1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnablePPCPCRelTLS(
125     "enable-ppc-pcrel-tls",
126     cl::desc("enable the use of PC relative memops in TLS instructions on PPC"),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   if (Subtarget.isISA3_0()) {
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
176     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
177     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
178     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
179   } else {
180     // No extending loads from f16 or HW conversions back and forth.
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
183     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
184     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
185     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
186     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
187     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
188     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
189   }
190 
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   // PowerPC has pre-inc load and store's.
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
200   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
204   if (!Subtarget.hasSPE()) {
205     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
206     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
207     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
209   }
210 
211   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
212   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
213   for (MVT VT : ScalarIntVTs) {
214     setOperationAction(ISD::ADDC, VT, Legal);
215     setOperationAction(ISD::ADDE, VT, Legal);
216     setOperationAction(ISD::SUBC, VT, Legal);
217     setOperationAction(ISD::SUBE, VT, Legal);
218   }
219 
220   if (Subtarget.useCRBits()) {
221     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 
223     if (isPPC64 || Subtarget.hasFPCVT()) {
224       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
225       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
226                         isPPC64 ? MVT::i64 : MVT::i32);
227       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
228       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
229                         isPPC64 ? MVT::i64 : MVT::i32);
230 
231       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
233                          isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237     } else {
238       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
240       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
242     }
243 
244     // PowerPC does not support direct load/store of condition registers.
245     setOperationAction(ISD::LOAD, MVT::i1, Custom);
246     setOperationAction(ISD::STORE, MVT::i1, Custom);
247 
248     // FIXME: Remove this once the ANDI glue bug is fixed:
249     if (ANDIGlueBug)
250       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
251 
252     for (MVT VT : MVT::integer_valuetypes()) {
253       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
254       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
255       setTruncStoreAction(VT, MVT::i1, Expand);
256     }
257 
258     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
259   }
260 
261   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
262   // PPC (the libcall is not available).
263   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
264   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
265   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
266   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
267 
268   // We do not currently implement these libm ops for PowerPC.
269   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
270   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
271   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
272   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
273   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
274   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
275 
276   // PowerPC has no SREM/UREM instructions unless we are on P9
277   // On P9 we may use a hardware instruction to compute the remainder.
278   // When the result of both the remainder and the division is required it is
279   // more efficient to compute the remainder from the result of the division
280   // rather than use the remainder instruction. The instructions are legalized
281   // directly because the DivRemPairsPass performs the transformation at the IR
282   // level.
283   if (Subtarget.isISA3_0()) {
284     setOperationAction(ISD::SREM, MVT::i32, Legal);
285     setOperationAction(ISD::UREM, MVT::i32, Legal);
286     setOperationAction(ISD::SREM, MVT::i64, Legal);
287     setOperationAction(ISD::UREM, MVT::i64, Legal);
288   } else {
289     setOperationAction(ISD::SREM, MVT::i32, Expand);
290     setOperationAction(ISD::UREM, MVT::i32, Expand);
291     setOperationAction(ISD::SREM, MVT::i64, Expand);
292     setOperationAction(ISD::UREM, MVT::i64, Expand);
293   }
294 
295   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
296   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
297   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
298   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
299   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
300   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
301   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
302   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
303   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
304 
305   // Handle constrained floating-point operations of scalar.
306   // TODO: Handle SPE specific operation.
307   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
308   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
309   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
310   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
311   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
312   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
313 
314   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
315   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
316   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
317   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
318   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
319   if (Subtarget.hasVSX()) {
320     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
321     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
322   }
323 
324   if (Subtarget.hasFSQRT()) {
325     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
326     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
327   }
328 
329   if (Subtarget.hasFPRND()) {
330     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
331     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
332     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
333     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
334 
335     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
336     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
337     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
338     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
339   }
340 
341   // We don't support sin/cos/sqrt/fmod/pow
342   setOperationAction(ISD::FSIN , MVT::f64, Expand);
343   setOperationAction(ISD::FCOS , MVT::f64, Expand);
344   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
345   setOperationAction(ISD::FREM , MVT::f64, Expand);
346   setOperationAction(ISD::FPOW , MVT::f64, Expand);
347   setOperationAction(ISD::FSIN , MVT::f32, Expand);
348   setOperationAction(ISD::FCOS , MVT::f32, Expand);
349   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
350   setOperationAction(ISD::FREM , MVT::f32, Expand);
351   setOperationAction(ISD::FPOW , MVT::f32, Expand);
352   if (Subtarget.hasSPE()) {
353     setOperationAction(ISD::FMA  , MVT::f64, Expand);
354     setOperationAction(ISD::FMA  , MVT::f32, Expand);
355   } else {
356     setOperationAction(ISD::FMA  , MVT::f64, Legal);
357     setOperationAction(ISD::FMA  , MVT::f32, Legal);
358   }
359 
360   if (Subtarget.hasSPE())
361     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
362 
363   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
364 
365   // If we're enabling GP optimizations, use hardware square root
366   if (!Subtarget.hasFSQRT() &&
367       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
368         Subtarget.hasFRE()))
369     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
370 
371   if (!Subtarget.hasFSQRT() &&
372       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
373         Subtarget.hasFRES()))
374     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
375 
376   if (Subtarget.hasFCPSGN()) {
377     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
378     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
379   } else {
380     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
381     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
382   }
383 
384   if (Subtarget.hasFPRND()) {
385     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
386     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
387     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
388     setOperationAction(ISD::FROUND, MVT::f64, Legal);
389 
390     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
391     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
392     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
393     setOperationAction(ISD::FROUND, MVT::f32, Legal);
394   }
395 
396   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
397   // to speed up scalar BSWAP64.
398   // CTPOP or CTTZ were introduced in P8/P9 respectively
399   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
400   if (Subtarget.hasP9Vector())
401     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
402   else
403     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
404   if (Subtarget.isISA3_0()) {
405     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
406     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
407   } else {
408     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
409     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
410   }
411 
412   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
413     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
414     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
415   } else {
416     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
417     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
418   }
419 
420   // PowerPC does not have ROTR
421   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
422   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
423 
424   if (!Subtarget.useCRBits()) {
425     // PowerPC does not have Select
426     setOperationAction(ISD::SELECT, MVT::i32, Expand);
427     setOperationAction(ISD::SELECT, MVT::i64, Expand);
428     setOperationAction(ISD::SELECT, MVT::f32, Expand);
429     setOperationAction(ISD::SELECT, MVT::f64, Expand);
430   }
431 
432   // PowerPC wants to turn select_cc of FP into fsel when possible.
433   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
434   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
435 
436   // PowerPC wants to optimize integer setcc a bit
437   if (!Subtarget.useCRBits())
438     setOperationAction(ISD::SETCC, MVT::i32, Custom);
439 
440   if (Subtarget.hasFPU()) {
441     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
442     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
443     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
444 
445     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
446     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
447     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
448   }
449 
450   // PowerPC does not have BRCOND which requires SetCC
451   if (!Subtarget.useCRBits())
452     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
453 
454   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
455 
456   if (Subtarget.hasSPE()) {
457     // SPE has built-in conversions
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
459     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
460     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
461     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
462     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
463     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
464   } else {
465     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
466     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
467     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
468 
469     // PowerPC does not have [U|S]INT_TO_FP
470     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
471     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
472     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
473     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
474   }
475 
476   if (Subtarget.hasDirectMove() && isPPC64) {
477     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
478     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
479     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
480     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
481     if (TM.Options.UnsafeFPMath) {
482       setOperationAction(ISD::LRINT, MVT::f64, Legal);
483       setOperationAction(ISD::LRINT, MVT::f32, Legal);
484       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
485       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
486       setOperationAction(ISD::LROUND, MVT::f64, Legal);
487       setOperationAction(ISD::LROUND, MVT::f32, Legal);
488       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
489       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
490     }
491   } else {
492     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
493     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
494     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
495     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
496   }
497 
498   // We cannot sextinreg(i1).  Expand to shifts.
499   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
500 
501   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
502   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
503   // support continuation, user-level threading, and etc.. As a result, no
504   // other SjLj exception interfaces are implemented and please don't build
505   // your own exception handling based on them.
506   // LLVM/Clang supports zero-cost DWARF exception handling.
507   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
508   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
509 
510   // We want to legalize GlobalAddress and ConstantPool nodes into the
511   // appropriate instructions to materialize the address.
512   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
513   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
514   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
515   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
516   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
517   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
518   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
519   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
520   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
521   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
522 
523   // TRAP is legal.
524   setOperationAction(ISD::TRAP, MVT::Other, Legal);
525 
526   // TRAMPOLINE is custom lowered.
527   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
528   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
529 
530   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
531   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
532 
533   if (Subtarget.is64BitELFABI()) {
534     // VAARG always uses double-word chunks, so promote anything smaller.
535     setOperationAction(ISD::VAARG, MVT::i1, Promote);
536     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
537     setOperationAction(ISD::VAARG, MVT::i8, Promote);
538     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
539     setOperationAction(ISD::VAARG, MVT::i16, Promote);
540     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
541     setOperationAction(ISD::VAARG, MVT::i32, Promote);
542     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
543     setOperationAction(ISD::VAARG, MVT::Other, Expand);
544   } else if (Subtarget.is32BitELFABI()) {
545     // VAARG is custom lowered with the 32-bit SVR4 ABI.
546     setOperationAction(ISD::VAARG, MVT::Other, Custom);
547     setOperationAction(ISD::VAARG, MVT::i64, Custom);
548   } else
549     setOperationAction(ISD::VAARG, MVT::Other, Expand);
550 
551   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
552   if (Subtarget.is32BitELFABI())
553     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
554   else
555     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
556 
557   // Use the default implementation.
558   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
559   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
560   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
561   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
562   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
563   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
564   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
565   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
566   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
567 
568   // We want to custom lower some of our intrinsics.
569   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
570 
571   // To handle counter-based loop conditions.
572   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
573 
574   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
575   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
576   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
577   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
578 
579   // Comparisons that require checking two conditions.
580   if (Subtarget.hasSPE()) {
581     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
582     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
583     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
584     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
585   }
586   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
587   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
588   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
589   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
590   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
591   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
592   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
593   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
594   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
595   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
596   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
597   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
598 
599   if (Subtarget.has64BitSupport()) {
600     // They also have instructions for converting between i64 and fp.
601     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
602     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
603     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
604     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
605     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
606     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
607     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
608     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
609     // This is just the low 32 bits of a (signed) fp->i64 conversion.
610     // We cannot do this with Promote because i64 is not a legal type.
611     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
612     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
613 
614     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
615       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
616       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
617     }
618   } else {
619     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
620     if (Subtarget.hasSPE()) {
621       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
622       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
623     } else {
624       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
625       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
626     }
627   }
628 
629   // With the instructions enabled under FPCVT, we can do everything.
630   if (Subtarget.hasFPCVT()) {
631     if (Subtarget.has64BitSupport()) {
632       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
633       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
634       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
635       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
636       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
637       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
638       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
639       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
640     }
641 
642     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
643     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
644     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
645     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
646     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
647     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
648     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
649     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
650   }
651 
652   if (Subtarget.use64BitRegs()) {
653     // 64-bit PowerPC implementations can support i64 types directly
654     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
655     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
656     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
657     // 64-bit PowerPC wants to expand i128 shifts itself.
658     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
659     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
660     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
661   } else {
662     // 32-bit PowerPC wants to expand i64 shifts itself.
663     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
664     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
665     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
666   }
667 
668   // PowerPC has better expansions for funnel shifts than the generic
669   // TargetLowering::expandFunnelShift.
670   if (Subtarget.has64BitSupport()) {
671     setOperationAction(ISD::FSHL, MVT::i64, Custom);
672     setOperationAction(ISD::FSHR, MVT::i64, Custom);
673   }
674   setOperationAction(ISD::FSHL, MVT::i32, Custom);
675   setOperationAction(ISD::FSHR, MVT::i32, Custom);
676 
677   if (Subtarget.hasVSX()) {
678     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
679     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
680     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
681     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
682   }
683 
684   if (Subtarget.hasAltivec()) {
685     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
686       setOperationAction(ISD::SADDSAT, VT, Legal);
687       setOperationAction(ISD::SSUBSAT, VT, Legal);
688       setOperationAction(ISD::UADDSAT, VT, Legal);
689       setOperationAction(ISD::USUBSAT, VT, Legal);
690     }
691     // First set operation action for all vector types to expand. Then we
692     // will selectively turn on ones that can be effectively codegen'd.
693     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
694       // add/sub are legal for all supported vector VT's.
695       setOperationAction(ISD::ADD, VT, Legal);
696       setOperationAction(ISD::SUB, VT, Legal);
697 
698       // For v2i64, these are only valid with P8Vector. This is corrected after
699       // the loop.
700       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
701         setOperationAction(ISD::SMAX, VT, Legal);
702         setOperationAction(ISD::SMIN, VT, Legal);
703         setOperationAction(ISD::UMAX, VT, Legal);
704         setOperationAction(ISD::UMIN, VT, Legal);
705       }
706       else {
707         setOperationAction(ISD::SMAX, VT, Expand);
708         setOperationAction(ISD::SMIN, VT, Expand);
709         setOperationAction(ISD::UMAX, VT, Expand);
710         setOperationAction(ISD::UMIN, VT, Expand);
711       }
712 
713       if (Subtarget.hasVSX()) {
714         setOperationAction(ISD::FMAXNUM, VT, Legal);
715         setOperationAction(ISD::FMINNUM, VT, Legal);
716       }
717 
718       // Vector instructions introduced in P8
719       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
720         setOperationAction(ISD::CTPOP, VT, Legal);
721         setOperationAction(ISD::CTLZ, VT, Legal);
722       }
723       else {
724         setOperationAction(ISD::CTPOP, VT, Expand);
725         setOperationAction(ISD::CTLZ, VT, Expand);
726       }
727 
728       // Vector instructions introduced in P9
729       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
730         setOperationAction(ISD::CTTZ, VT, Legal);
731       else
732         setOperationAction(ISD::CTTZ, VT, Expand);
733 
734       // We promote all shuffles to v16i8.
735       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
736       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
737 
738       // We promote all non-typed operations to v4i32.
739       setOperationAction(ISD::AND   , VT, Promote);
740       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
741       setOperationAction(ISD::OR    , VT, Promote);
742       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
743       setOperationAction(ISD::XOR   , VT, Promote);
744       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
745       setOperationAction(ISD::LOAD  , VT, Promote);
746       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
747       setOperationAction(ISD::SELECT, VT, Promote);
748       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
749       setOperationAction(ISD::VSELECT, VT, Legal);
750       setOperationAction(ISD::SELECT_CC, VT, Promote);
751       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
752       setOperationAction(ISD::STORE, VT, Promote);
753       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
754 
755       // No other operations are legal.
756       setOperationAction(ISD::MUL , VT, Expand);
757       setOperationAction(ISD::SDIV, VT, Expand);
758       setOperationAction(ISD::SREM, VT, Expand);
759       setOperationAction(ISD::UDIV, VT, Expand);
760       setOperationAction(ISD::UREM, VT, Expand);
761       setOperationAction(ISD::FDIV, VT, Expand);
762       setOperationAction(ISD::FREM, VT, Expand);
763       setOperationAction(ISD::FNEG, VT, Expand);
764       setOperationAction(ISD::FSQRT, VT, Expand);
765       setOperationAction(ISD::FLOG, VT, Expand);
766       setOperationAction(ISD::FLOG10, VT, Expand);
767       setOperationAction(ISD::FLOG2, VT, Expand);
768       setOperationAction(ISD::FEXP, VT, Expand);
769       setOperationAction(ISD::FEXP2, VT, Expand);
770       setOperationAction(ISD::FSIN, VT, Expand);
771       setOperationAction(ISD::FCOS, VT, Expand);
772       setOperationAction(ISD::FABS, VT, Expand);
773       setOperationAction(ISD::FFLOOR, VT, Expand);
774       setOperationAction(ISD::FCEIL,  VT, Expand);
775       setOperationAction(ISD::FTRUNC, VT, Expand);
776       setOperationAction(ISD::FRINT,  VT, Expand);
777       setOperationAction(ISD::FNEARBYINT, VT, Expand);
778       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
779       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
780       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
781       setOperationAction(ISD::MULHU, VT, Expand);
782       setOperationAction(ISD::MULHS, VT, Expand);
783       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
784       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
785       setOperationAction(ISD::UDIVREM, VT, Expand);
786       setOperationAction(ISD::SDIVREM, VT, Expand);
787       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
788       setOperationAction(ISD::FPOW, VT, Expand);
789       setOperationAction(ISD::BSWAP, VT, Expand);
790       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
791       setOperationAction(ISD::ROTL, VT, Expand);
792       setOperationAction(ISD::ROTR, VT, Expand);
793 
794       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
795         setTruncStoreAction(VT, InnerVT, Expand);
796         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
797         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
798         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
799       }
800     }
801     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
802     if (!Subtarget.hasP8Vector()) {
803       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
804       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
805       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
806       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
807     }
808 
809     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
810       setOperationAction(ISD::ABS, VT, Custom);
811 
812     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
813     // with merges, splats, etc.
814     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
815 
816     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
817     // are cheap, so handle them before they get expanded to scalar.
818     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
819     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
820     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
821     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
822     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
823 
824     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
825     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
826     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
827     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
828     setOperationAction(ISD::SELECT, MVT::v4i32,
829                        Subtarget.useCRBits() ? Legal : Expand);
830     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
831     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
832     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
833     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
834     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
835     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
836     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
837     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
838     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
839     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
840     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
841     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
842     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
843 
844     // Without hasP8Altivec set, v2i64 SMAX isn't available.
845     // But ABS custom lowering requires SMAX support.
846     if (!Subtarget.hasP8Altivec())
847       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
848 
849     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
850     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
851     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
852     if (Subtarget.hasAltivec())
853       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
854         setOperationAction(ISD::ROTL, VT, Legal);
855     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
856     if (Subtarget.hasP8Altivec())
857       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
858 
859     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
860     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
861     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
862     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
863 
864     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
865     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
866 
867     if (Subtarget.hasVSX()) {
868       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
869       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
870     }
871 
872     if (Subtarget.hasP8Altivec())
873       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
874     else
875       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
876 
877     if (Subtarget.isISA3_1()) {
878       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
879       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
880       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
881       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
882       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
883       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
884       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
885       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
886       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
887       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
888       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
889       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
890       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
891     }
892 
893     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
894     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
895 
896     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
897     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
898 
899     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
900     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
901     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
902     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
903 
904     // Altivec does not contain unordered floating-point compare instructions
905     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
906     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
907     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
908     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
909 
910     if (Subtarget.hasVSX()) {
911       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
912       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
913       if (Subtarget.hasP8Vector()) {
914         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
915         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
916       }
917       if (Subtarget.hasDirectMove() && isPPC64) {
918         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
919         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
920         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
921         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
922         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
923         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
924         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
925         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
926       }
927       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
928 
929       // The nearbyint variants are not allowed to raise the inexact exception
930       // so we can only code-gen them with unsafe math.
931       if (TM.Options.UnsafeFPMath) {
932         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
933         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
934       }
935 
936       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
937       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
938       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
939       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
940       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
941       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
942       setOperationAction(ISD::FROUND, MVT::f64, Legal);
943       setOperationAction(ISD::FRINT, MVT::f64, Legal);
944 
945       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
946       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
947       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
948       setOperationAction(ISD::FROUND, MVT::f32, Legal);
949       setOperationAction(ISD::FRINT, MVT::f32, Legal);
950 
951       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
952       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
953 
954       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
955       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
956 
957       // Share the Altivec comparison restrictions.
958       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
959       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
960       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
961       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
962 
963       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
964       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
965 
966       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
967 
968       if (Subtarget.hasP8Vector())
969         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
970 
971       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
972 
973       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
974       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
975       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
976 
977       if (Subtarget.hasP8Altivec()) {
978         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
979         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
980         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
981 
982         // 128 bit shifts can be accomplished via 3 instructions for SHL and
983         // SRL, but not for SRA because of the instructions available:
984         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
985         // doing
986         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
987         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
988         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
989 
990         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
991       }
992       else {
993         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
994         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
995         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
996 
997         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
998 
999         // VSX v2i64 only supports non-arithmetic operations.
1000         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1001         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1002       }
1003 
1004       setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1005 
1006       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1007       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1008       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1009       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1010 
1011       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1012 
1013       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1014       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1015       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1016       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1017       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1018       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1019       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1020       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1021 
1022       // Custom handling for partial vectors of integers converted to
1023       // floating point. We already have optimal handling for v2i32 through
1024       // the DAG combine, so those aren't necessary.
1025       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1026       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1027       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1028       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1029       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1030       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1031       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1032       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1033       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1034       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1035       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1036       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1037       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1038       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1039       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1040       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1041 
1042       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1043       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1044       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1045       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1046       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1047       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1048 
1049       if (Subtarget.hasDirectMove())
1050         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1051       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1052 
1053       // Handle constrained floating-point operations of vector.
1054       // The predictor is `hasVSX` because altivec instruction has
1055       // no exception but VSX vector instruction has.
1056       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1057       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1058       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1059       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1060       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1061       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1062       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1063       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1064       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1065       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1066       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1067       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1068       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1069 
1070       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1071       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1072       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1073       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1074       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1075       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1076       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1077       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1078       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1079       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1080       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1081       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1082       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1083 
1084       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1085     }
1086 
1087     if (Subtarget.hasP8Altivec()) {
1088       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1089       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1090     }
1091 
1092     if (Subtarget.hasP9Vector()) {
1093       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1094       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1095 
1096       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1097       // SRL, but not for SRA because of the instructions available:
1098       // VS{RL} and VS{RL}O.
1099       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1100       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1101       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1102 
1103       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1104       setOperationAction(ISD::FADD, MVT::f128, Legal);
1105       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1106       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1107       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1108       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1109       // No extending loads to f128 on PPC.
1110       for (MVT FPT : MVT::fp_valuetypes())
1111         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1112       setOperationAction(ISD::FMA, MVT::f128, Legal);
1113       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1114       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1115       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1116       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1117       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1118       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1119 
1120       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1121       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1122       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1123       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1124       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1125       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1126 
1127       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1128       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1129       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1130       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1131       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1132       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1133       // No implementation for these ops for PowerPC.
1134       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1135       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1136       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1137       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1138       setOperationAction(ISD::FREM, MVT::f128, Expand);
1139 
1140       // Handle constrained floating-point operations of fp128
1141       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1142       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1143       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1144       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1145       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1146       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1147       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1148       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1149       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1150       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1151       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1152       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1153       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1154       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1155       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1156       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1157       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1158       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1159       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1160       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1161     }
1162 
1163     if (Subtarget.hasP9Altivec()) {
1164       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1165       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1166 
1167       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1168       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1169       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1170       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1171       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1172       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1173       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1174     }
1175   }
1176 
1177   if (Subtarget.has64BitSupport())
1178     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1179 
1180   if (Subtarget.isISA3_1())
1181     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1182 
1183   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1184 
1185   if (!isPPC64) {
1186     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1187     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1188   }
1189 
1190   setBooleanContents(ZeroOrOneBooleanContent);
1191 
1192   if (Subtarget.hasAltivec()) {
1193     // Altivec instructions set fields to all zeros or all ones.
1194     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1195   }
1196 
1197   if (!isPPC64) {
1198     // These libcalls are not available in 32-bit.
1199     setLibcallName(RTLIB::SHL_I128, nullptr);
1200     setLibcallName(RTLIB::SRL_I128, nullptr);
1201     setLibcallName(RTLIB::SRA_I128, nullptr);
1202   }
1203 
1204   if (!isPPC64)
1205     setMaxAtomicSizeInBitsSupported(32);
1206 
1207   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1208 
1209   // We have target-specific dag combine patterns for the following nodes:
1210   setTargetDAGCombine(ISD::ADD);
1211   setTargetDAGCombine(ISD::SHL);
1212   setTargetDAGCombine(ISD::SRA);
1213   setTargetDAGCombine(ISD::SRL);
1214   setTargetDAGCombine(ISD::MUL);
1215   setTargetDAGCombine(ISD::FMA);
1216   setTargetDAGCombine(ISD::SINT_TO_FP);
1217   setTargetDAGCombine(ISD::BUILD_VECTOR);
1218   if (Subtarget.hasFPCVT())
1219     setTargetDAGCombine(ISD::UINT_TO_FP);
1220   setTargetDAGCombine(ISD::LOAD);
1221   setTargetDAGCombine(ISD::STORE);
1222   setTargetDAGCombine(ISD::BR_CC);
1223   if (Subtarget.useCRBits())
1224     setTargetDAGCombine(ISD::BRCOND);
1225   setTargetDAGCombine(ISD::BSWAP);
1226   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1227   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1228   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1229 
1230   setTargetDAGCombine(ISD::SIGN_EXTEND);
1231   setTargetDAGCombine(ISD::ZERO_EXTEND);
1232   setTargetDAGCombine(ISD::ANY_EXTEND);
1233 
1234   setTargetDAGCombine(ISD::TRUNCATE);
1235   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1236 
1237 
1238   if (Subtarget.useCRBits()) {
1239     setTargetDAGCombine(ISD::TRUNCATE);
1240     setTargetDAGCombine(ISD::SETCC);
1241     setTargetDAGCombine(ISD::SELECT_CC);
1242   }
1243 
1244   if (Subtarget.hasP9Altivec()) {
1245     setTargetDAGCombine(ISD::ABS);
1246     setTargetDAGCombine(ISD::VSELECT);
1247   }
1248 
1249   setLibcallName(RTLIB::LOG_F128, "logf128");
1250   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1251   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1252   setLibcallName(RTLIB::EXP_F128, "expf128");
1253   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1254   setLibcallName(RTLIB::SIN_F128, "sinf128");
1255   setLibcallName(RTLIB::COS_F128, "cosf128");
1256   setLibcallName(RTLIB::POW_F128, "powf128");
1257   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1258   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1259   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1260   setLibcallName(RTLIB::REM_F128, "fmodf128");
1261 
1262   // With 32 condition bits, we don't need to sink (and duplicate) compares
1263   // aggressively in CodeGenPrep.
1264   if (Subtarget.useCRBits()) {
1265     setHasMultipleConditionRegisters();
1266     setJumpIsExpensive();
1267   }
1268 
1269   setMinFunctionAlignment(Align(4));
1270 
1271   switch (Subtarget.getCPUDirective()) {
1272   default: break;
1273   case PPC::DIR_970:
1274   case PPC::DIR_A2:
1275   case PPC::DIR_E500:
1276   case PPC::DIR_E500mc:
1277   case PPC::DIR_E5500:
1278   case PPC::DIR_PWR4:
1279   case PPC::DIR_PWR5:
1280   case PPC::DIR_PWR5X:
1281   case PPC::DIR_PWR6:
1282   case PPC::DIR_PWR6X:
1283   case PPC::DIR_PWR7:
1284   case PPC::DIR_PWR8:
1285   case PPC::DIR_PWR9:
1286   case PPC::DIR_PWR10:
1287   case PPC::DIR_PWR_FUTURE:
1288     setPrefLoopAlignment(Align(16));
1289     setPrefFunctionAlignment(Align(16));
1290     break;
1291   }
1292 
1293   if (Subtarget.enableMachineScheduler())
1294     setSchedulingPreference(Sched::Source);
1295   else
1296     setSchedulingPreference(Sched::Hybrid);
1297 
1298   computeRegisterProperties(STI.getRegisterInfo());
1299 
1300   // The Freescale cores do better with aggressive inlining of memcpy and
1301   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1302   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1303       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1304     MaxStoresPerMemset = 32;
1305     MaxStoresPerMemsetOptSize = 16;
1306     MaxStoresPerMemcpy = 32;
1307     MaxStoresPerMemcpyOptSize = 8;
1308     MaxStoresPerMemmove = 32;
1309     MaxStoresPerMemmoveOptSize = 8;
1310   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1311     // The A2 also benefits from (very) aggressive inlining of memcpy and
1312     // friends. The overhead of a the function call, even when warm, can be
1313     // over one hundred cycles.
1314     MaxStoresPerMemset = 128;
1315     MaxStoresPerMemcpy = 128;
1316     MaxStoresPerMemmove = 128;
1317     MaxLoadsPerMemcmp = 128;
1318   } else {
1319     MaxLoadsPerMemcmp = 8;
1320     MaxLoadsPerMemcmpOptSize = 4;
1321   }
1322 
1323   IsStrictFPEnabled = true;
1324 
1325   // Let the subtarget (CPU) decide if a predictable select is more expensive
1326   // than the corresponding branch. This information is used in CGP to decide
1327   // when to convert selects into branches.
1328   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1329 }
1330 
1331 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1332 /// the desired ByVal argument alignment.
1333 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1334   if (MaxAlign == MaxMaxAlign)
1335     return;
1336   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1337     if (MaxMaxAlign >= 32 &&
1338         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1339       MaxAlign = Align(32);
1340     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1341              MaxAlign < 16)
1342       MaxAlign = Align(16);
1343   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1344     Align EltAlign;
1345     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1346     if (EltAlign > MaxAlign)
1347       MaxAlign = EltAlign;
1348   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1349     for (auto *EltTy : STy->elements()) {
1350       Align EltAlign;
1351       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1352       if (EltAlign > MaxAlign)
1353         MaxAlign = EltAlign;
1354       if (MaxAlign == MaxMaxAlign)
1355         break;
1356     }
1357   }
1358 }
1359 
1360 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1361 /// function arguments in the caller parameter area.
1362 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1363                                                   const DataLayout &DL) const {
1364   // 16byte and wider vectors are passed on 16byte boundary.
1365   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1366   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1367   if (Subtarget.hasAltivec())
1368     getMaxByValAlign(Ty, Alignment, Align(16));
1369   return Alignment.value();
1370 }
1371 
1372 bool PPCTargetLowering::useSoftFloat() const {
1373   return Subtarget.useSoftFloat();
1374 }
1375 
1376 bool PPCTargetLowering::hasSPE() const {
1377   return Subtarget.hasSPE();
1378 }
1379 
1380 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1381   return VT.isScalarInteger();
1382 }
1383 
1384 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1385 /// type is cheaper than a multiply followed by a shift.
1386 /// This is true for words and doublewords on 64-bit PowerPC.
1387 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1388   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1389                               isOperationLegal(ISD::MULHU, Type)))
1390     return true;
1391   return TargetLowering::isMulhCheaperThanMulShift(Type);
1392 }
1393 
1394 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1395   switch ((PPCISD::NodeType)Opcode) {
1396   case PPCISD::FIRST_NUMBER:    break;
1397   case PPCISD::FSEL:            return "PPCISD::FSEL";
1398   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1399   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1400   case PPCISD::FCFID:           return "PPCISD::FCFID";
1401   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1402   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1403   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1404   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1405   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1406   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1407   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1408   case PPCISD::FP_TO_UINT_IN_VSR:
1409                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1410   case PPCISD::FP_TO_SINT_IN_VSR:
1411                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1412   case PPCISD::FRE:             return "PPCISD::FRE";
1413   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1414   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1415   case PPCISD::VPERM:           return "PPCISD::VPERM";
1416   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1417   case PPCISD::XXSPLTI_SP_TO_DP:
1418     return "PPCISD::XXSPLTI_SP_TO_DP";
1419   case PPCISD::XXSPLTI32DX:
1420     return "PPCISD::XXSPLTI32DX";
1421   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1422   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1423   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1424   case PPCISD::CMPB:            return "PPCISD::CMPB";
1425   case PPCISD::Hi:              return "PPCISD::Hi";
1426   case PPCISD::Lo:              return "PPCISD::Lo";
1427   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1428   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1429   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1430   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1431   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1432   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1433   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1434   case PPCISD::SRL:             return "PPCISD::SRL";
1435   case PPCISD::SRA:             return "PPCISD::SRA";
1436   case PPCISD::SHL:             return "PPCISD::SHL";
1437   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1438   case PPCISD::CALL:            return "PPCISD::CALL";
1439   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1440   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1441   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1442   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1443   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1444   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1445   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1446   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1447   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1448   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1449   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1450   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1451   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1452   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1453   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1454   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1455     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1456   case PPCISD::ANDI_rec_1_EQ_BIT:
1457     return "PPCISD::ANDI_rec_1_EQ_BIT";
1458   case PPCISD::ANDI_rec_1_GT_BIT:
1459     return "PPCISD::ANDI_rec_1_GT_BIT";
1460   case PPCISD::VCMP:            return "PPCISD::VCMP";
1461   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1462   case PPCISD::LBRX:            return "PPCISD::LBRX";
1463   case PPCISD::STBRX:           return "PPCISD::STBRX";
1464   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1465   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1466   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1467   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1468   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1469   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1470   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1471   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1472   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1473   case PPCISD::ST_VSR_SCAL_INT:
1474                                 return "PPCISD::ST_VSR_SCAL_INT";
1475   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1476   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1477   case PPCISD::BDZ:             return "PPCISD::BDZ";
1478   case PPCISD::MFFS:            return "PPCISD::MFFS";
1479   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1480   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1481   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1482   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1483   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1484   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1485   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1486   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1487   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1488   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1489   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1490   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1491   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1492   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1493   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1494   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1495   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1496   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1497   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1498   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1499   case PPCISD::SC:              return "PPCISD::SC";
1500   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1501   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1502   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1503   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1504   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1505   case PPCISD::VABSD:           return "PPCISD::VABSD";
1506   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1507   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1508   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1509   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1510   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1511   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1512   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1513   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1514     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1515   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1516   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1517   case PPCISD::STRICT_FADDRTZ:
1518     return "PPCISD::STRICT_FADDRTZ";
1519   case PPCISD::STRICT_FCTIDZ:
1520     return "PPCISD::STRICT_FCTIDZ";
1521   case PPCISD::STRICT_FCTIWZ:
1522     return "PPCISD::STRICT_FCTIWZ";
1523   case PPCISD::STRICT_FCTIDUZ:
1524     return "PPCISD::STRICT_FCTIDUZ";
1525   case PPCISD::STRICT_FCTIWUZ:
1526     return "PPCISD::STRICT_FCTIWUZ";
1527   case PPCISD::STRICT_FCFID:
1528     return "PPCISD::STRICT_FCFID";
1529   case PPCISD::STRICT_FCFIDU:
1530     return "PPCISD::STRICT_FCFIDU";
1531   case PPCISD::STRICT_FCFIDS:
1532     return "PPCISD::STRICT_FCFIDS";
1533   case PPCISD::STRICT_FCFIDUS:
1534     return "PPCISD::STRICT_FCFIDUS";
1535   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1536   }
1537   return nullptr;
1538 }
1539 
1540 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1541                                           EVT VT) const {
1542   if (!VT.isVector())
1543     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1544 
1545   return VT.changeVectorElementTypeToInteger();
1546 }
1547 
1548 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1549   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1550   return true;
1551 }
1552 
1553 //===----------------------------------------------------------------------===//
1554 // Node matching predicates, for use by the tblgen matching code.
1555 //===----------------------------------------------------------------------===//
1556 
1557 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1558 static bool isFloatingPointZero(SDValue Op) {
1559   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1560     return CFP->getValueAPF().isZero();
1561   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1562     // Maybe this has already been legalized into the constant pool?
1563     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1564       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1565         return CFP->getValueAPF().isZero();
1566   }
1567   return false;
1568 }
1569 
1570 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1571 /// true if Op is undef or if it matches the specified value.
1572 static bool isConstantOrUndef(int Op, int Val) {
1573   return Op < 0 || Op == Val;
1574 }
1575 
1576 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1577 /// VPKUHUM instruction.
1578 /// The ShuffleKind distinguishes between big-endian operations with
1579 /// two different inputs (0), either-endian operations with two identical
1580 /// inputs (1), and little-endian operations with two different inputs (2).
1581 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1582 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1583                                SelectionDAG &DAG) {
1584   bool IsLE = DAG.getDataLayout().isLittleEndian();
1585   if (ShuffleKind == 0) {
1586     if (IsLE)
1587       return false;
1588     for (unsigned i = 0; i != 16; ++i)
1589       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1590         return false;
1591   } else if (ShuffleKind == 2) {
1592     if (!IsLE)
1593       return false;
1594     for (unsigned i = 0; i != 16; ++i)
1595       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1596         return false;
1597   } else if (ShuffleKind == 1) {
1598     unsigned j = IsLE ? 0 : 1;
1599     for (unsigned i = 0; i != 8; ++i)
1600       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1601           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1602         return false;
1603   }
1604   return true;
1605 }
1606 
1607 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1608 /// VPKUWUM instruction.
1609 /// The ShuffleKind distinguishes between big-endian operations with
1610 /// two different inputs (0), either-endian operations with two identical
1611 /// inputs (1), and little-endian operations with two different inputs (2).
1612 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1613 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1614                                SelectionDAG &DAG) {
1615   bool IsLE = DAG.getDataLayout().isLittleEndian();
1616   if (ShuffleKind == 0) {
1617     if (IsLE)
1618       return false;
1619     for (unsigned i = 0; i != 16; i += 2)
1620       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1621           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1622         return false;
1623   } else if (ShuffleKind == 2) {
1624     if (!IsLE)
1625       return false;
1626     for (unsigned i = 0; i != 16; i += 2)
1627       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1628           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1629         return false;
1630   } else if (ShuffleKind == 1) {
1631     unsigned j = IsLE ? 0 : 2;
1632     for (unsigned i = 0; i != 8; i += 2)
1633       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1634           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1635           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1636           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1637         return false;
1638   }
1639   return true;
1640 }
1641 
1642 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1643 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1644 /// current subtarget.
1645 ///
1646 /// The ShuffleKind distinguishes between big-endian operations with
1647 /// two different inputs (0), either-endian operations with two identical
1648 /// inputs (1), and little-endian operations with two different inputs (2).
1649 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1650 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1651                                SelectionDAG &DAG) {
1652   const PPCSubtarget& Subtarget =
1653       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1654   if (!Subtarget.hasP8Vector())
1655     return false;
1656 
1657   bool IsLE = DAG.getDataLayout().isLittleEndian();
1658   if (ShuffleKind == 0) {
1659     if (IsLE)
1660       return false;
1661     for (unsigned i = 0; i != 16; i += 4)
1662       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1663           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1664           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1665           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1666         return false;
1667   } else if (ShuffleKind == 2) {
1668     if (!IsLE)
1669       return false;
1670     for (unsigned i = 0; i != 16; i += 4)
1671       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1672           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1673           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1674           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1675         return false;
1676   } else if (ShuffleKind == 1) {
1677     unsigned j = IsLE ? 0 : 4;
1678     for (unsigned i = 0; i != 8; i += 4)
1679       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1680           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1681           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1682           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1683           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1684           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1685           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1686           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1687         return false;
1688   }
1689   return true;
1690 }
1691 
1692 /// isVMerge - Common function, used to match vmrg* shuffles.
1693 ///
1694 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1695                      unsigned LHSStart, unsigned RHSStart) {
1696   if (N->getValueType(0) != MVT::v16i8)
1697     return false;
1698   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1699          "Unsupported merge size!");
1700 
1701   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1702     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1703       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1704                              LHSStart+j+i*UnitSize) ||
1705           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1706                              RHSStart+j+i*UnitSize))
1707         return false;
1708     }
1709   return true;
1710 }
1711 
1712 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1713 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1714 /// The ShuffleKind distinguishes between big-endian merges with two
1715 /// different inputs (0), either-endian merges with two identical inputs (1),
1716 /// and little-endian merges with two different inputs (2).  For the latter,
1717 /// the input operands are swapped (see PPCInstrAltivec.td).
1718 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1719                              unsigned ShuffleKind, SelectionDAG &DAG) {
1720   if (DAG.getDataLayout().isLittleEndian()) {
1721     if (ShuffleKind == 1) // unary
1722       return isVMerge(N, UnitSize, 0, 0);
1723     else if (ShuffleKind == 2) // swapped
1724       return isVMerge(N, UnitSize, 0, 16);
1725     else
1726       return false;
1727   } else {
1728     if (ShuffleKind == 1) // unary
1729       return isVMerge(N, UnitSize, 8, 8);
1730     else if (ShuffleKind == 0) // normal
1731       return isVMerge(N, UnitSize, 8, 24);
1732     else
1733       return false;
1734   }
1735 }
1736 
1737 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1738 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1739 /// The ShuffleKind distinguishes between big-endian merges with two
1740 /// different inputs (0), either-endian merges with two identical inputs (1),
1741 /// and little-endian merges with two different inputs (2).  For the latter,
1742 /// the input operands are swapped (see PPCInstrAltivec.td).
1743 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1744                              unsigned ShuffleKind, SelectionDAG &DAG) {
1745   if (DAG.getDataLayout().isLittleEndian()) {
1746     if (ShuffleKind == 1) // unary
1747       return isVMerge(N, UnitSize, 8, 8);
1748     else if (ShuffleKind == 2) // swapped
1749       return isVMerge(N, UnitSize, 8, 24);
1750     else
1751       return false;
1752   } else {
1753     if (ShuffleKind == 1) // unary
1754       return isVMerge(N, UnitSize, 0, 0);
1755     else if (ShuffleKind == 0) // normal
1756       return isVMerge(N, UnitSize, 0, 16);
1757     else
1758       return false;
1759   }
1760 }
1761 
1762 /**
1763  * Common function used to match vmrgew and vmrgow shuffles
1764  *
1765  * The indexOffset determines whether to look for even or odd words in
1766  * the shuffle mask. This is based on the of the endianness of the target
1767  * machine.
1768  *   - Little Endian:
1769  *     - Use offset of 0 to check for odd elements
1770  *     - Use offset of 4 to check for even elements
1771  *   - Big Endian:
1772  *     - Use offset of 0 to check for even elements
1773  *     - Use offset of 4 to check for odd elements
1774  * A detailed description of the vector element ordering for little endian and
1775  * big endian can be found at
1776  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1777  * Targeting your applications - what little endian and big endian IBM XL C/C++
1778  * compiler differences mean to you
1779  *
1780  * The mask to the shuffle vector instruction specifies the indices of the
1781  * elements from the two input vectors to place in the result. The elements are
1782  * numbered in array-access order, starting with the first vector. These vectors
1783  * are always of type v16i8, thus each vector will contain 16 elements of size
1784  * 8. More info on the shuffle vector can be found in the
1785  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1786  * Language Reference.
1787  *
1788  * The RHSStartValue indicates whether the same input vectors are used (unary)
1789  * or two different input vectors are used, based on the following:
1790  *   - If the instruction uses the same vector for both inputs, the range of the
1791  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1792  *     be 0.
1793  *   - If the instruction has two different vectors then the range of the
1794  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1795  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1796  *     to 31 specify elements in the second vector).
1797  *
1798  * \param[in] N The shuffle vector SD Node to analyze
1799  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1800  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1801  * vector to the shuffle_vector instruction
1802  * \return true iff this shuffle vector represents an even or odd word merge
1803  */
1804 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1805                      unsigned RHSStartValue) {
1806   if (N->getValueType(0) != MVT::v16i8)
1807     return false;
1808 
1809   for (unsigned i = 0; i < 2; ++i)
1810     for (unsigned j = 0; j < 4; ++j)
1811       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1812                              i*RHSStartValue+j+IndexOffset) ||
1813           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1814                              i*RHSStartValue+j+IndexOffset+8))
1815         return false;
1816   return true;
1817 }
1818 
1819 /**
1820  * Determine if the specified shuffle mask is suitable for the vmrgew or
1821  * vmrgow instructions.
1822  *
1823  * \param[in] N The shuffle vector SD Node to analyze
1824  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1825  * \param[in] ShuffleKind Identify the type of merge:
1826  *   - 0 = big-endian merge with two different inputs;
1827  *   - 1 = either-endian merge with two identical inputs;
1828  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1829  *     little-endian merges).
1830  * \param[in] DAG The current SelectionDAG
1831  * \return true iff this shuffle mask
1832  */
1833 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1834                               unsigned ShuffleKind, SelectionDAG &DAG) {
1835   if (DAG.getDataLayout().isLittleEndian()) {
1836     unsigned indexOffset = CheckEven ? 4 : 0;
1837     if (ShuffleKind == 1) // Unary
1838       return isVMerge(N, indexOffset, 0);
1839     else if (ShuffleKind == 2) // swapped
1840       return isVMerge(N, indexOffset, 16);
1841     else
1842       return false;
1843   }
1844   else {
1845     unsigned indexOffset = CheckEven ? 0 : 4;
1846     if (ShuffleKind == 1) // Unary
1847       return isVMerge(N, indexOffset, 0);
1848     else if (ShuffleKind == 0) // Normal
1849       return isVMerge(N, indexOffset, 16);
1850     else
1851       return false;
1852   }
1853   return false;
1854 }
1855 
1856 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1857 /// amount, otherwise return -1.
1858 /// The ShuffleKind distinguishes between big-endian operations with two
1859 /// different inputs (0), either-endian operations with two identical inputs
1860 /// (1), and little-endian operations with two different inputs (2).  For the
1861 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1862 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1863                              SelectionDAG &DAG) {
1864   if (N->getValueType(0) != MVT::v16i8)
1865     return -1;
1866 
1867   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1868 
1869   // Find the first non-undef value in the shuffle mask.
1870   unsigned i;
1871   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1872     /*search*/;
1873 
1874   if (i == 16) return -1;  // all undef.
1875 
1876   // Otherwise, check to see if the rest of the elements are consecutively
1877   // numbered from this value.
1878   unsigned ShiftAmt = SVOp->getMaskElt(i);
1879   if (ShiftAmt < i) return -1;
1880 
1881   ShiftAmt -= i;
1882   bool isLE = DAG.getDataLayout().isLittleEndian();
1883 
1884   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1885     // Check the rest of the elements to see if they are consecutive.
1886     for (++i; i != 16; ++i)
1887       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1888         return -1;
1889   } else if (ShuffleKind == 1) {
1890     // Check the rest of the elements to see if they are consecutive.
1891     for (++i; i != 16; ++i)
1892       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1893         return -1;
1894   } else
1895     return -1;
1896 
1897   if (isLE)
1898     ShiftAmt = 16 - ShiftAmt;
1899 
1900   return ShiftAmt;
1901 }
1902 
1903 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1904 /// specifies a splat of a single element that is suitable for input to
1905 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1906 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1907   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1908          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1909 
1910   // The consecutive indices need to specify an element, not part of two
1911   // different elements.  So abandon ship early if this isn't the case.
1912   if (N->getMaskElt(0) % EltSize != 0)
1913     return false;
1914 
1915   // This is a splat operation if each element of the permute is the same, and
1916   // if the value doesn't reference the second vector.
1917   unsigned ElementBase = N->getMaskElt(0);
1918 
1919   // FIXME: Handle UNDEF elements too!
1920   if (ElementBase >= 16)
1921     return false;
1922 
1923   // Check that the indices are consecutive, in the case of a multi-byte element
1924   // splatted with a v16i8 mask.
1925   for (unsigned i = 1; i != EltSize; ++i)
1926     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1927       return false;
1928 
1929   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1930     if (N->getMaskElt(i) < 0) continue;
1931     for (unsigned j = 0; j != EltSize; ++j)
1932       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1933         return false;
1934   }
1935   return true;
1936 }
1937 
1938 /// Check that the mask is shuffling N byte elements. Within each N byte
1939 /// element of the mask, the indices could be either in increasing or
1940 /// decreasing order as long as they are consecutive.
1941 /// \param[in] N the shuffle vector SD Node to analyze
1942 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1943 /// Word/DoubleWord/QuadWord).
1944 /// \param[in] StepLen the delta indices number among the N byte element, if
1945 /// the mask is in increasing/decreasing order then it is 1/-1.
1946 /// \return true iff the mask is shuffling N byte elements.
1947 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1948                                    int StepLen) {
1949   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1950          "Unexpected element width.");
1951   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1952 
1953   unsigned NumOfElem = 16 / Width;
1954   unsigned MaskVal[16]; //  Width is never greater than 16
1955   for (unsigned i = 0; i < NumOfElem; ++i) {
1956     MaskVal[0] = N->getMaskElt(i * Width);
1957     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1958       return false;
1959     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1960       return false;
1961     }
1962 
1963     for (unsigned int j = 1; j < Width; ++j) {
1964       MaskVal[j] = N->getMaskElt(i * Width + j);
1965       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1966         return false;
1967       }
1968     }
1969   }
1970 
1971   return true;
1972 }
1973 
1974 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1975                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1976   if (!isNByteElemShuffleMask(N, 4, 1))
1977     return false;
1978 
1979   // Now we look at mask elements 0,4,8,12
1980   unsigned M0 = N->getMaskElt(0) / 4;
1981   unsigned M1 = N->getMaskElt(4) / 4;
1982   unsigned M2 = N->getMaskElt(8) / 4;
1983   unsigned M3 = N->getMaskElt(12) / 4;
1984   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1985   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1986 
1987   // Below, let H and L be arbitrary elements of the shuffle mask
1988   // where H is in the range [4,7] and L is in the range [0,3].
1989   // H, 1, 2, 3 or L, 5, 6, 7
1990   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1991       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1992     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1993     InsertAtByte = IsLE ? 12 : 0;
1994     Swap = M0 < 4;
1995     return true;
1996   }
1997   // 0, H, 2, 3 or 4, L, 6, 7
1998   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1999       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2000     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2001     InsertAtByte = IsLE ? 8 : 4;
2002     Swap = M1 < 4;
2003     return true;
2004   }
2005   // 0, 1, H, 3 or 4, 5, L, 7
2006   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2007       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2008     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2009     InsertAtByte = IsLE ? 4 : 8;
2010     Swap = M2 < 4;
2011     return true;
2012   }
2013   // 0, 1, 2, H or 4, 5, 6, L
2014   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2015       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2016     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2017     InsertAtByte = IsLE ? 0 : 12;
2018     Swap = M3 < 4;
2019     return true;
2020   }
2021 
2022   // If both vector operands for the shuffle are the same vector, the mask will
2023   // contain only elements from the first one and the second one will be undef.
2024   if (N->getOperand(1).isUndef()) {
2025     ShiftElts = 0;
2026     Swap = true;
2027     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2028     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2029       InsertAtByte = IsLE ? 12 : 0;
2030       return true;
2031     }
2032     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2033       InsertAtByte = IsLE ? 8 : 4;
2034       return true;
2035     }
2036     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2037       InsertAtByte = IsLE ? 4 : 8;
2038       return true;
2039     }
2040     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2041       InsertAtByte = IsLE ? 0 : 12;
2042       return true;
2043     }
2044   }
2045 
2046   return false;
2047 }
2048 
2049 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2050                                bool &Swap, bool IsLE) {
2051   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2052   // Ensure each byte index of the word is consecutive.
2053   if (!isNByteElemShuffleMask(N, 4, 1))
2054     return false;
2055 
2056   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2057   unsigned M0 = N->getMaskElt(0) / 4;
2058   unsigned M1 = N->getMaskElt(4) / 4;
2059   unsigned M2 = N->getMaskElt(8) / 4;
2060   unsigned M3 = N->getMaskElt(12) / 4;
2061 
2062   // If both vector operands for the shuffle are the same vector, the mask will
2063   // contain only elements from the first one and the second one will be undef.
2064   if (N->getOperand(1).isUndef()) {
2065     assert(M0 < 4 && "Indexing into an undef vector?");
2066     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2067       return false;
2068 
2069     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2070     Swap = false;
2071     return true;
2072   }
2073 
2074   // Ensure each word index of the ShuffleVector Mask is consecutive.
2075   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2076     return false;
2077 
2078   if (IsLE) {
2079     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2080       // Input vectors don't need to be swapped if the leading element
2081       // of the result is one of the 3 left elements of the second vector
2082       // (or if there is no shift to be done at all).
2083       Swap = false;
2084       ShiftElts = (8 - M0) % 8;
2085     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2086       // Input vectors need to be swapped if the leading element
2087       // of the result is one of the 3 left elements of the first vector
2088       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2089       Swap = true;
2090       ShiftElts = (4 - M0) % 4;
2091     }
2092 
2093     return true;
2094   } else {                                          // BE
2095     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2096       // Input vectors don't need to be swapped if the leading element
2097       // of the result is one of the 4 elements of the first vector.
2098       Swap = false;
2099       ShiftElts = M0;
2100     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2101       // Input vectors need to be swapped if the leading element
2102       // of the result is one of the 4 elements of the right vector.
2103       Swap = true;
2104       ShiftElts = M0 - 4;
2105     }
2106 
2107     return true;
2108   }
2109 }
2110 
2111 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2112   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2113 
2114   if (!isNByteElemShuffleMask(N, Width, -1))
2115     return false;
2116 
2117   for (int i = 0; i < 16; i += Width)
2118     if (N->getMaskElt(i) != i + Width - 1)
2119       return false;
2120 
2121   return true;
2122 }
2123 
2124 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2125   return isXXBRShuffleMaskHelper(N, 2);
2126 }
2127 
2128 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2129   return isXXBRShuffleMaskHelper(N, 4);
2130 }
2131 
2132 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2133   return isXXBRShuffleMaskHelper(N, 8);
2134 }
2135 
2136 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2137   return isXXBRShuffleMaskHelper(N, 16);
2138 }
2139 
2140 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2141 /// if the inputs to the instruction should be swapped and set \p DM to the
2142 /// value for the immediate.
2143 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2144 /// AND element 0 of the result comes from the first input (LE) or second input
2145 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2146 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2147 /// mask.
2148 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2149                                bool &Swap, bool IsLE) {
2150   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2151 
2152   // Ensure each byte index of the double word is consecutive.
2153   if (!isNByteElemShuffleMask(N, 8, 1))
2154     return false;
2155 
2156   unsigned M0 = N->getMaskElt(0) / 8;
2157   unsigned M1 = N->getMaskElt(8) / 8;
2158   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2159 
2160   // If both vector operands for the shuffle are the same vector, the mask will
2161   // contain only elements from the first one and the second one will be undef.
2162   if (N->getOperand(1).isUndef()) {
2163     if ((M0 | M1) < 2) {
2164       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2165       Swap = false;
2166       return true;
2167     } else
2168       return false;
2169   }
2170 
2171   if (IsLE) {
2172     if (M0 > 1 && M1 < 2) {
2173       Swap = false;
2174     } else if (M0 < 2 && M1 > 1) {
2175       M0 = (M0 + 2) % 4;
2176       M1 = (M1 + 2) % 4;
2177       Swap = true;
2178     } else
2179       return false;
2180 
2181     // Note: if control flow comes here that means Swap is already set above
2182     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2183     return true;
2184   } else { // BE
2185     if (M0 < 2 && M1 > 1) {
2186       Swap = false;
2187     } else if (M0 > 1 && M1 < 2) {
2188       M0 = (M0 + 2) % 4;
2189       M1 = (M1 + 2) % 4;
2190       Swap = true;
2191     } else
2192       return false;
2193 
2194     // Note: if control flow comes here that means Swap is already set above
2195     DM = (M0 << 1) + (M1 & 1);
2196     return true;
2197   }
2198 }
2199 
2200 
2201 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2202 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2203 /// elements are counted from the left of the vector register).
2204 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2205                                          SelectionDAG &DAG) {
2206   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2207   assert(isSplatShuffleMask(SVOp, EltSize));
2208   if (DAG.getDataLayout().isLittleEndian())
2209     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2210   else
2211     return SVOp->getMaskElt(0) / EltSize;
2212 }
2213 
2214 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2215 /// by using a vspltis[bhw] instruction of the specified element size, return
2216 /// the constant being splatted.  The ByteSize field indicates the number of
2217 /// bytes of each element [124] -> [bhw].
2218 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2219   SDValue OpVal(nullptr, 0);
2220 
2221   // If ByteSize of the splat is bigger than the element size of the
2222   // build_vector, then we have a case where we are checking for a splat where
2223   // multiple elements of the buildvector are folded together into a single
2224   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2225   unsigned EltSize = 16/N->getNumOperands();
2226   if (EltSize < ByteSize) {
2227     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2228     SDValue UniquedVals[4];
2229     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2230 
2231     // See if all of the elements in the buildvector agree across.
2232     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2233       if (N->getOperand(i).isUndef()) continue;
2234       // If the element isn't a constant, bail fully out.
2235       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2236 
2237       if (!UniquedVals[i&(Multiple-1)].getNode())
2238         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2239       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2240         return SDValue();  // no match.
2241     }
2242 
2243     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2244     // either constant or undef values that are identical for each chunk.  See
2245     // if these chunks can form into a larger vspltis*.
2246 
2247     // Check to see if all of the leading entries are either 0 or -1.  If
2248     // neither, then this won't fit into the immediate field.
2249     bool LeadingZero = true;
2250     bool LeadingOnes = true;
2251     for (unsigned i = 0; i != Multiple-1; ++i) {
2252       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2253 
2254       LeadingZero &= isNullConstant(UniquedVals[i]);
2255       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2256     }
2257     // Finally, check the least significant entry.
2258     if (LeadingZero) {
2259       if (!UniquedVals[Multiple-1].getNode())
2260         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2261       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2262       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2263         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2264     }
2265     if (LeadingOnes) {
2266       if (!UniquedVals[Multiple-1].getNode())
2267         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2268       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2269       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2270         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2271     }
2272 
2273     return SDValue();
2274   }
2275 
2276   // Check to see if this buildvec has a single non-undef value in its elements.
2277   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2278     if (N->getOperand(i).isUndef()) continue;
2279     if (!OpVal.getNode())
2280       OpVal = N->getOperand(i);
2281     else if (OpVal != N->getOperand(i))
2282       return SDValue();
2283   }
2284 
2285   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2286 
2287   unsigned ValSizeInBytes = EltSize;
2288   uint64_t Value = 0;
2289   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2290     Value = CN->getZExtValue();
2291   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2292     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2293     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2294   }
2295 
2296   // If the splat value is larger than the element value, then we can never do
2297   // this splat.  The only case that we could fit the replicated bits into our
2298   // immediate field for would be zero, and we prefer to use vxor for it.
2299   if (ValSizeInBytes < ByteSize) return SDValue();
2300 
2301   // If the element value is larger than the splat value, check if it consists
2302   // of a repeated bit pattern of size ByteSize.
2303   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2304     return SDValue();
2305 
2306   // Properly sign extend the value.
2307   int MaskVal = SignExtend32(Value, ByteSize * 8);
2308 
2309   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2310   if (MaskVal == 0) return SDValue();
2311 
2312   // Finally, if this value fits in a 5 bit sext field, return it
2313   if (SignExtend32<5>(MaskVal) == MaskVal)
2314     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2315   return SDValue();
2316 }
2317 
2318 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2319 /// amount, otherwise return -1.
2320 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2321   EVT VT = N->getValueType(0);
2322   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2323     return -1;
2324 
2325   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2326 
2327   // Find the first non-undef value in the shuffle mask.
2328   unsigned i;
2329   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2330     /*search*/;
2331 
2332   if (i == 4) return -1;  // all undef.
2333 
2334   // Otherwise, check to see if the rest of the elements are consecutively
2335   // numbered from this value.
2336   unsigned ShiftAmt = SVOp->getMaskElt(i);
2337   if (ShiftAmt < i) return -1;
2338   ShiftAmt -= i;
2339 
2340   // Check the rest of the elements to see if they are consecutive.
2341   for (++i; i != 4; ++i)
2342     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2343       return -1;
2344 
2345   return ShiftAmt;
2346 }
2347 
2348 //===----------------------------------------------------------------------===//
2349 //  Addressing Mode Selection
2350 //===----------------------------------------------------------------------===//
2351 
2352 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2353 /// or 64-bit immediate, and if the value can be accurately represented as a
2354 /// sign extension from a 16-bit value.  If so, this returns true and the
2355 /// immediate.
2356 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2357   if (!isa<ConstantSDNode>(N))
2358     return false;
2359 
2360   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2361   if (N->getValueType(0) == MVT::i32)
2362     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2363   else
2364     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2365 }
2366 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2367   return isIntS16Immediate(Op.getNode(), Imm);
2368 }
2369 
2370 
2371 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2372 /// be represented as an indexed [r+r] operation.
2373 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2374                                                SDValue &Index,
2375                                                SelectionDAG &DAG) const {
2376   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2377       UI != E; ++UI) {
2378     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2379       if (Memop->getMemoryVT() == MVT::f64) {
2380           Base = N.getOperand(0);
2381           Index = N.getOperand(1);
2382           return true;
2383       }
2384     }
2385   }
2386   return false;
2387 }
2388 
2389 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2390 /// can be represented as an indexed [r+r] operation.  Returns false if it
2391 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2392 /// non-zero and N can be represented by a base register plus a signed 16-bit
2393 /// displacement, make a more precise judgement by checking (displacement % \p
2394 /// EncodingAlignment).
2395 bool PPCTargetLowering::SelectAddressRegReg(
2396     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2397     MaybeAlign EncodingAlignment) const {
2398   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2399   // a [pc+imm].
2400   if (SelectAddressPCRel(N, Base))
2401     return false;
2402 
2403   int16_t Imm = 0;
2404   if (N.getOpcode() == ISD::ADD) {
2405     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2406     // SPE load/store can only handle 8-bit offsets.
2407     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2408         return true;
2409     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2410         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2411       return false; // r+i
2412     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2413       return false;    // r+i
2414 
2415     Base = N.getOperand(0);
2416     Index = N.getOperand(1);
2417     return true;
2418   } else if (N.getOpcode() == ISD::OR) {
2419     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2420         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2421       return false; // r+i can fold it if we can.
