1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSymbolXCOFF.h"
78 #include "llvm/Support/AtomicOrdering.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/KnownBits.h"
88 #include "llvm/Support/MachineValueType.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <list>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 
103 #define DEBUG_TYPE "ppc-lowering"
104 
105 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
106 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
109 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
112 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
113 
114 static cl::opt<bool> DisableSCO("disable-ppc-sco",
115 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
116 
117 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
118 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
119 
120 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
121 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
122 
123 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
124 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
125 
126 STATISTIC(NumTailCalls, "Number of tail calls");
127 STATISTIC(NumSiblingCalls, "Number of sibling calls");
128 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144 
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156 
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160 
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163 
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169 
170   if (Subtarget.isISA3_0()) {
171     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
172     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
173     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
174     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
175   } else {
176     // No extending loads from f16 or HW conversions back and forth.
177     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
178     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
179     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
180     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
181     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
182     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
183     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
184     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
185   }
186 
187   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
188 
189   // PowerPC has pre-inc load and store's.
190   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
191   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
192   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
193   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
195   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
196   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
197   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
198   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
200   if (!Subtarget.hasSPE()) {
201     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
202     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
203     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
204     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
205   }
206 
207   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
208   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
209   for (MVT VT : ScalarIntVTs) {
210     setOperationAction(ISD::ADDC, VT, Legal);
211     setOperationAction(ISD::ADDE, VT, Legal);
212     setOperationAction(ISD::SUBC, VT, Legal);
213     setOperationAction(ISD::SUBE, VT, Legal);
214   }
215 
216   if (Subtarget.useCRBits()) {
217     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
218 
219     if (isPPC64 || Subtarget.hasFPCVT()) {
220       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
221       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
222                          isPPC64 ? MVT::i64 : MVT::i32);
223       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
224       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
225                         isPPC64 ? MVT::i64 : MVT::i32);
226     } else {
227       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
228       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
229     }
230 
231     // PowerPC does not support direct load/store of condition registers.
232     setOperationAction(ISD::LOAD, MVT::i1, Custom);
233     setOperationAction(ISD::STORE, MVT::i1, Custom);
234 
235     // FIXME: Remove this once the ANDI glue bug is fixed:
236     if (ANDIGlueBug)
237       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
238 
239     for (MVT VT : MVT::integer_valuetypes()) {
240       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
241       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
242       setTruncStoreAction(VT, MVT::i1, Expand);
243     }
244 
245     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
246   }
247 
248   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
249   // PPC (the libcall is not available).
250   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
251   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
252 
253   // We do not currently implement these libm ops for PowerPC.
254   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
255   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
256   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
257   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
258   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
259   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
260 
261   // PowerPC has no SREM/UREM instructions unless we are on P9
262   // On P9 we may use a hardware instruction to compute the remainder.
263   // The instructions are not legalized directly because in the cases where the
264   // result of both the remainder and the division is required it is more
265   // efficient to compute the remainder from the result of the division rather
266   // than use the remainder instruction.
267   if (Subtarget.isISA3_0()) {
268     setOperationAction(ISD::SREM, MVT::i32, Custom);
269     setOperationAction(ISD::UREM, MVT::i32, Custom);
270     setOperationAction(ISD::SREM, MVT::i64, Custom);
271     setOperationAction(ISD::UREM, MVT::i64, Custom);
272   } else {
273     setOperationAction(ISD::SREM, MVT::i32, Expand);
274     setOperationAction(ISD::UREM, MVT::i32, Expand);
275     setOperationAction(ISD::SREM, MVT::i64, Expand);
276     setOperationAction(ISD::UREM, MVT::i64, Expand);
277   }
278 
279   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
280   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
281   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
282   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
283   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
284   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
285   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
286   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
287   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
288 
289   // Handle constrained floating-point operations of scalar.
290   // TODO: Handle SPE specific operation.
291   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
292   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
293   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
294   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
295   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
296   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
297 
298   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
299   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
300   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
301   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
302   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
303   if (Subtarget.hasVSX())
304     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f64, Legal);
305 
306   if (Subtarget.hasFSQRT()) {
307     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
308     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
309   }
310 
311   if (Subtarget.hasFPRND()) {
312     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
313     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
314     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
315     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
316 
317     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
318     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
319     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
320     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
321   }
322 
323   // We don't support sin/cos/sqrt/fmod/pow
324   setOperationAction(ISD::FSIN , MVT::f64, Expand);
325   setOperationAction(ISD::FCOS , MVT::f64, Expand);
326   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
327   setOperationAction(ISD::FREM , MVT::f64, Expand);
328   setOperationAction(ISD::FPOW , MVT::f64, Expand);
329   setOperationAction(ISD::FSIN , MVT::f32, Expand);
330   setOperationAction(ISD::FCOS , MVT::f32, Expand);
331   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
332   setOperationAction(ISD::FREM , MVT::f32, Expand);
333   setOperationAction(ISD::FPOW , MVT::f32, Expand);
334   if (Subtarget.hasSPE()) {
335     setOperationAction(ISD::FMA  , MVT::f64, Expand);
336     setOperationAction(ISD::FMA  , MVT::f32, Expand);
337   } else {
338     setOperationAction(ISD::FMA  , MVT::f64, Legal);
339     setOperationAction(ISD::FMA  , MVT::f32, Legal);
340   }
341 
342   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
343 
344   // If we're enabling GP optimizations, use hardware square root
345   if (!Subtarget.hasFSQRT() &&
346       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
347         Subtarget.hasFRE()))
348     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
349 
350   if (!Subtarget.hasFSQRT() &&
351       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
352         Subtarget.hasFRES()))
353     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
354 
355   if (Subtarget.hasFCPSGN()) {
356     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
357     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
358   } else {
359     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
360     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
361   }
362 
363   if (Subtarget.hasFPRND()) {
364     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
365     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
366     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
367     setOperationAction(ISD::FROUND, MVT::f64, Legal);
368 
369     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
370     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
371     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
372     setOperationAction(ISD::FROUND, MVT::f32, Legal);
373   }
374 
375   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
376   // to speed up scalar BSWAP64.
377   // CTPOP or CTTZ were introduced in P8/P9 respectively
378   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
379   if (Subtarget.hasP9Vector())
380     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
381   else
382     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
383   if (Subtarget.isISA3_0()) {
384     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
385     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
386   } else {
387     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
388     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
389   }
390 
391   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
392     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
393     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
394   } else {
395     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
396     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
397   }
398 
399   // PowerPC does not have ROTR
400   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
401   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
402 
403   if (!Subtarget.useCRBits()) {
404     // PowerPC does not have Select
405     setOperationAction(ISD::SELECT, MVT::i32, Expand);
406     setOperationAction(ISD::SELECT, MVT::i64, Expand);
407     setOperationAction(ISD::SELECT, MVT::f32, Expand);
408     setOperationAction(ISD::SELECT, MVT::f64, Expand);
409   }
410 
411   // PowerPC wants to turn select_cc of FP into fsel when possible.
412   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
413   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
414 
415   // PowerPC wants to optimize integer setcc a bit
416   if (!Subtarget.useCRBits())
417     setOperationAction(ISD::SETCC, MVT::i32, Custom);
418 
419   // PowerPC does not have BRCOND which requires SetCC
420   if (!Subtarget.useCRBits())
421     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
422 
423   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
424 
425   if (Subtarget.hasSPE()) {
426     // SPE has built-in conversions
427     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
428     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
429     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
430   } else {
431     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
432     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
433 
434     // PowerPC does not have [U|S]INT_TO_FP
435     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
436     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
437   }
438 
439   if (Subtarget.hasDirectMove() && isPPC64) {
440     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
441     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
442     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
443     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
444     if (TM.Options.UnsafeFPMath) {
445       setOperationAction(ISD::LRINT, MVT::f64, Legal);
446       setOperationAction(ISD::LRINT, MVT::f32, Legal);
447       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
448       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
449       setOperationAction(ISD::LROUND, MVT::f64, Legal);
450       setOperationAction(ISD::LROUND, MVT::f32, Legal);
451       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
452       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
453     }
454   } else {
455     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
456     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
457     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
458     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
459   }
460 
461   // We cannot sextinreg(i1).  Expand to shifts.
462   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
463 
464   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
465   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
466   // support continuation, user-level threading, and etc.. As a result, no
467   // other SjLj exception interfaces are implemented and please don't build
468   // your own exception handling based on them.
469   // LLVM/Clang supports zero-cost DWARF exception handling.
470   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
471   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
472 
473   // We want to legalize GlobalAddress and ConstantPool nodes into the
474   // appropriate instructions to materialize the address.
475   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
476   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
477   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
478   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
479   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
480   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
481   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
482   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
483   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
484   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
485 
486   // TRAP is legal.
487   setOperationAction(ISD::TRAP, MVT::Other, Legal);
488 
489   // TRAMPOLINE is custom lowered.
490   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
491   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
492 
493   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
494   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
495 
496   if (Subtarget.is64BitELFABI()) {
497     // VAARG always uses double-word chunks, so promote anything smaller.
498     setOperationAction(ISD::VAARG, MVT::i1, Promote);
499     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
500     setOperationAction(ISD::VAARG, MVT::i8, Promote);
501     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
502     setOperationAction(ISD::VAARG, MVT::i16, Promote);
503     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
504     setOperationAction(ISD::VAARG, MVT::i32, Promote);
505     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
506     setOperationAction(ISD::VAARG, MVT::Other, Expand);
507   } else if (Subtarget.is32BitELFABI()) {
508     // VAARG is custom lowered with the 32-bit SVR4 ABI.
509     setOperationAction(ISD::VAARG, MVT::Other, Custom);
510     setOperationAction(ISD::VAARG, MVT::i64, Custom);
511   } else
512     setOperationAction(ISD::VAARG, MVT::Other, Expand);
513 
514   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
515   if (Subtarget.is32BitELFABI())
516     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
517   else
518     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
519 
520   // Use the default implementation.
521   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
522   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
523   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
524   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
525   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
526   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
527   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
528   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
529   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
530 
531   // We want to custom lower some of our intrinsics.
532   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
533 
534   // To handle counter-based loop conditions.
535   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
536 
537   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
538   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
539   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
540   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
541 
542   // Comparisons that require checking two conditions.
543   if (Subtarget.hasSPE()) {
544     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
545     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
546     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
547     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
548   }
549   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
550   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
551   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
552   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
553   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
554   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
555   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
556   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
557   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
558   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
559   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
560   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
561 
562   if (Subtarget.has64BitSupport()) {
563     // They also have instructions for converting between i64 and fp.
564     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
565     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
566     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
567     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
568     // This is just the low 32 bits of a (signed) fp->i64 conversion.
569     // We cannot do this with Promote because i64 is not a legal type.
570     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
571 
572     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
573       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
574   } else {
575     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
576     if (Subtarget.hasSPE())
577       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
578     else
579       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
580   }
581 
582   // With the instructions enabled under FPCVT, we can do everything.
583   if (Subtarget.hasFPCVT()) {
584     if (Subtarget.has64BitSupport()) {
585       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
586       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
587       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
588       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
589     }
590 
591     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
592     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
593     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
594     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
595   }
596 
597   if (Subtarget.use64BitRegs()) {
598     // 64-bit PowerPC implementations can support i64 types directly
599     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
600     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
601     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
602     // 64-bit PowerPC wants to expand i128 shifts itself.
603     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
604     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
605     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
606   } else {
607     // 32-bit PowerPC wants to expand i64 shifts itself.
608     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
609     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
610     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
611   }
612 
613   if (Subtarget.hasVSX()) {
614     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
615     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
616     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
617     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
618   }
619 
620   if (Subtarget.hasAltivec()) {
621     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
622       setOperationAction(ISD::SADDSAT, VT, Legal);
623       setOperationAction(ISD::SSUBSAT, VT, Legal);
624       setOperationAction(ISD::UADDSAT, VT, Legal);
625       setOperationAction(ISD::USUBSAT, VT, Legal);
626     }
627     // First set operation action for all vector types to expand. Then we
628     // will selectively turn on ones that can be effectively codegen'd.
629     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
630       // add/sub are legal for all supported vector VT's.
631       setOperationAction(ISD::ADD, VT, Legal);
632       setOperationAction(ISD::SUB, VT, Legal);
633 
634       // For v2i64, these are only valid with P8Vector. This is corrected after
635       // the loop.
636       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
637         setOperationAction(ISD::SMAX, VT, Legal);
638         setOperationAction(ISD::SMIN, VT, Legal);
639         setOperationAction(ISD::UMAX, VT, Legal);
640         setOperationAction(ISD::UMIN, VT, Legal);
641       }
642       else {
643         setOperationAction(ISD::SMAX, VT, Expand);
644         setOperationAction(ISD::SMIN, VT, Expand);
645         setOperationAction(ISD::UMAX, VT, Expand);
646         setOperationAction(ISD::UMIN, VT, Expand);
647       }
648 
649       if (Subtarget.hasVSX()) {
650         setOperationAction(ISD::FMAXNUM, VT, Legal);
651         setOperationAction(ISD::FMINNUM, VT, Legal);
652       }
653 
654       // Vector instructions introduced in P8
655       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
656         setOperationAction(ISD::CTPOP, VT, Legal);
657         setOperationAction(ISD::CTLZ, VT, Legal);
658       }
659       else {
660         setOperationAction(ISD::CTPOP, VT, Expand);
661         setOperationAction(ISD::CTLZ, VT, Expand);
662       }
663 
664       // Vector instructions introduced in P9
665       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
666         setOperationAction(ISD::CTTZ, VT, Legal);
667       else
668         setOperationAction(ISD::CTTZ, VT, Expand);
669 
670       // We promote all shuffles to v16i8.
671       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
672       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
673 
674       // We promote all non-typed operations to v4i32.
675       setOperationAction(ISD::AND   , VT, Promote);
676       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
677       setOperationAction(ISD::OR    , VT, Promote);
678       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
679       setOperationAction(ISD::XOR   , VT, Promote);
680       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
681       setOperationAction(ISD::LOAD  , VT, Promote);
682       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
683       setOperationAction(ISD::SELECT, VT, Promote);
684       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
685       setOperationAction(ISD::VSELECT, VT, Legal);
686       setOperationAction(ISD::SELECT_CC, VT, Promote);
687       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
688       setOperationAction(ISD::STORE, VT, Promote);
689       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
690 
691       // No other operations are legal.
692       setOperationAction(ISD::MUL , VT, Expand);
693       setOperationAction(ISD::SDIV, VT, Expand);
694       setOperationAction(ISD::SREM, VT, Expand);
695       setOperationAction(ISD::UDIV, VT, Expand);
696       setOperationAction(ISD::UREM, VT, Expand);
697       setOperationAction(ISD::FDIV, VT, Expand);
698       setOperationAction(ISD::FREM, VT, Expand);
699       setOperationAction(ISD::FNEG, VT, Expand);
700       setOperationAction(ISD::FSQRT, VT, Expand);
701       setOperationAction(ISD::FLOG, VT, Expand);
702       setOperationAction(ISD::FLOG10, VT, Expand);
703       setOperationAction(ISD::FLOG2, VT, Expand);
704       setOperationAction(ISD::FEXP, VT, Expand);
705       setOperationAction(ISD::FEXP2, VT, Expand);
706       setOperationAction(ISD::FSIN, VT, Expand);
707       setOperationAction(ISD::FCOS, VT, Expand);
708       setOperationAction(ISD::FABS, VT, Expand);
709       setOperationAction(ISD::FFLOOR, VT, Expand);
710       setOperationAction(ISD::FCEIL,  VT, Expand);
711       setOperationAction(ISD::FTRUNC, VT, Expand);
712       setOperationAction(ISD::FRINT,  VT, Expand);
713       setOperationAction(ISD::FNEARBYINT, VT, Expand);
714       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
715       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
716       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
717       setOperationAction(ISD::MULHU, VT, Expand);
718       setOperationAction(ISD::MULHS, VT, Expand);
719       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
720       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
721       setOperationAction(ISD::UDIVREM, VT, Expand);
722       setOperationAction(ISD::SDIVREM, VT, Expand);
723       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
724       setOperationAction(ISD::FPOW, VT, Expand);
725       setOperationAction(ISD::BSWAP, VT, Expand);
726       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
727       setOperationAction(ISD::ROTL, VT, Expand);
728       setOperationAction(ISD::ROTR, VT, Expand);
729 
730       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
731         setTruncStoreAction(VT, InnerVT, Expand);
732         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
733         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
734         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
735       }
736     }
737     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
738     if (!Subtarget.hasP8Vector()) {
739       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
740       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
741       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
742       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
743     }
744 
745     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
746       setOperationAction(ISD::ABS, VT, Custom);
747 
748     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
749     // with merges, splats, etc.
750     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
751 
752     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
753     // are cheap, so handle them before they get expanded to scalar.
754     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
755     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
756     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
757     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
758     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
759 
760     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
761     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
762     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
763     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
764     setOperationAction(ISD::SELECT, MVT::v4i32,
765                        Subtarget.useCRBits() ? Legal : Expand);
766     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
767     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
768     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
769     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
770     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
771     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
772     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
773     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
774     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
775 
776     // Without hasP8Altivec set, v2i64 SMAX isn't available.
777     // But ABS custom lowering requires SMAX support.
778     if (!Subtarget.hasP8Altivec())
779       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
780 
781     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
782     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
783     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
784     if (Subtarget.hasAltivec())
785       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
786         setOperationAction(ISD::ROTL, VT, Legal);
787     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
788     if (Subtarget.hasP8Altivec())
789       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
790 
791     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
792     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
793     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
794     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
795 
796     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
797     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
798 
799     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
800       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
801       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
802     }
803 
804     if (Subtarget.hasP8Altivec())
805       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
806     else
807       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
808 
809     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
810     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
811 
812     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
813     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
814 
815     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
816     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
817     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
818     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
819 
820     // Altivec does not contain unordered floating-point compare instructions
821     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
822     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
823     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
824     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
825 
826     if (Subtarget.hasVSX()) {
827       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
828       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
829       if (Subtarget.hasP8Vector()) {
830         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
831         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
832       }
833       if (Subtarget.hasDirectMove() && isPPC64) {
834         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
835         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
836         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
837         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
838         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
839         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
840         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
841         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
842       }
843       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
844 
845       // The nearbyint variants are not allowed to raise the inexact exception
846       // so we can only code-gen them with unsafe math.
847       if (TM.Options.UnsafeFPMath) {
848         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
849         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
850       }
851 
852       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
853       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
854       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
855       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
856       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
857       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
858       setOperationAction(ISD::FROUND, MVT::f64, Legal);
859       setOperationAction(ISD::FRINT, MVT::f64, Legal);
860 
861       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
862       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
863       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
864       setOperationAction(ISD::FROUND, MVT::f32, Legal);
865       setOperationAction(ISD::FRINT, MVT::f32, Legal);
866 
867       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
868       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
869 
870       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
871       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
872 
873       // Share the Altivec comparison restrictions.
874       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
875       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
876       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
877       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
878 
879       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
880       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
881 
882       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
883 
884       if (Subtarget.hasP8Vector())
885         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
886 
887       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
888 
889       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
890       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
891       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
892 
893       if (Subtarget.hasP8Altivec()) {
894         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
895         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
896         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
897 
898         // 128 bit shifts can be accomplished via 3 instructions for SHL and
899         // SRL, but not for SRA because of the instructions available:
900         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
901         // doing
902         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
903         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
904         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
905 
906         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
907       }
908       else {
909         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
910         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
911         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
912 
913         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
914 
915         // VSX v2i64 only supports non-arithmetic operations.
916         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
917         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
918       }
919 
920       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
921       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
922       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
923       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
924 
925       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
926 
927       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
928       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
929       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
930       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
931 
932       // Custom handling for partial vectors of integers converted to
933       // floating point. We already have optimal handling for v2i32 through
934       // the DAG combine, so those aren't necessary.
935       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
936       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
937       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
938       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
939       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
940       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
941       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
942       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
943 
944       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
945       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
946       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
947       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
948       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
949       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
950 
951       if (Subtarget.hasDirectMove())
952         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
953       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
954 
955       // Handle constrained floating-point operations of vector.
956       // The predictor is `hasVSX` because altivec instruction has
957       // no exception but VSX vector instruction has.
958       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
959       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
960       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
961       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
962       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
963       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
964       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
965       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
966       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
967       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
968       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
969       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
970       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
971 
972       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
973       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
974       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
975       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
976       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
977       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
978       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
979       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
980       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
981       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
982       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
983       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
984       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
985 
986       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
987     }
988 
989     if (Subtarget.hasP8Altivec()) {
990       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
991       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
992     }
993 
994     if (Subtarget.hasP9Vector()) {
995       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
996       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
997 
998       // 128 bit shifts can be accomplished via 3 instructions for SHL and
999       // SRL, but not for SRA because of the instructions available:
1000       // VS{RL} and VS{RL}O.
1001       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1002       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1003       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1004 
1005       if (EnableQuadPrecision) {
1006         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1007         setOperationAction(ISD::FADD, MVT::f128, Legal);
1008         setOperationAction(ISD::FSUB, MVT::f128, Legal);
1009         setOperationAction(ISD::FDIV, MVT::f128, Legal);
1010         setOperationAction(ISD::FMUL, MVT::f128, Legal);
1011         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1012         // No extending loads to f128 on PPC.
1013         for (MVT FPT : MVT::fp_valuetypes())
1014           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1015         setOperationAction(ISD::FMA, MVT::f128, Legal);
1016         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1017         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1018         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1019         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1020         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1021         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1022 
1023         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1024         setOperationAction(ISD::FRINT, MVT::f128, Legal);
1025         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1026         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1027         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1028         setOperationAction(ISD::FROUND, MVT::f128, Legal);
1029 
1030         setOperationAction(ISD::SELECT, MVT::f128, Expand);
1031         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1032         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1033         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1034         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1035         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1036         // No implementation for these ops for PowerPC.
1037         setOperationAction(ISD::FSIN , MVT::f128, Expand);
1038         setOperationAction(ISD::FCOS , MVT::f128, Expand);
1039         setOperationAction(ISD::FPOW, MVT::f128, Expand);
1040         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1041         setOperationAction(ISD::FREM, MVT::f128, Expand);
1042 
1043         // Handle constrained floating-point operations of fp128
1044         setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1045         setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1046         setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1047         setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1048         setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1049         setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1050         setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1051         setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1052         setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1053         setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1054         setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1055         setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1056         setOperationAction(ISD::STRICT_FCEIL,  MVT::f128, Legal);
1057         setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1058         setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1059       }
1060       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1061       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1062       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1063       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1064       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1065     }
1066 
1067     if (Subtarget.hasP9Altivec()) {
1068       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1069       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1070 
1071       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1072       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1073       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1074       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1075       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1076       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1077       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1078     }
1079   }
1080 
1081   if (Subtarget.hasQPX()) {
1082     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
1083     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
1084     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
1085     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
1086 
1087     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
1088     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
1089 
1090     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
1091     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
1092 
1093     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
1094     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
1095 
1096     if (!Subtarget.useCRBits())
1097       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
1098     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1099 
1100     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
1101     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1102     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1103     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1104     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1105     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1106     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1107 
1108     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1109     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1110 
1111     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1112     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1113 
1114     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1115     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1116     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1117     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1118     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1119     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1120     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1121     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1122     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1123     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1124 
1125     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1126     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1127 
1128     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1129     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1130 
1131     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1132 
1133     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1134     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1135     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1136     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1137 
1138     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1139     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1140 
1141     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1142     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1143 
1144     if (!Subtarget.useCRBits())
1145       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1146     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1147 
1148     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1149     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1150     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1151     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1152     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1153     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1154     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1155 
1156     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1157     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1158 
1159     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1160     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1161     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1162     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1163     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1164     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1165     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1166     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1167     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1168     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1169 
1170     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1171     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1172 
1173     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1174     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1175 
1176     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1177 
1178     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1179     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1180     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1181 
1182     if (!Subtarget.useCRBits())
1183       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1184     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1185 
1186     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1187     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1188 
1189     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1190     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1191     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1192     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1193     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1194     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1195     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1196 
1197     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1198     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1199 
1200     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1201 
1202     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1203     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1204     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1205     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1206 
1207     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1208     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1209     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1210     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1211 
1212     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1213     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1214 
1215     // These need to set FE_INEXACT, and so cannot be vectorized here.
1216     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1217     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1218 
1219     if (TM.Options.UnsafeFPMath) {
1220       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1221       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1222 
1223       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1224       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1225     } else {
1226       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1227       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1228 
1229       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1230       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1231     }
1232 
1233     // TODO: Handle constrained floating-point operations of v4f64
1234   }
1235 
1236   if (Subtarget.has64BitSupport())
1237     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1238 
1239   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1240 
1241   if (!isPPC64) {
1242     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1243     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1244   }
1245 
1246   setBooleanContents(ZeroOrOneBooleanContent);
1247 
1248   if (Subtarget.hasAltivec()) {
1249     // Altivec instructions set fields to all zeros or all ones.
1250     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1251   }
1252 
1253   if (!isPPC64) {
1254     // These libcalls are not available in 32-bit.
1255     setLibcallName(RTLIB::SHL_I128, nullptr);
1256     setLibcallName(RTLIB::SRL_I128, nullptr);
1257     setLibcallName(RTLIB::SRA_I128, nullptr);
1258   }
1259 
1260   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1261 
1262   // We have target-specific dag combine patterns for the following nodes:
1263   setTargetDAGCombine(ISD::ADD);
1264   setTargetDAGCombine(ISD::SHL);
1265   setTargetDAGCombine(ISD::SRA);
1266   setTargetDAGCombine(ISD::SRL);
1267   setTargetDAGCombine(ISD::MUL);
1268   setTargetDAGCombine(ISD::FMA);
1269   setTargetDAGCombine(ISD::SINT_TO_FP);
1270   setTargetDAGCombine(ISD::BUILD_VECTOR);
1271   if (Subtarget.hasFPCVT())
1272     setTargetDAGCombine(ISD::UINT_TO_FP);
1273   setTargetDAGCombine(ISD::LOAD);
1274   setTargetDAGCombine(ISD::STORE);
1275   setTargetDAGCombine(ISD::BR_CC);
1276   if (Subtarget.useCRBits())
1277     setTargetDAGCombine(ISD::BRCOND);
1278   setTargetDAGCombine(ISD::BSWAP);
1279   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1280   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1281   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1282 
1283   setTargetDAGCombine(ISD::SIGN_EXTEND);
1284   setTargetDAGCombine(ISD::ZERO_EXTEND);
1285   setTargetDAGCombine(ISD::ANY_EXTEND);
1286 
1287   setTargetDAGCombine(ISD::TRUNCATE);
1288   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1289 
1290 
1291   if (Subtarget.useCRBits()) {
1292     setTargetDAGCombine(ISD::TRUNCATE);
1293     setTargetDAGCombine(ISD::SETCC);
1294     setTargetDAGCombine(ISD::SELECT_CC);
1295   }
1296 
1297   // Use reciprocal estimates.
1298   if (TM.Options.UnsafeFPMath) {
1299     setTargetDAGCombine(ISD::FDIV);
1300     setTargetDAGCombine(ISD::FSQRT);
1301   }
1302 
1303   if (Subtarget.hasP9Altivec()) {
1304     setTargetDAGCombine(ISD::ABS);
1305     setTargetDAGCombine(ISD::VSELECT);
1306   }
1307 
1308   if (EnableQuadPrecision) {
1309     setLibcallName(RTLIB::LOG_F128, "logf128");
1310     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1311     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1312     setLibcallName(RTLIB::EXP_F128, "expf128");
1313     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1314     setLibcallName(RTLIB::SIN_F128, "sinf128");
1315     setLibcallName(RTLIB::COS_F128, "cosf128");
1316     setLibcallName(RTLIB::POW_F128, "powf128");
1317     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1318     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1319     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1320     setLibcallName(RTLIB::REM_F128, "fmodf128");
1321   }
1322 
1323   // With 32 condition bits, we don't need to sink (and duplicate) compares
1324   // aggressively in CodeGenPrep.
1325   if (Subtarget.useCRBits()) {
1326     setHasMultipleConditionRegisters();
1327     setJumpIsExpensive();
1328   }
1329 
1330   setMinFunctionAlignment(Align(4));
1331 
1332   switch (Subtarget.getCPUDirective()) {
1333   default: break;
1334   case PPC::DIR_970:
1335   case PPC::DIR_A2:
1336   case PPC::DIR_E500:
1337   case PPC::DIR_E500mc:
1338   case PPC::DIR_E5500:
1339   case PPC::DIR_PWR4:
1340   case PPC::DIR_PWR5:
1341   case PPC::DIR_PWR5X:
1342   case PPC::DIR_PWR6:
1343   case PPC::DIR_PWR6X:
1344   case PPC::DIR_PWR7:
1345   case PPC::DIR_PWR8:
1346   case PPC::DIR_PWR9:
1347   case PPC::DIR_PWR10:
1348   case PPC::DIR_PWR_FUTURE:
1349     setPrefLoopAlignment(Align(16));
1350     setPrefFunctionAlignment(Align(16));
1351     break;
1352   }
1353 
1354   if (Subtarget.enableMachineScheduler())
1355     setSchedulingPreference(Sched::Source);
1356   else
1357     setSchedulingPreference(Sched::Hybrid);
1358 
1359   computeRegisterProperties(STI.getRegisterInfo());
1360 
1361   // The Freescale cores do better with aggressive inlining of memcpy and
1362   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1363   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1364       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1365     MaxStoresPerMemset = 32;
1366     MaxStoresPerMemsetOptSize = 16;
1367     MaxStoresPerMemcpy = 32;
1368     MaxStoresPerMemcpyOptSize = 8;
1369     MaxStoresPerMemmove = 32;
1370     MaxStoresPerMemmoveOptSize = 8;
1371   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1372     // The A2 also benefits from (very) aggressive inlining of memcpy and
1373     // friends. The overhead of a the function call, even when warm, can be
1374     // over one hundred cycles.
1375     MaxStoresPerMemset = 128;
1376     MaxStoresPerMemcpy = 128;
1377     MaxStoresPerMemmove = 128;
1378     MaxLoadsPerMemcmp = 128;
1379   } else {
1380     MaxLoadsPerMemcmp = 8;
1381     MaxLoadsPerMemcmpOptSize = 4;
1382   }
1383 
1384   // Let the subtarget (CPU) decide if a predictable select is more expensive
1385   // than the corresponding branch. This information is used in CGP to decide
1386   // when to convert selects into branches.
1387   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1388 }
1389 
1390 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1391 /// the desired ByVal argument alignment.
1392 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1393   if (MaxAlign == MaxMaxAlign)
1394     return;
1395   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1396     if (MaxMaxAlign >= 32 &&
1397         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1398       MaxAlign = Align(32);
1399     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1400              MaxAlign < 16)
1401       MaxAlign = Align(16);
1402   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1403     Align EltAlign;
1404     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1405     if (EltAlign > MaxAlign)
1406       MaxAlign = EltAlign;
1407   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1408     for (auto *EltTy : STy->elements()) {
1409       Align EltAlign;
1410       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1411       if (EltAlign > MaxAlign)
1412         MaxAlign = EltAlign;
1413       if (MaxAlign == MaxMaxAlign)
1414         break;
1415     }
1416   }
1417 }
1418 
1419 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1420 /// function arguments in the caller parameter area.
1421 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1422                                                   const DataLayout &DL) const {
1423   // 16byte and wider vectors are passed on 16byte boundary.
1424   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1425   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1426   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1427     getMaxByValAlign(Ty, Alignment, Subtarget.hasQPX() ? Align(32) : Align(16));
1428   return Alignment.value();
1429 }
1430 
1431 bool PPCTargetLowering::useSoftFloat() const {
1432   return Subtarget.useSoftFloat();
1433 }
1434 
1435 bool PPCTargetLowering::hasSPE() const {
1436   return Subtarget.hasSPE();
1437 }
1438 
1439 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1440   return VT.isScalarInteger();
1441 }
1442 
1443 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1444 /// type is cheaper than a multiply followed by a shift.
1445 /// This is true for words and doublewords on 64-bit PowerPC.
1446 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1447   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1448                               isOperationLegal(ISD::MULHU, Type)))
1449     return true;
1450   return TargetLowering::isMulhCheaperThanMulShift(Type);
1451 }
1452 
1453 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1454   switch ((PPCISD::NodeType)Opcode) {
1455   case PPCISD::FIRST_NUMBER:    break;
1456   case PPCISD::FSEL:            return "PPCISD::FSEL";
1457   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1458   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1459   case PPCISD::FCFID:           return "PPCISD::FCFID";
1460   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1461   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1462   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1463   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1464   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1465   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1466   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1467   case PPCISD::FP_TO_UINT_IN_VSR:
1468                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1469   case PPCISD::FP_TO_SINT_IN_VSR:
1470                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1471   case PPCISD::FRE:             return "PPCISD::FRE";
1472   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1473   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1474   case PPCISD::VPERM:           return "PPCISD::VPERM";
1475   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1476   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1477   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1478   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1479   case PPCISD::CMPB:            return "PPCISD::CMPB";
1480   case PPCISD::Hi:              return "PPCISD::Hi";
1481   case PPCISD::Lo:              return "PPCISD::Lo";
1482   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1483   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1484   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1485   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1486   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1487   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1488   case PPCISD::SRL:             return "PPCISD::SRL";
1489   case PPCISD::SRA:             return "PPCISD::SRA";
1490   case PPCISD::SHL:             return "PPCISD::SHL";
1491   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1492   case PPCISD::CALL:            return "PPCISD::CALL";
1493   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1494   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1495   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1496   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1497   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1498   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1499   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1500   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1501   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1502   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1503   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1504   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1505   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1506   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1507   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1508   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1509     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1510   case PPCISD::ANDI_rec_1_EQ_BIT:
1511     return "PPCISD::ANDI_rec_1_EQ_BIT";
1512   case PPCISD::ANDI_rec_1_GT_BIT:
1513     return "PPCISD::ANDI_rec_1_GT_BIT";
1514   case PPCISD::VCMP:            return "PPCISD::VCMP";
1515   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1516   case PPCISD::LBRX:            return "PPCISD::LBRX";
1517   case PPCISD::STBRX:           return "PPCISD::STBRX";
1518   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1519   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1520   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1521   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1522   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1523   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1524   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1525   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1526   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1527   case PPCISD::ST_VSR_SCAL_INT:
1528                                 return "PPCISD::ST_VSR_SCAL_INT";
1529   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1530   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1531   case PPCISD::BDZ:             return "PPCISD::BDZ";
1532   case PPCISD::MFFS:            return "PPCISD::MFFS";
1533   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1534   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1535   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1536   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1537   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1538   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1539   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1540   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1541   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1542   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1543   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1544   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1545   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1546   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1547   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1548   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1549   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1550   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1551   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1552   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1553   case PPCISD::SC:              return "PPCISD::SC";
1554   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1555   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1556   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1557   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1558   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1559   case PPCISD::VABSD:           return "PPCISD::VABSD";
1560   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1561   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1562   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1563   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1564   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1565   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1566   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1567   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1568   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1569   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1570   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1571   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1572   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1573   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1574   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1575   }
1576   return nullptr;
1577 }
1578 
1579 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1580                                           EVT VT) const {
1581   if (!VT.isVector())
1582     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1583 
1584   if (Subtarget.hasQPX())
1585     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1586 
1587   return VT.changeVectorElementTypeToInteger();
1588 }
1589 
1590 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1591   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1592   return true;
1593 }
1594 
1595 //===----------------------------------------------------------------------===//
1596 // Node matching predicates, for use by the tblgen matching code.
