptForSize, 15803 NegatibleCost &Cost, 15804 unsigned Depth) const { 15805 if (Depth > SelectionDAG::MaxRecursionDepth) 15806 return SDValue(); 15807 15808 unsigned Opc = Op.getOpcode(); 15809 EVT VT = Op.getValueType(); 15810 SDNodeFlags Flags = Op.getNode()->getFlags(); 15811 15812 switch (Opc) { 15813 case PPCISD::FNMSUB: 15814 // TODO: QPX subtarget is deprecated. No transformation here. 15815 if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX()) 15816 break; 15817 15818 const TargetOptions &Options = getTargetMachine().Options; 15819 SDValue N0 = Op.getOperand(0); 15820 SDValue N1 = Op.getOperand(1); 15821 SDValue N2 = Op.getOperand(2); 15822 SDLoc Loc(Op); 15823 15824 NegatibleCost N2Cost = NegatibleCost::Expensive; 15825 SDValue NegN2 = 15826 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 15827 15828 if (!NegN2) 15829 return SDValue(); 15830 15831 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 15832 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 15833 // These transformations may change sign of zeroes. For example, 15834 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 15835 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 15836 // Try and choose the cheaper one to negate. 15837 NegatibleCost N0Cost = NegatibleCost::Expensive; 15838 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 15839 N0Cost, Depth + 1); 15840 15841 NegatibleCost N1Cost = NegatibleCost::Expensive; 15842 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 15843 N1Cost, Depth + 1); 15844 15845 if (NegN0 && N0Cost <= N1Cost) { 15846 Cost = std::min(N0Cost, N2Cost); 15847 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 15848 } else if (NegN1) { 15849 Cost = std::min(N1Cost, N2Cost); 15850 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 15851 } 15852 } 15853 15854 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 15855 if (isOperationLegal(ISD::FMA, VT)) { 15856 Cost = N2Cost; 15857 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 15858 } 15859 15860 break; 15861 } 15862 15863 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 15864 Cost, Depth); 15865 } 15866 15867 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15868 bool PPCTargetLowering::useLoadStackGuardNode() const { 15869 if (!Subtarget.isTargetLinux()) 15870 return TargetLowering::useLoadStackGuardNode(); 15871 return true; 15872 } 15873 15874 // Override to disable global variable loading on Linux. 15875 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15876 if (!Subtarget.isTargetLinux()) 15877 return TargetLowering::insertSSPDeclarations(M); 15878 } 15879 15880 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15881 bool ForCodeSize) const { 15882 if (!VT.isSimple() || !Subtarget.hasVSX()) 15883 return false; 15884 15885 switch(VT.getSimpleVT().SimpleTy) { 15886 default: 15887 // For FP types that are currently not supported by PPC backend, return 15888 // false. Examples: f16, f80. 15889 return false; 15890 case MVT::f32: 15891 case MVT::f64: 15892 case MVT::ppcf128: 15893 return Imm.isPosZero(); 15894 } 15895 } 15896 15897 // For vector shift operation op, fold 15898 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15899 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15900 SelectionDAG &DAG) { 15901 SDValue N0 = N->getOperand(0); 15902 SDValue N1 = N->getOperand(1); 15903 EVT VT = N0.getValueType(); 15904 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15905 unsigned Opcode = N->getOpcode(); 15906 unsigned TargetOpcode; 15907 15908 switch (Opcode) { 15909 default: 15910 llvm_unreachable("Unexpected shift operation"); 15911 case ISD::SHL: 15912 TargetOpcode = PPCISD::SHL; 15913 break; 15914 case ISD::SRL: 15915 TargetOpcode = PPCISD::SRL; 15916 break; 15917 case ISD::SRA: 15918 TargetOpcode = PPCISD::SRA; 15919 break; 15920 } 15921 15922 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15923 N1->getOpcode() == ISD::AND) 15924 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15925 if (Mask->getZExtValue() == OpSizeInBits - 1) 15926 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15927 15928 return SDValue(); 15929 } 15930 15931 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15932 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15933 return Value; 15934 15935 SDValue N0 = N->getOperand(0); 15936 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15937 if (!Subtarget.isISA3_0() || 15938 N0.getOpcode() != ISD::SIGN_EXTEND || 15939 N0.getOperand(0).getValueType() != MVT::i32 || 15940 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15941 return SDValue(); 15942 15943 // We can't save an operation here if the value is already extended, and 15944 // the existing shift is easier to combine. 