2422 
2423     // If this is an or of disjoint bitfields, we can codegen this as an add
2424     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2425     // disjoint.
2426     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2427 
2428     if (LHSKnown.Zero.getBoolValue()) {
2429       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2430       // If all of the bits are known zero on the LHS or RHS, the add won't
2431       // carry.
2432       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2433         Base = N.getOperand(0);
2434         Index = N.getOperand(1);
2435         return true;
2436       }
2437     }
2438   }
2439 
2440   return false;
2441 }
2442 
2443 // If we happen to be doing an i64 load or store into a stack slot that has
2444 // less than a 4-byte alignment, then the frame-index elimination may need to
2445 // use an indexed load or store instruction (because the offset may not be a
2446 // multiple of 4). The extra register needed to hold the offset comes from the
2447 // register scavenger, and it is possible that the scavenger will need to use
2448 // an emergency spill slot. As a result, we need to make sure that a spill slot
2449 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2450 // stack slot.
2451 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2452   // FIXME: This does not handle the LWA case.
2453   if (VT != MVT::i64)
2454     return;
2455 
2456   // NOTE: We'll exclude negative FIs here, which come from argument
2457   // lowering, because there are no known test cases triggering this problem
2458   // using packed structures (or similar). We can remove this exclusion if
2459   // we find such a test case. The reason why this is so test-case driven is
2460   // because this entire 'fixup' is only to prevent crashes (from the
2461   // register scavenger) on not-really-valid inputs. For example, if we have:
2462   //   %a = alloca i1
2463   //   %b = bitcast i1* %a to i64*
2464   //   store i64* a, i64 b
2465   // then the store should really be marked as 'align 1', but is not. If it
2466   // were marked as 'align 1' then the indexed form would have been
2467   // instruction-selected initially, and the problem this 'fixup' is preventing
2468   // won't happen regardless.
2469   if (FrameIdx < 0)
2470     return;
2471 
2472   MachineFunction &MF = DAG.getMachineFunction();
2473   MachineFrameInfo &MFI = MF.getFrameInfo();
2474 
2475   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2476     return;
2477 
2478   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2479   FuncInfo->setHasNonRISpills();
2480 }
2481 
2482 /// Returns true if the address N can be represented by a base register plus
2483 /// a signed 16-bit displacement [r+imm], and if it is not better
2484 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2485 /// displacements that are multiples of that value.
2486 bool PPCTargetLowering::SelectAddressRegImm(
2487     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2488     MaybeAlign EncodingAlignment) const {
2489   // FIXME dl should come from parent load or store, not from address
2490   SDLoc dl(N);
2491 
2492   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2493   // a [pc+imm].
2494   if (SelectAddressPCRel(N, Base))
2495     return false;
2496 
2497   // If this can be more profitably realized as r+r, fail.
2498   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2499     return false;
2500 
2501   if (N.getOpcode() == ISD::ADD) {
2502     int16_t imm = 0;
2503     if (isIntS16Immediate(N.getOperand(1), imm) &&
2504         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2505       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2506       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2507         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2508         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2509       } else {
2510         Base = N.getOperand(0);
2511       }
2512       return true; // [r+i]
2513     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2514       // Match LOAD (ADD (X, Lo(G))).
2515       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2516              && "Cannot handle constant offsets yet!");
2517       Disp = N.getOperand(1).getOperand(0);  // The global address.
2518       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2519              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2520              Disp.getOpcode() == ISD::TargetConstantPool ||
2521              Disp.getOpcode() == ISD::TargetJumpTable);
2522       Base = N.getOperand(0);
2523       return true;  // [&g+r]
2524     }
2525   } else if (N.getOpcode() == ISD::OR) {
2526     int16_t imm = 0;
2527     if (isIntS16Immediate(N.getOperand(1), imm) &&
2528         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2529       // If this is an or of disjoint bitfields, we can codegen this as an add
2530       // (for better address arithmetic) if the LHS and RHS of the OR are
2531       // provably disjoint.
2532       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2533 
2534       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2535         // If all of the bits are known zero on the LHS or RHS, the add won't
2536         // carry.
2537         if (FrameIndexSDNode *FI =
2538               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2539           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2540           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2541         } else {
2542           Base = N.getOperand(0);
2543         }
2544         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2545         return true;
2546       }
2547     }
2548   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2549     // Loading from a constant address.
2550 
2551     // If this address fits entirely in a 16-bit sext immediate field, codegen
2552     // this as "d, 0"
2553     int16_t Imm;
2554     if (isIntS16Immediate(CN, Imm) &&
2555         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2556       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2557       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2558                              CN->getValueType(0));
2559       return true;
2560     }
2561 
2562     // Handle 32-bit sext immediates with LIS + addr mode.
2563     if ((CN->getValueType(0) == MVT::i32 ||
2564          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2565         (!EncodingAlignment ||
2566          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2567       int Addr = (int)CN->getZExtValue();
2568 
2569       // Otherwise, break this down into an LIS + disp.
2570       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2571 
2572       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2573                                    MVT::i32);
2574       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2575       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2576       return true;
2577     }
2578   }
2579 
2580   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2581   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2582     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2583     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2584   } else
2585     Base = N;
2586   return true;      // [r+0]
2587 }
2588 
2589 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2590 /// represented as an indexed [r+r] operation.
2591 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2592                                                 SDValue &Index,
2593                                                 SelectionDAG &DAG) const {
2594   // Check to see if we can easily represent this as an [r+r] address.  This
2595   // will fail if it thinks that the address is more profitably represented as
2596   // reg+imm, e.g. where imm = 0.
2597   if (SelectAddressRegReg(N, Base, Index, DAG))
2598     return true;
2599 
2600   // If the address is the result of an add, we will utilize the fact that the
2601   // address calculation includes an implicit add.  However, we can reduce
2602   // register pressure if we do not materialize a constant just for use as the
2603   // index register.  We only get rid of the add if it is not an add of a
2604   // value and a 16-bit signed constant and both have a single use.
2605   int16_t imm = 0;
2606   if (N.getOpcode() == ISD::ADD &&
2607       (!isIntS16Immediate(N.getOperand(1), imm) ||
2608        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2609     Base = N.getOperand(0);
2610     Index = N.getOperand(1);
2611     return true;
2612   }
2613 
2614   // Otherwise, do it the hard way, using R0 as the base register.
2615   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2616                          N.getValueType());
2617   Index = N;
2618   return true;
2619 }
2620 
2621 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2622   Ty *PCRelCand = dyn_cast<Ty>(N);
2623   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2624 }
2625 
2626 /// Returns true if this address is a PC Relative address.
2627 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2628 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2629 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2630   // This is a materialize PC Relative node. Always select this as PC Relative.
2631   Base = N;
2632   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2633     return true;
2634   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2635       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2636       isValidPCRelNode<JumpTableSDNode>(N) ||
2637       isValidPCRelNode<BlockAddressSDNode>(N))
2638     return true;
2639   return false;
2640 }
2641 
2642 /// Returns true if we should use a direct load into vector instruction
2643 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2644 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2645 
2646   // If there are any other uses other than scalar to vector, then we should
2647   // keep it as a scalar load -> direct move pattern to prevent multiple
2648   // loads.
2649   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2650   if (!LD)
2651     return false;
2652 
2653   EVT MemVT = LD->getMemoryVT();
2654   if (!MemVT.isSimple())
2655     return false;
2656   switch(MemVT.getSimpleVT().SimpleTy) {
2657   case MVT::i64:
2658     break;
2659   case MVT::i32:
2660     if (!ST.hasP8Vector())
2661       return false;
2662     break;
2663   case MVT::i16:
2664   case MVT::i8:
2665     if (!ST.hasP9Vector())
2666       return false;
2667     break;
2668   default:
2669     return false;
2670   }
2671 
2672   SDValue LoadedVal(N, 0);
2673   if (!LoadedVal.hasOneUse())
2674     return false;
2675 
2676   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2677        UI != UE; ++UI)
2678     if (UI.getUse().get().getResNo() == 0 &&
2679         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2680         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2681       return false;
2682 
2683   return true;
2684 }
2685 
2686 /// getPreIndexedAddressParts - returns true by value, base pointer and
2687 /// offset pointer and addressing mode by reference if the node's address
2688 /// can be legally represented as pre-indexed load / store address.
2689 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2690                                                   SDValue &Offset,
2691                                                   ISD::MemIndexedMode &AM,
2692                                                   SelectionDAG &DAG) const {
2693   if (DisablePPCPreinc) return false;
2694 
2695   bool isLoad = true;
2696   SDValue Ptr;
2697   EVT VT;
2698   unsigned Alignment;
2699   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2700     Ptr = LD->getBasePtr();
2701     VT = LD->getMemoryVT();
2702     Alignment = LD->getAlignment();
2703   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2704     Ptr = ST->getBasePtr();
2705     VT  = ST->getMemoryVT();
2706     Alignment = ST->getAlignment();
2707     isLoad = false;
2708   } else
2709     return false;
2710 
2711   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2712   // instructions because we can fold these into a more efficient instruction
2713   // instead, (such as LXSD).
2714   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2715     return false;
2716   }
2717 
2718   // PowerPC doesn't have preinc load/store instructions for vectors
2719   if (VT.isVector())
2720     return false;
2721 
2722   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2723     // Common code will reject creating a pre-inc form if the base pointer
2724     // is a frame index, or if N is a store and the base pointer is either
2725     // the same as or a predecessor of the value being stored.  Check for
2726     // those situations here, and try with swapped Base/Offset instead.
2727     bool Swap = false;
2728 
2729     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2730       Swap = true;
2731     else if (!isLoad) {
2732       SDValue Val = cast<StoreSDNode>(N)->getValue();
2733       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2734         Swap = true;
2735     }
2736 
2737     if (Swap)
2738       std::swap(Base, Offset);
2739 
2740     AM = ISD::PRE_INC;
2741     return true;
2742   }
2743 
2744   // LDU/STU can only handle immediates that are a multiple of 4.
2745   if (VT != MVT::i64) {
2746     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2747       return false;
2748   } else {
2749     // LDU/STU need an address with at least 4-byte alignment.
2750     if (Alignment < 4)
2751       return false;
2752 
2753     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2754       return false;
2755   }
2756 
2757   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2758     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2759     // sext i32 to i64 when addr mode is r+i.
2760     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2761         LD->getExtensionType() == ISD::SEXTLOAD &&
2762         isa<ConstantSDNode>(Offset))
2763       return false;
2764   }
2765 
2766   AM = ISD::PRE_INC;
2767   return true;
2768 }
2769 
2770 //===----------------------------------------------------------------------===//
2771 //  LowerOperation implementation
2772 //===----------------------------------------------------------------------===//
2773 
2774 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2775 /// and LoOpFlags to the target MO flags.
2776 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2777                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2778                                const GlobalValue *GV = nullptr) {
2779   HiOpFlags = PPCII::MO_HA;
2780   LoOpFlags = PPCII::MO_LO;
2781 
2782   // Don't use the pic base if not in PIC relocation model.
2783   if (IsPIC) {
2784     HiOpFlags |= PPCII::MO_PIC_FLAG;
2785     LoOpFlags |= PPCII::MO_PIC_FLAG;
2786   }
2787 }
2788 
2789 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2790                              SelectionDAG &DAG) {
2791   SDLoc DL(HiPart);
2792   EVT PtrVT = HiPart.getValueType();
2793   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2794 
2795   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2796   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2797 
2798   // With PIC, the first instruction is actually "GR+hi(&G)".
2799   if (isPIC)
2800     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2801                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2802 
2803   // Generate non-pic code that has direct accesses to the constant pool.
2804   // The address of the global is just (hi(&g)+lo(&g)).
2805   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2806 }
2807 
2808 static void setUsesTOCBasePtr(MachineFunction &MF) {
2809   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2810   FuncInfo->setUsesTOCBasePtr();
2811 }
2812 
2813 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2814   setUsesTOCBasePtr(DAG.getMachineFunction());
2815 }
2816 
2817 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2818                                        SDValue GA) const {
2819   const bool Is64Bit = Subtarget.isPPC64();
2820   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2821   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2822                         : Subtarget.isAIXABI()
2823                               ? DAG.getRegister(PPC::R2, VT)
2824                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2825   SDValue Ops[] = { GA, Reg };
2826   return DAG.getMemIntrinsicNode(
2827       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2828       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2829       MachineMemOperand::MOLoad);
2830 }
2831 
2832 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2833                                              SelectionDAG &DAG) const {
2834   EVT PtrVT = Op.getValueType();
2835   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2836   const Constant *C = CP->getConstVal();
2837 
2838   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2839   // The actual address of the GlobalValue is stored in the TOC.
2840   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2841     if (Subtarget.isUsingPCRelativeCalls()) {
2842       SDLoc DL(CP);
2843       EVT Ty = getPointerTy(DAG.getDataLayout());
2844       SDValue ConstPool = DAG.getTargetConstantPool(
2845           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2846       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2847     }
2848     setUsesTOCBasePtr(DAG);
2849     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2850     return getTOCEntry(DAG, SDLoc(CP), GA);
2851   }
2852 
2853   unsigned MOHiFlag, MOLoFlag;
2854   bool IsPIC = isPositionIndependent();
2855   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2856 
2857   if (IsPIC && Subtarget.isSVR4ABI()) {
2858     SDValue GA =
2859         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2860     return getTOCEntry(DAG, SDLoc(CP), GA);
2861   }
2862 
2863   SDValue CPIHi =
2864       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2865   SDValue CPILo =
2866       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2867   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2868 }
2869 
2870 // For 64-bit PowerPC, prefer the more compact relative encodings.
2871 // This trades 32 bits per jump table entry for one or two instructions
2872 // on the jump site.
2873 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2874   if (isJumpTableRelative())
2875     return MachineJumpTableInfo::EK_LabelDifference32;
2876 
2877   return TargetLowering::getJumpTableEncoding();
2878 }
2879 
2880 bool PPCTargetLowering::isJumpTableRelative() const {
2881   if (UseAbsoluteJumpTables)
2882     return false;
2883   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2884     return true;
2885   return TargetLowering::isJumpTableRelative();
2886 }
2887 
2888 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2889                                                     SelectionDAG &DAG) const {
2890   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2891     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2892 
2893   switch (getTargetMachine().getCodeModel()) {
2894   case CodeModel::Small:
2895   case CodeModel::Medium:
2896     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2897   default:
2898     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2899                        getPointerTy(DAG.getDataLayout()));
2900   }
2901 }
2902 
2903 const MCExpr *
2904 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2905                                                 unsigned JTI,
2906                                                 MCContext &Ctx) const {
2907   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2908     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2909 
2910   switch (getTargetMachine().getCodeModel()) {
2911   case CodeModel::Small:
2912   case CodeModel::Medium:
2913     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2914   default:
2915     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2916   }
2917 }
2918 
2919 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2920   EVT PtrVT = Op.getValueType();
2921   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2922 
2923   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2924   if (Subtarget.isUsingPCRelativeCalls()) {
2925     SDLoc DL(JT);
2926     EVT Ty = getPointerTy(DAG.getDataLayout());
2927     SDValue GA =
2928         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2929     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2930     return MatAddr;
2931   }
2932 
2933   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2934   // The actual address of the GlobalValue is stored in the TOC.
2935   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2936     setUsesTOCBasePtr(DAG);
2937     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2938     return getTOCEntry(DAG, SDLoc(JT), GA);
2939   }
2940 
2941   unsigned MOHiFlag, MOLoFlag;
2942   bool IsPIC = isPositionIndependent();
2943   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2944 
2945   if (IsPIC && Subtarget.isSVR4ABI()) {
2946     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2947                                         PPCII::MO_PIC_FLAG);
2948     return getTOCEntry(DAG, SDLoc(GA), GA);
2949   }
2950 
2951   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2952   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2953   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2954 }
2955 
2956 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2957                                              SelectionDAG &DAG) const {
2958   EVT PtrVT = Op.getValueType();
2959   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2960   const BlockAddress *BA = BASDN->getBlockAddress();
2961 
2962   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2963   if (Subtarget.isUsingPCRelativeCalls()) {
2964     SDLoc DL(BASDN);
2965     EVT Ty = getPointerTy(DAG.getDataLayout());
2966     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2967                                            PPCII::MO_PCREL_FLAG);
2968     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2969     return MatAddr;
2970   }
2971 
2972   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2973   // The actual BlockAddress is stored in the TOC.
2974   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2975     setUsesTOCBasePtr(DAG);
2976     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2977     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2978   }
2979 
2980   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2981   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2982     return getTOCEntry(
2983         DAG, SDLoc(BASDN),
2984         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2985 
2986   unsigned MOHiFlag, MOLoFlag;
2987   bool IsPIC = isPositionIndependent();
2988   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2989   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2990   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2991   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2992 }
2993 
2994 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2995                                               SelectionDAG &DAG) const {
2996   // FIXME: TLS addresses currently use medium model code sequences,
2997   // which is the most useful form.  Eventually support for small and
2998   // large models could be added if users need it, at the cost of
2999   // additional complexity.
3000   if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS)
3001     report_fatal_error("Thread local storage is not supported with pc-relative"
3002                        " addressing - please compile with -mno-pcrel");
3003   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3004   if (DAG.getTarget().useEmulatedTLS())
3005     return LowerToTLSEmulatedModel(GA, DAG);
3006 
3007   SDLoc dl(GA);
3008   const GlobalValue *GV = GA->getGlobal();
3009   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3010   bool is64bit = Subtarget.isPPC64();
3011   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3012   PICLevel::Level picLevel = M->getPICLevel();
3013 
3014   const TargetMachine &TM = getTargetMachine();
3015   TLSModel::Model Model = TM.getTLSModel(GV);
3016 
3017   if (Model == TLSModel::LocalExec) {
3018     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3019                                                PPCII::MO_TPREL_HA);
3020     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3021                                                PPCII::MO_TPREL_LO);
3022     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3023                              : DAG.getRegister(PPC::R2, MVT::i32);
3024 
3025     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3026     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3027   }
3028 
3029   if (Model == TLSModel::InitialExec) {
3030     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3031     SDValue TGA = DAG.getTargetGlobalAddress(
3032         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3033     SDValue TGATLS = DAG.getTargetGlobalAddress(
3034         GV, dl, PtrVT, 0,
3035         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3036     SDValue TPOffset;
3037     if (IsPCRel) {
3038       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3039       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3040                              MachinePointerInfo());
3041     } else {
3042       SDValue GOTPtr;
3043       if (is64bit) {
3044         setUsesTOCBasePtr(DAG);
3045         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3046         GOTPtr =
3047             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3048       } else {
3049         if (!TM.isPositionIndependent())
3050           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3051         else if (picLevel == PICLevel::SmallPIC)
3052           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3053         else
3054           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3055       }
3056       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3057     }
3058     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3059   }
3060 
3061   if (Model == TLSModel::GeneralDynamic) {
3062     if (Subtarget.isUsingPCRelativeCalls()) {
3063       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3064                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3065       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3066     }
3067 
3068     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3069     SDValue GOTPtr;
3070     if (is64bit) {
3071       setUsesTOCBasePtr(DAG);
3072       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3073       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3074                                    GOTReg, TGA);
3075     } else {
3076       if (picLevel == PICLevel::SmallPIC)
3077         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3078       else
3079         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3080     }
3081     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3082                        GOTPtr, TGA, TGA);
3083   }
3084 
3085   if (Model == TLSModel::LocalDynamic) {
3086     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3087     SDValue GOTPtr;
3088     if (is64bit) {
3089       setUsesTOCBasePtr(DAG);
3090       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3091       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3092                            GOTReg, TGA);
3093     } else {
3094       if (picLevel == PICLevel::SmallPIC)
3095         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3096       else
3097         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3098     }
3099     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3100                                   PtrVT, GOTPtr, TGA, TGA);
3101     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3102                                       PtrVT, TLSAddr, TGA);
3103     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3104   }
3105 
3106   llvm_unreachable("Unknown TLS model!");
3107 }
3108 
3109 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3110                                               SelectionDAG &DAG) const {
3111   EVT PtrVT = Op.getValueType();
3112   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3113   SDLoc DL(GSDN);
3114   const GlobalValue *GV = GSDN->getGlobal();
3115 
3116   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3117   // The actual address of the GlobalValue is stored in the TOC.
3118   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3119     if (Subtarget.isUsingPCRelativeCalls()) {
3120       EVT Ty = getPointerTy(DAG.getDataLayout());
3121       if (isAccessedAsGotIndirect(Op)) {
3122         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3123                                                 PPCII::MO_PCREL_FLAG |
3124                                                     PPCII::MO_GOT_FLAG);
3125         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3126         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3127                                    MachinePointerInfo());
3128         return Load;
3129       } else {
3130         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3131                                                 PPCII::MO_PCREL_FLAG);
3132         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3133       }
3134     }
3135     setUsesTOCBasePtr(DAG);
3136     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3137     return getTOCEntry(DAG, DL, GA);
3138   }
3139 
3140   unsigned MOHiFlag, MOLoFlag;
3141   bool IsPIC = isPositionIndependent();
3142   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3143 
3144   if (IsPIC && Subtarget.isSVR4ABI()) {
3145     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3146                                             GSDN->getOffset(),
3147                                             PPCII::MO_PIC_FLAG);
3148     return getTOCEntry(DAG, DL, GA);
3149   }
3150 
3151   SDValue GAHi =
3152     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3153   SDValue GALo =
3154     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3155 
3156   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3157 }
3158 
3159 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3160   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3161   SDLoc dl(Op);
3162 
3163   if (Op.getValueType() == MVT::v2i64) {
3164     // When the operands themselves are v2i64 values, we need to do something
3165     // special because VSX has no underlying comparison operations for these.
3166     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3167       // Equality can be handled by casting to the legal type for Altivec
3168       // comparisons, everything else needs to be expanded.
3169       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3170         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3171                  DAG.getSetCC(dl, MVT::v4i32,
3172                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3173                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3174                    CC));
3175       }
3176 
3177       return SDValue();
3178     }
3179 
3180     // We handle most of these in the usual way.
3181     return Op;
3182   }
3183 
3184   // If we're comparing for equality to zero, expose the fact that this is
3185   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3186   // fold the new nodes.
3187   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3188     return V;
3189 
3190   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3191     // Leave comparisons against 0 and -1 alone for now, since they're usually
3192     // optimized.  FIXME: revisit this when we can custom lower all setcc
3193     // optimizations.
3194     if (C->isAllOnesValue() || C->isNullValue())
3195       return SDValue();
3196   }
3197 
3198   // If we have an integer seteq/setne, turn it into a compare against zero
3199   // by xor'ing the rhs with the lhs, which is faster than setting a
3200   // condition register, reading it back out, and masking the correct bit.  The
3201   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3202   // the result to other bit-twiddling opportunities.
3203   EVT LHSVT = Op.getOperand(0).getValueType();
3204   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3205     EVT VT = Op.getValueType();
3206     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3207                                 Op.getOperand(1));
3208     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3209   }
3210   return SDValue();
3211 }
3212 
3213 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3214   SDNode *Node = Op.getNode();
3215   EVT VT = Node->getValueType(0);
3216   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3217   SDValue InChain = Node->getOperand(0);
3218   SDValue VAListPtr = Node->getOperand(1);
3219   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3220   SDLoc dl(Node);
3221 
3222   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3223 
3224   // gpr_index
3225   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3226                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3227   InChain = GprIndex.getValue(1);
3228 
3229   if (VT == MVT::i64) {
3230     // Check if GprIndex is even
3231     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3232                                  DAG.getConstant(1, dl, MVT::i32));
3233     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3234                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3235     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3236                                           DAG.getConstant(1, dl, MVT::i32));
3237     // Align GprIndex to be even if it isn't
3238     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3239                            GprIndex);
3240   }
3241 
3242   // fpr index is 1 byte after gpr
3243   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3244                                DAG.getConstant(1, dl, MVT::i32));
3245 
3246   // fpr
3247   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3248                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3249   InChain = FprIndex.getValue(1);
3250 
3251   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3252                                        DAG.getConstant(8, dl, MVT::i32));
3253 
3254   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3255                                         DAG.getConstant(4, dl, MVT::i32));
3256 
3257   // areas
3258   SDValue OverflowArea =
3259       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3260   InChain = OverflowArea.getValue(1);
3261 
3262   SDValue RegSaveArea =
3263       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3264   InChain = RegSaveArea.getValue(1);
3265 
3266   // select overflow_area if index > 8
3267   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3268                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3269 
3270   // adjustment constant gpr_index * 4/8
3271   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3272                                     VT.isInteger() ? GprIndex : FprIndex,
3273                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3274                                                     MVT::i32));
3275 
3276   // OurReg = RegSaveArea + RegConstant
3277   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3278                                RegConstant);
3279 
3280   // Floating types are 32 bytes into RegSaveArea
3281   if (VT.isFloatingPoint())
3282     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3283                          DAG.getConstant(32, dl, MVT::i32));
3284 
3285   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3286   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3287                                    VT.isInteger() ? GprIndex : FprIndex,
3288                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3289                                                    MVT::i32));
3290 
3291   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3292                               VT.isInteger() ? VAListPtr : FprPtr,
3293                               MachinePointerInfo(SV), MVT::i8);
3294 
3295   // determine if we should load from reg_save_area or overflow_area
3296   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3297 
3298   // increase overflow_area by 4/8 if gpr/fpr > 8
3299   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3300                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3301                                           dl, MVT::i32));
3302 
3303   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3304                              OverflowAreaPlusN);
3305 
3306   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3307                               MachinePointerInfo(), MVT::i32);
3308 
3309   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3310 }
3311 
3312 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3313   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3314 
3315   // We have to copy the entire va_list struct:
3316   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3317   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3318                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3319                        false, true, false, MachinePointerInfo(),
3320                        MachinePointerInfo());
3321 }
3322 
3323 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3324                                                   SelectionDAG &DAG) const {
3325   if (Subtarget.isAIXABI())
3326     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3327 
3328   return Op.getOperand(0);
3329 }
3330 
3331 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3332                                                 SelectionDAG &DAG) const {
3333   if (Subtarget.isAIXABI())
3334     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3335 
3336   SDValue Chain = Op.getOperand(0);
3337   SDValue Trmp = Op.getOperand(1); // trampoline
3338   SDValue FPtr = Op.getOperand(2); // nested function
3339   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3340   SDLoc dl(Op);
3341 
3342   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3343   bool isPPC64 = (PtrVT == MVT::i64);
3344   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3345 
3346   TargetLowering::ArgListTy Args;
3347   TargetLowering::ArgListEntry Entry;
3348 
3349   Entry.Ty = IntPtrTy;
3350   Entry.Node = Trmp; Args.push_back(Entry);
3351 
3352   // TrampSize == (isPPC64 ? 48 : 40);
3353   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3354                                isPPC64 ? MVT::i64 : MVT::i32);
3355   Args.push_back(Entry);
3356 
3357   Entry.Node = FPtr; Args.push_back(Entry);
3358   Entry.Node = Nest; Args.push_back(Entry);
3359 
3360   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3361   TargetLowering::CallLoweringInfo CLI(DAG);
3362   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3363       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3364       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3365 
3366   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3367   return CallResult.second;
3368 }
3369 
3370 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3371   MachineFunction &MF = DAG.getMachineFunction();
3372   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3373   EVT PtrVT = getPointerTy(MF.getDataLayout());
3374 
3375   SDLoc dl(Op);
3376 
3377   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3378     // vastart just stores the address of the VarArgsFrameIndex slot into the
3379     // memory location argument.
3380     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3381     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3382     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3383                         MachinePointerInfo(SV));
3384   }
3385 
3386   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3387   // We suppose the given va_list is already allocated.
3388   //
3389   // typedef struct {
3390   //  char gpr;     /* index into the array of 8 GPRs
3391   //                 * stored in the register save area
3392   //                 * gpr=0 corresponds to r3,
3393   //                 * gpr=1 to r4, etc.
3394   //                 */
3395   //  char fpr;     /* index into the array of 8 FPRs
3396   //                 * stored in the register save area
3397   //                 * fpr=0 corresponds to f1,
3398   //                 * fpr=1 to f2, etc.
3399   //                 */
3400   //  char *overflow_arg_area;
3401   //                /* location on stack that holds
3402   //                 * the next overflow argument
3403   //                 */
3404   //  char *reg_save_area;
3405   //               /* where r3:r10 and f1:f8 (if saved)
3406   //                * are stored
3407   //                */
3408   // } va_list[1];
3409 
3410   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3411   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3412   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3413                                             PtrVT);
3414   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3415                                  PtrVT);
3416 
3417   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3418   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3419 
3420   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3421   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3422 
3423   uint64_t FPROffset = 1;
3424   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3425 
3426   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3427 
3428   // Store first byte : number of int regs
3429   SDValue firstStore =
3430       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3431                         MachinePointerInfo(SV), MVT::i8);
3432   uint64_t nextOffset = FPROffset;
3433   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3434                                   ConstFPROffset);
3435 
3436   // Store second byte : number of float regs
3437   SDValue secondStore =
3438       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3439                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3440   nextOffset += StackOffset;
3441   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3442 
3443   // Store second word : arguments given on stack
3444   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3445                                     MachinePointerInfo(SV, nextOffset));
3446   nextOffset += FrameOffset;
3447   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3448 
3449   // Store third word : arguments given in registers
3450   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3451                       MachinePointerInfo(SV, nextOffset));
3452 }
3453 
3454 /// FPR - The set of FP registers that should be allocated for arguments
3455 /// on Darwin and AIX.
3456 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3457                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3458                                 PPC::F11, PPC::F12, PPC::F13};
3459 
3460 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3461 /// the stack.
3462 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3463                                        unsigned PtrByteSize) {
3464   unsigned ArgSize = ArgVT.getStoreSize();
3465   if (Flags.isByVal())
3466     ArgSize = Flags.getByValSize();
3467 
3468   // Round up to multiples of the pointer size, except for array members,
3469   // which are always packed.
3470   if (!Flags.isInConsecutiveRegs())
3471     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3472 
3473   return ArgSize;
3474 }
3475 
3476 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3477 /// on the stack.
3478 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3479                                          ISD::ArgFlagsTy Flags,
3480                                          unsigned PtrByteSize) {
3481   Align Alignment(PtrByteSize);
3482 
3483   // Altivec parameters are padded to a 16 byte boundary.
3484   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3485       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3486       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3487       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3488     Alignment = Align(16);
3489 
3490   // ByVal parameters are aligned as requested.
3491   if (Flags.isByVal()) {
3492     auto BVAlign = Flags.getNonZeroByValAlign();
3493     if (BVAlign > PtrByteSize) {
3494       if (BVAlign.value() % PtrByteSize != 0)
3495         llvm_unreachable(
3496             "ByVal alignment is not a multiple of the pointer size");
3497 
3498       Alignment = BVAlign;
3499     }
3500   }
3501 
3502   // Array members are always packed to their original alignment.
3503   if (Flags.isInConsecutiveRegs()) {
3504     // If the array member was split into multiple registers, the first
3505     // needs to be aligned to the size of the full type.  (Except for
3506     // ppcf128, which is only aligned as its f64 components.)
3507     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3508       Alignment = Align(OrigVT.getStoreSize());
3509     else
3510       Alignment = Align(ArgVT.getStoreSize());
3511   }
3512 
3513   return Alignment;
3514 }
3515 
3516 /// CalculateStackSlotUsed - Return whether this argument will use its
3517 /// stack slot (instead of being passed in registers).  ArgOffset,
3518 /// AvailableFPRs, and AvailableVRs must hold the current argument
3519 /// position, and will be updated to account for this argument.
3520 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3521                                    unsigned PtrByteSize, unsigned LinkageSize,
3522                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3523                                    unsigned &AvailableFPRs,
3524                                    unsigned &AvailableVRs) {
3525   bool UseMemory = false;
3526 
3527   // Respect alignment of argument on the stack.
3528   Align Alignment =
3529       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3530   ArgOffset = alignTo(ArgOffset, Alignment);
3531   // If there's no space left in the argument save area, we must
3532   // use memory (this check also catches zero-sized arguments).
3533   if (ArgOffset >= LinkageSize + ParamAreaSize)
3534     UseMemory = true;
3535 
3536   // Allocate argument on the stack.
3537   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3538   if (Flags.isInConsecutiveRegsLast())
3539     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3540   // If we overran the argument save area, we must use memory
3541   // (this check catches arguments passed partially in memory)
3542   if (ArgOffset > LinkageSize + ParamAreaSize)
3543     UseMemory = true;
3544 
3545   // However, if the argument is actually passed in an FPR or a VR,
3546   // we don't use memory after all.
3547   if (!Flags.isByVal()) {
3548     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3549       if (AvailableFPRs > 0) {
3550         --AvailableFPRs;
3551         return false;
3552       }
3553     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3554         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3555         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3556         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3557       if (AvailableVRs > 0) {
3558         --AvailableVRs;
3559         return false;
3560       }
3561   }
3562 
3563   return UseMemory;
3564 }
3565 
3566 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3567 /// ensure minimum alignment required for target.
3568 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3569                                      unsigned NumBytes) {
3570   return alignTo(NumBytes, Lowering->getStackAlign());
3571 }
3572 
3573 SDValue PPCTargetLowering::LowerFormalArguments(
3574     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3575     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3576     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3577   if (Subtarget.isAIXABI())
3578     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3579                                     InVals);
3580   if (Subtarget.is64BitELFABI())
3581     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3582                                        InVals);
3583   if (Subtarget.is32BitELFABI())
3584     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3585                                        InVals);
3586 
3587   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3588                                      InVals);
3589 }
3590 
3591 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3592     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3593     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3594     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3595 
3596   // 32-bit SVR4 ABI Stack Frame Layout:
3597   //              +-----------------------------------+
3598   //        +-->  |            Back chain             |
3599   //        |     +-----------------------------------+
3600   //        |     | Floating-point register save area |
3601   //        |     +-----------------------------------+
3602   //        |     |    General register save area     |
3603   //        |     +-----------------------------------+
3604   //        |     |          CR save word             |
3605   //        |     +-----------------------------------+
3606   //        |     |         VRSAVE save word          |
3607   //        |     +-----------------------------------+
3608   //        |     |         Alignment padding         |
3609   //        |     +-----------------------------------+
3610   //        |     |     Vector register save area     |
3611   //        |     +-----------------------------------+
3612   //        |     |       Local variable space        |
3613   //        |     +-----------------------------------+
3614   //        |     |        Parameter list area        |
3615   //        |     +-----------------------------------+
3616   //        |     |           LR save word            |
3617   //        |     +-----------------------------------+
3618   // SP-->  +---  |            Back chain             |
3619   //              +-----------------------------------+
3620   //
3621   // Specifications:
3622   //   System V Application Binary Interface PowerPC Processor Supplement
3623   //   AltiVec Technology Programming Interface Manual
3624 
3625   MachineFunction &MF = DAG.getMachineFunction();
3626   MachineFrameInfo &MFI = MF.getFrameInfo();
3627   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3628 
3629   EVT PtrVT = getPointerTy(MF.getDataLayout());
3630   // Potential tail calls could cause overwriting of argument stack slots.
3631   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3632                        (CallConv == CallingConv::Fast));
3633   const Align PtrAlign(4);
3634 
3635   // Assign locations to all of the incoming arguments.
3636   SmallVector<CCValAssign, 16> ArgLocs;
3637   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3638                  *DAG.getContext());
3639 
3640   // Reserve space for the linkage area on the stack.
3641   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3642   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3643   if (useSoftFloat())
3644     CCInfo.PreAnalyzeFormalArguments(Ins);
3645 
3646   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3647   CCInfo.clearWasPPCF128();
3648 
3649   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3650     CCValAssign &VA = ArgLocs[i];
3651 
3652     // Arguments stored in registers.
3653     if (VA.isRegLoc()) {
3654       const TargetRegisterClass *RC;
3655       EVT ValVT = VA.getValVT();
3656 
3657       switch (ValVT.getSimpleVT().SimpleTy) {
3658         default:
3659           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3660         case MVT::i1:
3661         case MVT::i32:
3662           RC = &PPC::GPRCRegClass;
3663           break;
3664         case MVT::f32:
3665           if (Subtarget.hasP8Vector())
3666             RC = &PPC::VSSRCRegClass;
3667           else if (Subtarget.hasSPE())
3668             RC = &PPC::GPRCRegClass;
3669           else
3670             RC = &PPC::F4RCRegClass;
3671           break;
3672         case MVT::f64:
3673           if (Subtarget.hasVSX())
3674             RC = &PPC::VSFRCRegClass;
3675           else if (Subtarget.hasSPE())
3676             // SPE passes doubles in GPR pairs.
3677             RC = &PPC::GPRCRegClass;
3678           else
3679             RC = &PPC::F8RCRegClass;
3680           break;
3681         case MVT::v16i8:
3682         case MVT::v8i16:
3683         case MVT::v4i32:
3684           RC = &PPC::VRRCRegClass;
3685           break;
3686         case MVT::v4f32:
3687           RC = &PPC::VRRCRegClass;
3688           break;
3689         case MVT::v2f64:
3690         case MVT::v2i64:
3691           RC = &PPC::VRRCRegClass;
3692           break;
3693       }
3694 
3695       SDValue ArgValue;
3696       // Transform the arguments stored in physical registers into
3697       // virtual ones.
3698       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3699         assert(i + 1 < e && "No second half of double precision argument");
3700         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3701         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3702         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3703         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3704         if (!Subtarget.isLittleEndian())
3705           std::swap (ArgValueLo, ArgValueHi);
3706         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3707                                ArgValueHi);
3708       } else {
3709         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3710         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3711                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3712         if (ValVT == MVT::i1)
3713           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3714       }
3715 
3716       InVals.push_back(ArgValue);
3717     } else {
3718       // Argument stored in memory.
3719       assert(VA.isMemLoc());
3720 
3721       // Get the extended size of the argument type in stack
3722       unsigned ArgSize = VA.getLocVT().getStoreSize();
3723       // Get the actual size of the argument type
3724       unsigned ObjSize = VA.getValVT().getStoreSize();
3725       unsigned ArgOffset = VA.getLocMemOffset();
3726       // Stack objects in PPC32 are right justified.
3727       ArgOffset += ArgSize - ObjSize;
3728       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3729 
3730       // Create load nodes to retrieve arguments from the stack.
3731       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3732       InVals.push_back(
3733           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3734     }
3735   }
3736 
3737   // Assign locations to all of the incoming aggregate by value arguments.
3738   // Aggregates passed by value are stored in the local variable space of the
3739   // caller's stack frame, right above the parameter list area.
3740   SmallVector<CCValAssign, 16> ByValArgLocs;
3741   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3742                       ByValArgLocs, *DAG.getContext());
3743 
3744   // Reserve stack space for the allocations in CCInfo.
3745   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3746 
3747   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3748 
3749   // Area that is at least reserved in the caller of this function.
3750   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3751   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3752 
3753   // Set the size that is at least reserved in caller of this function.  Tail
3754   // call optimized function's reserved stack space needs to be aligned so that
3755   // taking the difference between two stack areas will result in an aligned
3756   // stack.
3757   MinReservedArea =
3758       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3759   FuncInfo->setMinReservedArea(MinReservedArea);
3760 
3761   SmallVector<SDValue, 8> MemOps;
3762 
3763   // If the function takes variable number of arguments, make a frame index for
3764   // the start of the first vararg value... for expansion of llvm.va_start.
3765   if (isVarArg) {
3766     static const MCPhysReg GPArgRegs[] = {
3767       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3768       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3769     };
3770     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3771 
3772     static const MCPhysReg FPArgRegs[] = {
3773       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3774       PPC::F8
3775     };
3776     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3777 
3778     if (useSoftFloat() || hasSPE())
3779        NumFPArgRegs = 0;
3780 
3781     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3782     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3783 
3784     // Make room for NumGPArgRegs and NumFPArgRegs.
3785     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3786                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3787 
3788     FuncInfo->setVarArgsStackOffset(
3789       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3790                             CCInfo.getNextStackOffset(), true));
3791 
3792     FuncInfo->setVarArgsFrameIndex(
3793         MFI.CreateStackObject(Depth, Align(8), false));
3794     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3795 
3796     // The fixed integer arguments of a variadic function are stored to the
3797     // VarArgsFrameIndex on the stack so that they may be loaded by
3798     // dereferencing the result of va_next.
3799     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3800       // Get an existing live-in vreg, or add a new one.
3801       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3802       if (!VReg)
3803         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3804 
3805       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3806       SDValue Store =
3807           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3808       MemOps.push_back(Store);
3809       // Increment the address by four for the next argument to store
3810       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3811       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3812     }
3813 
3814     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3815     // is set.
3816     // The double arguments are stored to the VarArgsFrameIndex
3817     // on the stack.
3818     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3819       // Get an existing live-in vreg, or add a new one.
3820       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3821       if (!VReg)
3822         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3823 
3824       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3825       SDValue Store =
3826           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3827       MemOps.push_back(Store);
3828       // Increment the address by eight for the next argument to store
3829       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3830                                          PtrVT);
3831       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3832     }
3833   }
3834 
3835   if (!MemOps.empty())
3836     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3837 
3838   return Chain;
3839 }
3840 
3841 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3842 // value to MVT::i64 and then truncate to the correct register size.
3843 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3844                                              EVT ObjectVT, SelectionDAG &DAG,
3845                                              SDValue ArgVal,
3846                                              const SDLoc &dl) const {
3847   if (Flags.isSExt())
3848     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3849                          DAG.getValueType(ObjectVT));
3850   else if (Flags.isZExt())
3851     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3852                          DAG.getValueType(ObjectVT));
3853 
3854   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3855 }
3856 
3857 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3858     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3859     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3860     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3861   // TODO: add description of PPC stack frame format, or at least some docs.
3862   //
3863   bool isELFv2ABI = Subtarget.isELFv2ABI();
3864   bool isLittleEndian = Subtarget.isLittleEndian();
3865   MachineFunction &MF = DAG.getMachineFunction();
3866   MachineFrameInfo &MFI = MF.getFrameInfo();
3867   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3868 
3869   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3870          "fastcc not supported on varargs functions");
3871 
3872   EVT PtrVT = getPointerTy(MF.getDataLayout());
3873   // Potential tail calls could cause overwriting of argument stack slots.
3874   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3875                        (CallConv == CallingConv::Fast));
3876   unsigned PtrByteSize = 8;
3877   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3878 
3879   static const MCPhysReg GPR[] = {
3880     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3881     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3882   };
3883   static const MCPhysReg VR[] = {
3884     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3885     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3886   };
3887 
3888   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3889   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3890   const unsigned Num_VR_Regs  = array_lengthof(VR);
3891 
3892   // Do a first pass over the arguments to determine whether the ABI
3893   // guarantees that our caller has allocated the parameter save area
3894   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3895   // in the ELFv2 ABI, it is true if this is a vararg function or if
3896   // any parameter is located in a stack slot.
3897 
3898   bool HasParameterArea = !isELFv2ABI || isVarArg;
3899   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3900   unsigned NumBytes = LinkageSize;
3901   unsigned AvailableFPRs = Num_FPR_Regs;
3902   unsigned AvailableVRs = Num_VR_Regs;
3903   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3904     if (Ins[i].Flags.isNest())
3905       continue;
3906 
3907     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3908                                PtrByteSize, LinkageSize, ParamAreaSize,
3909                                NumBytes, AvailableFPRs, AvailableVRs))
3910       HasParameterArea = true;
3911   }
3912 
3913   // Add DAG nodes to load the arguments or copy them out of registers.  On
3914   // entry to a function on PPC, the arguments start after the linkage area,
3915   // although the first ones are often in registers.
3916 
3917   unsigned ArgOffset = LinkageSize;
3918   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3919   SmallVector<SDValue, 8> MemOps;
3920   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3921   unsigned CurArgIdx = 0;
3922   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3923     SDValue ArgVal;
3924     bool needsLoad = false;
3925     EVT ObjectVT = Ins[ArgNo].VT;
3926     EVT OrigVT = Ins[ArgNo].ArgVT;
3927     unsigned ObjSize = ObjectVT.getStoreSize();
3928     unsigned ArgSize = ObjSize;
3929     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3930     if (Ins[ArgNo].isOrigArg()) {
3931       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3932       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3933     }
3934     // We re-align the argument offset for each argument, except when using the
3935     // fast calling convention, when we need to make sure we do that only when
3936     // we'll actually use a stack slot.
3937     unsigned CurArgOffset;
3938     Align Alignment;
3939     auto ComputeArgOffset = [&]() {
3940       /* Respect alignment of argument on the stack.  */
3941       Alignment =
3942           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3943       ArgOffset = alignTo(ArgOffset, Alignment);
3944       CurArgOffset = ArgOffset;
3945     };
3946 
3947     if (CallConv != CallingConv::Fast) {
3948       ComputeArgOffset();
3949 
3950       /* Compute GPR index associated with argument offset.  */
3951       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3952       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3953     }
3954 
3955     // FIXME the codegen can be much improved in some cases.
3956     // We do not have to keep everything in memory.
3957     if (Flags.isByVal()) {
3958       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3959 
3960       if (CallConv == CallingConv::Fast)
3961         ComputeArgOffset();
3962 
3963       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3964       ObjSize = Flags.getByValSize();
3965       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3966       // Empty aggregate parameters do not take up registers.  Examples:
3967       //   struct { } a;
3968       //   union  { } b;
3969       //   int c[0];
3970       // etc.  However, we have to provide a place-holder in InVals, so
3971       // pretend we have an 8-byte item at the current address for that
3972       // purpose.
3973       if (!ObjSize) {
3974         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3975         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3976         InVals.push_back(FIN);
3977         continue;
3978       }
3979 
3980       // Create a stack object covering all stack doublewords occupied
3981       // by the argument.  If the argument is (fully or partially) on
3982       // the stack, or if the argument is fully in registers but the
3983       // caller has allocated the parameter save anyway, we can refer
3984       // directly to the caller's stack frame.  Otherwise, create a
3985       // local copy in our own frame.
3986       int FI;
3987       if (HasParameterArea ||
3988           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3989         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3990       else
3991         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
3992       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3993 
3994       // Handle aggregates smaller than 8 bytes.
3995       if (ObjSize < PtrByteSize) {
3996         // The value of the object is its address, which differs from the
3997         // address of the enclosing doubleword on big-endian systems.
3998         SDValue Arg = FIN;
3999         if (!isLittleEndian) {
4000           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4001           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4002         }
4003         InVals.push_back(Arg);
4004 
4005         if (GPR_idx != Num_GPR_Regs) {
4006           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4007           FuncInfo->addLiveInAttr(VReg, Flags);
4008           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4009           SDValue Store;
4010 
4011           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4012             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4013                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4014             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4015                                       MachinePointerInfo(&*FuncArg), ObjType);
4016           } else {
4017             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4018             // store the whole register as-is to the parameter save area
4019             // slot.
4020             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4021                                  MachinePointerInfo(&*FuncArg));
4022           }
4023 
4024           MemOps.push_back(Store);
4025         }
4026         // Whether we copied from a register or not, advance the offset
4027         // into the parameter save area by a full doubleword.
4028         ArgOffset += PtrByteSize;
4029         continue;
4030       }
4031 
4032       // The value of the object is its address, which is the address of
4033       // its first stack doubleword.
4034       InVals.push_back(FIN);
4035 
4036       // Store whatever pieces of the object are in registers to memory.
4037       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4038         if (GPR_idx == Num_GPR_Regs)
4039           break;
4040 
4041         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4042         FuncInfo->addLiveInAttr(VReg, Flags);
4043         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4044         SDValue Addr = FIN;
4045         if (j) {
4046           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4047           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4048         }
4049         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4050                                      MachinePointerInfo(&*FuncArg, j));
4051         MemOps.push_back(Store);
4052         ++GPR_idx;
4053       }
4054       ArgOffset += ArgSize;
4055       continue;
4056     }
4057 
4058     switch (ObjectVT.getSimpleVT().SimpleTy) {
4059     default: llvm_unreachable("Unhandled argument type!");
4060     case MVT::i1:
4061     case MVT::i32:
4062     case MVT::i64:
4063       if (Flags.isNest()) {
4064         // The 'nest' parameter, if any, is passed in R11.
4065         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4066         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4067 
4068         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4069           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4070 
4071         break;
4072       }
4073 
4074       // These can be scalar arguments or elements of an integer array type
4075       // passed directly.  Clang may use those instead of "byval" aggregate
4076       // types to avoid forcing arguments to memory unnecessarily.
4077       if (GPR_idx != Num_GPR_Regs) {
4078         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4079         FuncInfo->addLiveInAttr(VReg, Flags);
4080         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4081 
4082         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4083           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4084           // value to MVT::i64 and then truncate to the correct register size.
4085           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4086       } else {
4087         if (CallConv == CallingConv::Fast)
4088           ComputeArgOffset();
4089 
4090         needsLoad = true;
4091         ArgSize = PtrByteSize;
4092       }
4093       if (CallConv != CallingConv::Fast || needsLoad)
4094         ArgOffset += 8;
4095       break;
4096 
4097     case MVT::f32:
4098     case MVT::f64:
4099       // These can be scalar arguments or elements of a float array type
4100       // passed directly.  The latter are used to implement ELFv2 homogenous
4101       // float aggregates.
4102       if (FPR_idx != Num_FPR_Regs) {
4103         unsigned VReg;
4104 
4105         if (ObjectVT == MVT::f32)
4106           VReg = MF.addLiveIn(FPR[FPR_idx],
4107                               Subtarget.hasP8Vector()
4108                                   ? &PPC::VSSRCRegClass
4109                                   : &PPC::F4RCRegClass);
4110         else
4111           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4112                                                 ? &PPC::VSFRCRegClass
4113                                                 : &PPC::F8RCRegClass);
4114 
4115         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4116         ++FPR_idx;
4117       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4118         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4119         // once we support fp <-> gpr moves.
4120 
4121         // This can only ever happen in the presence of f32 array types,
4122         // since otherwise we never run out of FPRs before running out
4123         // of GPRs.
4124         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4125         FuncInfo->addLiveInAttr(VReg, Flags);
4126         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4127 
4128         if (ObjectVT == MVT::f32) {
4129           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4130             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4131                                  DAG.getConstant(32, dl, MVT::i32));
4132           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4133         }
4134 
4135         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4136       } else {
4137         if (CallConv == CallingConv::Fast)
4138           ComputeArgOffset();
4139 
4140         needsLoad = true;
4141       }
4142 
4143       // When passing an array of floats, the array occupies consecutive
4144       // space in the argument area; only round up to the next doubleword
4145       // at the end of the array.  Otherwise, each float takes 8 bytes.
4146       if (CallConv != CallingConv::Fast || needsLoad) {
4147         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4148         ArgOffset += ArgSize;
4149         if (Flags.isInConsecutiveRegsLast())
4150           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4151       }
4152       break;
4153     case MVT::v4f32:
4154     case MVT::v4i32:
4155     case MVT::v8i16:
4156     case MVT::v16i8:
4157     case MVT::v2f64:
4158     case MVT::v2i64:
4159     case MVT::v1i128:
4160     case MVT::f128:
4161       // These can be scalar arguments or elements of a vector array type
4162       // passed directly.  The latter are used to implement ELFv2 homogenous
4163       // vector aggregates.
4164       if (VR_idx != Num_VR_Regs) {
4165         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4166         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4167         ++VR_idx;
4168       } else {
4169         if (CallConv == CallingConv::Fast)
4170           ComputeArgOffset();
4171         needsLoad = true;
4172       }
4173       if (CallConv != CallingConv::Fast || needsLoad)
4174         ArgOffset += 16;
4175       break;
4176     }
4177 
4178     // We need to load the argument to a virtual register if we determined
4179     // above that we ran out of physical registers of the appropriate type.
4180     if (needsLoad) {
4181       if (ObjSize < ArgSize && !isLittleEndian)
4182         CurArgOffset += ArgSize - ObjSize;
4183       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4184       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4185       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4186     }
4187 
4188     InVals.push_back(ArgVal);
4189   }
4190 
4191   // Area that is at least reserved in the caller of this function.
4192   unsigned MinReservedArea;
4193   if (HasParameterArea)
4194     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4195   else
4196     MinReservedArea = LinkageSize;
4197 
4198   // Set the size that is at least reserved in caller of this function.  Tail
4199   // call optimized functions' reserved stack space needs to be aligned so that
4200   // taking the difference between two stack areas will result in an aligned
4201   // stack.
4202   MinReservedArea =
4203       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4204   FuncInfo->setMinReservedArea(MinReservedArea);
4205 
4206   // If the function takes variable number of arguments, make a frame index for
4207   // the start of the first vararg value... for expansion of llvm.va_start.
4208   // On ELFv2ABI spec, it writes:
4209   // C programs that are intended to be *portable* across different compilers
4210   // and architectures must use the header file <stdarg.h> to deal with variable
4211   // argument lists.
4212   if (isVarArg && MFI.hasVAStart()) {
4213     int Depth = ArgOffset;
4214 
4215     FuncInfo->setVarArgsFrameIndex(
4216       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4217     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4218 
4219     // If this function is vararg, store any remaining integer argument regs
4220     // to their spots on the stack so that they may be loaded by dereferencing
4221     // the result of va_next.
4222     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4223          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4224       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4225       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4226       SDValue Store =
4227           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4228       MemOps.push_back(Store);
4229       // Increment the address by four for the next argument to store
4230       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4231       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4232     }
4233   }
4234 
4235   if (!MemOps.empty())
4236     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4237 
4238   return Chain;
4239 }
4240 
4241 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4242     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4243     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4244     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4245   // TODO: add description of PPC stack frame format, or at least some docs.
4246   //
4247   MachineFunction &MF = DAG.getMachineFunction();
4248   MachineFrameInfo &MFI = MF.getFrameInfo();
4249   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4250 
4251   EVT PtrVT = getPointerTy(MF.getDataLayout());
4252   bool isPPC64 = PtrVT == MVT::i64;
4253   // Potential tail calls could cause overwriting of argument stack slots.
4254   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4255                        (CallConv == CallingConv::Fast));
4256   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4257   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4258   unsigned ArgOffset = LinkageSize;
4259   // Area that is at least reserved in caller of this function.
4260   unsigned MinReservedArea = ArgOffset;
4261 
4262   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4263     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4264     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4265   };
4266   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4267     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4268     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4269   };
4270   static const MCPhysReg VR[] = {
4271     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4272     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4273   };
4274 
4275   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4276   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4277   const unsigned Num_VR_Regs  = array_lengthof( VR);
4278 
4279   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4280 
4281   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4282 
4283   // In 32-bit non-varargs functions, the stack space for vectors is after the
4284   // stack space for non-vectors.  We do not use this space unless we have
4285   // too many vectors to fit in registers, something that only occurs in
4286   // constructed examples:), but we have to walk the arglist to figure
4287   // that out...for the pathological case, compute VecArgOffset as the
4288   // start of the vector parameter area.  Computing VecArgOffset is the
4289   // entire point of the following loop.
4290   unsigned VecArgOffset = ArgOffset;
4291   if (!isVarArg && !isPPC64) {
4292     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4293          ++ArgNo) {
4294       EVT ObjectVT = Ins[ArgNo].VT;
4295       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4296 
4297       if (Flags.isByVal()) {
4298         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4299         unsigned ObjSize = Flags.getByValSize();
4300         unsigned ArgSize =
4301                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4302         VecArgOffset += ArgSize;
4303         continue;
4304       }
4305 
4306       switch(ObjectVT.getSimpleVT().SimpleTy) {
4307       default: llvm_unreachable("Unhandled argument type!");
4308       case MVT::i1:
4309       case MVT::i32:
4310       case MVT::f32:
4311         VecArgOffset += 4;
4312         break;
4313       case MVT::i64:  // PPC64
4314       case MVT::f64:
4315         // FIXME: We are guaranteed to be !isPPC64 at this point.
4316         // Does MVT::i64 apply?
4317         VecArgOffset += 8;
4318         break;
4319       case MVT::v4f32:
4320       case MVT::v4i32:
4321       case MVT::v8i16:
4322       case MVT::v16i8:
4323         // Nothing to do, we're only looking at Nonvector args here.
4324         break;
4325       }
4326     }
4327   }
4328   // We've found where the vector parameter area in memory is.  Skip the
4329   // first 12 parameters; these don't use that memory.
4330   VecArgOffset = ((VecArgOffset+15)/16)*16;
4331   VecArgOffset += 12*16;
4332 
4333   // Add DAG nodes to load the arguments or copy them out of registers.  On
4334   // entry to a function on PPC, the arguments start after the linkage area,
4335   // although the first ones are often in registers.
4336 
4337   SmallVector<SDValue, 8> MemOps;
4338   unsigned nAltivecParamsAtEnd = 0;
4339   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4340   unsigned CurArgIdx = 0;
4341   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4342     SDValue ArgVal;
4343     bool needsLoad = false;
4344     EVT ObjectVT = Ins[ArgNo].VT;
4345     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4346     unsigned ArgSize = ObjSize;
4347     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4348     if (Ins[ArgNo].isOrigArg()) {
4349       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4350       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4351     }
4352     unsigned CurArgOffset = ArgOffset;
4353 
4354     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4355     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4356         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4357       if (isVarArg || isPPC64) {
4358         MinReservedArea = ((MinReservedArea+15)/16)*16;
4359         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4360                                                   Flags,
4361                                                   PtrByteSize);
4362       } else  nAltivecParamsAtEnd++;
4363     } else
4364       // Calculate min reserved area.
4365       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4366                                                 Flags,
4367                                                 PtrByteSize);
4368 
4369     // FIXME the codegen can be much improved in some cases.
4370     // We do not have to keep everything in memory.
4371     if (Flags.isByVal()) {
4372       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4373 
4374       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4375       ObjSize = Flags.getByValSize();
4376       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4377       // Objects of size 1 and 2 are right justified, everything else is
4378       // left justified.  This means the memory address is adjusted forwards.
4379       if (ObjSize==1 || ObjSize==2) {
4380         CurArgOffset = CurArgOffset + (4 - ObjSize);
4381       }
4382       // The value of the object is its address.
4383       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4384       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4385       InVals.push_back(FIN);
4386       if (ObjSize==1 || ObjSize==2) {
4387         if (GPR_idx != Num_GPR_Regs) {
4388           unsigned VReg;
4389           if (isPPC64)
4390             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4391           else
4392             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4393           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4394           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4395           SDValue Store =
4396               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4397                                 MachinePointerInfo(&*FuncArg), ObjType);
4398           MemOps.push_back(Store);
4399           ++GPR_idx;
4400         }
4401 
4402         ArgOffset += PtrByteSize;
4403 
4404         continue;
4405       }
4406       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4407         // Store whatever pieces of the object are in registers
4408         // to memory.  ArgOffset will be the address of the beginning
4409         // of the object.
4410         if (GPR_idx != Num_GPR_Regs) {
4411           unsigned VReg;
4412           if (isPPC64)
4413             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4414           else
4415             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4416           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4417           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4418           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4419           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4420                                        MachinePointerInfo(&*FuncArg, j));
4421           MemOps.push_back(Store);
4422           ++GPR_idx;
4423           ArgOffset += PtrByteSize;
4424         } else {
4425           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4426           break;
4427         }
4428       }
4429       continue;
4430     }
4431 
4432     switch (ObjectVT.getSimpleVT().SimpleTy) {
4433     default: llvm_unreachable("Unhandled argument type!");
4434     case MVT::i1:
4435     case MVT::i32:
4436       if (!isPPC64) {
4437         if (GPR_idx != Num_GPR_Regs) {
4438           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4439           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4440 
4441           if (ObjectVT == MVT::i1)
4442             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4443 
4444           ++GPR_idx;
4445         } else {
4446           needsLoad = true;
4447           ArgSize = PtrByteSize;
4448         }
4449         // All int arguments reserve stack space in the Darwin ABI.
4450         ArgOffset += PtrByteSize;
4451         break;
4452       }
4453       LLVM_FALLTHROUGH;
4454     case MVT::i64:  // PPC64
4455       if (GPR_idx != Num_GPR_Regs) {
4456         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4457         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4458 
4459         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4460           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4461           // value to MVT::i64 and then truncate to the correct register size.
4462           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4463 
4464         ++GPR_idx;
4465       } else {
4466         needsLoad = true;
4467         ArgSize = PtrByteSize;
4468       }
4469       // All int arguments reserve stack space in the Darwin ABI.
4470       ArgOffset += 8;
4471       break;
4472 
4473     case MVT::f32:
4474     case MVT::f64:
4475       // Every 4 bytes of argument space consumes one of the GPRs available for
4476       // argument passing.
4477       if (GPR_idx != Num_GPR_Regs) {
4478         ++GPR_idx;
4479         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4480           ++GPR_idx;
4481       }
4482       if (FPR_idx != Num_FPR_Regs) {
4483         unsigned VReg;
4484 
4485         if (ObjectVT == MVT::f32)
4486           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4487         else
4488           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4489 
4490         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4491         ++FPR_idx;
4492       } else {
4493         needsLoad = true;
4494       }
4495 
4496       // All FP arguments reserve stack space in the Darwin ABI.