1597 //===----------------------------------------------------------------------===//
1598 
1599 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1600 static bool isFloatingPointZero(SDValue Op) {
1601   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1602     return CFP->getValueAPF().isZero();
1603   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1604     // Maybe this has already been legalized into the constant pool?
1605     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1606       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1607         return CFP->getValueAPF().isZero();
1608   }
1609   return false;
1610 }
1611 
1612 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1613 /// true if Op is undef or if it matches the specified value.
1614 static bool isConstantOrUndef(int Op, int Val) {
1615   return Op < 0 || Op == Val;
1616 }
1617 
1618 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1619 /// VPKUHUM instruction.
1620 /// The ShuffleKind distinguishes between big-endian operations with
1621 /// two different inputs (0), either-endian operations with two identical
1622 /// inputs (1), and little-endian operations with two different inputs (2).
1623 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1624 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1625                                SelectionDAG &DAG) {
1626   bool IsLE = DAG.getDataLayout().isLittleEndian();
1627   if (ShuffleKind == 0) {
1628     if (IsLE)
1629       return false;
1630     for (unsigned i = 0; i != 16; ++i)
1631       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1632         return false;
1633   } else if (ShuffleKind == 2) {
1634     if (!IsLE)
1635       return false;
1636     for (unsigned i = 0; i != 16; ++i)
1637       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1638         return false;
1639   } else if (ShuffleKind == 1) {
1640     unsigned j = IsLE ? 0 : 1;
1641     for (unsigned i = 0; i != 8; ++i)
1642       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1643           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1644         return false;
1645   }
1646   return true;
1647 }
1648 
1649 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1650 /// VPKUWUM instruction.
1651 /// The ShuffleKind distinguishes between big-endian operations with
1652 /// two different inputs (0), either-endian operations with two identical
1653 /// inputs (1), and little-endian operations with two different inputs (2).
1654 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1655 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1656                                SelectionDAG &DAG) {
1657   bool IsLE = DAG.getDataLayout().isLittleEndian();
1658   if (ShuffleKind == 0) {
1659     if (IsLE)
1660       return false;
1661     for (unsigned i = 0; i != 16; i += 2)
1662       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1663           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1664         return false;
1665   } else if (ShuffleKind == 2) {
1666     if (!IsLE)
1667       return false;
1668     for (unsigned i = 0; i != 16; i += 2)
1669       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1670           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1671         return false;
1672   } else if (ShuffleKind == 1) {
1673     unsigned j = IsLE ? 0 : 2;
1674     for (unsigned i = 0; i != 8; i += 2)
1675       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1676           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1677           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1678           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1679         return false;
1680   }
1681   return true;
1682 }
1683 
1684 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1685 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1686 /// current subtarget.
1687 ///
1688 /// The ShuffleKind distinguishes between big-endian operations with
1689 /// two different inputs (0), either-endian operations with two identical
1690 /// inputs (1), and little-endian operations with two different inputs (2).
1691 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1692 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1693                                SelectionDAG &DAG) {
1694   const PPCSubtarget& Subtarget =
1695       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1696   if (!Subtarget.hasP8Vector())
1697     return false;
1698 
1699   bool IsLE = DAG.getDataLayout().isLittleEndian();
1700   if (ShuffleKind == 0) {
1701     if (IsLE)
1702       return false;
1703     for (unsigned i = 0; i != 16; i += 4)
1704       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1705           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1706           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1707           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1708         return false;
1709   } else if (ShuffleKind == 2) {
1710     if (!IsLE)
1711       return false;
1712     for (unsigned i = 0; i != 16; i += 4)
1713       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1714           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1715           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1716           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1717         return false;
1718   } else if (ShuffleKind == 1) {
1719     unsigned j = IsLE ? 0 : 4;
1720     for (unsigned i = 0; i != 8; i += 4)
1721       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1722           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1723           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1724           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1725           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1726           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1727           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1728           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1729         return false;
1730   }
1731   return true;
1732 }
1733 
1734 /// isVMerge - Common function, used to match vmrg* shuffles.
1735 ///
1736 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1737                      unsigned LHSStart, unsigned RHSStart) {
1738   if (N->getValueType(0) != MVT::v16i8)
1739     return false;
1740   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1741          "Unsupported merge size!");
1742 
1743   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1744     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1745       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1746                              LHSStart+j+i*UnitSize) ||
1747           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1748                              RHSStart+j+i*UnitSize))
1749         return false;
1750     }
1751   return true;
1752 }
1753 
1754 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1755 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1756 /// The ShuffleKind distinguishes between big-endian merges with two
1757 /// different inputs (0), either-endian merges with two identical inputs (1),
1758 /// and little-endian merges with two different inputs (2).  For the latter,
1759 /// the input operands are swapped (see PPCInstrAltivec.td).
1760 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1761                              unsigned ShuffleKind, SelectionDAG &DAG) {
1762   if (DAG.getDataLayout().isLittleEndian()) {
1763     if (ShuffleKind == 1) // unary
1764       return isVMerge(N, UnitSize, 0, 0);
1765     else if (ShuffleKind == 2) // swapped
1766       return isVMerge(N, UnitSize, 0, 16);
1767     else
1768       return false;
1769   } else {
1770     if (ShuffleKind == 1) // unary
1771       return isVMerge(N, UnitSize, 8, 8);
1772     else if (ShuffleKind == 0) // normal
1773       return isVMerge(N, UnitSize, 8, 24);
1774     else
1775       return false;
1776   }
1777 }
1778 
1779 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1780 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1781 /// The ShuffleKind distinguishes between big-endian merges with two
1782 /// different inputs (0), either-endian merges with two identical inputs (1),
1783 /// and little-endian merges with two different inputs (2).  For the latter,
1784 /// the input operands are swapped (see PPCInstrAltivec.td).
1785 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1786                              unsigned ShuffleKind, SelectionDAG &DAG) {
1787   if (DAG.getDataLayout().isLittleEndian()) {
1788     if (ShuffleKind == 1) // unary
1789       return isVMerge(N, UnitSize, 8, 8);
1790     else if (ShuffleKind == 2) // swapped
1791       return isVMerge(N, UnitSize, 8, 24);
1792     else
1793       return false;
1794   } else {
1795     if (ShuffleKind == 1) // unary
1796       return isVMerge(N, UnitSize, 0, 0);
1797     else if (ShuffleKind == 0) // normal
1798       return isVMerge(N, UnitSize, 0, 16);
1799     else
1800       return false;
1801   }
1802 }
1803 
1804 /**
1805  * Common function used to match vmrgew and vmrgow shuffles
1806  *
1807  * The indexOffset determines whether to look for even or odd words in
1808  * the shuffle mask. This is based on the of the endianness of the target
1809  * machine.
1810  *   - Little Endian:
1811  *     - Use offset of 0 to check for odd elements
1812  *     - Use offset of 4 to check for even elements
1813  *   - Big Endian:
1814  *     - Use offset of 0 to check for even elements
1815  *     - Use offset of 4 to check for odd elements
1816  * A detailed description of the vector element ordering for little endian and
1817  * big endian can be found at
1818  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1819  * Targeting your applications - what little endian and big endian IBM XL C/C++
1820  * compiler differences mean to you
1821  *
1822  * The mask to the shuffle vector instruction specifies the indices of the
1823  * elements from the two input vectors to place in the result. The elements are
1824  * numbered in array-access order, starting with the first vector. These vectors
1825  * are always of type v16i8, thus each vector will contain 16 elements of size
1826  * 8. More info on the shuffle vector can be found in the
1827  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1828  * Language Reference.
1829  *
1830  * The RHSStartValue indicates whether the same input vectors are used (unary)
1831  * or two different input vectors are used, based on the following:
1832  *   - If the instruction uses the same vector for both inputs, the range of the
1833  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1834  *     be 0.
1835  *   - If the instruction has two different vectors then the range of the
1836  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1837  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1838  *     to 31 specify elements in the second vector).
1839  *
1840  * \param[in] N The shuffle vector SD Node to analyze
1841  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1842  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1843  * vector to the shuffle_vector instruction
1844  * \return true iff this shuffle vector represents an even or odd word merge
1845  */
1846 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1847                      unsigned RHSStartValue) {
1848   if (N->getValueType(0) != MVT::v16i8)
1849     return false;
1850 
1851   for (unsigned i = 0; i < 2; ++i)
1852     for (unsigned j = 0; j < 4; ++j)
1853       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1854                              i*RHSStartValue+j+IndexOffset) ||
1855           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1856                              i*RHSStartValue+j+IndexOffset+8))
1857         return false;
1858   return true;
1859 }
1860 
1861 /**
1862  * Determine if the specified shuffle mask is suitable for the vmrgew or
1863  * vmrgow instructions.
1864  *
1865  * \param[in] N The shuffle vector SD Node to analyze
1866  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1867  * \param[in] ShuffleKind Identify the type of merge:
1868  *   - 0 = big-endian merge with two different inputs;
1869  *   - 1 = either-endian merge with two identical inputs;
1870  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1871  *     little-endian merges).
1872  * \param[in] DAG The current SelectionDAG
1873  * \return true iff this shuffle mask
1874  */
1875 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1876                               unsigned ShuffleKind, SelectionDAG &DAG) {
1877   if (DAG.getDataLayout().isLittleEndian()) {
1878     unsigned indexOffset = CheckEven ? 4 : 0;
1879     if (ShuffleKind == 1) // Unary
1880       return isVMerge(N, indexOffset, 0);
1881     else if (ShuffleKind == 2) // swapped
1882       return isVMerge(N, indexOffset, 16);
1883     else
1884       return false;
1885   }
1886   else {
1887     unsigned indexOffset = CheckEven ? 0 : 4;
1888     if (ShuffleKind == 1) // Unary
1889       return isVMerge(N, indexOffset, 0);
1890     else if (ShuffleKind == 0) // Normal
1891       return isVMerge(N, indexOffset, 16);
1892     else
1893       return false;
1894   }
1895   return false;
1896 }
1897 
1898 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1899 /// amount, otherwise return -1.
1900 /// The ShuffleKind distinguishes between big-endian operations with two
1901 /// different inputs (0), either-endian operations with two identical inputs
1902 /// (1), and little-endian operations with two different inputs (2).  For the
1903 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1904 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1905                              SelectionDAG &DAG) {
1906   if (N->getValueType(0) != MVT::v16i8)
1907     return -1;
1908 
1909   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1910 
1911   // Find the first non-undef value in the shuffle mask.
1912   unsigned i;
1913   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1914     /*search*/;
1915 
1916   if (i == 16) return -1;  // all undef.
1917 
1918   // Otherwise, check to see if the rest of the elements are consecutively
1919   // numbered from this value.
1920   unsigned ShiftAmt = SVOp->getMaskElt(i);
1921   if (ShiftAmt < i) return -1;
1922 
1923   ShiftAmt -= i;
1924   bool isLE = DAG.getDataLayout().isLittleEndian();
1925 
1926   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1927     // Check the rest of the elements to see if they are consecutive.
1928     for (++i; i != 16; ++i)
1929       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1930         return -1;
1931   } else if (ShuffleKind == 1) {
1932     // Check the rest of the elements to see if they are consecutive.
1933     for (++i; i != 16; ++i)
1934       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1935         return -1;
1936   } else
1937     return -1;
1938 
1939   if (isLE)
1940     ShiftAmt = 16 - ShiftAmt;
1941 
1942   return ShiftAmt;
1943 }
1944 
1945 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1946 /// specifies a splat of a single element that is suitable for input to
1947 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1948 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1949   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1950          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1951 
1952   // The consecutive indices need to specify an element, not part of two
1953   // different elements.  So abandon ship early if this isn't the case.
1954   if (N->getMaskElt(0) % EltSize != 0)
1955     return false;
1956 
1957   // This is a splat operation if each element of the permute is the same, and
1958   // if the value doesn't reference the second vector.
1959   unsigned ElementBase = N->getMaskElt(0);
1960 
1961   // FIXME: Handle UNDEF elements too!
1962   if (ElementBase >= 16)
1963     return false;
1964 
1965   // Check that the indices are consecutive, in the case of a multi-byte element
1966   // splatted with a v16i8 mask.
1967   for (unsigned i = 1; i != EltSize; ++i)
1968     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1969       return false;
1970 
1971   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1972     if (N->getMaskElt(i) < 0) continue;
1973     for (unsigned j = 0; j != EltSize; ++j)
1974       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1975         return false;
1976   }
1977   return true;
1978 }
1979 
1980 /// Check that the mask is shuffling N byte elements. Within each N byte
1981 /// element of the mask, the indices could be either in increasing or
1982 /// decreasing order as long as they are consecutive.
1983 /// \param[in] N the shuffle vector SD Node to analyze
1984 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1985 /// Word/DoubleWord/QuadWord).
1986 /// \param[in] StepLen the delta indices number among the N byte element, if
1987 /// the mask is in increasing/decreasing order then it is 1/-1.
1988 /// \return true iff the mask is shuffling N byte elements.
1989 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1990                                    int StepLen) {
1991   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1992          "Unexpected element width.");
1993   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1994 
1995   unsigned NumOfElem = 16 / Width;
1996   unsigned MaskVal[16]; //  Width is never greater than 16
1997   for (unsigned i = 0; i < NumOfElem; ++i) {
1998     MaskVal[0] = N->getMaskElt(i * Width);
1999     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2000       return false;
2001     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2002       return false;
2003     }
2004 
2005     for (unsigned int j = 1; j < Width; ++j) {
2006       MaskVal[j] = N->getMaskElt(i * Width + j);
2007       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2008         return false;
2009       }
2010     }
2011   }
2012 
2013   return true;
2014 }
2015 
2016 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2017                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2018   if (!isNByteElemShuffleMask(N, 4, 1))
2019     return false;
2020 
2021   // Now we look at mask elements 0,4,8,12
2022   unsigned M0 = N->getMaskElt(0) / 4;
2023   unsigned M1 = N->getMaskElt(4) / 4;
2024   unsigned M2 = N->getMaskElt(8) / 4;
2025   unsigned M3 = N->getMaskElt(12) / 4;
2026   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2027   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2028 
2029   // Below, let H and L be arbitrary elements of the shuffle mask
2030   // where H is in the range [4,7] and L is in the range [0,3].
2031   // H, 1, 2, 3 or L, 5, 6, 7
2032   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2033       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2034     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2035     InsertAtByte = IsLE ? 12 : 0;
2036     Swap = M0 < 4;
2037     return true;
2038   }
2039   // 0, H, 2, 3 or 4, L, 6, 7
2040   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2041       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2042     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2043     InsertAtByte = IsLE ? 8 : 4;
2044     Swap = M1 < 4;
2045     return true;
2046   }
2047   // 0, 1, H, 3 or 4, 5, L, 7
2048   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2049       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2050     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2051     InsertAtByte = IsLE ? 4 : 8;
2052     Swap = M2 < 4;
2053     return true;
2054   }
2055   // 0, 1, 2, H or 4, 5, 6, L
2056   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2057       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2058     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2059     InsertAtByte = IsLE ? 0 : 12;
2060     Swap = M3 < 4;
2061     return true;
2062   }
2063 
2064   // If both vector operands for the shuffle are the same vector, the mask will
2065   // contain only elements from the first one and the second one will be undef.
2066   if (N->getOperand(1).isUndef()) {
2067     ShiftElts = 0;
2068     Swap = true;
2069     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2070     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2071       InsertAtByte = IsLE ? 12 : 0;
2072       return true;
2073     }
2074     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2075       InsertAtByte = IsLE ? 8 : 4;
2076       return true;
2077     }
2078     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2079       InsertAtByte = IsLE ? 4 : 8;
2080       return true;
2081     }
2082     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2083       InsertAtByte = IsLE ? 0 : 12;
2084       return true;
2085     }
2086   }
2087 
2088   return false;
2089 }
2090 
2091 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2092                                bool &Swap, bool IsLE) {
2093   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2094   // Ensure each byte index of the word is consecutive.
2095   if (!isNByteElemShuffleMask(N, 4, 1))
2096     return false;
2097 
2098   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2099   unsigned M0 = N->getMaskElt(0) / 4;
2100   unsigned M1 = N->getMaskElt(4) / 4;
2101   unsigned M2 = N->getMaskElt(8) / 4;
2102   unsigned M3 = N->getMaskElt(12) / 4;
2103 
2104   // If both vector operands for the shuffle are the same vector, the mask will
2105   // contain only elements from the first one and the second one will be undef.
2106   if (N->getOperand(1).isUndef()) {
2107     assert(M0 < 4 && "Indexing into an undef vector?");
2108     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2109       return false;
2110 
2111     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2112     Swap = false;
2113     return true;
2114   }
2115 
2116   // Ensure each word index of the ShuffleVector Mask is consecutive.
2117   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2118     return false;
2119 
2120   if (IsLE) {
2121     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2122       // Input vectors don't need to be swapped if the leading element
2123       // of the result is one of the 3 left elements of the second vector
2124       // (or if there is no shift to be done at all).
2125       Swap = false;
2126       ShiftElts = (8 - M0) % 8;
2127     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2128       // Input vectors need to be swapped if the leading element
2129       // of the result is one of the 3 left elements of the first vector
2130       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2131       Swap = true;
2132       ShiftElts = (4 - M0) % 4;
2133     }
2134 
2135     return true;
2136   } else {                                          // BE
2137     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2138       // Input vectors don't need to be swapped if the leading element
2139       // of the result is one of the 4 elements of the first vector.
2140       Swap = false;
2141       ShiftElts = M0;
2142     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2143       // Input vectors need to be swapped if the leading element
2144       // of the result is one of the 4 elements of the right vector.
2145       Swap = true;
2146       ShiftElts = M0 - 4;
2147     }
2148 
2149     return true;
2150   }
2151 }
2152 
2153 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2154   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2155 
2156   if (!isNByteElemShuffleMask(N, Width, -1))
2157     return false;
2158 
2159   for (int i = 0; i < 16; i += Width)
2160     if (N->getMaskElt(i) != i + Width - 1)
2161       return false;
2162 
2163   return true;
2164 }
2165 
2166 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2167   return isXXBRShuffleMaskHelper(N, 2);
2168 }
2169 
2170 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2171   return isXXBRShuffleMaskHelper(N, 4);
2172 }
2173 
2174 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2175   return isXXBRShuffleMaskHelper(N, 8);
2176 }
2177 
2178 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2179   return isXXBRShuffleMaskHelper(N, 16);
2180 }
2181 
2182 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2183 /// if the inputs to the instruction should be swapped and set \p DM to the
2184 /// value for the immediate.
2185 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2186 /// AND element 0 of the result comes from the first input (LE) or second input
2187 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2188 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2189 /// mask.
2190 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2191                                bool &Swap, bool IsLE) {
2192   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2193 
2194   // Ensure each byte index of the double word is consecutive.
2195   if (!isNByteElemShuffleMask(N, 8, 1))
2196     return false;
2197 
2198   unsigned M0 = N->getMaskElt(0) / 8;
2199   unsigned M1 = N->getMaskElt(8) / 8;
2200   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2201 
2202   // If both vector operands for the shuffle are the same vector, the mask will
2203   // contain only elements from the first one and the second one will be undef.
2204   if (N->getOperand(1).isUndef()) {
2205     if ((M0 | M1) < 2) {
2206       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2207       Swap = false;
2208       return true;
2209     } else
2210       return false;
2211   }
2212 
2213   if (IsLE) {
2214     if (M0 > 1 && M1 < 2) {
2215       Swap = false;
2216     } else if (M0 < 2 && M1 > 1) {
2217       M0 = (M0 + 2) % 4;
2218       M1 = (M1 + 2) % 4;
2219       Swap = true;
2220     } else
2221       return false;
2222 
2223     // Note: if control flow comes here that means Swap is already set above
2224     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2225     return true;
2226   } else { // BE
2227     if (M0 < 2 && M1 > 1) {
2228       Swap = false;
2229     } else if (M0 > 1 && M1 < 2) {
2230       M0 = (M0 + 2) % 4;
2231       M1 = (M1 + 2) % 4;
2232       Swap = true;
2233     } else
2234       return false;
2235 
2236     // Note: if control flow comes here that means Swap is already set above
2237     DM = (M0 << 1) + (M1 & 1);
2238     return true;
2239   }
2240 }
2241 
2242 
2243 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2244 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2245 /// elements are counted from the left of the vector register).
2246 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2247                                          SelectionDAG &DAG) {
2248   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2249   assert(isSplatShuffleMask(SVOp, EltSize));
2250   if (DAG.getDataLayout().isLittleEndian())
2251     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2252   else
2253     return SVOp->getMaskElt(0) / EltSize;
2254 }
2255 
2256 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2257 /// by using a vspltis[bhw] instruction of the specified element size, return
2258 /// the constant being splatted.  The ByteSize field indicates the number of
2259 /// bytes of each element [124] -> [bhw].
2260 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2261   SDValue OpVal(nullptr, 0);
2262 
2263   // If ByteSize of the splat is bigger than the element size of the
2264   // build_vector, then we have a case where we are checking for a splat where
2265   // multiple elements of the buildvector are folded together into a single
2266   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2267   unsigned EltSize = 16/N->getNumOperands();
2268   if (EltSize < ByteSize) {
2269     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2270     SDValue UniquedVals[4];
2271     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2272 
2273     // See if all of the elements in the buildvector agree across.
2274     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2275       if (N->getOperand(i).isUndef()) continue;
2276       // If the element isn't a constant, bail fully out.
2277       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2278 
2279       if (!UniquedVals[i&(Multiple-1)].getNode())
2280         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2281       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2282         return SDValue();  // no match.
2283     }
2284 
2285     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2286     // either constant or undef values that are identical for each chunk.  See
2287     // if these chunks can form into a larger vspltis*.
2288 
2289     // Check to see if all of the leading entries are either 0 or -1.  If
2290     // neither, then this won't fit into the immediate field.
2291     bool LeadingZero = true;
2292     bool LeadingOnes = true;
2293     for (unsigned i = 0; i != Multiple-1; ++i) {
2294       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2295 
2296       LeadingZero &= isNullConstant(UniquedVals[i]);
2297       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2298     }
2299     // Finally, check the least significant entry.
2300     if (LeadingZero) {
2301       if (!UniquedVals[Multiple-1].getNode())
2302         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2303       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2304       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2305         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2306     }
2307     if (LeadingOnes) {
2308       if (!UniquedVals[Multiple-1].getNode())
2309         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2310       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2311       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2312         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2313     }
2314 
2315     return SDValue();
2316   }
2317 
2318   // Check to see if this buildvec has a single non-undef value in its elements.
2319   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2320     if (N->getOperand(i).isUndef()) continue;
2321     if (!OpVal.getNode())
2322       OpVal = N->getOperand(i);
2323     else if (OpVal != N->getOperand(i))
2324       return SDValue();
2325   }
2326 
2327   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2328 
2329   unsigned ValSizeInBytes = EltSize;
2330   uint64_t Value = 0;
2331   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2332     Value = CN->getZExtValue();
2333   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2334     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2335     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2336   }
2337 
2338   // If the splat value is larger than the element value, then we can never do
2339   // this splat.  The only case that we could fit the replicated bits into our
2340   // immediate field for would be zero, and we prefer to use vxor for it.
2341   if (ValSizeInBytes < ByteSize) return SDValue();
2342 
2343   // If the element value is larger than the splat value, check if it consists
2344   // of a repeated bit pattern of size ByteSize.
2345   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2346     return SDValue();
2347 
2348   // Properly sign extend the value.
2349   int MaskVal = SignExtend32(Value, ByteSize * 8);
2350 
2351   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2352   if (MaskVal == 0) return SDValue();
2353 
2354   // Finally, if this value fits in a 5 bit sext field, return it
2355   if (SignExtend32<5>(MaskVal) == MaskVal)
2356     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2357   return SDValue();
2358 }
2359 
2360 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2361 /// amount, otherwise return -1.
2362 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2363   EVT VT = N->getValueType(0);
2364   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2365     return -1;
2366 
2367   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2368 
2369   // Find the first non-undef value in the shuffle mask.
2370   unsigned i;
2371   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2372     /*search*/;
2373 
2374   if (i == 4) return -1;  // all undef.
2375 
2376   // Otherwise, check to see if the rest of the elements are consecutively
2377   // numbered from this value.
2378   unsigned ShiftAmt = SVOp->getMaskElt(i);
2379   if (ShiftAmt < i) return -1;
2380   ShiftAmt -= i;
2381 
2382   // Check the rest of the elements to see if they are consecutive.
2383   for (++i; i != 4; ++i)
2384     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2385       return -1;
2386 
2387   return ShiftAmt;
2388 }
2389 
2390 //===----------------------------------------------------------------------===//
2391 //  Addressing Mode Selection
2392 //===----------------------------------------------------------------------===//
2393 
2394 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2395 /// or 64-bit immediate, and if the value can be accurately represented as a
2396 /// sign extension from a 16-bit value.  If so, this returns true and the
2397 /// immediate.
2398 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2399   if (!isa<ConstantSDNode>(N))
2400     return false;
2401 
2402   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2403   if (N->getValueType(0) == MVT::i32)
2404     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2405   else
2406     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2407 }
2408 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2409   return isIntS16Immediate(Op.getNode(), Imm);
2410 }
2411 
2412 
2413 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2414 /// be represented as an indexed [r+r] operation.
2415 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2416                                                SDValue &Index,
2417                                                SelectionDAG &DAG) const {
2418   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2419       UI != E; ++UI) {
2420     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2421       if (Memop->getMemoryVT() == MVT::f64) {
2422           Base = N.getOperand(0);
2423           Index = N.getOperand(1);
2424           return true;
2425       }
2426     }
2427   }
2428   return false;
2429 }
2430 
2431 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2432 /// can be represented as an indexed [r+r] operation.  Returns false if it
2433 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2434 /// non-zero and N can be represented by a base register plus a signed 16-bit
2435 /// displacement, make a more precise judgement by checking (displacement % \p
2436 /// EncodingAlignment).
2437 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2438                                             SDValue &Index, SelectionDAG &DAG,
2439                                             unsigned EncodingAlignment) const {
2440   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2441   // a [pc+imm].
2442   if (SelectAddressPCRel(N, Base))
2443     return false;
2444 
2445   int16_t imm = 0;
2446   if (N.getOpcode() == ISD::ADD) {
2447     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2448     // SPE load/store can only handle 8-bit offsets.
2449     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2450         return true;
2451     if (isIntS16Immediate(N.getOperand(1), imm) &&
2452         (!EncodingAlignment || !(imm % EncodingAlignment)))
2453       return false; // r+i
2454     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2455       return false;    // r+i
2456 
2457     Base = N.getOperand(0);
2458     Index = N.getOperand(1);
2459     return true;
2460   } else if (N.getOpcode() == ISD::OR) {
2461     if (isIntS16Immediate(N.getOperand(1), imm) &&
2462         (!EncodingAlignment || !(imm % EncodingAlignment)))
2463       return false; // r+i can fold it if we can.
2464 
2465     // If this is an or of disjoint bitfields, we can codegen this as an add
2466     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2467     // disjoint.
2468     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2469 
2470     if (LHSKnown.Zero.getBoolValue()) {
2471       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2472       // If all of the bits are known zero on the LHS or RHS, the add won't
2473       // carry.
2474       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2475         Base = N.getOperand(0);
2476         Index = N.getOperand(1);
2477         return true;
2478       }
2479     }
2480   }
2481 
2482   return false;
2483 }
2484 
2485 // If we happen to be doing an i64 load or store into a stack slot that has
2486 // less than a 4-byte alignment, then the frame-index elimination may need to
2487 // use an indexed load or store instruction (because the offset may not be a
2488 // multiple of 4). The extra register needed to hold the offset comes from the
2489 // register scavenger, and it is possible that the scavenger will need to use
2490 // an emergency spill slot. As a result, we need to make sure that a spill slot
2491 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2492 // stack slot.
2493 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2494   // FIXME: This does not handle the LWA case.
2495   if (VT != MVT::i64)
2496     return;
2497 
2498   // NOTE: We'll exclude negative FIs here, which come from argument
2499   // lowering, because there are no known test cases triggering this problem
2500   // using packed structures (or similar). We can remove this exclusion if
2501   // we find such a test case. The reason why this is so test-case driven is
2502   // because this entire 'fixup' is only to prevent crashes (from the
2503   // register scavenger) on not-really-valid inputs. For example, if we have:
2504   //   %a = alloca i1
2505   //   %b = bitcast i1* %a to i64*
2506   //   store i64* a, i64 b
2507   // then the store should really be marked as 'align 1', but is not. If it
2508   // were marked as 'align 1' then the indexed form would have been
2509   // instruction-selected initially, and the problem this 'fixup' is preventing
2510   // won't happen regardless.
2511   if (FrameIdx < 0)
2512     return;
2513 
2514   MachineFunction &MF = DAG.getMachineFunction();
2515   MachineFrameInfo &MFI = MF.getFrameInfo();
2516 
2517   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2518     return;
2519 
2520   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2521   FuncInfo->setHasNonRISpills();
2522 }
2523 
2524 /// Returns true if the address N can be represented by a base register plus
2525 /// a signed 16-bit displacement [r+imm], and if it is not better
2526 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2527 /// displacements that are multiples of that value.
2528 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2529                                             SDValue &Base,
2530                                             SelectionDAG &DAG,
2531                                             unsigned EncodingAlignment) const {
2532   // FIXME dl should come from parent load or store, not from address
2533   SDLoc dl(N);
2534 
2535   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2536   // a [pc+imm].
2537   if (SelectAddressPCRel(N, Base))
2538     return false;
2539 
2540   // If this can be more profitably realized as r+r, fail.
2541   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2542     return false;
2543 
2544   if (N.getOpcode() == ISD::ADD) {
2545     int16_t imm = 0;
2546     if (isIntS16Immediate(N.getOperand(1), imm) &&
2547         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2548       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2549       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2550         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2551         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2552       } else {
2553         Base = N.getOperand(0);
2554       }
2555       return true; // [r+i]
2556     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2557       // Match LOAD (ADD (X, Lo(G))).
2558       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2559              && "Cannot handle constant offsets yet!");
2560       Disp = N.getOperand(1).getOperand(0);  // The global address.
2561       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2562              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2563              Disp.getOpcode() == ISD::TargetConstantPool ||
2564              Disp.getOpcode() == ISD::TargetJumpTable);
2565       Base = N.getOperand(0);
2566       return true;  // [&g+r]
2567     }
2568   } else if (N.getOpcode() == ISD::OR) {
2569     int16_t imm = 0;
2570     if (isIntS16Immediate(N.getOperand(1), imm) &&
2571         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2572       // If this is an or of disjoint bitfields, we can codegen this as an add
2573       // (for better address arithmetic) if the LHS and RHS of the OR are
2574       // provably disjoint.
2575       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2576 
2577       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2578         // If all of the bits are known zero on the LHS or RHS, the add won't
2579         // carry.
2580         if (FrameIndexSDNode *FI =
2581               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2582           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2583           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2584         } else {
2585           Base = N.getOperand(0);
2586         }
2587         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2588         return true;
2589       }
2590     }
2591   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2592     // Loading from a constant address.
2593 
2594     // If this address fits entirely in a 16-bit sext immediate field, codegen
2595     // this as "d, 0"
2596     int16_t Imm;
2597     if (isIntS16Immediate(CN, Imm) &&
2598         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2599       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2600       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2601                              CN->getValueType(0));
2602       return true;
2603     }
2604 
2605     // Handle 32-bit sext immediates with LIS + addr mode.
2606     if ((CN->getValueType(0) == MVT::i32 ||
2607          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2608         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2609       int Addr = (int)CN->getZExtValue();
2610 
2611       // Otherwise, break this down into an LIS + disp.
2612       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2613 
2614       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2615                                    MVT::i32);
2616       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2617       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2618       return true;
2619     }
2620   }
2621 
2622   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2623   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2624     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2625     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2626   } else
2627     Base = N;
2628   return true;      // [r+0]
2629 }
2630 
2631 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2632 /// represented as an indexed [r+r] operation.
2633 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2634                                                 SDValue &Index,
2635                                                 SelectionDAG &DAG) const {
2636   // Check to see if we can easily represent this as an [r+r] address.  This
2637   // will fail if it thinks that the address is more profitably represented as
2638   // reg+imm, e.g. where imm = 0.
2639   if (SelectAddressRegReg(N, Base, Index, DAG))
2640     return true;
2641 
2642   // If the address is the result of an add, we will utilize the fact that the
2643   // address calculation includes an implicit add.  However, we can reduce
2644   // register pressure if we do not materialize a constant just for use as the
2645   // index register.  We only get rid of the add if it is not an add of a
2646   // value and a 16-bit signed constant and both have a single use.
2647   int16_t imm = 0;
2648   if (N.getOpcode() == ISD::ADD &&
2649       (!isIntS16Immediate(N.getOperand(1), imm) ||
2650        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2651     Base = N.getOperand(0);
2652     Index = N.getOperand(1);
2653     return true;
2654   }
2655 
2656   // Otherwise, do it the hard way, using R0 as the base register.