15945 SDValue ExtsSrc = N0.getOperand(0); 15946 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15947 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15948 return SDValue(); 15949 15950 SDLoc DL(N0); 15951 SDValue ShiftBy = SDValue(CN1, 0); 15952 // We want the shift amount to be i32 on the extswli, but the shift could 15953 // have an i64. 15954 if (ShiftBy.getValueType() == MVT::i64) 15955 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15956 15957 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15958 ShiftBy); 15959 } 15960 15961 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15962 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15963 return Value; 15964 15965 return SDValue(); 15966 } 15967 15968 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15969 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15970 return Value; 15971 15972 return SDValue(); 15973 } 15974 15975 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15976 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15977 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15978 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15979 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15980 const PPCSubtarget &Subtarget) { 15981 if (!Subtarget.isPPC64()) 15982 return SDValue(); 15983 15984 SDValue LHS = N->getOperand(0); 15985 SDValue RHS = N->getOperand(1); 15986 15987 auto isZextOfCompareWithConstant = [](SDValue Op) { 15988 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15989 Op.getValueType() != MVT::i64) 15990 return false; 15991 15992 SDValue Cmp = Op.getOperand(0); 15993 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15994 Cmp.getOperand(0).getValueType() != MVT::i64) 15995 return false; 15996 15997 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15998 int64_t NegConstant = 0 - Constant->getSExtValue(); 15999 // Due to the limitations of the addi instruction, 16000 // -C is required to be [-32768, 32767]. 16001 return isInt<16>(NegConstant); 16002 } 16003 16004 return false; 16005 }; 16006 16007 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16008 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16009 16010 // If there is a pattern, canonicalize a zext operand to the RHS. 16011 if (LHSHasPattern && !RHSHasPattern) 16012 std::swap(LHS, RHS); 16013 else if (!LHSHasPattern && !RHSHasPattern) 16014 return SDValue(); 16015 16016 SDLoc DL(N); 16017 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16018 SDValue Cmp = RHS.getOperand(0); 16019 SDValue Z = Cmp.getOperand(0); 16020 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16021 16022 assert(Constant && "Constant Should not be a null pointer."); 16023 int64_t NegConstant = 0 - Constant->getSExtValue(); 16024 16025 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16026 default: break; 16027 case ISD::SETNE: { 16028 // when C == 0 16029 // --> addze X, (addic Z, -1).carry 16030 // / 16031 // add X, (zext(setne Z, C))-- 16032 // \ when -32768 <= -C <= 32767 && C != 0 16033 // --> addze X, (addic (addi Z, -C), -1).carry 16034 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16035 DAG.getConstant(NegConstant, DL, MVT::i64)); 16036 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16037 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16038 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16039 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16040 SDValue(Addc.getNode(), 1)); 16041 } 16042 case ISD::SETEQ: { 16043 // when C == 0 16044 // --> addze X, (subfic Z, 0).carry 16045 // / 16046 // add X, (zext(sete Z, C))-- 16047 // \ when -32768 <= -C <= 32767 && C != 0 16048 // --> addze X, (subfic (addi Z, -C), 0).carry 16049 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16050 DAG.getConstant(NegConstant, DL, MVT::i64)); 16051 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16052 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16053 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16054 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16055 SDValue(Subc.getNode(), 1)); 16056 } 16057 } 16058 16059 return SDValue(); 16060 } 16061 16062 // Transform 16063 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16064 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16065 // In this case both C1 and C2 must be known constants. 16066 // C1+C2 must fit into a 34 bit signed integer. 16067 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16068 const PPCSubtarget &Subtarget) { 16069 if (!Subtarget.isUsingPCRelativeCalls()) 16070 return SDValue(); 16071 16072 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16073 // If we find that node try to cast the Global Address and the Constant. 