4497       ArgOffset += isPPC64 ? 8 : ObjSize;
4498       break;
4499     case MVT::v4f32:
4500     case MVT::v4i32:
4501     case MVT::v8i16:
4502     case MVT::v16i8:
4503       // Note that vector arguments in registers don't reserve stack space,
4504       // except in varargs functions.
4505       if (VR_idx != Num_VR_Regs) {
4506         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4507         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4508         if (isVarArg) {
4509           while ((ArgOffset % 16) != 0) {
4510             ArgOffset += PtrByteSize;
4511             if (GPR_idx != Num_GPR_Regs)
4512               GPR_idx++;
4513           }
4514           ArgOffset += 16;
4515           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4516         }
4517         ++VR_idx;
4518       } else {
4519         if (!isVarArg && !isPPC64) {
4520           // Vectors go after all the nonvectors.
4521           CurArgOffset = VecArgOffset;
4522           VecArgOffset += 16;
4523         } else {
4524           // Vectors are aligned.
4525           ArgOffset = ((ArgOffset+15)/16)*16;
4526           CurArgOffset = ArgOffset;
4527           ArgOffset += 16;
4528         }
4529         needsLoad = true;
4530       }
4531       break;
4532     }
4533 
4534     // We need to load the argument to a virtual register if we determined above
4535     // that we ran out of physical registers of the appropriate type.
4536     if (needsLoad) {
4537       int FI = MFI.CreateFixedObject(ObjSize,
4538                                      CurArgOffset + (ArgSize - ObjSize),
4539                                      isImmutable);
4540       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4541       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4542     }
4543 
4544     InVals.push_back(ArgVal);
4545   }
4546 
4547   // Allow for Altivec parameters at the end, if needed.
4548   if (nAltivecParamsAtEnd) {
4549     MinReservedArea = ((MinReservedArea+15)/16)*16;
4550     MinReservedArea += 16*nAltivecParamsAtEnd;
4551   }
4552 
4553   // Area that is at least reserved in the caller of this function.
4554   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4555 
4556   // Set the size that is at least reserved in caller of this function.  Tail
4557   // call optimized functions' reserved stack space needs to be aligned so that
4558   // taking the difference between two stack areas will result in an aligned
4559   // stack.
4560   MinReservedArea =
4561       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4562   FuncInfo->setMinReservedArea(MinReservedArea);
4563 
4564   // If the function takes variable number of arguments, make a frame index for
4565   // the start of the first vararg value... for expansion of llvm.va_start.
4566   if (isVarArg) {
4567     int Depth = ArgOffset;
4568 
4569     FuncInfo->setVarArgsFrameIndex(
4570       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4571                             Depth, true));
4572     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4573 
4574     // If this function is vararg, store any remaining integer argument regs
4575     // to their spots on the stack so that they may be loaded by dereferencing
4576     // the result of va_next.
4577     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4578       unsigned VReg;
4579 
4580       if (isPPC64)
4581         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4582       else
4583         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4584 
4585       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4586       SDValue Store =
4587           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4588       MemOps.push_back(Store);
4589       // Increment the address by four for the next argument to store
4590       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4591       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4592     }
4593   }
4594 
4595   if (!MemOps.empty())
4596     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4597 
4598   return Chain;
4599 }
4600 
4601 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4602 /// adjusted to accommodate the arguments for the tailcall.
4603 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4604                                    unsigned ParamSize) {
4605 
4606   if (!isTailCall) return 0;
4607 
4608   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4609   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4610   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4611   // Remember only if the new adjustment is bigger.
4612   if (SPDiff < FI->getTailCallSPDelta())
4613     FI->setTailCallSPDelta(SPDiff);
4614 
4615   return SPDiff;
4616 }
4617 
4618 static bool isFunctionGlobalAddress(SDValue Callee);
4619 
4620 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4621                               const TargetMachine &TM) {
4622   // It does not make sense to call callsShareTOCBase() with a caller that
4623   // is PC Relative since PC Relative callers do not have a TOC.
4624 #ifndef NDEBUG
4625   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4626   assert(!STICaller->isUsingPCRelativeCalls() &&
4627          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4628 #endif
4629 
4630   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4631   // don't have enough information to determine if the caller and callee share
4632   // the same  TOC base, so we have to pessimistically assume they don't for
4633   // correctness.
4634   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4635   if (!G)
4636     return false;
4637 
4638   const GlobalValue *GV = G->getGlobal();
4639 
4640   // If the callee is preemptable, then the static linker will use a plt-stub
4641   // which saves the toc to the stack, and needs a nop after the call
4642   // instruction to convert to a toc-restore.
4643   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4644     return false;
4645 
4646   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4647   // We may need a TOC restore in the situation where the caller requires a
4648   // valid TOC but the callee is PC Relative and does not.
4649   const Function *F = dyn_cast<Function>(GV);
4650   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4651 
4652   // If we have an Alias we can try to get the function from there.
4653   if (Alias) {
4654     const GlobalObject *GlobalObj = Alias->getBaseObject();
4655     F = dyn_cast<Function>(GlobalObj);
4656   }
4657 
4658   // If we still have no valid function pointer we do not have enough
4659   // information to determine if the callee uses PC Relative calls so we must
4660   // assume that it does.
4661   if (!F)
4662     return false;
4663 
4664   // If the callee uses PC Relative we cannot guarantee that the callee won't
4665   // clobber the TOC of the caller and so we must assume that the two
4666   // functions do not share a TOC base.
4667   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4668   if (STICallee->isUsingPCRelativeCalls())
4669     return false;
4670 
4671   // The medium and large code models are expected to provide a sufficiently
4672   // large TOC to provide all data addressing needs of a module with a
4673   // single TOC.
4674   if (CodeModel::Medium == TM.getCodeModel() ||
4675       CodeModel::Large == TM.getCodeModel())
4676     return true;
4677 
4678   // Otherwise we need to ensure callee and caller are in the same section,
4679   // since the linker may allocate multiple TOCs, and we don't know which
4680   // sections will belong to the same TOC base.
4681   if (!GV->isStrongDefinitionForLinker())
4682     return false;
4683 
4684   // Any explicitly-specified sections and section prefixes must also match.
4685   // Also, if we're using -ffunction-sections, then each function is always in
4686   // a different section (the same is true for COMDAT functions).
4687   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4688       GV->getSection() != Caller->getSection())
4689     return false;
4690   if (const auto *F = dyn_cast<Function>(GV)) {
4691     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4692       return false;
4693   }
4694 
4695   return true;
4696 }
4697 
4698 static bool
4699 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4700                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4701   assert(Subtarget.is64BitELFABI());
4702 
4703   const unsigned PtrByteSize = 8;
4704   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4705 
4706   static const MCPhysReg GPR[] = {
4707     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4708     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4709   };
4710   static const MCPhysReg VR[] = {
4711     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4712     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4713   };
4714 
4715   const unsigned NumGPRs = array_lengthof(GPR);
4716   const unsigned NumFPRs = 13;
4717   const unsigned NumVRs = array_lengthof(VR);
4718   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4719 
4720   unsigned NumBytes = LinkageSize;
4721   unsigned AvailableFPRs = NumFPRs;
4722   unsigned AvailableVRs = NumVRs;
4723 
4724   for (const ISD::OutputArg& Param : Outs) {
4725     if (Param.Flags.isNest()) continue;
4726 
4727     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4728                                LinkageSize, ParamAreaSize, NumBytes,
4729                                AvailableFPRs, AvailableVRs))
4730       return true;
4731   }
4732   return false;
4733 }
4734 
4735 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4736   if (CB.arg_size() != CallerFn->arg_size())
4737     return false;
4738 
4739   auto CalleeArgIter = CB.arg_begin();
4740   auto CalleeArgEnd = CB.arg_end();
4741   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4742 
4743   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4744     const Value* CalleeArg = *CalleeArgIter;
4745     const Value* CallerArg = &(*CallerArgIter);
4746     if (CalleeArg == CallerArg)
4747       continue;
4748 
4749     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4750     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4751     //      }
4752     // 1st argument of callee is undef and has the same type as caller.
4753     if (CalleeArg->getType() == CallerArg->getType() &&
4754         isa<UndefValue>(CalleeArg))
4755       continue;
4756 
4757     return false;
4758   }
4759 
4760   return true;
4761 }
4762 
4763 // Returns true if TCO is possible between the callers and callees
4764 // calling conventions.
4765 static bool
4766 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4767                                     CallingConv::ID CalleeCC) {
4768   // Tail calls are possible with fastcc and ccc.
4769   auto isTailCallableCC  = [] (CallingConv::ID CC){
4770       return  CC == CallingConv::C || CC == CallingConv::Fast;
4771   };
4772   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4773     return false;
4774 
4775   // We can safely tail call both fastcc and ccc callees from a c calling
4776   // convention caller. If the caller is fastcc, we may have less stack space
4777   // than a non-fastcc caller with the same signature so disable tail-calls in
4778   // that case.
4779   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4780 }
4781 
4782 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4783     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4784     const SmallVectorImpl<ISD::OutputArg> &Outs,
4785     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4786   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4787 
4788   if (DisableSCO && !TailCallOpt) return false;
4789 
4790   // Variadic argument functions are not supported.
4791   if (isVarArg) return false;
4792 
4793   auto &Caller = DAG.getMachineFunction().getFunction();
4794   // Check that the calling conventions are compatible for tco.
4795   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4796     return false;
4797 
4798   // Caller contains any byval parameter is not supported.
4799   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4800     return false;
4801 
4802   // Callee contains any byval parameter is not supported, too.
4803   // Note: This is a quick work around, because in some cases, e.g.
4804   // caller's stack size > callee's stack size, we are still able to apply
4805   // sibling call optimization. For example, gcc is able to do SCO for caller1
4806   // in the following example, but not for caller2.
4807   //   struct test {
4808   //     long int a;
4809   //     char ary[56];
4810   //   } gTest;
4811   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4812   //     b->a = v.a;
4813   //     return 0;
4814   //   }
4815   //   void caller1(struct test a, struct test c, struct test *b) {
4816   //     callee(gTest, b); }
4817   //   void caller2(struct test *b) { callee(gTest, b); }
4818   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4819     return false;
4820 
4821   // If callee and caller use different calling conventions, we cannot pass
4822   // parameters on stack since offsets for the parameter area may be different.
4823   if (Caller.getCallingConv() != CalleeCC &&
4824       needStackSlotPassParameters(Subtarget, Outs))
4825     return false;
4826 
4827   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4828   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4829   // callee potentially have different TOC bases then we cannot tail call since
4830   // we need to restore the TOC pointer after the call.
4831   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4832   // We cannot guarantee this for indirect calls or calls to external functions.
4833   // When PC-Relative addressing is used, the concept of the TOC is no longer
4834   // applicable so this check is not required.
4835   // Check first for indirect calls.
4836   if (!Subtarget.isUsingPCRelativeCalls() &&
4837       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4838     return false;
4839 
4840   // Check if we share the TOC base.
4841   if (!Subtarget.isUsingPCRelativeCalls() &&
4842       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4843     return false;
4844 
4845   // TCO allows altering callee ABI, so we don't have to check further.
4846   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4847     return true;
4848 
4849   if (DisableSCO) return false;
4850 
4851   // If callee use the same argument list that caller is using, then we can
4852   // apply SCO on this case. If it is not, then we need to check if callee needs
4853   // stack for passing arguments.
4854   // PC Relative tail calls may not have a CallBase.
4855   // If there is no CallBase we cannot verify if we have the same argument
4856   // list so assume that we don't have the same argument list.
4857   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4858       needStackSlotPassParameters(Subtarget, Outs))
4859     return false;
4860   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4861     return false;
4862 
4863   return true;
4864 }
4865 
4866 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4867 /// for tail call optimization. Targets which want to do tail call
4868 /// optimization should implement this function.
4869 bool
4870 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4871                                                      CallingConv::ID CalleeCC,
4872                                                      bool isVarArg,
4873                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4874                                                      SelectionDAG& DAG) const {
4875   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4876     return false;
4877 
4878   // Variable argument functions are not supported.
4879   if (isVarArg)
4880     return false;
4881 
4882   MachineFunction &MF = DAG.getMachineFunction();
4883   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4884   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4885     // Functions containing by val parameters are not supported.
4886     for (unsigned i = 0; i != Ins.size(); i++) {
4887        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4888        if (Flags.isByVal()) return false;
4889     }
4890 
4891     // Non-PIC/GOT tail calls are supported.
4892     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4893       return true;
4894 
4895     // At the moment we can only do local tail calls (in same module, hidden
4896     // or protected) if we are generating PIC.
4897     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4898       return G->getGlobal()->hasHiddenVisibility()
4899           || G->getGlobal()->hasProtectedVisibility();
4900   }
4901 
4902   return false;
4903 }
4904 
4905 /// isCallCompatibleAddress - Return the immediate to use if the specified
4906 /// 32-bit value is representable in the immediate field of a BxA instruction.
4907 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4908   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4909   if (!C) return nullptr;
4910 
4911   int Addr = C->getZExtValue();
4912   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4913       SignExtend32<26>(Addr) != Addr)
4914     return nullptr;  // Top 6 bits have to be sext of immediate.
4915 
4916   return DAG
4917       .getConstant(
4918           (int)C->getZExtValue() >> 2, SDLoc(Op),
4919           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4920       .getNode();
4921 }
4922 
4923 namespace {
4924 
4925 struct TailCallArgumentInfo {
4926   SDValue Arg;
4927   SDValue FrameIdxOp;
4928   int FrameIdx = 0;
4929 
4930   TailCallArgumentInfo() = default;
4931 };
4932 
4933 } // end anonymous namespace
4934 
4935 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4936 static void StoreTailCallArgumentsToStackSlot(
4937     SelectionDAG &DAG, SDValue Chain,
4938     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4939     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4940   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4941     SDValue Arg = TailCallArgs[i].Arg;
4942     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4943     int FI = TailCallArgs[i].FrameIdx;
4944     // Store relative to framepointer.
4945     MemOpChains.push_back(DAG.getStore(
4946         Chain, dl, Arg, FIN,
4947         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4948   }
4949 }
4950 
4951 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4952 /// the appropriate stack slot for the tail call optimized function call.
4953 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4954                                              SDValue OldRetAddr, SDValue OldFP,
4955                                              int SPDiff, const SDLoc &dl) {
4956   if (SPDiff) {
4957     // Calculate the new stack slot for the return address.
4958     MachineFunction &MF = DAG.getMachineFunction();
4959     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4960     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4961     bool isPPC64 = Subtarget.isPPC64();
4962     int SlotSize = isPPC64 ? 8 : 4;
4963     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4964     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4965                                                          NewRetAddrLoc, true);
4966     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4967     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4968     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4969                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4970   }
4971   return Chain;
4972 }
4973 
4974 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4975 /// the position of the argument.
4976 static void
4977 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4978                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4979                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4980   int Offset = ArgOffset + SPDiff;
4981   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4982   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4983   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4984   SDValue FIN = DAG.getFrameIndex(FI, VT);
4985   TailCallArgumentInfo Info;
4986   Info.Arg = Arg;
4987   Info.FrameIdxOp = FIN;
4988   Info.FrameIdx = FI;
4989   TailCallArguments.push_back(Info);
4990 }
4991 
4992 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4993 /// stack slot. Returns the chain as result and the loaded frame pointers in
4994 /// LROpOut/FPOpout. Used when tail calling.
4995 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4996     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4997     SDValue &FPOpOut, const SDLoc &dl) const {
4998   if (SPDiff) {
4999     // Load the LR and FP stack slot for later adjusting.
5000     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5001     LROpOut = getReturnAddrFrameIndex(DAG);
5002     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5003     Chain = SDValue(LROpOut.getNode(), 1);
5004   }
5005   return Chain;
5006 }
5007 
5008 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5009 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5010 /// specified by the specific parameter attribute. The copy will be passed as
5011 /// a byval function parameter.
5012 /// Sometimes what we are copying is the end of a larger object, the part that
5013 /// does not fit in registers.
5014 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5015                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5016                                          SelectionDAG &DAG, const SDLoc &dl) {
5017   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5018   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5019                        Flags.getNonZeroByValAlign(), false, false, false,
5020                        MachinePointerInfo(), MachinePointerInfo());
5021 }
5022 
5023 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5024 /// tail calls.
5025 static void LowerMemOpCallTo(
5026     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5027     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5028     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5029     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5030   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5031   if (!isTailCall) {
5032     if (isVector) {
5033       SDValue StackPtr;
5034       if (isPPC64)
5035         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5036       else
5037         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5038       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5039                            DAG.getConstant(ArgOffset, dl, PtrVT));
5040     }
5041     MemOpChains.push_back(
5042         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5043     // Calculate and remember argument location.
5044   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5045                                   TailCallArguments);
5046 }
5047 
5048 static void
5049 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5050                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5051                 SDValue FPOp,
5052                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5053   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5054   // might overwrite each other in case of tail call optimization.
5055   SmallVector<SDValue, 8> MemOpChains2;
5056   // Do not flag preceding copytoreg stuff together with the following stuff.
5057   InFlag = SDValue();
5058   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5059                                     MemOpChains2, dl);
5060   if (!MemOpChains2.empty())
5061     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5062 
5063   // Store the return address to the appropriate stack slot.
5064   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5065 
5066   // Emit callseq_end just before tailcall node.
5067   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5068                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5069   InFlag = Chain.getValue(1);
5070 }
5071 
5072 // Is this global address that of a function that can be called by name? (as
5073 // opposed to something that must hold a descriptor for an indirect call).
5074 static bool isFunctionGlobalAddress(SDValue Callee) {
5075   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5076     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5077         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5078       return false;
5079 
5080     return G->getGlobal()->getValueType()->isFunctionTy();
5081   }
5082 
5083   return false;
5084 }
5085 
5086 SDValue PPCTargetLowering::LowerCallResult(
5087     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5088     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5089     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5090   SmallVector<CCValAssign, 16> RVLocs;
5091   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5092                     *DAG.getContext());
5093 
5094   CCRetInfo.AnalyzeCallResult(
5095       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5096                ? RetCC_PPC_Cold
5097                : RetCC_PPC);
5098 
5099   // Copy all of the result registers out of their specified physreg.
5100   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5101     CCValAssign &VA = RVLocs[i];
5102     assert(VA.isRegLoc() && "Can only return in registers!");
5103 
5104     SDValue Val;
5105 
5106     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5107       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5108                                       InFlag);
5109       Chain = Lo.getValue(1);
5110       InFlag = Lo.getValue(2);
5111       VA = RVLocs[++i]; // skip ahead to next loc
5112       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5113                                       InFlag);
5114       Chain = Hi.getValue(1);
5115       InFlag = Hi.getValue(2);
5116       if (!Subtarget.isLittleEndian())
5117         std::swap (Lo, Hi);
5118       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5119     } else {
5120       Val = DAG.getCopyFromReg(Chain, dl,
5121                                VA.getLocReg(), VA.getLocVT(), InFlag);
5122       Chain = Val.getValue(1);
5123       InFlag = Val.getValue(2);
5124     }
5125 
5126     switch (VA.getLocInfo()) {
5127     default: llvm_unreachable("Unknown loc info!");
5128     case CCValAssign::Full: break;
5129     case CCValAssign::AExt:
5130       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5131       break;
5132     case CCValAssign::ZExt:
5133       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5134                         DAG.getValueType(VA.getValVT()));
5135       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5136       break;
5137     case CCValAssign::SExt:
5138       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5139                         DAG.getValueType(VA.getValVT()));
5140       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5141       break;
5142     }
5143 
5144     InVals.push_back(Val);
5145   }
5146 
5147   return Chain;
5148 }
5149 
5150 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5151                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5152   // PatchPoint calls are not indirect.
5153   if (isPatchPoint)
5154     return false;
5155 
5156   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5157     return false;
5158 
5159   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5160   // becuase the immediate function pointer points to a descriptor instead of
5161   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5162   // pointer immediate points to the global entry point, while the BLA would
5163   // need to jump to the local entry point (see rL211174).
5164   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5165       isBLACompatibleAddress(Callee, DAG))
5166     return false;
5167 
5168   return true;
5169 }
5170 
5171 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5172 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5173   return Subtarget.isAIXABI() ||
5174          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5175 }
5176 
5177 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5178                               const Function &Caller,
5179                               const SDValue &Callee,
5180                               const PPCSubtarget &Subtarget,
5181                               const TargetMachine &TM) {
5182   if (CFlags.IsTailCall)
5183     return PPCISD::TC_RETURN;
5184 
5185   // This is a call through a function pointer.
5186   if (CFlags.IsIndirect) {
5187     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5188     // indirect calls. The save of the caller's TOC pointer to the stack will be
5189     // inserted into the DAG as part of call lowering. The restore of the TOC
5190     // pointer is modeled by using a pseudo instruction for the call opcode that
5191     // represents the 2 instruction sequence of an indirect branch and link,
5192     // immediately followed by a load of the TOC pointer from the the stack save
5193     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5194     // as it is not saved or used.
5195     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5196                                                : PPCISD::BCTRL;
5197   }
5198 
5199   if (Subtarget.isUsingPCRelativeCalls()) {
5200     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5201     return PPCISD::CALL_NOTOC;
5202   }
5203 
5204   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5205   // immediately following the call instruction if the caller and callee may
5206   // have different TOC bases. At link time if the linker determines the calls
5207   // may not share a TOC base, the call is redirected to a trampoline inserted
5208   // by the linker. The trampoline will (among other things) save the callers
5209   // TOC pointer at an ABI designated offset in the linkage area and the linker
5210   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5211   // into gpr2.
5212   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5213     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5214                                                   : PPCISD::CALL_NOP;
5215 
5216   return PPCISD::CALL;
5217 }
5218 
5219 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5220                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5221   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5222     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5223       return SDValue(Dest, 0);
5224 
5225   // Returns true if the callee is local, and false otherwise.
5226   auto isLocalCallee = [&]() {
5227     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5228     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5229     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5230 
5231     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5232            !dyn_cast_or_null<GlobalIFunc>(GV);
5233   };
5234 
5235   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5236   // a static relocation model causes some versions of GNU LD (2.17.50, at
5237   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5238   // built with secure-PLT.
5239   bool UsePlt =
5240       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5241       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5242 
5243   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5244     const TargetMachine &TM = Subtarget.getTargetMachine();
5245     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5246     MCSymbolXCOFF *S =
5247         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5248 
5249     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5250     return DAG.getMCSymbol(S, PtrVT);
5251   };
5252 
5253   if (isFunctionGlobalAddress(Callee)) {
5254     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5255 
5256     if (Subtarget.isAIXABI()) {
5257       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5258       return getAIXFuncEntryPointSymbolSDNode(GV);
5259     }
5260     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5261                                       UsePlt ? PPCII::MO_PLT : 0);
5262   }
5263 
5264   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5265     const char *SymName = S->getSymbol();
5266     if (Subtarget.isAIXABI()) {
5267       // If there exists a user-declared function whose name is the same as the
5268       // ExternalSymbol's, then we pick up the user-declared version.
5269       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5270       if (const Function *F =
5271               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5272         return getAIXFuncEntryPointSymbolSDNode(F);
5273 
5274       // On AIX, direct function calls reference the symbol for the function's
5275       // entry point, which is named by prepending a "." before the function's
5276       // C-linkage name. A Qualname is returned here because an external
5277       // function entry point is a csect with XTY_ER property.
5278       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5279         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5280         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5281             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5282             SectionKind::getMetadata());
5283         return Sec->getQualNameSymbol();
5284       };
5285 
5286       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5287     }
5288     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5289                                        UsePlt ? PPCII::MO_PLT : 0);
5290   }
5291 
5292   // No transformation needed.
5293   assert(Callee.getNode() && "What no callee?");
5294   return Callee;
5295 }
5296 
5297 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5298   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5299          "Expected a CALLSEQ_STARTSDNode.");
5300 
5301   // The last operand is the chain, except when the node has glue. If the node
5302   // has glue, then the last operand is the glue, and the chain is the second
5303   // last operand.
5304   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5305   if (LastValue.getValueType() != MVT::Glue)
5306     return LastValue;
5307 
5308   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5309 }
5310 
5311 // Creates the node that moves a functions address into the count register
5312 // to prepare for an indirect call instruction.
5313 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5314                                 SDValue &Glue, SDValue &Chain,
5315                                 const SDLoc &dl) {
5316   SDValue MTCTROps[] = {Chain, Callee, Glue};
5317   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5318   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5319                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5320   // The glue is the second value produced.
5321   Glue = Chain.getValue(1);
5322 }
5323 
5324 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5325                                           SDValue &Glue, SDValue &Chain,
5326                                           SDValue CallSeqStart,
5327                                           const CallBase *CB, const SDLoc &dl,
5328                                           bool hasNest,
5329                                           const PPCSubtarget &Subtarget) {
5330   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5331   // entry point, but to the function descriptor (the function entry point
5332   // address is part of the function descriptor though).
5333   // The function descriptor is a three doubleword structure with the
5334   // following fields: function entry point, TOC base address and
5335   // environment pointer.
5336   // Thus for a call through a function pointer, the following actions need
5337   // to be performed:
5338   //   1. Save the TOC of the caller in the TOC save area of its stack
5339   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5340   //   2. Load the address of the function entry point from the function
5341   //      descriptor.
5342   //   3. Load the TOC of the callee from the function descriptor into r2.
5343   //   4. Load the environment pointer from the function descriptor into
5344   //      r11.
5345   //   5. Branch to the function entry point address.
5346   //   6. On return of the callee, the TOC of the caller needs to be
5347   //      restored (this is done in FinishCall()).
5348   //
5349   // The loads are scheduled at the beginning of the call sequence, and the
5350   // register copies are flagged together to ensure that no other
5351   // operations can be scheduled in between. E.g. without flagging the
5352   // copies together, a TOC access in the caller could be scheduled between
5353   // the assignment of the callee TOC and the branch to the callee, which leads
5354   // to incorrect code.
5355 
5356   // Start by loading the function address from the descriptor.
5357   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5358   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5359                       ? (MachineMemOperand::MODereferenceable |
5360                          MachineMemOperand::MOInvariant)
5361                       : MachineMemOperand::MONone;
5362 
5363   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5364 
5365   // Registers used in building the DAG.
5366   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5367   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5368 
5369   // Offsets of descriptor members.
5370   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5371   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5372 
5373   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5374   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5375 
5376   // One load for the functions entry point address.
5377   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5378                                     Alignment, MMOFlags);
5379 
5380   // One for loading the TOC anchor for the module that contains the called
5381   // function.
5382   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5383   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5384   SDValue TOCPtr =
5385       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5386                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5387 
5388   // One for loading the environment pointer.
5389   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5390   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5391   SDValue LoadEnvPtr =
5392       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5393                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5394 
5395 
5396   // Then copy the newly loaded TOC anchor to the TOC pointer.
5397   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5398   Chain = TOCVal.getValue(0);
5399   Glue = TOCVal.getValue(1);
5400 
5401   // If the function call has an explicit 'nest' parameter, it takes the
5402   // place of the environment pointer.
5403   assert((!hasNest || !Subtarget.isAIXABI()) &&
5404          "Nest parameter is not supported on AIX.");
5405   if (!hasNest) {
5406     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5407     Chain = EnvVal.getValue(0);
5408     Glue = EnvVal.getValue(1);
5409   }
5410 
5411   // The rest of the indirect call sequence is the same as the non-descriptor
5412   // DAG.
5413   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5414 }
5415 
5416 static void
5417 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5418                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5419                   SelectionDAG &DAG,
5420                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5421                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5422                   const PPCSubtarget &Subtarget) {
5423   const bool IsPPC64 = Subtarget.isPPC64();
5424   // MVT for a general purpose register.
5425   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5426 
5427   // First operand is always the chain.
5428   Ops.push_back(Chain);
5429 
5430   // If it's a direct call pass the callee as the second operand.
5431   if (!CFlags.IsIndirect)
5432     Ops.push_back(Callee);
5433   else {
5434     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5435 
5436     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5437     // on the stack (this would have been done in `LowerCall_64SVR4` or
5438     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5439     // represents both the indirect branch and a load that restores the TOC
5440     // pointer from the linkage area. The operand for the TOC restore is an add
5441     // of the TOC save offset to the stack pointer. This must be the second
5442     // operand: after the chain input but before any other variadic arguments.
5443     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5444     // saved or used.
5445     if (isTOCSaveRestoreRequired(Subtarget)) {
5446       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5447 
5448       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5449       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5450       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5451       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5452       Ops.push_back(AddTOC);
5453     }
5454 
5455     // Add the register used for the environment pointer.
5456     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5457       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5458                                     RegVT));
5459 
5460 
5461     // Add CTR register as callee so a bctr can be emitted later.
5462     if (CFlags.IsTailCall)
5463       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5464   }
5465 
5466   // If this is a tail call add stack pointer delta.
5467   if (CFlags.IsTailCall)
5468     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5469 
5470   // Add argument registers to the end of the list so that they are known live
5471   // into the call.
5472   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5473     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5474                                   RegsToPass[i].second.getValueType()));
5475 
5476   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5477   // no way to mark dependencies as implicit here.
5478   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5479   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5480        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5481     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5482 
5483   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5484   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5485     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5486 
5487   // Add a register mask operand representing the call-preserved registers.
5488   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5489   const uint32_t *Mask =
5490       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5491   assert(Mask && "Missing call preserved mask for calling convention");
5492   Ops.push_back(DAG.getRegisterMask(Mask));
5493 
5494   // If the glue is valid, it is the last operand.
5495   if (Glue.getNode())
5496     Ops.push_back(Glue);
5497 }
5498 
5499 SDValue PPCTargetLowering::FinishCall(
5500     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5501     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5502     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5503     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5504     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5505 
5506   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5507       Subtarget.isAIXABI())
5508     setUsesTOCBasePtr(DAG);
5509 
5510   unsigned CallOpc =
5511       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5512                     Subtarget, DAG.getTarget());
5513 
5514   if (!CFlags.IsIndirect)
5515     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5516   else if (Subtarget.usesFunctionDescriptors())
5517     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5518                                   dl, CFlags.HasNest, Subtarget);
5519   else
5520     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5521 
5522   // Build the operand list for the call instruction.
5523   SmallVector<SDValue, 8> Ops;
5524   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5525                     SPDiff, Subtarget);
5526 
5527   // Emit tail call.
5528   if (CFlags.IsTailCall) {
5529     // Indirect tail call when using PC Relative calls do not have the same
5530     // constraints.
5531     assert(((Callee.getOpcode() == ISD::Register &&
5532              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5533             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5534             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5535             isa<ConstantSDNode>(Callee) ||
5536             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5537            "Expecting a global address, external symbol, absolute value, "
5538            "register or an indirect tail call when PC Relative calls are "
5539            "used.");
5540     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5541     assert(CallOpc == PPCISD::TC_RETURN &&
5542            "Unexpected call opcode for a tail call.");
5543     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5544     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5545   }
5546 
5547   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5548   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5549   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5550   Glue = Chain.getValue(1);
5551 
5552   // When performing tail call optimization the callee pops its arguments off
5553   // the stack. Account for this here so these bytes can be pushed back on in
5554   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5555   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5556                          getTargetMachine().Options.GuaranteedTailCallOpt)
5557                             ? NumBytes
5558                             : 0;
5559 
5560   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5561                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5562                              Glue, dl);
5563   Glue = Chain.getValue(1);
5564 
5565   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5566                          DAG, InVals);
5567 }
5568 
5569 SDValue
5570 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5571                              SmallVectorImpl<SDValue> &InVals) const {
5572   SelectionDAG &DAG                     = CLI.DAG;
5573   SDLoc &dl                             = CLI.DL;
5574   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5575   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5576   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5577   SDValue Chain                         = CLI.Chain;
5578   SDValue Callee                        = CLI.Callee;
5579   bool &isTailCall                      = CLI.IsTailCall;
5580   CallingConv::ID CallConv              = CLI.CallConv;
5581   bool isVarArg                         = CLI.IsVarArg;
5582   bool isPatchPoint                     = CLI.IsPatchPoint;
5583   const CallBase *CB                    = CLI.CB;
5584 
5585   if (isTailCall) {
5586     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5587       isTailCall = false;
5588     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5589       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5590           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5591     else
5592       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5593                                                      Ins, DAG);
5594     if (isTailCall) {
5595       ++NumTailCalls;
5596       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5597         ++NumSiblingCalls;
5598 
5599       // PC Relative calls no longer guarantee that the callee is a Global
5600       // Address Node. The callee could be an indirect tail call in which
5601       // case the SDValue for the callee could be a load (to load the address
5602       // of a function pointer) or it may be a register copy (to move the
5603       // address of the callee from a function parameter into a virtual
5604       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5605       assert((Subtarget.isUsingPCRelativeCalls() ||
5606               isa<GlobalAddressSDNode>(Callee)) &&
5607              "Callee should be an llvm::Function object.");
5608 
5609       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5610                         << "\nTCO callee: ");
5611       LLVM_DEBUG(Callee.dump());
5612     }
5613   }
5614 
5615   if (!isTailCall && CB && CB->isMustTailCall())
5616     report_fatal_error("failed to perform tail call elimination on a call "
5617                        "site marked musttail");
5618 
5619   // When long calls (i.e. indirect calls) are always used, calls are always
5620   // made via function pointer. If we have a function name, first translate it
5621   // into a pointer.
5622   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5623       !isTailCall)
5624     Callee = LowerGlobalAddress(Callee, DAG);
5625 
5626   CallFlags CFlags(
5627       CallConv, isTailCall, isVarArg, isPatchPoint,
5628       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5629       // hasNest
5630       Subtarget.is64BitELFABI() &&
5631           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5632       CLI.NoMerge);
5633 
5634   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5635     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5636                             InVals, CB);
5637 
5638   if (Subtarget.isSVR4ABI())
5639     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5640                             InVals, CB);
5641 
5642   if (Subtarget.isAIXABI())
5643     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5644                          InVals, CB);
5645 
5646   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5647                           InVals, CB);
5648 }
5649 
5650 SDValue PPCTargetLowering::LowerCall_32SVR4(
5651     SDValue Chain, SDValue Callee, CallFlags CFlags,
5652     const SmallVectorImpl<ISD::OutputArg> &Outs,
5653     const SmallVectorImpl<SDValue> &OutVals,
5654     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5655     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5656     const CallBase *CB) const {
5657   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5658   // of the 32-bit SVR4 ABI stack frame layout.
5659 
5660   const CallingConv::ID CallConv = CFlags.CallConv;
5661   const bool IsVarArg = CFlags.IsVarArg;
5662   const bool IsTailCall = CFlags.IsTailCall;
5663 
5664   assert((CallConv == CallingConv::C ||
5665           CallConv == CallingConv::Cold ||
5666           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5667 
5668   const Align PtrAlign(4);
5669 
5670   MachineFunction &MF = DAG.getMachineFunction();
5671 
5672   // Mark this function as potentially containing a function that contains a
5673   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5674   // and restoring the callers stack pointer in this functions epilog. This is
5675   // done because by tail calling the called function might overwrite the value
5676   // in this function's (MF) stack pointer stack slot 0(SP).
5677   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5678       CallConv == CallingConv::Fast)
5679     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5680 
5681   // Count how many bytes are to be pushed on the stack, including the linkage
5682   // area, parameter list area and the part of the local variable space which
5683   // contains copies of aggregates which are passed by value.
5684 
5685   // Assign locations to all of the outgoing arguments.
5686   SmallVector<CCValAssign, 16> ArgLocs;
5687   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5688 
5689   // Reserve space for the linkage area on the stack.
5690   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5691                        PtrAlign);
5692   if (useSoftFloat())
5693     CCInfo.PreAnalyzeCallOperands(Outs);
5694 
5695   if (IsVarArg) {
5696     // Handle fixed and variable vector arguments differently.
5697     // Fixed vector arguments go into registers as long as registers are
5698     // available. Variable vector arguments always go into memory.
5699     unsigned NumArgs = Outs.size();
5700 
5701     for (unsigned i = 0; i != NumArgs; ++i) {
5702       MVT ArgVT = Outs[i].VT;
5703       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5704       bool Result;
5705 
5706       if (Outs[i].IsFixed) {
5707         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5708                                CCInfo);
5709       } else {
5710         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5711                                       ArgFlags, CCInfo);
5712       }
5713 
5714       if (Result) {
5715 #ifndef NDEBUG
5716         errs() << "Call operand #" << i << " has unhandled type "
5717              << EVT(ArgVT).getEVTString() << "\n";
5718 #endif
5719         llvm_unreachable(nullptr);
5720       }
5721     }
5722   } else {
5723     // All arguments are treated the same.
5724     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5725   }
5726   CCInfo.clearWasPPCF128();
5727 
5728   // Assign locations to all of the outgoing aggregate by value arguments.
5729   SmallVector<CCValAssign, 16> ByValArgLocs;
5730   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5731 
5732   // Reserve stack space for the allocations in CCInfo.
5733   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5734 
5735   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5736 
5737   // Size of the linkage area, parameter list area and the part of the local
5738   // space variable where copies of aggregates which are passed by value are
5739   // stored.
5740   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5741 
5742   // Calculate by how many bytes the stack has to be adjusted in case of tail
5743   // call optimization.
5744   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5745 
5746   // Adjust the stack pointer for the new arguments...
5747   // These operations are automatically eliminated by the prolog/epilog pass
5748   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5749   SDValue CallSeqStart = Chain;
5750 
5751   // Load the return address and frame pointer so it can be moved somewhere else
5752   // later.
5753   SDValue LROp, FPOp;
5754   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5755 
5756   // Set up a copy of the stack pointer for use loading and storing any
5757   // arguments that may not fit in the registers available for argument
5758   // passing.
5759   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5760 
5761   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5762   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5763   SmallVector<SDValue, 8> MemOpChains;
5764 
5765   bool seenFloatArg = false;
5766   // Walk the register/memloc assignments, inserting copies/loads.
5767   // i - Tracks the index into the list of registers allocated for the call
5768   // RealArgIdx - Tracks the index into the list of actual function arguments
5769   // j - Tracks the index into the list of byval arguments
5770   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5771        i != e;
5772        ++i, ++RealArgIdx) {
5773     CCValAssign &VA = ArgLocs[i];
5774     SDValue Arg = OutVals[RealArgIdx];
5775     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5776 
5777     if (Flags.isByVal()) {
5778       // Argument is an aggregate which is passed by value, thus we need to
5779       // create a copy of it in the local variable space of the current stack
5780       // frame (which is the stack frame of the caller) and pass the address of
5781       // this copy to the callee.
5782       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5783       CCValAssign &ByValVA = ByValArgLocs[j++];
5784       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5785 
5786       // Memory reserved in the local variable space of the callers stack frame.
5787       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5788 
5789       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5790       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5791                            StackPtr, PtrOff);
5792 
5793       // Create a copy of the argument in the local area of the current
5794       // stack frame.
5795       SDValue MemcpyCall =
5796         CreateCopyOfByValArgument(Arg, PtrOff,
5797                                   CallSeqStart.getNode()->getOperand(0),
5798                                   Flags, DAG, dl);
5799 
5800       // This must go outside the CALLSEQ_START..END.
5801       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5802                                                      SDLoc(MemcpyCall));
5803       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5804                              NewCallSeqStart.getNode());
5805       Chain = CallSeqStart = NewCallSeqStart;
5806 
5807       // Pass the address of the aggregate copy on the stack either in a
5808       // physical register or in the parameter list area of the current stack
5809       // frame to the callee.
5810       Arg = PtrOff;
5811     }
5812 
5813     // When useCRBits() is true, there can be i1 arguments.
5814     // It is because getRegisterType(MVT::i1) => MVT::i1,
5815     // and for other integer types getRegisterType() => MVT::i32.
5816     // Extend i1 and ensure callee will get i32.
5817     if (Arg.getValueType() == MVT::i1)
5818       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5819                         dl, MVT::i32, Arg);
5820 
5821     if (VA.isRegLoc()) {
5822       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5823       // Put argument in a physical register.
5824       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5825         bool IsLE = Subtarget.isLittleEndian();
5826         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5827                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5828         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5829         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5830                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5831         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5832                              SVal.getValue(0)));
5833       } else
5834         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5835     } else {
5836       // Put argument in the parameter list area of the current stack frame.
5837       assert(VA.isMemLoc());
5838       unsigned LocMemOffset = VA.getLocMemOffset();
5839 
5840       if (!IsTailCall) {
5841         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5842         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5843                              StackPtr, PtrOff);
5844 
5845         MemOpChains.push_back(
5846             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5847       } else {
5848         // Calculate and remember argument location.
5849         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5850                                  TailCallArguments);
5851       }
5852     }
5853   }
5854 
5855   if (!MemOpChains.empty())
5856     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5857 
5858   // Build a sequence of copy-to-reg nodes chained together with token chain
5859   // and flag operands which copy the outgoing args into the appropriate regs.
5860   SDValue InFlag;
5861   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5862     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5863                              RegsToPass[i].second, InFlag);
5864     InFlag = Chain.getValue(1);
5865   }
5866 
5867   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5868   // registers.
5869   if (IsVarArg) {
5870     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5871     SDValue Ops[] = { Chain, InFlag };
5872 
5873     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5874                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5875 
5876     InFlag = Chain.getValue(1);
5877   }
5878 
5879   if (IsTailCall)
5880     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5881                     TailCallArguments);
5882 
5883   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5884                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5885 }
5886 
5887 // Copy an argument into memory, being careful to do this outside the
5888 // call sequence for the call to which the argument belongs.
5889 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5890     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5891     SelectionDAG &DAG, const SDLoc &dl) const {
5892   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5893                         CallSeqStart.getNode()->getOperand(0),
5894                         Flags, DAG, dl);
5895   // The MEMCPY must go outside the CALLSEQ_START..END.
5896   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5897   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5898                                                  SDLoc(MemcpyCall));
5899   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5900                          NewCallSeqStart.getNode());
5901   return NewCallSeqStart;
5902 }
5903 
5904 SDValue PPCTargetLowering::LowerCall_64SVR4(
5905     SDValue Chain, SDValue Callee, CallFlags CFlags,
5906     const SmallVectorImpl<ISD::OutputArg> &Outs,
5907     const SmallVectorImpl<SDValue> &OutVals,
5908     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5909     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5910     const CallBase *CB) const {
5911   bool isELFv2ABI = Subtarget.isELFv2ABI();
5912   bool isLittleEndian = Subtarget.isLittleEndian();
5913   unsigned NumOps = Outs.size();
5914   bool IsSibCall = false;
5915   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5916 
5917   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5918   unsigned PtrByteSize = 8;
5919 
5920   MachineFunction &MF = DAG.getMachineFunction();
5921 
5922   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5923     IsSibCall = true;
5924 
5925   // Mark this function as potentially containing a function that contains a
5926   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5927   // and restoring the callers stack pointer in this functions epilog. This is
5928   // done because by tail calling the called function might overwrite the value
5929   // in this function's (MF) stack pointer stack slot 0(SP).
5930   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5931     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5932 
5933   assert(!(IsFastCall && CFlags.IsVarArg) &&
5934          "fastcc not supported on varargs functions");
5935 
5936   // Count how many bytes are to be pushed on the stack, including the linkage
5937   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5938   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5939   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5940   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5941   unsigned NumBytes = LinkageSize;
5942   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5943 
5944   static const MCPhysReg GPR[] = {
5945     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5946     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5947   };
5948   static const MCPhysReg VR[] = {
5949     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5950     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5951   };
5952 
5953   const unsigned NumGPRs = array_lengthof(GPR);
5954   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5955   const unsigned NumVRs  = array_lengthof(VR);
5956 
5957   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5958   // can be passed to the callee in registers.
5959   // For the fast calling convention, there is another check below.
5960   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5961   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5962   if (!HasParameterArea) {
5963     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5964     unsigned AvailableFPRs = NumFPRs;
5965     unsigned AvailableVRs = NumVRs;
5966     unsigned NumBytesTmp = NumBytes;
5967     for (unsigned i = 0; i != NumOps; ++i) {
5968       if (Outs[i].Flags.isNest()) continue;
5969       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5970                                  PtrByteSize, LinkageSize, ParamAreaSize,
5971                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5972         HasParameterArea = true;
5973     }
5974   }
5975 
5976   // When using the fast calling convention, we don't provide backing for
5977   // arguments that will be in registers.
5978   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5979 
5980   // Avoid allocating parameter area for fastcc functions if all the arguments
5981   // can be passed in the registers.
5982   if (IsFastCall)
5983     HasParameterArea = false;
5984 
5985   // Add up all the space actually used.
5986   for (unsigned i = 0; i != NumOps; ++i) {
5987     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5988     EVT ArgVT = Outs[i].VT;
5989     EVT OrigVT = Outs[i].ArgVT;
5990 
5991     if (Flags.isNest())
5992       continue;
5993 
5994     if (IsFastCall) {
5995       if (Flags.isByVal()) {
5996         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5997         if (NumGPRsUsed > NumGPRs)
5998           HasParameterArea = true;
5999       } else {
6000         switch (ArgVT.getSimpleVT().SimpleTy) {
6001         default: llvm_unreachable("Unexpected ValueType for argument!");
6002         case MVT::i1:
6003         case MVT::i32:
6004         case MVT::i64:
6005           if (++NumGPRsUsed <= NumGPRs)
6006             continue;
6007           break;
6008         case MVT::v4i32:
6009         case MVT::v8i16:
6010         case MVT::v16i8:
6011         case MVT::v2f64:
6012         case MVT::v2i64:
6013         case MVT::v1i128:
6014         case MVT::f128:
6015           if (++NumVRsUsed <= NumVRs)
6016             continue;
6017           break;
6018         case MVT::v4f32:
6019           if (++NumVRsUsed <= NumVRs)
6020             continue;
6021           break;
6022         case MVT::f32:
6023         case MVT::f64:
6024           if (++NumFPRsUsed <= NumFPRs)
6025             continue;
6026           break;
6027         }
6028         HasParameterArea = true;
6029       }
6030     }
6031 
6032     /* Respect alignment of argument on the stack.  */
6033     auto Alignement =
6034         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6035     NumBytes = alignTo(NumBytes, Alignement);
6036 
6037     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6038     if (Flags.isInConsecutiveRegsLast())
6039       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6040   }
6041 
6042   unsigned NumBytesActuallyUsed = NumBytes;
6043 
6044   // In the old ELFv1 ABI,
6045   // the prolog code of the callee may store up to 8 GPR argument registers to
6046   // the stack, allowing va_start to index over them in memory if its varargs.
6047   // Because we cannot tell if this is needed on the caller side, we have to
6048   // conservatively assume that it is needed.  As such, make sure we have at
6049   // least enough stack space for the caller to store the 8 GPRs.
6050   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6051   // really requires memory operands, e.g. a vararg function.
6052   if (HasParameterArea)
6053     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6054   else
6055     NumBytes = LinkageSize;
6056 
6057   // Tail call needs the stack to be aligned.
6058   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6059     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6060 
6061   int SPDiff = 0;
6062 
6063   // Calculate by how many bytes the stack has to be adjusted in case of tail
6064   // call optimization.
6065   if (!IsSibCall)
6066     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6067 
6068   // To protect arguments on the stack from being clobbered in a tail call,
6069   // force all the loads to happen before doing any other lowering.
6070   if (CFlags.IsTailCall)
6071     Chain = DAG.getStackArgumentTokenFactor(Chain);
6072 
6073   // Adjust the stack pointer for the new arguments...
6074   // These operations are automatically eliminated by the prolog/epilog pass
6075   if (!IsSibCall)
6076     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6077   SDValue CallSeqStart = Chain;
6078 
6079   // Load the return address and frame pointer so it can be move somewhere else
6080   // later.
6081   SDValue LROp, FPOp;
6082   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6083 
6084   // Set up a copy of the stack pointer for use loading and storing any
6085   // arguments that may not fit in the registers available for argument
6086   // passing.
6087   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6088 
6089   // Figure out which arguments are going to go in registers, and which in
6090   // memory.  Also, if this is a vararg function, floating point operations
6091   // must be stored to our stack, and loaded into integer regs as well, if
6092   // any integer regs are available for argument passing.
6093   unsigned ArgOffset = LinkageSize;
6094 
6095   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6096   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6097 
6098   SmallVector<SDValue, 8> MemOpChains;
6099   for (unsigned i = 0; i != NumOps; ++i) {
6100     SDValue Arg = OutVals[i];
6101     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6102     EVT ArgVT = Outs[i].VT;
6103     EVT OrigVT = Outs[i].ArgVT;
6104 
6105     // PtrOff will be used to store the current argument to the stack if a
6106     // register cannot be found for it.
6107     SDValue PtrOff;
6108 
6109     // We re-align the argument offset for each argument, except when using the
6110     // fast calling convention, when we need to make sure we do that only when
6111     // we'll actually use a stack slot.
6112     auto ComputePtrOff = [&]() {
6113       /* Respect alignment of argument on the stack.  */
6114       auto Alignment =
6115           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6116       ArgOffset = alignTo(ArgOffset, Alignment);
6117 
6118       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6119 
6120       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6121     };
6122 
6123     if (!IsFastCall) {
6124       ComputePtrOff();
6125 
6126       /* Compute GPR index associated with argument offset.  */
6127       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6128       GPR_idx = std::min(GPR_idx, NumGPRs);
6129     }
6130 
6131     // Promote integers to 64-bit values.
6132     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6133       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6134       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6135       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6136     }
6137 
6138     // FIXME memcpy is used way more than necessary.  Correctness first.
6139     // Note: "by value" is code for passing a structure by value, not
6140     // basic types.
6141     if (Flags.isByVal()) {
6142       // Note: Size includes alignment padding, so
6143       //   struct x { short a; char b; }
6144       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6145       // These are the proper values we need for right-justifying the
6146       // aggregate in a parameter register.
6147       unsigned Size = Flags.getByValSize();
6148 
6149       // An empty aggregate parameter takes up no storage and no
6150       // registers.
6151       if (Size == 0)
6152         continue;
6153 
6154       if (IsFastCall)
6155         ComputePtrOff();
6156 
6157       // All aggregates smaller than 8 bytes must be passed right-justified.
6158       if (Size==1 || Size==2 || Size==4) {
6159         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6160         if (GPR_idx != NumGPRs) {
6161           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6162                                         MachinePointerInfo(), VT);
6163           MemOpChains.push_back(Load.getValue(1));
6164           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6165 
6166           ArgOffset += PtrByteSize;
6167           continue;
6168         }
6169       }
6170 
6171       if (GPR_idx == NumGPRs && Size < 8) {
6172         SDValue AddPtr = PtrOff;
6173         if (!isLittleEndian) {
6174           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6175                                           PtrOff.getValueType());
6176           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6177         }
6178         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6179                                                           CallSeqStart,
6180                                                           Flags, DAG, dl);
6181         ArgOffset += PtrByteSize;
6182         continue;
6183       }
6184       // Copy entire object into memory.  There are cases where gcc-generated
6185       // code assumes it is there, even if it could be put entirely into
6186       // registers.  (This is not what the doc says.)
6187 
6188       // FIXME: The above statement is likely due to a misunderstanding of the
6189       // documents.  All arguments must be copied into the parameter area BY
6190       // THE CALLEE in the event that the callee takes the address of any
6191       // formal argument.  That has not yet been implemented.  However, it is
6192       // reasonable to use the stack area as a staging area for the register
6193       // load.
6194 
6195       // Skip this for small aggregates, as we will use the same slot for a
6196       // right-justified copy, below.
6197       if (Size >= 8)
6198         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6199                                                           CallSeqStart,
6200                                                           Flags, DAG, dl);
6201 
6202       // When a register is available, pass a small aggregate right-justified.
6203       if (Size < 8 && GPR_idx != NumGPRs) {
6204         // The easiest way to get this right-justified in a register
6205         // is to copy the structure into the rightmost portion of a
6206         // local variable slot, then load the whole slot into the
6207         // register.
6208         // FIXME: The memcpy seems to produce pretty awful code for
6209         // small aggregates, particularly for packed ones.
6210         // FIXME: It would be preferable to use the slot in the
6211         // parameter save area instead of a new local variable.
6212         SDValue AddPtr = PtrOff;
6213         if (!isLittleEndian) {
6214           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6215           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6216         }
6217         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6218                                                           CallSeqStart,
6219                                                           Flags, DAG, dl);
6220 
6221         // Load the slot into the register.
6222         SDValue Load =
6223             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6224         MemOpChains.push_back(Load.getValue(1));
6225         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6226 
6227         // Done with this argument.
6228         ArgOffset += PtrByteSize;
6229         continue;
6230       }
6231 
6232       // For aggregates larger than PtrByteSize, copy the pieces of the
6233       // object that fit into registers from the parameter save area.
6234       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6235         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6236         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6237         if (GPR_idx != NumGPRs) {
6238           SDValue Load =
6239               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6240           MemOpChains.push_back(Load.getValue(1));
6241           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6242           ArgOffset += PtrByteSize;
6243         } else {
6244           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6245           break;
6246         }
6247       }
6248       continue;
6249     }
6250 
6251     switch (Arg.getSimpleValueType().SimpleTy) {
6252     default: llvm_unreachable("Unexpected ValueType for argument!");
6253     case MVT::i1:
6254     case MVT::i32:
6255     case MVT::i64:
6256       if (Flags.isNest()) {
6257         // The 'nest' parameter, if any, is passed in R11.
6258         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6259         break;
6260       }
6261 
6262       // These can be scalar arguments or elements of an integer array type
6263       // passed directly.  Clang may use those instead of "byval" aggregate
6264       // types to avoid forcing arguments to memory unnecessarily.
6265       if (GPR_idx != NumGPRs) {
6266         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6267       } else {
6268         if (IsFastCall)
6269           ComputePtrOff();
6270 
6271         assert(HasParameterArea &&
6272                "Parameter area must exist to pass an argument in memory.");
6273         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6274                          true, CFlags.IsTailCall, false, MemOpChains,
6275                          TailCallArguments, dl);
6276         if (IsFastCall)
6277           ArgOffset += PtrByteSize;
6278       }
6279       if (!IsFastCall)
6280         ArgOffset += PtrByteSize;
6281       break;
6282     case MVT::f32:
6283     case MVT::f64: {
6284       // These can be scalar arguments or elements of a float array type
6285       // passed directly.  The latter are used to implement ELFv2 homogenous
6286       // float aggregates.
6287 
6288       // Named arguments go into FPRs first, and once they overflow, the
6289       // remaining arguments go into GPRs and then the parameter save area.
6290       // Unnamed arguments for vararg functions always go to GPRs and
6291       // then the parameter save area.  For now, put all arguments to vararg
6292       // routines always in both locations (FPR *and* GPR or stack slot).
6293       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6294       bool NeededLoad = false;
6295 
6296       // First load the argument into the next available FPR.
6297       if (FPR_idx != NumFPRs)
6298         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6299 
6300       // Next, load the argument into GPR or stack slot if needed.
6301       if (!NeedGPROrStack)
6302         ;
6303       else if (GPR_idx != NumGPRs && !IsFastCall) {
6304         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6305         // once we support fp <-> gpr moves.
6306 
6307         // In the non-vararg case, this can only ever happen in the
6308         // presence of f32 array types, since otherwise we never run
6309         // out of FPRs before running out of GPRs.
6310         SDValue ArgVal;
6311 
6312         // Double values are always passed in a single GPR.
6313         if (Arg.getValueType() != MVT::f32) {
6314           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6315 
6316         // Non-array float values are extended and passed in a GPR.
6317         } else if (!Flags.isInConsecutiveRegs()) {
6318           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6319           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6320 
6321         // If we have an array of floats, we collect every odd element
6322         // together with its predecessor into one GPR.
6323         } else if (ArgOffset % PtrByteSize != 0) {
6324           SDValue Lo, Hi;
6325           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6326           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6327           if (!isLittleEndian)
6328             std::swap(Lo, Hi);
6329           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6330 
6331         // The final element, if even, goes into the first half of a GPR.
6332         } else if (Flags.isInConsecutiveRegsLast()) {
6333           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6334           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6335           if (!isLittleEndian)
6336             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6337                                  DAG.getConstant(32, dl, MVT::i32));
6338 
6339         // Non-final even elements are skipped; they will be handled
6340         // together the with subsequent argument on the next go-around.
6341         } else
6342           ArgVal = SDValue();
6343 
6344         if (ArgVal.getNode())
6345           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6346       } else {
6347         if (IsFastCall)
6348           ComputePtrOff();
6349 
6350         // Single-precision floating-point values are mapped to the
6351         // second (rightmost) word of the stack doubleword.
6352         if (Arg.getValueType() == MVT::f32 &&
6353             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6354           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6355           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6356         }
6357 
6358         assert(HasParameterArea &&
6359                "Parameter area must exist to pass an argument in memory.");
6360         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6361                          true, CFlags.IsTailCall, false, MemOpChains,
6362                          TailCallArguments, dl);
6363 
6364         NeededLoad = true;
6365       }
6366       // When passing an array of floats, the array occupies consecutive
6367       // space in the argument area; only round up to the next doubleword
6368       // at the end of the array.  Otherwise, each float takes 8 bytes.
6369       if (!IsFastCall || NeededLoad) {
6370         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6371                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6372         if (Flags.isInConsecutiveRegsLast())
6373           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6374       }
6375       break;
6376     }
6377     case MVT::v4f32:
6378     case MVT::v4i32:
6379     case MVT::v8i16:
6380     case MVT::v16i8:
6381     case MVT::v2f64:
6382     case MVT::v2i64:
6383     case MVT::v1i128:
6384     case MVT::f128:
6385       // These can be scalar arguments or elements of a vector array type
6386       // passed directly.  The latter are used to implement ELFv2 homogenous
6387       // vector aggregates.
6388 
6389       // For a varargs call, named arguments go into VRs or on the stack as
6390       // usual; unnamed arguments always go to the stack or the corresponding
6391       // GPRs when within range.  For now, we always put the value in both
6392       // locations (or even all three).
6393       if (CFlags.IsVarArg) {
6394         assert(HasParameterArea &&
6395                "Parameter area must exist if we have a varargs call.");
6396         // We could elide this store in the case where the object fits
6397         // entirely in R registers.  Maybe later.
6398         SDValue Store =
6399             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6400         MemOpChains.push_back(Store);
6401         if (VR_idx != NumVRs) {
6402           SDValue Load =
6403               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6404           MemOpChains.push_back(Load.getValue(1));
6405           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6406         }
6407         ArgOffset += 16;
6408         for (unsigned i=0; i<16; i+=PtrByteSize) {
6409           if (GPR_idx == NumGPRs)
6410             break;
6411           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6412                                    DAG.getConstant(i, dl, PtrVT));
6413           SDValue Load =
6414               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6415           MemOpChains.push_back(Load.getValue(1));
6416           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6417         }
6418         break;
6419       }
6420 
6421       // Non-varargs Altivec params go into VRs or on the stack.
6422       if (VR_idx != NumVRs) {
6423         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6424       } else {
6425         if (IsFastCall)
6426           ComputePtrOff();
6427 
6428         assert(HasParameterArea &&
6429                "Parameter area must exist to pass an argument in memory.");
6430         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6431                          true, CFlags.IsTailCall, true, MemOpChains,
6432                          TailCallArguments, dl);
6433         if (IsFastCall)
6434           ArgOffset += 16;
6435       }
6436 
6437       if (!IsFastCall)
6438         ArgOffset += 16;
6439       break;
6440     }
6441   }
6442 
6443   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6444          "mismatch in size of parameter area");
6445   (void)NumBytesActuallyUsed;
6446 
6447   if (!MemOpChains.empty())
6448     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6449 
6450   // Check if this is an indirect call (MTCTR/BCTRL).
6451   // See prepareDescriptorIndirectCall and buildCallOperands for more
6452   // information about calls through function pointers in the 64-bit SVR4 ABI.
6453   if (CFlags.IsIndirect) {
6454     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6455     // caller in the TOC save area.
6456     if (isTOCSaveRestoreRequired(Subtarget)) {
6457       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6458       // Load r2 into a virtual register and store it to the TOC save area.
6459       setUsesTOCBasePtr(DAG);
6460       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6461       // TOC save area offset.
6462       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6463       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6464       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6465       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6466                            MachinePointerInfo::getStack(
6467                                DAG.getMachineFunction(), TOCSaveOffset));
6468     }
6469     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6470     // This does not mean the MTCTR instruction must use R12; it's easier
6471     // to model this as an extra parameter, so do that.
6472     if (isELFv2ABI && !CFlags.IsPatchPoint)
6473       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6474   }
6475 
6476   // Build a sequence of copy-to-reg nodes chained together with token chain
6477   // and flag operands which copy the outgoing args into the appropriate regs.
6478   SDValue InFlag;
6479   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6480     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6481                              RegsToPass[i].second, InFlag);
6482     InFlag = Chain.getValue(1);
6483   }
6484 
6485   if (CFlags.IsTailCall && !IsSibCall)
6486     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6487                     TailCallArguments);
6488 
6489   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6490                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6491 }
6492 
6493 SDValue PPCTargetLowering::LowerCall_Darwin(
6494     SDValue Chain, SDValue Callee, CallFlags CFlags,
6495     const SmallVectorImpl<ISD::OutputArg> &Outs,
6496     const SmallVectorImpl<SDValue> &OutVals,
6497     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6498     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6499     const CallBase *CB) const {
6500   unsigned NumOps = Outs.size();
6501 
6502   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6503   bool isPPC64 = PtrVT == MVT::i64;
6504   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6505 
6506   MachineFunction &MF = DAG.getMachineFunction();
6507 
6508   // Mark this function as potentially containing a function that contains a
6509   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6510   // and restoring the callers stack pointer in this functions epilog. This is
6511   // done because by tail calling the called function might overwrite the value
6512   // in this function's (MF) stack pointer stack slot 0(SP).