2657   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2658                          N.getValueType());
2659   Index = N;
2660   return true;
2661 }
2662 
2663 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2664   Ty *PCRelCand = dyn_cast<Ty>(N);
2665   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2666 }
2667 
2668 /// Returns true if this address is a PC Relative address.
2669 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2670 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2671 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2672   // This is a materialize PC Relative node. Always select this as PC Relative.
2673   Base = N;
2674   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2675     return true;
2676   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2677       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2678       isValidPCRelNode<JumpTableSDNode>(N) ||
2679       isValidPCRelNode<BlockAddressSDNode>(N))
2680     return true;
2681   return false;
2682 }
2683 
2684 /// Returns true if we should use a direct load into vector instruction
2685 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2686 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2687 
2688   // If there are any other uses other than scalar to vector, then we should
2689   // keep it as a scalar load -> direct move pattern to prevent multiple
2690   // loads.
2691   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2692   if (!LD)
2693     return false;
2694 
2695   EVT MemVT = LD->getMemoryVT();
2696   if (!MemVT.isSimple())
2697     return false;
2698   switch(MemVT.getSimpleVT().SimpleTy) {
2699   case MVT::i64:
2700     break;
2701   case MVT::i32:
2702     if (!ST.hasP8Vector())
2703       return false;
2704     break;
2705   case MVT::i16:
2706   case MVT::i8:
2707     if (!ST.hasP9Vector())
2708       return false;
2709     break;
2710   default:
2711     return false;
2712   }
2713 
2714   SDValue LoadedVal(N, 0);
2715   if (!LoadedVal.hasOneUse())
2716     return false;
2717 
2718   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2719        UI != UE; ++UI)
2720     if (UI.getUse().get().getResNo() == 0 &&
2721         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2722         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2723       return false;
2724 
2725   return true;
2726 }
2727 
2728 /// getPreIndexedAddressParts - returns true by value, base pointer and
2729 /// offset pointer and addressing mode by reference if the node's address
2730 /// can be legally represented as pre-indexed load / store address.
2731 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2732                                                   SDValue &Offset,
2733                                                   ISD::MemIndexedMode &AM,
2734                                                   SelectionDAG &DAG) const {
2735   if (DisablePPCPreinc) return false;
2736 
2737   bool isLoad = true;
2738   SDValue Ptr;
2739   EVT VT;
2740   unsigned Alignment;
2741   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2742     Ptr = LD->getBasePtr();
2743     VT = LD->getMemoryVT();
2744     Alignment = LD->getAlignment();
2745   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2746     Ptr = ST->getBasePtr();
2747     VT  = ST->getMemoryVT();
2748     Alignment = ST->getAlignment();
2749     isLoad = false;
2750   } else
2751     return false;
2752 
2753   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2754   // instructions because we can fold these into a more efficient instruction
2755   // instead, (such as LXSD).
2756   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2757     return false;
2758   }
2759 
2760   // PowerPC doesn't have preinc load/store instructions for vectors (except
2761   // for QPX, which does have preinc r+r forms).
2762   if (VT.isVector()) {
2763     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2764       return false;
2765     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2766       AM = ISD::PRE_INC;
2767       return true;
2768     }
2769   }
2770 
2771   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2772     // Common code will reject creating a pre-inc form if the base pointer
2773     // is a frame index, or if N is a store and the base pointer is either
2774     // the same as or a predecessor of the value being stored.  Check for
2775     // those situations here, and try with swapped Base/Offset instead.
2776     bool Swap = false;
2777 
2778     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2779       Swap = true;
2780     else if (!isLoad) {
2781       SDValue Val = cast<StoreSDNode>(N)->getValue();
2782       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2783         Swap = true;
2784     }
2785 
2786     if (Swap)
2787       std::swap(Base, Offset);
2788 
2789     AM = ISD::PRE_INC;
2790     return true;
2791   }
2792 
2793   // LDU/STU can only handle immediates that are a multiple of 4.
2794   if (VT != MVT::i64) {
2795     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2796       return false;
2797   } else {
2798     // LDU/STU need an address with at least 4-byte alignment.
2799     if (Alignment < 4)
2800       return false;
2801 
2802     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2803       return false;
2804   }
2805 
2806   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2807     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2808     // sext i32 to i64 when addr mode is r+i.
2809     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2810         LD->getExtensionType() == ISD::SEXTLOAD &&
2811         isa<ConstantSDNode>(Offset))
2812       return false;
2813   }
2814 
2815   AM = ISD::PRE_INC;
2816   return true;
2817 }
2818 
2819 //===----------------------------------------------------------------------===//
2820 //  LowerOperation implementation
2821 //===----------------------------------------------------------------------===//
2822 
2823 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2824 /// and LoOpFlags to the target MO flags.
2825 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2826                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2827                                const GlobalValue *GV = nullptr) {
2828   HiOpFlags = PPCII::MO_HA;
2829   LoOpFlags = PPCII::MO_LO;
2830 
2831   // Don't use the pic base if not in PIC relocation model.
2832   if (IsPIC) {
2833     HiOpFlags |= PPCII::MO_PIC_FLAG;
2834     LoOpFlags |= PPCII::MO_PIC_FLAG;
2835   }
2836 }
2837 
2838 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2839                              SelectionDAG &DAG) {
2840   SDLoc DL(HiPart);
2841   EVT PtrVT = HiPart.getValueType();
2842   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2843 
2844   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2845   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2846 
2847   // With PIC, the first instruction is actually "GR+hi(&G)".
2848   if (isPIC)
2849     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2850                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2851 
2852   // Generate non-pic code that has direct accesses to the constant pool.
2853   // The address of the global is just (hi(&g)+lo(&g)).
2854   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2855 }
2856 
2857 static void setUsesTOCBasePtr(MachineFunction &MF) {
2858   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2859   FuncInfo->setUsesTOCBasePtr();
2860 }
2861 
2862 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2863   setUsesTOCBasePtr(DAG.getMachineFunction());
2864 }
2865 
2866 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2867                                        SDValue GA) const {
2868   const bool Is64Bit = Subtarget.isPPC64();
2869   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2870   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2871                         : Subtarget.isAIXABI()
2872                               ? DAG.getRegister(PPC::R2, VT)
2873                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2874   SDValue Ops[] = { GA, Reg };
2875   return DAG.getMemIntrinsicNode(
2876       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2877       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2878       MachineMemOperand::MOLoad);
2879 }
2880 
2881 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2882                                              SelectionDAG &DAG) const {
2883   EVT PtrVT = Op.getValueType();
2884   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2885   const Constant *C = CP->getConstVal();
2886 
2887   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2888   // The actual address of the GlobalValue is stored in the TOC.
2889   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2890     if (Subtarget.isUsingPCRelativeCalls()) {
2891       SDLoc DL(CP);
2892       EVT Ty = getPointerTy(DAG.getDataLayout());
2893       SDValue ConstPool = DAG.getTargetConstantPool(
2894           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2895       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2896     }
2897     setUsesTOCBasePtr(DAG);
2898     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2899     return getTOCEntry(DAG, SDLoc(CP), GA);
2900   }
2901 
2902   unsigned MOHiFlag, MOLoFlag;
2903   bool IsPIC = isPositionIndependent();
2904   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2905 
2906   if (IsPIC && Subtarget.isSVR4ABI()) {
2907     SDValue GA =
2908         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2909     return getTOCEntry(DAG, SDLoc(CP), GA);
2910   }
2911 
2912   SDValue CPIHi =
2913       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2914   SDValue CPILo =
2915       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2916   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2917 }
2918 
2919 // For 64-bit PowerPC, prefer the more compact relative encodings.
2920 // This trades 32 bits per jump table entry for one or two instructions
2921 // on the jump site.
2922 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2923   if (isJumpTableRelative())
2924     return MachineJumpTableInfo::EK_LabelDifference32;
2925 
2926   return TargetLowering::getJumpTableEncoding();
2927 }
2928 
2929 bool PPCTargetLowering::isJumpTableRelative() const {
2930   if (UseAbsoluteJumpTables)
2931     return false;
2932   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2933     return true;
2934   return TargetLowering::isJumpTableRelative();
2935 }
2936 
2937 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2938                                                     SelectionDAG &DAG) const {
2939   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2940     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2941 
2942   switch (getTargetMachine().getCodeModel()) {
2943   case CodeModel::Small:
2944   case CodeModel::Medium:
2945     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2946   default:
2947     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2948                        getPointerTy(DAG.getDataLayout()));
2949   }
2950 }
2951 
2952 const MCExpr *
2953 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2954                                                 unsigned JTI,
2955                                                 MCContext &Ctx) const {
2956   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2957     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2958 
2959   switch (getTargetMachine().getCodeModel()) {
2960   case CodeModel::Small:
2961   case CodeModel::Medium:
2962     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2963   default:
2964     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2965   }
2966 }
2967 
2968 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2969   EVT PtrVT = Op.getValueType();
2970   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2971 
2972   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2973   if (Subtarget.isUsingPCRelativeCalls()) {
2974     SDLoc DL(JT);
2975     EVT Ty = getPointerTy(DAG.getDataLayout());
2976     SDValue GA =
2977         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2978     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2979     return MatAddr;
2980   }
2981 
2982   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2983   // The actual address of the GlobalValue is stored in the TOC.
2984   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2985     setUsesTOCBasePtr(DAG);
2986     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2987     return getTOCEntry(DAG, SDLoc(JT), GA);
2988   }
2989 
2990   unsigned MOHiFlag, MOLoFlag;
2991   bool IsPIC = isPositionIndependent();
2992   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2993 
2994   if (IsPIC && Subtarget.isSVR4ABI()) {
2995     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2996                                         PPCII::MO_PIC_FLAG);
2997     return getTOCEntry(DAG, SDLoc(GA), GA);
2998   }
2999 
3000   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3001   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3002   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3003 }
3004 
3005 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3006                                              SelectionDAG &DAG) const {
3007   EVT PtrVT = Op.getValueType();
3008   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3009   const BlockAddress *BA = BASDN->getBlockAddress();
3010 
3011   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3012   if (Subtarget.isUsingPCRelativeCalls()) {
3013     SDLoc DL(BASDN);
3014     EVT Ty = getPointerTy(DAG.getDataLayout());
3015     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3016                                            PPCII::MO_PCREL_FLAG);
3017     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3018     return MatAddr;
3019   }
3020 
3021   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3022   // The actual BlockAddress is stored in the TOC.
3023   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3024     setUsesTOCBasePtr(DAG);
3025     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3026     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3027   }
3028 
3029   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3030   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3031     return getTOCEntry(
3032         DAG, SDLoc(BASDN),
3033         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3034 
3035   unsigned MOHiFlag, MOLoFlag;
3036   bool IsPIC = isPositionIndependent();
3037   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3038   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3039   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3040   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3041 }
3042 
3043 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3044                                               SelectionDAG &DAG) const {
3045   // FIXME: TLS addresses currently use medium model code sequences,
3046   // which is the most useful form.  Eventually support for small and
3047   // large models could be added if users need it, at the cost of
3048   // additional complexity.
3049   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3050   if (DAG.getTarget().useEmulatedTLS())
3051     return LowerToTLSEmulatedModel(GA, DAG);
3052 
3053   SDLoc dl(GA);
3054   const GlobalValue *GV = GA->getGlobal();
3055   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3056   bool is64bit = Subtarget.isPPC64();
3057   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3058   PICLevel::Level picLevel = M->getPICLevel();
3059 
3060   const TargetMachine &TM = getTargetMachine();
3061   TLSModel::Model Model = TM.getTLSModel(GV);
3062 
3063   if (Model == TLSModel::LocalExec) {
3064     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3065                                                PPCII::MO_TPREL_HA);
3066     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3067                                                PPCII::MO_TPREL_LO);
3068     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3069                              : DAG.getRegister(PPC::R2, MVT::i32);
3070 
3071     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3072     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3073   }
3074 
3075   if (Model == TLSModel::InitialExec) {
3076     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3077     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3078                                                 PPCII::MO_TLS);
3079     SDValue GOTPtr;
3080     if (is64bit) {
3081       setUsesTOCBasePtr(DAG);
3082       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3083       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
3084                            PtrVT, GOTReg, TGA);
3085     } else {
3086       if (!TM.isPositionIndependent())
3087         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3088       else if (picLevel == PICLevel::SmallPIC)
3089         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3090       else
3091         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3092     }
3093     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
3094                                    PtrVT, TGA, GOTPtr);
3095     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3096   }
3097 
3098   if (Model == TLSModel::GeneralDynamic) {
3099     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3100     SDValue GOTPtr;
3101     if (is64bit) {
3102       setUsesTOCBasePtr(DAG);
3103       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3104       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3105                                    GOTReg, TGA);
3106     } else {
3107       if (picLevel == PICLevel::SmallPIC)
3108         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3109       else
3110         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3111     }
3112     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3113                        GOTPtr, TGA, TGA);
3114   }
3115 
3116   if (Model == TLSModel::LocalDynamic) {
3117     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3118     SDValue GOTPtr;
3119     if (is64bit) {
3120       setUsesTOCBasePtr(DAG);
3121       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3122       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3123                            GOTReg, TGA);
3124     } else {
3125       if (picLevel == PICLevel::SmallPIC)
3126         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3127       else
3128         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3129     }
3130     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3131                                   PtrVT, GOTPtr, TGA, TGA);
3132     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3133                                       PtrVT, TLSAddr, TGA);
3134     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3135   }
3136 
3137   llvm_unreachable("Unknown TLS model!");
3138 }
3139 
3140 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3141                                               SelectionDAG &DAG) const {
3142   EVT PtrVT = Op.getValueType();
3143   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3144   SDLoc DL(GSDN);
3145   const GlobalValue *GV = GSDN->getGlobal();
3146 
3147   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3148   // The actual address of the GlobalValue is stored in the TOC.
3149   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3150     if (Subtarget.isUsingPCRelativeCalls()) {
3151       EVT Ty = getPointerTy(DAG.getDataLayout());
3152       if (isAccessedAsGotIndirect(Op)) {
3153         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3154                                                 PPCII::MO_PCREL_FLAG |
3155                                                     PPCII::MO_GOT_FLAG);
3156         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3157         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3158                                    MachinePointerInfo());
3159         return Load;
3160       } else {
3161         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3162                                                 PPCII::MO_PCREL_FLAG);
3163         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3164       }
3165     }
3166     setUsesTOCBasePtr(DAG);
3167     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3168     return getTOCEntry(DAG, DL, GA);
3169   }
3170 
3171   unsigned MOHiFlag, MOLoFlag;
3172   bool IsPIC = isPositionIndependent();
3173   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3174 
3175   if (IsPIC && Subtarget.isSVR4ABI()) {
3176     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3177                                             GSDN->getOffset(),
3178                                             PPCII::MO_PIC_FLAG);
3179     return getTOCEntry(DAG, DL, GA);
3180   }
3181 
3182   SDValue GAHi =
3183     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3184   SDValue GALo =
3185     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3186 
3187   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3188 }
3189 
3190 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3191   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3192   SDLoc dl(Op);
3193 
3194   if (Op.getValueType() == MVT::v2i64) {
3195     // When the operands themselves are v2i64 values, we need to do something
3196     // special because VSX has no underlying comparison operations for these.
3197     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3198       // Equality can be handled by casting to the legal type for Altivec
3199       // comparisons, everything else needs to be expanded.
3200       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3201         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3202                  DAG.getSetCC(dl, MVT::v4i32,
3203                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3204                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3205                    CC));
3206       }
3207 
3208       return SDValue();
3209     }
3210 
3211     // We handle most of these in the usual way.
3212     return Op;
3213   }
3214 
3215   // If we're comparing for equality to zero, expose the fact that this is
3216   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3217   // fold the new nodes.
3218   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3219     return V;
3220 
3221   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3222     // Leave comparisons against 0 and -1 alone for now, since they're usually
3223     // optimized.  FIXME: revisit this when we can custom lower all setcc
3224     // optimizations.
3225     if (C->isAllOnesValue() || C->isNullValue())
3226       return SDValue();
3227   }
3228 
3229   // If we have an integer seteq/setne, turn it into a compare against zero
3230   // by xor'ing the rhs with the lhs, which is faster than setting a
3231   // condition register, reading it back out, and masking the correct bit.  The
3232   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3233   // the result to other bit-twiddling opportunities.
3234   EVT LHSVT = Op.getOperand(0).getValueType();
3235   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3236     EVT VT = Op.getValueType();
3237     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3238                                 Op.getOperand(1));
3239     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3240   }
3241   return SDValue();
3242 }
3243 
3244 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3245   SDNode *Node = Op.getNode();
3246   EVT VT = Node->getValueType(0);
3247   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3248   SDValue InChain = Node->getOperand(0);
3249   SDValue VAListPtr = Node->getOperand(1);
3250   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3251   SDLoc dl(Node);
3252 
3253   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3254 
3255   // gpr_index
3256   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3257                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3258   InChain = GprIndex.getValue(1);
3259 
3260   if (VT == MVT::i64) {
3261     // Check if GprIndex is even
3262     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3263                                  DAG.getConstant(1, dl, MVT::i32));
3264     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3265                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3266     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3267                                           DAG.getConstant(1, dl, MVT::i32));
3268     // Align GprIndex to be even if it isn't
3269     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3270                            GprIndex);
3271   }
3272 
3273   // fpr index is 1 byte after gpr
3274   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3275                                DAG.getConstant(1, dl, MVT::i32));
3276 
3277   // fpr
3278   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3279                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3280   InChain = FprIndex.getValue(1);
3281 
3282   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3283                                        DAG.getConstant(8, dl, MVT::i32));
3284 
3285   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3286                                         DAG.getConstant(4, dl, MVT::i32));
3287 
3288   // areas
3289   SDValue OverflowArea =
3290       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3291   InChain = OverflowArea.getValue(1);
3292 
3293   SDValue RegSaveArea =
3294       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3295   InChain = RegSaveArea.getValue(1);
3296 
3297   // select overflow_area if index > 8
3298   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3299                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3300 
3301   // adjustment constant gpr_index * 4/8
3302   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3303                                     VT.isInteger() ? GprIndex : FprIndex,
3304                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3305                                                     MVT::i32));
3306 
3307   // OurReg = RegSaveArea + RegConstant
3308   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3309                                RegConstant);
3310 
3311   // Floating types are 32 bytes into RegSaveArea
3312   if (VT.isFloatingPoint())
3313     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3314                          DAG.getConstant(32, dl, MVT::i32));
3315 
3316   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3317   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3318                                    VT.isInteger() ? GprIndex : FprIndex,
3319                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3320                                                    MVT::i32));
3321 
3322   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3323                               VT.isInteger() ? VAListPtr : FprPtr,
3324                               MachinePointerInfo(SV), MVT::i8);
3325 
3326   // determine if we should load from reg_save_area or overflow_area
3327   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3328 
3329   // increase overflow_area by 4/8 if gpr/fpr > 8
3330   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3331                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3332                                           dl, MVT::i32));
3333 
3334   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3335                              OverflowAreaPlusN);
3336 
3337   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3338                               MachinePointerInfo(), MVT::i32);
3339 
3340   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3341 }
3342 
3343 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3344   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3345 
3346   // We have to copy the entire va_list struct:
3347   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3348   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3349                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3350                        false, true, false, MachinePointerInfo(),
3351                        MachinePointerInfo());
3352 }
3353 
3354 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3355                                                   SelectionDAG &DAG) const {
3356   if (Subtarget.isAIXABI())
3357     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3358 
3359   return Op.getOperand(0);
3360 }
3361 
3362 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3363                                                 SelectionDAG &DAG) const {
3364   if (Subtarget.isAIXABI())
3365     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3366 
3367   SDValue Chain = Op.getOperand(0);
3368   SDValue Trmp = Op.getOperand(1); // trampoline
3369   SDValue FPtr = Op.getOperand(2); // nested function
3370   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3371   SDLoc dl(Op);
3372 
3373   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3374   bool isPPC64 = (PtrVT == MVT::i64);
3375   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3376 
3377   TargetLowering::ArgListTy Args;
3378   TargetLowering::ArgListEntry Entry;
3379 
3380   Entry.Ty = IntPtrTy;
3381   Entry.Node = Trmp; Args.push_back(Entry);
3382 
3383   // TrampSize == (isPPC64 ? 48 : 40);
3384   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3385                                isPPC64 ? MVT::i64 : MVT::i32);
3386   Args.push_back(Entry);
3387 
3388   Entry.Node = FPtr; Args.push_back(Entry);
3389   Entry.Node = Nest; Args.push_back(Entry);
3390 
3391   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3392   TargetLowering::CallLoweringInfo CLI(DAG);
3393   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3394       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3395       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3396 
3397   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3398   return CallResult.second;
3399 }
3400 
3401 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3402   MachineFunction &MF = DAG.getMachineFunction();
3403   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3404   EVT PtrVT = getPointerTy(MF.getDataLayout());
3405 
3406   SDLoc dl(Op);
3407 
3408   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3409     // vastart just stores the address of the VarArgsFrameIndex slot into the
3410     // memory location argument.
3411     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3412     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3413     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3414                         MachinePointerInfo(SV));
3415   }
3416 
3417   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3418   // We suppose the given va_list is already allocated.
3419   //
3420   // typedef struct {
3421   //  char gpr;     /* index into the array of 8 GPRs
3422   //                 * stored in the register save area
3423   //                 * gpr=0 corresponds to r3,
3424   //                 * gpr=1 to r4, etc.
3425   //                 */
3426   //  char fpr;     /* index into the array of 8 FPRs
3427   //                 * stored in the register save area
3428   //                 * fpr=0 corresponds to f1,
3429   //                 * fpr=1 to f2, etc.
3430   //                 */
3431   //  char *overflow_arg_area;
3432   //                /* location on stack that holds
3433   //                 * the next overflow argument
3434   //                 */
3435   //  char *reg_save_area;
3436   //               /* where r3:r10 and f1:f8 (if saved)
3437   //                * are stored
3438   //                */
3439   // } va_list[1];
3440 
3441   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3442   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3443   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3444                                             PtrVT);
3445   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3446                                  PtrVT);
3447 
3448   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3449   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3450 
3451   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3452   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3453 
3454   uint64_t FPROffset = 1;
3455   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3456 
3457   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3458 
3459   // Store first byte : number of int regs
3460   SDValue firstStore =
3461       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3462                         MachinePointerInfo(SV), MVT::i8);
3463   uint64_t nextOffset = FPROffset;
3464   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3465                                   ConstFPROffset);
3466 
3467   // Store second byte : number of float regs
3468   SDValue secondStore =
3469       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3470                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3471   nextOffset += StackOffset;
3472   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3473 
3474   // Store second word : arguments given on stack
3475   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3476                                     MachinePointerInfo(SV, nextOffset));
3477   nextOffset += FrameOffset;
3478   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3479 
3480   // Store third word : arguments given in registers
3481   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3482                       MachinePointerInfo(SV, nextOffset));
3483 }
3484 
3485 /// FPR - The set of FP registers that should be allocated for arguments
3486 /// on Darwin and AIX.
3487 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3488                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3489                                 PPC::F11, PPC::F12, PPC::F13};
3490 
3491 /// QFPR - The set of QPX registers that should be allocated for arguments.
3492 static const MCPhysReg QFPR[] = {
3493     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3494     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3495 
3496 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3497 /// the stack.
3498 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3499                                        unsigned PtrByteSize) {
3500   unsigned ArgSize = ArgVT.getStoreSize();
3501   if (Flags.isByVal())
3502     ArgSize = Flags.getByValSize();
3503 
3504   // Round up to multiples of the pointer size, except for array members,
3505   // which are always packed.
3506   if (!Flags.isInConsecutiveRegs())
3507     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3508 
3509   return ArgSize;
3510 }
3511 
3512 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3513 /// on the stack.
3514 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3515                                          ISD::ArgFlagsTy Flags,
3516                                          unsigned PtrByteSize) {
3517   Align Alignment(PtrByteSize);
3518 
3519   // Altivec parameters are padded to a 16 byte boundary.
3520   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3521       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3522       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3523       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3524     Alignment = Align(16);
3525   // QPX vector types stored in double-precision are padded to a 32 byte
3526   // boundary.
3527   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3528     Alignment = Align(32);
3529 
3530   // ByVal parameters are aligned as requested.
3531   if (Flags.isByVal()) {
3532     auto BVAlign = Flags.getNonZeroByValAlign();
3533     if (BVAlign > PtrByteSize) {
3534       if (BVAlign.value() % PtrByteSize != 0)
3535         llvm_unreachable(
3536             "ByVal alignment is not a multiple of the pointer size");
3537 
3538       Alignment = BVAlign;
3539     }
3540   }
3541 
3542   // Array members are always packed to their original alignment.
3543   if (Flags.isInConsecutiveRegs()) {
3544     // If the array member was split into multiple registers, the first
3545     // needs to be aligned to the size of the full type.  (Except for
3546     // ppcf128, which is only aligned as its f64 components.)
3547     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3548       Alignment = Align(OrigVT.getStoreSize());
3549     else
3550       Alignment = Align(ArgVT.getStoreSize());
3551   }
3552 
3553   return Alignment;
3554 }
3555 
3556 /// CalculateStackSlotUsed - Return whether this argument will use its
3557 /// stack slot (instead of being passed in registers).  ArgOffset,
3558 /// AvailableFPRs, and AvailableVRs must hold the current argument
3559 /// position, and will be updated to account for this argument.
3560 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3561                                    ISD::ArgFlagsTy Flags,
3562                                    unsigned PtrByteSize,
3563                                    unsigned LinkageSize,
3564                                    unsigned ParamAreaSize,
3565                                    unsigned &ArgOffset,
3566                                    unsigned &AvailableFPRs,
3567                                    unsigned &AvailableVRs, bool HasQPX) {
3568   bool UseMemory = false;
3569 
3570   // Respect alignment of argument on the stack.
3571   Align Alignment =
3572       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3573   ArgOffset = alignTo(ArgOffset, Alignment);
3574   // If there's no space left in the argument save area, we must
3575   // use memory (this check also catches zero-sized arguments).
3576   if (ArgOffset >= LinkageSize + ParamAreaSize)
3577     UseMemory = true;
3578 
3579   // Allocate argument on the stack.
3580   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3581   if (Flags.isInConsecutiveRegsLast())
3582     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3583   // If we overran the argument save area, we must use memory
3584   // (this check catches arguments passed partially in memory)
3585   if (ArgOffset > LinkageSize + ParamAreaSize)
3586     UseMemory = true;
3587 
3588   // However, if the argument is actually passed in an FPR or a VR,
3589   // we don't use memory after all.
3590   if (!Flags.isByVal()) {
3591     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3592         // QPX registers overlap with the scalar FP registers.
3593         (HasQPX && (ArgVT == MVT::v4f32 ||
3594                     ArgVT == MVT::v4f64 ||
3595                     ArgVT == MVT::v4i1)))
3596       if (AvailableFPRs > 0) {
3597         --AvailableFPRs;
3598         return false;
3599       }
3600     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3601         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3602         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3603         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3604       if (AvailableVRs > 0) {
3605         --AvailableVRs;
3606         return false;
3607       }
3608   }
3609 
3610   return UseMemory;
3611 }
3612 
3613 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3614 /// ensure minimum alignment required for target.
3615 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3616                                      unsigned NumBytes) {
3617   return alignTo(NumBytes, Lowering->getStackAlign());
3618 }
3619 
3620 SDValue PPCTargetLowering::LowerFormalArguments(
3621     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3622     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3623     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3624   if (Subtarget.isAIXABI())
3625     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3626                                     InVals);
3627   if (Subtarget.is64BitELFABI())
3628     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3629                                        InVals);
3630   if (Subtarget.is32BitELFABI())
3631     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3632                                        InVals);
3633 
3634   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3635                                      InVals);
3636 }
3637 
3638 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3639     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3640     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3641     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3642 
3643   // 32-bit SVR4 ABI Stack Frame Layout:
3644   //              +-----------------------------------+
3645   //        +-->  |            Back chain             |
3646   //        |     +-----------------------------------+
3647   //        |     | Floating-point register save area |
3648   //        |     +-----------------------------------+
3649   //        |     |    General register save area     |
3650   //        |     +-----------------------------------+
3651   //        |     |          CR save word             |
3652   //        |     +-----------------------------------+
3653   //        |     |         VRSAVE save word          |
3654   //        |     +-----------------------------------+
3655   //        |     |         Alignment padding         |
3656   //        |     +-----------------------------------+
3657   //        |     |     Vector register save area     |
3658   //        |     +-----------------------------------+
3659   //        |     |       Local variable space        |
3660   //        |     +-----------------------------------+
3661   //        |     |        Parameter list area        |
3662   //        |     +-----------------------------------+
3663   //        |     |           LR save word            |
3664   //        |     +-----------------------------------+
3665   // SP-->  +---  |            Back chain             |
3666   //              +-----------------------------------+
3667   //
3668   // Specifications:
3669   //   System V Application Binary Interface PowerPC Processor Supplement
3670   //   AltiVec Technology Programming Interface Manual
3671 
3672   MachineFunction &MF = DAG.getMachineFunction();
3673   MachineFrameInfo &MFI = MF.getFrameInfo();
3674   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3675 
3676   EVT PtrVT = getPointerTy(MF.getDataLayout());
3677   // Potential tail calls could cause overwriting of argument stack slots.
3678   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3679                        (CallConv == CallingConv::Fast));
3680   const Align PtrAlign(4);
3681 
3682   // Assign locations to all of the incoming arguments.
3683   SmallVector<CCValAssign, 16> ArgLocs;
3684   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3685                  *DAG.getContext());
3686 
3687   // Reserve space for the linkage area on the stack.
3688   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3689   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3690   if (useSoftFloat())
3691     CCInfo.PreAnalyzeFormalArguments(Ins);
3692 
3693   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3694   CCInfo.clearWasPPCF128();
3695 
3696   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3697     CCValAssign &VA = ArgLocs[i];
3698 
3699     // Arguments stored in registers.
3700     if (VA.isRegLoc()) {
3701       const TargetRegisterClass *RC;
3702       EVT ValVT = VA.getValVT();
3703 
3704       switch (ValVT.getSimpleVT().SimpleTy) {
3705         default:
3706           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3707         case MVT::i1:
3708         case MVT::i32:
3709           RC = &PPC::GPRCRegClass;
3710           break;
3711         case MVT::f32:
3712           if (Subtarget.hasP8Vector())
3713             RC = &PPC::VSSRCRegClass;
3714           else if (Subtarget.hasSPE())
3715             RC = &PPC::GPRCRegClass;
3716           else
3717             RC = &PPC::F4RCRegClass;
3718           break;
3719         case MVT::f64:
3720           if (Subtarget.hasVSX())
3721             RC = &PPC::VSFRCRegClass;
3722           else if (Subtarget.hasSPE())
3723             // SPE passes doubles in GPR pairs.
3724             RC = &PPC::GPRCRegClass;
3725           else
3726             RC = &PPC::F8RCRegClass;
3727           break;
3728         case MVT::v16i8:
3729         case MVT::v8i16:
3730         case MVT::v4i32:
3731           RC = &PPC::VRRCRegClass;
3732           break;
3733         case MVT::v4f32:
3734           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3735           break;
3736         case MVT::v2f64:
3737         case MVT::v2i64:
3738           RC = &PPC::VRRCRegClass;
3739           break;
3740         case MVT::v4f64:
3741           RC = &PPC::QFRCRegClass;
3742           break;
3743         case MVT::v4i1:
3744           RC = &PPC::QBRCRegClass;
3745           break;
3746       }
3747 
3748       SDValue ArgValue;
3749       // Transform the arguments stored in physical registers into
3750       // virtual ones.
3751       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3752         assert(i + 1 < e && "No second half of double precision argument");
3753         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3754         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3755         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3756         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3757         if (!Subtarget.isLittleEndian())
3758           std::swap (ArgValueLo, ArgValueHi);
3759         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3760                                ArgValueHi);
3761       } else {
3762         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3763         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3764                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3765         if (ValVT == MVT::i1)
3766           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3767       }
3768 
3769       InVals.push_back(ArgValue);
3770     } else {
3771       // Argument stored in memory.
3772       assert(VA.isMemLoc());
3773 
3774       // Get the extended size of the argument type in stack
3775       unsigned ArgSize = VA.getLocVT().getStoreSize();
3776       // Get the actual size of the argument type
3777       unsigned ObjSize = VA.getValVT().getStoreSize();
3778       unsigned ArgOffset = VA.getLocMemOffset();
3779       // Stack objects in PPC32 are right justified.
3780       ArgOffset += ArgSize - ObjSize;
3781       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3782 
3783       // Create load nodes to retrieve arguments from the stack.
3784       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3785       InVals.push_back(
3786           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3787     }
3788   }
3789 
3790   // Assign locations to all of the incoming aggregate by value arguments.
3791   // Aggregates passed by value are stored in the local variable space of the
3792   // caller's stack frame, right above the parameter list area.
3793   SmallVector<CCValAssign, 16> ByValArgLocs;
3794   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3795                       ByValArgLocs, *DAG.getContext());
3796 
3797   // Reserve stack space for the allocations in CCInfo.
3798   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3799 
3800   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3801 
3802   // Area that is at least reserved in the caller of this function.
3803   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3804   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3805 
3806   // Set the size that is at least reserved in caller of this function.  Tail
3807   // call optimized function's reserved stack space needs to be aligned so that
3808   // taking the difference between two stack areas will result in an aligned
3809   // stack.
3810   MinReservedArea =
3811       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3812   FuncInfo->setMinReservedArea(MinReservedArea);
3813 
3814   SmallVector<SDValue, 8> MemOps;
3815 
3816   // If the function takes variable number of arguments, make a frame index for
3817   // the start of the first vararg value... for expansion of llvm.va_start.
3818   if (isVarArg) {
3819     static const MCPhysReg GPArgRegs[] = {
3820       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3821       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3822     };
3823     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3824 
3825     static const MCPhysReg FPArgRegs[] = {
3826       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3827       PPC::F8
3828     };
3829     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3830 
3831     if (useSoftFloat() || hasSPE())
3832        NumFPArgRegs = 0;
3833 
3834     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3835     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3836 
3837     // Make room for NumGPArgRegs and NumFPArgRegs.
3838     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3839                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3840 
3841     FuncInfo->setVarArgsStackOffset(
3842       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3843                             CCInfo.getNextStackOffset(), true));
3844 
3845     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3846     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3847 
3848     // The fixed integer arguments of a variadic function are stored to the
3849     // VarArgsFrameIndex on the stack so that they may be loaded by
3850     // dereferencing the result of va_next.