16074 SDValue LHS = N->getOperand(0); 16075 SDValue RHS = N->getOperand(1); 16076 16077 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16078 std::swap(LHS, RHS); 16079 16080 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16081 return SDValue(); 16082 16083 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16084 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16085 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16086 16087 // Check that both casts succeeded. 16088 if (!GSDN || !ConstNode) 16089 return SDValue(); 16090 16091 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16092 SDLoc DL(GSDN); 16093 16094 // The signed int offset needs to fit in 34 bits. 16095 if (!isInt<34>(NewOffset)) 16096 return SDValue(); 16097 16098 // The new global address is a copy of the old global address except 16099 // that it has the updated Offset. 16100 SDValue GA = 16101 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16102 NewOffset, GSDN->getTargetFlags()); 16103 SDValue MatPCRel = 16104 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16105 return MatPCRel; 16106 } 16107 16108 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16109 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16110 return Value; 16111 16112 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16113 return Value; 16114 16115 return SDValue(); 16116 } 16117 16118 // Detect TRUNCATE operations on bitcasts of float128 values. 16119 // What we are looking for here is the situtation where we extract a subset 16120 // of bits from a 128 bit float. 16121 // This can be of two forms: 16122 // 1) BITCAST of f128 feeding TRUNCATE 16123 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16124 // The reason this is required is because we do not have a legal i128 type 16125 // and so we want to prevent having to store the f128 and then reload part 16126 // of it. 16127 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16128 DAGCombinerInfo &DCI) const { 16129 // If we are using CRBits then try that first. 16130 if (Subtarget.useCRBits()) { 16131 // Check if CRBits did anything and return that if it did. 16132 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16133 return CRTruncValue; 16134 } 16135 16136 SDLoc dl(N); 16137 SDValue Op0 = N->getOperand(0); 16138 16139 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16140 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16141 EVT VT = N->getValueType(0); 16142 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16143 return SDValue(); 16144 SDValue Sub = Op0.getOperand(0); 16145 if (Sub.getOpcode() == ISD::SUB) { 16146 SDValue SubOp0 = Sub.getOperand(0); 16147 SDValue SubOp1 = Sub.getOperand(1); 16148 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16149 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16150 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16151 SubOp1.getOperand(0), 16152 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16153 } 16154 } 16155 } 16156 16157 // Looking for a truncate of i128 to i64. 16158 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16159 return SDValue(); 16160 16161 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16162 16163 // SRL feeding TRUNCATE. 16164 if (Op0.getOpcode() == ISD::SRL) { 16165 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16166 // The right shift has to be by 64 bits. 16167 if (!ConstNode || ConstNode->getZExtValue() != 64) 16168 return SDValue(); 16169 16170 // Switch the element number to extract. 16171 EltToExtract = EltToExtract ? 0 : 1; 16172 // Update Op0 past the SRL. 16173 Op0 = Op0.getOperand(0); 16174 } 16175 16176 // BITCAST feeding a TRUNCATE possibly via SRL. 16177 if (Op0.getOpcode() == ISD::BITCAST && 16178 Op0.getValueType() == MVT::i128 && 16179 Op0.getOperand(0).getValueType() == MVT::f128) { 16180 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16181 return DCI.DAG.getNode( 16182 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16183 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16184 } 16185 return SDValue(); 16186 } 16187 16188 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16189 SelectionDAG &DAG = DCI.DAG; 16190 16191 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16192 if (!ConstOpOrElement) 16193 return SDValue(); 16194 16195 // An imul is usually smaller than the alternative sequence for legal type. 16196 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16197 isOperationLegal(ISD::MUL, N->getValueType(0))) 16198 return SDValue(); 16199 16200 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16201 switch (this->Subtarget.getCPUDirective()) { 16202 default: 16203 // TODO: enhance the condition for subtarget before pwr8 16204 return false; 16205 case PPC::DIR_PWR8: 16206 // type mul add shl 16207 // scalar 4 1 1 16208 // vector 7 2 2 16209 return true; 16210 case PPC::DIR_PWR9: 16211 case PPC::DIR_PWR10: 16212 case PPC::DIR_PWR_FUTURE: 16213 // type mul add shl 16214 // scalar 5 2 2 16215 // vector 7 2 2 16216 16217 // The cycle RATIO of related operations are showed as a table above. 