6513   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6514       CFlags.CallConv == CallingConv::Fast)
6515     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6516 
6517   // Count how many bytes are to be pushed on the stack, including the linkage
6518   // area, and parameter passing area.  We start with 24/48 bytes, which is
6519   // prereserved space for [SP][CR][LR][3 x unused].
6520   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6521   unsigned NumBytes = LinkageSize;
6522 
6523   // Add up all the space actually used.
6524   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6525   // they all go in registers, but we must reserve stack space for them for
6526   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6527   // assigned stack space in order, with padding so Altivec parameters are
6528   // 16-byte aligned.
6529   unsigned nAltivecParamsAtEnd = 0;
6530   for (unsigned i = 0; i != NumOps; ++i) {
6531     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6532     EVT ArgVT = Outs[i].VT;
6533     // Varargs Altivec parameters are padded to a 16 byte boundary.
6534     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6535         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6536         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6537       if (!CFlags.IsVarArg && !isPPC64) {
6538         // Non-varargs Altivec parameters go after all the non-Altivec
6539         // parameters; handle those later so we know how much padding we need.
6540         nAltivecParamsAtEnd++;
6541         continue;
6542       }
6543       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6544       NumBytes = ((NumBytes+15)/16)*16;
6545     }
6546     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6547   }
6548 
6549   // Allow for Altivec parameters at the end, if needed.
6550   if (nAltivecParamsAtEnd) {
6551     NumBytes = ((NumBytes+15)/16)*16;
6552     NumBytes += 16*nAltivecParamsAtEnd;
6553   }
6554 
6555   // The prolog code of the callee may store up to 8 GPR argument registers to
6556   // the stack, allowing va_start to index over them in memory if its varargs.
6557   // Because we cannot tell if this is needed on the caller side, we have to
6558   // conservatively assume that it is needed.  As such, make sure we have at
6559   // least enough stack space for the caller to store the 8 GPRs.
6560   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6561 
6562   // Tail call needs the stack to be aligned.
6563   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6564       CFlags.CallConv == CallingConv::Fast)
6565     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6566 
6567   // Calculate by how many bytes the stack has to be adjusted in case of tail
6568   // call optimization.
6569   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6570 
6571   // To protect arguments on the stack from being clobbered in a tail call,
6572   // force all the loads to happen before doing any other lowering.
6573   if (CFlags.IsTailCall)
6574     Chain = DAG.getStackArgumentTokenFactor(Chain);
6575 
6576   // Adjust the stack pointer for the new arguments...
6577   // These operations are automatically eliminated by the prolog/epilog pass
6578   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6579   SDValue CallSeqStart = Chain;
6580 
6581   // Load the return address and frame pointer so it can be move somewhere else
6582   // later.
6583   SDValue LROp, FPOp;
6584   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6585 
6586   // Set up a copy of the stack pointer for use loading and storing any
6587   // arguments that may not fit in the registers available for argument
6588   // passing.
6589   SDValue StackPtr;
6590   if (isPPC64)
6591     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6592   else
6593     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6594 
6595   // Figure out which arguments are going to go in registers, and which in
6596   // memory.  Also, if this is a vararg function, floating point operations
6597   // must be stored to our stack, and loaded into integer regs as well, if
6598   // any integer regs are available for argument passing.
6599   unsigned ArgOffset = LinkageSize;
6600   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6601 
6602   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6603     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6604     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6605   };
6606   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6607     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6608     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6609   };
6610   static const MCPhysReg VR[] = {
6611     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6612     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6613   };
6614   const unsigned NumGPRs = array_lengthof(GPR_32);
6615   const unsigned NumFPRs = 13;
6616   const unsigned NumVRs  = array_lengthof(VR);
6617 
6618   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6619 
6620   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6621   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6622 
6623   SmallVector<SDValue, 8> MemOpChains;
6624   for (unsigned i = 0; i != NumOps; ++i) {
6625     SDValue Arg = OutVals[i];
6626     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6627 
6628     // PtrOff will be used to store the current argument to the stack if a
6629     // register cannot be found for it.
6630     SDValue PtrOff;
6631 
6632     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6633 
6634     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6635 
6636     // On PPC64, promote integers to 64-bit values.
6637     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6638       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6639       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6640       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6641     }
6642 
6643     // FIXME memcpy is used way more than necessary.  Correctness first.
6644     // Note: "by value" is code for passing a structure by value, not
6645     // basic types.
6646     if (Flags.isByVal()) {
6647       unsigned Size = Flags.getByValSize();
6648       // Very small objects are passed right-justified.  Everything else is
6649       // passed left-justified.
6650       if (Size==1 || Size==2) {
6651         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6652         if (GPR_idx != NumGPRs) {
6653           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6654                                         MachinePointerInfo(), VT);
6655           MemOpChains.push_back(Load.getValue(1));
6656           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6657 
6658           ArgOffset += PtrByteSize;
6659         } else {
6660           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6661                                           PtrOff.getValueType());
6662           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6663           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6664                                                             CallSeqStart,
6665                                                             Flags, DAG, dl);
6666           ArgOffset += PtrByteSize;
6667         }
6668         continue;
6669       }
6670       // Copy entire object into memory.  There are cases where gcc-generated
6671       // code assumes it is there, even if it could be put entirely into
6672       // registers.  (This is not what the doc says.)
6673       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6674                                                         CallSeqStart,
6675                                                         Flags, DAG, dl);
6676 
6677       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6678       // copy the pieces of the object that fit into registers from the
6679       // parameter save area.
6680       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6681         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6682         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6683         if (GPR_idx != NumGPRs) {
6684           SDValue Load =
6685               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6686           MemOpChains.push_back(Load.getValue(1));
6687           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6688           ArgOffset += PtrByteSize;
6689         } else {
6690           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6691           break;
6692         }
6693       }
6694       continue;
6695     }
6696 
6697     switch (Arg.getSimpleValueType().SimpleTy) {
6698     default: llvm_unreachable("Unexpected ValueType for argument!");
6699     case MVT::i1:
6700     case MVT::i32:
6701     case MVT::i64:
6702       if (GPR_idx != NumGPRs) {
6703         if (Arg.getValueType() == MVT::i1)
6704           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6705 
6706         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6707       } else {
6708         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6709                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6710                          TailCallArguments, dl);
6711       }
6712       ArgOffset += PtrByteSize;
6713       break;
6714     case MVT::f32:
6715     case MVT::f64:
6716       if (FPR_idx != NumFPRs) {
6717         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6718 
6719         if (CFlags.IsVarArg) {
6720           SDValue Store =
6721               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6722           MemOpChains.push_back(Store);
6723 
6724           // Float varargs are always shadowed in available integer registers
6725           if (GPR_idx != NumGPRs) {
6726             SDValue Load =
6727                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6728             MemOpChains.push_back(Load.getValue(1));
6729             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6730           }
6731           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6732             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6733             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6734             SDValue Load =
6735                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6736             MemOpChains.push_back(Load.getValue(1));
6737             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6738           }
6739         } else {
6740           // If we have any FPRs remaining, we may also have GPRs remaining.
6741           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6742           // GPRs.
6743           if (GPR_idx != NumGPRs)
6744             ++GPR_idx;
6745           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6746               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6747             ++GPR_idx;
6748         }
6749       } else
6750         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6751                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6752                          TailCallArguments, dl);
6753       if (isPPC64)
6754         ArgOffset += 8;
6755       else
6756         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6757       break;
6758     case MVT::v4f32:
6759     case MVT::v4i32:
6760     case MVT::v8i16:
6761     case MVT::v16i8:
6762       if (CFlags.IsVarArg) {
6763         // These go aligned on the stack, or in the corresponding R registers
6764         // when within range.  The Darwin PPC ABI doc claims they also go in
6765         // V registers; in fact gcc does this only for arguments that are
6766         // prototyped, not for those that match the ...  We do it for all
6767         // arguments, seems to work.
6768         while (ArgOffset % 16 !=0) {
6769           ArgOffset += PtrByteSize;
6770           if (GPR_idx != NumGPRs)
6771             GPR_idx++;
6772         }
6773         // We could elide this store in the case where the object fits
6774         // entirely in R registers.  Maybe later.
6775         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6776                              DAG.getConstant(ArgOffset, dl, PtrVT));
6777         SDValue Store =
6778             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6779         MemOpChains.push_back(Store);
6780         if (VR_idx != NumVRs) {
6781           SDValue Load =
6782               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6783           MemOpChains.push_back(Load.getValue(1));
6784           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6785         }
6786         ArgOffset += 16;
6787         for (unsigned i=0; i<16; i+=PtrByteSize) {
6788           if (GPR_idx == NumGPRs)
6789             break;
6790           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6791                                    DAG.getConstant(i, dl, PtrVT));
6792           SDValue Load =
6793               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6794           MemOpChains.push_back(Load.getValue(1));
6795           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6796         }
6797         break;
6798       }
6799 
6800       // Non-varargs Altivec params generally go in registers, but have
6801       // stack space allocated at the end.
6802       if (VR_idx != NumVRs) {
6803         // Doesn't have GPR space allocated.
6804         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6805       } else if (nAltivecParamsAtEnd==0) {
6806         // We are emitting Altivec params in order.
6807         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6808                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6809                          TailCallArguments, dl);
6810         ArgOffset += 16;
6811       }
6812       break;
6813     }
6814   }
6815   // If all Altivec parameters fit in registers, as they usually do,
6816   // they get stack space following the non-Altivec parameters.  We
6817   // don't track this here because nobody below needs it.
6818   // If there are more Altivec parameters than fit in registers emit
6819   // the stores here.
6820   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6821     unsigned j = 0;
6822     // Offset is aligned; skip 1st 12 params which go in V registers.
6823     ArgOffset = ((ArgOffset+15)/16)*16;
6824     ArgOffset += 12*16;
6825     for (unsigned i = 0; i != NumOps; ++i) {
6826       SDValue Arg = OutVals[i];
6827       EVT ArgType = Outs[i].VT;
6828       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6829           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6830         if (++j > NumVRs) {
6831           SDValue PtrOff;
6832           // We are emitting Altivec params in order.
6833           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6834                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6835                            TailCallArguments, dl);
6836           ArgOffset += 16;
6837         }
6838       }
6839     }
6840   }
6841 
6842   if (!MemOpChains.empty())
6843     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6844 
6845   // On Darwin, R12 must contain the address of an indirect callee.  This does
6846   // not mean the MTCTR instruction must use R12; it's easier to model this as
6847   // an extra parameter, so do that.
6848   if (CFlags.IsIndirect) {
6849     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6850     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6851                                                    PPC::R12), Callee));
6852   }
6853 
6854   // Build a sequence of copy-to-reg nodes chained together with token chain
6855   // and flag operands which copy the outgoing args into the appropriate regs.
6856   SDValue InFlag;
6857   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6858     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6859                              RegsToPass[i].second, InFlag);
6860     InFlag = Chain.getValue(1);
6861   }
6862 
6863   if (CFlags.IsTailCall)
6864     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6865                     TailCallArguments);
6866 
6867   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6868                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6869 }
6870 
6871 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6872                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6873                    CCState &State) {
6874 
6875   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6876       State.getMachineFunction().getSubtarget());
6877   const bool IsPPC64 = Subtarget.isPPC64();
6878   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6879   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6880 
6881   assert((!ValVT.isInteger() ||
6882           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6883          "Integer argument exceeds register size: should have been legalized");
6884 
6885   if (ValVT == MVT::f128)
6886     report_fatal_error("f128 is unimplemented on AIX.");
6887 
6888   if (ArgFlags.isNest())
6889     report_fatal_error("Nest arguments are unimplemented.");
6890 
6891   if (ValVT.isVector() || LocVT.isVector())
6892     report_fatal_error("Vector arguments are unimplemented on AIX.");
6893 
6894   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6895                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6896                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6897   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6898                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6899                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6900 
6901   if (ArgFlags.isByVal()) {
6902     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6903       report_fatal_error("Pass-by-value arguments with alignment greater than "
6904                          "register width are not supported.");
6905 
6906     const unsigned ByValSize = ArgFlags.getByValSize();
6907 
6908     // An empty aggregate parameter takes up no storage and no registers,
6909     // but needs a MemLoc for a stack slot for the formal arguments side.
6910     if (ByValSize == 0) {
6911       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6912                                        State.getNextStackOffset(), RegVT,
6913                                        LocInfo));
6914       return false;
6915     }
6916 
6917     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6918     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6919     for (const unsigned E = Offset + StackSize; Offset < E;
6920          Offset += PtrAlign.value()) {
6921       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6922         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6923       else {
6924         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6925                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6926                                          LocInfo));
6927         break;
6928       }
6929     }
6930     return false;
6931   }
6932 
6933   // Arguments always reserve parameter save area.
6934   switch (ValVT.SimpleTy) {
6935   default:
6936     report_fatal_error("Unhandled value type for argument.");
6937   case MVT::i64:
6938     // i64 arguments should have been split to i32 for PPC32.
6939     assert(IsPPC64 && "PPC32 should have split i64 values.");
6940     LLVM_FALLTHROUGH;
6941   case MVT::i1:
6942   case MVT::i32: {
6943     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6944     // AIX integer arguments are always passed in register width.
6945     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6946       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6947                                   : CCValAssign::LocInfo::ZExt;
6948     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6949       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6950     else
6951       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6952 
6953     return false;
6954   }
6955   case MVT::f32:
6956   case MVT::f64: {
6957     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6958     const unsigned StoreSize = LocVT.getStoreSize();
6959     // Floats are always 4-byte aligned in the PSA on AIX.
6960     // This includes f64 in 64-bit mode for ABI compatibility.
6961     const unsigned Offset =
6962         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6963     unsigned FReg = State.AllocateReg(FPR);
6964     if (FReg)
6965       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6966 
6967     // Reserve and initialize GPRs or initialize the PSA as required.
6968     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6969       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6970         assert(FReg && "An FPR should be available when a GPR is reserved.");
6971         if (State.isVarArg()) {
6972           // Successfully reserved GPRs are only initialized for vararg calls.
6973           // Custom handling is required for:
6974           //   f64 in PPC32 needs to be split into 2 GPRs.
6975           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6976           State.addLoc(
6977               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6978         }
6979       } else {
6980         // If there are insufficient GPRs, the PSA needs to be initialized.
6981         // Initialization occurs even if an FPR was initialized for
6982         // compatibility with the AIX XL compiler. The full memory for the
6983         // argument will be initialized even if a prior word is saved in GPR.
6984         // A custom memLoc is used when the argument also passes in FPR so
6985         // that the callee handling can skip over it easily.
6986         State.addLoc(
6987             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6988                                              LocInfo)
6989                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6990         break;
6991       }
6992     }
6993 
6994     return false;
6995   }
6996   }
6997   return true;
6998 }
6999 
7000 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7001                                                     bool IsPPC64) {
7002   assert((IsPPC64 || SVT != MVT::i64) &&
7003          "i64 should have been split for 32-bit codegen.");
7004 
7005   switch (SVT) {
7006   default:
7007     report_fatal_error("Unexpected value type for formal argument");
7008   case MVT::i1:
7009   case MVT::i32:
7010   case MVT::i64:
7011     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7012   case MVT::f32:
7013     return &PPC::F4RCRegClass;
7014   case MVT::f64:
7015     return &PPC::F8RCRegClass;
7016   }
7017 }
7018 
7019 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7020                                         SelectionDAG &DAG, SDValue ArgValue,
7021                                         MVT LocVT, const SDLoc &dl) {
7022   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7023   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7024 
7025   if (Flags.isSExt())
7026     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7027                            DAG.getValueType(ValVT));
7028   else if (Flags.isZExt())
7029     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7030                            DAG.getValueType(ValVT));
7031 
7032   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7033 }
7034 
7035 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7036   const unsigned LASize = FL->getLinkageSize();
7037 
7038   if (PPC::GPRCRegClass.contains(Reg)) {
7039     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7040            "Reg must be a valid argument register!");
7041     return LASize + 4 * (Reg - PPC::R3);
7042   }
7043 
7044   if (PPC::G8RCRegClass.contains(Reg)) {
7045     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7046            "Reg must be a valid argument register!");
7047     return LASize + 8 * (Reg - PPC::X3);
7048   }
7049 
7050   llvm_unreachable("Only general purpose registers expected.");
7051 }
7052 
7053 //   AIX ABI Stack Frame Layout:
7054 //
7055 //   Low Memory +--------------------------------------------+
7056 //   SP   +---> | Back chain                                 | ---+
7057 //        |     +--------------------------------------------+    |
7058 //        |     | Saved Condition Register                   |    |
7059 //        |     +--------------------------------------------+    |
7060 //        |     | Saved Linkage Register                     |    |
7061 //        |     +--------------------------------------------+    | Linkage Area
7062 //        |     | Reserved for compilers                     |    |
7063 //        |     +--------------------------------------------+    |
7064 //        |     | Reserved for binders                       |    |
7065 //        |     +--------------------------------------------+    |
7066 //        |     | Saved TOC pointer                          | ---+
7067 //        |     +--------------------------------------------+
7068 //        |     | Parameter save area                        |
7069 //        |     +--------------------------------------------+
7070 //        |     | Alloca space                               |
7071 //        |     +--------------------------------------------+
7072 //        |     | Local variable space                       |
7073 //        |     +--------------------------------------------+
7074 //        |     | Float/int conversion temporary             |
7075 //        |     +--------------------------------------------+
7076 //        |     | Save area for AltiVec registers            |
7077 //        |     +--------------------------------------------+
7078 //        |     | AltiVec alignment padding                  |
7079 //        |     +--------------------------------------------+
7080 //        |     | Save area for VRSAVE register              |
7081 //        |     +--------------------------------------------+
7082 //        |     | Save area for General Purpose registers    |
7083 //        |     +--------------------------------------------+
7084 //        |     | Save area for Floating Point registers     |
7085 //        |     +--------------------------------------------+
7086 //        +---- | Back chain                                 |
7087 // High Memory  +--------------------------------------------+
7088 //
7089 //  Specifications:
7090 //  AIX 7.2 Assembler Language Reference
7091 //  Subroutine linkage convention
7092 
7093 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7094     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7095     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7096     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7097 
7098   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7099           CallConv == CallingConv::Fast) &&
7100          "Unexpected calling convention!");
7101 
7102   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7103     report_fatal_error("Tail call support is unimplemented on AIX.");
7104 
7105   if (useSoftFloat())
7106     report_fatal_error("Soft float support is unimplemented on AIX.");
7107 
7108   const PPCSubtarget &Subtarget =
7109       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7110 
7111   const bool IsPPC64 = Subtarget.isPPC64();
7112   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7113 
7114   // Assign locations to all of the incoming arguments.
7115   SmallVector<CCValAssign, 16> ArgLocs;
7116   MachineFunction &MF = DAG.getMachineFunction();
7117   MachineFrameInfo &MFI = MF.getFrameInfo();
7118   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7119 
7120   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7121   // Reserve space for the linkage area on the stack.
7122   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7123   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7124   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7125 
7126   SmallVector<SDValue, 8> MemOps;
7127 
7128   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7129     CCValAssign &VA = ArgLocs[I++];
7130     MVT LocVT = VA.getLocVT();
7131     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7132 
7133     // For compatibility with the AIX XL compiler, the float args in the
7134     // parameter save area are initialized even if the argument is available
7135     // in register.  The caller is required to initialize both the register
7136     // and memory, however, the callee can choose to expect it in either.
7137     // The memloc is dismissed here because the argument is retrieved from
7138     // the register.
7139     if (VA.isMemLoc() && VA.needsCustom())
7140       continue;
7141 
7142     if (Flags.isByVal() && VA.isMemLoc()) {
7143       const unsigned Size =
7144           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7145                   PtrByteSize);
7146       const int FI = MF.getFrameInfo().CreateFixedObject(
7147           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7148           /* IsAliased */ true);
7149       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7150       InVals.push_back(FIN);
7151 
7152       continue;
7153     }
7154 
7155     if (Flags.isByVal()) {
7156       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7157 
7158       const MCPhysReg ArgReg = VA.getLocReg();
7159       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7160 
7161       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7162         report_fatal_error("Over aligned byvals not supported yet.");
7163 
7164       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7165       const int FI = MF.getFrameInfo().CreateFixedObject(
7166           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7167           /* IsAliased */ true);
7168       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7169       InVals.push_back(FIN);
7170 
7171       // Add live ins for all the RegLocs for the same ByVal.
7172       const TargetRegisterClass *RegClass =
7173           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7174 
7175       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7176                                                unsigned Offset) {
7177         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7178         // Since the callers side has left justified the aggregate in the
7179         // register, we can simply store the entire register into the stack
7180         // slot.
7181         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7182         // The store to the fixedstack object is needed becuase accessing a
7183         // field of the ByVal will use a gep and load. Ideally we will optimize
7184         // to extracting the value from the register directly, and elide the
7185         // stores when the arguments address is not taken, but that will need to
7186         // be future work.
7187         SDValue Store = DAG.getStore(
7188             CopyFrom.getValue(1), dl, CopyFrom,
7189             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7190             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7191 
7192         MemOps.push_back(Store);
7193       };
7194 
7195       unsigned Offset = 0;
7196       HandleRegLoc(VA.getLocReg(), Offset);
7197       Offset += PtrByteSize;
7198       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7199            Offset += PtrByteSize) {
7200         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7201                "RegLocs should be for ByVal argument.");
7202 
7203         const CCValAssign RL = ArgLocs[I++];
7204         HandleRegLoc(RL.getLocReg(), Offset);
7205       }
7206 
7207       if (Offset != StackSize) {
7208         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7209                "Expected MemLoc for remaining bytes.");
7210         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7211         // Consume the MemLoc.The InVal has already been emitted, so nothing
7212         // more needs to be done.
7213         ++I;
7214       }
7215 
7216       continue;
7217     }
7218 
7219     EVT ValVT = VA.getValVT();
7220     if (VA.isRegLoc() && !VA.needsCustom()) {
7221       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7222       unsigned VReg =
7223           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7224       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7225       if (ValVT.isScalarInteger() &&
7226           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7227         ArgValue =
7228             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7229       }
7230       InVals.push_back(ArgValue);
7231       continue;
7232     }
7233     if (VA.isMemLoc()) {
7234       const unsigned LocSize = LocVT.getStoreSize();
7235       const unsigned ValSize = ValVT.getStoreSize();
7236       assert((ValSize <= LocSize) &&
7237              "Object size is larger than size of MemLoc");
7238       int CurArgOffset = VA.getLocMemOffset();
7239       // Objects are right-justified because AIX is big-endian.
7240       if (LocSize > ValSize)
7241         CurArgOffset += LocSize - ValSize;
7242       // Potential tail calls could cause overwriting of argument stack slots.
7243       const bool IsImmutable =
7244           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7245             (CallConv == CallingConv::Fast));
7246       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7247       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7248       SDValue ArgValue =
7249           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7250       InVals.push_back(ArgValue);
7251       continue;
7252     }
7253   }
7254 
7255   // On AIX a minimum of 8 words is saved to the parameter save area.
7256   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7257   // Area that is at least reserved in the caller of this function.
7258   unsigned CallerReservedArea =
7259       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7260 
7261   // Set the size that is at least reserved in caller of this function. Tail
7262   // call optimized function's reserved stack space needs to be aligned so
7263   // that taking the difference between two stack areas will result in an
7264   // aligned stack.
7265   CallerReservedArea =
7266       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7267   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7268   FuncInfo->setMinReservedArea(CallerReservedArea);
7269 
7270   if (isVarArg) {
7271     FuncInfo->setVarArgsFrameIndex(
7272         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7273     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7274 
7275     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7276                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7277 
7278     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7279                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7280     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7281 
7282     // The fixed integer arguments of a variadic function are stored to the
7283     // VarArgsFrameIndex on the stack so that they may be loaded by
7284     // dereferencing the result of va_next.
7285     for (unsigned GPRIndex =
7286              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7287          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7288 
7289       const unsigned VReg =
7290           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7291                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7292 
7293       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7294       SDValue Store =
7295           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7296       MemOps.push_back(Store);
7297       // Increment the address for the next argument to store.
7298       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7299       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7300     }
7301   }
7302 
7303   if (!MemOps.empty())
7304     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7305 
7306   return Chain;
7307 }
7308 
7309 SDValue PPCTargetLowering::LowerCall_AIX(
7310     SDValue Chain, SDValue Callee, CallFlags CFlags,
7311     const SmallVectorImpl<ISD::OutputArg> &Outs,
7312     const SmallVectorImpl<SDValue> &OutVals,
7313     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7314     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7315     const CallBase *CB) const {
7316   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7317   // AIX ABI stack frame layout.
7318 
7319   assert((CFlags.CallConv == CallingConv::C ||
7320           CFlags.CallConv == CallingConv::Cold ||
7321           CFlags.CallConv == CallingConv::Fast) &&
7322          "Unexpected calling convention!");
7323 
7324   if (CFlags.IsPatchPoint)
7325     report_fatal_error("This call type is unimplemented on AIX.");
7326 
7327   const PPCSubtarget& Subtarget =
7328       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7329   if (Subtarget.hasAltivec())
7330     report_fatal_error("Altivec support is unimplemented on AIX.");
7331 
7332   MachineFunction &MF = DAG.getMachineFunction();
7333   SmallVector<CCValAssign, 16> ArgLocs;
7334   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7335                  *DAG.getContext());
7336 
7337   // Reserve space for the linkage save area (LSA) on the stack.
7338   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7339   //   [SP][CR][LR][2 x reserved][TOC].
7340   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7341   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7342   const bool IsPPC64 = Subtarget.isPPC64();
7343   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7344   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7345   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7346   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7347 
7348   // The prolog code of the callee may store up to 8 GPR argument registers to
7349   // the stack, allowing va_start to index over them in memory if the callee
7350   // is variadic.
7351   // Because we cannot tell if this is needed on the caller side, we have to
7352   // conservatively assume that it is needed.  As such, make sure we have at
7353   // least enough stack space for the caller to store the 8 GPRs.
7354   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7355   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7356                                      CCInfo.getNextStackOffset());
7357 
7358   // Adjust the stack pointer for the new arguments...
7359   // These operations are automatically eliminated by the prolog/epilog pass.
7360   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7361   SDValue CallSeqStart = Chain;
7362 
7363   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7364   SmallVector<SDValue, 8> MemOpChains;
7365 
7366   // Set up a copy of the stack pointer for loading and storing any
7367   // arguments that may not fit in the registers available for argument
7368   // passing.
7369   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7370                                    : DAG.getRegister(PPC::R1, MVT::i32);
7371 
7372   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7373     const unsigned ValNo = ArgLocs[I].getValNo();
7374     SDValue Arg = OutVals[ValNo];
7375     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7376 
7377     if (Flags.isByVal()) {
7378       const unsigned ByValSize = Flags.getByValSize();
7379 
7380       // Nothing to do for zero-sized ByVals on the caller side.
7381       if (!ByValSize) {
7382         ++I;
7383         continue;
7384       }
7385 
7386       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7387         return DAG.getExtLoad(
7388             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7389             (LoadOffset != 0)
7390                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7391                 : Arg,
7392             MachinePointerInfo(), VT);
7393       };
7394 
7395       unsigned LoadOffset = 0;
7396 
7397       // Initialize registers, which are fully occupied by the by-val argument.
7398       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7399         SDValue Load = GetLoad(PtrVT, LoadOffset);
7400         MemOpChains.push_back(Load.getValue(1));
7401         LoadOffset += PtrByteSize;
7402         const CCValAssign &ByValVA = ArgLocs[I++];
7403         assert(ByValVA.getValNo() == ValNo &&
7404                "Unexpected location for pass-by-value argument.");
7405         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7406       }
7407 
7408       if (LoadOffset == ByValSize)
7409         continue;
7410 
7411       // There must be one more loc to handle the remainder.
7412       assert(ArgLocs[I].getValNo() == ValNo &&
7413              "Expected additional location for by-value argument.");
7414 
7415       if (ArgLocs[I].isMemLoc()) {
7416         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7417         const CCValAssign &ByValVA = ArgLocs[I++];
7418         ISD::ArgFlagsTy MemcpyFlags = Flags;
7419         // Only memcpy the bytes that don't pass in register.
7420         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7421         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7422             (LoadOffset != 0)
7423                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7424                 : Arg,
7425             DAG.getObjectPtrOffset(dl, StackPtr,
7426                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7427             CallSeqStart, MemcpyFlags, DAG, dl);
7428         continue;
7429       }
7430 
7431       // Initialize the final register residue.
7432       // Any residue that occupies the final by-val arg register must be
7433       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7434       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7435       // 2 and 1 byte loads.
7436       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7437       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7438              "Unexpected register residue for by-value argument.");
7439       SDValue ResidueVal;
7440       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7441         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7442         const MVT VT =
7443             N == 1 ? MVT::i8
7444                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7445         SDValue Load = GetLoad(VT, LoadOffset);
7446         MemOpChains.push_back(Load.getValue(1));
7447         LoadOffset += N;
7448         Bytes += N;
7449 
7450         // By-val arguments are passed left-justfied in register.
7451         // Every load here needs to be shifted, otherwise a full register load
7452         // should have been used.
7453         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7454                "Unexpected load emitted during handling of pass-by-value "
7455                "argument.");
7456         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7457         EVT ShiftAmountTy =
7458             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7459         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7460         SDValue ShiftedLoad =
7461             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7462         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7463                                               ShiftedLoad)
7464                                 : ShiftedLoad;
7465       }
7466 
7467       const CCValAssign &ByValVA = ArgLocs[I++];
7468       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7469       continue;
7470     }
7471 
7472     CCValAssign &VA = ArgLocs[I++];
7473     const MVT LocVT = VA.getLocVT();
7474     const MVT ValVT = VA.getValVT();
7475 
7476     switch (VA.getLocInfo()) {
7477     default:
7478       report_fatal_error("Unexpected argument extension type.");
7479     case CCValAssign::Full:
7480       break;
7481     case CCValAssign::ZExt:
7482       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7483       break;
7484     case CCValAssign::SExt:
7485       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7486       break;
7487     }
7488 
7489     if (VA.isRegLoc() && !VA.needsCustom()) {
7490       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7491       continue;
7492     }
7493 
7494     if (VA.isMemLoc()) {
7495       SDValue PtrOff =
7496           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7497       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7498       MemOpChains.push_back(
7499           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7500 
7501       continue;
7502     }
7503 
7504     // Custom handling is used for GPR initializations for vararg float
7505     // arguments.
7506     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7507            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7508            "Unexpected register handling for calling convention.");
7509 
7510     SDValue ArgAsInt =
7511         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7512 
7513     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7514       // f32 in 32-bit GPR
7515       // f64 in 64-bit GPR
7516       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7517     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7518       // f32 in 64-bit GPR.
7519       RegsToPass.push_back(std::make_pair(
7520           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7521     else {
7522       // f64 in two 32-bit GPRs
7523       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7524       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7525              "Unexpected custom register for argument!");
7526       CCValAssign &GPR1 = VA;
7527       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7528                                      DAG.getConstant(32, dl, MVT::i8));
7529       RegsToPass.push_back(std::make_pair(
7530           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7531 
7532       if (I != E) {
7533         // If only 1 GPR was available, there will only be one custom GPR and
7534         // the argument will also pass in memory.
7535         CCValAssign &PeekArg = ArgLocs[I];
7536         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7537           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7538           CCValAssign &GPR2 = ArgLocs[I++];
7539           RegsToPass.push_back(std::make_pair(
7540               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7541         }
7542       }
7543     }
7544   }
7545 
7546   if (!MemOpChains.empty())
7547     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7548 
7549   // For indirect calls, we need to save the TOC base to the stack for
7550   // restoration after the call.
7551   if (CFlags.IsIndirect) {
7552     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7553     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7554     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7555     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7556     const unsigned TOCSaveOffset =
7557         Subtarget.getFrameLowering()->getTOCSaveOffset();
7558 
7559     setUsesTOCBasePtr(DAG);
7560     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7561     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7562     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7563     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7564     Chain = DAG.getStore(
7565         Val.getValue(1), dl, Val, AddPtr,
7566         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7567   }
7568 
7569   // Build a sequence of copy-to-reg nodes chained together with token chain
7570   // and flag operands which copy the outgoing args into the appropriate regs.
7571   SDValue InFlag;
7572   for (auto Reg : RegsToPass) {
7573     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7574     InFlag = Chain.getValue(1);
7575   }
7576 
7577   const int SPDiff = 0;
7578   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7579                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7580 }
7581 
7582 bool
7583 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7584                                   MachineFunction &MF, bool isVarArg,
7585                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7586                                   LLVMContext &Context) const {
7587   SmallVector<CCValAssign, 16> RVLocs;
7588   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7589   return CCInfo.CheckReturn(
7590       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7591                 ? RetCC_PPC_Cold
7592                 : RetCC_PPC);
7593 }
7594 
7595 SDValue
7596 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7597                                bool isVarArg,
7598                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7599                                const SmallVectorImpl<SDValue> &OutVals,
7600                                const SDLoc &dl, SelectionDAG &DAG) const {
7601   SmallVector<CCValAssign, 16> RVLocs;
7602   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7603                  *DAG.getContext());
7604   CCInfo.AnalyzeReturn(Outs,
7605                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7606                            ? RetCC_PPC_Cold
7607                            : RetCC_PPC);
7608 
7609   SDValue Flag;
7610   SmallVector<SDValue, 4> RetOps(1, Chain);
7611 
7612   // Copy the result values into the output registers.
7613   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7614     CCValAssign &VA = RVLocs[i];
7615     assert(VA.isRegLoc() && "Can only return in registers!");
7616 
7617     SDValue Arg = OutVals[RealResIdx];
7618 
7619     switch (VA.getLocInfo()) {
7620     default: llvm_unreachable("Unknown loc info!");
7621     case CCValAssign::Full: break;
7622     case CCValAssign::AExt:
7623       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7624       break;
7625     case CCValAssign::ZExt:
7626       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7627       break;
7628     case CCValAssign::SExt:
7629       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7630       break;
7631     }
7632     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7633       bool isLittleEndian = Subtarget.isLittleEndian();
7634       // Legalize ret f64 -> ret 2 x i32.
7635       SDValue SVal =
7636           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7637                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7638       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7639       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7640       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7641                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7642       Flag = Chain.getValue(1);
7643       VA = RVLocs[++i]; // skip ahead to next loc
7644       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7645     } else
7646       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7647     Flag = Chain.getValue(1);
7648     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7649   }
7650 
7651   RetOps[0] = Chain;  // Update chain.
7652 
7653   // Add the flag if we have it.
7654   if (Flag.getNode())
7655     RetOps.push_back(Flag);
7656 
7657   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7658 }
7659 
7660 SDValue
7661 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7662                                                 SelectionDAG &DAG) const {
7663   SDLoc dl(Op);
7664 
7665   // Get the correct type for integers.
7666   EVT IntVT = Op.getValueType();
7667 
7668   // Get the inputs.
7669   SDValue Chain = Op.getOperand(0);
7670   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7671   // Build a DYNAREAOFFSET node.
7672   SDValue Ops[2] = {Chain, FPSIdx};
7673   SDVTList VTs = DAG.getVTList(IntVT);
7674   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7675 }
7676 
7677 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7678                                              SelectionDAG &DAG) const {
7679   // When we pop the dynamic allocation we need to restore the SP link.
7680   SDLoc dl(Op);
7681 
7682   // Get the correct type for pointers.
7683   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7684 
7685   // Construct the stack pointer operand.
7686   bool isPPC64 = Subtarget.isPPC64();
7687   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7688   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7689 
7690   // Get the operands for the STACKRESTORE.
7691   SDValue Chain = Op.getOperand(0);
7692   SDValue SaveSP = Op.getOperand(1);
7693 
7694   // Load the old link SP.
7695   SDValue LoadLinkSP =
7696       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7697 
7698   // Restore the stack pointer.
7699   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7700 
7701   // Store the old link SP.
7702   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7703 }
7704 
7705 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7706   MachineFunction &MF = DAG.getMachineFunction();
7707   bool isPPC64 = Subtarget.isPPC64();
7708   EVT PtrVT = getPointerTy(MF.getDataLayout());
7709 
7710   // Get current frame pointer save index.  The users of this index will be
7711   // primarily DYNALLOC instructions.
7712   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7713   int RASI = FI->getReturnAddrSaveIndex();
7714 
7715   // If the frame pointer save index hasn't been defined yet.
7716   if (!RASI) {
7717     // Find out what the fix offset of the frame pointer save area.
7718     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7719     // Allocate the frame index for frame pointer save area.
7720     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7721     // Save the result.
7722     FI->setReturnAddrSaveIndex(RASI);
7723   }
7724   return DAG.getFrameIndex(RASI, PtrVT);
7725 }
7726 
7727 SDValue
7728 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7729   MachineFunction &MF = DAG.getMachineFunction();
7730   bool isPPC64 = Subtarget.isPPC64();
7731   EVT PtrVT = getPointerTy(MF.getDataLayout());
7732 
7733   // Get current frame pointer save index.  The users of this index will be
7734   // primarily DYNALLOC instructions.
7735   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7736   int FPSI = FI->getFramePointerSaveIndex();
7737 
7738   // If the frame pointer save index hasn't been defined yet.
7739   if (!FPSI) {
7740     // Find out what the fix offset of the frame pointer save area.
7741     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7742     // Allocate the frame index for frame pointer save area.
7743     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7744     // Save the result.
7745     FI->setFramePointerSaveIndex(FPSI);
7746   }
7747   return DAG.getFrameIndex(FPSI, PtrVT);
7748 }
7749 
7750 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7751                                                    SelectionDAG &DAG) const {
7752   MachineFunction &MF = DAG.getMachineFunction();
7753   // Get the inputs.
7754   SDValue Chain = Op.getOperand(0);
7755   SDValue Size  = Op.getOperand(1);
7756   SDLoc dl(Op);
7757 
7758   // Get the correct type for pointers.
7759   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7760   // Negate the size.
7761   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7762                                 DAG.getConstant(0, dl, PtrVT), Size);
7763   // Construct a node for the frame pointer save index.
7764   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7765   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7766   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7767   if (hasInlineStackProbe(MF))
7768     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7769   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7770 }
7771 
7772 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7773                                                      SelectionDAG &DAG) const {
7774   MachineFunction &MF = DAG.getMachineFunction();
7775 
7776   bool isPPC64 = Subtarget.isPPC64();
7777   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7778 
7779   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7780   return DAG.getFrameIndex(FI, PtrVT);
7781 }
7782 
7783 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7784                                                SelectionDAG &DAG) const {
7785   SDLoc DL(Op);
7786   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7787                      DAG.getVTList(MVT::i32, MVT::Other),
7788                      Op.getOperand(0), Op.getOperand(1));
7789 }
7790 
7791 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7792                                                 SelectionDAG &DAG) const {
7793   SDLoc DL(Op);
7794   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7795                      Op.getOperand(0), Op.getOperand(1));
7796 }
7797 
7798 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7799 
7800   assert(Op.getValueType() == MVT::i1 &&
7801          "Custom lowering only for i1 loads");
7802 
7803   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7804 
7805   SDLoc dl(Op);
7806   LoadSDNode *LD = cast<LoadSDNode>(Op);
7807 
7808   SDValue Chain = LD->getChain();
7809   SDValue BasePtr = LD->getBasePtr();
7810   MachineMemOperand *MMO = LD->getMemOperand();
7811 
7812   SDValue NewLD =
7813       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7814                      BasePtr, MVT::i8, MMO);
7815   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7816 
7817   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7818   return DAG.getMergeValues(Ops, dl);
7819 }
7820 
7821 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7822   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7823          "Custom lowering only for i1 stores");
7824 
7825   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7826 
7827   SDLoc dl(Op);
7828   StoreSDNode *ST = cast<StoreSDNode>(Op);
7829 
7830   SDValue Chain = ST->getChain();
7831   SDValue BasePtr = ST->getBasePtr();
7832   SDValue Value = ST->getValue();
7833   MachineMemOperand *MMO = ST->getMemOperand();
7834 
7835   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7836                       Value);
7837   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7838 }
7839 
7840 // FIXME: Remove this once the ANDI glue bug is fixed:
7841 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7842   assert(Op.getValueType() == MVT::i1 &&
7843          "Custom lowering only for i1 results");
7844 
7845   SDLoc DL(Op);
7846   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7847 }
7848 
7849 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7850                                                SelectionDAG &DAG) const {
7851 
7852   // Implements a vector truncate that fits in a vector register as a shuffle.
7853   // We want to legalize vector truncates down to where the source fits in
7854   // a vector register (and target is therefore smaller than vector register
7855   // size).  At that point legalization will try to custom lower the sub-legal
7856   // result and get here - where we can contain the truncate as a single target
7857   // operation.
7858 
7859   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7860   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7861   //
7862   // We will implement it for big-endian ordering as this (where x denotes
7863   // undefined):
7864   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7865   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7866   //
7867   // The same operation in little-endian ordering will be:
7868   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7869   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7870 
7871   EVT TrgVT = Op.getValueType();
7872   assert(TrgVT.isVector() && "Vector type expected.");
7873   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7874   EVT EltVT = TrgVT.getVectorElementType();
7875   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7876       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7877       !isPowerOf2_32(EltVT.getSizeInBits()))
7878     return SDValue();
7879 
7880   SDValue N1 = Op.getOperand(0);
7881   EVT SrcVT = N1.getValueType();
7882   unsigned SrcSize = SrcVT.getSizeInBits();
7883   if (SrcSize > 256 ||
7884       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7885       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7886     return SDValue();
7887   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7888     return SDValue();
7889 
7890   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7891   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7892 
7893   SDLoc DL(Op);
7894   SDValue Op1, Op2;
7895   if (SrcSize == 256) {
7896     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7897     EVT SplitVT =
7898         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7899     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7900     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7901                       DAG.getConstant(0, DL, VecIdxTy));
7902     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7903                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7904   }
7905   else {
7906     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7907     Op2 = DAG.getUNDEF(WideVT);
7908   }
7909 
7910   // First list the elements we want to keep.
7911   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7912   SmallVector<int, 16> ShuffV;
7913   if (Subtarget.isLittleEndian())
7914     for (unsigned i = 0; i < TrgNumElts; ++i)
7915       ShuffV.push_back(i * SizeMult);
7916   else
7917     for (unsigned i = 1; i <= TrgNumElts; ++i)
7918       ShuffV.push_back(i * SizeMult - 1);
7919 
7920   // Populate the remaining elements with undefs.
7921   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7922     // ShuffV.push_back(i + WideNumElts);
7923     ShuffV.push_back(WideNumElts + 1);
7924 
7925   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7926   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7927   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7928 }
7929 
7930 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7931 /// possible.
7932 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7933   // Not FP, or using SPE? Not a fsel.
7934   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7935       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7936     return Op;
7937 
7938   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7939 
7940   EVT ResVT = Op.getValueType();
7941   EVT CmpVT = Op.getOperand(0).getValueType();
7942   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7943   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7944   SDLoc dl(Op);
7945   SDNodeFlags Flags = Op.getNode()->getFlags();
7946 
7947   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7948   // presence of infinities.
7949   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7950     switch (CC) {
7951     default:
7952       break;
7953     case ISD::SETOGT:
7954     case ISD::SETGT:
7955       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7956     case ISD::SETOLT:
7957     case ISD::SETLT:
7958       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7959     }
7960   }
7961 
7962   // We might be able to do better than this under some circumstances, but in
7963   // general, fsel-based lowering of select is a finite-math-only optimization.
7964   // For more information, see section F.3 of the 2.06 ISA specification.
7965   // With ISA 3.0
7966   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7967       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7968     return Op;
7969 
7970   // If the RHS of the comparison is a 0.0, we don't need to do the
7971   // subtraction at all.
7972   SDValue Sel1;
7973   if (isFloatingPointZero(RHS))
7974     switch (CC) {
7975     default: break;       // SETUO etc aren't handled by fsel.
7976     case ISD::SETNE:
7977       std::swap(TV, FV);
7978       LLVM_FALLTHROUGH;
7979     case ISD::SETEQ:
7980       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7981         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7982       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7983       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7984         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7985       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7986                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7987     case ISD::SETULT:
7988     case ISD::SETLT:
7989       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7990       LLVM_FALLTHROUGH;
7991     case ISD::SETOGE:
7992     case ISD::SETGE:
7993       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7994         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7995       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7996     case ISD::SETUGT:
7997     case ISD::SETGT:
7998       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7999       LLVM_FALLTHROUGH;
8000     case ISD::SETOLE:
8001     case ISD::SETLE:
8002       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8003         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8004       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8005                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8006     }
8007 
8008   SDValue Cmp;
8009   switch (CC) {
8010   default: break;       // SETUO etc aren't handled by fsel.
8011   case ISD::SETNE:
8012     std::swap(TV, FV);
8013     LLVM_FALLTHROUGH;
8014   case ISD::SETEQ:
8015     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8016     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8017       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8018     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8019     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8020       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8021     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8022                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8023   case ISD::SETULT:
8024   case ISD::SETLT:
8025     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8026     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8027       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8028     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8029   case ISD::SETOGE:
8030   case ISD::SETGE:
8031     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8032     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8033       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8034     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8035   case ISD::SETUGT:
8036   case ISD::SETGT:
8037     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8038     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8039       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8040     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8041   case ISD::SETOLE:
8042   case ISD::SETLE:
8043     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8044     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8045       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8046     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8047   }
8048   return Op;
8049 }
8050 
8051 static unsigned getPPCStrictOpcode(unsigned Opc) {
8052   switch (Opc) {
8053   default:
8054     llvm_unreachable("No strict version of this opcode!");
8055   case PPCISD::FCTIDZ:
8056     return PPCISD::STRICT_FCTIDZ;
8057   case PPCISD::FCTIWZ:
8058     return PPCISD::STRICT_FCTIWZ;
8059   case PPCISD::FCTIDUZ:
8060     return PPCISD::STRICT_FCTIDUZ;
8061   case PPCISD::FCTIWUZ:
8062     return PPCISD::STRICT_FCTIWUZ;
8063   case PPCISD::FCFID:
8064     return PPCISD::STRICT_FCFID;
8065   case PPCISD::FCFIDU:
8066     return PPCISD::STRICT_FCFIDU;
8067   case PPCISD::FCFIDS:
8068     return PPCISD::STRICT_FCFIDS;
8069   case PPCISD::FCFIDUS:
8070     return PPCISD::STRICT_FCFIDUS;
8071   }
8072 }
8073 
8074 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8075                               const PPCSubtarget &Subtarget) {
8076   SDLoc dl(Op);
8077   bool IsStrict = Op->isStrictFPOpcode();
8078   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8079                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8080   // For strict nodes, source is the second operand.
8081   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8082   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8083   assert(Src.getValueType().isFloatingPoint());
8084   if (Src.getValueType() == MVT::f32) {
8085     if (IsStrict) {
8086       Src = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f64, MVT::Other},
8087                         {Chain, Src});
8088       Chain = Src.getValue(1);
8089     } else
8090       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8091   }
8092   SDValue Conv;
8093   unsigned Opc = ISD::DELETED_NODE;
8094   switch (Op.getSimpleValueType().SimpleTy) {
8095   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8096   case MVT::i32:
8097     Opc = IsSigned ? PPCISD::FCTIWZ
8098                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8099     break;
8100   case MVT::i64:
8101     assert((IsSigned || Subtarget.hasFPCVT()) &&
8102            "i64 FP_TO_UINT is supported only with FPCVT");
8103     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8104   }
8105   if (IsStrict) {
8106     Opc = getPPCStrictOpcode(Opc);
8107     Conv = DAG.getNode(Opc, dl, {MVT::f64, MVT::Other}, {Chain, Src});
8108   } else {
8109     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8110   }
8111   return Conv;
8112 }
8113 
8114 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8115                                                SelectionDAG &DAG,
8116                                                const SDLoc &dl) const {
8117   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8118   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8119                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8120   bool IsStrict = Op->isStrictFPOpcode();
8121 
8122   // Convert the FP value to an int value through memory.
8123   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8124                   (IsSigned || Subtarget.hasFPCVT());
8125   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8126   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8127   MachinePointerInfo MPI =
8128       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8129 
8130   // Emit a store to the stack slot.
8131   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8132   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8133   if (i32Stack) {
8134     MachineFunction &MF = DAG.getMachineFunction();
8135     Alignment = Align(4);
8136     MachineMemOperand *MMO =
8137         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8138     SDValue Ops[] = { Chain, Tmp, FIPtr };
8139     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8140               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8141   } else
8142     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8143 
8144   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8145   // add in a bias on big endian.
8146   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8147     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8148                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8149     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8150   }
8151 
8152   RLI.Chain = Chain;
8153   RLI.Ptr = FIPtr;
8154   RLI.MPI = MPI;
8155   RLI.Alignment = Alignment;
8156 }
8157 
8158 /// Custom lowers floating point to integer conversions to use
8159 /// the direct move instructions available in ISA 2.07 to avoid the
8160 /// need for load/store combinations.
8161 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8162                                                     SelectionDAG &DAG,
8163                                                     const SDLoc &dl) const {
8164   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8165   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8166   if (Op->isStrictFPOpcode())
8167     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8168   else
8169     return Mov;
8170 }
8171 
8172 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8173                                           const SDLoc &dl) const {
8174   bool IsStrict = Op->isStrictFPOpcode();
8175   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8176                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8177   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8178   EVT SrcVT = Src.getValueType();
8179   EVT DstVT = Op.getValueType();
8180 
8181   // FP to INT conversions are legal for f128.
8182   if (SrcVT == MVT::f128)
8183     return Op;
8184 
8185   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8186   // PPC (the libcall is not available).
8187   if (SrcVT == MVT::ppcf128) {
8188     if (DstVT == MVT::i32) {
8189       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8190       // set other fast-math flags to FP operations in both strict and
8191       // non-strict cases. (FP_TO_SINT, FSUB)
8192       SDNodeFlags Flags;
8193       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8194 
8195       if (IsSigned) {
8196         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8197                                  DAG.getIntPtrConstant(0, dl));
8198         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8199                                  DAG.getIntPtrConstant(1, dl));
8200 
8201         // Add the two halves of the long double in round-to-zero mode, and use
8202         // a smaller FP_TO_SINT.
8203         if (IsStrict) {
8204           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8205                                     DAG.getVTList(MVT::f64, MVT::Other),
8206                                     {Op.getOperand(0), Lo, Hi}, Flags);
8207           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8208                              DAG.getVTList(MVT::i32, MVT::Other),
8209                              {Res.getValue(1), Res}, Flags);
8210         } else {
8211           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8212           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8213         }
8214       } else {
8215         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8216         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8217         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8218         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8219         if (IsStrict) {
8220           // Sel = Src < 0x80000000
8221           // FltOfs = select Sel, 0.0, 0x80000000
8222           // IntOfs = select Sel, 0, 0x80000000
8223           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8224           SDValue Chain = Op.getOperand(0);
8225           EVT SetCCVT =
8226               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8227           EVT DstSetCCVT =
8228               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8229           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8230                                      SDNodeFlags(), Chain, true);
8231           Chain = Sel.getValue(1);
8232 
8233           SDValue FltOfs = DAG.getSelect(
8234               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8235           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8236 
8237           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8238                                     DAG.getVTList(SrcVT, MVT::Other),
8239                                     {Chain, Src, FltOfs}, Flags);
8240           Chain = Val.getValue(1);
8241           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8242                                      DAG.getVTList(DstVT, MVT::Other),
8243                                      {Chain, Val}, Flags);
8244           Chain = SInt.getValue(1);
8245           SDValue IntOfs = DAG.getSelect(
8246               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8247           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8248           return DAG.getMergeValues({Result, Chain}, dl);
8249         } else {
8250           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8251           // FIXME: generated code sucks.
8252           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8253           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8254           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8255           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8256           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8257         }
8258       }
8259     }
8260 
8261     return SDValue();
8262   }
8263 
8264   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8265     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8266 
8267   ReuseLoadInfo RLI;
8268   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8269 
8270   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8271                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8272 }
8273 
8274 // We're trying to insert a regular store, S, and then a load, L. If the
8275 // incoming value, O, is a load, we might just be able to have our load use the
8276 // address used by O. However, we don't know if anything else will store to
8277 // that address before we can load from it. To prevent this situation, we need
8278 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8279 // the same chain operand as O, we create a token factor from the chain results
8280 // of O and L, and we replace all uses of O's chain result with that token
8281 // factor (see spliceIntoChain below for this last part).
8282 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8283                                             ReuseLoadInfo &RLI,
8284                                             SelectionDAG &DAG,
8285                                             ISD::LoadExtType ET) const {
8286   // Conservatively skip reusing for constrained FP nodes.
8287   if (Op->isStrictFPOpcode())
8288     return false;
8289 
8290   SDLoc dl(Op);
8291   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8292                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8293   if (ET == ISD::NON_EXTLOAD &&
8294       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8295       isOperationLegalOrCustom(Op.getOpcode(),
8296                                Op.getOperand(0).getValueType())) {
8297 
8298     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8299     return true;
8300   }
8301 
8302   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8303   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8304       LD->isNonTemporal())
8305     return false;
8306   if (LD->getMemoryVT() != MemVT)
8307     return false;
8308 
8309   RLI.Ptr = LD->getBasePtr();
8310   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8311     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8312            "Non-pre-inc AM on PPC?");
8313     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8314                           LD->getOffset());
8315   }
8316 
8317   RLI.Chain = LD->getChain();
8318   RLI.MPI = LD->getPointerInfo();
8319   RLI.IsDereferenceable = LD->isDereferenceable();
8320   RLI.IsInvariant = LD->isInvariant();
8321   RLI.Alignment = LD->getAlign();
8322   RLI.AAInfo = LD->getAAInfo();
8323   RLI.Ranges = LD->getRanges();
8324 
8325   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8326   return true;
8327 }
8328 
8329 // Given the head of the old chain, ResChain, insert a token factor containing
8330 // it and NewResChain, and make users of ResChain now be users of that token
8331 // factor.
8332 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8333 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8334                                         SDValue NewResChain,
8335                                         SelectionDAG &DAG) const {
8336   if (!ResChain)
8337     return;
8338 
8339   SDLoc dl(NewResChain);
8340 
8341   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8342                            NewResChain, DAG.getUNDEF(MVT::Other));
8343   assert(TF.getNode() != NewResChain.getNode() &&
8344          "A new TF really is required here");
8345 
8346   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8347   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8348 }
8349 
8350 /// Analyze profitability of direct move
8351 /// prefer float load to int load plus direct move
8352 /// when there is no integer use of int load
8353 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8354   SDNode *Origin = Op.getOperand(0).getNode();
8355   if (Origin->getOpcode() != ISD::LOAD)
8356     return true;
8357 
8358   // If there is no LXSIBZX/LXSIHZX, like Power8,
8359   // prefer direct move if the memory size is 1 or 2 bytes.
8360   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8361   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8362     return true;
8363 
8364   for (SDNode::use_iterator UI = Origin->use_begin(),
8365                             UE = Origin->use_end();
8366        UI != UE; ++UI) {
8367 
8368     // Only look at the users of the loaded value.
8369     if (UI.getUse().get().getResNo() != 0)
8370       continue;
8371 
8372     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8373         UI->getOpcode() != ISD::UINT_TO_FP &&
8374         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8375         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8376       return true;
8377   }
8378 
8379   return false;
8380 }
8381 
8382 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8383                               const PPCSubtarget &Subtarget,
8384                               SDValue Chain = SDValue()) {
8385   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8386                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8387   SDLoc dl(Op);
8388   // If we have FCFIDS, then use it when converting to single-precision.
8389   // Otherwise, convert to double-precision and then round.
8390   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8391   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8392                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8393   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8394   if (Op->isStrictFPOpcode()) {
8395     if (!Chain)
8396       Chain = Op.getOperand(0);
8397     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, {ConvTy, MVT::Other},
8398                        {Chain, Src});
8399   } else
8400     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8401 }
8402 
8403 /// Custom lowers integer to floating point conversions to use
8404 /// the direct move instructions available in ISA 2.07 to avoid the
8405 /// need for load/store combinations.
8406 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8407                                                     SelectionDAG &DAG,
8408                                                     const SDLoc &dl) const {
8409   assert((Op.getValueType() == MVT::f32 ||
8410           Op.getValueType() == MVT::f64) &&
8411          "Invalid floating point type as target of conversion");
8412   assert(Subtarget.hasFPCVT() &&
8413          "Int to FP conversions with direct moves require FPCVT");
8414   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8415   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8416   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8417                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8418   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8419   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8420   return convertIntToFP(Op, Mov, DAG, Subtarget);
8421 }
8422 
8423 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8424 
8425   EVT VecVT = Vec.getValueType();
8426   assert(VecVT.isVector() && "Expected a vector type.");
8427   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8428 
8429   EVT EltVT = VecVT.getVectorElementType();
8430   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8431   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8432 
8433   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8434   SmallVector<SDValue, 16> Ops(NumConcat);
8435   Ops[0] = Vec;
8436   SDValue UndefVec = DAG.getUNDEF(VecVT);
8437   for (unsigned i = 1; i < NumConcat; ++i)
8438     Ops[i] = UndefVec;
8439 
8440   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8441 }
8442 
8443 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8444                                                 const SDLoc &dl) const {
8445   bool IsStrict = Op->isStrictFPOpcode();
8446   unsigned Opc = Op.getOpcode();
8447   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8448   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8449           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8450          "Unexpected conversion type");
8451   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8452          "Supports conversions to v2f64/v4f32 only.");
8453 
8454   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8455   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8456 
8457   SDValue Wide = widenVec(DAG, Src, dl);
8458   EVT WideVT = Wide.getValueType();
8459   unsigned WideNumElts = WideVT.getVectorNumElements();
8460   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8461 
8462   SmallVector<int, 16> ShuffV;
8463   for (unsigned i = 0; i < WideNumElts; ++i)
8464     ShuffV.push_back(i + WideNumElts);
8465 
8466   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8467   int SaveElts = FourEltRes ? 4 : 2;
8468   if (Subtarget.isLittleEndian())
8469     for (int i = 0; i < SaveElts; i++)
8470       ShuffV[i * Stride] = i;
8471   else
8472     for (int i = 1; i <= SaveElts; i++)
8473       ShuffV[i * Stride - 1] = i - 1;
8474 
8475   SDValue ShuffleSrc2 =
8476       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8477   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8478 
8479   SDValue Extend;
8480   if (SignedConv) {
8481     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8482     EVT ExtVT = Src.getValueType();
8483     if (Subtarget.hasP9Altivec())
8484       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8485                                IntermediateVT.getVectorNumElements());
8486 
8487     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8488                          DAG.getValueType(ExtVT));
8489   } else
8490     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8491 
8492   if (IsStrict)
8493     return DAG.getNode(Opc, dl, {Op.getValueType(), MVT::Other},
8494                        {Op.getOperand(0), Extend});
8495 
8496   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8497 }
8498 
8499 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8500                                           SelectionDAG &DAG) const {
8501   SDLoc dl(Op);
8502   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8503                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8504   bool IsStrict = Op->isStrictFPOpcode();
8505   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8506   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8507 
8508   EVT InVT = Src.getValueType();
8509   EVT OutVT = Op.getValueType();
8510   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8511       isOperationCustom(Op.getOpcode(), InVT))
8512     return LowerINT_TO_FPVector(Op, DAG, dl);
8513 
8514   // Conversions to f128 are legal.
8515   if (Op.getValueType() == MVT::f128)
8516     return Op;
8517 
8518   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8519   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8520     return SDValue();
8521 
8522   if (Src.getValueType() == MVT::i1)
8523     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8524                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8525                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8526 
8527   // If we have direct moves, we can do all the conversion, skip the store/load
8528   // however, without FPCVT we can't do most conversions.
8529   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8530       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8531     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8532 
8533   assert((IsSigned || Subtarget.hasFPCVT()) &&
8534          "UINT_TO_FP is supported only with FPCVT");
8535 
8536   if (Src.getValueType() == MVT::i64) {
8537     SDValue SINT = Src;
8538     // When converting to single-precision, we actually need to convert
8539     // to double-precision first and then round to single-precision.
8540     // To avoid double-rounding effects during that operation, we have
8541     // to prepare the input operand.  Bits that might be truncated when
8542     // converting to double-precision are replaced by a bit that won't
8543     // be lost at this stage, but is below the single-precision rounding
8544     // position.
8545     //
8546     // However, if -enable-unsafe-fp-math is in effect, accept double
8547     // rounding to avoid the extra overhead.
8548     if (Op.getValueType() == MVT::f32 &&
8549         !Subtarget.hasFPCVT() &&
8550         !DAG.getTarget().Options.UnsafeFPMath) {
8551 
8552       // Twiddle input to make sure the low 11 bits are zero.  (If this
8553       // is the case, we are guaranteed the value will fit into the 53 bit
8554       // mantissa of an IEEE double-precision value without rounding.)