3851     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3852       // Get an existing live-in vreg, or add a new one.
3853       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3854       if (!VReg)
3855         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3856 
3857       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3858       SDValue Store =
3859           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3860       MemOps.push_back(Store);
3861       // Increment the address by four for the next argument to store
3862       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3863       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3864     }
3865 
3866     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3867     // is set.
3868     // The double arguments are stored to the VarArgsFrameIndex
3869     // on the stack.
3870     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3871       // Get an existing live-in vreg, or add a new one.
3872       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3873       if (!VReg)
3874         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3875 
3876       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3877       SDValue Store =
3878           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3879       MemOps.push_back(Store);
3880       // Increment the address by eight for the next argument to store
3881       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3882                                          PtrVT);
3883       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3884     }
3885   }
3886 
3887   if (!MemOps.empty())
3888     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3889 
3890   return Chain;
3891 }
3892 
3893 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3894 // value to MVT::i64 and then truncate to the correct register size.
3895 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3896                                              EVT ObjectVT, SelectionDAG &DAG,
3897                                              SDValue ArgVal,
3898                                              const SDLoc &dl) const {
3899   if (Flags.isSExt())
3900     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3901                          DAG.getValueType(ObjectVT));
3902   else if (Flags.isZExt())
3903     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3904                          DAG.getValueType(ObjectVT));
3905 
3906   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3907 }
3908 
3909 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3910     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3911     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3912     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3913   // TODO: add description of PPC stack frame format, or at least some docs.
3914   //
3915   bool isELFv2ABI = Subtarget.isELFv2ABI();
3916   bool isLittleEndian = Subtarget.isLittleEndian();
3917   MachineFunction &MF = DAG.getMachineFunction();
3918   MachineFrameInfo &MFI = MF.getFrameInfo();
3919   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3920 
3921   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3922          "fastcc not supported on varargs functions");
3923 
3924   EVT PtrVT = getPointerTy(MF.getDataLayout());
3925   // Potential tail calls could cause overwriting of argument stack slots.
3926   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3927                        (CallConv == CallingConv::Fast));
3928   unsigned PtrByteSize = 8;
3929   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3930 
3931   static const MCPhysReg GPR[] = {
3932     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3933     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3934   };
3935   static const MCPhysReg VR[] = {
3936     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3937     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3938   };
3939 
3940   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3941   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3942   const unsigned Num_VR_Regs  = array_lengthof(VR);
3943   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3944 
3945   // Do a first pass over the arguments to determine whether the ABI
3946   // guarantees that our caller has allocated the parameter save area
3947   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3948   // in the ELFv2 ABI, it is true if this is a vararg function or if
3949   // any parameter is located in a stack slot.
3950 
3951   bool HasParameterArea = !isELFv2ABI || isVarArg;
3952   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3953   unsigned NumBytes = LinkageSize;
3954   unsigned AvailableFPRs = Num_FPR_Regs;
3955   unsigned AvailableVRs = Num_VR_Regs;
3956   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3957     if (Ins[i].Flags.isNest())
3958       continue;
3959 
3960     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3961                                PtrByteSize, LinkageSize, ParamAreaSize,
3962                                NumBytes, AvailableFPRs, AvailableVRs,
3963                                Subtarget.hasQPX()))
3964       HasParameterArea = true;
3965   }
3966 
3967   // Add DAG nodes to load the arguments or copy them out of registers.  On
3968   // entry to a function on PPC, the arguments start after the linkage area,
3969   // although the first ones are often in registers.
3970 
3971   unsigned ArgOffset = LinkageSize;
3972   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3973   unsigned &QFPR_idx = FPR_idx;
3974   SmallVector<SDValue, 8> MemOps;
3975   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3976   unsigned CurArgIdx = 0;
3977   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3978     SDValue ArgVal;
3979     bool needsLoad = false;
3980     EVT ObjectVT = Ins[ArgNo].VT;
3981     EVT OrigVT = Ins[ArgNo].ArgVT;
3982     unsigned ObjSize = ObjectVT.getStoreSize();
3983     unsigned ArgSize = ObjSize;
3984     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3985     if (Ins[ArgNo].isOrigArg()) {
3986       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3987       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3988     }
3989     // We re-align the argument offset for each argument, except when using the
3990     // fast calling convention, when we need to make sure we do that only when
3991     // we'll actually use a stack slot.
3992     unsigned CurArgOffset;
3993     Align Alignment;
3994     auto ComputeArgOffset = [&]() {
3995       /* Respect alignment of argument on the stack.  */
3996       Alignment =
3997           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3998       ArgOffset = alignTo(ArgOffset, Alignment);
3999       CurArgOffset = ArgOffset;
4000     };
4001 
4002     if (CallConv != CallingConv::Fast) {
4003       ComputeArgOffset();
4004 
4005       /* Compute GPR index associated with argument offset.  */
4006       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4007       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4008     }
4009 
4010     // FIXME the codegen can be much improved in some cases.
4011     // We do not have to keep everything in memory.
4012     if (Flags.isByVal()) {
4013       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4014 
4015       if (CallConv == CallingConv::Fast)
4016         ComputeArgOffset();
4017 
4018       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4019       ObjSize = Flags.getByValSize();
4020       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4021       // Empty aggregate parameters do not take up registers.  Examples:
4022       //   struct { } a;
4023       //   union  { } b;
4024       //   int c[0];
4025       // etc.  However, we have to provide a place-holder in InVals, so
4026       // pretend we have an 8-byte item at the current address for that
4027       // purpose.
4028       if (!ObjSize) {
4029         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4030         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4031         InVals.push_back(FIN);
4032         continue;
4033       }
4034 
4035       // Create a stack object covering all stack doublewords occupied
4036       // by the argument.  If the argument is (fully or partially) on
4037       // the stack, or if the argument is fully in registers but the
4038       // caller has allocated the parameter save anyway, we can refer
4039       // directly to the caller's stack frame.  Otherwise, create a
4040       // local copy in our own frame.
4041       int FI;
4042       if (HasParameterArea ||
4043           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4044         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4045       else
4046         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4047       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4048 
4049       // Handle aggregates smaller than 8 bytes.
4050       if (ObjSize < PtrByteSize) {
4051         // The value of the object is its address, which differs from the
4052         // address of the enclosing doubleword on big-endian systems.
4053         SDValue Arg = FIN;
4054         if (!isLittleEndian) {
4055           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4056           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4057         }
4058         InVals.push_back(Arg);
4059 
4060         if (GPR_idx != Num_GPR_Regs) {
4061           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4062           FuncInfo->addLiveInAttr(VReg, Flags);
4063           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4064           SDValue Store;
4065 
4066           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4067             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4068                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4069             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4070                                       MachinePointerInfo(&*FuncArg), ObjType);
4071           } else {
4072             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4073             // store the whole register as-is to the parameter save area
4074             // slot.
4075             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4076                                  MachinePointerInfo(&*FuncArg));
4077           }
4078 
4079           MemOps.push_back(Store);
4080         }
4081         // Whether we copied from a register or not, advance the offset
4082         // into the parameter save area by a full doubleword.
4083         ArgOffset += PtrByteSize;
4084         continue;
4085       }
4086 
4087       // The value of the object is its address, which is the address of
4088       // its first stack doubleword.
4089       InVals.push_back(FIN);
4090 
4091       // Store whatever pieces of the object are in registers to memory.
4092       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4093         if (GPR_idx == Num_GPR_Regs)
4094           break;
4095 
4096         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4097         FuncInfo->addLiveInAttr(VReg, Flags);
4098         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4099         SDValue Addr = FIN;
4100         if (j) {
4101           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4102           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4103         }
4104         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4105                                      MachinePointerInfo(&*FuncArg, j));
4106         MemOps.push_back(Store);
4107         ++GPR_idx;
4108       }
4109       ArgOffset += ArgSize;
4110       continue;
4111     }
4112 
4113     switch (ObjectVT.getSimpleVT().SimpleTy) {
4114     default: llvm_unreachable("Unhandled argument type!");
4115     case MVT::i1:
4116     case MVT::i32:
4117     case MVT::i64:
4118       if (Flags.isNest()) {
4119         // The 'nest' parameter, if any, is passed in R11.
4120         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4121         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4122 
4123         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4124           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4125 
4126         break;
4127       }
4128 
4129       // These can be scalar arguments or elements of an integer array type
4130       // passed directly.  Clang may use those instead of "byval" aggregate
4131       // types to avoid forcing arguments to memory unnecessarily.
4132       if (GPR_idx != Num_GPR_Regs) {
4133         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4134         FuncInfo->addLiveInAttr(VReg, Flags);
4135         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4136 
4137         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4138           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4139           // value to MVT::i64 and then truncate to the correct register size.
4140           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4141       } else {
4142         if (CallConv == CallingConv::Fast)
4143           ComputeArgOffset();
4144 
4145         needsLoad = true;
4146         ArgSize = PtrByteSize;
4147       }
4148       if (CallConv != CallingConv::Fast || needsLoad)
4149         ArgOffset += 8;
4150       break;
4151 
4152     case MVT::f32:
4153     case MVT::f64:
4154       // These can be scalar arguments or elements of a float array type
4155       // passed directly.  The latter are used to implement ELFv2 homogenous
4156       // float aggregates.
4157       if (FPR_idx != Num_FPR_Regs) {
4158         unsigned VReg;
4159 
4160         if (ObjectVT == MVT::f32)
4161           VReg = MF.addLiveIn(FPR[FPR_idx],
4162                               Subtarget.hasP8Vector()
4163                                   ? &PPC::VSSRCRegClass
4164                                   : &PPC::F4RCRegClass);
4165         else
4166           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4167                                                 ? &PPC::VSFRCRegClass
4168                                                 : &PPC::F8RCRegClass);
4169 
4170         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4171         ++FPR_idx;
4172       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4173         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4174         // once we support fp <-> gpr moves.
4175 
4176         // This can only ever happen in the presence of f32 array types,
4177         // since otherwise we never run out of FPRs before running out
4178         // of GPRs.
4179         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4180         FuncInfo->addLiveInAttr(VReg, Flags);
4181         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4182 
4183         if (ObjectVT == MVT::f32) {
4184           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4185             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4186                                  DAG.getConstant(32, dl, MVT::i32));
4187           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4188         }
4189 
4190         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4191       } else {
4192         if (CallConv == CallingConv::Fast)
4193           ComputeArgOffset();
4194 
4195         needsLoad = true;
4196       }
4197 
4198       // When passing an array of floats, the array occupies consecutive
4199       // space in the argument area; only round up to the next doubleword
4200       // at the end of the array.  Otherwise, each float takes 8 bytes.
4201       if (CallConv != CallingConv::Fast || needsLoad) {
4202         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4203         ArgOffset += ArgSize;
4204         if (Flags.isInConsecutiveRegsLast())
4205           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4206       }
4207       break;
4208     case MVT::v4f32:
4209     case MVT::v4i32:
4210     case MVT::v8i16:
4211     case MVT::v16i8:
4212     case MVT::v2f64:
4213     case MVT::v2i64:
4214     case MVT::v1i128:
4215     case MVT::f128:
4216       if (!Subtarget.hasQPX()) {
4217         // These can be scalar arguments or elements of a vector array type
4218         // passed directly.  The latter are used to implement ELFv2 homogenous
4219         // vector aggregates.
4220         if (VR_idx != Num_VR_Regs) {
4221           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4222           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4223           ++VR_idx;
4224         } else {
4225           if (CallConv == CallingConv::Fast)
4226             ComputeArgOffset();
4227           needsLoad = true;
4228         }
4229         if (CallConv != CallingConv::Fast || needsLoad)
4230           ArgOffset += 16;
4231         break;
4232       } // not QPX
4233 
4234       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4235              "Invalid QPX parameter type");
4236       LLVM_FALLTHROUGH;
4237 
4238     case MVT::v4f64:
4239     case MVT::v4i1:
4240       // QPX vectors are treated like their scalar floating-point subregisters
4241       // (except that they're larger).
4242       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4243       if (QFPR_idx != Num_QFPR_Regs) {
4244         const TargetRegisterClass *RC;
4245         switch (ObjectVT.getSimpleVT().SimpleTy) {
4246         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4247         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4248         default:         RC = &PPC::QBRCRegClass; break;
4249         }
4250 
4251         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4252         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4253         ++QFPR_idx;
4254       } else {
4255         if (CallConv == CallingConv::Fast)
4256           ComputeArgOffset();
4257         needsLoad = true;
4258       }
4259       if (CallConv != CallingConv::Fast || needsLoad)
4260         ArgOffset += Sz;
4261       break;
4262     }
4263 
4264     // We need to load the argument to a virtual register if we determined
4265     // above that we ran out of physical registers of the appropriate type.
4266     if (needsLoad) {
4267       if (ObjSize < ArgSize && !isLittleEndian)
4268         CurArgOffset += ArgSize - ObjSize;
4269       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4270       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4271       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4272     }
4273 
4274     InVals.push_back(ArgVal);
4275   }
4276 
4277   // Area that is at least reserved in the caller of this function.
4278   unsigned MinReservedArea;
4279   if (HasParameterArea)
4280     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4281   else
4282     MinReservedArea = LinkageSize;
4283 
4284   // Set the size that is at least reserved in caller of this function.  Tail
4285   // call optimized functions' reserved stack space needs to be aligned so that
4286   // taking the difference between two stack areas will result in an aligned
4287   // stack.
4288   MinReservedArea =
4289       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4290   FuncInfo->setMinReservedArea(MinReservedArea);
4291 
4292   // If the function takes variable number of arguments, make a frame index for
4293   // the start of the first vararg value... for expansion of llvm.va_start.
4294   if (isVarArg) {
4295     int Depth = ArgOffset;
4296 
4297     FuncInfo->setVarArgsFrameIndex(
4298       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4299     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4300 
4301     // If this function is vararg, store any remaining integer argument regs
4302     // to their spots on the stack so that they may be loaded by dereferencing
4303     // the result of va_next.
4304     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4305          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4306       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4307       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4308       SDValue Store =
4309           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4310       MemOps.push_back(Store);
4311       // Increment the address by four for the next argument to store
4312       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4313       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4314     }
4315   }
4316 
4317   if (!MemOps.empty())
4318     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4319 
4320   return Chain;
4321 }
4322 
4323 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4324     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4325     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4326     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4327   // TODO: add description of PPC stack frame format, or at least some docs.
4328   //
4329   MachineFunction &MF = DAG.getMachineFunction();
4330   MachineFrameInfo &MFI = MF.getFrameInfo();
4331   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4332 
4333   EVT PtrVT = getPointerTy(MF.getDataLayout());
4334   bool isPPC64 = PtrVT == MVT::i64;
4335   // Potential tail calls could cause overwriting of argument stack slots.
4336   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4337                        (CallConv == CallingConv::Fast));
4338   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4339   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4340   unsigned ArgOffset = LinkageSize;
4341   // Area that is at least reserved in caller of this function.
4342   unsigned MinReservedArea = ArgOffset;
4343 
4344   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4345     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4346     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4347   };
4348   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4349     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4350     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4351   };
4352   static const MCPhysReg VR[] = {
4353     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4354     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4355   };
4356 
4357   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4358   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4359   const unsigned Num_VR_Regs  = array_lengthof( VR);
4360 
4361   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4362 
4363   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4364 
4365   // In 32-bit non-varargs functions, the stack space for vectors is after the
4366   // stack space for non-vectors.  We do not use this space unless we have
4367   // too many vectors to fit in registers, something that only occurs in
4368   // constructed examples:), but we have to walk the arglist to figure
4369   // that out...for the pathological case, compute VecArgOffset as the
4370   // start of the vector parameter area.  Computing VecArgOffset is the
4371   // entire point of the following loop.
4372   unsigned VecArgOffset = ArgOffset;
4373   if (!isVarArg && !isPPC64) {
4374     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4375          ++ArgNo) {
4376       EVT ObjectVT = Ins[ArgNo].VT;
4377       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4378 
4379       if (Flags.isByVal()) {
4380         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4381         unsigned ObjSize = Flags.getByValSize();
4382         unsigned ArgSize =
4383                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4384         VecArgOffset += ArgSize;
4385         continue;
4386       }
4387 
4388       switch(ObjectVT.getSimpleVT().SimpleTy) {
4389       default: llvm_unreachable("Unhandled argument type!");
4390       case MVT::i1:
4391       case MVT::i32:
4392       case MVT::f32:
4393         VecArgOffset += 4;
4394         break;
4395       case MVT::i64:  // PPC64
4396       case MVT::f64:
4397         // FIXME: We are guaranteed to be !isPPC64 at this point.
4398         // Does MVT::i64 apply?
4399         VecArgOffset += 8;
4400         break;
4401       case MVT::v4f32:
4402       case MVT::v4i32:
4403       case MVT::v8i16:
4404       case MVT::v16i8:
4405         // Nothing to do, we're only looking at Nonvector args here.
4406         break;
4407       }
4408     }
4409   }
4410   // We've found where the vector parameter area in memory is.  Skip the
4411   // first 12 parameters; these don't use that memory.
4412   VecArgOffset = ((VecArgOffset+15)/16)*16;
4413   VecArgOffset += 12*16;
4414 
4415   // Add DAG nodes to load the arguments or copy them out of registers.  On
4416   // entry to a function on PPC, the arguments start after the linkage area,
4417   // although the first ones are often in registers.
4418 
4419   SmallVector<SDValue, 8> MemOps;
4420   unsigned nAltivecParamsAtEnd = 0;
4421   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4422   unsigned CurArgIdx = 0;
4423   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4424     SDValue ArgVal;
4425     bool needsLoad = false;
4426     EVT ObjectVT = Ins[ArgNo].VT;
4427     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4428     unsigned ArgSize = ObjSize;
4429     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4430     if (Ins[ArgNo].isOrigArg()) {
4431       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4432       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4433     }
4434     unsigned CurArgOffset = ArgOffset;
4435 
4436     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4437     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4438         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4439       if (isVarArg || isPPC64) {
4440         MinReservedArea = ((MinReservedArea+15)/16)*16;
4441         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4442                                                   Flags,
4443                                                   PtrByteSize);
4444       } else  nAltivecParamsAtEnd++;
4445     } else
4446       // Calculate min reserved area.
4447       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4448                                                 Flags,
4449                                                 PtrByteSize);
4450 
4451     // FIXME the codegen can be much improved in some cases.
4452     // We do not have to keep everything in memory.
4453     if (Flags.isByVal()) {
4454       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4455 
4456       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4457       ObjSize = Flags.getByValSize();
4458       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4459       // Objects of size 1 and 2 are right justified, everything else is
4460       // left justified.  This means the memory address is adjusted forwards.
4461       if (ObjSize==1 || ObjSize==2) {
4462         CurArgOffset = CurArgOffset + (4 - ObjSize);
4463       }
4464       // The value of the object is its address.
4465       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4466       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4467       InVals.push_back(FIN);
4468       if (ObjSize==1 || ObjSize==2) {
4469         if (GPR_idx != Num_GPR_Regs) {
4470           unsigned VReg;
4471           if (isPPC64)
4472             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4473           else
4474             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4475           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4476           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4477           SDValue Store =
4478               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4479                                 MachinePointerInfo(&*FuncArg), ObjType);
4480           MemOps.push_back(Store);
4481           ++GPR_idx;
4482         }
4483 
4484         ArgOffset += PtrByteSize;
4485 
4486         continue;
4487       }
4488       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4489         // Store whatever pieces of the object are in registers
4490         // to memory.  ArgOffset will be the address of the beginning
4491         // of the object.
4492         if (GPR_idx != Num_GPR_Regs) {
4493           unsigned VReg;
4494           if (isPPC64)
4495             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4496           else
4497             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4498           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4499           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4500           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4501           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4502                                        MachinePointerInfo(&*FuncArg, j));
4503           MemOps.push_back(Store);
4504           ++GPR_idx;
4505           ArgOffset += PtrByteSize;
4506         } else {
4507           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4508           break;
4509         }
4510       }
4511       continue;
4512     }
4513 
4514     switch (ObjectVT.getSimpleVT().SimpleTy) {
4515     default: llvm_unreachable("Unhandled argument type!");
4516     case MVT::i1:
4517     case MVT::i32:
4518       if (!isPPC64) {
4519         if (GPR_idx != Num_GPR_Regs) {
4520           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4521           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4522 
4523           if (ObjectVT == MVT::i1)
4524             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4525 
4526           ++GPR_idx;
4527         } else {
4528           needsLoad = true;
4529           ArgSize = PtrByteSize;
4530         }
4531         // All int arguments reserve stack space in the Darwin ABI.
4532         ArgOffset += PtrByteSize;
4533         break;
4534       }
4535       LLVM_FALLTHROUGH;
4536     case MVT::i64:  // PPC64
4537       if (GPR_idx != Num_GPR_Regs) {
4538         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4539         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4540 
4541         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4542           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4543           // value to MVT::i64 and then truncate to the correct register size.
4544           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4545 
4546         ++GPR_idx;
4547       } else {
4548         needsLoad = true;
4549         ArgSize = PtrByteSize;
4550       }
4551       // All int arguments reserve stack space in the Darwin ABI.
4552       ArgOffset += 8;
4553       break;
4554 
4555     case MVT::f32:
4556     case MVT::f64:
4557       // Every 4 bytes of argument space consumes one of the GPRs available for
4558       // argument passing.
4559       if (GPR_idx != Num_GPR_Regs) {
4560         ++GPR_idx;
4561         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4562           ++GPR_idx;
4563       }
4564       if (FPR_idx != Num_FPR_Regs) {
4565         unsigned VReg;
4566 
4567         if (ObjectVT == MVT::f32)
4568           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4569         else
4570           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4571 
4572         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4573         ++FPR_idx;
4574       } else {
4575         needsLoad = true;
4576       }
4577 
4578       // All FP arguments reserve stack space in the Darwin ABI.
4579       ArgOffset += isPPC64 ? 8 : ObjSize;
4580       break;
4581     case MVT::v4f32:
4582     case MVT::v4i32:
4583     case MVT::v8i16:
4584     case MVT::v16i8:
4585       // Note that vector arguments in registers don't reserve stack space,
4586       // except in varargs functions.
4587       if (VR_idx != Num_VR_Regs) {
4588         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4589         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4590         if (isVarArg) {
4591           while ((ArgOffset % 16) != 0) {
4592             ArgOffset += PtrByteSize;
4593             if (GPR_idx != Num_GPR_Regs)
4594               GPR_idx++;
4595           }
4596           ArgOffset += 16;
4597           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4598         }
4599         ++VR_idx;
4600       } else {
4601         if (!isVarArg && !isPPC64) {
4602           // Vectors go after all the nonvectors.
4603           CurArgOffset = VecArgOffset;
4604           VecArgOffset += 16;
4605         } else {
4606           // Vectors are aligned.
4607           ArgOffset = ((ArgOffset+15)/16)*16;
4608           CurArgOffset = ArgOffset;
4609           ArgOffset += 16;
4610         }
4611         needsLoad = true;
4612       }
4613       break;
4614     }
4615 
4616     // We need to load the argument to a virtual register if we determined above
4617     // that we ran out of physical registers of the appropriate type.
4618     if (needsLoad) {
4619       int FI = MFI.CreateFixedObject(ObjSize,
4620                                      CurArgOffset + (ArgSize - ObjSize),
4621                                      isImmutable);
4622       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4623       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4624     }
4625 
4626     InVals.push_back(ArgVal);
4627   }
4628 
4629   // Allow for Altivec parameters at the end, if needed.
4630   if (nAltivecParamsAtEnd) {
4631     MinReservedArea = ((MinReservedArea+15)/16)*16;
4632     MinReservedArea += 16*nAltivecParamsAtEnd;
4633   }
4634 
4635   // Area that is at least reserved in the caller of this function.
4636   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4637 
4638   // Set the size that is at least reserved in caller of this function.  Tail
4639   // call optimized functions' reserved stack space needs to be aligned so that
4640   // taking the difference between two stack areas will result in an aligned
4641   // stack.
4642   MinReservedArea =
4643       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4644   FuncInfo->setMinReservedArea(MinReservedArea);
4645 
4646   // If the function takes variable number of arguments, make a frame index for
4647   // the start of the first vararg value... for expansion of llvm.va_start.
4648   if (isVarArg) {
4649     int Depth = ArgOffset;
4650 
4651     FuncInfo->setVarArgsFrameIndex(
4652       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4653                             Depth, true));
4654     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4655 
4656     // If this function is vararg, store any remaining integer argument regs
4657     // to their spots on the stack so that they may be loaded by dereferencing
4658     // the result of va_next.
4659     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4660       unsigned VReg;
4661 
4662       if (isPPC64)
4663         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4664       else
4665         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4666 
4667       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4668       SDValue Store =
4669           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4670       MemOps.push_back(Store);
4671       // Increment the address by four for the next argument to store
4672       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4673       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4674     }
4675   }
4676 
4677   if (!MemOps.empty())
4678     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4679 
4680   return Chain;
4681 }
4682 
4683 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4684 /// adjusted to accommodate the arguments for the tailcall.
4685 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4686                                    unsigned ParamSize) {
4687 
4688   if (!isTailCall) return 0;
4689 
4690   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4691   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4692   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4693   // Remember only if the new adjustment is bigger.
4694   if (SPDiff < FI->getTailCallSPDelta())
4695     FI->setTailCallSPDelta(SPDiff);
4696 
4697   return SPDiff;
4698 }
4699 
4700 static bool isFunctionGlobalAddress(SDValue Callee);
4701 
4702 static bool
4703 callsShareTOCBase(const Function *Caller, SDValue Callee,
4704                     const TargetMachine &TM) {
4705    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4706    // don't have enough information to determine if the caller and calle share
4707    // the same  TOC base, so we have to pessimistically assume they don't for
4708    // correctness.
4709    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4710    if (!G)
4711      return false;
4712 
4713    const GlobalValue *GV = G->getGlobal();
4714   // The medium and large code models are expected to provide a sufficiently
4715   // large TOC to provide all data addressing needs of a module with a
4716   // single TOC. Since each module will be addressed with a single TOC then we
4717   // only need to check that caller and callee don't cross dso boundaries.
4718   if (CodeModel::Medium == TM.getCodeModel() ||
4719       CodeModel::Large == TM.getCodeModel())
4720     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4721 
4722   // Otherwise we need to ensure callee and caller are in the same section,
4723   // since the linker may allocate multiple TOCs, and we don't know which
4724   // sections will belong to the same TOC base.
4725 
4726   if (!GV->isStrongDefinitionForLinker())
4727     return false;
4728 
4729   // Any explicitly-specified sections and section prefixes must also match.
4730   // Also, if we're using -ffunction-sections, then each function is always in
4731   // a different section (the same is true for COMDAT functions).
4732   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4733       GV->getSection() != Caller->getSection())
4734     return false;
4735   if (const auto *F = dyn_cast<Function>(GV)) {
4736     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4737       return false;
4738   }
4739 
4740   // If the callee might be interposed, then we can't assume the ultimate call
4741   // target will be in the same section. Even in cases where we can assume that
4742   // interposition won't happen, in any case where the linker might insert a
4743   // stub to allow for interposition, we must generate code as though
4744   // interposition might occur. To understand why this matters, consider a
4745   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4746   // in the same section, but a is in a different module (i.e. has a different
4747   // TOC base pointer). If the linker allows for interposition between b and c,
4748   // then it will generate a stub for the call edge between b and c which will
4749   // save the TOC pointer into the designated stack slot allocated by b. If we
4750   // return true here, and therefore allow a tail call between b and c, that
4751   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4752   // pointer into the stack slot allocated by a (where the a -> b stub saved
4753   // a's TOC base pointer). If we're not considering a tail call, but rather,
4754   // whether a nop is needed after the call instruction in b, because the linker
4755   // will insert a stub, it might complain about a missing nop if we omit it
4756   // (although many don't complain in this case).
4757   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4758     return false;
4759 
4760   return true;
4761 }
4762 
4763 static bool
4764 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4765                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4766   assert(Subtarget.is64BitELFABI());
4767 
4768   const unsigned PtrByteSize = 8;
4769   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4770 
4771   static const MCPhysReg GPR[] = {
4772     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4773     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4774   };
4775   static const MCPhysReg VR[] = {
4776     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4777     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4778   };
4779 
4780   const unsigned NumGPRs = array_lengthof(GPR);
4781   const unsigned NumFPRs = 13;
4782   const unsigned NumVRs = array_lengthof(VR);
4783   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4784 
4785   unsigned NumBytes = LinkageSize;
4786   unsigned AvailableFPRs = NumFPRs;
4787   unsigned AvailableVRs = NumVRs;
4788 
4789   for (const ISD::OutputArg& Param : Outs) {
4790     if (Param.Flags.isNest()) continue;
4791 
4792     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4793                                PtrByteSize, LinkageSize, ParamAreaSize,
4794                                NumBytes, AvailableFPRs, AvailableVRs,
4795                                Subtarget.hasQPX()))
4796       return true;
4797   }
4798   return false;
4799 }
4800 
4801 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4802   if (CB.arg_size() != CallerFn->arg_size())
4803     return false;
4804 
4805   auto CalleeArgIter = CB.arg_begin();
4806   auto CalleeArgEnd = CB.arg_end();
4807   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4808 
4809   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4810     const Value* CalleeArg = *CalleeArgIter;
4811     const Value* CallerArg = &(*CallerArgIter);
4812     if (CalleeArg == CallerArg)
4813       continue;
4814 
4815     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4816     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4817     //      }
4818     // 1st argument of callee is undef and has the same type as caller.
4819     if (CalleeArg->getType() == CallerArg->getType() &&
4820         isa<UndefValue>(CalleeArg))
4821       continue;
4822 
4823     return false;
4824   }
4825 
4826   return true;
4827 }
4828 
4829 // Returns true if TCO is possible between the callers and callees
4830 // calling conventions.
4831 static bool
4832 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4833                                     CallingConv::ID CalleeCC) {
4834   // Tail calls are possible with fastcc and ccc.
4835   auto isTailCallableCC  = [] (CallingConv::ID CC){
4836       return  CC == CallingConv::C || CC == CallingConv::Fast;
4837   };
4838   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4839     return false;
4840 
4841   // We can safely tail call both fastcc and ccc callees from a c calling
4842   // convention caller. If the caller is fastcc, we may have less stack space
4843   // than a non-fastcc caller with the same signature so disable tail-calls in
4844   // that case.
4845   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4846 }
4847 
4848 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4849     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4850     const SmallVectorImpl<ISD::OutputArg> &Outs,
4851     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4852   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4853 
4854   if (DisableSCO && !TailCallOpt) return false;
4855 
4856   // Variadic argument functions are not supported.
4857   if (isVarArg) return false;
4858 
4859   auto &Caller = DAG.getMachineFunction().getFunction();
4860   // Check that the calling conventions are compatible for tco.
4861   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4862     return false;
4863 
4864   // Caller contains any byval parameter is not supported.
4865   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4866     return false;
4867 
4868   // Callee contains any byval parameter is not supported, too.
4869   // Note: This is a quick work around, because in some cases, e.g.
4870   // caller's stack size > callee's stack size, we are still able to apply
4871   // sibling call optimization. For example, gcc is able to do SCO for caller1
4872   // in the following example, but not for caller2.
4873   //   struct test {
4874   //     long int a;
4875   //     char ary[56];
4876   //   } gTest;
4877   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4878   //     b->a = v.a;
4879   //     return 0;
4880   //   }
4881   //   void caller1(struct test a, struct test c, struct test *b) {
4882   //     callee(gTest, b); }
4883   //   void caller2(struct test *b) { callee(gTest, b); }
4884   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4885     return false;
4886 
4887   // If callee and caller use different calling conventions, we cannot pass
4888   // parameters on stack since offsets for the parameter area may be different.
4889   if (Caller.getCallingConv() != CalleeCC &&
4890       needStackSlotPassParameters(Subtarget, Outs))
4891     return false;
4892 
4893   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4894   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4895   // callee potentially have different TOC bases then we cannot tail call since
4896   // we need to restore the TOC pointer after the call.
4897   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4898   // We cannot guarantee this for indirect calls or calls to external functions.
4899   // When PC-Relative addressing is used, the concept of the TOC is no longer
4900   // applicable so this check is not required.
4901   // Check first for indirect calls.
4902   if (!Subtarget.isUsingPCRelativeCalls() &&
4903       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4904     return false;
4905 
4906   // Check if we share the TOC base.
4907   if (!Subtarget.isUsingPCRelativeCalls() &&
4908       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4909     return false;
4910 
4911   // TCO allows altering callee ABI, so we don't have to check further.
4912   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4913     return true;
4914 
4915   if (DisableSCO) return false;
4916 
4917   // If callee use the same argument list that caller is using, then we can
4918   // apply SCO on this case. If it is not, then we need to check if callee needs
4919   // stack for passing arguments.
4920   // PC Relative tail calls may not have a CallBase.
4921   // If there is no CallBase we cannot verify if we have the same argument
4922   // list so assume that we don't have the same argument list.
4923   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4924       needStackSlotPassParameters(Subtarget, Outs))
4925     return false;
4926   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4927     return false;
4928 
4929   return true;
4930 }
4931 
4932 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4933 /// for tail call optimization. Targets which want to do tail call
4934 /// optimization should implement this function.
4935 bool
4936 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4937                                                      CallingConv::ID CalleeCC,
4938                                                      bool isVarArg,
4939                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4940                                                      SelectionDAG& DAG) const {
4941   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4942     return false;
4943 
4944   // Variable argument functions are not supported.
4945   if (isVarArg)
4946     return false;
4947 
4948   MachineFunction &MF = DAG.getMachineFunction();
4949   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4950   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4951     // Functions containing by val parameters are not supported.
4952     for (unsigned i = 0; i != Ins.size(); i++) {
4953        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4954        if (Flags.isByVal()) return false;
4955     }
4956 
4957     // Non-PIC/GOT tail calls are supported.
4958     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4959       return true;
4960 
4961     // At the moment we can only do local tail calls (in same module, hidden
4962     // or protected) if we are generating PIC.
4963     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4964       return G->getGlobal()->hasHiddenVisibility()
4965           || G->getGlobal()->hasProtectedVisibility();
4966   }
4967 
4968   return false;
4969 }
4970 
4971 /// isCallCompatibleAddress - Return the immediate to use if the specified
4972 /// 32-bit value is representable in the immediate field of a BxA instruction.