16218 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16219 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16220 // are 4, it is always profitable; but for 3 instrs patterns 16221 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16222 // So we should only do it for vector type. 16223 return IsAddOne && IsNeg ? VT.isVector() : true; 16224 } 16225 }; 16226 16227 EVT VT = N->getValueType(0); 16228 SDLoc DL(N); 16229 16230 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16231 bool IsNeg = MulAmt.isNegative(); 16232 APInt MulAmtAbs = MulAmt.abs(); 16233 16234 if ((MulAmtAbs - 1).isPowerOf2()) { 16235 // (mul x, 2^N + 1) => (add (shl x, N), x) 16236 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16237 16238 if (!IsProfitable(IsNeg, true, VT)) 16239 return SDValue(); 16240 16241 SDValue Op0 = N->getOperand(0); 16242 SDValue Op1 = 16243 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16244 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16245 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16246 16247 if (!IsNeg) 16248 return Res; 16249 16250 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16251 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16252 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16253 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16254 16255 if (!IsProfitable(IsNeg, false, VT)) 16256 return SDValue(); 16257 16258 SDValue Op0 = N->getOperand(0); 16259 SDValue Op1 = 16260 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16261 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16262 16263 if (!IsNeg) 16264 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16265 else 16266 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16267 16268 } else { 16269 return SDValue(); 16270 } 16271 } 16272 16273 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16274 // in combiner since we need to check SD flags and other subtarget features. 16275 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16276 DAGCombinerInfo &DCI) const { 16277 SDValue N0 = N->getOperand(0); 16278 SDValue N1 = N->getOperand(1); 16279 SDValue N2 = N->getOperand(2); 16280 SDNodeFlags Flags = N->getFlags(); 16281 EVT VT = N->getValueType(0); 16282 SelectionDAG &DAG = DCI.DAG; 16283 const TargetOptions &Options = getTargetMachine().Options; 16284 unsigned Opc = N->getOpcode(); 16285 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16286 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16287 SDLoc Loc(N); 16288 16289 // TODO: QPX subtarget is deprecated. No transformation here. 16290 if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT) || 16291 (VT.isVector() && !Subtarget.hasVSX())) 16292 return SDValue(); 16293 16294 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16295 // since (fnmsub a b c)=-0 while c-ab=+0. 16296 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16297 return SDValue(); 16298 16299 // (fma (fneg a) b c) => (fnmsub a b c) 16300 // (fnmsub (fneg a) b c) => (fma a b c) 16301 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16302 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16303 16304 // (fma a (fneg b) c) => (fnmsub a b c) 16305 // (fnmsub a (fneg b) c) => (fma a b c) 16306 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16307 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16308 16309 return SDValue(); 16310 } 16311 16312 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16313 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16314 if (!Subtarget.is64BitELFABI()) 16315 return false; 16316 16317 // If not a tail call then no need to proceed. 16318 if (!CI->isTailCall()) 16319 return false; 16320 16321 // If sibling calls have been disabled and tail-calls aren't guaranteed 16322 // there is no reason to duplicate. 16323 auto &TM = getTargetMachine(); 16324 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16325 return false; 16326 16327 // Can't tail call a function called indirectly, or if it has variadic args. 16328 const Function *Callee = CI->getCalledFunction(); 16329 if (!Callee || Callee->isVarArg()) 16330 return false; 16331 16332 // Make sure the callee and caller calling conventions are eligible for tco. 16333 const Function *Caller = CI->getParent()->getParent(); 16334 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16335 CI->getCallingConv())) 16336 return false; 16337 16338 // If the function is local then we have a good chance at tail-calling it 16339 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16340 } 16341 16342 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16343 if (!Subtarget.hasVSX()) 16344 return false; 16345 