8555       // If any of those low 11 bits were not zero originally, make sure
8556       // bit 12 (value 2048) is set instead, so that the final rounding
8557       // to single-precision gets the correct result.
8558       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8559                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8560       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8561                           Round, DAG.getConstant(2047, dl, MVT::i64));
8562       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8563       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8564                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8565 
8566       // However, we cannot use that value unconditionally: if the magnitude
8567       // of the input value is small, the bit-twiddling we did above might
8568       // end up visibly changing the output.  Fortunately, in that case, we
8569       // don't need to twiddle bits since the original input will convert
8570       // exactly to double-precision floating-point already.  Therefore,
8571       // construct a conditional to use the original value if the top 11
8572       // bits are all sign-bit copies, and use the rounded value computed
8573       // above otherwise.
8574       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8575                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8576       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8577                          Cond, DAG.getConstant(1, dl, MVT::i64));
8578       Cond = DAG.getSetCC(
8579           dl,
8580           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8581           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8582 
8583       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8584     }
8585 
8586     ReuseLoadInfo RLI;
8587     SDValue Bits;
8588 
8589     MachineFunction &MF = DAG.getMachineFunction();
8590     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8591       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8592                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8593       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8594     } else if (Subtarget.hasLFIWAX() &&
8595                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8596       MachineMemOperand *MMO =
8597         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8598                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8599       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8600       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8601                                      DAG.getVTList(MVT::f64, MVT::Other),
8602                                      Ops, MVT::i32, MMO);
8603       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8604     } else if (Subtarget.hasFPCVT() &&
8605                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8606       MachineMemOperand *MMO =
8607         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8608                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8609       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8610       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8611                                      DAG.getVTList(MVT::f64, MVT::Other),
8612                                      Ops, MVT::i32, MMO);
8613       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8614     } else if (((Subtarget.hasLFIWAX() &&
8615                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8616                 (Subtarget.hasFPCVT() &&
8617                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8618                SINT.getOperand(0).getValueType() == MVT::i32) {
8619       MachineFrameInfo &MFI = MF.getFrameInfo();
8620       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8621 
8622       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8623       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8624 
8625       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8626                                    MachinePointerInfo::getFixedStack(
8627                                        DAG.getMachineFunction(), FrameIdx));
8628       Chain = Store;
8629 
8630       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8631              "Expected an i32 store");
8632 
8633       RLI.Ptr = FIdx;
8634       RLI.Chain = Chain;
8635       RLI.MPI =
8636           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8637       RLI.Alignment = Align(4);
8638 
8639       MachineMemOperand *MMO =
8640         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8641                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8642       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8643       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8644                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8645                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8646                                      Ops, MVT::i32, MMO);
8647       Chain = Bits.getValue(1);
8648     } else
8649       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8650 
8651     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8652     if (IsStrict)
8653       Chain = FP.getValue(1);
8654 
8655     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8656       if (IsStrict)
8657         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other},
8658                          {Chain, FP, DAG.getIntPtrConstant(0, dl)});
8659       else
8660         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8661                          DAG.getIntPtrConstant(0, dl));
8662     }
8663     return FP;
8664   }
8665 
8666   assert(Src.getValueType() == MVT::i32 &&
8667          "Unhandled INT_TO_FP type in custom expander!");
8668   // Since we only generate this in 64-bit mode, we can take advantage of
8669   // 64-bit registers.  In particular, sign extend the input value into the
8670   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8671   // then lfd it and fcfid it.
8672   MachineFunction &MF = DAG.getMachineFunction();
8673   MachineFrameInfo &MFI = MF.getFrameInfo();
8674   EVT PtrVT = getPointerTy(MF.getDataLayout());
8675 
8676   SDValue Ld;
8677   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8678     ReuseLoadInfo RLI;
8679     bool ReusingLoad;
8680     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8681       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8682       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8683 
8684       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8685                                    MachinePointerInfo::getFixedStack(
8686                                        DAG.getMachineFunction(), FrameIdx));
8687       Chain = Store;
8688 
8689       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8690              "Expected an i32 store");
8691 
8692       RLI.Ptr = FIdx;
8693       RLI.Chain = Chain;
8694       RLI.MPI =
8695           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8696       RLI.Alignment = Align(4);
8697     }
8698 
8699     MachineMemOperand *MMO =
8700       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8701                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8702     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8703     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8704                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8705                                  MVT::i32, MMO);
8706     Chain = Ld.getValue(1);
8707     if (ReusingLoad)
8708       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8709   } else {
8710     assert(Subtarget.isPPC64() &&
8711            "i32->FP without LFIWAX supported only on PPC64");
8712 
8713     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8714     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8715 
8716     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8717 
8718     // STD the extended value into the stack slot.
8719     SDValue Store = DAG.getStore(
8720         Chain, dl, Ext64, FIdx,
8721         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8722     Chain = Store;
8723 
8724     // Load the value as a double.
8725     Ld = DAG.getLoad(
8726         MVT::f64, dl, Chain, FIdx,
8727         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8728     Chain = Ld.getValue(1);
8729   }
8730 
8731   // FCFID it and return it.
8732   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8733   if (IsStrict)
8734     Chain = FP.getValue(1);
8735   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8736     if (IsStrict)
8737       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {MVT::f32, MVT::Other},
8738                        {Chain, FP, DAG.getIntPtrConstant(0, dl)});
8739     else
8740       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8741                        DAG.getIntPtrConstant(0, dl));
8742   }
8743   return FP;
8744 }
8745 
8746 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8747                                             SelectionDAG &DAG) const {
8748   SDLoc dl(Op);
8749   /*
8750    The rounding mode is in bits 30:31 of FPSR, and has the following
8751    settings:
8752      00 Round to nearest
8753      01 Round to 0
8754      10 Round to +inf
8755      11 Round to -inf
8756 
8757   FLT_ROUNDS, on the other hand, expects the following:
8758     -1 Undefined
8759      0 Round to 0
8760      1 Round to nearest
8761      2 Round to +inf
8762      3 Round to -inf
8763 
8764   To perform the conversion, we do:
8765     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8766   */
8767 
8768   MachineFunction &MF = DAG.getMachineFunction();
8769   EVT VT = Op.getValueType();
8770   EVT PtrVT = getPointerTy(MF.getDataLayout());
8771 
8772   // Save FP Control Word to register
8773   SDValue Chain = Op.getOperand(0);
8774   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8775   Chain = MFFS.getValue(1);
8776 
8777   // Save FP register to stack slot
8778   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8779   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8780   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8781 
8782   // Load FP Control Word from low 32 bits of stack slot.
8783   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8784   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8785   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8786   Chain = CWD.getValue(1);
8787 
8788   // Transform as necessary
8789   SDValue CWD1 =
8790     DAG.getNode(ISD::AND, dl, MVT::i32,
8791                 CWD, DAG.getConstant(3, dl, MVT::i32));
8792   SDValue CWD2 =
8793     DAG.getNode(ISD::SRL, dl, MVT::i32,
8794                 DAG.getNode(ISD::AND, dl, MVT::i32,
8795                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8796                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8797                             DAG.getConstant(3, dl, MVT::i32)),
8798                 DAG.getConstant(1, dl, MVT::i32));
8799 
8800   SDValue RetVal =
8801     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8802 
8803   RetVal =
8804       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8805                   dl, VT, RetVal);
8806 
8807   return DAG.getMergeValues({RetVal, Chain}, dl);
8808 }
8809 
8810 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8811   EVT VT = Op.getValueType();
8812   unsigned BitWidth = VT.getSizeInBits();
8813   SDLoc dl(Op);
8814   assert(Op.getNumOperands() == 3 &&
8815          VT == Op.getOperand(1).getValueType() &&
8816          "Unexpected SHL!");
8817 
8818   // Expand into a bunch of logical ops.  Note that these ops
8819   // depend on the PPC behavior for oversized shift amounts.
8820   SDValue Lo = Op.getOperand(0);
8821   SDValue Hi = Op.getOperand(1);
8822   SDValue Amt = Op.getOperand(2);
8823   EVT AmtVT = Amt.getValueType();
8824 
8825   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8826                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8827   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8828   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8829   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8830   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8831                              DAG.getConstant(-BitWidth, dl, AmtVT));
8832   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8833   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8834   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8835   SDValue OutOps[] = { OutLo, OutHi };
8836   return DAG.getMergeValues(OutOps, dl);
8837 }
8838 
8839 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8840   EVT VT = Op.getValueType();
8841   SDLoc dl(Op);
8842   unsigned BitWidth = VT.getSizeInBits();
8843   assert(Op.getNumOperands() == 3 &&
8844          VT == Op.getOperand(1).getValueType() &&
8845          "Unexpected SRL!");
8846 
8847   // Expand into a bunch of logical ops.  Note that these ops
8848   // depend on the PPC behavior for oversized shift amounts.
8849   SDValue Lo = Op.getOperand(0);
8850   SDValue Hi = Op.getOperand(1);
8851   SDValue Amt = Op.getOperand(2);
8852   EVT AmtVT = Amt.getValueType();
8853 
8854   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8855                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8856   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8857   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8858   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8859   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8860                              DAG.getConstant(-BitWidth, dl, AmtVT));
8861   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8862   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8863   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8864   SDValue OutOps[] = { OutLo, OutHi };
8865   return DAG.getMergeValues(OutOps, dl);
8866 }
8867 
8868 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8869   SDLoc dl(Op);
8870   EVT VT = Op.getValueType();
8871   unsigned BitWidth = VT.getSizeInBits();
8872   assert(Op.getNumOperands() == 3 &&
8873          VT == Op.getOperand(1).getValueType() &&
8874          "Unexpected SRA!");
8875 
8876   // Expand into a bunch of logical ops, followed by a select_cc.
8877   SDValue Lo = Op.getOperand(0);
8878   SDValue Hi = Op.getOperand(1);
8879   SDValue Amt = Op.getOperand(2);
8880   EVT AmtVT = Amt.getValueType();
8881 
8882   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8883                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8884   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8885   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8886   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8887   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8888                              DAG.getConstant(-BitWidth, dl, AmtVT));
8889   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8890   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8891   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8892                                   Tmp4, Tmp6, ISD::SETLE);
8893   SDValue OutOps[] = { OutLo, OutHi };
8894   return DAG.getMergeValues(OutOps, dl);
8895 }
8896 
8897 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8898                                             SelectionDAG &DAG) const {
8899   SDLoc dl(Op);
8900   EVT VT = Op.getValueType();
8901   unsigned BitWidth = VT.getSizeInBits();
8902 
8903   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8904   SDValue X = Op.getOperand(0);
8905   SDValue Y = Op.getOperand(1);
8906   SDValue Z = Op.getOperand(2);
8907   EVT AmtVT = Z.getValueType();
8908 
8909   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8910   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8911   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8912   // on PowerPC shift by BW being well defined.
8913   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8914                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8915   SDValue SubZ =
8916       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8917   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8918   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8919   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8920 }
8921 
8922 //===----------------------------------------------------------------------===//
8923 // Vector related lowering.
8924 //
8925 
8926 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8927 /// element size of SplatSize. Cast the result to VT.
8928 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8929                                       SelectionDAG &DAG, const SDLoc &dl) {
8930   static const MVT VTys[] = { // canonical VT to use for each size.
8931     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8932   };
8933 
8934   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8935 
8936   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8937   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
8938     SplatSize = 1;
8939     Val = 0xFF;
8940   }
8941 
8942   EVT CanonicalVT = VTys[SplatSize-1];
8943 
8944   // Build a canonical splat for this value.
8945   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8946 }
8947 
8948 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8949 /// specified intrinsic ID.
8950 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8951                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8952   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8953   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8954                      DAG.getConstant(IID, dl, MVT::i32), Op);
8955 }
8956 
8957 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8958 /// specified intrinsic ID.
8959 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8960                                 SelectionDAG &DAG, const SDLoc &dl,
8961                                 EVT DestVT = MVT::Other) {
8962   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8963   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8964                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8965 }
8966 
8967 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8968 /// specified intrinsic ID.
8969 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8970                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8971                                 EVT DestVT = MVT::Other) {
8972   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8973   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8974                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8975 }
8976 
8977 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8978 /// amount.  The result has the specified value type.
8979 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8980                            SelectionDAG &DAG, const SDLoc &dl) {
8981   // Force LHS/RHS to be the right type.
8982   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8983   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8984 
8985   int Ops[16];
8986   for (unsigned i = 0; i != 16; ++i)
8987     Ops[i] = i + Amt;
8988   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8989   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8990 }
8991 
8992 /// Do we have an efficient pattern in a .td file for this node?
8993 ///
8994 /// \param V - pointer to the BuildVectorSDNode being matched
8995 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8996 ///
8997 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8998 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8999 /// the opposite is true (expansion is beneficial) are:
9000 /// - The node builds a vector out of integers that are not 32 or 64-bits
9001 /// - The node builds a vector out of constants
9002 /// - The node is a "load-and-splat"
9003 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9004 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9005                                             bool HasDirectMove,
9006                                             bool HasP8Vector) {
9007   EVT VecVT = V->getValueType(0);
9008   bool RightType = VecVT == MVT::v2f64 ||
9009     (HasP8Vector && VecVT == MVT::v4f32) ||
9010     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9011   if (!RightType)
9012     return false;
9013 
9014   bool IsSplat = true;
9015   bool IsLoad = false;
9016   SDValue Op0 = V->getOperand(0);
9017 
9018   // This function is called in a block that confirms the node is not a constant
9019   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9020   // different constants.
9021   if (V->isConstant())
9022     return false;
9023   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9024     if (V->getOperand(i).isUndef())
9025       return false;
9026     // We want to expand nodes that represent load-and-splat even if the
9027     // loaded value is a floating point truncation or conversion to int.
9028     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9029         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9030          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9031         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9032          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9033         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9034          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9035       IsLoad = true;
9036     // If the operands are different or the input is not a load and has more
9037     // uses than just this BV node, then it isn't a splat.
9038     if (V->getOperand(i) != Op0 ||
9039         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9040       IsSplat = false;
9041   }
9042   return !(IsSplat && IsLoad);
9043 }
9044 
9045 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9046 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9047 
9048   SDLoc dl(Op);
9049   SDValue Op0 = Op->getOperand(0);
9050 
9051   if ((Op.getValueType() != MVT::f128) ||
9052       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9053       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9054       (Op0.getOperand(1).getValueType() != MVT::i64))
9055     return SDValue();
9056 
9057   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9058                      Op0.getOperand(1));
9059 }
9060 
9061 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9062   const SDValue *InputLoad = &Op;
9063   if (InputLoad->getOpcode() == ISD::BITCAST)
9064     InputLoad = &InputLoad->getOperand(0);
9065   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9066       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9067     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9068     InputLoad = &InputLoad->getOperand(0);
9069   }
9070   if (InputLoad->getOpcode() != ISD::LOAD)
9071     return nullptr;
9072   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9073   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9074 }
9075 
9076 // Convert the argument APFloat to a single precision APFloat if there is no
9077 // loss in information during the conversion to single precision APFloat and the
9078 // resulting number is not a denormal number. Return true if successful.
9079 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9080   APFloat APFloatToConvert = ArgAPFloat;
9081   bool LosesInfo = true;
9082   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9083                            &LosesInfo);
9084   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9085   if (Success)
9086     ArgAPFloat = APFloatToConvert;
9087   return Success;
9088 }
9089 
9090 // Bitcast the argument APInt to a double and convert it to a single precision
9091 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9092 // argument if there is no loss in information during the conversion from
9093 // double to single precision APFloat and the resulting number is not a denormal
9094 // number. Return true if successful.
9095 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9096   double DpValue = ArgAPInt.bitsToDouble();
9097   APFloat APFloatDp(DpValue);
9098   bool Success = convertToNonDenormSingle(APFloatDp);
9099   if (Success)
9100     ArgAPInt = APFloatDp.bitcastToAPInt();
9101   return Success;
9102 }
9103 
9104 // If this is a case we can't handle, return null and let the default
9105 // expansion code take care of it.  If we CAN select this case, and if it
9106 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9107 // this case more efficiently than a constant pool load, lower it to the
9108 // sequence of ops that should be used.
9109 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9110                                              SelectionDAG &DAG) const {
9111   SDLoc dl(Op);
9112   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9113   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9114 
9115   // Check if this is a splat of a constant value.
9116   APInt APSplatBits, APSplatUndef;
9117   unsigned SplatBitSize;
9118   bool HasAnyUndefs;
9119   bool BVNIsConstantSplat =
9120       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9121                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9122 
9123   // If it is a splat of a double, check if we can shrink it to a 32 bit
9124   // non-denormal float which when converted back to double gives us the same
9125   // double. This is to exploit the XXSPLTIDP instruction.
9126   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
9127       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
9128       convertToNonDenormSingle(APSplatBits)) {
9129     SDValue SplatNode = DAG.getNode(
9130         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9131         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9132     return DAG.getBitcast(Op.getValueType(), SplatNode);
9133   }
9134 
9135   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9136 
9137     bool IsPermutedLoad = false;
9138     const SDValue *InputLoad =
9139         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9140     // Handle load-and-splat patterns as we have instructions that will do this
9141     // in one go.
9142     if (InputLoad && DAG.isSplatValue(Op, true)) {
9143       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9144 
9145       // We have handling for 4 and 8 byte elements.
9146       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9147 
9148       // Checking for a single use of this load, we have to check for vector
9149       // width (128 bits) / ElementSize uses (since each operand of the
9150       // BUILD_VECTOR is a separate use of the value.
9151       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9152           ((Subtarget.hasVSX() && ElementSize == 64) ||
9153            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9154         SDValue Ops[] = {
9155           LD->getChain(),    // Chain
9156           LD->getBasePtr(),  // Ptr
9157           DAG.getValueType(Op.getValueType()) // VT
9158         };
9159         return
9160           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9161                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9162                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9163       }
9164     }
9165 
9166     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9167     // lowered to VSX instructions under certain conditions.
9168     // Without VSX, there is no pattern more efficient than expanding the node.
9169     if (Subtarget.hasVSX() &&
9170         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9171                                         Subtarget.hasP8Vector()))
9172       return Op;
9173     return SDValue();
9174   }
9175 
9176   uint64_t SplatBits = APSplatBits.getZExtValue();
9177   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9178   unsigned SplatSize = SplatBitSize / 8;
9179 
9180   // First, handle single instruction cases.
9181 
9182   // All zeros?
9183   if (SplatBits == 0) {
9184     // Canonicalize all zero vectors to be v4i32.
9185     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9186       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9187       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9188     }
9189     return Op;
9190   }
9191 
9192   // We have XXSPLTIW for constant splats four bytes wide.
9193   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9194   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9195   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9196   // turned into a 4-byte splat of 0xABABABAB.
9197   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9198     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
9199                                   Op.getValueType(), DAG, dl);
9200 
9201   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9202     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9203                                   dl);
9204 
9205   // We have XXSPLTIB for constant splats one byte wide.
9206   if (Subtarget.hasP9Vector() && SplatSize == 1)
9207     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9208                                   dl);
9209 
9210   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9211   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9212                     (32-SplatBitSize));
9213   if (SextVal >= -16 && SextVal <= 15)
9214     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9215                                   dl);
9216 
9217   // Two instruction sequences.
9218 
9219   // If this value is in the range [-32,30] and is even, use:
9220   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9221   // If this value is in the range [17,31] and is odd, use:
9222   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9223   // If this value is in the range [-31,-17] and is odd, use:
9224   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9225   // Note the last two are three-instruction sequences.
9226   if (SextVal >= -32 && SextVal <= 31) {
9227     // To avoid having these optimizations undone by constant folding,
9228     // we convert to a pseudo that will be expanded later into one of
9229     // the above forms.
9230     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9231     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9232               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9233     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9234     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9235     if (VT == Op.getValueType())
9236       return RetVal;
9237     else
9238       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9239   }
9240 
9241   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9242   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9243   // for fneg/fabs.
9244   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9245     // Make -1 and vspltisw -1:
9246     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9247 
9248     // Make the VSLW intrinsic, computing 0x8000_0000.
9249     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9250                                    OnesV, DAG, dl);
9251 
9252     // xor by OnesV to invert it.
9253     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9254     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9255   }
9256 
9257   // Check to see if this is a wide variety of vsplti*, binop self cases.
9258   static const signed char SplatCsts[] = {
9259     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9260     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9261   };
9262 
9263   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9264     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9265     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9266     int i = SplatCsts[idx];
9267 
9268     // Figure out what shift amount will be used by altivec if shifted by i in
9269     // this splat size.
9270     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9271 
9272     // vsplti + shl self.
9273     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9274       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9275       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9276         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9277         Intrinsic::ppc_altivec_vslw
9278       };
9279       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9280       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9281     }
9282 
9283     // vsplti + srl self.
9284     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9285       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9286       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9287         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9288         Intrinsic::ppc_altivec_vsrw
9289       };
9290       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9291       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9292     }
9293 
9294     // vsplti + sra self.
9295     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9296       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9297       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9298         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9299         Intrinsic::ppc_altivec_vsraw
9300       };
9301       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9302       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9303     }
9304 
9305     // vsplti + rol self.
9306     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9307                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9308       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9309       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9310         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9311         Intrinsic::ppc_altivec_vrlw
9312       };
9313       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9314       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9315     }
9316 
9317     // t = vsplti c, result = vsldoi t, t, 1
9318     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9319       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9320       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9321       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9322     }
9323     // t = vsplti c, result = vsldoi t, t, 2
9324     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9325       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9326       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9327       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9328     }
9329     // t = vsplti c, result = vsldoi t, t, 3
9330     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9331       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9332       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9333       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9334     }
9335   }
9336 
9337   return SDValue();
9338 }
9339 
9340 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9341 /// the specified operations to build the shuffle.
9342 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9343                                       SDValue RHS, SelectionDAG &DAG,
9344                                       const SDLoc &dl) {
9345   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9346   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9347   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9348 
9349   enum {
9350     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9351     OP_VMRGHW,
9352     OP_VMRGLW,
9353     OP_VSPLTISW0,
9354     OP_VSPLTISW1,
9355     OP_VSPLTISW2,
9356     OP_VSPLTISW3,
9357     OP_VSLDOI4,
9358     OP_VSLDOI8,
9359     OP_VSLDOI12
9360   };
9361 
9362   if (OpNum == OP_COPY) {
9363     if (LHSID == (1*9+2)*9+3) return LHS;
9364     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9365     return RHS;
9366   }
9367 
9368   SDValue OpLHS, OpRHS;
9369   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9370   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9371 
9372   int ShufIdxs[16];
9373   switch (OpNum) {
9374   default: llvm_unreachable("Unknown i32 permute!");
9375   case OP_VMRGHW:
9376     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9377     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9378     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9379     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9380     break;
9381   case OP_VMRGLW:
9382     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9383     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9384     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9385     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9386     break;
9387   case OP_VSPLTISW0:
9388     for (unsigned i = 0; i != 16; ++i)
9389       ShufIdxs[i] = (i&3)+0;
9390     break;
9391   case OP_VSPLTISW1:
9392     for (unsigned i = 0; i != 16; ++i)
9393       ShufIdxs[i] = (i&3)+4;
9394     break;
9395   case OP_VSPLTISW2:
9396     for (unsigned i = 0; i != 16; ++i)
9397       ShufIdxs[i] = (i&3)+8;
9398     break;
9399   case OP_VSPLTISW3:
9400     for (unsigned i = 0; i != 16; ++i)
9401       ShufIdxs[i] = (i&3)+12;
9402     break;
9403   case OP_VSLDOI4:
9404     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9405   case OP_VSLDOI8:
9406     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9407   case OP_VSLDOI12:
9408     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9409   }
9410   EVT VT = OpLHS.getValueType();
9411   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9412   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9413   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9414   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9415 }
9416 
9417 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9418 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9419 /// SDValue.
9420 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9421                                            SelectionDAG &DAG) const {
9422   const unsigned BytesInVector = 16;
9423   bool IsLE = Subtarget.isLittleEndian();
9424   SDLoc dl(N);
9425   SDValue V1 = N->getOperand(0);
9426   SDValue V2 = N->getOperand(1);
9427   unsigned ShiftElts = 0, InsertAtByte = 0;
9428   bool Swap = false;
9429 
9430   // Shifts required to get the byte we want at element 7.
9431   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9432                                    0, 15, 14, 13, 12, 11, 10, 9};
9433   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9434                                 1, 2,  3,  4,  5,  6,  7,  8};
9435 
9436   ArrayRef<int> Mask = N->getMask();
9437   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9438 
9439   // For each mask element, find out if we're just inserting something
9440   // from V2 into V1 or vice versa.
9441   // Possible permutations inserting an element from V2 into V1:
9442   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9443   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9444   //   ...
9445   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9446   // Inserting from V1 into V2 will be similar, except mask range will be
9447   // [16,31].
9448 
9449   bool FoundCandidate = false;
9450   // If both vector operands for the shuffle are the same vector, the mask
9451   // will contain only elements from the first one and the second one will be
9452   // undef.
9453   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9454   // Go through the mask of half-words to find an element that's being moved
9455   // from one vector to the other.
9456   for (unsigned i = 0; i < BytesInVector; ++i) {
9457     unsigned CurrentElement = Mask[i];
9458     // If 2nd operand is undefined, we should only look for element 7 in the
9459     // Mask.
9460     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9461       continue;
9462 
9463     bool OtherElementsInOrder = true;
9464     // Examine the other elements in the Mask to see if they're in original
9465     // order.
9466     for (unsigned j = 0; j < BytesInVector; ++j) {
9467       if (j == i)
9468         continue;
9469       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9470       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9471       // in which we always assume we're always picking from the 1st operand.
9472       int MaskOffset =
9473           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9474       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9475         OtherElementsInOrder = false;
9476         break;
9477       }
9478     }
9479     // If other elements are in original order, we record the number of shifts
9480     // we need to get the element we want into element 7. Also record which byte
9481     // in the vector we should insert into.
9482     if (OtherElementsInOrder) {
9483       // If 2nd operand is undefined, we assume no shifts and no swapping.
9484       if (V2.isUndef()) {
9485         ShiftElts = 0;
9486         Swap = false;
9487       } else {
9488         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9489         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9490                          : BigEndianShifts[CurrentElement & 0xF];
9491         Swap = CurrentElement < BytesInVector;
9492       }
9493       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9494       FoundCandidate = true;
9495       break;
9496     }
9497   }
9498 
9499   if (!FoundCandidate)
9500     return SDValue();
9501 
9502   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9503   // optionally with VECSHL if shift is required.
9504   if (Swap)
9505     std::swap(V1, V2);
9506   if (V2.isUndef())
9507     V2 = V1;
9508   if (ShiftElts) {
9509     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9510                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9511     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9512                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9513   }
9514   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9515                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9516 }
9517 
9518 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9519 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9520 /// SDValue.
9521 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9522                                            SelectionDAG &DAG) const {
9523   const unsigned NumHalfWords = 8;
9524   const unsigned BytesInVector = NumHalfWords * 2;
9525   // Check that the shuffle is on half-words.
9526   if (!isNByteElemShuffleMask(N, 2, 1))
9527     return SDValue();
9528 
9529   bool IsLE = Subtarget.isLittleEndian();
9530   SDLoc dl(N);
9531   SDValue V1 = N->getOperand(0);
9532   SDValue V2 = N->getOperand(1);
9533   unsigned ShiftElts = 0, InsertAtByte = 0;
9534   bool Swap = false;
9535 
9536   // Shifts required to get the half-word we want at element 3.
9537   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9538   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9539 
9540   uint32_t Mask = 0;
9541   uint32_t OriginalOrderLow = 0x1234567;
9542   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9543   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9544   // 32-bit space, only need 4-bit nibbles per element.
9545   for (unsigned i = 0; i < NumHalfWords; ++i) {
9546     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9547     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9548   }
9549 
9550   // For each mask element, find out if we're just inserting something
9551   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9552   // from V2 into V1:
9553   //   X, 1, 2, 3, 4, 5, 6, 7
9554   //   0, X, 2, 3, 4, 5, 6, 7
9555   //   0, 1, X, 3, 4, 5, 6, 7
9556   //   0, 1, 2, X, 4, 5, 6, 7
9557   //   0, 1, 2, 3, X, 5, 6, 7
9558   //   0, 1, 2, 3, 4, X, 6, 7
9559   //   0, 1, 2, 3, 4, 5, X, 7
9560   //   0, 1, 2, 3, 4, 5, 6, X
9561   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9562 
9563   bool FoundCandidate = false;
9564   // Go through the mask of half-words to find an element that's being moved
9565   // from one vector to the other.
9566   for (unsigned i = 0; i < NumHalfWords; ++i) {
9567     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9568     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9569     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9570     uint32_t TargetOrder = 0x0;
9571 
9572     // If both vector operands for the shuffle are the same vector, the mask
9573     // will contain only elements from the first one and the second one will be
9574     // undef.
9575     if (V2.isUndef()) {
9576       ShiftElts = 0;
9577       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9578       TargetOrder = OriginalOrderLow;
9579       Swap = false;
9580       // Skip if not the correct element or mask of other elements don't equal
9581       // to our expected order.
9582       if (MaskOneElt == VINSERTHSrcElem &&
9583           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9584         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9585         FoundCandidate = true;
9586         break;
9587       }
9588     } else { // If both operands are defined.
9589       // Target order is [8,15] if the current mask is between [0,7].
9590       TargetOrder =
9591           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9592       // Skip if mask of other elements don't equal our expected order.
9593       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9594         // We only need the last 3 bits for the number of shifts.
9595         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9596                          : BigEndianShifts[MaskOneElt & 0x7];
9597         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9598         Swap = MaskOneElt < NumHalfWords;
9599         FoundCandidate = true;
9600         break;
9601       }
9602     }
9603   }
9604 
9605   if (!FoundCandidate)
9606     return SDValue();
9607 
9608   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9609   // optionally with VECSHL if shift is required.
9610   if (Swap)
9611     std::swap(V1, V2);
9612   if (V2.isUndef())
9613     V2 = V1;
9614   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9615   if (ShiftElts) {
9616     // Double ShiftElts because we're left shifting on v16i8 type.
9617     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9618                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9619     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9620     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9621                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9622     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9623   }
9624   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9625   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9626                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9627   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9628 }
9629 
9630 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9631 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9632 /// return the default SDValue.
9633 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9634                                               SelectionDAG &DAG) const {
9635   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9636   // to v16i8. Peek through the bitcasts to get the actual operands.
9637   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9638   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9639 
9640   auto ShuffleMask = SVN->getMask();
9641   SDValue VecShuffle(SVN, 0);
9642   SDLoc DL(SVN);
9643 
9644   // Check that we have a four byte shuffle.
9645   if (!isNByteElemShuffleMask(SVN, 4, 1))
9646     return SDValue();
9647 
9648   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9649   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9650     std::swap(LHS, RHS);
9651     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9652     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9653   }
9654 
9655   // Ensure that the RHS is a vector of constants.
9656   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9657   if (!BVN)
9658     return SDValue();
9659 
9660   // Check if RHS is a splat of 4-bytes (or smaller).
9661   APInt APSplatValue, APSplatUndef;
9662   unsigned SplatBitSize;
9663   bool HasAnyUndefs;
9664   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9665                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9666       SplatBitSize > 32)
9667     return SDValue();
9668 
9669   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9670   // The instruction splats a constant C into two words of the source vector
9671   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9672   // Thus we check that the shuffle mask is the equivalent  of
9673   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9674   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9675   // within each word are consecutive, so we only need to check the first byte.
9676   SDValue Index;
9677   bool IsLE = Subtarget.isLittleEndian();
9678   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9679       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9680        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9681     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9682   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9683            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9684             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9685     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9686   else
9687     return SDValue();
9688 
9689   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9690   // for XXSPLTI32DX.
9691   unsigned SplatVal = APSplatValue.getZExtValue();
9692   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9693     SplatVal |= (SplatVal << SplatBitSize);
9694 
9695   SDValue SplatNode = DAG.getNode(
9696       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9697       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9698   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9699 }
9700 
9701 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9702 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9703 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9704 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9705 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9706   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9707   assert(Op.getValueType() == MVT::v1i128 &&
9708          "Only set v1i128 as custom, other type shouldn't reach here!");
9709   SDLoc dl(Op);
9710   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9711   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9712   unsigned SHLAmt = N1.getConstantOperandVal(0);
9713   if (SHLAmt % 8 == 0) {
9714     SmallVector<int, 16> Mask(16, 0);
9715     std::iota(Mask.begin(), Mask.end(), 0);
9716     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9717     if (SDValue Shuffle =
9718             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9719                                  DAG.getUNDEF(MVT::v16i8), Mask))
9720       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9721   }
9722   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9723   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9724                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9725   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9726                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9727   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9728   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9729 }
9730 
9731 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9732 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9733 /// return the code it can be lowered into.  Worst case, it can always be
9734 /// lowered into a vperm.
9735 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9736                                                SelectionDAG &DAG) const {
9737   SDLoc dl(Op);
9738   SDValue V1 = Op.getOperand(0);
9739   SDValue V2 = Op.getOperand(1);
9740   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9741 
9742   // Any nodes that were combined in the target-independent combiner prior
9743   // to vector legalization will not be sent to the target combine. Try to
9744   // combine it here.
9745   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9746     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9747       return NewShuffle;
9748     Op = NewShuffle;
9749     SVOp = cast<ShuffleVectorSDNode>(Op);
9750     V1 = Op.getOperand(0);
9751     V2 = Op.getOperand(1);
9752   }
9753   EVT VT = Op.getValueType();
9754   bool isLittleEndian = Subtarget.isLittleEndian();
9755 
9756   unsigned ShiftElts, InsertAtByte;
9757   bool Swap = false;
9758 
9759   // If this is a load-and-splat, we can do that with a single instruction
9760   // in some cases. However if the load has multiple uses, we don't want to
9761   // combine it because that will just produce multiple loads.
9762   bool IsPermutedLoad = false;
9763   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9764   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9765       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9766       InputLoad->hasOneUse()) {
9767     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9768     int SplatIdx =
9769       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9770 
9771     // The splat index for permuted loads will be in the left half of the vector
9772     // which is strictly wider than the loaded value by 8 bytes. So we need to
9773     // adjust the splat index to point to the correct address in memory.
9774     if (IsPermutedLoad) {
9775       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9776       SplatIdx += IsFourByte ? 2 : 1;
9777       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9778              "Splat of a value outside of the loaded memory");
9779     }
9780 
9781     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9782     // For 4-byte load-and-splat, we need Power9.
9783     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9784       uint64_t Offset = 0;
9785       if (IsFourByte)
9786         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9787       else
9788         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9789 
9790       SDValue BasePtr = LD->getBasePtr();
9791       if (Offset != 0)
9792         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9793                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9794       SDValue Ops[] = {
9795         LD->getChain(),    // Chain
9796         BasePtr,           // BasePtr
9797         DAG.getValueType(Op.getValueType()) // VT
9798       };
9799       SDVTList VTL =
9800         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9801       SDValue LdSplt =
9802         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9803                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9804       if (LdSplt.getValueType() != SVOp->getValueType(0))
9805         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9806       return LdSplt;
9807     }
9808   }
9809   if (Subtarget.hasP9Vector() &&
9810       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9811                            isLittleEndian)) {
9812     if (Swap)
9813       std::swap(V1, V2);
9814     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9815     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9816     if (ShiftElts) {
9817       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9818                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9819       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9820                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9821       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9822     }
9823     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9824                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9825     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9826   }
9827 
9828   if (Subtarget.hasPrefixInstrs()) {
9829     SDValue SplatInsertNode;
9830     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9831       return SplatInsertNode;
9832   }
9833 
9834   if (Subtarget.hasP9Altivec()) {
9835     SDValue NewISDNode;
9836     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9837       return NewISDNode;
9838 
9839     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9840       return NewISDNode;
9841   }
9842 
9843   if (Subtarget.hasVSX() &&
9844       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9845     if (Swap)
9846       std::swap(V1, V2);
9847     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9848     SDValue Conv2 =
9849         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9850 
9851     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9852                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9853     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9854   }
9855 
9856   if (Subtarget.hasVSX() &&
9857     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9858     if (Swap)
9859       std::swap(V1, V2);
9860     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9861     SDValue Conv2 =
9862         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9863 
9864     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9865                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9866     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9867   }
9868 
9869   if (Subtarget.hasP9Vector()) {
9870      if (PPC::isXXBRHShuffleMask(SVOp)) {
9871       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9872       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9873       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9874     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9875       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9876       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9877       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9878     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9879       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9880       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9881       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9882     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9883       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9884       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9885       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9886     }
9887   }
9888 
9889   if (Subtarget.hasVSX()) {
9890     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9891       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9892 
9893       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9894       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9895                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9896       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9897     }
9898 
9899     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9900     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9901       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9902       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9903       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9904     }
9905   }
9906 
9907   // Cases that are handled by instructions that take permute immediates
9908   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9909   // selected by the instruction selector.
9910   if (V2.isUndef()) {
9911     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9912         PPC::isSplatShuffleMask(SVOp, 2) ||
9913         PPC::isSplatShuffleMask(SVOp, 4) ||
9914         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9915         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9916         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9917         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9918         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9919         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9920         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9921         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9922         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9923         (Subtarget.hasP8Altivec() && (
9924          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9925          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9926          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9927       return Op;
9928     }
9929   }
9930 
9931   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9932   // and produce a fixed permutation.  If any of these match, do not lower to
9933   // VPERM.
9934   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9935   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9936       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9937       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9938       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9939       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9940       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9941       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9942       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9943       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9944       (Subtarget.hasP8Altivec() && (
9945        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9946        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9947        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9948     return Op;
9949 
9950   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9951   // perfect shuffle table to emit an optimal matching sequence.
9952   ArrayRef<int> PermMask = SVOp->getMask();
9953 
9954   unsigned PFIndexes[4];
9955   bool isFourElementShuffle = true;
9956   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9957     unsigned EltNo = 8;   // Start out undef.
9958     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9959       if (PermMask[i*4+j] < 0)
9960         continue;   // Undef, ignore it.
9961 
9962       unsigned ByteSource = PermMask[i*4+j];
9963       if ((ByteSource & 3) != j) {
9964         isFourElementShuffle = false;
9965         break;
9966       }
9967 
9968       if (EltNo == 8) {
9969         EltNo = ByteSource/4;
9970       } else if (EltNo != ByteSource/4) {
9971         isFourElementShuffle = false;
9972         break;
9973       }
9974     }
9975     PFIndexes[i] = EltNo;
9976   }
9977 
9978   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9979   // perfect shuffle vector to determine if it is cost effective to do this as
9980   // discrete instructions, or whether we should use a vperm.
9981   // For now, we skip this for little endian until such time as we have a
9982   // little-endian perfect shuffle table.
9983   if (isFourElementShuffle && !isLittleEndian) {
9984     // Compute the index in the perfect shuffle table.
9985     unsigned PFTableIndex =
9986       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9987 
9988     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9989     unsigned Cost  = (PFEntry >> 30);
9990 
9991     // Determining when to avoid vperm is tricky.  Many things affect the cost
9992     // of vperm, particularly how many times the perm mask needs to be computed.
9993     // For example, if the perm mask can be hoisted out of a loop or is already
9994     // used (perhaps because there are multiple permutes with the same shuffle
9995     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9996     // the loop requires an extra register.
9997     //
9998     // As a compromise, we only emit discrete instructions if the shuffle can be
9999     // generated in 3 or fewer operations.  When we have loop information
10000     // available, if this block is within a loop, we should avoid using vperm
10001     // for 3-operation perms and use a constant pool load instead.
10002     if (Cost < 3)
10003       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10004   }
10005 
10006   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10007   // vector that will get spilled to the constant pool.
10008   if (V2.isUndef()) V2 = V1;
10009 
10010   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10011   // that it is in input element units, not in bytes.  Convert now.
10012 
10013   // For little endian, the order of the input vectors is reversed, and
10014   // the permutation mask is complemented with respect to 31.  This is
10015   // necessary to produce proper semantics with the big-endian-biased vperm
10016   // instruction.
10017   EVT EltVT = V1.getValueType().getVectorElementType();
10018   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10019 
10020   SmallVector<SDValue, 16> ResultMask;
10021   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10022     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10023 
10024     for (unsigned j = 0; j != BytesPerElement; ++j)
10025       if (isLittleEndian)
10026         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10027                                              dl, MVT::i32));
10028       else
10029         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10030                                              MVT::i32));
10031   }
10032 
10033   ShufflesHandledWithVPERM++;
10034   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10035   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10036   LLVM_DEBUG(SVOp->dump());
10037   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10038   LLVM_DEBUG(VPermMask.dump());
10039 
10040   if (isLittleEndian)
10041     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10042                        V2, V1, VPermMask);
10043   else
10044     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10045                        V1, V2, VPermMask);
10046 }
10047 
10048 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10049 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10050 /// information about the intrinsic.
10051 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10052                                  bool &isDot, const PPCSubtarget &Subtarget) {
10053   unsigned IntrinsicID =
10054       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10055   CompareOpc = -1;
10056   isDot = false;
10057   switch (IntrinsicID) {
10058   default:
10059     return false;
10060   // Comparison predicates.
10061   case Intrinsic::ppc_altivec_vcmpbfp_p:
10062     CompareOpc = 966;
10063     isDot = true;
10064     break;
10065   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10066     CompareOpc = 198;
10067     isDot = true;
10068     break;
10069   case Intrinsic::ppc_altivec_vcmpequb_p:
10070     CompareOpc = 6;
10071     isDot = true;
10072     break;
10073   case Intrinsic::ppc_altivec_vcmpequh_p:
10074     CompareOpc = 70;
10075     isDot = true;
10076     break;
10077   case Intrinsic::ppc_altivec_vcmpequw_p:
10078     CompareOpc = 134;
10079     isDot = true;
10080     break;
10081   case Intrinsic::ppc_altivec_vcmpequd_p:
10082     if (Subtarget.hasP8Altivec()) {
10083       CompareOpc = 199;
10084       isDot = true;
10085     } else
10086       return false;
10087     break;
10088   case Intrinsic::ppc_altivec_vcmpneb_p:
10089   case Intrinsic::ppc_altivec_vcmpneh_p:
10090   case Intrinsic::ppc_altivec_vcmpnew_p:
10091   case Intrinsic::ppc_altivec_vcmpnezb_p:
10092   case Intrinsic::ppc_altivec_vcmpnezh_p:
10093   case Intrinsic::ppc_altivec_vcmpnezw_p:
10094     if (Subtarget.hasP9Altivec()) {
10095       switch (IntrinsicID) {
10096       default:
10097         llvm_unreachable("Unknown comparison intrinsic.");
10098       case Intrinsic::ppc_altivec_vcmpneb_p:
10099         CompareOpc = 7;
10100         break;
10101       case Intrinsic::ppc_altivec_vcmpneh_p:
10102         CompareOpc = 71;
10103         break;
10104       case Intrinsic::ppc_altivec_vcmpnew_p:
10105         CompareOpc = 135;
10106         break;
10107       case Intrinsic::ppc_altivec_vcmpnezb_p:
10108         CompareOpc = 263;
10109         break;
10110       case Intrinsic::ppc_altivec_vcmpnezh_p:
10111         CompareOpc = 327;
10112         break;
10113       case Intrinsic::ppc_altivec_vcmpnezw_p:
10114         CompareOpc = 391;
10115         break;
10116       }
10117       isDot = true;
10118     } else
10119       return false;
10120     break;
10121   case Intrinsic::ppc_altivec_vcmpgefp_p:
10122     CompareOpc = 454;
10123     isDot = true;
10124     break;
10125   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10126     CompareOpc = 710;
10127     isDot = true;
10128     break;
10129   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10130     CompareOpc = 774;
10131     isDot = true;
10132     break;
10133   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10134     CompareOpc = 838;
10135     isDot = true;
10136     break;
10137   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10138     CompareOpc = 902;
10139     isDot = true;
10140     break;
10141   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10142     if (Subtarget.hasP8Altivec()) {
10143       CompareOpc = 967;
10144       isDot = true;
10145     } else
10146       return false;
10147     break;
10148   case Intrinsic::ppc_altivec_vcmpgtub_p:
10149     CompareOpc = 518;
10150     isDot = true;
10151     break;
10152   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10153     CompareOpc = 582;
10154     isDot = true;
10155     break;
10156   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10157     CompareOpc = 646;
10158     isDot = true;
10159     break;
10160   case Intrinsic::ppc_altivec_vcmpgtud_p:
10161     if (Subtarget.hasP8Altivec()) {
10162       CompareOpc = 711;
10163       isDot = true;
10164     } else
10165       return false;
10166     break;
10167 
10168   // VSX predicate comparisons use the same infrastructure
10169   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10170   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10171   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10172   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10173   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10174   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10175     if (Subtarget.hasVSX()) {
10176       switch (IntrinsicID) {
10177       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10178         CompareOpc = 99;
10179         break;
10180       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10181         CompareOpc = 115;
10182         break;
10183       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10184         CompareOpc = 107;
10185         break;
10186       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10187         CompareOpc = 67;
10188         break;
10189       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10190         CompareOpc = 83;
10191         break;
10192       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10193         CompareOpc = 75;
10194         break;
10195       }
10196       isDot = true;
10197     } else
10198       return false;
10199     break;
10200 
10201   // Normal Comparisons.
10202   case Intrinsic::ppc_altivec_vcmpbfp:
10203     CompareOpc = 966;
10204     break;
10205   case Intrinsic::ppc_altivec_vcmpeqfp:
10206     CompareOpc = 198;
10207     break;
10208   case Intrinsic::ppc_altivec_vcmpequb:
10209     CompareOpc = 6;
10210     break;
10211   case Intrinsic::ppc_altivec_vcmpequh:
10212     CompareOpc = 70;
10213     break;
10214   case Intrinsic::ppc_altivec_vcmpequw:
10215     CompareOpc = 134;
10216     break;
10217   case Intrinsic::ppc_altivec_vcmpequd:
10218     if (Subtarget.hasP8Altivec())
10219       CompareOpc = 199;
10220     else
10221       return false;
10222     break;
10223   case Intrinsic::ppc_altivec_vcmpneb:
10224   case Intrinsic::ppc_altivec_vcmpneh:
10225   case Intrinsic::ppc_altivec_vcmpnew:
10226   case Intrinsic::ppc_altivec_vcmpnezb:
10227   case Intrinsic::ppc_altivec_vcmpnezh:
10228   case Intrinsic::ppc_altivec_vcmpnezw:
10229     if (Subtarget.hasP9Altivec())
10230       switch (IntrinsicID) {
10231       default:
10232         llvm_unreachable("Unknown comparison intrinsic.");
10233       case Intrinsic::ppc_altivec_vcmpneb:
10234         CompareOpc = 7;
10235         break;
10236       case Intrinsic::ppc_altivec_vcmpneh:
10237         CompareOpc = 71;
10238         break;
10239       case Intrinsic::ppc_altivec_vcmpnew:
10240         CompareOpc = 135;
10241         break;
10242       case Intrinsic::ppc_altivec_vcmpnezb:
10243         CompareOpc = 263;
10244         break;
10245       case Intrinsic::ppc_altivec_vcmpnezh:
10246         CompareOpc = 327;
10247         break;
10248       case Intrinsic::ppc_altivec_vcmpnezw:
10249         CompareOpc = 391;
10250         break;
10251       }
10252     else
10253       return false;
10254     break;
10255   case Intrinsic::ppc_altivec_vcmpgefp:
10256     CompareOpc = 454;
10257     break;
10258   case Intrinsic::ppc_altivec_vcmpgtfp:
10259     CompareOpc = 710;
10260     break;
10261   case Intrinsic::ppc_altivec_vcmpgtsb:
10262     CompareOpc = 774;
10263     break;
10264   case Intrinsic::ppc_altivec_vcmpgtsh:
10265     CompareOpc = 838;
10266     break;
10267   case Intrinsic::ppc_altivec_vcmpgtsw:
10268     CompareOpc = 902;
10269     break;
10270   case Intrinsic::ppc_altivec_vcmpgtsd:
10271     if (Subtarget.hasP8Altivec())
10272       CompareOpc = 967;
10273     else
10274       return false;
10275     break;
10276   case Intrinsic::ppc_altivec_vcmpgtub:
10277     CompareOpc = 518;
10278     break;
10279   case Intrinsic::ppc_altivec_vcmpgtuh:
10280     CompareOpc = 582;
10281     break;
10282   case Intrinsic::ppc_altivec_vcmpgtuw:
10283     CompareOpc = 646;
10284     break;
10285   case Intrinsic::ppc_altivec_vcmpgtud:
10286     if (Subtarget.hasP8Altivec())
10287       CompareOpc = 711;
10288     else
10289       return false;
10290     break;
10291   }
10292   return true;
10293 }
10294 
10295 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10296 /// lower, do it, otherwise return null.
10297 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10298                                                    SelectionDAG &DAG) const {
10299   unsigned IntrinsicID =
10300     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10301 
10302   SDLoc dl(Op);
10303 
10304   if (IntrinsicID == Intrinsic::thread_pointer) {
10305     // Reads the thread pointer register, used for __builtin_thread_pointer.
10306     if (Subtarget.isPPC64())
10307       return DAG.getRegister(PPC::X13, MVT::i64);
10308     return DAG.getRegister(PPC::R2, MVT::i32);
10309   }
10310 
10311   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10312   // opcode number of the comparison.
10313   int CompareOpc;
10314   bool isDot;
10315   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10316     return SDValue();    // Don't custom lower most intrinsics.
10317 
10318   // If this is a non-dot comparison, make the VCMP node and we are done.
10319   if (!isDot) {
10320     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10321                               Op.getOperand(1), Op.getOperand(2),
10322                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10323     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10324   }
10325 
10326   // Create the PPCISD altivec 'dot' comparison node.
10327   SDValue Ops[] = {
10328     Op.getOperand(2),  // LHS
10329     Op.getOperand(3),  // RHS
10330     DAG.getConstant(CompareOpc, dl, MVT::i32)
10331   };
10332   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10333   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10334 
10335   // Now that we have the comparison, emit a copy from the CR to a GPR.
10336   // This is flagged to the above dot comparison.
10337   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10338                                 DAG.getRegister(PPC::CR6, MVT::i32),
10339                                 CompNode.getValue(1));
10340 
10341   // Unpack the result based on how the target uses it.
10342   unsigned BitNo;   // Bit # of CR6.
10343   bool InvertBit;   // Invert result?
10344   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10345   default:  // Can't happen, don't crash on invalid number though.
10346   case 0:   // Return the value of the EQ bit of CR6.
10347     BitNo = 0; InvertBit = false;
10348     break;
10349   case 1:   // Return the inverted value of the EQ bit of CR6.
10350     BitNo = 0; InvertBit = true;
10351     break;
10352   case 2:   // Return the value of the LT bit of CR6.
10353     BitNo = 2; InvertBit = false;
10354     break;
10355   case 3:   // Return the inverted value of the LT bit of CR6.
10356     BitNo = 2; InvertBit = true;
10357     break;
10358   }
10359 
10360   // Shift the bit into the low position.
10361   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10362                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10363   // Isolate the bit.
10364   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10365                       DAG.getConstant(1, dl, MVT::i32));
10366 
10367   // If we are supposed to, toggle the bit.
10368   if (InvertBit)
10369     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10370                         DAG.getConstant(1, dl, MVT::i32));
10371   return Flags;
10372 }
10373 
10374 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10375                                                SelectionDAG &DAG) const {
10376   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10377   // the beginning of the argument list.
10378   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10379   SDLoc DL(Op);
10380   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10381   case Intrinsic::ppc_cfence: {
10382     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10383     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10384     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10385                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10386                                                   Op.getOperand(ArgStart + 1)),
10387                                       Op.getOperand(0)),
10388                    0);
10389   }
10390   default:
10391     break;
10392   }
10393   return SDValue();
10394 }
10395 
10396 // Lower scalar BSWAP64 to xxbrd.
10397 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10398   SDLoc dl(Op);
10399   // MTVSRDD
10400   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10401                    Op.getOperand(0));
10402   // XXBRD
10403   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10404   // MFVSRD
10405   int VectorIndex = 0;
10406   if (Subtarget.isLittleEndian())
10407     VectorIndex = 1;
10408   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10409                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10410   return Op;
10411 }
10412 
10413 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10414 // compared to a value that is atomically loaded (atomic loads zero-extend).
10415 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10416                                                 SelectionDAG &DAG) const {
10417   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10418          "Expecting an atomic compare-and-swap here.");
10419   SDLoc dl(Op);
10420   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10421   EVT MemVT = AtomicNode->getMemoryVT();
10422   if (MemVT.getSizeInBits() >= 32)
10423     return Op;
10424 
10425   SDValue CmpOp = Op.getOperand(2);
10426   // If this is already correctly zero-extended, leave it alone.
10427   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10428   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10429     return Op;
10430 
10431   // Clear the high bits of the compare operand.
10432   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10433   SDValue NewCmpOp =
10434     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10435                 DAG.getConstant(MaskVal, dl, MVT::i32));
10436 
10437   // Replace the existing compare operand with the properly zero-extended one.
10438   SmallVector<SDValue, 4> Ops;
10439   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10440     Ops.push_back(AtomicNode->getOperand(i));
10441   Ops[2] = NewCmpOp;
10442   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10443   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10444   auto NodeTy =
10445     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10446   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10447 }
10448 
10449 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10450                                                  SelectionDAG &DAG) const {
10451   SDLoc dl(Op);
10452   // Create a stack slot that is 16-byte aligned.
10453   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10454   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10455   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10456   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10457 
10458   // Store the input value into Value#0 of the stack slot.
10459   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10460                                MachinePointerInfo());
10461   // Load it out.
10462   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10463 }
10464 
10465 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10466                                                   SelectionDAG &DAG) const {
10467   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10468          "Should only be called for ISD::INSERT_VECTOR_ELT");
10469 
10470   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10471   // We have legal lowering for constant indices but not for variable ones.
10472   if (!C)
10473     return SDValue();
10474 
10475   EVT VT = Op.getValueType();
10476   SDLoc dl(Op);
10477   SDValue V1 = Op.getOperand(0);
10478   SDValue V2 = Op.getOperand(1);
10479   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10480   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10481     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10482     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10483     unsigned InsertAtElement = C->getZExtValue();
10484     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10485     if (Subtarget.isLittleEndian()) {
10486       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10487     }
10488     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10489                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10490   }
10491   return Op;
10492 }
10493 
10494 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10495   SDLoc dl(Op);
10496   if (Op.getValueType() == MVT::v4i32) {
10497     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10498 
10499     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10500     // +16 as shift amt.
10501     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10502     SDValue RHSSwap =   // = vrlw RHS, 16
10503       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10504 
10505     // Shrinkify inputs to v8i16.
10506     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10507     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10508     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10509 
10510     // Low parts multiplied together, generating 32-bit results (we ignore the
10511     // top parts).
10512     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10513                                         LHS, RHS, DAG, dl, MVT::v4i32);
10514 
10515     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10516                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10517     // Shift the high parts up 16 bits.
10518     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10519                               Neg16, DAG, dl);
10520     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10521   } else if (Op.getValueType() == MVT::v16i8) {
10522     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10523     bool isLittleEndian = Subtarget.isLittleEndian();
10524 
10525     // Multiply the even 8-bit parts, producing 16-bit sums.
10526     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10527                                            LHS, RHS, DAG, dl, MVT::v8i16);
10528     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10529 
10530     // Multiply the odd 8-bit parts, producing 16-bit sums.
10531     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10532                                           LHS, RHS, DAG, dl, MVT::v8i16);
10533     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10534 
10535     // Merge the results together.  Because vmuleub and vmuloub are
10536     // instructions with a big-endian bias, we must reverse the
10537     // element numbering and reverse the meaning of "odd" and "even"
10538     // when generating little endian code.
10539     int Ops[16];
10540     for (unsigned i = 0; i != 8; ++i) {
10541       if (isLittleEndian) {
10542         Ops[i*2  ] = 2*i;
10543         Ops[i*2+1] = 2*i+16;
10544       } else {
10545         Ops[i*2  ] = 2*i+1;
10546         Ops[i*2+1] = 2*i+1+16;
10547       }
10548     }
10549     if (isLittleEndian)
10550       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10551     else
10552       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10553   } else {
10554     llvm_unreachable("Unknown mul to lower!");
10555   }
10556 }
10557 
10558 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10559 
10560   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10561 
10562   EVT VT = Op.getValueType();
10563   assert(VT.isVector() &&
10564          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10565   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10566           VT == MVT::v16i8) &&
10567          "Unexpected vector element type!");
10568   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10569          "Current subtarget doesn't support smax v2i64!");
10570 
10571   // For vector abs, it can be lowered to:
10572   // abs x
10573   // ==>
10574   // y = -x
10575   // smax(x, y)
10576 
10577   SDLoc dl(Op);
10578   SDValue X = Op.getOperand(0);
10579   SDValue Zero = DAG.getConstant(0, dl, VT);
10580   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10581 
10582   // SMAX patch https://reviews.llvm.org/D47332
10583   // hasn't landed yet, so use intrinsic first here.
10584   // TODO: Should use SMAX directly once SMAX patch landed
10585   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10586   if (VT == MVT::v2i64)
10587     BifID = Intrinsic::ppc_altivec_vmaxsd;
10588   else if (VT == MVT::v8i16)
10589     BifID = Intrinsic::ppc_altivec_vmaxsh;
10590   else if (VT == MVT::v16i8)
10591     BifID = Intrinsic::ppc_altivec_vmaxsb;
10592 
10593   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10594 }
10595 
10596 // Custom lowering for fpext vf32 to v2f64
10597 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10598 
10599   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10600          "Should only be called for ISD::FP_EXTEND");
10601 
10602   // FIXME: handle extends from half precision float vectors on P9.
10603   // We only want to custom lower an extend from v2f32 to v2f64.
10604   if (Op.getValueType() != MVT::v2f64 ||
10605       Op.getOperand(0).getValueType() != MVT::v2f32)
10606     return SDValue();
10607 
10608   SDLoc dl(Op);
10609   SDValue Op0 = Op.getOperand(0);
10610 
10611   switch (Op0.getOpcode()) {
10612   default:
10613     return SDValue();
10614   case ISD::EXTRACT_SUBVECTOR: {
10615     assert(Op0.getNumOperands() == 2 &&
10616            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10617            "Node should have 2 operands with second one being a constant!");
10618 
10619     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10620       return SDValue();
10621 
10622     // Custom lower is only done for high or low doubleword.
10623     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10624     if (Idx % 2 != 0)
10625       return SDValue();
10626 
10627     // Since input is v4f32, at this point Idx is either 0 or 2.
10628     // Shift to get the doubleword position we want.
10629     int DWord = Idx >> 1;
10630 
10631     // High and low word positions are different on little endian.
10632     if (Subtarget.isLittleEndian())
10633       DWord ^= 0x1;
10634 
10635     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10636                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10637   }
10638   case ISD::FADD:
10639   case ISD::FMUL:
10640   case ISD::FSUB: {
10641     SDValue NewLoad[2];
10642     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10643       // Ensure both input are loads.
10644       SDValue LdOp = Op0.getOperand(i);
10645       if (LdOp.getOpcode() != ISD::LOAD)
10646         return SDValue();
10647       // Generate new load node.
10648       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10649       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10650       NewLoad[i] = DAG.getMemIntrinsicNode(
10651           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10652           LD->getMemoryVT(), LD->getMemOperand());
10653     }
10654     SDValue NewOp =
10655         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10656                     NewLoad[1], Op0.getNode()->getFlags());
10657     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10658                        DAG.getConstant(0, dl, MVT::i32));
10659   }
10660   case ISD::LOAD: {
10661     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10662     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10663     SDValue NewLd = DAG.getMemIntrinsicNode(
10664         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10665         LD->getMemoryVT(), LD->getMemOperand());
10666     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10667                        DAG.getConstant(0, dl, MVT::i32));
10668   }
10669   }
10670   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10671 }
10672 
10673 /// LowerOperation - Provide custom lowering hooks for some operations.
10674 ///
10675 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10676   switch (Op.getOpcode()) {
10677   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10678   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10679   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10680   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10681   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10682   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10683   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10684   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10685   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10686 
10687   // Variable argument lowering.
10688   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10689   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10690   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10691 
10692   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10693   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10694   case ISD::GET_DYNAMIC_AREA_OFFSET:
10695     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10696 
10697   // Exception handling lowering.
10698   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10699   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10700   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10701 
10702   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10703   case ISD::STORE:              return LowerSTORE(Op, DAG);
10704   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10705   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10706   case ISD::STRICT_FP_TO_UINT:
10707   case ISD::STRICT_FP_TO_SINT:
10708   case ISD::FP_TO_UINT:
10709   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10710   case ISD::STRICT_UINT_TO_FP:
10711   case ISD::STRICT_SINT_TO_FP:
10712   case ISD::UINT_TO_FP:
10713   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10714   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10715 
10716   // Lower 64-bit shifts.
10717   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10718   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10719   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10720 
10721   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10722   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10723 
10724   // Vector-related lowering.