4973 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4974   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4975   if (!C) return nullptr;
4976 
4977   int Addr = C->getZExtValue();
4978   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4979       SignExtend32<26>(Addr) != Addr)
4980     return nullptr;  // Top 6 bits have to be sext of immediate.
4981 
4982   return DAG
4983       .getConstant(
4984           (int)C->getZExtValue() >> 2, SDLoc(Op),
4985           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4986       .getNode();
4987 }
4988 
4989 namespace {
4990 
4991 struct TailCallArgumentInfo {
4992   SDValue Arg;
4993   SDValue FrameIdxOp;
4994   int FrameIdx = 0;
4995 
4996   TailCallArgumentInfo() = default;
4997 };
4998 
4999 } // end anonymous namespace
5000 
5001 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
5002 static void StoreTailCallArgumentsToStackSlot(
5003     SelectionDAG &DAG, SDValue Chain,
5004     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
5005     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
5006   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
5007     SDValue Arg = TailCallArgs[i].Arg;
5008     SDValue FIN = TailCallArgs[i].FrameIdxOp;
5009     int FI = TailCallArgs[i].FrameIdx;
5010     // Store relative to framepointer.
5011     MemOpChains.push_back(DAG.getStore(
5012         Chain, dl, Arg, FIN,
5013         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
5014   }
5015 }
5016 
5017 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
5018 /// the appropriate stack slot for the tail call optimized function call.
5019 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
5020                                              SDValue OldRetAddr, SDValue OldFP,
5021                                              int SPDiff, const SDLoc &dl) {
5022   if (SPDiff) {
5023     // Calculate the new stack slot for the return address.
5024     MachineFunction &MF = DAG.getMachineFunction();
5025     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5026     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5027     bool isPPC64 = Subtarget.isPPC64();
5028     int SlotSize = isPPC64 ? 8 : 4;
5029     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5030     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5031                                                          NewRetAddrLoc, true);
5032     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5033     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5034     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5035                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5036   }
5037   return Chain;
5038 }
5039 
5040 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5041 /// the position of the argument.
5042 static void
5043 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5044                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5045                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5046   int Offset = ArgOffset + SPDiff;
5047   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5048   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5049   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5050   SDValue FIN = DAG.getFrameIndex(FI, VT);
5051   TailCallArgumentInfo Info;
5052   Info.Arg = Arg;
5053   Info.FrameIdxOp = FIN;
5054   Info.FrameIdx = FI;
5055   TailCallArguments.push_back(Info);
5056 }
5057 
5058 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5059 /// stack slot. Returns the chain as result and the loaded frame pointers in
5060 /// LROpOut/FPOpout. Used when tail calling.
5061 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5062     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5063     SDValue &FPOpOut, const SDLoc &dl) const {
5064   if (SPDiff) {
5065     // Load the LR and FP stack slot for later adjusting.
5066     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5067     LROpOut = getReturnAddrFrameIndex(DAG);
5068     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5069     Chain = SDValue(LROpOut.getNode(), 1);
5070   }
5071   return Chain;
5072 }
5073 
5074 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5075 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5076 /// specified by the specific parameter attribute. The copy will be passed as
5077 /// a byval function parameter.
5078 /// Sometimes what we are copying is the end of a larger object, the part that
5079 /// does not fit in registers.
5080 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5081                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5082                                          SelectionDAG &DAG, const SDLoc &dl) {
5083   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5084   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5085                        Flags.getNonZeroByValAlign(), false, false, false,
5086                        MachinePointerInfo(), MachinePointerInfo());
5087 }
5088 
5089 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5090 /// tail calls.
5091 static void LowerMemOpCallTo(
5092     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5093     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5094     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5095     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5096   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5097   if (!isTailCall) {
5098     if (isVector) {
5099       SDValue StackPtr;
5100       if (isPPC64)
5101         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5102       else
5103         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5104       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5105                            DAG.getConstant(ArgOffset, dl, PtrVT));
5106     }
5107     MemOpChains.push_back(
5108         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5109     // Calculate and remember argument location.
5110   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5111                                   TailCallArguments);
5112 }
5113 
5114 static void
5115 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5116                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5117                 SDValue FPOp,
5118                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5119   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5120   // might overwrite each other in case of tail call optimization.
5121   SmallVector<SDValue, 8> MemOpChains2;
5122   // Do not flag preceding copytoreg stuff together with the following stuff.
5123   InFlag = SDValue();
5124   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5125                                     MemOpChains2, dl);
5126   if (!MemOpChains2.empty())
5127     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5128 
5129   // Store the return address to the appropriate stack slot.
5130   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5131 
5132   // Emit callseq_end just before tailcall node.
5133   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5134                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5135   InFlag = Chain.getValue(1);
5136 }
5137 
5138 // Is this global address that of a function that can be called by name? (as
5139 // opposed to something that must hold a descriptor for an indirect call).
5140 static bool isFunctionGlobalAddress(SDValue Callee) {
5141   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5142     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5143         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5144       return false;
5145 
5146     return G->getGlobal()->getValueType()->isFunctionTy();
5147   }
5148 
5149   return false;
5150 }
5151 
5152 SDValue PPCTargetLowering::LowerCallResult(
5153     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5154     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5155     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5156   SmallVector<CCValAssign, 16> RVLocs;
5157   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5158                     *DAG.getContext());
5159 
5160   CCRetInfo.AnalyzeCallResult(
5161       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5162                ? RetCC_PPC_Cold
5163                : RetCC_PPC);
5164 
5165   // Copy all of the result registers out of their specified physreg.
5166   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5167     CCValAssign &VA = RVLocs[i];
5168     assert(VA.isRegLoc() && "Can only return in registers!");
5169 
5170     SDValue Val;
5171 
5172     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5173       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5174                                       InFlag);
5175       Chain = Lo.getValue(1);
5176       InFlag = Lo.getValue(2);
5177       VA = RVLocs[++i]; // skip ahead to next loc
5178       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5179                                       InFlag);
5180       Chain = Hi.getValue(1);
5181       InFlag = Hi.getValue(2);
5182       if (!Subtarget.isLittleEndian())
5183         std::swap (Lo, Hi);
5184       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5185     } else {
5186       Val = DAG.getCopyFromReg(Chain, dl,
5187                                VA.getLocReg(), VA.getLocVT(), InFlag);
5188       Chain = Val.getValue(1);
5189       InFlag = Val.getValue(2);
5190     }
5191 
5192     switch (VA.getLocInfo()) {
5193     default: llvm_unreachable("Unknown loc info!");
5194     case CCValAssign::Full: break;
5195     case CCValAssign::AExt:
5196       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5197       break;
5198     case CCValAssign::ZExt:
5199       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5200                         DAG.getValueType(VA.getValVT()));
5201       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5202       break;
5203     case CCValAssign::SExt:
5204       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5205                         DAG.getValueType(VA.getValVT()));
5206       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5207       break;
5208     }
5209 
5210     InVals.push_back(Val);
5211   }
5212 
5213   return Chain;
5214 }
5215 
5216 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5217                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5218   // PatchPoint calls are not indirect.
5219   if (isPatchPoint)
5220     return false;
5221 
5222   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5223     return false;
5224 
5225   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5226   // becuase the immediate function pointer points to a descriptor instead of
5227   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5228   // pointer immediate points to the global entry point, while the BLA would
5229   // need to jump to the local entry point (see rL211174).
5230   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5231       isBLACompatibleAddress(Callee, DAG))
5232     return false;
5233 
5234   return true;
5235 }
5236 
5237 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5238 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5239   return Subtarget.isAIXABI() ||
5240          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5241 }
5242 
5243 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5244                               const Function &Caller,
5245                               const SDValue &Callee,
5246                               const PPCSubtarget &Subtarget,
5247                               const TargetMachine &TM) {
5248   if (CFlags.IsTailCall)
5249     return PPCISD::TC_RETURN;
5250 
5251   // This is a call through a function pointer.
5252   if (CFlags.IsIndirect) {
5253     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5254     // indirect calls. The save of the caller's TOC pointer to the stack will be
5255     // inserted into the DAG as part of call lowering. The restore of the TOC
5256     // pointer is modeled by using a pseudo instruction for the call opcode that
5257     // represents the 2 instruction sequence of an indirect branch and link,
5258     // immediately followed by a load of the TOC pointer from the the stack save
5259     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5260     // as it is not saved or used.
5261     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5262                                                : PPCISD::BCTRL;
5263   }
5264 
5265   if (Subtarget.isUsingPCRelativeCalls()) {
5266     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5267     return PPCISD::CALL_NOTOC;
5268   }
5269 
5270   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5271   // immediately following the call instruction if the caller and callee may
5272   // have different TOC bases. At link time if the linker determines the calls
5273   // may not share a TOC base, the call is redirected to a trampoline inserted
5274   // by the linker. The trampoline will (among other things) save the callers
5275   // TOC pointer at an ABI designated offset in the linkage area and the linker
5276   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5277   // into gpr2.
5278   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5279       return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5280                                                     : PPCISD::CALL_NOP;
5281 
5282   return PPCISD::CALL;
5283 }
5284 
5285 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5286                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5287   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5288     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5289       return SDValue(Dest, 0);
5290 
5291   // Returns true if the callee is local, and false otherwise.
5292   auto isLocalCallee = [&]() {
5293     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5294     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5295     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5296 
5297     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5298            !dyn_cast_or_null<GlobalIFunc>(GV);
5299   };
5300 
5301   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5302   // a static relocation model causes some versions of GNU LD (2.17.50, at
5303   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5304   // built with secure-PLT.
5305   bool UsePlt =
5306       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5307       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5308 
5309   // On AIX, direct function calls reference the symbol for the function's
5310   // entry point, which is named by prepending a "." before the function's
5311   // C-linkage name.
5312   const auto getAIXFuncEntryPointSymbolSDNode =
5313       [&](StringRef FuncName, bool IsDeclaration,
5314           const XCOFF::StorageClass &SC) {
5315         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5316 
5317         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5318             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5319 
5320         if (IsDeclaration && !S->hasRepresentedCsectSet()) {
5321           // On AIX, an undefined symbol needs to be associated with a
5322           // MCSectionXCOFF to get the correct storage mapping class.
5323           // In this case, XCOFF::XMC_PR.
5324           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5325               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5326               SectionKind::getMetadata());
5327           S->setRepresentedCsect(Sec);
5328         }
5329 
5330         MVT PtrVT =
5331             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5332         return DAG.getMCSymbol(S, PtrVT);
5333       };
5334 
5335   if (isFunctionGlobalAddress(Callee)) {
5336     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5337     const GlobalValue *GV = G->getGlobal();
5338 
5339     if (!Subtarget.isAIXABI())
5340       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5341                                         UsePlt ? PPCII::MO_PLT : 0);
5342 
5343     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5344     const GlobalObject *GO = cast<GlobalObject>(GV);
5345     const XCOFF::StorageClass SC =
5346         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5347     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5348                                             SC);
5349   }
5350 
5351   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5352     const char *SymName = S->getSymbol();
5353     if (!Subtarget.isAIXABI())
5354       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5355                                          UsePlt ? PPCII::MO_PLT : 0);
5356 
5357     // If there exists a user-declared function whose name is the same as the
5358     // ExternalSymbol's, then we pick up the user-declared version.
5359     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5360     if (const Function *F =
5361             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5362       const XCOFF::StorageClass SC =
5363           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5364       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5365                                               SC);
5366     }
5367 
5368     return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5369   }
5370 
5371   // No transformation needed.
5372   assert(Callee.getNode() && "What no callee?");
5373   return Callee;
5374 }
5375 
5376 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5377   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5378          "Expected a CALLSEQ_STARTSDNode.");
5379 
5380   // The last operand is the chain, except when the node has glue. If the node
5381   // has glue, then the last operand is the glue, and the chain is the second
5382   // last operand.
5383   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5384   if (LastValue.getValueType() != MVT::Glue)
5385     return LastValue;
5386 
5387   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5388 }
5389 
5390 // Creates the node that moves a functions address into the count register
5391 // to prepare for an indirect call instruction.
5392 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5393                                 SDValue &Glue, SDValue &Chain,
5394                                 const SDLoc &dl) {
5395   SDValue MTCTROps[] = {Chain, Callee, Glue};
5396   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5397   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5398                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5399   // The glue is the second value produced.
5400   Glue = Chain.getValue(1);
5401 }
5402 
5403 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5404                                           SDValue &Glue, SDValue &Chain,
5405                                           SDValue CallSeqStart,
5406                                           const CallBase *CB, const SDLoc &dl,
5407                                           bool hasNest,
5408                                           const PPCSubtarget &Subtarget) {
5409   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5410   // entry point, but to the function descriptor (the function entry point
5411   // address is part of the function descriptor though).
5412   // The function descriptor is a three doubleword structure with the
5413   // following fields: function entry point, TOC base address and
5414   // environment pointer.
5415   // Thus for a call through a function pointer, the following actions need
5416   // to be performed:
5417   //   1. Save the TOC of the caller in the TOC save area of its stack
5418   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5419   //   2. Load the address of the function entry point from the function
5420   //      descriptor.
5421   //   3. Load the TOC of the callee from the function descriptor into r2.
5422   //   4. Load the environment pointer from the function descriptor into
5423   //      r11.
5424   //   5. Branch to the function entry point address.
5425   //   6. On return of the callee, the TOC of the caller needs to be
5426   //      restored (this is done in FinishCall()).
5427   //
5428   // The loads are scheduled at the beginning of the call sequence, and the
5429   // register copies are flagged together to ensure that no other
5430   // operations can be scheduled in between. E.g. without flagging the
5431   // copies together, a TOC access in the caller could be scheduled between
5432   // the assignment of the callee TOC and the branch to the callee, which leads
5433   // to incorrect code.
5434 
5435   // Start by loading the function address from the descriptor.
5436   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5437   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5438                       ? (MachineMemOperand::MODereferenceable |
5439                          MachineMemOperand::MOInvariant)
5440                       : MachineMemOperand::MONone;
5441 
5442   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5443 
5444   // Registers used in building the DAG.
5445   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5446   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5447 
5448   // Offsets of descriptor members.
5449   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5450   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5451 
5452   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5453   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5454 
5455   // One load for the functions entry point address.
5456   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5457                                     Alignment, MMOFlags);
5458 
5459   // One for loading the TOC anchor for the module that contains the called
5460   // function.
5461   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5462   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5463   SDValue TOCPtr =
5464       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5465                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5466 
5467   // One for loading the environment pointer.
5468   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5469   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5470   SDValue LoadEnvPtr =
5471       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5472                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5473 
5474 
5475   // Then copy the newly loaded TOC anchor to the TOC pointer.
5476   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5477   Chain = TOCVal.getValue(0);
5478   Glue = TOCVal.getValue(1);
5479 
5480   // If the function call has an explicit 'nest' parameter, it takes the
5481   // place of the environment pointer.
5482   assert((!hasNest || !Subtarget.isAIXABI()) &&
5483          "Nest parameter is not supported on AIX.");
5484   if (!hasNest) {
5485     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5486     Chain = EnvVal.getValue(0);
5487     Glue = EnvVal.getValue(1);
5488   }
5489 
5490   // The rest of the indirect call sequence is the same as the non-descriptor
5491   // DAG.
5492   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5493 }
5494 
5495 static void
5496 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5497                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5498                   SelectionDAG &DAG,
5499                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5500                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5501                   const PPCSubtarget &Subtarget) {
5502   const bool IsPPC64 = Subtarget.isPPC64();
5503   // MVT for a general purpose register.
5504   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5505 
5506   // First operand is always the chain.
5507   Ops.push_back(Chain);
5508 
5509   // If it's a direct call pass the callee as the second operand.
5510   if (!CFlags.IsIndirect)
5511     Ops.push_back(Callee);
5512   else {
5513     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5514 
5515     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5516     // on the stack (this would have been done in `LowerCall_64SVR4` or
5517     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5518     // represents both the indirect branch and a load that restores the TOC
5519     // pointer from the linkage area. The operand for the TOC restore is an add
5520     // of the TOC save offset to the stack pointer. This must be the second
5521     // operand: after the chain input but before any other variadic arguments.
5522     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5523     // saved or used.
5524     if (isTOCSaveRestoreRequired(Subtarget)) {
5525       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5526 
5527       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5528       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5529       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5530       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5531       Ops.push_back(AddTOC);
5532     }
5533 
5534     // Add the register used for the environment pointer.
5535     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5536       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5537                                     RegVT));
5538 
5539 
5540     // Add CTR register as callee so a bctr can be emitted later.
5541     if (CFlags.IsTailCall)
5542       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5543   }
5544 
5545   // If this is a tail call add stack pointer delta.
5546   if (CFlags.IsTailCall)
5547     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5548 
5549   // Add argument registers to the end of the list so that they are known live
5550   // into the call.
5551   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5552     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5553                                   RegsToPass[i].second.getValueType()));
5554 
5555   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5556   // no way to mark dependencies as implicit here.
5557   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5558   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5559        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5560     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5561 
5562   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5563   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5564     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5565 
5566   // Add a register mask operand representing the call-preserved registers.
5567   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5568   const uint32_t *Mask =
5569       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5570   assert(Mask && "Missing call preserved mask for calling convention");
5571   Ops.push_back(DAG.getRegisterMask(Mask));
5572 
5573   // If the glue is valid, it is the last operand.
5574   if (Glue.getNode())
5575     Ops.push_back(Glue);
5576 }
5577 
5578 SDValue PPCTargetLowering::FinishCall(
5579     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5580     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5581     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5582     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5583     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5584 
5585   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5586       Subtarget.isAIXABI())
5587     setUsesTOCBasePtr(DAG);
5588 
5589   unsigned CallOpc =
5590       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5591                     Subtarget, DAG.getTarget());
5592 
5593   if (!CFlags.IsIndirect)
5594     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5595   else if (Subtarget.usesFunctionDescriptors())
5596     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5597                                   dl, CFlags.HasNest, Subtarget);
5598   else
5599     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5600 
5601   // Build the operand list for the call instruction.
5602   SmallVector<SDValue, 8> Ops;
5603   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5604                     SPDiff, Subtarget);
5605 
5606   // Emit tail call.
5607   if (CFlags.IsTailCall) {
5608     // Indirect tail call when using PC Relative calls do not have the same
5609     // constraints.
5610     assert(((Callee.getOpcode() == ISD::Register &&
5611              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5612             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5613             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5614             isa<ConstantSDNode>(Callee) ||
5615             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5616            "Expecting a global address, external symbol, absolute value, "
5617            "register or an indirect tail call when PC Relative calls are "
5618            "used.");
5619     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5620     assert(CallOpc == PPCISD::TC_RETURN &&
5621            "Unexpected call opcode for a tail call.");
5622     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5623     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5624   }
5625 
5626   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5627   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5628   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5629   Glue = Chain.getValue(1);
5630 
5631   // When performing tail call optimization the callee pops its arguments off
5632   // the stack. Account for this here so these bytes can be pushed back on in
5633   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5634   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5635                          getTargetMachine().Options.GuaranteedTailCallOpt)
5636                             ? NumBytes
5637                             : 0;
5638 
5639   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5640                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5641                              Glue, dl);
5642   Glue = Chain.getValue(1);
5643 
5644   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5645                          DAG, InVals);
5646 }
5647 
5648 SDValue
5649 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5650                              SmallVectorImpl<SDValue> &InVals) const {
5651   SelectionDAG &DAG                     = CLI.DAG;
5652   SDLoc &dl                             = CLI.DL;
5653   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5654   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5655   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5656   SDValue Chain                         = CLI.Chain;
5657   SDValue Callee                        = CLI.Callee;
5658   bool &isTailCall                      = CLI.IsTailCall;
5659   CallingConv::ID CallConv              = CLI.CallConv;
5660   bool isVarArg                         = CLI.IsVarArg;
5661   bool isPatchPoint                     = CLI.IsPatchPoint;
5662   const CallBase *CB                    = CLI.CB;
5663 
5664   if (isTailCall) {
5665     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5666       isTailCall = false;
5667     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5668       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5669           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5670     else
5671       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5672                                                      Ins, DAG);
5673     if (isTailCall) {
5674       ++NumTailCalls;
5675       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5676         ++NumSiblingCalls;
5677 
5678       // PC Relative calls no longer guarantee that the callee is a Global
5679       // Address Node. The callee could be an indirect tail call in which
5680       // case the SDValue for the callee could be a load (to load the address
5681       // of a function pointer) or it may be a register copy (to move the
5682       // address of the callee from a function parameter into a virtual
5683       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5684       assert((Subtarget.isUsingPCRelativeCalls() ||
5685               isa<GlobalAddressSDNode>(Callee)) &&
5686              "Callee should be an llvm::Function object.");
5687 
5688       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5689                         << "\nTCO callee: ");
5690       LLVM_DEBUG(Callee.dump());
5691     }
5692   }
5693 
5694   if (!isTailCall && CB && CB->isMustTailCall())
5695     report_fatal_error("failed to perform tail call elimination on a call "
5696                        "site marked musttail");
5697 
5698   // When long calls (i.e. indirect calls) are always used, calls are always
5699   // made via function pointer. If we have a function name, first translate it
5700   // into a pointer.
5701   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5702       !isTailCall)
5703     Callee = LowerGlobalAddress(Callee, DAG);
5704 
5705   CallFlags CFlags(
5706       CallConv, isTailCall, isVarArg, isPatchPoint,
5707       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5708       // hasNest
5709       Subtarget.is64BitELFABI() &&
5710           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5711       CLI.NoMerge);
5712 
5713   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5714     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5715                             InVals, CB);
5716 
5717   if (Subtarget.isSVR4ABI())
5718     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5719                             InVals, CB);
5720 
5721   if (Subtarget.isAIXABI())
5722     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5723                          InVals, CB);
5724 
5725   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5726                           InVals, CB);
5727 }
5728 
5729 SDValue PPCTargetLowering::LowerCall_32SVR4(
5730     SDValue Chain, SDValue Callee, CallFlags CFlags,
5731     const SmallVectorImpl<ISD::OutputArg> &Outs,
5732     const SmallVectorImpl<SDValue> &OutVals,
5733     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5734     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5735     const CallBase *CB) const {
5736   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5737   // of the 32-bit SVR4 ABI stack frame layout.
5738 
5739   const CallingConv::ID CallConv = CFlags.CallConv;
5740   const bool IsVarArg = CFlags.IsVarArg;
5741   const bool IsTailCall = CFlags.IsTailCall;
5742 
5743   assert((CallConv == CallingConv::C ||
5744           CallConv == CallingConv::Cold ||
5745           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5746 
5747   const Align PtrAlign(4);
5748 
5749   MachineFunction &MF = DAG.getMachineFunction();
5750 
5751   // Mark this function as potentially containing a function that contains a
5752   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5753   // and restoring the callers stack pointer in this functions epilog. This is
5754   // done because by tail calling the called function might overwrite the value
5755   // in this function's (MF) stack pointer stack slot 0(SP).
5756   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5757       CallConv == CallingConv::Fast)
5758     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5759 
5760   // Count how many bytes are to be pushed on the stack, including the linkage
5761   // area, parameter list area and the part of the local variable space which
5762   // contains copies of aggregates which are passed by value.
5763 
5764   // Assign locations to all of the outgoing arguments.
5765   SmallVector<CCValAssign, 16> ArgLocs;
5766   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5767 
5768   // Reserve space for the linkage area on the stack.
5769   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5770                        PtrAlign);
5771   if (useSoftFloat())
5772     CCInfo.PreAnalyzeCallOperands(Outs);
5773 
5774   if (IsVarArg) {
5775     // Handle fixed and variable vector arguments differently.
5776     // Fixed vector arguments go into registers as long as registers are
5777     // available. Variable vector arguments always go into memory.
5778     unsigned NumArgs = Outs.size();
5779 
5780     for (unsigned i = 0; i != NumArgs; ++i) {
5781       MVT ArgVT = Outs[i].VT;
5782       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5783       bool Result;
5784 
5785       if (Outs[i].IsFixed) {
5786         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5787                                CCInfo);
5788       } else {
5789         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5790                                       ArgFlags, CCInfo);
5791       }
5792 
5793       if (Result) {
5794 #ifndef NDEBUG
5795         errs() << "Call operand #" << i << " has unhandled type "
5796              << EVT(ArgVT).getEVTString() << "\n";
5797 #endif
5798         llvm_unreachable(nullptr);
5799       }
5800     }
5801   } else {
5802     // All arguments are treated the same.
5803     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5804   }
5805   CCInfo.clearWasPPCF128();
5806 
5807   // Assign locations to all of the outgoing aggregate by value arguments.
5808   SmallVector<CCValAssign, 16> ByValArgLocs;
5809   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5810 
5811   // Reserve stack space for the allocations in CCInfo.
5812   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5813 
5814   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5815 
5816   // Size of the linkage area, parameter list area and the part of the local
5817   // space variable where copies of aggregates which are passed by value are
5818   // stored.
5819   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5820 
5821   // Calculate by how many bytes the stack has to be adjusted in case of tail
5822   // call optimization.
5823   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5824 
5825   // Adjust the stack pointer for the new arguments...
5826   // These operations are automatically eliminated by the prolog/epilog pass
5827   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5828   SDValue CallSeqStart = Chain;
5829 
5830   // Load the return address and frame pointer so it can be moved somewhere else
5831   // later.
5832   SDValue LROp, FPOp;
5833   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5834 
5835   // Set up a copy of the stack pointer for use loading and storing any
5836   // arguments that may not fit in the registers available for argument
5837   // passing.
5838   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5839 
5840   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5841   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5842   SmallVector<SDValue, 8> MemOpChains;
5843 
5844   bool seenFloatArg = false;
5845   // Walk the register/memloc assignments, inserting copies/loads.
5846   // i - Tracks the index into the list of registers allocated for the call
5847   // RealArgIdx - Tracks the index into the list of actual function arguments
5848   // j - Tracks the index into the list of byval arguments
5849   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5850        i != e;
5851        ++i, ++RealArgIdx) {
5852     CCValAssign &VA = ArgLocs[i];
5853     SDValue Arg = OutVals[RealArgIdx];
5854     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5855 
5856     if (Flags.isByVal()) {
5857       // Argument is an aggregate which is passed by value, thus we need to
5858       // create a copy of it in the local variable space of the current stack
5859       // frame (which is the stack frame of the caller) and pass the address of
5860       // this copy to the callee.
5861       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5862       CCValAssign &ByValVA = ByValArgLocs[j++];
5863       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5864 
5865       // Memory reserved in the local variable space of the callers stack frame.
5866       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5867 
5868       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5869       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5870                            StackPtr, PtrOff);
5871 
5872       // Create a copy of the argument in the local area of the current
5873       // stack frame.
5874       SDValue MemcpyCall =
5875         CreateCopyOfByValArgument(Arg, PtrOff,
5876                                   CallSeqStart.getNode()->getOperand(0),
5877                                   Flags, DAG, dl);
5878 
5879       // This must go outside the CALLSEQ_START..END.
5880       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5881                                                      SDLoc(MemcpyCall));
5882       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5883                              NewCallSeqStart.getNode());
5884       Chain = CallSeqStart = NewCallSeqStart;
5885 
5886       // Pass the address of the aggregate copy on the stack either in a
5887       // physical register or in the parameter list area of the current stack
5888       // frame to the callee.
5889       Arg = PtrOff;
5890     }
5891 
5892     // When useCRBits() is true, there can be i1 arguments.
5893     // It is because getRegisterType(MVT::i1) => MVT::i1,
5894     // and for other integer types getRegisterType() => MVT::i32.
5895     // Extend i1 and ensure callee will get i32.
5896     if (Arg.getValueType() == MVT::i1)
5897       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5898                         dl, MVT::i32, Arg);
5899 
5900     if (VA.isRegLoc()) {
5901       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5902       // Put argument in a physical register.
5903       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5904         bool IsLE = Subtarget.isLittleEndian();
5905         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5906                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5907         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5908         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5909                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5910         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5911                              SVal.getValue(0)));
5912       } else
5913         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5914     } else {
5915       // Put argument in the parameter list area of the current stack frame.
5916       assert(VA.isMemLoc());
5917       unsigned LocMemOffset = VA.getLocMemOffset();
5918 
5919       if (!IsTailCall) {
5920         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5921         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5922                              StackPtr, PtrOff);
5923 
5924         MemOpChains.push_back(
5925             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5926       } else {
5927         // Calculate and remember argument location.
5928         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5929                                  TailCallArguments);
5930       }
5931     }
5932   }
5933 
5934   if (!MemOpChains.empty())
5935     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5936 
5937   // Build a sequence of copy-to-reg nodes chained together with token chain
5938   // and flag operands which copy the outgoing args into the appropriate regs.
5939   SDValue InFlag;
5940   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5941     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5942                              RegsToPass[i].second, InFlag);
5943     InFlag = Chain.getValue(1);
5944   }
5945 
5946   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5947   // registers.
5948   if (IsVarArg) {
5949     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5950     SDValue Ops[] = { Chain, InFlag };
5951 
5952     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5953                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5954 
5955     InFlag = Chain.getValue(1);
5956   }
5957 
5958   if (IsTailCall)
5959     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5960                     TailCallArguments);
5961 
5962   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5963                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5964 }
5965 
5966 // Copy an argument into memory, being careful to do this outside the
5967 // call sequence for the call to which the argument belongs.
5968 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5969     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5970     SelectionDAG &DAG, const SDLoc &dl) const {
5971   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5972                         CallSeqStart.getNode()->getOperand(0),
5973                         Flags, DAG, dl);
5974   // The MEMCPY must go outside the CALLSEQ_START..END.
5975   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5976   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5977                                                  SDLoc(MemcpyCall));
5978   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5979                          NewCallSeqStart.getNode());
5980   return NewCallSeqStart;
5981 }
5982 
5983 SDValue PPCTargetLowering::LowerCall_64SVR4(
5984     SDValue Chain, SDValue Callee, CallFlags CFlags,
5985     const SmallVectorImpl<ISD::OutputArg> &Outs,
5986     const SmallVectorImpl<SDValue> &OutVals,
5987     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5988     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5989     const CallBase *CB) const {
5990   bool isELFv2ABI = Subtarget.isELFv2ABI();
5991   bool isLittleEndian = Subtarget.isLittleEndian();
5992   unsigned NumOps = Outs.size();
5993   bool IsSibCall = false;
5994   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5995 
5996   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5997   unsigned PtrByteSize = 8;
5998 
5999   MachineFunction &MF = DAG.getMachineFunction();
6000 
6001   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
6002     IsSibCall = true;
6003 
6004   // Mark this function as potentially containing a function that contains a
6005   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6006   // and restoring the callers stack pointer in this functions epilog. This is
6007   // done because by tail calling the called function might overwrite the value
6008   // in this function's (MF) stack pointer stack slot 0(SP).
6009   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6010     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6011 
6012   assert(!(IsFastCall && CFlags.IsVarArg) &&
6013          "fastcc not supported on varargs functions");
6014 
6015   // Count how many bytes are to be pushed on the stack, including the linkage
6016   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
6017   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
6018   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6019   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6020   unsigned NumBytes = LinkageSize;
6021   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6022   unsigned &QFPR_idx = FPR_idx;
6023 
6024   static const MCPhysReg GPR[] = {
6025     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6026     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6027   };
6028   static const MCPhysReg VR[] = {
6029     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6030     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6031   };
6032 
6033   const unsigned NumGPRs = array_lengthof(GPR);
6034   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6035   const unsigned NumVRs  = array_lengthof(VR);
6036   const unsigned NumQFPRs = NumFPRs;
6037 
6038   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6039   // can be passed to the callee in registers.
6040   // For the fast calling convention, there is another check below.
6041   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6042   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6043   if (!HasParameterArea) {
6044     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6045     unsigned AvailableFPRs = NumFPRs;
6046     unsigned AvailableVRs = NumVRs;
6047     unsigned NumBytesTmp = NumBytes;
6048     for (unsigned i = 0; i != NumOps; ++i) {
6049       if (Outs[i].Flags.isNest()) continue;
6050       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6051                                 PtrByteSize, LinkageSize, ParamAreaSize,
6052                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
6053                                 Subtarget.hasQPX()))
6054         HasParameterArea = true;
6055     }
6056   }
6057 
6058   // When using the fast calling convention, we don't provide backing for
6059   // arguments that will be in registers.
6060   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6061 
6062   // Avoid allocating parameter area for fastcc functions if all the arguments
6063   // can be passed in the registers.
6064   if (IsFastCall)
6065     HasParameterArea = false;
6066 
6067   // Add up all the space actually used.
6068   for (unsigned i = 0; i != NumOps; ++i) {
6069     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6070     EVT ArgVT = Outs[i].VT;
6071     EVT OrigVT = Outs[i].ArgVT;
6072 
6073     if (Flags.isNest())
6074       continue;
6075 
6076     if (IsFastCall) {
6077       if (Flags.isByVal()) {
6078         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6079         if (NumGPRsUsed > NumGPRs)
6080           HasParameterArea = true;
6081       } else {
6082         switch (ArgVT.getSimpleVT().SimpleTy) {
6083         default: llvm_unreachable("Unexpected ValueType for argument!");
6084         case MVT::i1:
6085         case MVT::i32:
6086         case MVT::i64:
6087           if (++NumGPRsUsed <= NumGPRs)
6088             continue;
6089           break;
6090         case MVT::v4i32:
6091         case MVT::v8i16:
6092         case MVT::v16i8:
6093         case MVT::v2f64:
6094         case MVT::v2i64:
6095         case MVT::v1i128:
6096         case MVT::f128:
6097           if (++NumVRsUsed <= NumVRs)
6098             continue;
6099           break;
6100         case MVT::v4f32:
6101           // When using QPX, this is handled like a FP register, otherwise, it
6102           // is an Altivec register.