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16346 return true; 16347 return VT == MVT::f32 || VT == MVT::f64 || 16348 VT == MVT::v4f32 || VT == MVT::v2f64; 16349 } 16350 16351 bool PPCTargetLowering:: 16352 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16353 const Value *Mask = AndI.getOperand(1); 16354 // If the mask is suitable for andi. or andis. we should sink the and. 16355 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16356 // Can't handle constants wider than 64-bits. 16357 if (CI->getBitWidth() > 64) 16358 return false; 16359 int64_t ConstVal = CI->getZExtValue(); 16360 return isUInt<16>(ConstVal) || 16361 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16362 } 16363 16364 // For non-constant masks, we can always use the record-form and. 16365 return true; 16366 } 16367 16368 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16369 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16370 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16371 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16372 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16373 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16374 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16375 assert(Subtarget.hasP9Altivec() && 16376 "Only combine this when P9 altivec supported!"); 16377 EVT VT = N->getValueType(0); 16378 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16379 return SDValue(); 16380 16381 SelectionDAG &DAG = DCI.DAG; 16382 SDLoc dl(N); 16383 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16384 // Even for signed integers, if it's known to be positive (as signed 16385 // integer) due to zero-extended inputs. 16386 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16387 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16388 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16389 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16390 (SubOpcd1 == ISD::ZERO_EXTEND || 16391 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16392 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16393 N->getOperand(0)->getOperand(0), 16394 N->getOperand(0)->getOperand(1), 16395 DAG.getTargetConstant(0, dl, MVT::i32)); 16396 } 16397 16398 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16399 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16400 N->getOperand(0).hasOneUse()) { 16401 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16402 N->getOperand(0)->getOperand(0), 16403 N->getOperand(0)->getOperand(1), 16404 DAG.getTargetConstant(1, dl, MVT::i32)); 16405 } 16406 } 16407 16408 return SDValue(); 16409 } 16410 16411 // For type v4i32/v8ii16/v16i8, transform 16412 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16413 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16414 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16415 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16416 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16417 DAGCombinerInfo &DCI) const { 16418 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16419 assert(Subtarget.hasP9Altivec() && 16420 "Only combine this when P9 altivec supported!"); 16421 16422 SelectionDAG &DAG = DCI.DAG; 16423 SDLoc dl(N); 16424 SDValue Cond = N->getOperand(0); 16425 SDValue TrueOpnd = N->getOperand(1); 16426 SDValue FalseOpnd = N->getOperand(2); 16427 EVT VT = N->getOperand(1).getValueType(); 16428 16429 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16430 FalseOpnd.getOpcode() != ISD::SUB) 16431 return SDValue(); 16432 16433 // ABSD only available for type v4i32/v8i16/v16i8 16434 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16435 return SDValue(); 16436 16437 // At least to save one more dependent computation 16438 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16439 return SDValue(); 16440 16441 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16442 16443 // Can only handle unsigned comparison here 16444 switch (CC) { 16445 default: 16446 return SDValue(); 16447 case ISD::SETUGT: 16448 case ISD::SETUGE: 16449 break; 16450 case ISD::SETULT: 16451 case ISD::SETULE: 16452 std::swap(TrueOpnd, FalseOpnd); 16453 break; 16454 } 16455 16456 SDValue CmpOpnd1 = Cond.getOperand(0); 16457 SDValue CmpOpnd2 = Cond.getOperand(1); 16458 16459 // SETCC CmpOpnd1 CmpOpnd2 cond 16460 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16461 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16462 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16463 TrueOpnd.getOperand(1) == CmpOpnd2 && 16464 FalseOpnd.getOperand(0) == CmpOpnd2 && 16465 FalseOpnd.getOperand(1) == CmpOpnd1) { 16466 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16467 CmpOpnd1, CmpOpnd2, 16468 DAG.getTargetConstant(0, dl, MVT::i32)); 16469 } 16470 16471 return SDValue(); 16472 } 16473