10725   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10726   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10727   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10728   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10729   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10730   case ISD::MUL:                return LowerMUL(Op, DAG);
10731   case ISD::ABS:                return LowerABS(Op, DAG);
10732   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10733   case ISD::ROTL:               return LowerROTL(Op, DAG);
10734 
10735   // For counter-based loop handling.
10736   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10737 
10738   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10739 
10740   // Frame & Return address.
10741   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10742   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10743 
10744   case ISD::INTRINSIC_VOID:
10745     return LowerINTRINSIC_VOID(Op, DAG);
10746   case ISD::BSWAP:
10747     return LowerBSWAP(Op, DAG);
10748   case ISD::ATOMIC_CMP_SWAP:
10749     return LowerATOMIC_CMP_SWAP(Op, DAG);
10750   }
10751 }
10752 
10753 void PPCTargetLowering::LowerOperationWrapper(SDNode *N,
10754                                               SmallVectorImpl<SDValue> &Results,
10755                                               SelectionDAG &DAG) const {
10756   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10757 
10758   if (!Res.getNode())
10759     return;
10760 
10761   // Take the return value as-is if original node has only one result.
10762   if (N->getNumValues() == 1) {
10763     Results.push_back(Res);
10764     return;
10765   }
10766 
10767   // New node should have the same number of results.
10768   assert((N->getNumValues() == Res->getNumValues()) &&
10769       "Lowering returned the wrong number of results!");
10770 
10771   for (unsigned i = 0; i < N->getNumValues(); ++i)
10772     Results.push_back(Res.getValue(i));
10773 }
10774 
10775 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10776                                            SmallVectorImpl<SDValue>&Results,
10777                                            SelectionDAG &DAG) const {
10778   SDLoc dl(N);
10779   switch (N->getOpcode()) {
10780   default:
10781     llvm_unreachable("Do not know how to custom type legalize this operation!");
10782   case ISD::READCYCLECOUNTER: {
10783     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10784     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10785 
10786     Results.push_back(
10787         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10788     Results.push_back(RTB.getValue(2));
10789     break;
10790   }
10791   case ISD::INTRINSIC_W_CHAIN: {
10792     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10793         Intrinsic::loop_decrement)
10794       break;
10795 
10796     assert(N->getValueType(0) == MVT::i1 &&
10797            "Unexpected result type for CTR decrement intrinsic");
10798     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10799                                  N->getValueType(0));
10800     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10801     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10802                                  N->getOperand(1));
10803 
10804     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10805     Results.push_back(NewInt.getValue(1));
10806     break;
10807   }
10808   case ISD::VAARG: {
10809     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10810       return;
10811 
10812     EVT VT = N->getValueType(0);
10813 
10814     if (VT == MVT::i64) {
10815       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10816 
10817       Results.push_back(NewNode);
10818       Results.push_back(NewNode.getValue(1));
10819     }
10820     return;
10821   }
10822   case ISD::STRICT_FP_TO_SINT:
10823   case ISD::STRICT_FP_TO_UINT:
10824   case ISD::FP_TO_SINT:
10825   case ISD::FP_TO_UINT:
10826     // LowerFP_TO_INT() can only handle f32 and f64.
10827     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10828         MVT::ppcf128)
10829       return;
10830     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10831     return;
10832   case ISD::TRUNCATE: {
10833     if (!N->getValueType(0).isVector())
10834       return;
10835     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10836     if (Lowered)
10837       Results.push_back(Lowered);
10838     return;
10839   }
10840   case ISD::BITCAST:
10841     // Don't handle bitcast here.
10842     return;
10843   case ISD::FP_EXTEND:
10844     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10845     if (Lowered)
10846       Results.push_back(Lowered);
10847     return;
10848   }
10849 }
10850 
10851 //===----------------------------------------------------------------------===//
10852 //  Other Lowering Code
10853 //===----------------------------------------------------------------------===//
10854 
10855 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10856   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10857   Function *Func = Intrinsic::getDeclaration(M, Id);
10858   return Builder.CreateCall(Func, {});
10859 }
10860 
10861 // The mappings for emitLeading/TrailingFence is taken from
10862 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10863 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10864                                                  Instruction *Inst,
10865                                                  AtomicOrdering Ord) const {
10866   if (Ord == AtomicOrdering::SequentiallyConsistent)
10867     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10868   if (isReleaseOrStronger(Ord))
10869     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10870   return nullptr;
10871 }
10872 
10873 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10874                                                   Instruction *Inst,
10875                                                   AtomicOrdering Ord) const {
10876   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10877     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10878     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10879     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10880     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10881       return Builder.CreateCall(
10882           Intrinsic::getDeclaration(
10883               Builder.GetInsertBlock()->getParent()->getParent(),
10884               Intrinsic::ppc_cfence, {Inst->getType()}),
10885           {Inst});
10886     // FIXME: Can use isync for rmw operation.
10887     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10888   }
10889   return nullptr;
10890 }
10891 
10892 MachineBasicBlock *
10893 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10894                                     unsigned AtomicSize,
10895                                     unsigned BinOpcode,
10896                                     unsigned CmpOpcode,
10897                                     unsigned CmpPred) const {
10898   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10899   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10900 
10901   auto LoadMnemonic = PPC::LDARX;
10902   auto StoreMnemonic = PPC::STDCX;
10903   switch (AtomicSize) {
10904   default:
10905     llvm_unreachable("Unexpected size of atomic entity");
10906   case 1:
10907     LoadMnemonic = PPC::LBARX;
10908     StoreMnemonic = PPC::STBCX;
10909     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10910     break;
10911   case 2:
10912     LoadMnemonic = PPC::LHARX;
10913     StoreMnemonic = PPC::STHCX;
10914     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10915     break;
10916   case 4:
10917     LoadMnemonic = PPC::LWARX;
10918     StoreMnemonic = PPC::STWCX;
10919     break;
10920   case 8:
10921     LoadMnemonic = PPC::LDARX;
10922     StoreMnemonic = PPC::STDCX;
10923     break;
10924   }
10925 
10926   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10927   MachineFunction *F = BB->getParent();
10928   MachineFunction::iterator It = ++BB->getIterator();
10929 
10930   Register dest = MI.getOperand(0).getReg();
10931   Register ptrA = MI.getOperand(1).getReg();
10932   Register ptrB = MI.getOperand(2).getReg();
10933   Register incr = MI.getOperand(3).getReg();
10934   DebugLoc dl = MI.getDebugLoc();
10935 
10936   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10937   MachineBasicBlock *loop2MBB =
10938     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10939   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10940   F->insert(It, loopMBB);
10941   if (CmpOpcode)
10942     F->insert(It, loop2MBB);
10943   F->insert(It, exitMBB);
10944   exitMBB->splice(exitMBB->begin(), BB,
10945                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10946   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10947 
10948   MachineRegisterInfo &RegInfo = F->getRegInfo();
10949   Register TmpReg = (!BinOpcode) ? incr :
10950     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10951                                            : &PPC::GPRCRegClass);
10952 
10953   //  thisMBB:
10954   //   ...
10955   //   fallthrough --> loopMBB
10956   BB->addSuccessor(loopMBB);
10957 
10958   //  loopMBB:
10959   //   l[wd]arx dest, ptr
10960   //   add r0, dest, incr
10961   //   st[wd]cx. r0, ptr
10962   //   bne- loopMBB
10963   //   fallthrough --> exitMBB
10964 
10965   // For max/min...
10966   //  loopMBB:
10967   //   l[wd]arx dest, ptr
10968   //   cmpl?[wd] incr, dest
10969   //   bgt exitMBB
10970   //  loop2MBB:
10971   //   st[wd]cx. dest, ptr
10972   //   bne- loopMBB
10973   //   fallthrough --> exitMBB
10974 
10975   BB = loopMBB;
10976   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10977     .addReg(ptrA).addReg(ptrB);
10978   if (BinOpcode)
10979     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10980   if (CmpOpcode) {
10981     // Signed comparisons of byte or halfword values must be sign-extended.
10982     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10983       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10984       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10985               ExtReg).addReg(dest);
10986       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10987         .addReg(incr).addReg(ExtReg);
10988     } else
10989       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10990         .addReg(incr).addReg(dest);
10991 
10992     BuildMI(BB, dl, TII->get(PPC::BCC))
10993       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10994     BB->addSuccessor(loop2MBB);
10995     BB->addSuccessor(exitMBB);
10996     BB = loop2MBB;
10997   }
10998   BuildMI(BB, dl, TII->get(StoreMnemonic))
10999     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11000   BuildMI(BB, dl, TII->get(PPC::BCC))
11001     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11002   BB->addSuccessor(loopMBB);
11003   BB->addSuccessor(exitMBB);
11004 
11005   //  exitMBB:
11006   //   ...
11007   BB = exitMBB;
11008   return BB;
11009 }
11010 
11011 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11012     MachineInstr &MI, MachineBasicBlock *BB,
11013     bool is8bit, // operation
11014     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11015   // If we support part-word atomic mnemonics, just use them
11016   if (Subtarget.hasPartwordAtomics())
11017     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11018                             CmpPred);
11019 
11020   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11021   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11022   // In 64 bit mode we have to use 64 bits for addresses, even though the
11023   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11024   // registers without caring whether they're 32 or 64, but here we're
11025   // doing actual arithmetic on the addresses.
11026   bool is64bit = Subtarget.isPPC64();
11027   bool isLittleEndian = Subtarget.isLittleEndian();
11028   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11029 
11030   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11031   MachineFunction *F = BB->getParent();
11032   MachineFunction::iterator It = ++BB->getIterator();
11033 
11034   Register dest = MI.getOperand(0).getReg();
11035   Register ptrA = MI.getOperand(1).getReg();
11036   Register ptrB = MI.getOperand(2).getReg();
11037   Register incr = MI.getOperand(3).getReg();
11038   DebugLoc dl = MI.getDebugLoc();
11039 
11040   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11041   MachineBasicBlock *loop2MBB =
11042       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11043   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11044   F->insert(It, loopMBB);
11045   if (CmpOpcode)
11046     F->insert(It, loop2MBB);
11047   F->insert(It, exitMBB);
11048   exitMBB->splice(exitMBB->begin(), BB,
11049                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11050   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11051 
11052   MachineRegisterInfo &RegInfo = F->getRegInfo();
11053   const TargetRegisterClass *RC =
11054       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11055   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11056 
11057   Register PtrReg = RegInfo.createVirtualRegister(RC);
11058   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11059   Register ShiftReg =
11060       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11061   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11062   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11063   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11064   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11065   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11066   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11067   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11068   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11069   Register Ptr1Reg;
11070   Register TmpReg =
11071       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11072 
11073   //  thisMBB:
11074   //   ...
11075   //   fallthrough --> loopMBB
11076   BB->addSuccessor(loopMBB);
11077 
11078   // The 4-byte load must be aligned, while a char or short may be
11079   // anywhere in the word.  Hence all this nasty bookkeeping code.
11080   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11081   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11082   //   xori shift, shift1, 24 [16]
11083   //   rlwinm ptr, ptr1, 0, 0, 29
11084   //   slw incr2, incr, shift
11085   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11086   //   slw mask, mask2, shift
11087   //  loopMBB:
11088   //   lwarx tmpDest, ptr
11089   //   add tmp, tmpDest, incr2
11090   //   andc tmp2, tmpDest, mask
11091   //   and tmp3, tmp, mask
11092   //   or tmp4, tmp3, tmp2
11093   //   stwcx. tmp4, ptr
11094   //   bne- loopMBB
11095   //   fallthrough --> exitMBB
11096   //   srw dest, tmpDest, shift
11097   if (ptrA != ZeroReg) {
11098     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11099     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11100         .addReg(ptrA)
11101         .addReg(ptrB);
11102   } else {
11103     Ptr1Reg = ptrB;
11104   }
11105   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11106   // mode.
11107   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11108       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11109       .addImm(3)
11110       .addImm(27)
11111       .addImm(is8bit ? 28 : 27);
11112   if (!isLittleEndian)
11113     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11114         .addReg(Shift1Reg)
11115         .addImm(is8bit ? 24 : 16);
11116   if (is64bit)
11117     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11118         .addReg(Ptr1Reg)
11119         .addImm(0)
11120         .addImm(61);
11121   else
11122     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11123         .addReg(Ptr1Reg)
11124         .addImm(0)
11125         .addImm(0)
11126         .addImm(29);
11127   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11128   if (is8bit)
11129     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11130   else {
11131     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11132     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11133         .addReg(Mask3Reg)
11134         .addImm(65535);
11135   }
11136   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11137       .addReg(Mask2Reg)
11138       .addReg(ShiftReg);
11139 
11140   BB = loopMBB;
11141   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11142       .addReg(ZeroReg)
11143       .addReg(PtrReg);
11144   if (BinOpcode)
11145     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11146         .addReg(Incr2Reg)
11147         .addReg(TmpDestReg);
11148   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11149       .addReg(TmpDestReg)
11150       .addReg(MaskReg);
11151   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11152   if (CmpOpcode) {
11153     // For unsigned comparisons, we can directly compare the shifted values.
11154     // For signed comparisons we shift and sign extend.
11155     Register SReg = RegInfo.createVirtualRegister(GPRC);
11156     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11157         .addReg(TmpDestReg)
11158         .addReg(MaskReg);
11159     unsigned ValueReg = SReg;
11160     unsigned CmpReg = Incr2Reg;
11161     if (CmpOpcode == PPC::CMPW) {
11162       ValueReg = RegInfo.createVirtualRegister(GPRC);
11163       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11164           .addReg(SReg)
11165           .addReg(ShiftReg);
11166       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11167       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11168           .addReg(ValueReg);
11169       ValueReg = ValueSReg;
11170       CmpReg = incr;
11171     }
11172     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11173         .addReg(CmpReg)
11174         .addReg(ValueReg);
11175     BuildMI(BB, dl, TII->get(PPC::BCC))
11176         .addImm(CmpPred)
11177         .addReg(PPC::CR0)
11178         .addMBB(exitMBB);
11179     BB->addSuccessor(loop2MBB);
11180     BB->addSuccessor(exitMBB);
11181     BB = loop2MBB;
11182   }
11183   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11184   BuildMI(BB, dl, TII->get(PPC::STWCX))
11185       .addReg(Tmp4Reg)
11186       .addReg(ZeroReg)
11187       .addReg(PtrReg);
11188   BuildMI(BB, dl, TII->get(PPC::BCC))
11189       .addImm(PPC::PRED_NE)
11190       .addReg(PPC::CR0)
11191       .addMBB(loopMBB);
11192   BB->addSuccessor(loopMBB);
11193   BB->addSuccessor(exitMBB);
11194 
11195   //  exitMBB:
11196   //   ...
11197   BB = exitMBB;
11198   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11199       .addReg(TmpDestReg)
11200       .addReg(ShiftReg);
11201   return BB;
11202 }
11203 
11204 llvm::MachineBasicBlock *
11205 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11206                                     MachineBasicBlock *MBB) const {
11207   DebugLoc DL = MI.getDebugLoc();
11208   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11209   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11210 
11211   MachineFunction *MF = MBB->getParent();
11212   MachineRegisterInfo &MRI = MF->getRegInfo();
11213 
11214   const BasicBlock *BB = MBB->getBasicBlock();
11215   MachineFunction::iterator I = ++MBB->getIterator();
11216 
11217   Register DstReg = MI.getOperand(0).getReg();
11218   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11219   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11220   Register mainDstReg = MRI.createVirtualRegister(RC);
11221   Register restoreDstReg = MRI.createVirtualRegister(RC);
11222 
11223   MVT PVT = getPointerTy(MF->getDataLayout());
11224   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11225          "Invalid Pointer Size!");
11226   // For v = setjmp(buf), we generate
11227   //
11228   // thisMBB:
11229   //  SjLjSetup mainMBB
11230   //  bl mainMBB
11231   //  v_restore = 1
11232   //  b sinkMBB
11233   //
11234   // mainMBB:
11235   //  buf[LabelOffset] = LR
11236   //  v_main = 0
11237   //
11238   // sinkMBB:
11239   //  v = phi(main, restore)
11240   //
11241 
11242   MachineBasicBlock *thisMBB = MBB;
11243   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11244   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11245   MF->insert(I, mainMBB);
11246   MF->insert(I, sinkMBB);
11247 
11248   MachineInstrBuilder MIB;
11249 
11250   // Transfer the remainder of BB and its successor edges to sinkMBB.
11251   sinkMBB->splice(sinkMBB->begin(), MBB,
11252                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11253   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11254 
11255   // Note that the structure of the jmp_buf used here is not compatible
11256   // with that used by libc, and is not designed to be. Specifically, it
11257   // stores only those 'reserved' registers that LLVM does not otherwise
11258   // understand how to spill. Also, by convention, by the time this
11259   // intrinsic is called, Clang has already stored the frame address in the
11260   // first slot of the buffer and stack address in the third. Following the
11261   // X86 target code, we'll store the jump address in the second slot. We also
11262   // need to save the TOC pointer (R2) to handle jumps between shared
11263   // libraries, and that will be stored in the fourth slot. The thread
11264   // identifier (R13) is not affected.
11265 
11266   // thisMBB:
11267   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11268   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11269   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11270 
11271   // Prepare IP either in reg.
11272   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11273   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11274   Register BufReg = MI.getOperand(1).getReg();
11275 
11276   if (Subtarget.is64BitELFABI()) {
11277     setUsesTOCBasePtr(*MBB->getParent());
11278     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11279               .addReg(PPC::X2)
11280               .addImm(TOCOffset)
11281               .addReg(BufReg)
11282               .cloneMemRefs(MI);
11283   }
11284 
11285   // Naked functions never have a base pointer, and so we use r1. For all
11286   // other functions, this decision must be delayed until during PEI.
11287   unsigned BaseReg;
11288   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11289     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11290   else
11291     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11292 
11293   MIB = BuildMI(*thisMBB, MI, DL,
11294                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11295             .addReg(BaseReg)
11296             .addImm(BPOffset)
11297             .addReg(BufReg)
11298             .cloneMemRefs(MI);
11299 
11300   // Setup
11301   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11302   MIB.addRegMask(TRI->getNoPreservedMask());
11303 
11304   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11305 
11306   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11307           .addMBB(mainMBB);
11308   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11309 
11310   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11311   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11312 
11313   // mainMBB:
11314   //  mainDstReg = 0
11315   MIB =
11316       BuildMI(mainMBB, DL,
11317               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11318 
11319   // Store IP
11320   if (Subtarget.isPPC64()) {
11321     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11322             .addReg(LabelReg)
11323             .addImm(LabelOffset)
11324             .addReg(BufReg);
11325   } else {
11326     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11327             .addReg(LabelReg)
11328             .addImm(LabelOffset)
11329             .addReg(BufReg);
11330   }
11331   MIB.cloneMemRefs(MI);
11332 
11333   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11334   mainMBB->addSuccessor(sinkMBB);
11335 
11336   // sinkMBB:
11337   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11338           TII->get(PPC::PHI), DstReg)
11339     .addReg(mainDstReg).addMBB(mainMBB)
11340     .addReg(restoreDstReg).addMBB(thisMBB);
11341 
11342   MI.eraseFromParent();
11343   return sinkMBB;
11344 }
11345 
11346 MachineBasicBlock *
11347 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11348                                      MachineBasicBlock *MBB) const {
11349   DebugLoc DL = MI.getDebugLoc();
11350   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11351 
11352   MachineFunction *MF = MBB->getParent();
11353   MachineRegisterInfo &MRI = MF->getRegInfo();
11354 
11355   MVT PVT = getPointerTy(MF->getDataLayout());
11356   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11357          "Invalid Pointer Size!");
11358 
11359   const TargetRegisterClass *RC =
11360     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11361   Register Tmp = MRI.createVirtualRegister(RC);
11362   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11363   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11364   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11365   unsigned BP =
11366       (PVT == MVT::i64)
11367           ? PPC::X30
11368           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11369                                                               : PPC::R30);
11370 
11371   MachineInstrBuilder MIB;
11372 
11373   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11374   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11375   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11376   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11377 
11378   Register BufReg = MI.getOperand(0).getReg();
11379 
11380   // Reload FP (the jumped-to function may not have had a
11381   // frame pointer, and if so, then its r31 will be restored
11382   // as necessary).
11383   if (PVT == MVT::i64) {
11384     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11385             .addImm(0)
11386             .addReg(BufReg);
11387   } else {
11388     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11389             .addImm(0)
11390             .addReg(BufReg);
11391   }
11392   MIB.cloneMemRefs(MI);
11393 
11394   // Reload IP
11395   if (PVT == MVT::i64) {
11396     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11397             .addImm(LabelOffset)
11398             .addReg(BufReg);
11399   } else {
11400     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11401             .addImm(LabelOffset)
11402             .addReg(BufReg);
11403   }
11404   MIB.cloneMemRefs(MI);
11405 
11406   // Reload SP
11407   if (PVT == MVT::i64) {
11408     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11409             .addImm(SPOffset)
11410             .addReg(BufReg);
11411   } else {
11412     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11413             .addImm(SPOffset)
11414             .addReg(BufReg);
11415   }
11416   MIB.cloneMemRefs(MI);
11417 
11418   // Reload BP
11419   if (PVT == MVT::i64) {
11420     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11421             .addImm(BPOffset)
11422             .addReg(BufReg);
11423   } else {
11424     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11425             .addImm(BPOffset)
11426             .addReg(BufReg);
11427   }
11428   MIB.cloneMemRefs(MI);
11429 
11430   // Reload TOC
11431   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11432     setUsesTOCBasePtr(*MBB->getParent());
11433     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11434               .addImm(TOCOffset)
11435               .addReg(BufReg)
11436               .cloneMemRefs(MI);
11437   }
11438 
11439   // Jump
11440   BuildMI(*MBB, MI, DL,
11441           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11442   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11443 
11444   MI.eraseFromParent();
11445   return MBB;
11446 }
11447 
11448 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11449   // If the function specifically requests inline stack probes, emit them.
11450   if (MF.getFunction().hasFnAttribute("probe-stack"))
11451     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11452            "inline-asm";
11453   return false;
11454 }
11455 
11456 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11457   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11458   unsigned StackAlign = TFI->getStackAlignment();
11459   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11460          "Unexpected stack alignment");
11461   // The default stack probe size is 4096 if the function has no
11462   // stack-probe-size attribute.
11463   unsigned StackProbeSize = 4096;
11464   const Function &Fn = MF.getFunction();
11465   if (Fn.hasFnAttribute("stack-probe-size"))
11466     Fn.getFnAttribute("stack-probe-size")
11467         .getValueAsString()
11468         .getAsInteger(0, StackProbeSize);
11469   // Round down to the stack alignment.
11470   StackProbeSize &= ~(StackAlign - 1);
11471   return StackProbeSize ? StackProbeSize : StackAlign;
11472 }
11473 
11474 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11475 // into three phases. In the first phase, it uses pseudo instruction
11476 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11477 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11478 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11479 // MaxCallFrameSize so that it can calculate correct data area pointer.
11480 MachineBasicBlock *
11481 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11482                                     MachineBasicBlock *MBB) const {
11483   const bool isPPC64 = Subtarget.isPPC64();
11484   MachineFunction *MF = MBB->getParent();
11485   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11486   DebugLoc DL = MI.getDebugLoc();
11487   const unsigned ProbeSize = getStackProbeSize(*MF);
11488   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11489   MachineRegisterInfo &MRI = MF->getRegInfo();
11490   // The CFG of probing stack looks as
11491   //         +-----+
11492   //         | MBB |
11493   //         +--+--+
11494   //            |
11495   //       +----v----+
11496   //  +--->+ TestMBB +---+
11497   //  |    +----+----+   |
11498   //  |         |        |
11499   //  |   +-----v----+   |
11500   //  +---+ BlockMBB |   |
11501   //      +----------+   |
11502   //                     |
11503   //       +---------+   |
11504   //       | TailMBB +<--+
11505   //       +---------+
11506   // In MBB, calculate previous frame pointer and final stack pointer.
11507   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11508   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11509   // TailMBB is spliced via \p MI.
11510   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11511   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11512   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11513 
11514   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11515   MF->insert(MBBIter, TestMBB);
11516   MF->insert(MBBIter, BlockMBB);
11517   MF->insert(MBBIter, TailMBB);
11518 
11519   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11520   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11521 
11522   Register DstReg = MI.getOperand(0).getReg();
11523   Register NegSizeReg = MI.getOperand(1).getReg();
11524   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11525   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11526   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11527   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11528 
11529   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11530   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11531   // NegSize.
11532   unsigned ProbeOpc;
11533   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11534     ProbeOpc =
11535         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11536   else
11537     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11538     // and NegSizeReg will be allocated in the same phyreg to avoid
11539     // redundant copy when NegSizeReg has only one use which is current MI and
11540     // will be replaced by PREPARE_PROBED_ALLOCA then.
11541     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11542                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11543   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11544       .addDef(ActualNegSizeReg)
11545       .addReg(NegSizeReg)
11546       .add(MI.getOperand(2))
11547       .add(MI.getOperand(3));
11548 
11549   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11550   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11551           FinalStackPtr)
11552       .addReg(SPReg)
11553       .addReg(ActualNegSizeReg);
11554 
11555   // Materialize a scratch register for update.
11556   int64_t NegProbeSize = -(int64_t)ProbeSize;
11557   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11558   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11559   if (!isInt<16>(NegProbeSize)) {
11560     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11561     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11562         .addImm(NegProbeSize >> 16);
11563     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11564             ScratchReg)
11565         .addReg(TempReg)
11566         .addImm(NegProbeSize & 0xFFFF);
11567   } else
11568     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11569         .addImm(NegProbeSize);
11570 
11571   {
11572     // Probing leading residual part.
11573     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11574     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11575         .addReg(ActualNegSizeReg)
11576         .addReg(ScratchReg);
11577     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11578     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11579         .addReg(Div)
11580         .addReg(ScratchReg);
11581     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11582     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11583         .addReg(Mul)
11584         .addReg(ActualNegSizeReg);
11585     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11586         .addReg(FramePointer)
11587         .addReg(SPReg)
11588         .addReg(NegMod);
11589   }
11590 
11591   {
11592     // Remaining part should be multiple of ProbeSize.
11593     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11594     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11595         .addReg(SPReg)
11596         .addReg(FinalStackPtr);
11597     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11598         .addImm(PPC::PRED_EQ)
11599         .addReg(CmpResult)
11600         .addMBB(TailMBB);
11601     TestMBB->addSuccessor(BlockMBB);
11602     TestMBB->addSuccessor(TailMBB);
11603   }
11604 
11605   {
11606     // Touch the block.
11607     // |P...|P...|P...
11608     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11609         .addReg(FramePointer)
11610         .addReg(SPReg)
11611         .addReg(ScratchReg);
11612     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11613     BlockMBB->addSuccessor(TestMBB);
11614   }
11615 
11616   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11617   // DYNAREAOFFSET pseudo instruction to get the future result.
11618   Register MaxCallFrameSizeReg =
11619       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11620   BuildMI(TailMBB, DL,
11621           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11622           MaxCallFrameSizeReg)
11623       .add(MI.getOperand(2))
11624       .add(MI.getOperand(3));
11625   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11626       .addReg(SPReg)
11627       .addReg(MaxCallFrameSizeReg);
11628 
11629   // Splice instructions after MI to TailMBB.
11630   TailMBB->splice(TailMBB->end(), MBB,
11631                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11632   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11633   MBB->addSuccessor(TestMBB);
11634 
11635   // Delete the pseudo instruction.
11636   MI.eraseFromParent();
11637 
11638   ++NumDynamicAllocaProbed;
11639   return TailMBB;
11640 }
11641 
11642 MachineBasicBlock *
11643 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11644                                                MachineBasicBlock *BB) const {
11645   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11646       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11647     if (Subtarget.is64BitELFABI() &&
11648         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11649         !Subtarget.isUsingPCRelativeCalls()) {
11650       // Call lowering should have added an r2 operand to indicate a dependence
11651       // on the TOC base pointer value. It can't however, because there is no
11652       // way to mark the dependence as implicit there, and so the stackmap code
11653       // will confuse it with a regular operand. Instead, add the dependence
11654       // here.
11655       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11656     }
11657 
11658     return emitPatchPoint(MI, BB);
11659   }
11660 
11661   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11662       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11663     return emitEHSjLjSetJmp(MI, BB);
11664   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11665              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11666     return emitEHSjLjLongJmp(MI, BB);
11667   }
11668 
11669   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11670 
11671   // To "insert" these instructions we actually have to insert their
11672   // control-flow patterns.
11673   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11674   MachineFunction::iterator It = ++BB->getIterator();
11675 
11676   MachineFunction *F = BB->getParent();
11677 
11678   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11679       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11680       MI.getOpcode() == PPC::SELECT_I8) {
11681     SmallVector<MachineOperand, 2> Cond;
11682     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11683         MI.getOpcode() == PPC::SELECT_CC_I8)
11684       Cond.push_back(MI.getOperand(4));
11685     else
11686       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11687     Cond.push_back(MI.getOperand(1));
11688 
11689     DebugLoc dl = MI.getDebugLoc();
11690     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11691                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11692   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11693              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11694              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11695              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11696              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11697              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11698              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11699              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11700              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11701              MI.getOpcode() == PPC::SELECT_F4 ||
11702              MI.getOpcode() == PPC::SELECT_F8 ||
11703              MI.getOpcode() == PPC::SELECT_F16 ||
11704              MI.getOpcode() == PPC::SELECT_SPE ||
11705              MI.getOpcode() == PPC::SELECT_SPE4 ||
11706              MI.getOpcode() == PPC::SELECT_VRRC ||
11707              MI.getOpcode() == PPC::SELECT_VSFRC ||
11708              MI.getOpcode() == PPC::SELECT_VSSRC ||
11709              MI.getOpcode() == PPC::SELECT_VSRC) {
11710     // The incoming instruction knows the destination vreg to set, the
11711     // condition code register to branch on, the true/false values to
11712     // select between, and a branch opcode to use.
11713 
11714     //  thisMBB:
11715     //  ...
11716     //   TrueVal = ...
11717     //   cmpTY ccX, r1, r2
11718     //   bCC copy1MBB
11719     //   fallthrough --> copy0MBB
11720     MachineBasicBlock *thisMBB = BB;
11721     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11722     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11723     DebugLoc dl = MI.getDebugLoc();
11724     F->insert(It, copy0MBB);
11725     F->insert(It, sinkMBB);
11726 
11727     // Transfer the remainder of BB and its successor edges to sinkMBB.
11728     sinkMBB->splice(sinkMBB->begin(), BB,
11729                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11730     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11731 
11732     // Next, add the true and fallthrough blocks as its successors.
11733     BB->addSuccessor(copy0MBB);
11734     BB->addSuccessor(sinkMBB);
11735 
11736     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11737         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11738         MI.getOpcode() == PPC::SELECT_F16 ||
11739         MI.getOpcode() == PPC::SELECT_SPE4 ||
11740         MI.getOpcode() == PPC::SELECT_SPE ||
11741         MI.getOpcode() == PPC::SELECT_VRRC ||
11742         MI.getOpcode() == PPC::SELECT_VSFRC ||
11743         MI.getOpcode() == PPC::SELECT_VSSRC ||
11744         MI.getOpcode() == PPC::SELECT_VSRC) {
11745       BuildMI(BB, dl, TII->get(PPC::BC))
11746           .addReg(MI.getOperand(1).getReg())
11747           .addMBB(sinkMBB);
11748     } else {
11749       unsigned SelectPred = MI.getOperand(4).getImm();
11750       BuildMI(BB, dl, TII->get(PPC::BCC))
11751           .addImm(SelectPred)
11752           .addReg(MI.getOperand(1).getReg())
11753           .addMBB(sinkMBB);
11754     }
11755 
11756     //  copy0MBB:
11757     //   %FalseValue = ...
11758     //   # fallthrough to sinkMBB
11759     BB = copy0MBB;
11760 
11761     // Update machine-CFG edges
11762     BB->addSuccessor(sinkMBB);
11763 
11764     //  sinkMBB:
11765     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11766     //  ...
11767     BB = sinkMBB;
11768     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11769         .addReg(MI.getOperand(3).getReg())
11770         .addMBB(copy0MBB)
11771         .addReg(MI.getOperand(2).getReg())
11772         .addMBB(thisMBB);
11773   } else if (MI.getOpcode() == PPC::ReadTB) {
11774     // To read the 64-bit time-base register on a 32-bit target, we read the
11775     // two halves. Should the counter have wrapped while it was being read, we
11776     // need to try again.
11777     // ...
11778     // readLoop:
11779     // mfspr Rx,TBU # load from TBU
11780     // mfspr Ry,TB  # load from TB
11781     // mfspr Rz,TBU # load from TBU
11782     // cmpw crX,Rx,Rz # check if 'old'='new'
11783     // bne readLoop   # branch if they're not equal
11784     // ...
11785 
11786     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11787     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11788     DebugLoc dl = MI.getDebugLoc();
11789     F->insert(It, readMBB);
11790     F->insert(It, sinkMBB);
11791 
11792     // Transfer the remainder of BB and its successor edges to sinkMBB.
11793     sinkMBB->splice(sinkMBB->begin(), BB,
11794                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11795     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11796 
11797     BB->addSuccessor(readMBB);
11798     BB = readMBB;
11799 
11800     MachineRegisterInfo &RegInfo = F->getRegInfo();
11801     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11802     Register LoReg = MI.getOperand(0).getReg();
11803     Register HiReg = MI.getOperand(1).getReg();
11804 
11805     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11806     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11807     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11808 
11809     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11810 
11811     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11812         .addReg(HiReg)
11813         .addReg(ReadAgainReg);
11814     BuildMI(BB, dl, TII->get(PPC::BCC))
11815         .addImm(PPC::PRED_NE)
11816         .addReg(CmpReg)
11817         .addMBB(readMBB);
11818 
11819     BB->addSuccessor(readMBB);
11820     BB->addSuccessor(sinkMBB);
11821   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11822     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11823   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11824     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11825   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11826     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11827   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11828     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11829 
11830   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11831     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11832   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11833     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11834   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11835     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11836   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11837     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11838 
11839   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11840     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11841   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11842     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11843   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11844     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11845   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11846     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11847 
11848   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11849     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11850   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11851     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11852   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11853     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11854   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11855     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11856 
11857   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11858     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11859   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11860     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11861   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11862     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11863   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11864     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11865 
11866   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11867     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11868   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11869     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11870   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11871     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11872   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11873     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11874 
11875   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11876     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11877   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11878     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11879   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11880     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11881   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11882     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11883 
11884   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11885     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11886   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11887     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11888   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11889     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11890   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11891     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11892 
11893   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11894     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11895   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11896     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11897   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11898     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11899   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11900     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11901 
11902   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11903     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11904   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11905     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11906   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11907     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11908   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11909     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11910 
11911   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11912     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11913   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11914     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11915   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11916     BB = EmitAtomicBinary(MI, BB, 4, 0);
11917   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11918     BB = EmitAtomicBinary(MI, BB, 8, 0);
11919   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11920            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11921            (Subtarget.hasPartwordAtomics() &&
11922             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11923            (Subtarget.hasPartwordAtomics() &&
11924             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11925     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11926 
11927     auto LoadMnemonic = PPC::LDARX;
11928     auto StoreMnemonic = PPC::STDCX;
11929     switch (MI.getOpcode()) {
11930     default:
11931       llvm_unreachable("Compare and swap of unknown size");
11932     case PPC::ATOMIC_CMP_SWAP_I8:
11933       LoadMnemonic = PPC::LBARX;
11934       StoreMnemonic = PPC::STBCX;
11935       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11936       break;
11937     case PPC::ATOMIC_CMP_SWAP_I16:
11938       LoadMnemonic = PPC::LHARX;
11939       StoreMnemonic = PPC::STHCX;
11940       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11941       break;
11942     case PPC::ATOMIC_CMP_SWAP_I32:
11943       LoadMnemonic = PPC::LWARX;
11944       StoreMnemonic = PPC::STWCX;
11945       break;
11946     case PPC::ATOMIC_CMP_SWAP_I64:
11947       LoadMnemonic = PPC::LDARX;
11948       StoreMnemonic = PPC::STDCX;
11949       break;
11950     }
11951     Register dest = MI.getOperand(0).getReg();
11952     Register ptrA = MI.getOperand(1).getReg();
11953     Register ptrB = MI.getOperand(2).getReg();
11954     Register oldval = MI.getOperand(3).getReg();
11955     Register newval = MI.getOperand(4).getReg();
11956     DebugLoc dl = MI.getDebugLoc();
11957 
11958     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11959     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11960     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11961     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11962     F->insert(It, loop1MBB);
11963     F->insert(It, loop2MBB);
11964     F->insert(It, midMBB);
11965     F->insert(It, exitMBB);
11966     exitMBB->splice(exitMBB->begin(), BB,
11967                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11968     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11969 
11970     //  thisMBB:
11971     //   ...
11972     //   fallthrough --> loopMBB
11973     BB->addSuccessor(loop1MBB);
11974 
11975     // loop1MBB:
11976     //   l[bhwd]arx dest, ptr
11977     //   cmp[wd] dest, oldval
11978     //   bne- midMBB
11979     // loop2MBB:
11980     //   st[bhwd]cx. newval, ptr
11981     //   bne- loopMBB
11982     //   b exitBB
11983     // midMBB:
11984     //   st[bhwd]cx. dest, ptr
11985     // exitBB:
11986     BB = loop1MBB;
11987     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11988     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11989         .addReg(oldval)
11990         .addReg(dest);
11991     BuildMI(BB, dl, TII->get(PPC::BCC))
11992         .addImm(PPC::PRED_NE)
11993         .addReg(PPC::CR0)
11994         .addMBB(midMBB);
11995     BB->addSuccessor(loop2MBB);
11996     BB->addSuccessor(midMBB);
11997 
11998     BB = loop2MBB;
11999     BuildMI(BB, dl, TII->get(StoreMnemonic))
12000         .addReg(newval)
12001         .addReg(ptrA)
12002         .addReg(ptrB);
12003     BuildMI(BB, dl, TII->get(PPC::BCC))
12004         .addImm(PPC::PRED_NE)
12005         .addReg(PPC::CR0)
12006         .addMBB(loop1MBB);
12007     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12008     BB->addSuccessor(loop1MBB);
12009     BB->addSuccessor(exitMBB);
12010 
12011     BB = midMBB;
12012     BuildMI(BB, dl, TII->get(StoreMnemonic))
12013         .addReg(dest)
12014         .addReg(ptrA)
12015         .addReg(ptrB);
12016     BB->addSuccessor(exitMBB);
12017 
12018     //  exitMBB:
12019     //   ...
12020     BB = exitMBB;
12021   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12022              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12023     // We must use 64-bit registers for addresses when targeting 64-bit,
12024     // since we're actually doing arithmetic on them.  Other registers
12025     // can be 32-bit.
12026     bool is64bit = Subtarget.isPPC64();
12027     bool isLittleEndian = Subtarget.isLittleEndian();
12028     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12029 
12030     Register dest = MI.getOperand(0).getReg();
12031     Register ptrA = MI.getOperand(1).getReg();
12032     Register ptrB = MI.getOperand(2).getReg();
12033     Register oldval = MI.getOperand(3).getReg();
12034     Register newval = MI.getOperand(4).getReg();
12035     DebugLoc dl = MI.getDebugLoc();
12036 
12037     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12038     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12039     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12040     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12041     F->insert(It, loop1MBB);
12042     F->insert(It, loop2MBB);
12043     F->insert(It, midMBB);
12044     F->insert(It, exitMBB);
12045     exitMBB->splice(exitMBB->begin(), BB,
12046                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12047     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12048 
12049     MachineRegisterInfo &RegInfo = F->getRegInfo();
12050     const TargetRegisterClass *RC =
12051         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12052     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12053 
12054     Register PtrReg = RegInfo.createVirtualRegister(RC);
12055     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12056     Register ShiftReg =
12057         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12058     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12059     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12060     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12061     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12062     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12063     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12064     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12065     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12066     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12067     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12068     Register Ptr1Reg;
12069     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12070     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12071     //  thisMBB:
12072     //   ...
12073     //   fallthrough --> loopMBB
12074     BB->addSuccessor(loop1MBB);
12075 
12076     // The 4-byte load must be aligned, while a char or short may be
12077     // anywhere in the word.  Hence all this nasty bookkeeping code.
12078     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12079     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12080     //   xori shift, shift1, 24 [16]
12081     //   rlwinm ptr, ptr1, 0, 0, 29
12082     //   slw newval2, newval, shift
12083     //   slw oldval2, oldval,shift
12084     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12085     //   slw mask, mask2, shift
12086     //   and newval3, newval2, mask
12087     //   and oldval3, oldval2, mask
12088     // loop1MBB:
12089     //   lwarx tmpDest, ptr
12090     //   and tmp, tmpDest, mask
12091     //   cmpw tmp, oldval3
12092     //   bne- midMBB
12093     // loop2MBB:
12094     //   andc tmp2, tmpDest, mask
12095     //   or tmp4, tmp2, newval3
12096     //   stwcx. tmp4, ptr
12097     //   bne- loop1MBB
12098     //   b exitBB
12099     // midMBB:
12100     //   stwcx. tmpDest, ptr
12101     // exitBB:
12102     //   srw dest, tmpDest, shift
12103     if (ptrA != ZeroReg) {
12104       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12105       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12106           .addReg(ptrA)
12107           .addReg(ptrB);
12108     } else {
12109       Ptr1Reg = ptrB;
12110     }
12111 
12112     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12113     // mode.
12114     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12115         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12116         .addImm(3)
12117         .addImm(27)
12118         .addImm(is8bit ? 28 : 27);
12119     if (!isLittleEndian)
12120       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12121           .addReg(Shift1Reg)
12122           .addImm(is8bit ? 24 : 16);
12123     if (is64bit)
12124       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12125           .addReg(Ptr1Reg)
12126           .addImm(0)
12127           .addImm(61);
12128     else
12129       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12130           .addReg(Ptr1Reg)
12131           .addImm(0)
12132           .addImm(0)
12133           .addImm(29);
12134     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12135         .addReg(newval)
12136         .addReg(ShiftReg);
12137     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12138         .addReg(oldval)
12139         .addReg(ShiftReg);
12140     if (is8bit)
12141       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12142     else {
12143       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12144       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12145           .addReg(Mask3Reg)
12146           .addImm(65535);
12147     }
12148     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12149         .addReg(Mask2Reg)
12150         .addReg(ShiftReg);
12151     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12152         .addReg(NewVal2Reg)
12153         .addReg(MaskReg);
12154     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12155         .addReg(OldVal2Reg)
12156         .addReg(MaskReg);
12157 
12158     BB = loop1MBB;
12159     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12160         .addReg(ZeroReg)
12161         .addReg(PtrReg);
12162     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12163         .addReg(TmpDestReg)
12164         .addReg(MaskReg);
12165     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12166         .addReg(TmpReg)
12167         .addReg(OldVal3Reg);
12168     BuildMI(BB, dl, TII->get(PPC::BCC))
12169         .addImm(PPC::PRED_NE)
12170         .addReg(PPC::CR0)
12171         .addMBB(midMBB);
12172     BB->addSuccessor(loop2MBB);
12173     BB->addSuccessor(midMBB);
12174 
12175     BB = loop2MBB;
12176     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12177         .addReg(TmpDestReg)
12178         .addReg(MaskReg);
12179     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12180         .addReg(Tmp2Reg)
12181         .addReg(NewVal3Reg);
12182     BuildMI(BB, dl, TII->get(PPC::STWCX))
12183         .addReg(Tmp4Reg)
12184         .addReg(ZeroReg)
12185         .addReg(PtrReg);
12186     BuildMI(BB, dl, TII->get(PPC::BCC))
12187         .addImm(PPC::PRED_NE)
12188         .addReg(PPC::CR0)
12189         .addMBB(loop1MBB);
12190     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12191     BB->addSuccessor(loop1MBB);
12192     BB->addSuccessor(exitMBB);
12193 
12194     BB = midMBB;
12195     BuildMI(BB, dl, TII->get(PPC::STWCX))
12196         .addReg(TmpDestReg)
12197         .addReg(ZeroReg)
12198         .addReg(PtrReg);
12199     BB->addSuccessor(exitMBB);
12200 
12201     //  exitMBB:
12202     //   ...
12203     BB = exitMBB;
12204     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12205         .addReg(TmpReg)
12206         .addReg(ShiftReg);
12207   } else if (MI.getOpcode() == PPC::FADDrtz) {
12208     // This pseudo performs an FADD with rounding mode temporarily forced
12209     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12210     // is not modeled at the SelectionDAG level.
12211     Register Dest = MI.getOperand(0).getReg();
12212     Register Src1 = MI.getOperand(1).getReg();
12213     Register Src2 = MI.getOperand(2).getReg();
12214     DebugLoc dl = MI.getDebugLoc();
12215 
12216     MachineRegisterInfo &RegInfo = F->getRegInfo();
12217     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12218 
12219     // Save FPSCR value.
12220     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12221 
12222     // Set rounding mode to round-to-zero.
12223     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12224         .addImm(31)
12225         .addReg(PPC::RM, RegState::ImplicitDefine);
12226 
12227     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12228         .addImm(30)
12229         .addReg(PPC::RM, RegState::ImplicitDefine);
12230 
12231     // Perform addition.
12232     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12233                    .addReg(Src1)
12234                    .addReg(Src2);
12235     if (MI.getFlag(MachineInstr::NoFPExcept))
12236       MIB.setMIFlag(MachineInstr::NoFPExcept);
12237 
12238     // Restore FPSCR value.
12239     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12240   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12241              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12242              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12243              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12244     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12245                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12246                           ? PPC::ANDI8_rec
12247                           : PPC::ANDI_rec;
12248     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12249                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12250 
12251     MachineRegisterInfo &RegInfo = F->getRegInfo();
12252     Register Dest = RegInfo.createVirtualRegister(
12253         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12254 
12255     DebugLoc Dl = MI.getDebugLoc();
12256     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12257         .addReg(MI.getOperand(1).getReg())
12258         .addImm(1);
12259     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12260             MI.getOperand(0).getReg())
12261         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12262   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12263     DebugLoc Dl = MI.getDebugLoc();
12264     MachineRegisterInfo &RegInfo = F->getRegInfo();
12265     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12266     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12267     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12268             MI.getOperand(0).getReg())
12269         .addReg(CRReg);
12270   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12271     DebugLoc Dl = MI.getDebugLoc();
12272     unsigned Imm = MI.getOperand(1).getImm();
12273     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12274     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12275             MI.getOperand(0).getReg())
12276         .addReg(PPC::CR0EQ);
12277   } else if (MI.getOpcode() == PPC::SETRNDi) {
12278     DebugLoc dl = MI.getDebugLoc();
12279     Register OldFPSCRReg = MI.getOperand(0).getReg();
12280 
12281     // Save FPSCR value.
12282     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12283 
12284     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12285     // the following settings:
12286     //   00 Round to nearest
12287     //   01 Round to 0
12288     //   10 Round to +inf
12289     //   11 Round to -inf
12290 
12291     // When the operand is immediate, using the two least significant bits of
12292     // the immediate to set the bits 62:63 of FPSCR.
12293     unsigned Mode = MI.getOperand(1).getImm();
12294     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12295         .addImm(31)
12296         .addReg(PPC::RM, RegState::ImplicitDefine);
12297 
12298     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12299         .addImm(30)
12300         .addReg(PPC::RM, RegState::ImplicitDefine);
12301   } else if (MI.getOpcode() == PPC::SETRND) {
12302     DebugLoc dl = MI.getDebugLoc();
12303 
12304     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12305     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12306     // If the target doesn't have DirectMove, we should use stack to do the
12307     // conversion, because the target doesn't have the instructions like mtvsrd
12308     // or mfvsrd to do this conversion directly.
12309     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12310       if (Subtarget.hasDirectMove()) {
12311         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12312           .addReg(SrcReg);
12313       } else {
12314         // Use stack to do the register copy.
12315         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12316         MachineRegisterInfo &RegInfo = F->getRegInfo();
12317         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12318         if (RC == &PPC::F8RCRegClass) {
12319           // Copy register from F8RCRegClass to G8RCRegclass.
12320           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12321                  "Unsupported RegClass.");
12322 
12323           StoreOp = PPC::STFD;
12324           LoadOp = PPC::LD;
12325         } else {
12326           // Copy register from G8RCRegClass to F8RCRegclass.
12327           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12328                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12329                  "Unsupported RegClass.");
12330         }
12331 
12332         MachineFrameInfo &MFI = F->getFrameInfo();
12333         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12334 
12335         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12336             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12337             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12338             MFI.getObjectAlign(FrameIdx));
12339 
12340         // Store the SrcReg into the stack.
12341         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12342           .addReg(SrcReg)
12343           .addImm(0)
12344           .addFrameIndex(FrameIdx)
12345           .addMemOperand(MMOStore);
12346 
12347         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12348             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12349             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12350             MFI.getObjectAlign(FrameIdx));
12351 
12352         // Load from the stack where SrcReg is stored, and save to DestReg,
12353         // so we have done the RegClass conversion from RegClass::SrcReg to
12354         // RegClass::DestReg.
12355         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12356           .addImm(0)
12357           .addFrameIndex(FrameIdx)
12358           .addMemOperand(MMOLoad);
12359       }
12360     };
12361 
12362     Register OldFPSCRReg = MI.getOperand(0).getReg();
12363 
12364     // Save FPSCR value.
12365     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12366 
12367     // When the operand is gprc register, use two least significant bits of the
12368     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12369     //
12370     // copy OldFPSCRTmpReg, OldFPSCRReg
12371     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12372     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12373     // copy NewFPSCRReg, NewFPSCRTmpReg
12374     // mtfsf 255, NewFPSCRReg
12375     MachineOperand SrcOp = MI.getOperand(1);
12376     MachineRegisterInfo &RegInfo = F->getRegInfo();
12377     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12378 
12379     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12380 
12381     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12382     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12383 
12384     // The first operand of INSERT_SUBREG should be a register which has
12385     // subregisters, we only care about its RegClass, so we should use an
12386     // IMPLICIT_DEF register.
12387     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12388     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12389       .addReg(ImDefReg)
12390       .add(SrcOp)
12391       .addImm(1);
12392 
12393     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12394     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12395       .addReg(OldFPSCRTmpReg)
12396       .addReg(ExtSrcReg)
12397       .addImm(0)
12398       .addImm(62);
12399 
12400     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12401     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12402 
12403     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12404     // bits of FPSCR.
12405     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12406       .addImm(255)
12407       .addReg(NewFPSCRReg)
12408       .addImm(0)
12409       .addImm(0);
12410   } else if (MI.getOpcode() == PPC::SETFLM) {
12411     DebugLoc Dl = MI.getDebugLoc();
12412 
12413     // Result of setflm is previous FPSCR content, so we need to save it first.
12414     Register OldFPSCRReg = MI.getOperand(0).getReg();
12415     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12416 
12417     // Put bits in 32:63 to FPSCR.
12418     Register NewFPSCRReg = MI.getOperand(1).getReg();
12419     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12420         .addImm(255)
12421         .addReg(NewFPSCRReg)
12422         .addImm(0)
12423         .addImm(0);
12424   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12425              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12426     return emitProbedAlloca(MI, BB);
12427   } else {
12428     llvm_unreachable("Unexpected instr type to insert");
12429   }
12430 
12431   MI.eraseFromParent(); // The pseudo instruction is gone now.
12432   return BB;
12433 }
12434 
12435 //===----------------------------------------------------------------------===//
12436 // Target Optimization Hooks
12437 //===----------------------------------------------------------------------===//
12438 
12439 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12440   // For the estimates, convergence is quadratic, so we essentially double the
12441   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12442   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12443   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12444   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12445   if (VT.getScalarType() == MVT::f64)
12446     RefinementSteps++;
12447   return RefinementSteps;
12448 }
12449 
12450 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12451                                            int Enabled, int &RefinementSteps,
12452                                            bool &UseOneConstNR,
12453                                            bool Reciprocal) const {
12454   EVT VT = Operand.getValueType();
12455   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12456       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12457       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12458       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12459     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12460       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12461 
12462     // The Newton-Raphson computation with a single constant does not provide
12463     // enough accuracy on some CPUs.
12464     UseOneConstNR = !Subtarget.needsTwoConstNR();
12465     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12466   }
12467   return SDValue();
12468 }
12469 
12470 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12471                                             int Enabled,
12472                                             int &RefinementSteps) const {
12473   EVT VT = Operand.getValueType();
12474   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12475       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12476       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12477       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12478     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12479       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12480     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12481   }
12482   return SDValue();
12483 }
12484 
12485 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12486   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12487   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12488   // enabled for division), this functionality is redundant with the default
12489   // combiner logic (once the division -> reciprocal/multiply transformation
12490   // has taken place). As a result, this matters more for older cores than for
12491   // newer ones.
12492 
12493   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12494   // reciprocal if there are two or more FDIVs (for embedded cores with only
12495   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12496   switch (Subtarget.getCPUDirective()) {
12497   default:
12498     return 3;
12499   case PPC::DIR_440:
12500   case PPC::DIR_A2:
12501   case PPC::DIR_E500:
12502   case PPC::DIR_E500mc:
12503   case PPC::DIR_E5500:
12504     return 2;
12505   }
12506 }
12507 
12508 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12509 // collapsed, and so we need to look through chains of them.
12510 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12511                                      int64_t& Offset, SelectionDAG &DAG) {
12512   if (DAG.isBaseWithConstantOffset(Loc)) {
12513     Base = Loc.getOperand(0);
12514     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12515 
12516     // The base might itself be a base plus an offset, and if so, accumulate
12517     // that as well.
12518     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12519   }
12520 }
12521 
12522 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12523                             unsigned Bytes, int Dist,
12524                             SelectionDAG &DAG) {
12525   if (VT.getSizeInBits() / 8 != Bytes)
12526     return false;
12527 
12528   SDValue BaseLoc = Base->getBasePtr();
12529   if (Loc.getOpcode() == ISD::FrameIndex) {
12530     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12531       return false;
12532     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12533     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12534     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12535     int FS  = MFI.getObjectSize(FI);
12536     int BFS = MFI.getObjectSize(BFI);
12537     if (FS != BFS || FS != (int)Bytes) return false;
12538     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12539   }
12540 
12541   SDValue Base1 = Loc, Base2 = BaseLoc;
12542   int64_t Offset1 = 0, Offset2 = 0;
12543   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12544   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12545   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12546     return true;
12547 
12548   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12549   const GlobalValue *GV1 = nullptr;
12550   const GlobalValue *GV2 = nullptr;
12551   Offset1 = 0;
12552   Offset2 = 0;
12553   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12554   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12555   if (isGA1 && isGA2 && GV1 == GV2)
12556     return Offset1 == (Offset2 + Dist*Bytes);
12557   return false;
12558 }
12559 
12560 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12561 // not enforce equality of the chain operands.
12562 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12563                             unsigned Bytes, int Dist,
12564                             SelectionDAG &DAG) {
12565   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12566     EVT VT = LS->getMemoryVT();
12567     SDValue Loc = LS->getBasePtr();
12568     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12569   }
12570 
12571   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12572     EVT VT;
12573     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12574     default: return false;
12575     case Intrinsic::ppc_altivec_lvx:
12576     case Intrinsic::ppc_altivec_lvxl:
12577     case Intrinsic::ppc_vsx_lxvw4x:
12578     case Intrinsic::ppc_vsx_lxvw4x_be:
12579       VT = MVT::v4i32;
12580       break;
12581     case Intrinsic::ppc_vsx_lxvd2x:
12582     case Intrinsic::ppc_vsx_lxvd2x_be:
12583       VT = MVT::v2f64;
12584       break;
12585     case Intrinsic::ppc_altivec_lvebx:
12586       VT = MVT::i8;
12587       break;
12588     case Intrinsic::ppc_altivec_lvehx:
12589       VT = MVT::i16;
12590       break;
12591     case Intrinsic::ppc_altivec_lvewx:
12592       VT = MVT::i32;
12593       break;
12594     }
12595 
12596     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12597   }
12598 
12599   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12600     EVT VT;
12601     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12602     default: return false;
12603     case Intrinsic::ppc_altivec_stvx:
12604     case Intrinsic::ppc_altivec_stvxl:
12605     case Intrinsic::ppc_vsx_stxvw4x:
12606       VT = MVT::v4i32;
12607       break;
12608     case Intrinsic::ppc_vsx_stxvd2x:
12609       VT = MVT::v2f64;
12610       break;
12611     case Intrinsic::ppc_vsx_stxvw4x_be:
12612       VT = MVT::v4i32;
12613       break;
12614     case Intrinsic::ppc_vsx_stxvd2x_be:
12615       VT = MVT::v2f64;
12616       break;
12617     case Intrinsic::ppc_altivec_stvebx:
12618       VT = MVT::i8;
12619       break;
12620     case Intrinsic::ppc_altivec_stvehx:
12621       VT = MVT::i16;
12622       break;
12623     case Intrinsic::ppc_altivec_stvewx:
12624       VT = MVT::i32;
12625       break;
12626     }
12627 
12628     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12629   }
12630 
12631   return false;
12632 }
12633 
12634 // Return true is there is a nearyby consecutive load to the one provided
12635 // (regardless of alignment). We search up and down the chain, looking though
12636 // token factors and other loads (but nothing else). As a result, a true result
12637 // indicates that it is safe to create a new consecutive load adjacent to the
12638 // load provided.
12639 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12640   SDValue Chain = LD->getChain();
12641   EVT VT = LD->getMemoryVT();
12642 
12643   SmallSet<SDNode *, 16> LoadRoots;
12644   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12645   SmallSet<SDNode *, 16> Visited;
12646 
12647   // First, search up the chain, branching to follow all token-factor operands.
12648   // If we find a consecutive load, then we're done, otherwise, record all
12649   // nodes just above the top-level loads and token factors.
12650   while (!Queue.empty()) {
12651     SDNode *ChainNext = Queue.pop_back_val();
12652     if (!Visited.insert(ChainNext).second)
12653       continue;
12654 
12655     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12656       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12657         return true;
12658 
12659       if (!Visited.count(ChainLD->getChain().getNode()))
12660         Queue.push_back(ChainLD->getChain().getNode());
12661     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12662       for (const SDUse &O : ChainNext->ops())
12663         if (!Visited.count(O.getNode()))
12664           Queue.push_back(O.getNode());
12665     } else
12666       LoadRoots.insert(ChainNext);
12667   }
12668 
12669   // Second, search down the chain, starting from the top-level nodes recorded
12670   // in the first phase. These top-level nodes are the nodes just above all
12671   // loads and token factors. Starting with their uses, recursively look though
12672   // all loads (just the chain uses) and token factors to find a consecutive
12673   // load.
12674   Visited.clear();
12675   Queue.clear();
12676 
12677   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12678        IE = LoadRoots.end(); I != IE; ++I) {
12679     Queue.push_back(*I);
12680 
12681     while (!Queue.empty()) {
12682       SDNode *LoadRoot = Queue.pop_back_val();
12683       if (!Visited.insert(LoadRoot).second)
12684         continue;
12685 
12686       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12687         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12688           return true;
12689 
12690       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12691            UE = LoadRoot->use_end(); UI != UE; ++UI)
12692         if (((isa<MemSDNode>(*UI) &&
12693             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12694             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12695           Queue.push_back(*UI);
12696     }
12697   }
12698 
12699   return false;
12700 }
12701 
12702 /// This function is called when we have proved that a SETCC node can be replaced
12703 /// by subtraction (and other supporting instructions) so that the result of
12704 /// comparison is kept in a GPR instead of CR. This function is purely for
12705 /// codegen purposes and has some flags to guide the codegen process.
12706 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12707                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12708   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12709 
12710   // Zero extend the operands to the largest legal integer. Originally, they
12711   // must be of a strictly smaller size.
12712   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12713                          DAG.getConstant(Size, DL, MVT::i32));
12714   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12715                          DAG.getConstant(Size, DL, MVT::i32));
12716 
12717   // Swap if needed. Depends on the condition code.
12718   if (Swap)
12719     std::swap(Op0, Op1);
12720 
12721   // Subtract extended integers.
12722   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12723 
12724   // Move the sign bit to the least significant position and zero out the rest.
12725   // Now the least significant bit carries the result of original comparison.
12726   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12727                              DAG.getConstant(Size - 1, DL, MVT::i32));
12728   auto Final = Shifted;
12729 
12730   // Complement the result if needed. Based on the condition code.
12731   if (Complement)
12732     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12733                         DAG.getConstant(1, DL, MVT::i64));
12734 
12735   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12736 }
12737 
12738 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12739                                                   DAGCombinerInfo &DCI) const {
12740   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12741 
12742   SelectionDAG &DAG = DCI.DAG;
12743   SDLoc DL(N);
12744 
12745   // Size of integers being compared has a critical role in the following
12746   // analysis, so we prefer to do this when all types are legal.