6103           if (Subtarget.hasQPX()) {
6104             if (++NumFPRsUsed <= NumFPRs)
6105               continue;
6106           } else {
6107             if (++NumVRsUsed <= NumVRs)
6108               continue;
6109           }
6110           break;
6111         case MVT::f32:
6112         case MVT::f64:
6113         case MVT::v4f64: // QPX
6114         case MVT::v4i1:  // QPX
6115           if (++NumFPRsUsed <= NumFPRs)
6116             continue;
6117           break;
6118         }
6119         HasParameterArea = true;
6120       }
6121     }
6122 
6123     /* Respect alignment of argument on the stack.  */
6124     auto Alignement =
6125         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6126     NumBytes = alignTo(NumBytes, Alignement);
6127 
6128     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6129     if (Flags.isInConsecutiveRegsLast())
6130       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6131   }
6132 
6133   unsigned NumBytesActuallyUsed = NumBytes;
6134 
6135   // In the old ELFv1 ABI,
6136   // the prolog code of the callee may store up to 8 GPR argument registers to
6137   // the stack, allowing va_start to index over them in memory if its varargs.
6138   // Because we cannot tell if this is needed on the caller side, we have to
6139   // conservatively assume that it is needed.  As such, make sure we have at
6140   // least enough stack space for the caller to store the 8 GPRs.
6141   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6142   // really requires memory operands, e.g. a vararg function.
6143   if (HasParameterArea)
6144     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6145   else
6146     NumBytes = LinkageSize;
6147 
6148   // Tail call needs the stack to be aligned.
6149   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6150     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6151 
6152   int SPDiff = 0;
6153 
6154   // Calculate by how many bytes the stack has to be adjusted in case of tail
6155   // call optimization.
6156   if (!IsSibCall)
6157     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6158 
6159   // To protect arguments on the stack from being clobbered in a tail call,
6160   // force all the loads to happen before doing any other lowering.
6161   if (CFlags.IsTailCall)
6162     Chain = DAG.getStackArgumentTokenFactor(Chain);
6163 
6164   // Adjust the stack pointer for the new arguments...
6165   // These operations are automatically eliminated by the prolog/epilog pass
6166   if (!IsSibCall)
6167     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6168   SDValue CallSeqStart = Chain;
6169 
6170   // Load the return address and frame pointer so it can be move somewhere else
6171   // later.
6172   SDValue LROp, FPOp;
6173   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6174 
6175   // Set up a copy of the stack pointer for use loading and storing any
6176   // arguments that may not fit in the registers available for argument
6177   // passing.
6178   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6179 
6180   // Figure out which arguments are going to go in registers, and which in
6181   // memory.  Also, if this is a vararg function, floating point operations
6182   // must be stored to our stack, and loaded into integer regs as well, if
6183   // any integer regs are available for argument passing.
6184   unsigned ArgOffset = LinkageSize;
6185 
6186   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6187   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6188 
6189   SmallVector<SDValue, 8> MemOpChains;
6190   for (unsigned i = 0; i != NumOps; ++i) {
6191     SDValue Arg = OutVals[i];
6192     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6193     EVT ArgVT = Outs[i].VT;
6194     EVT OrigVT = Outs[i].ArgVT;
6195 
6196     // PtrOff will be used to store the current argument to the stack if a
6197     // register cannot be found for it.
6198     SDValue PtrOff;
6199 
6200     // We re-align the argument offset for each argument, except when using the
6201     // fast calling convention, when we need to make sure we do that only when
6202     // we'll actually use a stack slot.
6203     auto ComputePtrOff = [&]() {
6204       /* Respect alignment of argument on the stack.  */
6205       auto Alignment =
6206           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6207       ArgOffset = alignTo(ArgOffset, Alignment);
6208 
6209       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6210 
6211       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6212     };
6213 
6214     if (!IsFastCall) {
6215       ComputePtrOff();
6216 
6217       /* Compute GPR index associated with argument offset.  */
6218       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6219       GPR_idx = std::min(GPR_idx, NumGPRs);
6220     }
6221 
6222     // Promote integers to 64-bit values.
6223     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6224       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6225       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6226       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6227     }
6228 
6229     // FIXME memcpy is used way more than necessary.  Correctness first.
6230     // Note: "by value" is code for passing a structure by value, not
6231     // basic types.
6232     if (Flags.isByVal()) {
6233       // Note: Size includes alignment padding, so
6234       //   struct x { short a; char b; }
6235       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6236       // These are the proper values we need for right-justifying the
6237       // aggregate in a parameter register.
6238       unsigned Size = Flags.getByValSize();
6239 
6240       // An empty aggregate parameter takes up no storage and no
6241       // registers.
6242       if (Size == 0)
6243         continue;
6244 
6245       if (IsFastCall)
6246         ComputePtrOff();
6247 
6248       // All aggregates smaller than 8 bytes must be passed right-justified.
6249       if (Size==1 || Size==2 || Size==4) {
6250         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6251         if (GPR_idx != NumGPRs) {
6252           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6253                                         MachinePointerInfo(), VT);
6254           MemOpChains.push_back(Load.getValue(1));
6255           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6256 
6257           ArgOffset += PtrByteSize;
6258           continue;
6259         }
6260       }
6261 
6262       if (GPR_idx == NumGPRs && Size < 8) {
6263         SDValue AddPtr = PtrOff;
6264         if (!isLittleEndian) {
6265           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6266                                           PtrOff.getValueType());
6267           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6268         }
6269         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6270                                                           CallSeqStart,
6271                                                           Flags, DAG, dl);
6272         ArgOffset += PtrByteSize;
6273         continue;
6274       }
6275       // Copy entire object into memory.  There are cases where gcc-generated
6276       // code assumes it is there, even if it could be put entirely into
6277       // registers.  (This is not what the doc says.)
6278 
6279       // FIXME: The above statement is likely due to a misunderstanding of the
6280       // documents.  All arguments must be copied into the parameter area BY
6281       // THE CALLEE in the event that the callee takes the address of any
6282       // formal argument.  That has not yet been implemented.  However, it is
6283       // reasonable to use the stack area as a staging area for the register
6284       // load.
6285 
6286       // Skip this for small aggregates, as we will use the same slot for a
6287       // right-justified copy, below.
6288       if (Size >= 8)
6289         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6290                                                           CallSeqStart,
6291                                                           Flags, DAG, dl);
6292 
6293       // When a register is available, pass a small aggregate right-justified.
6294       if (Size < 8 && GPR_idx != NumGPRs) {
6295         // The easiest way to get this right-justified in a register
6296         // is to copy the structure into the rightmost portion of a
6297         // local variable slot, then load the whole slot into the
6298         // register.
6299         // FIXME: The memcpy seems to produce pretty awful code for
6300         // small aggregates, particularly for packed ones.
6301         // FIXME: It would be preferable to use the slot in the
6302         // parameter save area instead of a new local variable.
6303         SDValue AddPtr = PtrOff;
6304         if (!isLittleEndian) {
6305           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6306           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6307         }
6308         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6309                                                           CallSeqStart,
6310                                                           Flags, DAG, dl);
6311 
6312         // Load the slot into the register.
6313         SDValue Load =
6314             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6315         MemOpChains.push_back(Load.getValue(1));
6316         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6317 
6318         // Done with this argument.
6319         ArgOffset += PtrByteSize;
6320         continue;
6321       }
6322 
6323       // For aggregates larger than PtrByteSize, copy the pieces of the
6324       // object that fit into registers from the parameter save area.
6325       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6326         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6327         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6328         if (GPR_idx != NumGPRs) {
6329           SDValue Load =
6330               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6331           MemOpChains.push_back(Load.getValue(1));
6332           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6333           ArgOffset += PtrByteSize;
6334         } else {
6335           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6336           break;
6337         }
6338       }
6339       continue;
6340     }
6341 
6342     switch (Arg.getSimpleValueType().SimpleTy) {
6343     default: llvm_unreachable("Unexpected ValueType for argument!");
6344     case MVT::i1:
6345     case MVT::i32:
6346     case MVT::i64:
6347       if (Flags.isNest()) {
6348         // The 'nest' parameter, if any, is passed in R11.
6349         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6350         break;
6351       }
6352 
6353       // These can be scalar arguments or elements of an integer array type
6354       // passed directly.  Clang may use those instead of "byval" aggregate
6355       // types to avoid forcing arguments to memory unnecessarily.
6356       if (GPR_idx != NumGPRs) {
6357         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6358       } else {
6359         if (IsFastCall)
6360           ComputePtrOff();
6361 
6362         assert(HasParameterArea &&
6363                "Parameter area must exist to pass an argument in memory.");
6364         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6365                          true, CFlags.IsTailCall, false, MemOpChains,
6366                          TailCallArguments, dl);
6367         if (IsFastCall)
6368           ArgOffset += PtrByteSize;
6369       }
6370       if (!IsFastCall)
6371         ArgOffset += PtrByteSize;
6372       break;
6373     case MVT::f32:
6374     case MVT::f64: {
6375       // These can be scalar arguments or elements of a float array type
6376       // passed directly.  The latter are used to implement ELFv2 homogenous
6377       // float aggregates.
6378 
6379       // Named arguments go into FPRs first, and once they overflow, the
6380       // remaining arguments go into GPRs and then the parameter save area.
6381       // Unnamed arguments for vararg functions always go to GPRs and
6382       // then the parameter save area.  For now, put all arguments to vararg
6383       // routines always in both locations (FPR *and* GPR or stack slot).
6384       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6385       bool NeededLoad = false;
6386 
6387       // First load the argument into the next available FPR.
6388       if (FPR_idx != NumFPRs)
6389         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6390 
6391       // Next, load the argument into GPR or stack slot if needed.
6392       if (!NeedGPROrStack)
6393         ;
6394       else if (GPR_idx != NumGPRs && !IsFastCall) {
6395         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6396         // once we support fp <-> gpr moves.
6397 
6398         // In the non-vararg case, this can only ever happen in the
6399         // presence of f32 array types, since otherwise we never run
6400         // out of FPRs before running out of GPRs.
6401         SDValue ArgVal;
6402 
6403         // Double values are always passed in a single GPR.
6404         if (Arg.getValueType() != MVT::f32) {
6405           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6406 
6407         // Non-array float values are extended and passed in a GPR.
6408         } else if (!Flags.isInConsecutiveRegs()) {
6409           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6410           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6411 
6412         // If we have an array of floats, we collect every odd element
6413         // together with its predecessor into one GPR.
6414         } else if (ArgOffset % PtrByteSize != 0) {
6415           SDValue Lo, Hi;
6416           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6417           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6418           if (!isLittleEndian)
6419             std::swap(Lo, Hi);
6420           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6421 
6422         // The final element, if even, goes into the first half of a GPR.
6423         } else if (Flags.isInConsecutiveRegsLast()) {
6424           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6425           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6426           if (!isLittleEndian)
6427             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6428                                  DAG.getConstant(32, dl, MVT::i32));
6429 
6430         // Non-final even elements are skipped; they will be handled
6431         // together the with subsequent argument on the next go-around.
6432         } else
6433           ArgVal = SDValue();
6434 
6435         if (ArgVal.getNode())
6436           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6437       } else {
6438         if (IsFastCall)
6439           ComputePtrOff();
6440 
6441         // Single-precision floating-point values are mapped to the
6442         // second (rightmost) word of the stack doubleword.
6443         if (Arg.getValueType() == MVT::f32 &&
6444             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6445           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6446           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6447         }
6448 
6449         assert(HasParameterArea &&
6450                "Parameter area must exist to pass an argument in memory.");
6451         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6452                          true, CFlags.IsTailCall, false, MemOpChains,
6453                          TailCallArguments, dl);
6454 
6455         NeededLoad = true;
6456       }
6457       // When passing an array of floats, the array occupies consecutive
6458       // space in the argument area; only round up to the next doubleword
6459       // at the end of the array.  Otherwise, each float takes 8 bytes.
6460       if (!IsFastCall || NeededLoad) {
6461         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6462                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6463         if (Flags.isInConsecutiveRegsLast())
6464           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6465       }
6466       break;
6467     }
6468     case MVT::v4f32:
6469     case MVT::v4i32:
6470     case MVT::v8i16:
6471     case MVT::v16i8:
6472     case MVT::v2f64:
6473     case MVT::v2i64:
6474     case MVT::v1i128:
6475     case MVT::f128:
6476       if (!Subtarget.hasQPX()) {
6477       // These can be scalar arguments or elements of a vector array type
6478       // passed directly.  The latter are used to implement ELFv2 homogenous
6479       // vector aggregates.
6480 
6481       // For a varargs call, named arguments go into VRs or on the stack as
6482       // usual; unnamed arguments always go to the stack or the corresponding
6483       // GPRs when within range.  For now, we always put the value in both
6484       // locations (or even all three).
6485       if (CFlags.IsVarArg) {
6486         assert(HasParameterArea &&
6487                "Parameter area must exist if we have a varargs call.");
6488         // We could elide this store in the case where the object fits
6489         // entirely in R registers.  Maybe later.
6490         SDValue Store =
6491             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6492         MemOpChains.push_back(Store);
6493         if (VR_idx != NumVRs) {
6494           SDValue Load =
6495               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6496           MemOpChains.push_back(Load.getValue(1));
6497           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6498         }
6499         ArgOffset += 16;
6500         for (unsigned i=0; i<16; i+=PtrByteSize) {
6501           if (GPR_idx == NumGPRs)
6502             break;
6503           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6504                                    DAG.getConstant(i, dl, PtrVT));
6505           SDValue Load =
6506               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6507           MemOpChains.push_back(Load.getValue(1));
6508           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6509         }
6510         break;
6511       }
6512 
6513       // Non-varargs Altivec params go into VRs or on the stack.
6514       if (VR_idx != NumVRs) {
6515         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6516       } else {
6517         if (IsFastCall)
6518           ComputePtrOff();
6519 
6520         assert(HasParameterArea &&
6521                "Parameter area must exist to pass an argument in memory.");
6522         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6523                          true, CFlags.IsTailCall, true, MemOpChains,
6524                          TailCallArguments, dl);
6525         if (IsFastCall)
6526           ArgOffset += 16;
6527       }
6528 
6529       if (!IsFastCall)
6530         ArgOffset += 16;
6531       break;
6532       } // not QPX
6533 
6534       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6535              "Invalid QPX parameter type");
6536 
6537       LLVM_FALLTHROUGH;
6538     case MVT::v4f64:
6539     case MVT::v4i1: {
6540       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6541       if (CFlags.IsVarArg) {
6542         assert(HasParameterArea &&
6543                "Parameter area must exist if we have a varargs call.");
6544         // We could elide this store in the case where the object fits
6545         // entirely in R registers.  Maybe later.
6546         SDValue Store =
6547             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6548         MemOpChains.push_back(Store);
6549         if (QFPR_idx != NumQFPRs) {
6550           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6551                                      PtrOff, MachinePointerInfo());
6552           MemOpChains.push_back(Load.getValue(1));
6553           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6554         }
6555         ArgOffset += (IsF32 ? 16 : 32);
6556         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6557           if (GPR_idx == NumGPRs)
6558             break;
6559           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6560                                    DAG.getConstant(i, dl, PtrVT));
6561           SDValue Load =
6562               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6563           MemOpChains.push_back(Load.getValue(1));
6564           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6565         }
6566         break;
6567       }
6568 
6569       // Non-varargs QPX params go into registers or on the stack.
6570       if (QFPR_idx != NumQFPRs) {
6571         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6572       } else {
6573         if (IsFastCall)
6574           ComputePtrOff();
6575 
6576         assert(HasParameterArea &&
6577                "Parameter area must exist to pass an argument in memory.");
6578         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6579                          true, CFlags.IsTailCall, true, MemOpChains,
6580                          TailCallArguments, dl);
6581         if (IsFastCall)
6582           ArgOffset += (IsF32 ? 16 : 32);
6583       }
6584 
6585       if (!IsFastCall)
6586         ArgOffset += (IsF32 ? 16 : 32);
6587       break;
6588       }
6589     }
6590   }
6591 
6592   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6593          "mismatch in size of parameter area");
6594   (void)NumBytesActuallyUsed;
6595 
6596   if (!MemOpChains.empty())
6597     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6598 
6599   // Check if this is an indirect call (MTCTR/BCTRL).
6600   // See prepareDescriptorIndirectCall and buildCallOperands for more
6601   // information about calls through function pointers in the 64-bit SVR4 ABI.
6602   if (CFlags.IsIndirect) {
6603     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6604     // caller in the TOC save area.
6605     if (isTOCSaveRestoreRequired(Subtarget)) {
6606       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6607       // Load r2 into a virtual register and store it to the TOC save area.
6608       setUsesTOCBasePtr(DAG);
6609       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6610       // TOC save area offset.
6611       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6612       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6613       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6614       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6615                            MachinePointerInfo::getStack(
6616                                DAG.getMachineFunction(), TOCSaveOffset));
6617     }
6618     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6619     // This does not mean the MTCTR instruction must use R12; it's easier
6620     // to model this as an extra parameter, so do that.
6621     if (isELFv2ABI && !CFlags.IsPatchPoint)
6622       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6623   }
6624 
6625   // Build a sequence of copy-to-reg nodes chained together with token chain
6626   // and flag operands which copy the outgoing args into the appropriate regs.
6627   SDValue InFlag;
6628   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6629     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6630                              RegsToPass[i].second, InFlag);
6631     InFlag = Chain.getValue(1);
6632   }
6633 
6634   if (CFlags.IsTailCall && !IsSibCall)
6635     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6636                     TailCallArguments);
6637 
6638   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6639                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6640 }
6641 
6642 SDValue PPCTargetLowering::LowerCall_Darwin(
6643     SDValue Chain, SDValue Callee, CallFlags CFlags,
6644     const SmallVectorImpl<ISD::OutputArg> &Outs,
6645     const SmallVectorImpl<SDValue> &OutVals,
6646     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6647     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6648     const CallBase *CB) const {
6649   unsigned NumOps = Outs.size();
6650 
6651   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6652   bool isPPC64 = PtrVT == MVT::i64;
6653   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6654 
6655   MachineFunction &MF = DAG.getMachineFunction();
6656 
6657   // Mark this function as potentially containing a function that contains a
6658   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6659   // and restoring the callers stack pointer in this functions epilog. This is
6660   // done because by tail calling the called function might overwrite the value
6661   // in this function's (MF) stack pointer stack slot 0(SP).
6662   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6663       CFlags.CallConv == CallingConv::Fast)
6664     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6665 
6666   // Count how many bytes are to be pushed on the stack, including the linkage
6667   // area, and parameter passing area.  We start with 24/48 bytes, which is
6668   // prereserved space for [SP][CR][LR][3 x unused].
6669   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6670   unsigned NumBytes = LinkageSize;
6671 
6672   // Add up all the space actually used.
6673   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6674   // they all go in registers, but we must reserve stack space for them for
6675   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6676   // assigned stack space in order, with padding so Altivec parameters are
6677   // 16-byte aligned.
6678   unsigned nAltivecParamsAtEnd = 0;
6679   for (unsigned i = 0; i != NumOps; ++i) {
6680     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6681     EVT ArgVT = Outs[i].VT;
6682     // Varargs Altivec parameters are padded to a 16 byte boundary.
6683     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6684         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6685         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6686       if (!CFlags.IsVarArg && !isPPC64) {
6687         // Non-varargs Altivec parameters go after all the non-Altivec
6688         // parameters; handle those later so we know how much padding we need.
6689         nAltivecParamsAtEnd++;
6690         continue;
6691       }
6692       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6693       NumBytes = ((NumBytes+15)/16)*16;
6694     }
6695     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6696   }
6697 
6698   // Allow for Altivec parameters at the end, if needed.
6699   if (nAltivecParamsAtEnd) {
6700     NumBytes = ((NumBytes+15)/16)*16;
6701     NumBytes += 16*nAltivecParamsAtEnd;
6702   }
6703 
6704   // The prolog code of the callee may store up to 8 GPR argument registers to
6705   // the stack, allowing va_start to index over them in memory if its varargs.
6706   // Because we cannot tell if this is needed on the caller side, we have to
6707   // conservatively assume that it is needed.  As such, make sure we have at
6708   // least enough stack space for the caller to store the 8 GPRs.
6709   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6710 
6711   // Tail call needs the stack to be aligned.
6712   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6713       CFlags.CallConv == CallingConv::Fast)
6714     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6715 
6716   // Calculate by how many bytes the stack has to be adjusted in case of tail
6717   // call optimization.
6718   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6719 
6720   // To protect arguments on the stack from being clobbered in a tail call,
6721   // force all the loads to happen before doing any other lowering.
6722   if (CFlags.IsTailCall)
6723     Chain = DAG.getStackArgumentTokenFactor(Chain);
6724 
6725   // Adjust the stack pointer for the new arguments...
6726   // These operations are automatically eliminated by the prolog/epilog pass
6727   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6728   SDValue CallSeqStart = Chain;
6729 
6730   // Load the return address and frame pointer so it can be move somewhere else
6731   // later.
6732   SDValue LROp, FPOp;
6733   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6734 
6735   // Set up a copy of the stack pointer for use loading and storing any
6736   // arguments that may not fit in the registers available for argument
6737   // passing.
6738   SDValue StackPtr;
6739   if (isPPC64)
6740     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6741   else
6742     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6743 
6744   // Figure out which arguments are going to go in registers, and which in
6745   // memory.  Also, if this is a vararg function, floating point operations
6746   // must be stored to our stack, and loaded into integer regs as well, if
6747   // any integer regs are available for argument passing.
6748   unsigned ArgOffset = LinkageSize;
6749   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6750 
6751   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6752     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6753     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6754   };
6755   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6756     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6757     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6758   };
6759   static const MCPhysReg VR[] = {
6760     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6761     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6762   };
6763   const unsigned NumGPRs = array_lengthof(GPR_32);
6764   const unsigned NumFPRs = 13;
6765   const unsigned NumVRs  = array_lengthof(VR);
6766 
6767   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6768 
6769   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6770   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6771 
6772   SmallVector<SDValue, 8> MemOpChains;
6773   for (unsigned i = 0; i != NumOps; ++i) {
6774     SDValue Arg = OutVals[i];
6775     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6776 
6777     // PtrOff will be used to store the current argument to the stack if a
6778     // register cannot be found for it.
6779     SDValue PtrOff;
6780 
6781     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6782 
6783     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6784 
6785     // On PPC64, promote integers to 64-bit values.
6786     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6787       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6788       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6789       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6790     }
6791 
6792     // FIXME memcpy is used way more than necessary.  Correctness first.
6793     // Note: "by value" is code for passing a structure by value, not
6794     // basic types.
6795     if (Flags.isByVal()) {
6796       unsigned Size = Flags.getByValSize();
6797       // Very small objects are passed right-justified.  Everything else is
6798       // passed left-justified.
6799       if (Size==1 || Size==2) {
6800         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6801         if (GPR_idx != NumGPRs) {
6802           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6803                                         MachinePointerInfo(), VT);
6804           MemOpChains.push_back(Load.getValue(1));
6805           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6806 
6807           ArgOffset += PtrByteSize;
6808         } else {
6809           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6810                                           PtrOff.getValueType());
6811           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6812           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6813                                                             CallSeqStart,
6814                                                             Flags, DAG, dl);
6815           ArgOffset += PtrByteSize;
6816         }
6817         continue;
6818       }
6819       // Copy entire object into memory.  There are cases where gcc-generated
6820       // code assumes it is there, even if it could be put entirely into
6821       // registers.  (This is not what the doc says.)
6822       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6823                                                         CallSeqStart,
6824                                                         Flags, DAG, dl);
6825 
6826       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6827       // copy the pieces of the object that fit into registers from the
6828       // parameter save area.
6829       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6830         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6831         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6832         if (GPR_idx != NumGPRs) {
6833           SDValue Load =
6834               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6835           MemOpChains.push_back(Load.getValue(1));
6836           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6837           ArgOffset += PtrByteSize;
6838         } else {
6839           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6840           break;
6841         }
6842       }
6843       continue;
6844     }
6845 
6846     switch (Arg.getSimpleValueType().SimpleTy) {
6847     default: llvm_unreachable("Unexpected ValueType for argument!");
6848     case MVT::i1:
6849     case MVT::i32:
6850     case MVT::i64:
6851       if (GPR_idx != NumGPRs) {
6852         if (Arg.getValueType() == MVT::i1)
6853           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6854 
6855         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6856       } else {
6857         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6858                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6859                          TailCallArguments, dl);
6860       }
6861       ArgOffset += PtrByteSize;
6862       break;
6863     case MVT::f32:
6864     case MVT::f64:
6865       if (FPR_idx != NumFPRs) {
6866         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6867 
6868         if (CFlags.IsVarArg) {
6869           SDValue Store =
6870               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6871           MemOpChains.push_back(Store);
6872 
6873           // Float varargs are always shadowed in available integer registers
6874           if (GPR_idx != NumGPRs) {
6875             SDValue Load =
6876                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6877             MemOpChains.push_back(Load.getValue(1));
6878             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6879           }
6880           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6881             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6882             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6883             SDValue Load =
6884                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6885             MemOpChains.push_back(Load.getValue(1));
6886             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6887           }
6888         } else {
6889           // If we have any FPRs remaining, we may also have GPRs remaining.
6890           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6891           // GPRs.
6892           if (GPR_idx != NumGPRs)
6893             ++GPR_idx;
6894           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6895               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6896             ++GPR_idx;
6897         }
6898       } else
6899         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6900                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6901                          TailCallArguments, dl);
6902       if (isPPC64)
6903         ArgOffset += 8;
6904       else
6905         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6906       break;
6907     case MVT::v4f32:
6908     case MVT::v4i32:
6909     case MVT::v8i16:
6910     case MVT::v16i8:
6911       if (CFlags.IsVarArg) {
6912         // These go aligned on the stack, or in the corresponding R registers
6913         // when within range.  The Darwin PPC ABI doc claims they also go in
6914         // V registers; in fact gcc does this only for arguments that are
6915         // prototyped, not for those that match the ...  We do it for all
6916         // arguments, seems to work.
6917         while (ArgOffset % 16 !=0) {
6918           ArgOffset += PtrByteSize;
6919           if (GPR_idx != NumGPRs)
6920             GPR_idx++;
6921         }
6922         // We could elide this store in the case where the object fits
6923         // entirely in R registers.  Maybe later.
6924         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6925                              DAG.getConstant(ArgOffset, dl, PtrVT));
6926         SDValue Store =
6927             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6928         MemOpChains.push_back(Store);
6929         if (VR_idx != NumVRs) {
6930           SDValue Load =
6931               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6932           MemOpChains.push_back(Load.getValue(1));
6933           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6934         }
6935         ArgOffset += 16;
6936         for (unsigned i=0; i<16; i+=PtrByteSize) {
6937           if (GPR_idx == NumGPRs)
6938             break;
6939           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6940                                    DAG.getConstant(i, dl, PtrVT));
6941           SDValue Load =
6942               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6943           MemOpChains.push_back(Load.getValue(1));
6944           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6945         }
6946         break;
6947       }
6948 
6949       // Non-varargs Altivec params generally go in registers, but have
6950       // stack space allocated at the end.
6951       if (VR_idx != NumVRs) {
6952         // Doesn't have GPR space allocated.
6953         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6954       } else if (nAltivecParamsAtEnd==0) {
6955         // We are emitting Altivec params in order.
6956         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6957                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6958                          TailCallArguments, dl);
6959         ArgOffset += 16;
6960       }
6961       break;
6962     }
6963   }
6964   // If all Altivec parameters fit in registers, as they usually do,
6965   // they get stack space following the non-Altivec parameters.  We
6966   // don't track this here because nobody below needs it.
6967   // If there are more Altivec parameters than fit in registers emit
6968   // the stores here.
6969   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6970     unsigned j = 0;
6971     // Offset is aligned; skip 1st 12 params which go in V registers.
6972     ArgOffset = ((ArgOffset+15)/16)*16;
6973     ArgOffset += 12*16;
6974     for (unsigned i = 0; i != NumOps; ++i) {
6975       SDValue Arg = OutVals[i];
6976       EVT ArgType = Outs[i].VT;
6977       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6978           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6979         if (++j > NumVRs) {
6980           SDValue PtrOff;
6981           // We are emitting Altivec params in order.
6982           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6983                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6984                            TailCallArguments, dl);
6985           ArgOffset += 16;
6986         }
6987       }
6988     }
6989   }
6990 
6991   if (!MemOpChains.empty())
6992     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6993 
6994   // On Darwin, R12 must contain the address of an indirect callee.  This does
6995   // not mean the MTCTR instruction must use R12; it's easier to model this as
6996   // an extra parameter, so do that.
6997   if (CFlags.IsIndirect) {
6998     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6999     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
7000                                                    PPC::R12), Callee));
7001   }
7002 
7003   // Build a sequence of copy-to-reg nodes chained together with token chain
7004   // and flag operands which copy the outgoing args into the appropriate regs.
7005   SDValue InFlag;
7006   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
7007     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
7008                              RegsToPass[i].second, InFlag);
7009     InFlag = Chain.getValue(1);
7010   }
7011 
7012   if (CFlags.IsTailCall)
7013     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
7014                     TailCallArguments);
7015 
7016   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7017                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7018 }
7019 
7020 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
7021                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
7022                    CCState &State) {
7023 
7024   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
7025       State.getMachineFunction().getSubtarget());
7026   const bool IsPPC64 = Subtarget.isPPC64();
7027   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
7028   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
7029 
7030   assert((!ValVT.isInteger() ||
7031           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
7032          "Integer argument exceeds register size: should have been legalized");
7033 
7034   if (ValVT == MVT::f128)
7035     report_fatal_error("f128 is unimplemented on AIX.");
7036 
7037   if (ArgFlags.isNest())
7038     report_fatal_error("Nest arguments are unimplemented.");
7039 
7040   if (ValVT.isVector() || LocVT.isVector())
7041     report_fatal_error("Vector arguments are unimplemented on AIX.");
7042 
7043   static const MCPhysReg GPR_32[] = {// 32-bit registers.
7044                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7045                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7046   static const MCPhysReg GPR_64[] = {// 64-bit registers.
7047                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7048                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7049 
7050   if (ArgFlags.isByVal()) {
7051     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
7052       report_fatal_error("Pass-by-value arguments with alignment greater than "
7053                          "register width are not supported.");
7054 
7055     const unsigned ByValSize = ArgFlags.getByValSize();
7056 
7057     // An empty aggregate parameter takes up no storage and no registers,
7058     // but needs a MemLoc for a stack slot for the formal arguments side.
7059     if (ByValSize == 0) {
7060       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7061                                        State.getNextStackOffset(), RegVT,
7062                                        LocInfo));
7063       return false;
7064     }
7065 
7066     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
7067     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
7068     for (const unsigned E = Offset + StackSize; Offset < E;
7069          Offset += PtrAlign.value()) {
7070       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7071         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7072       else {
7073         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
7074                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
7075                                          LocInfo));
7076         break;
7077       }
7078     }
7079     return false;
7080   }
7081 
7082   // Arguments always reserve parameter save area.
7083   switch (ValVT.SimpleTy) {
7084   default:
7085     report_fatal_error("Unhandled value type for argument.");
7086   case MVT::i64:
7087     // i64 arguments should have been split to i32 for PPC32.
7088     assert(IsPPC64 && "PPC32 should have split i64 values.");
7089     LLVM_FALLTHROUGH;
7090   case MVT::i1:
7091   case MVT::i32: {
7092     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
7093     // AIX integer arguments are always passed in register width.
7094     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
7095       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
7096                                   : CCValAssign::LocInfo::ZExt;
7097     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
7098       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7099     else
7100       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
7101 
7102     return false;
7103   }
7104   case MVT::f32:
7105   case MVT::f64: {
7106     // Parameter save area (PSA) is reserved even if the float passes in fpr.
7107     const unsigned StoreSize = LocVT.getStoreSize();
7108     // Floats are always 4-byte aligned in the PSA on AIX.
7109     // This includes f64 in 64-bit mode for ABI compatibility.
7110     const unsigned Offset =
7111         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
7112     unsigned FReg = State.AllocateReg(FPR);
7113     if (FReg)
7114       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
7115 
7116     // Reserve and initialize GPRs or initialize the PSA as required.
7117     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
7118       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
7119         assert(FReg && "An FPR should be available when a GPR is reserved.");
7120         if (State.isVarArg()) {
7121           // Successfully reserved GPRs are only initialized for vararg calls.
7122           // Custom handling is required for:
7123           //   f64 in PPC32 needs to be split into 2 GPRs.
7124           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
7125           State.addLoc(
7126               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
7127         }
7128       } else {
7129         // If there are insufficient GPRs, the PSA needs to be initialized.
7130         // Initialization occurs even if an FPR was initialized for
7131         // compatibility with the AIX XL compiler. The full memory for the
7132         // argument will be initialized even if a prior word is saved in GPR.
7133         // A custom memLoc is used when the argument also passes in FPR so
7134         // that the callee handling can skip over it easily.