12747   if (!DCI.isAfterLegalizeDAG())
12748     return SDValue();
12749 
12750   // If all users of SETCC extend its value to a legal integer type
12751   // then we replace SETCC with a subtraction
12752   for (SDNode::use_iterator UI = N->use_begin(),
12753        UE = N->use_end(); UI != UE; ++UI) {
12754     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12755       return SDValue();
12756   }
12757 
12758   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12759   auto OpSize = N->getOperand(0).getValueSizeInBits();
12760 
12761   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12762 
12763   if (OpSize < Size) {
12764     switch (CC) {
12765     default: break;
12766     case ISD::SETULT:
12767       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12768     case ISD::SETULE:
12769       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12770     case ISD::SETUGT:
12771       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12772     case ISD::SETUGE:
12773       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12774     }
12775   }
12776 
12777   return SDValue();
12778 }
12779 
12780 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12781                                                   DAGCombinerInfo &DCI) const {
12782   SelectionDAG &DAG = DCI.DAG;
12783   SDLoc dl(N);
12784 
12785   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12786   // If we're tracking CR bits, we need to be careful that we don't have:
12787   //   trunc(binary-ops(zext(x), zext(y)))
12788   // or
12789   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12790   // such that we're unnecessarily moving things into GPRs when it would be
12791   // better to keep them in CR bits.
12792 
12793   // Note that trunc here can be an actual i1 trunc, or can be the effective
12794   // truncation that comes from a setcc or select_cc.
12795   if (N->getOpcode() == ISD::TRUNCATE &&
12796       N->getValueType(0) != MVT::i1)
12797     return SDValue();
12798 
12799   if (N->getOperand(0).getValueType() != MVT::i32 &&
12800       N->getOperand(0).getValueType() != MVT::i64)
12801     return SDValue();
12802 
12803   if (N->getOpcode() == ISD::SETCC ||
12804       N->getOpcode() == ISD::SELECT_CC) {
12805     // If we're looking at a comparison, then we need to make sure that the
12806     // high bits (all except for the first) don't matter the result.
12807     ISD::CondCode CC =
12808       cast<CondCodeSDNode>(N->getOperand(
12809         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12810     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12811 
12812     if (ISD::isSignedIntSetCC(CC)) {
12813       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12814           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12815         return SDValue();
12816     } else if (ISD::isUnsignedIntSetCC(CC)) {
12817       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12818                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12819           !DAG.MaskedValueIsZero(N->getOperand(1),
12820                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12821         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12822                                              : SDValue());
12823     } else {
12824       // This is neither a signed nor an unsigned comparison, just make sure
12825       // that the high bits are equal.
12826       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12827       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12828 
12829       // We don't really care about what is known about the first bit (if
12830       // anything), so clear it in all masks prior to comparing them.
12831       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12832       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12833 
12834       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12835         return SDValue();
12836     }
12837   }
12838 
12839   // We now know that the higher-order bits are irrelevant, we just need to
12840   // make sure that all of the intermediate operations are bit operations, and
12841   // all inputs are extensions.
12842   if (N->getOperand(0).getOpcode() != ISD::AND &&
12843       N->getOperand(0).getOpcode() != ISD::OR  &&
12844       N->getOperand(0).getOpcode() != ISD::XOR &&
12845       N->getOperand(0).getOpcode() != ISD::SELECT &&
12846       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12847       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12848       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12849       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12850       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12851     return SDValue();
12852 
12853   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12854       N->getOperand(1).getOpcode() != ISD::AND &&
12855       N->getOperand(1).getOpcode() != ISD::OR  &&
12856       N->getOperand(1).getOpcode() != ISD::XOR &&
12857       N->getOperand(1).getOpcode() != ISD::SELECT &&
12858       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12859       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12860       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12861       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12862       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12863     return SDValue();
12864 
12865   SmallVector<SDValue, 4> Inputs;
12866   SmallVector<SDValue, 8> BinOps, PromOps;
12867   SmallPtrSet<SDNode *, 16> Visited;
12868 
12869   for (unsigned i = 0; i < 2; ++i) {
12870     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12871           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12872           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12873           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12874         isa<ConstantSDNode>(N->getOperand(i)))
12875       Inputs.push_back(N->getOperand(i));
12876     else
12877       BinOps.push_back(N->getOperand(i));
12878 
12879     if (N->getOpcode() == ISD::TRUNCATE)
12880       break;
12881   }
12882 
12883   // Visit all inputs, collect all binary operations (and, or, xor and
12884   // select) that are all fed by extensions.
12885   while (!BinOps.empty()) {
12886     SDValue BinOp = BinOps.back();
12887     BinOps.pop_back();
12888 
12889     if (!Visited.insert(BinOp.getNode()).second)
12890       continue;
12891 
12892     PromOps.push_back(BinOp);
12893 
12894     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12895       // The condition of the select is not promoted.
12896       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12897         continue;
12898       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12899         continue;
12900 
12901       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12902             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12903             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12904            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12905           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12906         Inputs.push_back(BinOp.getOperand(i));
12907       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12908                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12909                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12910                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12911                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12912                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12913                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12914                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12915                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12916         BinOps.push_back(BinOp.getOperand(i));
12917       } else {
12918         // We have an input that is not an extension or another binary
12919         // operation; we'll abort this transformation.
12920         return SDValue();
12921       }
12922     }
12923   }
12924 
12925   // Make sure that this is a self-contained cluster of operations (which
12926   // is not quite the same thing as saying that everything has only one
12927   // use).
12928   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12929     if (isa<ConstantSDNode>(Inputs[i]))
12930       continue;
12931 
12932     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12933                               UE = Inputs[i].getNode()->use_end();
12934          UI != UE; ++UI) {
12935       SDNode *User = *UI;
12936       if (User != N && !Visited.count(User))
12937         return SDValue();
12938 
12939       // Make sure that we're not going to promote the non-output-value
12940       // operand(s) or SELECT or SELECT_CC.
12941       // FIXME: Although we could sometimes handle this, and it does occur in
12942       // practice that one of the condition inputs to the select is also one of
12943       // the outputs, we currently can't deal with this.
12944       if (User->getOpcode() == ISD::SELECT) {
12945         if (User->getOperand(0) == Inputs[i])
12946           return SDValue();
12947       } else if (User->getOpcode() == ISD::SELECT_CC) {
12948         if (User->getOperand(0) == Inputs[i] ||
12949             User->getOperand(1) == Inputs[i])
12950           return SDValue();
12951       }
12952     }
12953   }
12954 
12955   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12956     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12957                               UE = PromOps[i].getNode()->use_end();
12958          UI != UE; ++UI) {
12959       SDNode *User = *UI;
12960       if (User != N && !Visited.count(User))
12961         return SDValue();
12962 
12963       // Make sure that we're not going to promote the non-output-value
12964       // operand(s) or SELECT or SELECT_CC.
12965       // FIXME: Although we could sometimes handle this, and it does occur in
12966       // practice that one of the condition inputs to the select is also one of
12967       // the outputs, we currently can't deal with this.
12968       if (User->getOpcode() == ISD::SELECT) {
12969         if (User->getOperand(0) == PromOps[i])
12970           return SDValue();
12971       } else if (User->getOpcode() == ISD::SELECT_CC) {
12972         if (User->getOperand(0) == PromOps[i] ||
12973             User->getOperand(1) == PromOps[i])
12974           return SDValue();
12975       }
12976     }
12977   }
12978 
12979   // Replace all inputs with the extension operand.
12980   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12981     // Constants may have users outside the cluster of to-be-promoted nodes,
12982     // and so we need to replace those as we do the promotions.
12983     if (isa<ConstantSDNode>(Inputs[i]))
12984       continue;
12985     else
12986       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12987   }
12988 
12989   std::list<HandleSDNode> PromOpHandles;
12990   for (auto &PromOp : PromOps)
12991     PromOpHandles.emplace_back(PromOp);
12992 
12993   // Replace all operations (these are all the same, but have a different
12994   // (i1) return type). DAG.getNode will validate that the types of
12995   // a binary operator match, so go through the list in reverse so that
12996   // we've likely promoted both operands first. Any intermediate truncations or
12997   // extensions disappear.
12998   while (!PromOpHandles.empty()) {
12999     SDValue PromOp = PromOpHandles.back().getValue();
13000     PromOpHandles.pop_back();
13001 
13002     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13003         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13004         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13005         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13006       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13007           PromOp.getOperand(0).getValueType() != MVT::i1) {
13008         // The operand is not yet ready (see comment below).
13009         PromOpHandles.emplace_front(PromOp);
13010         continue;
13011       }
13012 
13013       SDValue RepValue = PromOp.getOperand(0);
13014       if (isa<ConstantSDNode>(RepValue))
13015         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13016 
13017       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13018       continue;
13019     }
13020 
13021     unsigned C;
13022     switch (PromOp.getOpcode()) {
13023     default:             C = 0; break;
13024     case ISD::SELECT:    C = 1; break;
13025     case ISD::SELECT_CC: C = 2; break;
13026     }
13027 
13028     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13029          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13030         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13031          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13032       // The to-be-promoted operands of this node have not yet been
13033       // promoted (this should be rare because we're going through the
13034       // list backward, but if one of the operands has several users in
13035       // this cluster of to-be-promoted nodes, it is possible).
13036       PromOpHandles.emplace_front(PromOp);
13037       continue;
13038     }
13039 
13040     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13041                                 PromOp.getNode()->op_end());
13042 
13043     // If there are any constant inputs, make sure they're replaced now.
13044     for (unsigned i = 0; i < 2; ++i)
13045       if (isa<ConstantSDNode>(Ops[C+i]))
13046         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13047 
13048     DAG.ReplaceAllUsesOfValueWith(PromOp,
13049       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13050   }
13051 
13052   // Now we're left with the initial truncation itself.
13053   if (N->getOpcode() == ISD::TRUNCATE)
13054     return N->getOperand(0);
13055 
13056   // Otherwise, this is a comparison. The operands to be compared have just
13057   // changed type (to i1), but everything else is the same.
13058   return SDValue(N, 0);
13059 }
13060 
13061 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13062                                                   DAGCombinerInfo &DCI) const {
13063   SelectionDAG &DAG = DCI.DAG;
13064   SDLoc dl(N);
13065 
13066   // If we're tracking CR bits, we need to be careful that we don't have:
13067   //   zext(binary-ops(trunc(x), trunc(y)))
13068   // or
13069   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13070   // such that we're unnecessarily moving things into CR bits that can more
13071   // efficiently stay in GPRs. Note that if we're not certain that the high
13072   // bits are set as required by the final extension, we still may need to do
13073   // some masking to get the proper behavior.
13074 
13075   // This same functionality is important on PPC64 when dealing with
13076   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13077   // the return values of functions. Because it is so similar, it is handled
13078   // here as well.
13079 
13080   if (N->getValueType(0) != MVT::i32 &&
13081       N->getValueType(0) != MVT::i64)
13082     return SDValue();
13083 
13084   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13085         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13086     return SDValue();
13087 
13088   if (N->getOperand(0).getOpcode() != ISD::AND &&
13089       N->getOperand(0).getOpcode() != ISD::OR  &&
13090       N->getOperand(0).getOpcode() != ISD::XOR &&
13091       N->getOperand(0).getOpcode() != ISD::SELECT &&
13092       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13093     return SDValue();
13094 
13095   SmallVector<SDValue, 4> Inputs;
13096   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13097   SmallPtrSet<SDNode *, 16> Visited;
13098 
13099   // Visit all inputs, collect all binary operations (and, or, xor and
13100   // select) that are all fed by truncations.
13101   while (!BinOps.empty()) {
13102     SDValue BinOp = BinOps.back();
13103     BinOps.pop_back();
13104 
13105     if (!Visited.insert(BinOp.getNode()).second)
13106       continue;
13107 
13108     PromOps.push_back(BinOp);
13109 
13110     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13111       // The condition of the select is not promoted.
13112       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13113         continue;
13114       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13115         continue;
13116 
13117       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13118           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13119         Inputs.push_back(BinOp.getOperand(i));
13120       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13121                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13122                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13123                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13124                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13125         BinOps.push_back(BinOp.getOperand(i));
13126       } else {
13127         // We have an input that is not a truncation or another binary
13128         // operation; we'll abort this transformation.
13129         return SDValue();
13130       }
13131     }
13132   }
13133 
13134   // The operands of a select that must be truncated when the select is
13135   // promoted because the operand is actually part of the to-be-promoted set.
13136   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13137 
13138   // Make sure that this is a self-contained cluster of operations (which
13139   // is not quite the same thing as saying that everything has only one
13140   // use).
13141   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13142     if (isa<ConstantSDNode>(Inputs[i]))
13143       continue;
13144 
13145     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13146                               UE = Inputs[i].getNode()->use_end();
13147          UI != UE; ++UI) {
13148       SDNode *User = *UI;
13149       if (User != N && !Visited.count(User))
13150         return SDValue();
13151 
13152       // If we're going to promote the non-output-value operand(s) or SELECT or
13153       // SELECT_CC, record them for truncation.
13154       if (User->getOpcode() == ISD::SELECT) {
13155         if (User->getOperand(0) == Inputs[i])
13156           SelectTruncOp[0].insert(std::make_pair(User,
13157                                     User->getOperand(0).getValueType()));
13158       } else if (User->getOpcode() == ISD::SELECT_CC) {
13159         if (User->getOperand(0) == Inputs[i])
13160           SelectTruncOp[0].insert(std::make_pair(User,
13161                                     User->getOperand(0).getValueType()));
13162         if (User->getOperand(1) == Inputs[i])
13163           SelectTruncOp[1].insert(std::make_pair(User,
13164                                     User->getOperand(1).getValueType()));
13165       }
13166     }
13167   }
13168 
13169   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13170     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13171                               UE = PromOps[i].getNode()->use_end();
13172          UI != UE; ++UI) {
13173       SDNode *User = *UI;
13174       if (User != N && !Visited.count(User))
13175         return SDValue();
13176 
13177       // If we're going to promote the non-output-value operand(s) or SELECT or
13178       // SELECT_CC, record them for truncation.
13179       if (User->getOpcode() == ISD::SELECT) {
13180         if (User->getOperand(0) == PromOps[i])
13181           SelectTruncOp[0].insert(std::make_pair(User,
13182                                     User->getOperand(0).getValueType()));
13183       } else if (User->getOpcode() == ISD::SELECT_CC) {
13184         if (User->getOperand(0) == PromOps[i])
13185           SelectTruncOp[0].insert(std::make_pair(User,
13186                                     User->getOperand(0).getValueType()));
13187         if (User->getOperand(1) == PromOps[i])
13188           SelectTruncOp[1].insert(std::make_pair(User,
13189                                     User->getOperand(1).getValueType()));
13190       }
13191     }
13192   }
13193 
13194   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13195   bool ReallyNeedsExt = false;
13196   if (N->getOpcode() != ISD::ANY_EXTEND) {
13197     // If all of the inputs are not already sign/zero extended, then
13198     // we'll still need to do that at the end.
13199     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13200       if (isa<ConstantSDNode>(Inputs[i]))
13201         continue;
13202 
13203       unsigned OpBits =
13204         Inputs[i].getOperand(0).getValueSizeInBits();
13205       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13206 
13207       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13208            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13209                                   APInt::getHighBitsSet(OpBits,
13210                                                         OpBits-PromBits))) ||
13211           (N->getOpcode() == ISD::SIGN_EXTEND &&
13212            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13213              (OpBits-(PromBits-1)))) {
13214         ReallyNeedsExt = true;
13215         break;
13216       }
13217     }
13218   }
13219 
13220   // Replace all inputs, either with the truncation operand, or a
13221   // truncation or extension to the final output type.
13222   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13223     // Constant inputs need to be replaced with the to-be-promoted nodes that
13224     // use them because they might have users outside of the cluster of
13225     // promoted nodes.
13226     if (isa<ConstantSDNode>(Inputs[i]))
13227       continue;
13228 
13229     SDValue InSrc = Inputs[i].getOperand(0);
13230     if (Inputs[i].getValueType() == N->getValueType(0))
13231       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13232     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13233       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13234         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13235     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13236       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13237         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13238     else
13239       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13240         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13241   }
13242 
13243   std::list<HandleSDNode> PromOpHandles;
13244   for (auto &PromOp : PromOps)
13245     PromOpHandles.emplace_back(PromOp);
13246 
13247   // Replace all operations (these are all the same, but have a different
13248   // (promoted) return type). DAG.getNode will validate that the types of
13249   // a binary operator match, so go through the list in reverse so that
13250   // we've likely promoted both operands first.
13251   while (!PromOpHandles.empty()) {
13252     SDValue PromOp = PromOpHandles.back().getValue();
13253     PromOpHandles.pop_back();
13254 
13255     unsigned C;
13256     switch (PromOp.getOpcode()) {
13257     default:             C = 0; break;
13258     case ISD::SELECT:    C = 1; break;
13259     case ISD::SELECT_CC: C = 2; break;
13260     }
13261 
13262     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13263          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13264         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13265          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13266       // The to-be-promoted operands of this node have not yet been
13267       // promoted (this should be rare because we're going through the
13268       // list backward, but if one of the operands has several users in
13269       // this cluster of to-be-promoted nodes, it is possible).
13270       PromOpHandles.emplace_front(PromOp);
13271       continue;
13272     }
13273 
13274     // For SELECT and SELECT_CC nodes, we do a similar check for any
13275     // to-be-promoted comparison inputs.
13276     if (PromOp.getOpcode() == ISD::SELECT ||
13277         PromOp.getOpcode() == ISD::SELECT_CC) {
13278       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13279            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13280           (SelectTruncOp[1].count(PromOp.getNode()) &&
13281            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13282         PromOpHandles.emplace_front(PromOp);
13283         continue;
13284       }
13285     }
13286 
13287     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13288                                 PromOp.getNode()->op_end());
13289 
13290     // If this node has constant inputs, then they'll need to be promoted here.
13291     for (unsigned i = 0; i < 2; ++i) {
13292       if (!isa<ConstantSDNode>(Ops[C+i]))
13293         continue;
13294       if (Ops[C+i].getValueType() == N->getValueType(0))
13295         continue;
13296 
13297       if (N->getOpcode() == ISD::SIGN_EXTEND)
13298         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13299       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13300         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13301       else
13302         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13303     }
13304 
13305     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13306     // truncate them again to the original value type.
13307     if (PromOp.getOpcode() == ISD::SELECT ||
13308         PromOp.getOpcode() == ISD::SELECT_CC) {
13309       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13310       if (SI0 != SelectTruncOp[0].end())
13311         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13312       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13313       if (SI1 != SelectTruncOp[1].end())
13314         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13315     }
13316 
13317     DAG.ReplaceAllUsesOfValueWith(PromOp,
13318       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13319   }
13320 
13321   // Now we're left with the initial extension itself.
13322   if (!ReallyNeedsExt)
13323     return N->getOperand(0);
13324 
13325   // To zero extend, just mask off everything except for the first bit (in the
13326   // i1 case).
13327   if (N->getOpcode() == ISD::ZERO_EXTEND)
13328     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13329                        DAG.getConstant(APInt::getLowBitsSet(
13330                                          N->getValueSizeInBits(0), PromBits),
13331                                        dl, N->getValueType(0)));
13332 
13333   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13334          "Invalid extension type");
13335   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13336   SDValue ShiftCst =
13337       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13338   return DAG.getNode(
13339       ISD::SRA, dl, N->getValueType(0),
13340       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13341       ShiftCst);
13342 }
13343 
13344 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13345                                         DAGCombinerInfo &DCI) const {
13346   assert(N->getOpcode() == ISD::SETCC &&
13347          "Should be called with a SETCC node");
13348 
13349   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13350   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13351     SDValue LHS = N->getOperand(0);
13352     SDValue RHS = N->getOperand(1);
13353 
13354     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13355     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13356         LHS.hasOneUse())
13357       std::swap(LHS, RHS);
13358 
13359     // x == 0-y --> x+y == 0
13360     // x != 0-y --> x+y != 0
13361     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13362         RHS.hasOneUse()) {
13363       SDLoc DL(N);
13364       SelectionDAG &DAG = DCI.DAG;
13365       EVT VT = N->getValueType(0);
13366       EVT OpVT = LHS.getValueType();
13367       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13368       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13369     }
13370   }
13371 
13372   return DAGCombineTruncBoolExt(N, DCI);
13373 }
13374 
13375 // Is this an extending load from an f32 to an f64?
13376 static bool isFPExtLoad(SDValue Op) {
13377   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13378     return LD->getExtensionType() == ISD::EXTLOAD &&
13379       Op.getValueType() == MVT::f64;
13380   return false;
13381 }
13382 
13383 /// Reduces the number of fp-to-int conversion when building a vector.
13384 ///
13385 /// If this vector is built out of floating to integer conversions,
13386 /// transform it to a vector built out of floating point values followed by a
13387 /// single floating to integer conversion of the vector.
13388 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13389 /// becomes (fptosi (build_vector ($A, $B, ...)))
13390 SDValue PPCTargetLowering::
13391 combineElementTruncationToVectorTruncation(SDNode *N,
13392                                            DAGCombinerInfo &DCI) const {
13393   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13394          "Should be called with a BUILD_VECTOR node");
13395 
13396   SelectionDAG &DAG = DCI.DAG;
13397   SDLoc dl(N);
13398 
13399   SDValue FirstInput = N->getOperand(0);
13400   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13401          "The input operand must be an fp-to-int conversion.");
13402 
13403   // This combine happens after legalization so the fp_to_[su]i nodes are
13404   // already converted to PPCSISD nodes.
13405   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13406   if (FirstConversion == PPCISD::FCTIDZ ||
13407       FirstConversion == PPCISD::FCTIDUZ ||
13408       FirstConversion == PPCISD::FCTIWZ ||
13409       FirstConversion == PPCISD::FCTIWUZ) {
13410     bool IsSplat = true;
13411     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13412       FirstConversion == PPCISD::FCTIWUZ;
13413     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13414     SmallVector<SDValue, 4> Ops;
13415     EVT TargetVT = N->getValueType(0);
13416     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13417       SDValue NextOp = N->getOperand(i);
13418       if (NextOp.getOpcode() != PPCISD::MFVSR)
13419         return SDValue();
13420       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13421       if (NextConversion != FirstConversion)
13422         return SDValue();
13423       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13424       // This is not valid if the input was originally double precision. It is
13425       // also not profitable to do unless this is an extending load in which
13426       // case doing this combine will allow us to combine consecutive loads.
13427       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13428         return SDValue();
13429       if (N->getOperand(i) != FirstInput)
13430         IsSplat = false;
13431     }
13432 
13433     // If this is a splat, we leave it as-is since there will be only a single
13434     // fp-to-int conversion followed by a splat of the integer. This is better
13435     // for 32-bit and smaller ints and neutral for 64-bit ints.
13436     if (IsSplat)
13437       return SDValue();
13438 
13439     // Now that we know we have the right type of node, get its operands
13440     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13441       SDValue In = N->getOperand(i).getOperand(0);
13442       if (Is32Bit) {
13443         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13444         // here, we know that all inputs are extending loads so this is safe).
13445         if (In.isUndef())
13446           Ops.push_back(DAG.getUNDEF(SrcVT));
13447         else {
13448           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13449                                       MVT::f32, In.getOperand(0),
13450                                       DAG.getIntPtrConstant(1, dl));
13451           Ops.push_back(Trunc);
13452         }
13453       } else
13454         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13455     }
13456 
13457     unsigned Opcode;
13458     if (FirstConversion == PPCISD::FCTIDZ ||
13459         FirstConversion == PPCISD::FCTIWZ)
13460       Opcode = ISD::FP_TO_SINT;
13461     else
13462       Opcode = ISD::FP_TO_UINT;
13463 
13464     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13465     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13466     return DAG.getNode(Opcode, dl, TargetVT, BV);
13467   }
13468   return SDValue();
13469 }
13470 
13471 /// Reduce the number of loads when building a vector.
13472 ///
13473 /// Building a vector out of multiple loads can be converted to a load
13474 /// of the vector type if the loads are consecutive. If the loads are
13475 /// consecutive but in descending order, a shuffle is added at the end
13476 /// to reorder the vector.
13477 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13478   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13479          "Should be called with a BUILD_VECTOR node");
13480 
13481   SDLoc dl(N);
13482 
13483   // Return early for non byte-sized type, as they can't be consecutive.
13484   if (!N->getValueType(0).getVectorElementType().isByteSized())
13485     return SDValue();
13486 
13487   bool InputsAreConsecutiveLoads = true;
13488   bool InputsAreReverseConsecutive = true;
13489   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13490   SDValue FirstInput = N->getOperand(0);
13491   bool IsRoundOfExtLoad = false;
13492 
13493   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13494       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13495     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13496     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13497   }
13498   // Not a build vector of (possibly fp_rounded) loads.
13499   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13500       N->getNumOperands() == 1)
13501     return SDValue();
13502 
13503   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13504     // If any inputs are fp_round(extload), they all must be.
13505     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13506       return SDValue();
13507 
13508     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13509       N->getOperand(i);
13510     if (NextInput.getOpcode() != ISD::LOAD)
13511       return SDValue();
13512 
13513     SDValue PreviousInput =
13514       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13515     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13516     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13517 
13518     // If any inputs are fp_round(extload), they all must be.
13519     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13520       return SDValue();
13521 
13522     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13523       InputsAreConsecutiveLoads = false;
13524     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13525       InputsAreReverseConsecutive = false;
13526 
13527     // Exit early if the loads are neither consecutive nor reverse consecutive.
13528     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13529       return SDValue();
13530   }
13531 
13532   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13533          "The loads cannot be both consecutive and reverse consecutive.");
13534 
13535   SDValue FirstLoadOp =
13536     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13537   SDValue LastLoadOp =
13538     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13539                        N->getOperand(N->getNumOperands()-1);
13540 
13541   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13542   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13543   if (InputsAreConsecutiveLoads) {
13544     assert(LD1 && "Input needs to be a LoadSDNode.");
13545     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13546                        LD1->getBasePtr(), LD1->getPointerInfo(),
13547                        LD1->getAlignment());
13548   }
13549   if (InputsAreReverseConsecutive) {
13550     assert(LDL && "Input needs to be a LoadSDNode.");
13551     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13552                                LDL->getBasePtr(), LDL->getPointerInfo(),
13553                                LDL->getAlignment());
13554     SmallVector<int, 16> Ops;
13555     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13556       Ops.push_back(i);
13557 
13558     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13559                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13560   }
13561   return SDValue();
13562 }
13563 
13564 // This function adds the required vector_shuffle needed to get
13565 // the elements of the vector extract in the correct position
13566 // as specified by the CorrectElems encoding.
13567 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13568                                       SDValue Input, uint64_t Elems,
13569                                       uint64_t CorrectElems) {
13570   SDLoc dl(N);
13571 
13572   unsigned NumElems = Input.getValueType().getVectorNumElements();
13573   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13574 
13575   // Knowing the element indices being extracted from the original
13576   // vector and the order in which they're being inserted, just put
13577   // them at element indices required for the instruction.
13578   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13579     if (DAG.getDataLayout().isLittleEndian())
13580       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13581     else
13582       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13583     CorrectElems = CorrectElems >> 8;
13584     Elems = Elems >> 8;
13585   }
13586 
13587   SDValue Shuffle =
13588       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13589                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13590 
13591   EVT VT = N->getValueType(0);
13592   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13593 
13594   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13595                                Input.getValueType().getVectorElementType(),
13596                                VT.getVectorNumElements());
13597   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13598                      DAG.getValueType(ExtVT));
13599 }
13600 
13601 // Look for build vector patterns where input operands come from sign
13602 // extended vector_extract elements of specific indices. If the correct indices
13603 // aren't used, add a vector shuffle to fix up the indices and create
13604 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13605 // during instruction selection.
13606 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13607   // This array encodes the indices that the vector sign extend instructions
13608   // extract from when extending from one type to another for both BE and LE.
13609   // The right nibble of each byte corresponds to the LE incides.
13610   // and the left nibble of each byte corresponds to the BE incides.
13611   // For example: 0x3074B8FC  byte->word
13612   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13613   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13614   // For example: 0x000070F8  byte->double word
13615   // For LE: the allowed indices are: 0x0,0x8
13616   // For BE: the allowed indices are: 0x7,0xF
13617   uint64_t TargetElems[] = {
13618       0x3074B8FC, // b->w
13619       0x000070F8, // b->d
13620       0x10325476, // h->w
13621       0x00003074, // h->d
13622       0x00001032, // w->d
13623   };
13624 
13625   uint64_t Elems = 0;
13626   int Index;
13627   SDValue Input;
13628 
13629   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13630     if (!Op)
13631       return false;
13632     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13633         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13634       return false;
13635 
13636     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13637     // of the right width.
13638     SDValue Extract = Op.getOperand(0);
13639     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13640       Extract = Extract.getOperand(0);
13641     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13642       return false;
13643 
13644     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13645     if (!ExtOp)
13646       return false;
13647 
13648     Index = ExtOp->getZExtValue();
13649     if (Input && Input != Extract.getOperand(0))
13650       return false;
13651 
13652     if (!Input)
13653       Input = Extract.getOperand(0);
13654 
13655     Elems = Elems << 8;
13656     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13657     Elems |= Index;
13658 
13659     return true;
13660   };
13661 
13662   // If the build vector operands aren't sign extended vector extracts,
13663   // of the same input vector, then return.
13664   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13665     if (!isSExtOfVecExtract(N->getOperand(i))) {
13666       return SDValue();
13667     }
13668   }
13669 
13670   // If the vector extract indicies are not correct, add the appropriate
13671   // vector_shuffle.
13672   int TgtElemArrayIdx;
13673   int InputSize = Input.getValueType().getScalarSizeInBits();
13674   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13675   if (InputSize + OutputSize == 40)
13676     TgtElemArrayIdx = 0;
13677   else if (InputSize + OutputSize == 72)
13678     TgtElemArrayIdx = 1;
13679   else if (InputSize + OutputSize == 48)
13680     TgtElemArrayIdx = 2;
13681   else if (InputSize + OutputSize == 80)
13682     TgtElemArrayIdx = 3;
13683   else if (InputSize + OutputSize == 96)
13684     TgtElemArrayIdx = 4;
13685   else
13686     return SDValue();
13687 
13688   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13689   CorrectElems = DAG.getDataLayout().isLittleEndian()
13690                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13691                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13692   if (Elems != CorrectElems) {
13693     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13694   }
13695 
13696   // Regular lowering will catch cases where a shuffle is not needed.
13697   return SDValue();
13698 }
13699 
13700 // Look for the pattern of a load from a narrow width to i128, feeding
13701 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13702 // (LXVRZX). This node represents a zero extending load that will be matched
13703 // to the Load VSX Vector Rightmost instructions.
13704 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13705   SDLoc DL(N);
13706 
13707   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13708   if (N->getValueType(0) != MVT::v1i128)
13709     return SDValue();
13710 
13711   SDValue Operand = N->getOperand(0);
13712   // Proceed with the transformation if the operand to the BUILD_VECTOR
13713   // is a load instruction.
13714   if (Operand.getOpcode() != ISD::LOAD)
13715     return SDValue();
13716 
13717   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13718   EVT MemoryType = LD->getMemoryVT();
13719 
13720   // This transformation is only valid if the we are loading either a byte,
13721   // halfword, word, or doubleword.
13722   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13723                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13724 
13725   // Ensure that the load from the narrow width is being zero extended to i128.
13726   if (!ValidLDType ||
13727       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13728        LD->getExtensionType() != ISD::EXTLOAD))
13729     return SDValue();
13730 
13731   SDValue LoadOps[] = {
13732       LD->getChain(), LD->getBasePtr(),
13733       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13734 
13735   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13736                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13737                                  LoadOps, MemoryType, LD->getMemOperand());
13738 }
13739 
13740 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13741                                                  DAGCombinerInfo &DCI) const {
13742   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13743          "Should be called with a BUILD_VECTOR node");
13744 
13745   SelectionDAG &DAG = DCI.DAG;
13746   SDLoc dl(N);
13747 
13748   if (!Subtarget.hasVSX())
13749     return SDValue();
13750 
13751   // The target independent DAG combiner will leave a build_vector of
13752   // float-to-int conversions intact. We can generate MUCH better code for
13753   // a float-to-int conversion of a vector of floats.
13754   SDValue FirstInput = N->getOperand(0);
13755   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13756     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13757     if (Reduced)
13758       return Reduced;
13759   }
13760 
13761   // If we're building a vector out of consecutive loads, just load that
13762   // vector type.
13763   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13764   if (Reduced)
13765     return Reduced;
13766 
13767   // If we're building a vector out of extended elements from another vector
13768   // we have P9 vector integer extend instructions. The code assumes legal
13769   // input types (i.e. it can't handle things like v4i16) so do not run before
13770   // legalization.
13771   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13772     Reduced = combineBVOfVecSExt(N, DAG);
13773     if (Reduced)
13774       return Reduced;
13775   }
13776 
13777   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13778   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13779   // is a load from <valid narrow width> to i128.
13780   if (Subtarget.isISA3_1()) {
13781     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13782     if (BVOfZLoad)
13783       return BVOfZLoad;
13784   }
13785 
13786   if (N->getValueType(0) != MVT::v2f64)
13787     return SDValue();
13788 
13789   // Looking for:
13790   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13791   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13792       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13793     return SDValue();
13794   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13795       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13796     return SDValue();
13797   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13798     return SDValue();
13799 
13800   SDValue Ext1 = FirstInput.getOperand(0);
13801   SDValue Ext2 = N->getOperand(1).getOperand(0);
13802   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13803      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13804     return SDValue();
13805 
13806   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13807   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13808   if (!Ext1Op || !Ext2Op)
13809     return SDValue();
13810   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13811       Ext1.getOperand(0) != Ext2.getOperand(0))
13812     return SDValue();
13813 
13814   int FirstElem = Ext1Op->getZExtValue();
13815   int SecondElem = Ext2Op->getZExtValue();
13816   int SubvecIdx;
13817   if (FirstElem == 0 && SecondElem == 1)
13818     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13819   else if (FirstElem == 2 && SecondElem == 3)
13820     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13821   else
13822     return SDValue();
13823 
13824   SDValue SrcVec = Ext1.getOperand(0);
13825   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13826     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13827   return DAG.getNode(NodeType, dl, MVT::v2f64,
13828                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13829 }
13830 
13831 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13832                                               DAGCombinerInfo &DCI) const {
13833   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13834           N->getOpcode() == ISD::UINT_TO_FP) &&
13835          "Need an int -> FP conversion node here");
13836 
13837   if (useSoftFloat() || !Subtarget.has64BitSupport())
13838     return SDValue();
13839 
13840   SelectionDAG &DAG = DCI.DAG;
13841   SDLoc dl(N);
13842   SDValue Op(N, 0);
13843 
13844   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13845   // from the hardware.
13846   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13847     return SDValue();
13848   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13849       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13850     return SDValue();
13851 
13852   SDValue FirstOperand(Op.getOperand(0));
13853   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13854     (FirstOperand.getValueType() == MVT::i8 ||
13855      FirstOperand.getValueType() == MVT::i16);
13856   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13857     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13858     bool DstDouble = Op.getValueType() == MVT::f64;
13859     unsigned ConvOp = Signed ?
13860       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13861       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13862     SDValue WidthConst =
13863       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13864                             dl, false);
13865     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13866     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13867     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13868                                          DAG.getVTList(MVT::f64, MVT::Other),
13869                                          Ops, MVT::i8, LDN->getMemOperand());
13870 
13871     // For signed conversion, we need to sign-extend the value in the VSR
13872     if (Signed) {
13873       SDValue ExtOps[] = { Ld, WidthConst };
13874       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13875       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13876     } else
13877       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13878   }
13879 
13880 
13881   // For i32 intermediate values, unfortunately, the conversion functions
13882   // leave the upper 32 bits of the value are undefined. Within the set of
13883   // scalar instructions, we have no method for zero- or sign-extending the
13884   // value. Thus, we cannot handle i32 intermediate values here.
13885   if (Op.getOperand(0).getValueType() == MVT::i32)
13886     return SDValue();
13887 
13888   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13889          "UINT_TO_FP is supported only with FPCVT");
13890 
13891   // If we have FCFIDS, then use it when converting to single-precision.
13892   // Otherwise, convert to double-precision and then round.
13893   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13894                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13895                                                             : PPCISD::FCFIDS)
13896                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13897                                                             : PPCISD::FCFID);
13898   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13899                   ? MVT::f32
13900                   : MVT::f64;
13901 
13902   // If we're converting from a float, to an int, and back to a float again,
13903   // then we don't need the store/load pair at all.
13904   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13905        Subtarget.hasFPCVT()) ||
13906       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13907     SDValue Src = Op.getOperand(0).getOperand(0);
13908     if (Src.getValueType() == MVT::f32) {
13909       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13910       DCI.AddToWorklist(Src.getNode());
13911     } else if (Src.getValueType() != MVT::f64) {
13912       // Make sure that we don't pick up a ppc_fp128 source value.
13913       return SDValue();
13914     }
13915 
13916     unsigned FCTOp =
13917       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13918                                                         PPCISD::FCTIDUZ;
13919 
13920     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13921     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13922 
13923     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13924       FP = DAG.getNode(ISD::FP_ROUND, dl,
13925                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13926       DCI.AddToWorklist(FP.getNode());
13927     }
13928 
13929     return FP;
13930   }
13931 
13932   return SDValue();
13933 }
13934 
13935 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13936 // builtins) into loads with swaps.
13937 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13938                                               DAGCombinerInfo &DCI) const {
13939   SelectionDAG &DAG = DCI.DAG;
13940   SDLoc dl(N);
13941   SDValue Chain;
13942   SDValue Base;
13943   MachineMemOperand *MMO;
13944 
13945   switch (N->getOpcode()) {
13946   default:
13947     llvm_unreachable("Unexpected opcode for little endian VSX load");
13948   case ISD::LOAD: {
13949     LoadSDNode *LD = cast<LoadSDNode>(N);
13950     Chain = LD->getChain();
13951     Base = LD->getBasePtr();
13952     MMO = LD->getMemOperand();
13953     // If the MMO suggests this isn't a load of a full vector, leave
13954     // things alone.  For a built-in, we have to make the change for
13955     // correctness, so if there is a size problem that will be a bug.
13956     if (MMO->getSize() < 16)
13957       return SDValue();
13958     break;
13959   }
13960   case ISD::INTRINSIC_W_CHAIN: {
13961     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13962     Chain = Intrin->getChain();
13963     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13964     // us what we want. Get operand 2 instead.
13965     Base = Intrin->getOperand(2);
13966     MMO = Intrin->getMemOperand();
13967     break;
13968   }
13969   }
13970 
13971   MVT VecTy = N->getValueType(0).getSimpleVT();
13972 
13973   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13974   // aligned and the type is a vector with elements up to 4 bytes
13975   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
13976       VecTy.getScalarSizeInBits() <= 32) {
13977     return SDValue();
13978   }
13979 
13980   SDValue LoadOps[] = { Chain, Base };
13981   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13982                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13983                                          LoadOps, MVT::v2f64, MMO);
13984 
13985   DCI.AddToWorklist(Load.getNode());
13986   Chain = Load.getValue(1);
13987   SDValue Swap = DAG.getNode(
13988       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13989   DCI.AddToWorklist(Swap.getNode());
13990 
13991   // Add a bitcast if the resulting load type doesn't match v2f64.
13992   if (VecTy != MVT::v2f64) {
13993     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13994     DCI.AddToWorklist(N.getNode());
13995     // Package {bitcast value, swap's chain} to match Load's shape.
13996     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13997                        N, Swap.getValue(1));
13998   }
13999 
14000   return Swap;
14001 }
14002 
14003 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14004 // builtins) into stores with swaps.
14005 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14006                                                DAGCombinerInfo &DCI) const {
14007   SelectionDAG &DAG = DCI.DAG;
14008   SDLoc dl(N);
14009   SDValue Chain;
14010   SDValue Base;
14011   unsigned SrcOpnd;
14012   MachineMemOperand *MMO;
14013 
14014   switch (N->getOpcode()) {
14015   default:
14016     llvm_unreachable("Unexpected opcode for little endian VSX store");
14017   case ISD::STORE: {
14018     StoreSDNode *ST = cast<StoreSDNode>(N);
14019     Chain = ST->getChain();
14020     Base = ST->getBasePtr();
14021     MMO = ST->getMemOperand();
14022     SrcOpnd = 1;
14023     // If the MMO suggests this isn't a store of a full vector, leave
14024     // things alone.  For a built-in, we have to make the change for
14025     // correctness, so if there is a size problem that will be a bug.
14026     if (MMO->getSize() < 16)
14027       return SDValue();
14028     break;
14029   }
14030   case ISD::INTRINSIC_VOID: {
14031     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14032     Chain = Intrin->getChain();
14033     // Intrin->getBasePtr() oddly does not get what we want.
14034     Base = Intrin->getOperand(3);
14035     MMO = Intrin->getMemOperand();
14036     SrcOpnd = 2;
14037     break;
14038   }
14039   }
14040 
14041   SDValue Src = N->getOperand(SrcOpnd);
14042   MVT VecTy = Src.getValueType().getSimpleVT();
14043 
14044   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14045   // aligned and the type is a vector with elements up to 4 bytes
14046   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14047       VecTy.getScalarSizeInBits() <= 32) {
14048     return SDValue();
14049   }
14050 
14051   // All stores are done as v2f64 and possible bit cast.
14052   if (VecTy != MVT::v2f64) {
14053     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14054     DCI.AddToWorklist(Src.getNode());
14055   }
14056 
14057   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14058                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14059   DCI.AddToWorklist(Swap.getNode());
14060   Chain = Swap.getValue(1);
14061   SDValue StoreOps[] = { Chain, Swap, Base };
14062   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14063                                           DAG.getVTList(MVT::Other),
14064                                           StoreOps, VecTy, MMO);
14065   DCI.AddToWorklist(Store.getNode());
14066   return Store;
14067 }
14068 
14069 // Handle DAG combine for STORE (FP_TO_INT F).
14070 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14071                                                DAGCombinerInfo &DCI) const {
14072 
14073   SelectionDAG &DAG = DCI.DAG;
14074   SDLoc dl(N);
14075   unsigned Opcode = N->getOperand(1).getOpcode();
14076 
14077   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14078          && "Not a FP_TO_INT Instruction!");
14079 
14080   SDValue Val = N->getOperand(1).getOperand(0);
14081   EVT Op1VT = N->getOperand(1).getValueType();
14082   EVT ResVT = Val.getValueType();
14083 
14084   // Floating point types smaller than 32 bits are not legal on Power.
14085   if (ResVT.getScalarSizeInBits() < 32)
14086     return SDValue();
14087 
14088   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14089   bool ValidTypeForStoreFltAsInt =
14090         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14091          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14092 
14093   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14094       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14095     return SDValue();
14096 
14097   // Extend f32 values to f64
14098   if (ResVT.getScalarSizeInBits() == 32) {
14099     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14100     DCI.AddToWorklist(Val.getNode());
14101   }
14102 
14103   // Set signed or unsigned conversion opcode.
14104   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14105                           PPCISD::FP_TO_SINT_IN_VSR :
14106                           PPCISD::FP_TO_UINT_IN_VSR;
14107 
14108   Val = DAG.getNode(ConvOpcode,
14109                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14110   DCI.AddToWorklist(Val.getNode());
14111 
14112   // Set number of bytes being converted.
14113   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14114   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14115                     DAG.getIntPtrConstant(ByteSize, dl, false),
14116                     DAG.getValueType(Op1VT) };
14117 
14118   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14119           DAG.getVTList(MVT::Other), Ops,
14120           cast<StoreSDNode>(N)->getMemoryVT(),
14121           cast<StoreSDNode>(N)->getMemOperand());
14122 
14123   DCI.AddToWorklist(Val.getNode());
14124   return Val;
14125 }
14126 
14127 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14128   // Check that the source of the element keeps flipping
14129   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14130   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14131   for (int i = 1, e = Mask.size(); i < e; i++) {
14132     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14133       return false;
14134     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14135       return false;
14136     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14137   }
14138   return true;
14139 }
14140 
14141 static bool isSplatBV(SDValue Op) {
14142   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14143     return false;
14144   SDValue FirstOp;
14145 
14146   // Find first non-undef input.
14147   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14148     FirstOp = Op.getOperand(i);
14149     if (!FirstOp.isUndef())
14150       break;
14151   }
14152 
14153   // All inputs are undef or the same as the first non-undef input.
14154   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14155     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14156       return false;
14157   return true;
14158 }
14159 
14160 static SDValue isScalarToVec(SDValue Op) {
14161   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14162     return Op;
14163   if (Op.getOpcode() != ISD::BITCAST)
14164     return SDValue();
14165   Op = Op.getOperand(0);
14166   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14167     return Op;
14168   return SDValue();
14169 }
14170 
14171 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14172                                             int LHSMaxIdx, int RHSMinIdx,
14173                                             int RHSMaxIdx, int HalfVec) {
14174   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14175     int Idx = ShuffV[i];
14176     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14177       ShuffV[i] += HalfVec;
14178   }
14179   return;
14180 }
14181 
14182 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14183 // the original is:
14184 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14185 // In such a case, just change the shuffle mask to extract the element
14186 // from the permuted index.
14187 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14188   SDLoc dl(OrigSToV);
14189   EVT VT = OrigSToV.getValueType();
14190   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14191          "Expecting a SCALAR_TO_VECTOR here");
14192   SDValue Input = OrigSToV.getOperand(0);
14193 
14194   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14195     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14196     SDValue OrigVector = Input.getOperand(0);
14197 
14198     // Can't handle non-const element indices or different vector types
14199     // for the input to the extract and the output of the scalar_to_vector.
14200     if (Idx && VT == OrigVector.getValueType()) {
14201       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14202       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14203       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14204     }
14205   }
14206   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14207                      OrigSToV.getOperand(0));
14208 }
14209 
14210 // On little endian subtargets, combine shuffles such as:
14211 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14212 // into:
14213 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14214 // because the latter can be matched to a single instruction merge.
14215 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14216 // to put the value into element zero. Adjust the shuffle mask so that the
14217 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14218 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14219                                                 SelectionDAG &DAG) const {
14220   SDValue LHS = SVN->getOperand(0);
14221   SDValue RHS = SVN->getOperand(1);
14222   auto Mask = SVN->getMask();
14223   int NumElts = LHS.getValueType().getVectorNumElements();
14224   SDValue Res(SVN, 0);
14225   SDLoc dl(SVN);
14226 
14227   // None of these combines are useful on big endian systems since the ISA
14228   // already has a big endian bias.
14229   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14230     return Res;
14231 
14232   // If this is not a shuffle of a shuffle and the first element comes from
14233   // the second vector, canonicalize to the commuted form. This will make it
14234   // more likely to match one of the single instruction patterns.
14235   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14236       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14237     std::swap(LHS, RHS);
14238     Res = DAG.getCommutedVectorShuffle(*SVN);
14239     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14240   }
14241 
14242   // Adjust the shuffle mask if either input vector comes from a
14243   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14244   // form (to prevent the need for a swap).
14245   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14246   SDValue SToVLHS = isScalarToVec(LHS);
14247   SDValue SToVRHS = isScalarToVec(RHS);
14248   if (SToVLHS || SToVRHS) {
14249     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14250                             : SToVRHS.getValueType().getVectorNumElements();
14251     int NumEltsOut = ShuffV.size();
14252 
14253     // Initially assume that neither input is permuted. These will be adjusted
14254     // accordingly if either input is.
14255     int LHSMaxIdx = -1;
14256     int RHSMinIdx = -1;
14257     int RHSMaxIdx = -1;
14258     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14259 
14260     // Get the permuted scalar to vector nodes for the source(s) that come from
14261     // ISD::SCALAR_TO_VECTOR.
14262     if (SToVLHS) {
14263       // Set up the values for the shuffle vector fixup.
14264       LHSMaxIdx = NumEltsOut / NumEltsIn;
14265       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14266       if (SToVLHS.getValueType() != LHS.getValueType())
14267         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14268       LHS = SToVLHS;
14269     }
14270     if (SToVRHS) {
14271       RHSMinIdx = NumEltsOut;
14272       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14273       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14274       if (SToVRHS.getValueType() != RHS.getValueType())
14275         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14276       RHS = SToVRHS;
14277     }
14278 
14279     // Fix up the shuffle mask to reflect where the desired element actually is.
14280     // The minimum and maximum indices that correspond to element zero for both
14281     // the LHS and RHS are computed and will control which shuffle mask entries
14282     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14283     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14284     // HalfVec to refer to the corresponding element in the permuted vector.
14285     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14286                                     HalfVec);
14287     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14288 
14289     // We may have simplified away the shuffle. We won't be able to do anything
14290     // further with it here.
14291     if (!isa<ShuffleVectorSDNode>(Res))
14292       return Res;
14293     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14294   }
14295 
14296   // The common case after we commuted the shuffle is that the RHS is a splat
14297   // and we have elements coming in from the splat at indices that are not
14298   // conducive to using a merge.
14299   // Example:
14300   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14301   if (!isSplatBV(RHS))
14302     return Res;
14303 
14304   // We are looking for a mask such that all even elements are from
14305   // one vector and all odd elements from the other.
14306   if (!isAlternatingShuffMask(Mask, NumElts))
14307     return Res;
14308 
14309   // Adjust the mask so we are pulling in the same index from the splat
14310   // as the index from the interesting vector in consecutive elements.
14311   // Example (even elements from first vector):
14312   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14313   if (Mask[0] < NumElts)
14314     for (int i = 1, e = Mask.size(); i < e; i += 2)
14315       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14316   // Example (odd elements from first vector):
14317   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14318   else
14319     for (int i = 0, e = Mask.size(); i < e; i += 2)
14320       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14321 
14322   // If the RHS has undefs, we need to remove them since we may have created
14323   // a shuffle that adds those instead of the splat value.
14324   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14325   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14326 
14327   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14328   return Res;
14329 }
14330 
14331 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14332                                                 LSBaseSDNode *LSBase,
14333                                                 DAGCombinerInfo &DCI) const {
14334   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14335         "Not a reverse memop pattern!");
14336 
14337   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14338     auto Mask = SVN->getMask();
14339     int i = 0;
14340     auto I = Mask.rbegin();
14341     auto E = Mask.rend();
14342 
14343     for (; I != E; ++I) {
14344       if (*I != i)
14345         return false;
14346       i++;
14347     }
14348     return true;
14349   };
14350 
14351   SelectionDAG &DAG = DCI.DAG;
14352   EVT VT = SVN->getValueType(0);
14353 
14354   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14355     return SDValue();
14356 
14357   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14358   // See comment in PPCVSXSwapRemoval.cpp.
14359   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14360   if (!Subtarget.hasP9Vector())
14361     return SDValue();
14362 
14363   if(!IsElementReverse(SVN))
14364     return SDValue();
14365 
14366   if (LSBase->getOpcode() == ISD::LOAD) {
14367     SDLoc dl(SVN);
14368     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14369     return DAG.getMemIntrinsicNode(
14370         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14371         LSBase->getMemoryVT(), LSBase->getMemOperand());
14372   }
14373 
14374   if (LSBase->getOpcode() == ISD::STORE) {
14375     SDLoc dl(LSBase);
14376     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14377                           LSBase->getBasePtr()};
14378     return DAG.getMemIntrinsicNode(
14379         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14380         LSBase->getMemoryVT(), LSBase->getMemOperand());
14381   }
14382 
14383   llvm_unreachable("Expected a load or store node here");
14384 }
14385 
14386 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14387                                              DAGCombinerInfo &DCI) const {
14388   SelectionDAG &DAG = DCI.DAG;
14389   SDLoc dl(N);
14390   switch (N->getOpcode()) {
14391   default: break;
14392   case ISD::ADD:
14393     return combineADD(N, DCI);
14394   case ISD::SHL:
14395     return combineSHL(N, DCI);
14396   case ISD::SRA:
14397     return combineSRA(N, DCI);
14398   case ISD::SRL:
14399     return combineSRL(N, DCI);
14400   case ISD::MUL:
14401     return combineMUL(N, DCI);
14402   case ISD::FMA:
14403   case PPCISD::FNMSUB:
14404     return combineFMALike(N, DCI);
14405   case PPCISD::SHL:
14406     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14407         return N->getOperand(0);
14408     break;
14409   case PPCISD::SRL:
14410     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14411         return N->getOperand(0);
14412     break;
14413   case PPCISD::SRA:
14414     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14415       if (C->isNullValue() ||   //  0 >>s V -> 0.
14416           C->isAllOnesValue())    // -1 >>s V -> -1.
14417         return N->getOperand(0);
14418     }
14419     break;
14420   case ISD::SIGN_EXTEND:
14421   case ISD::ZERO_EXTEND:
14422   case ISD::ANY_EXTEND:
14423     return DAGCombineExtBoolTrunc(N, DCI);
14424   case ISD::TRUNCATE:
14425     return combineTRUNCATE(N, DCI);
14426   case ISD::SETCC:
14427     if (SDValue CSCC = combineSetCC(N, DCI))
14428       return CSCC;
14429     LLVM_FALLTHROUGH;
14430   case ISD::SELECT_CC:
14431     return DAGCombineTruncBoolExt(N, DCI);
14432   case ISD::SINT_TO_FP:
14433   case ISD::UINT_TO_FP:
14434     return combineFPToIntToFP(N, DCI);
14435   case ISD::VECTOR_SHUFFLE:
14436     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14437       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14438       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14439     }
14440     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14441   case ISD::STORE: {
14442 
14443     EVT Op1VT = N->getOperand(1).getValueType();
14444     unsigned Opcode = N->getOperand(1).getOpcode();
14445 
14446     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14447       SDValue Val= combineStoreFPToInt(N, DCI);
14448       if (Val)
14449         return Val;
14450     }
14451 
14452     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14453       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14454       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14455       if (Val)
14456         return Val;
14457     }
14458 
14459     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14460     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14461         N->getOperand(1).getNode()->hasOneUse() &&
14462         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14463          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14464 
14465       // STBRX can only handle simple types and it makes no sense to store less
14466       // two bytes in byte-reversed order.
14467       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14468       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14469         break;
14470 
14471       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14472       // Do an any-extend to 32-bits if this is a half-word input.
14473       if (BSwapOp.getValueType() == MVT::i16)
14474         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14475 
14476       // If the type of BSWAP operand is wider than stored memory width
14477       // it need to be shifted to the right side before STBRX.
14478       if (Op1VT.bitsGT(mVT)) {
14479         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14480         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14481                               DAG.getConstant(Shift, dl, MVT::i32));
14482         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14483         if (Op1VT == MVT::i64)
14484           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14485       }
14486 
14487       SDValue Ops[] = {
14488         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14489       };
14490       return
14491         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14492                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14493                                 cast<StoreSDNode>(N)->getMemOperand());
14494     }
14495 
14496     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14497     // So it can increase the chance of CSE constant construction.
14498     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14499         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14500       // Need to sign-extended to 64-bits to handle negative values.
14501       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14502       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14503                                     MemVT.getSizeInBits());
14504       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14505 
14506       // DAG.getTruncStore() can't be used here because it doesn't accept
14507       // the general (base + offset) addressing mode.
14508       // So we use UpdateNodeOperands and setTruncatingStore instead.
14509       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14510                              N->getOperand(3));
14511       cast<StoreSDNode>(N)->setTruncatingStore(true);
14512       return SDValue(N, 0);
14513     }
14514 
14515     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14516     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14517     if (Op1VT.isSimple()) {
14518       MVT StoreVT = Op1VT.getSimpleVT();
14519       if (Subtarget.needsSwapsForVSXMemOps() &&
14520           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14521            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14522         return expandVSXStoreForLE(N, DCI);
14523     }
14524     break;
14525   }
14526   case ISD::LOAD: {
14527     LoadSDNode *LD = cast<LoadSDNode>(N);
14528     EVT VT = LD->getValueType(0);
14529 
14530     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14531     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14532     if (VT.isSimple()) {
14533       MVT LoadVT = VT.getSimpleVT();
14534       if (Subtarget.needsSwapsForVSXMemOps() &&
14535           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14536            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14537         return expandVSXLoadForLE(N, DCI);
14538     }
14539 
14540     // We sometimes end up with a 64-bit integer load, from which we extract
14541     // two single-precision floating-point numbers. This happens with
14542     // std::complex<float>, and other similar structures, because of the way we
14543     // canonicalize structure copies. However, if we lack direct moves,
14544     // then the final bitcasts from the extracted integer values to the
14545     // floating-point numbers turn into store/load pairs. Even with direct moves,
14546     // just loading the two floating-point numbers is likely better.
14547     auto ReplaceTwoFloatLoad = [&]() {
14548       if (VT != MVT::i64)
14549         return false;
14550 
14551       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14552           LD->isVolatile())
14553         return false;
14554 
14555       //  We're looking for a sequence like this:
14556       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14557       //      t16: i64 = srl t13, Constant:i32<32>
14558       //    t17: i32 = truncate t16
14559       //  t18: f32 = bitcast t17
14560       //    t19: i32 = truncate t13
14561       //  t20: f32 = bitcast t19
14562 
14563       if (!LD->hasNUsesOfValue(2, 0))
14564         return false;
14565 
14566       auto UI = LD->use_begin();
14567       while (UI.getUse().getResNo() != 0) ++UI;
14568       SDNode *Trunc = *UI++;
14569       while (UI.getUse().getResNo() != 0) ++UI;
14570       SDNode *RightShift = *UI;
14571       if (Trunc->getOpcode() != ISD::TRUNCATE)
14572         std::swap(Trunc, RightShift);
14573 
14574       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14575           Trunc->getValueType(0) != MVT::i32 ||
14576           !Trunc->hasOneUse())
14577         return false;
14578       if (RightShift->getOpcode() != ISD::SRL ||
14579           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14580           RightShift->getConstantOperandVal(1) != 32 ||
14581           !RightShift->hasOneUse())
14582         return false;
14583 
14584       SDNode *Trunc2 = *RightShift->use_begin();
14585       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14586           Trunc2->getValueType(0) != MVT::i32 ||
14587           !Trunc2->hasOneUse())
14588         return false;
14589 
14590       SDNode *Bitcast = *Trunc->use_begin();
14591       SDNode *Bitcast2 = *Trunc2->use_begin();
14592 
14593       if (Bitcast->getOpcode() != ISD::BITCAST ||
14594           Bitcast->getValueType(0) != MVT::f32)
14595         return false;
14596       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14597           Bitcast2->getValueType(0) != MVT::f32)
14598         return false;
14599 
14600       if (Subtarget.isLittleEndian())
14601         std::swap(Bitcast, Bitcast2);
14602 
14603       // Bitcast has the second float (in memory-layout order) and Bitcast2
14604       // has the first one.
14605 
14606       SDValue BasePtr = LD->getBasePtr();
14607       if (LD->isIndexed()) {
14608         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14609                "Non-pre-inc AM on PPC?");
14610         BasePtr =
14611           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14612                       LD->getOffset());
14613       }
14614 
14615       auto MMOFlags =
14616           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14617       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14618                                       LD->getPointerInfo(), LD->getAlignment(),
14619                                       MMOFlags, LD->getAAInfo());
14620       SDValue AddPtr =
14621         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14622                     BasePtr, DAG.getIntPtrConstant(4, dl));
14623       SDValue FloatLoad2 = DAG.getLoad(
14624           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14625           LD->getPointerInfo().getWithOffset(4),
14626           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14627 
14628       if (LD->isIndexed()) {
14629         // Note that DAGCombine should re-form any pre-increment load(s) from
14630         // what is produced here if that makes sense.
14631         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14632       }
14633 
14634       DCI.CombineTo(Bitcast2, FloatLoad);
14635       DCI.CombineTo(Bitcast, FloatLoad2);
14636 
14637       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14638                                     SDValue(FloatLoad2.getNode(), 1));
14639       return true;
14640     };
14641 
14642     if (ReplaceTwoFloatLoad())
14643       return SDValue(N, 0);
14644 
14645     EVT MemVT = LD->getMemoryVT();
14646     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14647     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14648     if (LD->isUnindexed() && VT.isVector() &&
14649         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14650           // P8 and later hardware should just use LOAD.
14651           !Subtarget.hasP8Vector() &&
14652           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14653            VT == MVT::v4f32))) &&
14654         LD->getAlign() < ABIAlignment) {
14655       // This is a type-legal unaligned Altivec load.
14656       SDValue Chain = LD->getChain();
14657       SDValue Ptr = LD->getBasePtr();
14658       bool isLittleEndian = Subtarget.isLittleEndian();
14659 
14660       // This implements the loading of unaligned vectors as described in
14661       // the venerable Apple Velocity Engine overview. Specifically:
14662       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14663       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14664       //
14665       // The general idea is to expand a sequence of one or more unaligned
14666       // loads into an alignment-based permutation-control instruction (lvsl
14667       // or lvsr), a series of regular vector loads (which always truncate
14668       // their input address to an aligned address), and a series of
14669       // permutations.  The results of these permutations are the requested
14670       // loaded values.  The trick is that the last "extra" load is not taken
14671       // from the address you might suspect (sizeof(vector) bytes after the
14672       // last requested load), but rather sizeof(vector) - 1 bytes after the
14673       // last requested vector. The point of this is to avoid a page fault if
14674       // the base address happened to be aligned. This works because if the
14675       // base address is aligned, then adding less than a full vector length
14676       // will cause the last vector in the sequence to be (re)loaded.
14677       // Otherwise, the next vector will be fetched as you might suspect was
14678       // necessary.