7135         State.addLoc(
7136             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7137                                              LocInfo)
7138                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7139         break;
7140       }
7141     }
7142 
7143     return false;
7144   }
7145   }
7146   return true;
7147 }
7148 
7149 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7150                                                     bool IsPPC64) {
7151   assert((IsPPC64 || SVT != MVT::i64) &&
7152          "i64 should have been split for 32-bit codegen.");
7153 
7154   switch (SVT) {
7155   default:
7156     report_fatal_error("Unexpected value type for formal argument");
7157   case MVT::i1:
7158   case MVT::i32:
7159   case MVT::i64:
7160     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7161   case MVT::f32:
7162     return &PPC::F4RCRegClass;
7163   case MVT::f64:
7164     return &PPC::F8RCRegClass;
7165   }
7166 }
7167 
7168 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7169                                         SelectionDAG &DAG, SDValue ArgValue,
7170                                         MVT LocVT, const SDLoc &dl) {
7171   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7172   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7173 
7174   if (Flags.isSExt())
7175     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7176                            DAG.getValueType(ValVT));
7177   else if (Flags.isZExt())
7178     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7179                            DAG.getValueType(ValVT));
7180 
7181   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7182 }
7183 
7184 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7185   const unsigned LASize = FL->getLinkageSize();
7186 
7187   if (PPC::GPRCRegClass.contains(Reg)) {
7188     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7189            "Reg must be a valid argument register!");
7190     return LASize + 4 * (Reg - PPC::R3);
7191   }
7192 
7193   if (PPC::G8RCRegClass.contains(Reg)) {
7194     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7195            "Reg must be a valid argument register!");
7196     return LASize + 8 * (Reg - PPC::X3);
7197   }
7198 
7199   llvm_unreachable("Only general purpose registers expected.");
7200 }
7201 
7202 //   AIX ABI Stack Frame Layout:
7203 //
7204 //   Low Memory +--------------------------------------------+
7205 //   SP   +---> | Back chain                                 | ---+
7206 //        |     +--------------------------------------------+    |
7207 //        |     | Saved Condition Register                   |    |
7208 //        |     +--------------------------------------------+    |
7209 //        |     | Saved Linkage Register                     |    |
7210 //        |     +--------------------------------------------+    | Linkage Area
7211 //        |     | Reserved for compilers                     |    |
7212 //        |     +--------------------------------------------+    |
7213 //        |     | Reserved for binders                       |    |
7214 //        |     +--------------------------------------------+    |
7215 //        |     | Saved TOC pointer                          | ---+
7216 //        |     +--------------------------------------------+
7217 //        |     | Parameter save area                        |
7218 //        |     +--------------------------------------------+
7219 //        |     | Alloca space                               |
7220 //        |     +--------------------------------------------+
7221 //        |     | Local variable space                       |
7222 //        |     +--------------------------------------------+
7223 //        |     | Float/int conversion temporary             |
7224 //        |     +--------------------------------------------+
7225 //        |     | Save area for AltiVec registers            |
7226 //        |     +--------------------------------------------+
7227 //        |     | AltiVec alignment padding                  |
7228 //        |     +--------------------------------------------+
7229 //        |     | Save area for VRSAVE register              |
7230 //        |     +--------------------------------------------+
7231 //        |     | Save area for General Purpose registers    |
7232 //        |     +--------------------------------------------+
7233 //        |     | Save area for Floating Point registers     |
7234 //        |     +--------------------------------------------+
7235 //        +---- | Back chain                                 |
7236 // High Memory  +--------------------------------------------+
7237 //
7238 //  Specifications:
7239 //  AIX 7.2 Assembler Language Reference
7240 //  Subroutine linkage convention
7241 
7242 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7243     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7244     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7245     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7246 
7247   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7248           CallConv == CallingConv::Fast) &&
7249          "Unexpected calling convention!");
7250 
7251   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7252     report_fatal_error("Tail call support is unimplemented on AIX.");
7253 
7254   if (useSoftFloat())
7255     report_fatal_error("Soft float support is unimplemented on AIX.");
7256 
7257   const PPCSubtarget &Subtarget =
7258       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7259   if (Subtarget.hasQPX())
7260     report_fatal_error("QPX support is not supported on AIX.");
7261 
7262   const bool IsPPC64 = Subtarget.isPPC64();
7263   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7264 
7265   // Assign locations to all of the incoming arguments.
7266   SmallVector<CCValAssign, 16> ArgLocs;
7267   MachineFunction &MF = DAG.getMachineFunction();
7268   MachineFrameInfo &MFI = MF.getFrameInfo();
7269   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7270 
7271   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7272   // Reserve space for the linkage area on the stack.
7273   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7274   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7275   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7276 
7277   SmallVector<SDValue, 8> MemOps;
7278 
7279   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7280     CCValAssign &VA = ArgLocs[I++];
7281     MVT LocVT = VA.getLocVT();
7282     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7283 
7284     // For compatibility with the AIX XL compiler, the float args in the
7285     // parameter save area are initialized even if the argument is available
7286     // in register.  The caller is required to initialize both the register
7287     // and memory, however, the callee can choose to expect it in either.
7288     // The memloc is dismissed here because the argument is retrieved from
7289     // the register.
7290     if (VA.isMemLoc() && VA.needsCustom())
7291       continue;
7292 
7293     if (Flags.isByVal() && VA.isMemLoc()) {
7294       const unsigned Size =
7295           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7296                   PtrByteSize);
7297       const int FI = MF.getFrameInfo().CreateFixedObject(
7298           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7299           /* IsAliased */ true);
7300       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7301       InVals.push_back(FIN);
7302 
7303       continue;
7304     }
7305 
7306     if (Flags.isByVal()) {
7307       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7308 
7309       const MCPhysReg ArgReg = VA.getLocReg();
7310       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7311 
7312       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7313         report_fatal_error("Over aligned byvals not supported yet.");
7314 
7315       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7316       const int FI = MF.getFrameInfo().CreateFixedObject(
7317           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7318           /* IsAliased */ true);
7319       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7320       InVals.push_back(FIN);
7321 
7322       // Add live ins for all the RegLocs for the same ByVal.
7323       const TargetRegisterClass *RegClass =
7324           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7325 
7326       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7327                                                unsigned Offset) {
7328         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7329         // Since the callers side has left justified the aggregate in the
7330         // register, we can simply store the entire register into the stack
7331         // slot.
7332         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7333         // The store to the fixedstack object is needed becuase accessing a
7334         // field of the ByVal will use a gep and load. Ideally we will optimize
7335         // to extracting the value from the register directly, and elide the
7336         // stores when the arguments address is not taken, but that will need to
7337         // be future work.
7338         SDValue Store =
7339             DAG.getStore(CopyFrom.getValue(1), dl, CopyFrom,
7340                          DAG.getObjectPtrOffset(dl, FIN, Offset),
7341                          MachinePointerInfo::getFixedStack(MF, FI, Offset));
7342 
7343         MemOps.push_back(Store);
7344       };
7345 
7346       unsigned Offset = 0;
7347       HandleRegLoc(VA.getLocReg(), Offset);
7348       Offset += PtrByteSize;
7349       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7350            Offset += PtrByteSize) {
7351         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7352                "RegLocs should be for ByVal argument.");
7353 
7354         const CCValAssign RL = ArgLocs[I++];
7355         HandleRegLoc(RL.getLocReg(), Offset);
7356       }
7357 
7358       if (Offset != StackSize) {
7359         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7360                "Expected MemLoc for remaining bytes.");
7361         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7362         // Consume the MemLoc.The InVal has already been emitted, so nothing
7363         // more needs to be done.
7364         ++I;
7365       }
7366 
7367       continue;
7368     }
7369 
7370     EVT ValVT = VA.getValVT();
7371     if (VA.isRegLoc() && !VA.needsCustom()) {
7372       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7373       unsigned VReg =
7374           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7375       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7376       if (ValVT.isScalarInteger() &&
7377           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7378         ArgValue =
7379             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7380       }
7381       InVals.push_back(ArgValue);
7382       continue;
7383     }
7384     if (VA.isMemLoc()) {
7385       const unsigned LocSize = LocVT.getStoreSize();
7386       const unsigned ValSize = ValVT.getStoreSize();
7387       assert((ValSize <= LocSize) &&
7388              "Object size is larger than size of MemLoc");
7389       int CurArgOffset = VA.getLocMemOffset();
7390       // Objects are right-justified because AIX is big-endian.
7391       if (LocSize > ValSize)
7392         CurArgOffset += LocSize - ValSize;
7393       // Potential tail calls could cause overwriting of argument stack slots.
7394       const bool IsImmutable =
7395           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7396             (CallConv == CallingConv::Fast));
7397       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7398       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7399       SDValue ArgValue =
7400           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7401       InVals.push_back(ArgValue);
7402       continue;
7403     }
7404   }
7405 
7406   // On AIX a minimum of 8 words is saved to the parameter save area.
7407   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7408   // Area that is at least reserved in the caller of this function.
7409   unsigned CallerReservedArea =
7410       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7411 
7412   // Set the size that is at least reserved in caller of this function. Tail
7413   // call optimized function's reserved stack space needs to be aligned so
7414   // that taking the difference between two stack areas will result in an
7415   // aligned stack.
7416   CallerReservedArea =
7417       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7418   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7419   FuncInfo->setMinReservedArea(CallerReservedArea);
7420 
7421   if (isVarArg) {
7422     FuncInfo->setVarArgsFrameIndex(
7423         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7424     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7425 
7426     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7427                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7428 
7429     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7430                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7431     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7432 
7433     // The fixed integer arguments of a variadic function are stored to the
7434     // VarArgsFrameIndex on the stack so that they may be loaded by
7435     // dereferencing the result of va_next.
7436     for (unsigned GPRIndex =
7437              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7438          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7439 
7440       const unsigned VReg =
7441           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7442                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7443 
7444       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7445       SDValue Store =
7446           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7447       MemOps.push_back(Store);
7448       // Increment the address for the next argument to store.
7449       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7450       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7451     }
7452   }
7453 
7454   if (!MemOps.empty())
7455     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7456 
7457   return Chain;
7458 }
7459 
7460 SDValue PPCTargetLowering::LowerCall_AIX(
7461     SDValue Chain, SDValue Callee, CallFlags CFlags,
7462     const SmallVectorImpl<ISD::OutputArg> &Outs,
7463     const SmallVectorImpl<SDValue> &OutVals,
7464     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7465     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7466     const CallBase *CB) const {
7467   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7468   // AIX ABI stack frame layout.
7469 
7470   assert((CFlags.CallConv == CallingConv::C ||
7471           CFlags.CallConv == CallingConv::Cold ||
7472           CFlags.CallConv == CallingConv::Fast) &&
7473          "Unexpected calling convention!");
7474 
7475   if (CFlags.IsPatchPoint)
7476     report_fatal_error("This call type is unimplemented on AIX.");
7477 
7478   const PPCSubtarget& Subtarget =
7479       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7480   if (Subtarget.hasQPX())
7481     report_fatal_error("QPX is not supported on AIX.");
7482   if (Subtarget.hasAltivec())
7483     report_fatal_error("Altivec support is unimplemented on AIX.");
7484 
7485   MachineFunction &MF = DAG.getMachineFunction();
7486   SmallVector<CCValAssign, 16> ArgLocs;
7487   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7488                  *DAG.getContext());
7489 
7490   // Reserve space for the linkage save area (LSA) on the stack.
7491   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7492   //   [SP][CR][LR][2 x reserved][TOC].
7493   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7494   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7495   const bool IsPPC64 = Subtarget.isPPC64();
7496   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7497   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7498   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7499   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7500 
7501   // The prolog code of the callee may store up to 8 GPR argument registers to
7502   // the stack, allowing va_start to index over them in memory if the callee
7503   // is variadic.
7504   // Because we cannot tell if this is needed on the caller side, we have to
7505   // conservatively assume that it is needed.  As such, make sure we have at
7506   // least enough stack space for the caller to store the 8 GPRs.
7507   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7508   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7509                                      CCInfo.getNextStackOffset());
7510 
7511   // Adjust the stack pointer for the new arguments...
7512   // These operations are automatically eliminated by the prolog/epilog pass.
7513   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7514   SDValue CallSeqStart = Chain;
7515 
7516   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7517   SmallVector<SDValue, 8> MemOpChains;
7518 
7519   // Set up a copy of the stack pointer for loading and storing any
7520   // arguments that may not fit in the registers available for argument
7521   // passing.
7522   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7523                                    : DAG.getRegister(PPC::R1, MVT::i32);
7524 
7525   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7526     const unsigned ValNo = ArgLocs[I].getValNo();
7527     SDValue Arg = OutVals[ValNo];
7528     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7529 
7530     if (Flags.isByVal()) {
7531       const unsigned ByValSize = Flags.getByValSize();
7532 
7533       // Nothing to do for zero-sized ByVals on the caller side.
7534       if (!ByValSize) {
7535         ++I;
7536         continue;
7537       }
7538 
7539       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7540         return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
7541                               (LoadOffset != 0)
7542                                   ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7543                                   : Arg,
7544                               MachinePointerInfo(), VT);
7545       };
7546 
7547       unsigned LoadOffset = 0;
7548 
7549       // Initialize registers, which are fully occupied by the by-val argument.
7550       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7551         SDValue Load = GetLoad(PtrVT, LoadOffset);
7552         MemOpChains.push_back(Load.getValue(1));
7553         LoadOffset += PtrByteSize;
7554         const CCValAssign &ByValVA = ArgLocs[I++];
7555         assert(ByValVA.getValNo() == ValNo &&
7556                "Unexpected location for pass-by-value argument.");
7557         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7558       }
7559 
7560       if (LoadOffset == ByValSize)
7561         continue;
7562 
7563       // There must be one more loc to handle the remainder.
7564       assert(ArgLocs[I].getValNo() == ValNo &&
7565              "Expected additional location for by-value argument.");
7566 
7567       if (ArgLocs[I].isMemLoc()) {
7568         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7569         const CCValAssign &ByValVA = ArgLocs[I++];
7570         ISD::ArgFlagsTy MemcpyFlags = Flags;
7571         // Only memcpy the bytes that don't pass in register.
7572         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7573         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7574             (LoadOffset != 0) ? DAG.getObjectPtrOffset(dl, Arg, LoadOffset)
7575                               : Arg,
7576             DAG.getObjectPtrOffset(dl, StackPtr, ByValVA.getLocMemOffset()),
7577             CallSeqStart, MemcpyFlags, DAG, dl);
7578         continue;
7579       }
7580 
7581       // Initialize the final register residue.
7582       // Any residue that occupies the final by-val arg register must be
7583       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7584       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7585       // 2 and 1 byte loads.
7586       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7587       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7588              "Unexpected register residue for by-value argument.");
7589       SDValue ResidueVal;
7590       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7591         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7592         const MVT VT =
7593             N == 1 ? MVT::i8
7594                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7595         SDValue Load = GetLoad(VT, LoadOffset);
7596         MemOpChains.push_back(Load.getValue(1));
7597         LoadOffset += N;
7598         Bytes += N;
7599 
7600         // By-val arguments are passed left-justfied in register.
7601         // Every load here needs to be shifted, otherwise a full register load
7602         // should have been used.
7603         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7604                "Unexpected load emitted during handling of pass-by-value "
7605                "argument.");
7606         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7607         EVT ShiftAmountTy =
7608             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7609         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7610         SDValue ShiftedLoad =
7611             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7612         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7613                                               ShiftedLoad)
7614                                 : ShiftedLoad;
7615       }
7616 
7617       const CCValAssign &ByValVA = ArgLocs[I++];
7618       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7619       continue;
7620     }
7621 
7622     CCValAssign &VA = ArgLocs[I++];
7623     const MVT LocVT = VA.getLocVT();
7624     const MVT ValVT = VA.getValVT();
7625 
7626     switch (VA.getLocInfo()) {
7627     default:
7628       report_fatal_error("Unexpected argument extension type.");
7629     case CCValAssign::Full:
7630       break;
7631     case CCValAssign::ZExt:
7632       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7633       break;
7634     case CCValAssign::SExt:
7635       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7636       break;
7637     }
7638 
7639     if (VA.isRegLoc() && !VA.needsCustom()) {
7640       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7641       continue;
7642     }
7643 
7644     if (VA.isMemLoc()) {
7645       SDValue PtrOff =
7646           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7647       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7648       MemOpChains.push_back(
7649           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7650 
7651       continue;
7652     }
7653 
7654     // Custom handling is used for GPR initializations for vararg float
7655     // arguments.
7656     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7657            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7658            "Unexpected register handling for calling convention.");
7659 
7660     SDValue ArgAsInt =
7661         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7662 
7663     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7664       // f32 in 32-bit GPR
7665       // f64 in 64-bit GPR
7666       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7667     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7668       // f32 in 64-bit GPR.
7669       RegsToPass.push_back(std::make_pair(
7670           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7671     else {
7672       // f64 in two 32-bit GPRs
7673       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7674       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7675              "Unexpected custom register for argument!");
7676       CCValAssign &GPR1 = VA;
7677       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7678                                      DAG.getConstant(32, dl, MVT::i8));
7679       RegsToPass.push_back(std::make_pair(
7680           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7681 
7682       if (I != E) {
7683         // If only 1 GPR was available, there will only be one custom GPR and
7684         // the argument will also pass in memory.
7685         CCValAssign &PeekArg = ArgLocs[I];
7686         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7687           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7688           CCValAssign &GPR2 = ArgLocs[I++];
7689           RegsToPass.push_back(std::make_pair(
7690               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7691         }
7692       }
7693     }
7694   }
7695 
7696   if (!MemOpChains.empty())
7697     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7698 
7699   // For indirect calls, we need to save the TOC base to the stack for
7700   // restoration after the call.
7701   if (CFlags.IsIndirect) {
7702     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7703     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7704     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7705     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7706     const unsigned TOCSaveOffset =
7707         Subtarget.getFrameLowering()->getTOCSaveOffset();
7708 
7709     setUsesTOCBasePtr(DAG);
7710     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7711     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7712     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7713     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7714     Chain = DAG.getStore(
7715         Val.getValue(1), dl, Val, AddPtr,
7716         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7717   }
7718 
7719   // Build a sequence of copy-to-reg nodes chained together with token chain
7720   // and flag operands which copy the outgoing args into the appropriate regs.
7721   SDValue InFlag;
7722   for (auto Reg : RegsToPass) {
7723     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7724     InFlag = Chain.getValue(1);
7725   }
7726 
7727   const int SPDiff = 0;
7728   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7729                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7730 }
7731 
7732 bool
7733 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7734                                   MachineFunction &MF, bool isVarArg,
7735                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7736                                   LLVMContext &Context) const {
7737   SmallVector<CCValAssign, 16> RVLocs;
7738   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7739   return CCInfo.CheckReturn(
7740       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7741                 ? RetCC_PPC_Cold
7742                 : RetCC_PPC);
7743 }
7744 
7745 SDValue
7746 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7747                                bool isVarArg,
7748                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7749                                const SmallVectorImpl<SDValue> &OutVals,
7750                                const SDLoc &dl, SelectionDAG &DAG) const {
7751   SmallVector<CCValAssign, 16> RVLocs;
7752   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7753                  *DAG.getContext());
7754   CCInfo.AnalyzeReturn(Outs,
7755                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7756                            ? RetCC_PPC_Cold
7757                            : RetCC_PPC);
7758 
7759   SDValue Flag;
7760   SmallVector<SDValue, 4> RetOps(1, Chain);
7761 
7762   // Copy the result values into the output registers.
7763   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7764     CCValAssign &VA = RVLocs[i];
7765     assert(VA.isRegLoc() && "Can only return in registers!");
7766 
7767     SDValue Arg = OutVals[RealResIdx];
7768 
7769     switch (VA.getLocInfo()) {
7770     default: llvm_unreachable("Unknown loc info!");
7771     case CCValAssign::Full: break;
7772     case CCValAssign::AExt:
7773       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7774       break;
7775     case CCValAssign::ZExt:
7776       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7777       break;
7778     case CCValAssign::SExt:
7779       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7780       break;
7781     }
7782     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7783       bool isLittleEndian = Subtarget.isLittleEndian();
7784       // Legalize ret f64 -> ret 2 x i32.
7785       SDValue SVal =
7786           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7787                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7788       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7789       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7790       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7791                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7792       Flag = Chain.getValue(1);
7793       VA = RVLocs[++i]; // skip ahead to next loc
7794       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7795     } else
7796       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7797     Flag = Chain.getValue(1);
7798     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7799   }
7800 
7801   RetOps[0] = Chain;  // Update chain.
7802 
7803   // Add the flag if we have it.
7804   if (Flag.getNode())
7805     RetOps.push_back(Flag);
7806 
7807   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7808 }
7809 
7810 SDValue
7811 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7812                                                 SelectionDAG &DAG) const {
7813   SDLoc dl(Op);
7814 
7815   // Get the correct type for integers.
7816   EVT IntVT = Op.getValueType();
7817 
7818   // Get the inputs.
7819   SDValue Chain = Op.getOperand(0);
7820   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7821   // Build a DYNAREAOFFSET node.
7822   SDValue Ops[2] = {Chain, FPSIdx};
7823   SDVTList VTs = DAG.getVTList(IntVT);
7824   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7825 }
7826 
7827 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7828                                              SelectionDAG &DAG) const {
7829   // When we pop the dynamic allocation we need to restore the SP link.
7830   SDLoc dl(Op);
7831 
7832   // Get the correct type for pointers.
7833   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7834 
7835   // Construct the stack pointer operand.
7836   bool isPPC64 = Subtarget.isPPC64();
7837   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7838   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7839 
7840   // Get the operands for the STACKRESTORE.
7841   SDValue Chain = Op.getOperand(0);
7842   SDValue SaveSP = Op.getOperand(1);
7843 
7844   // Load the old link SP.
7845   SDValue LoadLinkSP =
7846       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7847 
7848   // Restore the stack pointer.
7849   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7850 
7851   // Store the old link SP.
7852   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7853 }
7854 
7855 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7856   MachineFunction &MF = DAG.getMachineFunction();
7857   bool isPPC64 = Subtarget.isPPC64();
7858   EVT PtrVT = getPointerTy(MF.getDataLayout());
7859 
7860   // Get current frame pointer save index.  The users of this index will be
7861   // primarily DYNALLOC instructions.
7862   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7863   int RASI = FI->getReturnAddrSaveIndex();
7864 
7865   // If the frame pointer save index hasn't been defined yet.
7866   if (!RASI) {
7867     // Find out what the fix offset of the frame pointer save area.
7868     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7869     // Allocate the frame index for frame pointer save area.
7870     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7871     // Save the result.
7872     FI->setReturnAddrSaveIndex(RASI);
7873   }
7874   return DAG.getFrameIndex(RASI, PtrVT);
7875 }
7876 
7877 SDValue
7878 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7879   MachineFunction &MF = DAG.getMachineFunction();
7880   bool isPPC64 = Subtarget.isPPC64();
7881   EVT PtrVT = getPointerTy(MF.getDataLayout());
7882 
7883   // Get current frame pointer save index.  The users of this index will be
7884   // primarily DYNALLOC instructions.
7885   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7886   int FPSI = FI->getFramePointerSaveIndex();
7887 
7888   // If the frame pointer save index hasn't been defined yet.
7889   if (!FPSI) {
7890     // Find out what the fix offset of the frame pointer save area.
7891     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7892     // Allocate the frame index for frame pointer save area.
7893     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7894     // Save the result.
7895     FI->setFramePointerSaveIndex(FPSI);
7896   }
7897   return DAG.getFrameIndex(FPSI, PtrVT);
7898 }
7899 
7900 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7901                                                    SelectionDAG &DAG) const {
7902   // Get the inputs.
7903   SDValue Chain = Op.getOperand(0);
7904   SDValue Size  = Op.getOperand(1);
7905   SDLoc dl(Op);
7906 
7907   // Get the correct type for pointers.
7908   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7909   // Negate the size.
7910   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7911                                 DAG.getConstant(0, dl, PtrVT), Size);
7912   // Construct a node for the frame pointer save index.
7913   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7914   // Build a DYNALLOC node.
7915   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7916   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7917   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7918 }
7919 
7920 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7921                                                      SelectionDAG &DAG) const {
7922   MachineFunction &MF = DAG.getMachineFunction();
7923 
7924   bool isPPC64 = Subtarget.isPPC64();
7925   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7926 
7927   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7928   return DAG.getFrameIndex(FI, PtrVT);
7929 }
7930 
7931 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7932                                                SelectionDAG &DAG) const {
7933   SDLoc DL(Op);
7934   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7935                      DAG.getVTList(MVT::i32, MVT::Other),
7936                      Op.getOperand(0), Op.getOperand(1));
7937 }
7938 
7939 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7940                                                 SelectionDAG &DAG) const {
7941   SDLoc DL(Op);
7942   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7943                      Op.getOperand(0), Op.getOperand(1));
7944 }
7945 
7946 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7947   if (Op.getValueType().isVector())
7948     return LowerVectorLoad(Op, DAG);
7949 
7950   assert(Op.getValueType() == MVT::i1 &&
7951          "Custom lowering only for i1 loads");
7952 
7953   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7954 
7955   SDLoc dl(Op);
7956   LoadSDNode *LD = cast<LoadSDNode>(Op);
7957 
7958   SDValue Chain = LD->getChain();
7959   SDValue BasePtr = LD->getBasePtr();
7960   MachineMemOperand *MMO = LD->getMemOperand();
7961 
7962   SDValue NewLD =
7963       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7964                      BasePtr, MVT::i8, MMO);
7965   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7966 
7967   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7968   return DAG.getMergeValues(Ops, dl);
7969 }
7970 
7971 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7972   if (Op.getOperand(1).getValueType().isVector())
7973     return LowerVectorStore(Op, DAG);
7974 
7975   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7976          "Custom lowering only for i1 stores");
7977 
7978   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7979 
7980   SDLoc dl(Op);
7981   StoreSDNode *ST = cast<StoreSDNode>(Op);
7982 
7983   SDValue Chain = ST->getChain();
7984   SDValue BasePtr = ST->getBasePtr();
7985   SDValue Value = ST->getValue();
7986   MachineMemOperand *MMO = ST->getMemOperand();
7987 
7988   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7989                       Value);
7990   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7991 }
7992 
7993 // FIXME: Remove this once the ANDI glue bug is fixed:
7994 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7995   assert(Op.getValueType() == MVT::i1 &&
7996          "Custom lowering only for i1 results");
7997 
7998   SDLoc DL(Op);
7999   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
8000 }
8001 
8002 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
8003                                                SelectionDAG &DAG) const {
8004 
8005   // Implements a vector truncate that fits in a vector register as a shuffle.
8006   // We want to legalize vector truncates down to where the source fits in
8007   // a vector register (and target is therefore smaller than vector register
8008   // size).  At that point legalization will try to custom lower the sub-legal
8009   // result and get here - where we can contain the truncate as a single target
8010   // operation.
8011 
8012   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
8013   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
8014   //
8015   // We will implement it for big-endian ordering as this (where x denotes
8016   // undefined):
8017   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
8018   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
8019   //
8020   // The same operation in little-endian ordering will be:
8021   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
8022   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
8023 
8024   assert(Op.getValueType().isVector() && "Vector type expected.");
8025 
8026   SDLoc DL(Op);
8027   SDValue N1 = Op.getOperand(0);
8028   unsigned SrcSize = N1.getValueType().getSizeInBits();
8029   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
8030   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
8031 
8032   EVT TrgVT = Op.getValueType();
8033   unsigned TrgNumElts = TrgVT.getVectorNumElements();
8034   EVT EltVT = TrgVT.getVectorElementType();
8035   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8036   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8037 
8038   // First list the elements we want to keep.
8039   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
8040   SmallVector<int, 16> ShuffV;
8041   if (Subtarget.isLittleEndian())
8042     for (unsigned i = 0; i < TrgNumElts; ++i)
8043       ShuffV.push_back(i * SizeMult);
8044   else
8045     for (unsigned i = 1; i <= TrgNumElts; ++i)
8046       ShuffV.push_back(i * SizeMult - 1);
8047 
8048   // Populate the remaining elements with undefs.
8049   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
8050     // ShuffV.push_back(i + WideNumElts);
8051     ShuffV.push_back(WideNumElts + 1);
8052 
8053   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
8054   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
8055 }
8056 
8057 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
8058 /// possible.
8059 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
8060   // Not FP? Not a fsel.
8061   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
8062       !Op.getOperand(2).getValueType().isFloatingPoint())
8063     return Op;
8064 
8065   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
8066 
8067   EVT ResVT = Op.getValueType();
8068   EVT CmpVT = Op.getOperand(0).getValueType();
8069   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8070   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
8071   SDLoc dl(Op);
8072   SDNodeFlags Flags = Op.getNode()->getFlags();
8073 
8074   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
8075   // presence of infinities.
8076   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
8077     switch (CC) {
8078     default:
8079       break;
8080     case ISD::SETOGT:
8081     case ISD::SETGT:
8082       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
8083     case ISD::SETOLT:
8084     case ISD::SETLT:
8085       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
8086     }
8087   }
8088 
8089   // We might be able to do better than this under some circumstances, but in
8090   // general, fsel-based lowering of select is a finite-math-only optimization.
8091   // For more information, see section F.3 of the 2.06 ISA specification.
8092   // With ISA 3.0
8093   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
8094       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
8095     return Op;
8096 
8097   // If the RHS of the comparison is a 0.0, we don't need to do the
8098   // subtraction at all.
8099   SDValue Sel1;
8100   if (isFloatingPointZero(RHS))
8101     switch (CC) {
8102     default: break;       // SETUO etc aren't handled by fsel.
8103     case ISD::SETNE:
8104       std::swap(TV, FV);
8105       LLVM_FALLTHROUGH;
8106     case ISD::SETEQ:
8107       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8108         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8109       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8110       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8111         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8112       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8113                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8114     case ISD::SETULT:
8115     case ISD::SETLT:
8116       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8117       LLVM_FALLTHROUGH;
8118     case ISD::SETOGE:
8119     case ISD::SETGE:
8120       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8121         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8122       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8123     case ISD::SETUGT:
8124     case ISD::SETGT:
8125       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8126       LLVM_FALLTHROUGH;
8127     case ISD::SETOLE:
8128     case ISD::SETLE:
8129       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8130         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8131       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8132                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8133     }
8134 
8135   SDValue Cmp;
8136   switch (CC) {
8137   default: break;       // SETUO etc aren't handled by fsel.
8138   case ISD::SETNE:
8139     std::swap(TV, FV);
8140     LLVM_FALLTHROUGH;
8141   case ISD::SETEQ:
8142     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8143     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8144       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8145     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8146     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8147       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8148     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8149                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8150   case ISD::SETULT:
8151   case ISD::SETLT:
8152     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8153     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8154       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8155     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8156   case ISD::SETOGE:
8157   case ISD::SETGE:
8158     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8159     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8160       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8161     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8162   case ISD::SETUGT:
8163   case ISD::SETGT:
8164     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8165     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8166       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8167     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8168   case ISD::SETOLE:
8169   case ISD::SETLE:
8170     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8171     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8172       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8173     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8174   }
8175   return Op;
8176 }
8177 
8178 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8179                                                SelectionDAG &DAG,
8180                                                const SDLoc &dl) const {
8181   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8182   SDValue Src = Op.getOperand(0);
8183   if (Src.getValueType() == MVT::f32)
8184     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8185 
8186   SDValue Tmp;
8187   switch (Op.getSimpleValueType().SimpleTy) {
8188   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8189   case MVT::i32:
8190     Tmp = DAG.getNode(
8191         Op.getOpcode() == ISD::FP_TO_SINT
8192             ? PPCISD::FCTIWZ
8193             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8194         dl, MVT::f64, Src);
8195     break;
8196   case MVT::i64:
8197     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8198            "i64 FP_TO_UINT is supported only with FPCVT");
8199     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8200                                                         PPCISD::FCTIDUZ,
8201                       dl, MVT::f64, Src);
8202     break;
8203   }
8204 
8205   // Convert the FP value to an int value through memory.
8206   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8207     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
8208   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8209   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8210   MachinePointerInfo MPI =
8211       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8212 
8213   // Emit a store to the stack slot.
8214   SDValue Chain;
8215   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8216   if (i32Stack) {
8217     MachineFunction &MF = DAG.getMachineFunction();
8218     Alignment = Align(4);
8219     MachineMemOperand *MMO =
8220         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8221     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
8222     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8223               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8224   } else
8225     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
8226 
8227   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8228   // add in a bias on big endian.
8229   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8230     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8231                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8232     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8233   }
8234 
8235   RLI.Chain = Chain;
8236   RLI.Ptr = FIPtr;
8237   RLI.MPI = MPI;
8238   RLI.Alignment = Alignment;
8239 }
8240 
8241 /// Custom lowers floating point to integer conversions to use
8242 /// the direct move instructions available in ISA 2.07 to avoid the
8243 /// need for load/store combinations.
8244 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8245                                                     SelectionDAG &DAG,
8246                                                     const SDLoc &dl) const {
8247   assert(Op.getOperand(0).getValueType().isFloatingPoint());
8248   SDValue Src = Op.getOperand(0);
8249 
8250   if (Src.getValueType() == MVT::f32)
8251     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8252 
8253   SDValue Tmp;
8254   switch (Op.getSimpleValueType().SimpleTy) {
8255   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8256   case MVT::i32:
8257     Tmp = DAG.getNode(
8258         Op.getOpcode() == ISD::FP_TO_SINT
8259             ? PPCISD::FCTIWZ
8260             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
8261         dl, MVT::f64, Src);
8262     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
8263     break;
8264   case MVT::i64:
8265     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
8266            "i64 FP_TO_UINT is supported only with FPCVT");
8267     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
8268                                                         PPCISD::FCTIDUZ,
8269                       dl, MVT::f64, Src);
8270     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
8271     break;
8272   }
8273   return Tmp;
8274 }
8275 
8276 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8277                                           const SDLoc &dl) const {
8278 
8279   // FP to INT conversions are legal for f128.
8280   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
8281     return Op;
8282 
8283   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8284   // PPC (the libcall is not available).
8285   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
8286     if (Op.getValueType() == MVT::i32) {
8287       if (Op.getOpcode() == ISD::FP_TO_SINT) {
8288         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8289                                  MVT::f64, Op.getOperand(0),
8290                                  DAG.getIntPtrConstant(0, dl));
8291         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8292                                  MVT::f64, Op.getOperand(0),
8293                                  DAG.getIntPtrConstant(1, dl));
8294 
8295         // Add the two halves of the long double in round-to-zero mode.
8296         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8297 
8298         // Now use a smaller FP_TO_SINT.
8299         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8300       }
8301       if (Op.getOpcode() == ISD::FP_TO_UINT) {
8302         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8303         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8304         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
8305         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8306         // FIXME: generated code sucks.
8307         // TODO: Are there fast-math-flags to propagate to this FSUB?
8308         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
8309                                    Op.getOperand(0), Tmp);
8310         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8311         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
8312                            DAG.getConstant(0x80000000, dl, MVT::i32));
8313         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
8314                                     Op.getOperand(0));
8315         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
8316                                ISD::SETGE);
8317       }
8318     }
8319 
8320     return SDValue();
8321   }
8322 
8323   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8324     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8325 
8326   ReuseLoadInfo RLI;
8327   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8328 
8329   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8330                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8331 }
8332 
8333 // We're trying to insert a regular store, S, and then a load, L. If the
8334 // incoming value, O, is a load, we might just be able to have our load use the
8335 // address used by O. However, we don't know if anything else will store to
8336 // that address before we can load from it. To prevent this situation, we need
8337 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8338 // the same chain operand as O, we create a token factor from the chain results
8339 // of O and L, and we replace all uses of O's chain result with that token
8340 // factor (see spliceIntoChain below for this last part).