14679 
14680       // We might be able to reuse the permutation generation from
14681       // a different base address offset from this one by an aligned amount.
14682       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14683       // optimization later.
14684       Intrinsic::ID Intr, IntrLD, IntrPerm;
14685       MVT PermCntlTy, PermTy, LDTy;
14686       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14687                             : Intrinsic::ppc_altivec_lvsl;
14688       IntrLD = Intrinsic::ppc_altivec_lvx;
14689       IntrPerm = Intrinsic::ppc_altivec_vperm;
14690       PermCntlTy = MVT::v16i8;
14691       PermTy = MVT::v4i32;
14692       LDTy = MVT::v4i32;
14693 
14694       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14695 
14696       // Create the new MMO for the new base load. It is like the original MMO,
14697       // but represents an area in memory almost twice the vector size centered
14698       // on the original address. If the address is unaligned, we might start
14699       // reading up to (sizeof(vector)-1) bytes below the address of the
14700       // original unaligned load.
14701       MachineFunction &MF = DAG.getMachineFunction();
14702       MachineMemOperand *BaseMMO =
14703         MF.getMachineMemOperand(LD->getMemOperand(),
14704                                 -(long)MemVT.getStoreSize()+1,
14705                                 2*MemVT.getStoreSize()-1);
14706 
14707       // Create the new base load.
14708       SDValue LDXIntID =
14709           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14710       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14711       SDValue BaseLoad =
14712         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14713                                 DAG.getVTList(PermTy, MVT::Other),
14714                                 BaseLoadOps, LDTy, BaseMMO);
14715 
14716       // Note that the value of IncOffset (which is provided to the next
14717       // load's pointer info offset value, and thus used to calculate the
14718       // alignment), and the value of IncValue (which is actually used to
14719       // increment the pointer value) are different! This is because we
14720       // require the next load to appear to be aligned, even though it
14721       // is actually offset from the base pointer by a lesser amount.
14722       int IncOffset = VT.getSizeInBits() / 8;
14723       int IncValue = IncOffset;
14724 
14725       // Walk (both up and down) the chain looking for another load at the real
14726       // (aligned) offset (the alignment of the other load does not matter in
14727       // this case). If found, then do not use the offset reduction trick, as
14728       // that will prevent the loads from being later combined (as they would
14729       // otherwise be duplicates).
14730       if (!findConsecutiveLoad(LD, DAG))
14731         --IncValue;
14732 
14733       SDValue Increment =
14734           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14735       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14736 
14737       MachineMemOperand *ExtraMMO =
14738         MF.getMachineMemOperand(LD->getMemOperand(),
14739                                 1, 2*MemVT.getStoreSize()-1);
14740       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14741       SDValue ExtraLoad =
14742         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14743                                 DAG.getVTList(PermTy, MVT::Other),
14744                                 ExtraLoadOps, LDTy, ExtraMMO);
14745 
14746       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14747         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14748 
14749       // Because vperm has a big-endian bias, we must reverse the order
14750       // of the input vectors and complement the permute control vector
14751       // when generating little endian code.  We have already handled the
14752       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14753       // and ExtraLoad here.
14754       SDValue Perm;
14755       if (isLittleEndian)
14756         Perm = BuildIntrinsicOp(IntrPerm,
14757                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14758       else
14759         Perm = BuildIntrinsicOp(IntrPerm,
14760                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14761 
14762       if (VT != PermTy)
14763         Perm = Subtarget.hasAltivec()
14764                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14765                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14766                                  DAG.getTargetConstant(1, dl, MVT::i64));
14767                                // second argument is 1 because this rounding
14768                                // is always exact.
14769 
14770       // The output of the permutation is our loaded result, the TokenFactor is
14771       // our new chain.
14772       DCI.CombineTo(N, Perm, TF);
14773       return SDValue(N, 0);
14774     }
14775     }
14776     break;
14777     case ISD::INTRINSIC_WO_CHAIN: {
14778       bool isLittleEndian = Subtarget.isLittleEndian();
14779       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14780       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14781                                            : Intrinsic::ppc_altivec_lvsl);
14782       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14783         SDValue Add = N->getOperand(1);
14784 
14785         int Bits = 4 /* 16 byte alignment */;
14786 
14787         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14788                                   APInt::getAllOnesValue(Bits /* alignment */)
14789                                       .zext(Add.getScalarValueSizeInBits()))) {
14790           SDNode *BasePtr = Add->getOperand(0).getNode();
14791           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14792                                     UE = BasePtr->use_end();
14793                UI != UE; ++UI) {
14794             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14795                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14796                     IID) {
14797               // We've found another LVSL/LVSR, and this address is an aligned
14798               // multiple of that one. The results will be the same, so use the
14799               // one we've just found instead.
14800 
14801               return SDValue(*UI, 0);
14802             }
14803           }
14804         }
14805 
14806         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14807           SDNode *BasePtr = Add->getOperand(0).getNode();
14808           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14809                UE = BasePtr->use_end(); UI != UE; ++UI) {
14810             if (UI->getOpcode() == ISD::ADD &&
14811                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14812                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14813                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14814                 (1ULL << Bits) == 0) {
14815               SDNode *OtherAdd = *UI;
14816               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14817                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14818                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14819                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14820                   return SDValue(*VI, 0);
14821                 }
14822               }
14823             }
14824           }
14825         }
14826       }
14827 
14828       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14829       // Expose the vabsduw/h/b opportunity for down stream
14830       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14831           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14832            IID == Intrinsic::ppc_altivec_vmaxsh ||
14833            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14834         SDValue V1 = N->getOperand(1);
14835         SDValue V2 = N->getOperand(2);
14836         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14837              V1.getSimpleValueType() == MVT::v8i16 ||
14838              V1.getSimpleValueType() == MVT::v16i8) &&
14839             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14840           // (0-a, a)
14841           if (V1.getOpcode() == ISD::SUB &&
14842               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14843               V1.getOperand(1) == V2) {
14844             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14845           }
14846           // (a, 0-a)
14847           if (V2.getOpcode() == ISD::SUB &&
14848               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14849               V2.getOperand(1) == V1) {
14850             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14851           }
14852           // (x-y, y-x)
14853           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14854               V1.getOperand(0) == V2.getOperand(1) &&
14855               V1.getOperand(1) == V2.getOperand(0)) {
14856             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14857           }
14858         }
14859       }
14860     }
14861 
14862     break;
14863   case ISD::INTRINSIC_W_CHAIN:
14864     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14865     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14866     if (Subtarget.needsSwapsForVSXMemOps()) {
14867       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14868       default:
14869         break;
14870       case Intrinsic::ppc_vsx_lxvw4x:
14871       case Intrinsic::ppc_vsx_lxvd2x:
14872         return expandVSXLoadForLE(N, DCI);
14873       }
14874     }
14875     break;
14876   case ISD::INTRINSIC_VOID:
14877     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14878     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14879     if (Subtarget.needsSwapsForVSXMemOps()) {
14880       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14881       default:
14882         break;
14883       case Intrinsic::ppc_vsx_stxvw4x:
14884       case Intrinsic::ppc_vsx_stxvd2x:
14885         return expandVSXStoreForLE(N, DCI);
14886       }
14887     }
14888     break;
14889   case ISD::BSWAP:
14890     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14891     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14892         N->getOperand(0).hasOneUse() &&
14893         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14894          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14895           N->getValueType(0) == MVT::i64))) {
14896       SDValue Load = N->getOperand(0);
14897       LoadSDNode *LD = cast<LoadSDNode>(Load);
14898       // Create the byte-swapping load.
14899       SDValue Ops[] = {
14900         LD->getChain(),    // Chain
14901         LD->getBasePtr(),  // Ptr
14902         DAG.getValueType(N->getValueType(0)) // VT
14903       };
14904       SDValue BSLoad =
14905         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14906                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14907                                               MVT::i64 : MVT::i32, MVT::Other),
14908                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14909 
14910       // If this is an i16 load, insert the truncate.
14911       SDValue ResVal = BSLoad;
14912       if (N->getValueType(0) == MVT::i16)
14913         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14914 
14915       // First, combine the bswap away.  This makes the value produced by the
14916       // load dead.
14917       DCI.CombineTo(N, ResVal);
14918 
14919       // Next, combine the load away, we give it a bogus result value but a real
14920       // chain result.  The result value is dead because the bswap is dead.
14921       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14922 
14923       // Return N so it doesn't get rechecked!
14924       return SDValue(N, 0);
14925     }
14926     break;
14927   case PPCISD::VCMP:
14928     // If a VCMPo node already exists with exactly the same operands as this
14929     // node, use its result instead of this node (VCMPo computes both a CR6 and
14930     // a normal output).
14931     //
14932     if (!N->getOperand(0).hasOneUse() &&
14933         !N->getOperand(1).hasOneUse() &&
14934         !N->getOperand(2).hasOneUse()) {
14935 
14936       // Scan all of the users of the LHS, looking for VCMPo's that match.
14937       SDNode *VCMPoNode = nullptr;
14938 
14939       SDNode *LHSN = N->getOperand(0).getNode();
14940       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14941            UI != E; ++UI)
14942         if (UI->getOpcode() == PPCISD::VCMPo &&
14943             UI->getOperand(1) == N->getOperand(1) &&
14944             UI->getOperand(2) == N->getOperand(2) &&
14945             UI->getOperand(0) == N->getOperand(0)) {
14946           VCMPoNode = *UI;
14947           break;
14948         }
14949 
14950       // If there is no VCMPo node, or if the flag value has a single use, don't
14951       // transform this.
14952       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14953         break;
14954 
14955       // Look at the (necessarily single) use of the flag value.  If it has a
14956       // chain, this transformation is more complex.  Note that multiple things
14957       // could use the value result, which we should ignore.
14958       SDNode *FlagUser = nullptr;
14959       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14960            FlagUser == nullptr; ++UI) {
14961         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14962         SDNode *User = *UI;
14963         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14964           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14965             FlagUser = User;
14966             break;
14967           }
14968         }
14969       }
14970 
14971       // If the user is a MFOCRF instruction, we know this is safe.
14972       // Otherwise we give up for right now.
14973       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14974         return SDValue(VCMPoNode, 0);
14975     }
14976     break;
14977   case ISD::BRCOND: {
14978     SDValue Cond = N->getOperand(1);
14979     SDValue Target = N->getOperand(2);
14980 
14981     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14982         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14983           Intrinsic::loop_decrement) {
14984 
14985       // We now need to make the intrinsic dead (it cannot be instruction
14986       // selected).
14987       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14988       assert(Cond.getNode()->hasOneUse() &&
14989              "Counter decrement has more than one use");
14990 
14991       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14992                          N->getOperand(0), Target);
14993     }
14994   }
14995   break;
14996   case ISD::BR_CC: {
14997     // If this is a branch on an altivec predicate comparison, lower this so
14998     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14999     // lowering is done pre-legalize, because the legalizer lowers the predicate
15000     // compare down to code that is difficult to reassemble.
15001     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15002     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15003 
15004     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15005     // value. If so, pass-through the AND to get to the intrinsic.
15006     if (LHS.getOpcode() == ISD::AND &&
15007         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15008         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15009           Intrinsic::loop_decrement &&
15010         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15011         !isNullConstant(LHS.getOperand(1)))
15012       LHS = LHS.getOperand(0);
15013 
15014     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15015         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15016           Intrinsic::loop_decrement &&
15017         isa<ConstantSDNode>(RHS)) {
15018       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15019              "Counter decrement comparison is not EQ or NE");
15020 
15021       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15022       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15023                     (CC == ISD::SETNE && !Val);
15024 
15025       // We now need to make the intrinsic dead (it cannot be instruction
15026       // selected).
15027       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15028       assert(LHS.getNode()->hasOneUse() &&
15029              "Counter decrement has more than one use");
15030 
15031       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15032                          N->getOperand(0), N->getOperand(4));
15033     }
15034 
15035     int CompareOpc;
15036     bool isDot;
15037 
15038     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15039         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15040         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15041       assert(isDot && "Can't compare against a vector result!");
15042 
15043       // If this is a comparison against something other than 0/1, then we know
15044       // that the condition is never/always true.
15045       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15046       if (Val != 0 && Val != 1) {
15047         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15048           return N->getOperand(0);
15049         // Always !=, turn it into an unconditional branch.
15050         return DAG.getNode(ISD::BR, dl, MVT::Other,
15051                            N->getOperand(0), N->getOperand(4));
15052       }
15053 
15054       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15055 
15056       // Create the PPCISD altivec 'dot' comparison node.
15057       SDValue Ops[] = {
15058         LHS.getOperand(2),  // LHS of compare
15059         LHS.getOperand(3),  // RHS of compare
15060         DAG.getConstant(CompareOpc, dl, MVT::i32)
15061       };
15062       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15063       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15064 
15065       // Unpack the result based on how the target uses it.
15066       PPC::Predicate CompOpc;
15067       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15068       default:  // Can't happen, don't crash on invalid number though.
15069       case 0:   // Branch on the value of the EQ bit of CR6.
15070         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15071         break;
15072       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15073         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15074         break;
15075       case 2:   // Branch on the value of the LT bit of CR6.
15076         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15077         break;
15078       case 3:   // Branch on the inverted value of the LT bit of CR6.
15079         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15080         break;
15081       }
15082 
15083       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15084                          DAG.getConstant(CompOpc, dl, MVT::i32),
15085                          DAG.getRegister(PPC::CR6, MVT::i32),
15086                          N->getOperand(4), CompNode.getValue(1));
15087     }
15088     break;
15089   }
15090   case ISD::BUILD_VECTOR:
15091     return DAGCombineBuildVector(N, DCI);
15092   case ISD::ABS:
15093     return combineABS(N, DCI);
15094   case ISD::VSELECT:
15095     return combineVSelect(N, DCI);
15096   }
15097 
15098   return SDValue();
15099 }
15100 
15101 SDValue
15102 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15103                                  SelectionDAG &DAG,
15104                                  SmallVectorImpl<SDNode *> &Created) const {
15105   // fold (sdiv X, pow2)
15106   EVT VT = N->getValueType(0);
15107   if (VT == MVT::i64 && !Subtarget.isPPC64())
15108     return SDValue();
15109   if ((VT != MVT::i32 && VT != MVT::i64) ||
15110       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15111     return SDValue();
15112 
15113   SDLoc DL(N);
15114   SDValue N0 = N->getOperand(0);
15115 
15116   bool IsNegPow2 = (-Divisor).isPowerOf2();
15117   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15118   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15119 
15120   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15121   Created.push_back(Op.getNode());
15122 
15123   if (IsNegPow2) {
15124     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15125     Created.push_back(Op.getNode());
15126   }
15127 
15128   return Op;
15129 }
15130 
15131 //===----------------------------------------------------------------------===//
15132 // Inline Assembly Support
15133 //===----------------------------------------------------------------------===//
15134 
15135 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15136                                                       KnownBits &Known,
15137                                                       const APInt &DemandedElts,
15138                                                       const SelectionDAG &DAG,
15139                                                       unsigned Depth) const {
15140   Known.resetAll();
15141   switch (Op.getOpcode()) {
15142   default: break;
15143   case PPCISD::LBRX: {
15144     // lhbrx is known to have the top bits cleared out.
15145     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15146       Known.Zero = 0xFFFF0000;
15147     break;
15148   }
15149   case ISD::INTRINSIC_WO_CHAIN: {
15150     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15151     default: break;
15152     case Intrinsic::ppc_altivec_vcmpbfp_p:
15153     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15154     case Intrinsic::ppc_altivec_vcmpequb_p:
15155     case Intrinsic::ppc_altivec_vcmpequh_p:
15156     case Intrinsic::ppc_altivec_vcmpequw_p:
15157     case Intrinsic::ppc_altivec_vcmpequd_p:
15158     case Intrinsic::ppc_altivec_vcmpgefp_p:
15159     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15160     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15161     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15162     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15163     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15164     case Intrinsic::ppc_altivec_vcmpgtub_p:
15165     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15166     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15167     case Intrinsic::ppc_altivec_vcmpgtud_p:
15168       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15169       break;
15170     }
15171   }
15172   }
15173 }
15174 
15175 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15176   switch (Subtarget.getCPUDirective()) {
15177   default: break;
15178   case PPC::DIR_970:
15179   case PPC::DIR_PWR4:
15180   case PPC::DIR_PWR5:
15181   case PPC::DIR_PWR5X:
15182   case PPC::DIR_PWR6:
15183   case PPC::DIR_PWR6X:
15184   case PPC::DIR_PWR7:
15185   case PPC::DIR_PWR8:
15186   case PPC::DIR_PWR9:
15187   case PPC::DIR_PWR10:
15188   case PPC::DIR_PWR_FUTURE: {
15189     if (!ML)
15190       break;
15191 
15192     if (!DisableInnermostLoopAlign32) {
15193       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15194       // so that we can decrease cache misses and branch-prediction misses.
15195       // Actual alignment of the loop will depend on the hotness check and other
15196       // logic in alignBlocks.
15197       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15198         return Align(32);
15199     }
15200 
15201     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15202 
15203     // For small loops (between 5 and 8 instructions), align to a 32-byte
15204     // boundary so that the entire loop fits in one instruction-cache line.
15205     uint64_t LoopSize = 0;
15206     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15207       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15208         LoopSize += TII->getInstSizeInBytes(*J);
15209         if (LoopSize > 32)
15210           break;
15211       }
15212 
15213     if (LoopSize > 16 && LoopSize <= 32)
15214       return Align(32);
15215 
15216     break;
15217   }
15218   }
15219 
15220   return TargetLowering::getPrefLoopAlignment(ML);
15221 }
15222 
15223 /// getConstraintType - Given a constraint, return the type of
15224 /// constraint it is for this target.
15225 PPCTargetLowering::ConstraintType
15226 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15227   if (Constraint.size() == 1) {
15228     switch (Constraint[0]) {
15229     default: break;
15230     case 'b':
15231     case 'r':
15232     case 'f':
15233     case 'd':
15234     case 'v':
15235     case 'y':
15236       return C_RegisterClass;
15237     case 'Z':
15238       // FIXME: While Z does indicate a memory constraint, it specifically
15239       // indicates an r+r address (used in conjunction with the 'y' modifier
15240       // in the replacement string). Currently, we're forcing the base
15241       // register to be r0 in the asm printer (which is interpreted as zero)
15242       // and forming the complete address in the second register. This is
15243       // suboptimal.
15244       return C_Memory;
15245     }
15246   } else if (Constraint == "wc") { // individual CR bits.
15247     return C_RegisterClass;
15248   } else if (Constraint == "wa" || Constraint == "wd" ||
15249              Constraint == "wf" || Constraint == "ws" ||
15250              Constraint == "wi" || Constraint == "ww") {
15251     return C_RegisterClass; // VSX registers.
15252   }
15253   return TargetLowering::getConstraintType(Constraint);
15254 }
15255 
15256 /// Examine constraint type and operand type and determine a weight value.
15257 /// This object must already have been set up with the operand type
15258 /// and the current alternative constraint selected.
15259 TargetLowering::ConstraintWeight
15260 PPCTargetLowering::getSingleConstraintMatchWeight(
15261     AsmOperandInfo &info, const char *constraint) const {
15262   ConstraintWeight weight = CW_Invalid;
15263   Value *CallOperandVal = info.CallOperandVal;
15264     // If we don't have a value, we can't do a match,
15265     // but allow it at the lowest weight.
15266   if (!CallOperandVal)
15267     return CW_Default;
15268   Type *type = CallOperandVal->getType();
15269 
15270   // Look at the constraint type.
15271   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15272     return CW_Register; // an individual CR bit.
15273   else if ((StringRef(constraint) == "wa" ||
15274             StringRef(constraint) == "wd" ||
15275             StringRef(constraint) == "wf") &&
15276            type->isVectorTy())
15277     return CW_Register;
15278   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15279     return CW_Register; // just hold 64-bit integers data.
15280   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15281     return CW_Register;
15282   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15283     return CW_Register;
15284 
15285   switch (*constraint) {
15286   default:
15287     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15288     break;
15289   case 'b':
15290     if (type->isIntegerTy())
15291       weight = CW_Register;
15292     break;
15293   case 'f':
15294     if (type->isFloatTy())
15295       weight = CW_Register;
15296     break;
15297   case 'd':
15298     if (type->isDoubleTy())
15299       weight = CW_Register;
15300     break;
15301   case 'v':
15302     if (type->isVectorTy())
15303       weight = CW_Register;
15304     break;
15305   case 'y':
15306     weight = CW_Register;
15307     break;
15308   case 'Z':
15309     weight = CW_Memory;
15310     break;
15311   }
15312   return weight;
15313 }
15314 
15315 std::pair<unsigned, const TargetRegisterClass *>
15316 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15317                                                 StringRef Constraint,
15318                                                 MVT VT) const {
15319   if (Constraint.size() == 1) {
15320     // GCC RS6000 Constraint Letters
15321     switch (Constraint[0]) {
15322     case 'b':   // R1-R31
15323       if (VT == MVT::i64 && Subtarget.isPPC64())
15324         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15325       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15326     case 'r':   // R0-R31
15327       if (VT == MVT::i64 && Subtarget.isPPC64())
15328         return std::make_pair(0U, &PPC::G8RCRegClass);
15329       return std::make_pair(0U, &PPC::GPRCRegClass);
15330     // 'd' and 'f' constraints are both defined to be "the floating point
15331     // registers", where one is for 32-bit and the other for 64-bit. We don't
15332     // really care overly much here so just give them all the same reg classes.
15333     case 'd':
15334     case 'f':
15335       if (Subtarget.hasSPE()) {
15336         if (VT == MVT::f32 || VT == MVT::i32)
15337           return std::make_pair(0U, &PPC::GPRCRegClass);
15338         if (VT == MVT::f64 || VT == MVT::i64)
15339           return std::make_pair(0U, &PPC::SPERCRegClass);
15340       } else {
15341         if (VT == MVT::f32 || VT == MVT::i32)
15342           return std::make_pair(0U, &PPC::F4RCRegClass);
15343         if (VT == MVT::f64 || VT == MVT::i64)
15344           return std::make_pair(0U, &PPC::F8RCRegClass);
15345       }
15346       break;
15347     case 'v':
15348       if (Subtarget.hasAltivec())
15349         return std::make_pair(0U, &PPC::VRRCRegClass);
15350       break;
15351     case 'y':   // crrc
15352       return std::make_pair(0U, &PPC::CRRCRegClass);
15353     }
15354   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15355     // An individual CR bit.
15356     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15357   } else if ((Constraint == "wa" || Constraint == "wd" ||
15358              Constraint == "wf" || Constraint == "wi") &&
15359              Subtarget.hasVSX()) {
15360     return std::make_pair(0U, &PPC::VSRCRegClass);
15361   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15362     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15363       return std::make_pair(0U, &PPC::VSSRCRegClass);
15364     else
15365       return std::make_pair(0U, &PPC::VSFRCRegClass);
15366   }
15367 
15368   // If we name a VSX register, we can't defer to the base class because it
15369   // will not recognize the correct register (their names will be VSL{0-31}
15370   // and V{0-31} so they won't match). So we match them here.
15371   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15372     int VSNum = atoi(Constraint.data() + 3);
15373     assert(VSNum >= 0 && VSNum <= 63 &&
15374            "Attempted to access a vsr out of range");
15375     if (VSNum < 32)
15376       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15377     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15378   }
15379   std::pair<unsigned, const TargetRegisterClass *> R =
15380       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15381 
15382   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15383   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15384   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15385   // register.
15386   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15387   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15388   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15389       PPC::GPRCRegClass.contains(R.first))
15390     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15391                             PPC::sub_32, &PPC::G8RCRegClass),
15392                           &PPC::G8RCRegClass);
15393 
15394   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15395   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15396     R.first = PPC::CR0;
15397     R.second = &PPC::CRRCRegClass;
15398   }
15399 
15400   return R;
15401 }
15402 
15403 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15404 /// vector.  If it is invalid, don't add anything to Ops.
15405 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15406                                                      std::string &Constraint,
15407                                                      std::vector<SDValue>&Ops,
15408                                                      SelectionDAG &DAG) const {
15409   SDValue Result;
15410 
15411   // Only support length 1 constraints.
15412   if (Constraint.length() > 1) return;
15413 
15414   char Letter = Constraint[0];
15415   switch (Letter) {
15416   default: break;
15417   case 'I':
15418   case 'J':
15419   case 'K':
15420   case 'L':
15421   case 'M':
15422   case 'N':
15423   case 'O':
15424   case 'P': {
15425     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15426     if (!CST) return; // Must be an immediate to match.
15427     SDLoc dl(Op);
15428     int64_t Value = CST->getSExtValue();
15429     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15430                          // numbers are printed as such.
15431     switch (Letter) {
15432     default: llvm_unreachable("Unknown constraint letter!");
15433     case 'I':  // "I" is a signed 16-bit constant.
15434       if (isInt<16>(Value))
15435         Result = DAG.getTargetConstant(Value, dl, TCVT);
15436       break;
15437     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15438       if (isShiftedUInt<16, 16>(Value))
15439         Result = DAG.getTargetConstant(Value, dl, TCVT);
15440       break;
15441     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15442       if (isShiftedInt<16, 16>(Value))
15443         Result = DAG.getTargetConstant(Value, dl, TCVT);
15444       break;
15445     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15446       if (isUInt<16>(Value))
15447         Result = DAG.getTargetConstant(Value, dl, TCVT);
15448       break;
15449     case 'M':  // "M" is a constant that is greater than 31.
15450       if (Value > 31)
15451         Result = DAG.getTargetConstant(Value, dl, TCVT);
15452       break;
15453     case 'N':  // "N" is a positive constant that is an exact power of two.
15454       if (Value > 0 && isPowerOf2_64(Value))
15455         Result = DAG.getTargetConstant(Value, dl, TCVT);
15456       break;
15457     case 'O':  // "O" is the constant zero.
15458       if (Value == 0)
15459         Result = DAG.getTargetConstant(Value, dl, TCVT);
15460       break;
15461     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15462       if (isInt<16>(-Value))
15463         Result = DAG.getTargetConstant(Value, dl, TCVT);
15464       break;
15465     }
15466     break;
15467   }
15468   }
15469 
15470   if (Result.getNode()) {
15471     Ops.push_back(Result);
15472     return;
15473   }
15474 
15475   // Handle standard constraint letters.
15476   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15477 }
15478 
15479 // isLegalAddressingMode - Return true if the addressing mode represented
15480 // by AM is legal for this target, for a load/store of the specified type.
15481 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15482                                               const AddrMode &AM, Type *Ty,
15483                                               unsigned AS,
15484                                               Instruction *I) const {
15485   // Vector type r+i form is supported since power9 as DQ form. We don't check
15486   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15487   // imm form is preferred and the offset can be adjusted to use imm form later
15488   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15489   // max offset to check legal addressing mode, we should be a little aggressive
15490   // to contain other offsets for that LSRUse.
15491   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15492     return false;
15493 
15494   // PPC allows a sign-extended 16-bit immediate field.
15495   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15496     return false;
15497 
15498   // No global is ever allowed as a base.
15499   if (AM.BaseGV)
15500     return false;
15501 
15502   // PPC only support r+r,
15503   switch (AM.Scale) {
15504   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15505     break;
15506   case 1:
15507     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15508       return false;
15509     // Otherwise we have r+r or r+i.
15510     break;
15511   case 2:
15512     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15513       return false;
15514     // Allow 2*r as r+r.
15515     break;
15516   default:
15517     // No other scales are supported.
15518     return false;
15519   }
15520 
15521   return true;
15522 }
15523 
15524 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15525                                            SelectionDAG &DAG) const {
15526   MachineFunction &MF = DAG.getMachineFunction();
15527   MachineFrameInfo &MFI = MF.getFrameInfo();
15528   MFI.setReturnAddressIsTaken(true);
15529 
15530   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15531     return SDValue();
15532 
15533   SDLoc dl(Op);
15534   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15535 
15536   // Make sure the function does not optimize away the store of the RA to
15537   // the stack.
15538   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15539   FuncInfo->setLRStoreRequired();
15540   bool isPPC64 = Subtarget.isPPC64();
15541   auto PtrVT = getPointerTy(MF.getDataLayout());
15542 
15543   if (Depth > 0) {
15544     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15545     SDValue Offset =
15546         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15547                         isPPC64 ? MVT::i64 : MVT::i32);
15548     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15549                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15550                        MachinePointerInfo());
15551   }
15552 
15553   // Just load the return address off the stack.
15554   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15555   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15556                      MachinePointerInfo());
15557 }
15558 
15559 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15560                                           SelectionDAG &DAG) const {
15561   SDLoc dl(Op);
15562   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15563 
15564   MachineFunction &MF = DAG.getMachineFunction();
15565   MachineFrameInfo &MFI = MF.getFrameInfo();
15566   MFI.setFrameAddressIsTaken(true);
15567 
15568   EVT PtrVT = getPointerTy(MF.getDataLayout());
15569   bool isPPC64 = PtrVT == MVT::i64;
15570 
15571   // Naked functions never have a frame pointer, and so we use r1. For all
15572   // other functions, this decision must be delayed until during PEI.
15573   unsigned FrameReg;
15574   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15575     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15576   else
15577     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15578 
15579   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15580                                          PtrVT);
15581   while (Depth--)
15582     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15583                             FrameAddr, MachinePointerInfo());
15584   return FrameAddr;
15585 }
15586 
15587 // FIXME? Maybe this could be a TableGen attribute on some registers and
15588 // this table could be generated automatically from RegInfo.
15589 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15590                                               const MachineFunction &MF) const {
15591   bool isPPC64 = Subtarget.isPPC64();
15592 
15593   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15594   if (!is64Bit && VT != LLT::scalar(32))
15595     report_fatal_error("Invalid register global variable type");
15596 
15597   Register Reg = StringSwitch<Register>(RegName)
15598                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15599                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15600                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15601                      .Default(Register());
15602 
15603   if (Reg)
15604     return Reg;
15605   report_fatal_error("Invalid register name global variable");
15606 }
15607 
15608 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15609   // 32-bit SVR4 ABI access everything as got-indirect.
15610   if (Subtarget.is32BitELFABI())
15611     return true;
15612 
15613   // AIX accesses everything indirectly through the TOC, which is similar to
15614   // the GOT.
15615   if (Subtarget.isAIXABI())
15616     return true;
15617 
15618   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15619   // If it is small or large code model, module locals are accessed
15620   // indirectly by loading their address from .toc/.got.
15621   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15622     return true;
15623 
15624   // JumpTable and BlockAddress are accessed as got-indirect.
15625   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15626     return true;
15627 
15628   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15629     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15630 
15631   return false;
15632 }
15633 
15634 bool
15635 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15636   // The PowerPC target isn't yet aware of offsets.
15637   return false;
15638 }
15639 
15640 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15641                                            const CallInst &I,
15642                                            MachineFunction &MF,
15643                                            unsigned Intrinsic) const {
15644   switch (Intrinsic) {
15645   case Intrinsic::ppc_altivec_lvx:
15646   case Intrinsic::ppc_altivec_lvxl:
15647   case Intrinsic::ppc_altivec_lvebx:
15648   case Intrinsic::ppc_altivec_lvehx:
15649   case Intrinsic::ppc_altivec_lvewx:
15650   case Intrinsic::ppc_vsx_lxvd2x:
15651   case Intrinsic::ppc_vsx_lxvw4x: {
15652     EVT VT;
15653     switch (Intrinsic) {
15654     case Intrinsic::ppc_altivec_lvebx:
15655       VT = MVT::i8;
15656       break;
15657     case Intrinsic::ppc_altivec_lvehx:
15658       VT = MVT::i16;
15659       break;
15660     case Intrinsic::ppc_altivec_lvewx:
15661       VT = MVT::i32;
15662       break;
15663     case Intrinsic::ppc_vsx_lxvd2x:
15664       VT = MVT::v2f64;
15665       break;
15666     default:
15667       VT = MVT::v4i32;
15668       break;
15669     }
15670 
15671     Info.opc = ISD::INTRINSIC_W_CHAIN;
15672     Info.memVT = VT;
15673     Info.ptrVal = I.getArgOperand(0);
15674     Info.offset = -VT.getStoreSize()+1;
15675     Info.size = 2*VT.getStoreSize()-1;
15676     Info.align = Align(1);
15677     Info.flags = MachineMemOperand::MOLoad;
15678     return true;
15679   }
15680   case Intrinsic::ppc_altivec_stvx:
15681   case Intrinsic::ppc_altivec_stvxl:
15682   case Intrinsic::ppc_altivec_stvebx:
15683   case Intrinsic::ppc_altivec_stvehx:
15684   case Intrinsic::ppc_altivec_stvewx:
15685   case Intrinsic::ppc_vsx_stxvd2x:
15686   case Intrinsic::ppc_vsx_stxvw4x: {
15687     EVT VT;
15688     switch (Intrinsic) {
15689     case Intrinsic::ppc_altivec_stvebx:
15690       VT = MVT::i8;
15691       break;
15692     case Intrinsic::ppc_altivec_stvehx:
15693       VT = MVT::i16;
15694       break;
15695     case Intrinsic::ppc_altivec_stvewx:
15696       VT = MVT::i32;
15697       break;
15698     case Intrinsic::ppc_vsx_stxvd2x:
15699       VT = MVT::v2f64;
15700       break;
15701     default:
15702       VT = MVT::v4i32;
15703       break;
15704     }
15705 
15706     Info.opc = ISD::INTRINSIC_VOID;
15707     Info.memVT = VT;
15708     Info.ptrVal = I.getArgOperand(1);
15709     Info.offset = -VT.getStoreSize()+1;
15710     Info.size = 2*VT.getStoreSize()-1;
15711     Info.align = Align(1);
15712     Info.flags = MachineMemOperand::MOStore;
15713     return true;
15714   }
15715   default:
15716     break;
15717   }
15718 
15719   return false;
15720 }
15721 
15722 /// It returns EVT::Other if the type should be determined using generic
15723 /// target-independent logic.
15724 EVT PPCTargetLowering::getOptimalMemOpType(
15725     const MemOp &Op, const AttributeList &FuncAttributes) const {
15726   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15727     // We should use Altivec/VSX loads and stores when available. For unaligned
15728     // addresses, unaligned VSX loads are only fast starting with the P8.
15729     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15730         (Op.isAligned(Align(16)) ||
15731          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15732       return MVT::v4i32;
15733   }
15734 
15735   if (Subtarget.isPPC64()) {
15736     return MVT::i64;
15737   }
15738 
15739   return MVT::i32;
15740 }
15741 
15742 /// Returns true if it is beneficial to convert a load of a constant
15743 /// to just the constant itself.
15744 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15745                                                           Type *Ty) const {
15746   assert(Ty->isIntegerTy());
15747 
15748   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15749   return !(BitSize == 0 || BitSize > 64);
15750 }
15751 
15752 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15753   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15754     return false;
15755   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15756   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15757   return NumBits1 == 64 && NumBits2 == 32;
15758 }
15759 
15760 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15761   if (!VT1.isInteger() || !VT2.isInteger())
15762     return false;
15763   unsigned NumBits1 = VT1.getSizeInBits();
15764   unsigned NumBits2 = VT2.getSizeInBits();
15765   return NumBits1 == 64 && NumBits2 == 32;
15766 }
15767 
15768 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15769   // Generally speaking, zexts are not free, but they are free when they can be
15770   // folded with other operations.
15771   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15772     EVT MemVT = LD->getMemoryVT();
15773     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15774          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15775         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15776          LD->getExtensionType() == ISD::ZEXTLOAD))
15777       return true;
15778   }
15779 
15780   // FIXME: Add other cases...
15781   //  - 32-bit shifts with a zext to i64
15782   //  - zext after ctlz, bswap, etc.
15783   //  - zext after and by a constant mask
15784 
15785   return TargetLowering::isZExtFree(Val, VT2);
15786 }
15787 
15788 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15789   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15790          "invalid fpext types");
15791   // Extending to float128 is not free.
15792   if (DestVT == MVT::f128)
15793     return false;
15794   return true;
15795 }
15796 
15797 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15798   return isInt<16>(Imm) || isUInt<16>(Imm);
15799 }
15800 
15801 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15802   return isInt<16>(Imm) || isUInt<16>(Imm);
15803 }
15804 
15805 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15806                                                        unsigned,
15807                                                        unsigned,
15808                                                        MachineMemOperand::Flags,
15809                                                        bool *Fast) const {
15810   if (DisablePPCUnaligned)
15811     return false;
15812 
15813   // PowerPC supports unaligned memory access for simple non-vector types.
15814   // Although accessing unaligned addresses is not as efficient as accessing
15815   // aligned addresses, it is generally more efficient than manual expansion,
15816   // and generally only traps for software emulation when crossing page
15817   // boundaries.
15818 
15819   if (!VT.isSimple())
15820     return false;
15821 
15822   if (VT.isFloatingPoint() && !VT.isVector() &&
15823       !Subtarget.allowsUnalignedFPAccess())
15824     return false;
15825 
15826   if (VT.getSimpleVT().isVector()) {
15827     if (Subtarget.hasVSX()) {
15828       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15829           VT != MVT::v4f32 && VT != MVT::v4i32)
15830         return false;
15831     } else {
15832       return false;
15833     }
15834   }
15835 
15836   if (VT == MVT::ppcf128)
15837     return false;
15838 
15839   if (Fast)
15840     *Fast = true;
15841 
15842   return true;
15843 }
15844 
15845 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15846                                                    EVT VT) const {
15847   return isFMAFasterThanFMulAndFAdd(
15848       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15849 }
15850 
15851 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15852                                                    Type *Ty) const {
15853   switch (Ty->getScalarType()->getTypeID()) {
15854   case Type::FloatTyID:
15855   case Type::DoubleTyID:
15856     return true;
15857   case Type::FP128TyID:
15858     return Subtarget.hasP9Vector();
15859   default:
15860     return false;
15861   }
15862 }
15863 
15864 // FIXME: add more patterns which are not profitable to hoist.
15865 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15866   if (!I->hasOneUse())
15867     return true;
15868 
15869   Instruction *User = I->user_back();
15870   assert(User && "A single use instruction with no uses.");
15871 
15872   switch (I->getOpcode()) {
15873   case Instruction::FMul: {
15874     // Don't break FMA, PowerPC prefers FMA.
15875     if (User->getOpcode() != Instruction::FSub &&
15876         User->getOpcode() != Instruction::FAdd)
15877       return true;
15878 
15879     const TargetOptions &Options = getTargetMachine().Options;
15880     const Function *F = I->getFunction();
15881     const DataLayout &DL = F->getParent()->getDataLayout();
15882     Type *Ty = User->getOperand(0)->getType();
15883 
15884     return !(
15885         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15886         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15887         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15888   }
15889   case Instruction::Load: {
15890     // Don't break "store (load float*)" pattern, this pattern will be combined
15891     // to "store (load int32)" in later InstCombine pass. See function
15892     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15893     // cycles than loading a 32 bit integer.
15894     LoadInst *LI = cast<LoadInst>(I);
15895     // For the loads that combineLoadToOperationType does nothing, like
15896     // ordered load, it should be profitable to hoist them.
15897     // For swifterror load, it can only be used for pointer to pointer type, so
15898     // later type check should get rid of this case.
15899     if (!LI->isUnordered())
15900       return true;
15901 
15902     if (User->getOpcode() != Instruction::Store)
15903       return true;
15904 
15905     if (I->getType()->getTypeID() != Type::FloatTyID)
15906       return true;
15907 
15908     return false;
15909   }
15910   default:
15911     return true;
15912   }
15913   return true;
15914 }
15915 
15916 const MCPhysReg *
15917 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15918   // LR is a callee-save register, but we must treat it as clobbered by any call
15919   // site. Hence we include LR in the scratch registers, which are in turn added
15920   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15921   // to CTR, which is used by any indirect call.
15922   static const MCPhysReg ScratchRegs[] = {
15923     PPC::X12, PPC::LR8, PPC::CTR8, 0
15924   };
15925 
15926   return ScratchRegs;
15927 }
15928 
15929 Register PPCTargetLowering::getExceptionPointerRegister(
15930     const Constant *PersonalityFn) const {
15931   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15932 }
15933 
15934 Register PPCTargetLowering::getExceptionSelectorRegister(
15935     const Constant *PersonalityFn) const {
15936   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15937 }
15938 
15939 bool
15940 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15941                      EVT VT , unsigned DefinedValues) const {
15942   if (VT == MVT::v2i64)
15943     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15944 
15945   if (Subtarget.hasVSX())
15946     return true;
15947 
15948   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15949 }
15950 
15951 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15952   if (DisableILPPref || Subtarget.enableMachineScheduler())
15953     return TargetLowering::getSchedulingPreference(N);
15954 
15955   return Sched::ILP;
15956 }
15957 
15958 // Create a fast isel object.
15959 FastISel *
15960 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15961                                   const TargetLibraryInfo *LibInfo) const {
15962   return PPC::createFastISel(FuncInfo, LibInfo);
15963 }
15964 
15965 // 'Inverted' means the FMA opcode after negating one multiplicand.
15966 // For example, (fma -a b c) = (fnmsub a b c)
15967 static unsigned invertFMAOpcode(unsigned Opc) {
15968   switch (Opc) {
15969   default:
15970     llvm_unreachable("Invalid FMA opcode for PowerPC!");
15971   case ISD::FMA:
15972     return PPCISD::FNMSUB;
15973   case PPCISD::FNMSUB:
15974     return ISD::FMA;
15975   }
15976 }
15977 
15978 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
15979                                                 bool LegalOps, bool OptForSize,
15980                                                 NegatibleCost &Cost,
15981                                                 unsigned Depth) const {
15982   if (Depth > SelectionDAG::MaxRecursionDepth)
15983     return SDValue();
15984 
15985   unsigned Opc = Op.getOpcode();
15986   EVT VT = Op.getValueType();
15987   SDNodeFlags Flags = Op.getNode()->getFlags();
15988 
15989   switch (Opc) {
15990   case PPCISD::FNMSUB:
15991     if (!Op.hasOneUse() || !isTypeLegal(VT))
15992       break;
15993 
15994     const TargetOptions &Options = getTargetMachine().Options;
15995     SDValue N0 = Op.getOperand(0);
15996     SDValue N1 = Op.getOperand(1);
15997     SDValue N2 = Op.getOperand(2);
15998     SDLoc Loc(Op);
15999 
16000     NegatibleCost N2Cost = NegatibleCost::Expensive;
16001     SDValue NegN2 =
16002         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16003 
16004     if (!NegN2)
16005       return SDValue();
16006 
16007     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16008     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16009     // These transformations may change sign of zeroes. For example,
16010     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16011     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16012       // Try and choose the cheaper one to negate.
16013       NegatibleCost N0Cost = NegatibleCost::Expensive;
16014       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16015                                            N0Cost, Depth + 1);
16016 
16017       NegatibleCost N1Cost = NegatibleCost::Expensive;
16018       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16019                                            N1Cost, Depth + 1);
16020 
16021       if (NegN0 && N0Cost <= N1Cost) {
16022         Cost = std::min(N0Cost, N2Cost);
16023         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16024       } else if (NegN1) {
16025         Cost = std::min(N1Cost, N2Cost);
16026         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16027       }
16028     }
16029 
16030     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16031     if (isOperationLegal(ISD::FMA, VT)) {
16032       Cost = N2Cost;
16033       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16034     }
16035 
16036     break;
16037   }
16038 
16039   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16040                                               Cost, Depth);
16041 }
16042 
16043 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16044 bool PPCTargetLowering::useLoadStackGuardNode() const {
16045   if (!Subtarget.isTargetLinux())
16046     return TargetLowering::useLoadStackGuardNode();
16047   return true;
16048 }
16049 
16050 // Override to disable global variable loading on Linux.
16051 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16052   if (!Subtarget.isTargetLinux())
16053     return TargetLowering::insertSSPDeclarations(M);
16054 }
16055 
16056 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16057                                      bool ForCodeSize) const {
16058   if (!VT.isSimple() || !Subtarget.hasVSX())
16059     return false;
16060 
16061   switch(VT.getSimpleVT().SimpleTy) {
16062   default:
16063     // For FP types that are currently not supported by PPC backend, return
16064     // false. Examples: f16, f80.
16065     return false;
16066   case MVT::f32:
16067   case MVT::f64:
16068     if (Subtarget.hasPrefixInstrs()) {
16069       // With prefixed instructions, we can materialize anything that can be
16070       // represented with a 32-bit immediate, not just positive zero.
16071       APFloat APFloatOfImm = Imm;
16072       return convertToNonDenormSingle(APFloatOfImm);
16073     }
16074     LLVM_FALLTHROUGH;
16075   case MVT::ppcf128:
16076     return Imm.isPosZero();
16077   }
16078 }
16079 
16080 // For vector shift operation op, fold
16081 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16082 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16083                                   SelectionDAG &DAG) {
16084   SDValue N0 = N->getOperand(0);
16085   SDValue N1 = N->getOperand(1);
16086   EVT VT = N0.getValueType();
16087   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16088   unsigned Opcode = N->getOpcode();
16089   unsigned TargetOpcode;
16090 
16091   switch (Opcode) {
16092   default:
16093     llvm_unreachable("Unexpected shift operation");
16094   case ISD::SHL:
16095     TargetOpcode = PPCISD::SHL;
16096     break;
16097   case ISD::SRL:
16098     TargetOpcode = PPCISD::SRL;
16099     break;
16100   case ISD::SRA:
16101     TargetOpcode = PPCISD::SRA;
16102     break;
16103   }
16104 
16105   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16106       N1->getOpcode() == ISD::AND)
16107     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16108       if (Mask->getZExtValue() == OpSizeInBits - 1)
16109         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16110 
16111   return SDValue();
16112 }
16113 
16114 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16115   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16116     return Value;
16117 
16118   SDValue N0 = N->getOperand(0);
16119   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16120   if (!Subtarget.isISA3_0() ||
16121       N0.getOpcode() != ISD::SIGN_EXTEND ||
16122       N0.getOperand(0).getValueType() != MVT::i32 ||
16123       CN1 == nullptr || N->getValueType(0) != MVT::i64)
16124     return SDValue();
16125 
16126   // We can't save an operation here if the value is already extended, and
16127   // the existing shift is easier to combine.
16128   SDValue ExtsSrc = N0.getOperand(0);
16129   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16130       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16131     return SDValue();
16132 
16133   SDLoc DL(N0);
16134   SDValue ShiftBy = SDValue(CN1, 0);
16135   // We want the shift amount to be i32 on the extswli, but the shift could
16136   // have an i64.
16137   if (ShiftBy.getValueType() == MVT::i64)
16138     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16139 
16140   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16141                          ShiftBy);
16142 }
16143 
16144 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16145   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16146     return Value;
16147 
16148   return SDValue();
16149 }
16150 
16151 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16152   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16153     return Value;
16154 
16155   return SDValue();
16156 }
16157 
16158 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16159 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16160 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16161 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16162 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16163                                  const PPCSubtarget &Subtarget) {
16164   if (!Subtarget.isPPC64())
16165     return SDValue();
16166 
16167   SDValue LHS = N->getOperand(0);
16168   SDValue RHS = N->getOperand(1);
16169 
16170   auto isZextOfCompareWithConstant = [](SDValue Op) {
16171     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16172         Op.getValueType() != MVT::i64)
16173       return false;
16174 
16175     SDValue Cmp = Op.getOperand(0);
16176     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16177         Cmp.getOperand(0).getValueType() != MVT::i64)
16178       return false;
16179 
16180     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16181       int64_t NegConstant = 0 - Constant->getSExtValue();
16182       // Due to the limitations of the addi instruction,
16183       // -C is required to be [-32768, 32767].
16184       return isInt<16>(NegConstant);
16185     }
16186 
16187     return false;
16188   };
16189 
16190   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16191   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16192 
16193   // If there is a pattern, canonicalize a zext operand to the RHS.
16194   if (LHSHasPattern && !RHSHasPattern)
16195     std::swap(LHS, RHS);
16196   else if (!LHSHasPattern && !RHSHasPattern)
16197     return SDValue();
16198 
16199   SDLoc DL(N);
16200   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16201   SDValue Cmp = RHS.getOperand(0);
16202   SDValue Z = Cmp.getOperand(0);
16203   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16204 
16205   assert(Constant && "Constant Should not be a null pointer.");
16206   int64_t NegConstant = 0 - Constant->getSExtValue();
16207 
16208   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16209   default: break;
16210   case ISD::SETNE: {
16211     //                                 when C == 0
16212     //                             --> addze X, (addic Z, -1).carry
16213     //                            /
16214     // add X, (zext(setne Z, C))--
16215     //                            \    when -32768 <= -C <= 32767 && C != 0
16216     //                             --> addze X, (addic (addi Z, -C), -1).carry
16217     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16218                               DAG.getConstant(NegConstant, DL, MVT::i64));
16219     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16220     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16221                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16222     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16223                        SDValue(Addc.getNode(), 1));
16224     }
16225   case ISD::SETEQ: {
16226     //                                 when C == 0
16227     //                             --> addze X, (subfic Z, 0).carry
16228     //                            /
16229     // add X, (zext(sete  Z, C))--
16230     //                            \    when -32768 <= -C <= 32767 && C != 0
16231     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16232     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16233                               DAG.getConstant(NegConstant, DL, MVT::i64));
16234     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16235     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16236                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16237     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16238                        SDValue(Subc.getNode(), 1));
16239     }
16240   }
16241 
16242   return SDValue();
16243 }
16244 
16245 // Transform
16246 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16247 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16248 // In this case both C1 and C2 must be known constants.
16249 // C1+C2 must fit into a 34 bit signed integer.
16250 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16251                                           const PPCSubtarget &Subtarget) {
16252   if (!Subtarget.isUsingPCRelativeCalls())
16253     return SDValue();
16254 
16255   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16256   // If we find that node try to cast the Global Address and the Constant.
16257   SDValue LHS = N->getOperand(0);
16258   SDValue RHS = N->getOperand(1);
16259 
16260   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16261     std::swap(LHS, RHS);
16262 
16263   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16264     return SDValue();
16265 
16266   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16267   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16268   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16269 
16270   // Check that both casts succeeded.
16271   if (!GSDN || !ConstNode)
16272     return SDValue();
16273 
16274   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16275   SDLoc DL(GSDN);
16276 
16277   // The signed int offset needs to fit in 34 bits.
16278   if (!isInt<34>(NewOffset))
16279     return SDValue();
16280 
16281   // The new global address is a copy of the old global address except
16282   // that it has the updated Offset.
16283   SDValue GA =
16284       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16285                                  NewOffset, GSDN->getTargetFlags());
16286   SDValue MatPCRel =
16287       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16288   return MatPCRel;
16289 }
16290 
16291 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16292   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16293     return Value;
16294 
16295   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16296     return Value;
16297 
16298   return SDValue();
16299 }
16300 
16301 // Detect TRUNCATE operations on bitcasts of float128 values.
16302 // What we are looking for here is the situtation where we extract a subset
16303 // of bits from a 128 bit float.
16304 // This can be of two forms:
16305 // 1) BITCAST of f128 feeding TRUNCATE
16306 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16307 // The reason this is required is because we do not have a legal i128 type
16308 // and so we want to prevent having to store the f128 and then reload part
16309 // of it.
16310 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16311                                            DAGCombinerInfo &DCI) const {
16312   // If we are using CRBits then try that first.
16313   if (Subtarget.useCRBits()) {
16314     // Check if CRBits did anything and return that if it did.
16315     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16316       return CRTruncValue;
16317   }
16318 
16319   SDLoc dl(N);
16320   SDValue Op0 = N->getOperand(0);
16321 
16322   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16323   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16324     EVT VT = N->getValueType(0);
16325     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16326       return SDValue();
16327     SDValue Sub = Op0.getOperand(0);
16328     if (Sub.getOpcode() == ISD::SUB) {
16329       SDValue SubOp0 = Sub.getOperand(0);
16330       SDValue SubOp1 = Sub.getOperand(1);
16331       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16332           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16333         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16334                                SubOp1.getOperand(0),
16335                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16336       }
16337     }
16338   }
16339 
16340   // Looking for a truncate of i128 to i64.
16341   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16342     return SDValue();
16343 
16344   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16345 
16346   // SRL feeding TRUNCATE.
16347   if (Op0.getOpcode() == ISD::SRL) {
16348     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16349     // The right shift has to be by 64 bits.
16350     if (!ConstNode || ConstNode->getZExtValue() != 64)
16351       return SDValue();
16352 
16353     // Switch the element number to extract.
16354     EltToExtract = EltToExtract ? 0 : 1;
16355     // Update Op0 past the SRL.
16356     Op0 = Op0.getOperand(0);
16357   }
16358 
16359   // BITCAST feeding a TRUNCATE possibly via SRL.
16360   if (Op0.getOpcode() == ISD::BITCAST &&
16361       Op0.getValueType() == MVT::i128 &&
16362       Op0.getOperand(0).getValueType() == MVT::f128) {
16363     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16364     return DCI.DAG.getNode(
16365         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16366         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16367   }
16368   return SDValue();
16369 }
16370 
16371 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16372   SelectionDAG &DAG = DCI.DAG;
16373 
16374   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16375   if (!ConstOpOrElement)
16376     return SDValue();
16377 
16378   // An imul is usually smaller than the alternative sequence for legal type.
16379   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16380       isOperationLegal(ISD::MUL, N->getValueType(0)))
16381     return SDValue();
16382 
16383   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16384     switch (this->Subtarget.getCPUDirective()) {
16385     default:
16386       // TODO: enhance the condition for subtarget before pwr8
16387       return false;
16388     case PPC::DIR_PWR8:
16389       //  type        mul     add    shl
16390       // scalar        4       1      1
16391       // vector        7       2      2
16392       return true;
16393     case PPC::DIR_PWR9:
16394     case PPC::DIR_PWR10:
16395     case PPC::DIR_PWR_FUTURE:
16396       //  type        mul     add    shl
16397       // scalar        5       2      2
16398       // vector        7       2      2
16399 
16400       // The cycle RATIO of related operations are showed as a table above.
16401       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16402       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16403       // are 4, it is always profitable; but for 3 instrs patterns
16404       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16405       // So we should only do it for vector type.
16406       return IsAddOne && IsNeg ? VT.isVector() : true;
16407     }
16408   };
16409 
16410   EVT VT = N->getValueType(0);
16411   SDLoc DL(N);
16412 
16413   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16414   bool IsNeg = MulAmt.isNegative();
16415   APInt MulAmtAbs = MulAmt.abs();
16416 
16417   if ((MulAmtAbs - 1).isPowerOf2()) {
16418     // (mul x, 2^N + 1) => (add (shl x, N), x)
16419     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16420 
16421     if (!IsProfitable(IsNeg, true, VT))
16422       return SDValue();
16423 
16424     SDValue Op0 = N->getOperand(0);
16425     SDValue Op1 =
16426         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16427                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16428     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16429 
16430     if (!IsNeg)
16431       return Res;
16432 
16433     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16434   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16435     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16436     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16437 
16438     if (!IsProfitable(IsNeg, false, VT))
16439       return SDValue();
16440 
16441     SDValue Op0 = N->getOperand(0);
16442     SDValue Op1 =
16443         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16444                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16445 
16446     if (!IsNeg)
16447       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16448     else
16449       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16450 
16451   } else {
16452     return SDValue();
16453   }
16454 }
16455 
16456 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16457 // in combiner since we need to check SD flags and other subtarget features.
16458 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16459                                           DAGCombinerInfo &DCI) const {
16460   SDValue N0 = N->getOperand(0);
16461   SDValue N1 = N->getOperand(1);
16462   SDValue N2 = N->getOperand(2);
16463   SDNodeFlags Flags = N->getFlags();
16464   EVT VT = N->getValueType(0);
16465   SelectionDAG &DAG = DCI.DAG;
16466   const TargetOptions &Options = getTargetMachine().Options;
16467   unsigned Opc = N->getOpcode();
16468   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16469   bool LegalOps = !DCI.isBeforeLegalizeOps();
16470   SDLoc Loc(N);
16471 
16472   if (!isOperationLegal(ISD::FMA, VT))
16473     return SDValue();
16474 
16475   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16476   // since (fnmsub a b c)=-0 while c-ab=+0.
16477   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16478     return SDValue();
16479 
16480   // (fma (fneg a) b c) => (fnmsub a b c)
16481   // (fnmsub (fneg a) b c) => (fma a b c)
16482   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16483     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16484 
16485   // (fma a (fneg b) c) => (fnmsub a b c)
16486   // (fnmsub a (fneg b) c) => (fma a b c)
16487   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16488     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16489 
16490   return SDValue();
16491 }
16492 
16493 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16494   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16495   if (!Subtarget.is64BitELFABI())
16496     return false;
16497 
16498   // If not a tail call then no need to proceed.
16499   if (!CI->isTailCall())
16500     return false;
16501 
16502   // If sibling calls have been disabled and tail-calls aren't guaranteed
16503   // there is no reason to duplicate.
16504   auto &TM = getTargetMachine();
16505   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16506     return false;
16507 
16508   // Can't tail call a function called indirectly, or if it has variadic args.
16509   const Function *Callee = CI->getCalledFunction();
16510   if (!Callee || Callee->isVarArg())
16511     return false;
16512 
16513   // Make sure the callee and caller calling conventions are eligible for tco.
16514   const Function *Caller = CI->getParent()->getParent();
16515   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16516                                            CI->getCallingConv()))
16517       return false;
16518 
16519   // If the function is local then we have a good chance at tail-calling it
16520   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16521 }
16522 
16523 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16524   if (!Subtarget.hasVSX())
16525     return false;
16526   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16527     return true;
16528   return VT == MVT::f32 || VT == MVT::f64 ||
16529     VT == MVT::v4f32 || VT == MVT::v2f64;
16530 }
16531 
16532 bool PPCTargetLowering::
16533 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16534   const Value *Mask = AndI.getOperand(1);
16535   // If the mask is suitable for andi. or andis. we should sink the and.
16536   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16537     // Can't handle constants wider than 64-bits.
16538     if (CI->getBitWidth() > 64)
16539       return false;
16540     int64_t ConstVal = CI->getZExtValue();
16541     return isUInt<16>(ConstVal) ||
16542       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16543   }
16544 
16545   // For non-constant masks, we can always use the record-form and.
16546   return true;
16547 }
16548 
16549 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16550 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16551 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16552 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16553 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16554 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16555   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16556   assert(Subtarget.hasP9Altivec() &&
16557          "Only combine this when P9 altivec supported!");
16558   EVT VT = N->getValueType(0);
16559   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16560     return SDValue();
16561 
16562   SelectionDAG &DAG = DCI.DAG;
16563   SDLoc dl(N);
16564   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16565     // Even for signed integers, if it's known to be positive (as signed
16566     // integer) due to zero-extended inputs.
16567     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16568     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16569     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16570          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16571         (SubOpcd1 == ISD::ZERO_EXTEND ||
16572          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16573       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16574                          N->getOperand(0)->getOperand(0),
16575                          N->getOperand(0)->getOperand(1),
16576                          DAG.getTargetConstant(0, dl, MVT::i32));
16577     }
16578 
16579     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16580     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16581         N->getOperand(0).hasOneUse()) {
16582       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16583                          N->getOperand(0)->getOperand(0),
16584                          N->getOperand(0)->getOperand(1),
16585                          DAG.getTargetConstant(1, dl, MVT::i32));
16586     }
16587   }
16588 
16589   return SDValue();
16590 }
16591 
16592 // For type v4i32/v8ii16/v16i8, transform
16593 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16594 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16595 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16596 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16597 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16598                                           DAGCombinerInfo &DCI) const {
16599   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16600   assert(Subtarget.hasP9Altivec() &&
16601          "Only combine this when P9 altivec supported!");
16602 
16603   SelectionDAG &DAG = DCI.DAG;
16604   SDLoc dl(N);
16605   SDValue Cond = N->getOperand(0);
16606   SDValue TrueOpnd = N->getOperand(1);
16607   SDValue FalseOpnd = N->getOperand(2);
16608   EVT VT = N->getOperand(1).getValueType();
16609 
16610   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16611       FalseOpnd.getOpcode() != ISD::SUB)
16612     return SDValue();
16613 
16614   // ABSD only available for type v4i32/v8i16/v16i8
16615   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16616     return SDValue();
16617 
16618   // At least to save one more dependent computation
16619   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16620     return SDValue();
16621 
16622   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16623 
16624   // Can only handle unsigned comparison here
16625   switch (CC) {
16626   default:
16627     return SDValue();
16628   case ISD::SETUGT:
16629   case ISD::SETUGE:
16630     break;
16631   case ISD::SETULT:
16632   case ISD::SETULE:
16633     std::swap(TrueOpnd, FalseOpnd);
16634     break;
16635   }
16636 
16637   SDValue CmpOpnd1 = Cond.getOperand(0);
16638   SDValue CmpOpnd2 = Cond.getOperand(1);
16639 
16640   // SETCC CmpOpnd1 CmpOpnd2 cond
16641   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16642   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16643   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16644       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16645       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16646       FalseOpnd.getOperand(1) == CmpOpnd1) {
16647     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16648                        CmpOpnd1, CmpOpnd2,
16649                        DAG.getTargetConstant(0, dl, MVT::i32));
16650   }
16651 
16652   return SDValue();
16653 }
16654