8341 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8342                                             ReuseLoadInfo &RLI,
8343                                             SelectionDAG &DAG,
8344                                             ISD::LoadExtType ET) const {
8345   SDLoc dl(Op);
8346   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8347                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8348   if (ET == ISD::NON_EXTLOAD &&
8349       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8350       isOperationLegalOrCustom(Op.getOpcode(),
8351                                Op.getOperand(0).getValueType())) {
8352 
8353     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8354     return true;
8355   }
8356 
8357   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8358   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8359       LD->isNonTemporal())
8360     return false;
8361   if (LD->getMemoryVT() != MemVT)
8362     return false;
8363 
8364   RLI.Ptr = LD->getBasePtr();
8365   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8366     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8367            "Non-pre-inc AM on PPC?");
8368     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8369                           LD->getOffset());
8370   }
8371 
8372   RLI.Chain = LD->getChain();
8373   RLI.MPI = LD->getPointerInfo();
8374   RLI.IsDereferenceable = LD->isDereferenceable();
8375   RLI.IsInvariant = LD->isInvariant();
8376   RLI.Alignment = LD->getAlign();
8377   RLI.AAInfo = LD->getAAInfo();
8378   RLI.Ranges = LD->getRanges();
8379 
8380   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8381   return true;
8382 }
8383 
8384 // Given the head of the old chain, ResChain, insert a token factor containing
8385 // it and NewResChain, and make users of ResChain now be users of that token
8386 // factor.
8387 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8388 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8389                                         SDValue NewResChain,
8390                                         SelectionDAG &DAG) const {
8391   if (!ResChain)
8392     return;
8393 
8394   SDLoc dl(NewResChain);
8395 
8396   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8397                            NewResChain, DAG.getUNDEF(MVT::Other));
8398   assert(TF.getNode() != NewResChain.getNode() &&
8399          "A new TF really is required here");
8400 
8401   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8402   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8403 }
8404 
8405 /// Analyze profitability of direct move
8406 /// prefer float load to int load plus direct move
8407 /// when there is no integer use of int load
8408 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8409   SDNode *Origin = Op.getOperand(0).getNode();
8410   if (Origin->getOpcode() != ISD::LOAD)
8411     return true;
8412 
8413   // If there is no LXSIBZX/LXSIHZX, like Power8,
8414   // prefer direct move if the memory size is 1 or 2 bytes.
8415   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8416   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8417     return true;
8418 
8419   for (SDNode::use_iterator UI = Origin->use_begin(),
8420                             UE = Origin->use_end();
8421        UI != UE; ++UI) {
8422 
8423     // Only look at the users of the loaded value.
8424     if (UI.getUse().get().getResNo() != 0)
8425       continue;
8426 
8427     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8428         UI->getOpcode() != ISD::UINT_TO_FP)
8429       return true;
8430   }
8431 
8432   return false;
8433 }
8434 
8435 /// Custom lowers integer to floating point conversions to use
8436 /// the direct move instructions available in ISA 2.07 to avoid the
8437 /// need for load/store combinations.
8438 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8439                                                     SelectionDAG &DAG,
8440                                                     const SDLoc &dl) const {
8441   assert((Op.getValueType() == MVT::f32 ||
8442           Op.getValueType() == MVT::f64) &&
8443          "Invalid floating point type as target of conversion");
8444   assert(Subtarget.hasFPCVT() &&
8445          "Int to FP conversions with direct moves require FPCVT");
8446   SDValue FP;
8447   SDValue Src = Op.getOperand(0);
8448   bool SinglePrec = Op.getValueType() == MVT::f32;
8449   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8450   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
8451   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
8452                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
8453 
8454   if (WordInt) {
8455     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
8456                      dl, MVT::f64, Src);
8457     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8458   }
8459   else {
8460     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
8461     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
8462   }
8463 
8464   return FP;
8465 }
8466 
8467 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8468 
8469   EVT VecVT = Vec.getValueType();
8470   assert(VecVT.isVector() && "Expected a vector type.");
8471   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8472 
8473   EVT EltVT = VecVT.getVectorElementType();
8474   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8475   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8476 
8477   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8478   SmallVector<SDValue, 16> Ops(NumConcat);
8479   Ops[0] = Vec;
8480   SDValue UndefVec = DAG.getUNDEF(VecVT);
8481   for (unsigned i = 1; i < NumConcat; ++i)
8482     Ops[i] = UndefVec;
8483 
8484   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8485 }
8486 
8487 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8488                                                 const SDLoc &dl) const {
8489 
8490   unsigned Opc = Op.getOpcode();
8491   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8492          "Unexpected conversion type");
8493   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8494          "Supports conversions to v2f64/v4f32 only.");
8495 
8496   bool SignedConv = Opc == ISD::SINT_TO_FP;
8497   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8498 
8499   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8500   EVT WideVT = Wide.getValueType();
8501   unsigned WideNumElts = WideVT.getVectorNumElements();
8502   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8503 
8504   SmallVector<int, 16> ShuffV;
8505   for (unsigned i = 0; i < WideNumElts; ++i)
8506     ShuffV.push_back(i + WideNumElts);
8507 
8508   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8509   int SaveElts = FourEltRes ? 4 : 2;
8510   if (Subtarget.isLittleEndian())
8511     for (int i = 0; i < SaveElts; i++)
8512       ShuffV[i * Stride] = i;
8513   else
8514     for (int i = 1; i <= SaveElts; i++)
8515       ShuffV[i * Stride - 1] = i - 1;
8516 
8517   SDValue ShuffleSrc2 =
8518       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8519   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8520 
8521   SDValue Extend;
8522   if (SignedConv) {
8523     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8524     EVT ExtVT = Op.getOperand(0).getValueType();
8525     if (Subtarget.hasP9Altivec())
8526       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8527                                IntermediateVT.getVectorNumElements());
8528 
8529     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8530                          DAG.getValueType(ExtVT));
8531   } else
8532     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8533 
8534   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8535 }
8536 
8537 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8538                                           SelectionDAG &DAG) const {
8539   SDLoc dl(Op);
8540 
8541   EVT InVT = Op.getOperand(0).getValueType();
8542   EVT OutVT = Op.getValueType();
8543   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8544       isOperationCustom(Op.getOpcode(), InVT))
8545     return LowerINT_TO_FPVector(Op, DAG, dl);
8546 
8547   // Conversions to f128 are legal.
8548   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8549     return Op;
8550 
8551   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8552     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8553       return SDValue();
8554 
8555     SDValue Value = Op.getOperand(0);
8556     // The values are now known to be -1 (false) or 1 (true). To convert this
8557     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8558     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8559     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8560 
8561     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8562 
8563     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8564 
8565     if (Op.getValueType() != MVT::v4f64)
8566       Value = DAG.getNode(ISD::FP_ROUND, dl,
8567                           Op.getValueType(), Value,
8568                           DAG.getIntPtrConstant(1, dl));
8569     return Value;
8570   }
8571 
8572   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8573   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8574     return SDValue();
8575 
8576   if (Op.getOperand(0).getValueType() == MVT::i1)
8577     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8578                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8579                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8580 
8581   // If we have direct moves, we can do all the conversion, skip the store/load
8582   // however, without FPCVT we can't do most conversions.
8583   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8584       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8585     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8586 
8587   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8588          "UINT_TO_FP is supported only with FPCVT");
8589 
8590   // If we have FCFIDS, then use it when converting to single-precision.
8591   // Otherwise, convert to double-precision and then round.
8592   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8593                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8594                                                             : PPCISD::FCFIDS)
8595                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8596                                                             : PPCISD::FCFID);
8597   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8598                   ? MVT::f32
8599                   : MVT::f64;
8600 
8601   if (Op.getOperand(0).getValueType() == MVT::i64) {
8602     SDValue SINT = Op.getOperand(0);
8603     // When converting to single-precision, we actually need to convert
8604     // to double-precision first and then round to single-precision.
8605     // To avoid double-rounding effects during that operation, we have
8606     // to prepare the input operand.  Bits that might be truncated when
8607     // converting to double-precision are replaced by a bit that won't
8608     // be lost at this stage, but is below the single-precision rounding
8609     // position.
8610     //
8611     // However, if -enable-unsafe-fp-math is in effect, accept double
8612     // rounding to avoid the extra overhead.
8613     if (Op.getValueType() == MVT::f32 &&
8614         !Subtarget.hasFPCVT() &&
8615         !DAG.getTarget().Options.UnsafeFPMath) {
8616 
8617       // Twiddle input to make sure the low 11 bits are zero.  (If this
8618       // is the case, we are guaranteed the value will fit into the 53 bit
8619       // mantissa of an IEEE double-precision value without rounding.)
8620       // If any of those low 11 bits were not zero originally, make sure
8621       // bit 12 (value 2048) is set instead, so that the final rounding
8622       // to single-precision gets the correct result.
8623       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8624                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8625       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8626                           Round, DAG.getConstant(2047, dl, MVT::i64));
8627       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8628       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8629                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8630 
8631       // However, we cannot use that value unconditionally: if the magnitude
8632       // of the input value is small, the bit-twiddling we did above might
8633       // end up visibly changing the output.  Fortunately, in that case, we
8634       // don't need to twiddle bits since the original input will convert
8635       // exactly to double-precision floating-point already.  Therefore,
8636       // construct a conditional to use the original value if the top 11
8637       // bits are all sign-bit copies, and use the rounded value computed
8638       // above otherwise.
8639       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8640                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8641       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8642                          Cond, DAG.getConstant(1, dl, MVT::i64));
8643       Cond = DAG.getSetCC(
8644           dl,
8645           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8646           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8647 
8648       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8649     }
8650 
8651     ReuseLoadInfo RLI;
8652     SDValue Bits;
8653 
8654     MachineFunction &MF = DAG.getMachineFunction();
8655     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8656       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8657                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8658       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8659     } else if (Subtarget.hasLFIWAX() &&
8660                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8661       MachineMemOperand *MMO =
8662         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8663                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8664       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8665       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8666                                      DAG.getVTList(MVT::f64, MVT::Other),
8667                                      Ops, MVT::i32, MMO);
8668       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8669     } else if (Subtarget.hasFPCVT() &&
8670                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8671       MachineMemOperand *MMO =
8672         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8673                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8674       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8675       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8676                                      DAG.getVTList(MVT::f64, MVT::Other),
8677                                      Ops, MVT::i32, MMO);
8678       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8679     } else if (((Subtarget.hasLFIWAX() &&
8680                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8681                 (Subtarget.hasFPCVT() &&
8682                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8683                SINT.getOperand(0).getValueType() == MVT::i32) {
8684       MachineFrameInfo &MFI = MF.getFrameInfo();
8685       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8686 
8687       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8688       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8689 
8690       SDValue Store =
8691           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8692                        MachinePointerInfo::getFixedStack(
8693                            DAG.getMachineFunction(), FrameIdx));
8694 
8695       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8696              "Expected an i32 store");
8697 
8698       RLI.Ptr = FIdx;
8699       RLI.Chain = Store;
8700       RLI.MPI =
8701           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8702       RLI.Alignment = Align(4);
8703 
8704       MachineMemOperand *MMO =
8705         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8706                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8707       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8708       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8709                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8710                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8711                                      Ops, MVT::i32, MMO);
8712     } else
8713       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8714 
8715     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8716 
8717     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8718       FP = DAG.getNode(ISD::FP_ROUND, dl,
8719                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8720     return FP;
8721   }
8722 
8723   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8724          "Unhandled INT_TO_FP type in custom expander!");
8725   // Since we only generate this in 64-bit mode, we can take advantage of
8726   // 64-bit registers.  In particular, sign extend the input value into the
8727   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8728   // then lfd it and fcfid it.
8729   MachineFunction &MF = DAG.getMachineFunction();
8730   MachineFrameInfo &MFI = MF.getFrameInfo();
8731   EVT PtrVT = getPointerTy(MF.getDataLayout());
8732 
8733   SDValue Ld;
8734   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8735     ReuseLoadInfo RLI;
8736     bool ReusingLoad;
8737     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8738                                             DAG))) {
8739       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8740       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8741 
8742       SDValue Store =
8743           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8744                        MachinePointerInfo::getFixedStack(
8745                            DAG.getMachineFunction(), FrameIdx));
8746 
8747       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8748              "Expected an i32 store");
8749 
8750       RLI.Ptr = FIdx;
8751       RLI.Chain = Store;
8752       RLI.MPI =
8753           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8754       RLI.Alignment = Align(4);
8755     }
8756 
8757     MachineMemOperand *MMO =
8758       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8759                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8760     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8761     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8762                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8763                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8764                                  Ops, MVT::i32, MMO);
8765     if (ReusingLoad)
8766       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8767   } else {
8768     assert(Subtarget.isPPC64() &&
8769            "i32->FP without LFIWAX supported only on PPC64");
8770 
8771     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8772     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8773 
8774     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8775                                 Op.getOperand(0));
8776 
8777     // STD the extended value into the stack slot.
8778     SDValue Store = DAG.getStore(
8779         DAG.getEntryNode(), dl, Ext64, FIdx,
8780         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8781 
8782     // Load the value as a double.
8783     Ld = DAG.getLoad(
8784         MVT::f64, dl, Store, FIdx,
8785         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8786   }
8787 
8788   // FCFID it and return it.
8789   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8790   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8791     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8792                      DAG.getIntPtrConstant(0, dl));
8793   return FP;
8794 }
8795 
8796 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8797                                             SelectionDAG &DAG) const {
8798   SDLoc dl(Op);
8799   /*
8800    The rounding mode is in bits 30:31 of FPSR, and has the following
8801    settings:
8802      00 Round to nearest
8803      01 Round to 0
8804      10 Round to +inf
8805      11 Round to -inf
8806 
8807   FLT_ROUNDS, on the other hand, expects the following:
8808     -1 Undefined
8809      0 Round to 0
8810      1 Round to nearest
8811      2 Round to +inf
8812      3 Round to -inf
8813 
8814   To perform the conversion, we do:
8815     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8816   */
8817 
8818   MachineFunction &MF = DAG.getMachineFunction();
8819   EVT VT = Op.getValueType();
8820   EVT PtrVT = getPointerTy(MF.getDataLayout());
8821 
8822   // Save FP Control Word to register
8823   SDValue Chain = Op.getOperand(0);
8824   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8825   Chain = MFFS.getValue(1);
8826 
8827   // Save FP register to stack slot
8828   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8829   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8830   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8831 
8832   // Load FP Control Word from low 32 bits of stack slot.
8833   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8834   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8835   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8836   Chain = CWD.getValue(1);
8837 
8838   // Transform as necessary
8839   SDValue CWD1 =
8840     DAG.getNode(ISD::AND, dl, MVT::i32,
8841                 CWD, DAG.getConstant(3, dl, MVT::i32));
8842   SDValue CWD2 =
8843     DAG.getNode(ISD::SRL, dl, MVT::i32,
8844                 DAG.getNode(ISD::AND, dl, MVT::i32,
8845                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8846                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8847                             DAG.getConstant(3, dl, MVT::i32)),
8848                 DAG.getConstant(1, dl, MVT::i32));
8849 
8850   SDValue RetVal =
8851     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8852 
8853   RetVal =
8854       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8855                   dl, VT, RetVal);
8856 
8857   return DAG.getMergeValues({RetVal, Chain}, dl);
8858 }
8859 
8860 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8861   EVT VT = Op.getValueType();
8862   unsigned BitWidth = VT.getSizeInBits();
8863   SDLoc dl(Op);
8864   assert(Op.getNumOperands() == 3 &&
8865          VT == Op.getOperand(1).getValueType() &&
8866          "Unexpected SHL!");
8867 
8868   // Expand into a bunch of logical ops.  Note that these ops
8869   // depend on the PPC behavior for oversized shift amounts.
8870   SDValue Lo = Op.getOperand(0);
8871   SDValue Hi = Op.getOperand(1);
8872   SDValue Amt = Op.getOperand(2);
8873   EVT AmtVT = Amt.getValueType();
8874 
8875   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8876                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8877   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8878   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8879   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8880   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8881                              DAG.getConstant(-BitWidth, dl, AmtVT));
8882   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8883   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8884   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8885   SDValue OutOps[] = { OutLo, OutHi };
8886   return DAG.getMergeValues(OutOps, dl);
8887 }
8888 
8889 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8890   EVT VT = Op.getValueType();
8891   SDLoc dl(Op);
8892   unsigned BitWidth = VT.getSizeInBits();
8893   assert(Op.getNumOperands() == 3 &&
8894          VT == Op.getOperand(1).getValueType() &&
8895          "Unexpected SRL!");
8896 
8897   // Expand into a bunch of logical ops.  Note that these ops
8898   // depend on the PPC behavior for oversized shift amounts.
8899   SDValue Lo = Op.getOperand(0);
8900   SDValue Hi = Op.getOperand(1);
8901   SDValue Amt = Op.getOperand(2);
8902   EVT AmtVT = Amt.getValueType();
8903 
8904   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8905                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8906   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8907   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8908   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8909   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8910                              DAG.getConstant(-BitWidth, dl, AmtVT));
8911   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8912   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8913   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8914   SDValue OutOps[] = { OutLo, OutHi };
8915   return DAG.getMergeValues(OutOps, dl);
8916 }
8917 
8918 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8919   SDLoc dl(Op);
8920   EVT VT = Op.getValueType();
8921   unsigned BitWidth = VT.getSizeInBits();
8922   assert(Op.getNumOperands() == 3 &&
8923          VT == Op.getOperand(1).getValueType() &&
8924          "Unexpected SRA!");
8925 
8926   // Expand into a bunch of logical ops, followed by a select_cc.
8927   SDValue Lo = Op.getOperand(0);
8928   SDValue Hi = Op.getOperand(1);
8929   SDValue Amt = Op.getOperand(2);
8930   EVT AmtVT = Amt.getValueType();
8931 
8932   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8933                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8934   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8935   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8936   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8937   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8938                              DAG.getConstant(-BitWidth, dl, AmtVT));
8939   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8940   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8941   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8942                                   Tmp4, Tmp6, ISD::SETLE);
8943   SDValue OutOps[] = { OutLo, OutHi };
8944   return DAG.getMergeValues(OutOps, dl);
8945 }
8946 
8947 //===----------------------------------------------------------------------===//
8948 // Vector related lowering.
8949 //
8950 
8951 /// BuildSplatI - Build a canonical splati of Val with an element size of
8952 /// SplatSize.  Cast the result to VT.
8953 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8954                            SelectionDAG &DAG, const SDLoc &dl) {
8955   static const MVT VTys[] = { // canonical VT to use for each size.
8956     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8957   };
8958 
8959   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8960 
8961   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8962   if (Val == -1)
8963     SplatSize = 1;
8964 
8965   EVT CanonicalVT = VTys[SplatSize-1];
8966 
8967   // Build a canonical splat for this value.
8968   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8969 }
8970 
8971 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8972 /// specified intrinsic ID.
8973 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8974                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8975   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8976   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8977                      DAG.getConstant(IID, dl, MVT::i32), Op);
8978 }
8979 
8980 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8981 /// specified intrinsic ID.
8982 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8983                                 SelectionDAG &DAG, const SDLoc &dl,
8984                                 EVT DestVT = MVT::Other) {
8985   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8986   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8987                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8988 }
8989 
8990 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8991 /// specified intrinsic ID.
8992 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8993                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8994                                 EVT DestVT = MVT::Other) {
8995   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8996   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8997                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8998 }
8999 
9000 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9001 /// amount.  The result has the specified value type.
9002 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9003                            SelectionDAG &DAG, const SDLoc &dl) {
9004   // Force LHS/RHS to be the right type.
9005   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9006   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9007 
9008   int Ops[16];
9009   for (unsigned i = 0; i != 16; ++i)
9010     Ops[i] = i + Amt;
9011   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9012   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9013 }
9014 
9015 /// Do we have an efficient pattern in a .td file for this node?
9016 ///
9017 /// \param V - pointer to the BuildVectorSDNode being matched
9018 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9019 ///
9020 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9021 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9022 /// the opposite is true (expansion is beneficial) are:
9023 /// - The node builds a vector out of integers that are not 32 or 64-bits
9024 /// - The node builds a vector out of constants
9025 /// - The node is a "load-and-splat"
9026 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9027 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9028                                             bool HasDirectMove,
9029                                             bool HasP8Vector) {
9030   EVT VecVT = V->getValueType(0);
9031   bool RightType = VecVT == MVT::v2f64 ||
9032     (HasP8Vector && VecVT == MVT::v4f32) ||
9033     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9034   if (!RightType)
9035     return false;
9036 
9037   bool IsSplat = true;
9038   bool IsLoad = false;
9039   SDValue Op0 = V->getOperand(0);
9040 
9041   // This function is called in a block that confirms the node is not a constant
9042   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9043   // different constants.
9044   if (V->isConstant())
9045     return false;
9046   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9047     if (V->getOperand(i).isUndef())
9048       return false;
9049     // We want to expand nodes that represent load-and-splat even if the
9050     // loaded value is a floating point truncation or conversion to int.
9051     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9052         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9053          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9054         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9055          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9056         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9057          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9058       IsLoad = true;
9059     // If the operands are different or the input is not a load and has more
9060     // uses than just this BV node, then it isn't a splat.
9061     if (V->getOperand(i) != Op0 ||
9062         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9063       IsSplat = false;
9064   }
9065   return !(IsSplat && IsLoad);
9066 }
9067 
9068 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9069 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9070 
9071   SDLoc dl(Op);
9072   SDValue Op0 = Op->getOperand(0);
9073 
9074   if (!EnableQuadPrecision ||
9075       (Op.getValueType() != MVT::f128 ) ||
9076       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9077       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
9078       (Op0.getOperand(1).getValueType() != MVT::i64))
9079     return SDValue();
9080 
9081   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9082                      Op0.getOperand(1));
9083 }
9084 
9085 static const SDValue *getNormalLoadInput(const SDValue &Op) {
9086   const SDValue *InputLoad = &Op;
9087   if (InputLoad->getOpcode() == ISD::BITCAST)
9088     InputLoad = &InputLoad->getOperand(0);
9089   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9090       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED)
9091     InputLoad = &InputLoad->getOperand(0);
9092   if (InputLoad->getOpcode() != ISD::LOAD)
9093     return nullptr;
9094   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9095   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9096 }
9097 
9098 // If this is a case we can't handle, return null and let the default
9099 // expansion code take care of it.  If we CAN select this case, and if it
9100 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9101 // this case more efficiently than a constant pool load, lower it to the
9102 // sequence of ops that should be used.
9103 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9104                                              SelectionDAG &DAG) const {
9105   SDLoc dl(Op);
9106   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9107   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9108 
9109   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
9110     // We first build an i32 vector, load it into a QPX register,
9111     // then convert it to a floating-point vector and compare it
9112     // to a zero vector to get the boolean result.
9113     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9114     int FrameIdx = MFI.CreateStackObject(16, 16, false);
9115     MachinePointerInfo PtrInfo =
9116         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9117     EVT PtrVT = getPointerTy(DAG.getDataLayout());
9118     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9119 
9120     assert(BVN->getNumOperands() == 4 &&
9121       "BUILD_VECTOR for v4i1 does not have 4 operands");
9122 
9123     bool IsConst = true;
9124     for (unsigned i = 0; i < 4; ++i) {
9125       if (BVN->getOperand(i).isUndef()) continue;
9126       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
9127         IsConst = false;
9128         break;
9129       }
9130     }
9131 
9132     if (IsConst) {
9133       Constant *One =
9134         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
9135       Constant *NegOne =
9136         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
9137 
9138       Constant *CV[4];
9139       for (unsigned i = 0; i < 4; ++i) {
9140         if (BVN->getOperand(i).isUndef())
9141           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
9142         else if (isNullConstant(BVN->getOperand(i)))
9143           CV[i] = NegOne;
9144         else
9145           CV[i] = One;
9146       }
9147 
9148       Constant *CP = ConstantVector::get(CV);
9149       SDValue CPIdx =
9150           DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), Align(16));
9151 
9152       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
9153       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
9154       return DAG.getMemIntrinsicNode(
9155           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
9156           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
9157     }
9158 
9159     SmallVector<SDValue, 4> Stores;
9160     for (unsigned i = 0; i < 4; ++i) {
9161       if (BVN->getOperand(i).isUndef()) continue;
9162 
9163       unsigned Offset = 4*i;
9164       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9165       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9166 
9167       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
9168       if (StoreSize > 4) {
9169         Stores.push_back(
9170             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
9171                               PtrInfo.getWithOffset(Offset), MVT::i32));
9172       } else {
9173         SDValue StoreValue = BVN->getOperand(i);
9174         if (StoreSize < 4)
9175           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
9176 
9177         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
9178                                       PtrInfo.getWithOffset(Offset)));
9179       }
9180     }
9181 
9182     SDValue StoreChain;
9183     if (!Stores.empty())
9184       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9185     else
9186       StoreChain = DAG.getEntryNode();
9187 
9188     // Now load from v4i32 into the QPX register; this will extend it to
9189     // v4i64 but not yet convert it to a floating point. Nevertheless, this
9190     // is typed as v4f64 because the QPX register integer states are not
9191     // explicitly represented.
9192 
9193     SDValue Ops[] = {StoreChain,
9194                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
9195                      FIdx};
9196     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
9197 
9198     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
9199       dl, VTs, Ops, MVT::v4i32, PtrInfo);
9200     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9201       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
9202       LoadedVect);
9203 
9204     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
9205 
9206     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
9207   }
9208 
9209   // All other QPX vectors are handled by generic code.
9210   if (Subtarget.hasQPX())
9211     return SDValue();
9212 
9213   // Check if this is a splat of a constant value.
9214   APInt APSplatBits, APSplatUndef;
9215   unsigned SplatBitSize;
9216   bool HasAnyUndefs;
9217   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9218                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9219       SplatBitSize > 32) {
9220 
9221     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
9222     // Handle load-and-splat patterns as we have instructions that will do this
9223     // in one go.
9224     if (InputLoad && DAG.isSplatValue(Op, true)) {
9225       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9226 
9227       // We have handling for 4 and 8 byte elements.
9228       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9229 
9230       // Checking for a single use of this load, we have to check for vector
9231       // width (128 bits) / ElementSize uses (since each operand of the
9232       // BUILD_VECTOR is a separate use of the value.
9233       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9234           ((Subtarget.hasVSX() && ElementSize == 64) ||
9235            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9236         SDValue Ops[] = {
9237           LD->getChain(),    // Chain
9238           LD->getBasePtr(),  // Ptr
9239           DAG.getValueType(Op.getValueType()) // VT
9240         };
9241         return
9242           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9243                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9244                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9245       }
9246     }
9247 
9248     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9249     // lowered to VSX instructions under certain conditions.
9250     // Without VSX, there is no pattern more efficient than expanding the node.
9251     if (Subtarget.hasVSX() &&
9252         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9253                                         Subtarget.hasP8Vector()))
9254       return Op;
9255     return SDValue();
9256   }
9257 
9258   unsigned SplatBits = APSplatBits.getZExtValue();
9259   unsigned SplatUndef = APSplatUndef.getZExtValue();
9260   unsigned SplatSize = SplatBitSize / 8;
9261 
9262   // First, handle single instruction cases.
9263 
9264   // All zeros?
9265   if (SplatBits == 0) {
9266     // Canonicalize all zero vectors to be v4i32.
9267     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9268       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9269       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9270     }
9271     return Op;
9272   }
9273 
9274   // We have XXSPLTIB for constant splats one byte wide
9275   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
9276   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
9277   if (Subtarget.hasP9Vector() && SplatSize == 1)
9278     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
9279 
9280   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9281   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9282                     (32-SplatBitSize));
9283   if (SextVal >= -16 && SextVal <= 15)
9284     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
9285 
9286   // Two instruction sequences.
9287 
9288   // If this value is in the range [-32,30] and is even, use:
9289   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9290   // If this value is in the range [17,31] and is odd, use:
9291   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9292   // If this value is in the range [-31,-17] and is odd, use:
9293   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9294   // Note the last two are three-instruction sequences.
9295   if (SextVal >= -32 && SextVal <= 31) {
9296     // To avoid having these optimizations undone by constant folding,
9297     // we convert to a pseudo that will be expanded later into one of
9298     // the above forms.
9299     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9300     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9301               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9302     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9303     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9304     if (VT == Op.getValueType())
9305       return RetVal;
9306     else
9307       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9308   }
9309 
9310   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9311   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9312   // for fneg/fabs.
9313   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9314     // Make -1 and vspltisw -1:
9315     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
9316 
9317     // Make the VSLW intrinsic, computing 0x8000_0000.
9318     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9319                                    OnesV, DAG, dl);
9320 
9321     // xor by OnesV to invert it.
9322     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9323     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9324   }
9325 
9326   // Check to see if this is a wide variety of vsplti*, binop self cases.
9327   static const signed char SplatCsts[] = {
9328     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9329     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9330   };
9331 
9332   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9333     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9334     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9335     int i = SplatCsts[idx];
9336 
9337     // Figure out what shift amount will be used by altivec if shifted by i in
9338     // this splat size.
9339     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9340 
9341     // vsplti + shl self.
9342     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9343       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9344       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9345         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9346         Intrinsic::ppc_altivec_vslw
9347       };
9348       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9349       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9350     }
9351 
9352     // vsplti + srl self.
9353     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9354       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9355       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9356         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9357         Intrinsic::ppc_altivec_vsrw
9358       };
9359       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9360       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9361     }
9362 
9363     // vsplti + sra self.
9364     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9365       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9366       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9367         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9368         Intrinsic::ppc_altivec_vsraw
9369       };
9370       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9371       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9372     }
9373 
9374     // vsplti + rol self.
9375     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9376                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9377       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
9378       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9379         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9380         Intrinsic::ppc_altivec_vrlw
9381       };
9382       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9383       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9384     }
9385 
9386     // t = vsplti c, result = vsldoi t, t, 1
9387     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9388       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9389       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9390       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9391     }
9392     // t = vsplti c, result = vsldoi t, t, 2
9393     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9394       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9395       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9396       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9397     }
9398     // t = vsplti c, result = vsldoi t, t, 3
9399     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9400       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
9401       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9402       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9403     }
9404   }
9405 
9406   return SDValue();
9407 }
9408 
9409 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9410 /// the specified operations to build the shuffle.
9411 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9412                                       SDValue RHS, SelectionDAG &DAG,
9413                                       const SDLoc &dl) {
9414   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9415   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9416   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9417 
9418   enum {
9419     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9420     OP_VMRGHW,
9421     OP_VMRGLW,
9422     OP_VSPLTISW0,
9423     OP_VSPLTISW1,
9424     OP_VSPLTISW2,
9425     OP_VSPLTISW3,
9426     OP_VSLDOI4,
9427     OP_VSLDOI8,
9428     OP_VSLDOI12
9429   };
9430 
9431   if (OpNum == OP_COPY) {
9432     if (LHSID == (1*9+2)*9+3) return LHS;
9433     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9434     return RHS;
9435   }
9436 
9437   SDValue OpLHS, OpRHS;
9438   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9439   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9440 
9441   int ShufIdxs[16];
9442   switch (OpNum) {
9443   default: llvm_unreachable("Unknown i32 permute!");
9444   case OP_VMRGHW:
9445     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9446     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9447     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9448     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9449     break;
9450   case OP_VMRGLW:
9451     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9452     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9453     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9454     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9455     break;
9456   case OP_VSPLTISW0:
9457     for (unsigned i = 0; i != 16; ++i)
9458       ShufIdxs[i] = (i&3)+0;
9459     break;
9460   case OP_VSPLTISW1:
9461     for (unsigned i = 0; i != 16; ++i)
9462       ShufIdxs[i] = (i&3)+4;
9463     break;
9464   case OP_VSPLTISW2:
9465     for (unsigned i = 0; i != 16; ++i)
9466       ShufIdxs[i] = (i&3)+8;
9467     break;
9468   case OP_VSPLTISW3:
9469     for (unsigned i = 0; i != 16; ++i)
9470       ShufIdxs[i] = (i&3)+12;
9471     break;
9472   case OP_VSLDOI4:
9473     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9474   case OP_VSLDOI8:
9475     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9476   case OP_VSLDOI12:
9477     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9478   }
9479   EVT VT = OpLHS.getValueType();
9480   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9481   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9482   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9483   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9484 }
9485 
9486 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9487 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9488 /// SDValue.
9489 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9490                                            SelectionDAG &DAG) const {
9491   const unsigned BytesInVector = 16;
9492   bool IsLE = Subtarget.isLittleEndian();
9493   SDLoc dl(N);
9494   SDValue V1 = N->getOperand(0);
9495   SDValue V2 = N->getOperand(1);
9496   unsigned ShiftElts = 0, InsertAtByte = 0;
9497   bool Swap = false;
9498 
9499   // Shifts required to get the byte we want at element 7.
9500   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9501                                    0, 15, 14, 13, 12, 11, 10, 9};
9502   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9503                                 1, 2,  3,  4,  5,  6,  7,  8};
9504 
9505   ArrayRef<int> Mask = N->getMask();
9506   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9507 
9508   // For each mask element, find out if we're just inserting something
9509   // from V2 into V1 or vice versa.
9510   // Possible permutations inserting an element from V2 into V1:
9511   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9512   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9513   //   ...
9514   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9515   // Inserting from V1 into V2 will be similar, except mask range will be
9516   // [16,31].
9517 
9518   bool FoundCandidate = false;
9519   // If both vector operands for the shuffle are the same vector, the mask
9520   // will contain only elements from the first one and the second one will be
9521   // undef.
9522   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9523   // Go through the mask of half-words to find an element that's being moved
9524   // from one vector to the other.
9525   for (unsigned i = 0; i < BytesInVector; ++i) {
9526     unsigned CurrentElement = Mask[i];
9527     // If 2nd operand is undefined, we should only look for element 7 in the
9528     // Mask.
9529     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9530       continue;
9531 
9532     bool OtherElementsInOrder = true;
9533     // Examine the other elements in the Mask to see if they're in original
9534     // order.
9535     for (unsigned j = 0; j < BytesInVector; ++j) {
9536       if (j == i)
9537         continue;
9538       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9539       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9540       // in which we always assume we're always picking from the 1st operand.
9541       int MaskOffset =
9542           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9543       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9544         OtherElementsInOrder = false;
9545         break;
9546       }
9547     }
9548     // If other elements are in original order, we record the number of shifts
9549     // we need to get the element we want into element 7. Also record which byte
9550     // in the vector we should insert into.
9551     if (OtherElementsInOrder) {
9552       // If 2nd operand is undefined, we assume no shifts and no swapping.
9553       if (V2.isUndef()) {
9554         ShiftElts = 0;
9555         Swap = false;
9556       } else {
9557         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9558         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9559                          : BigEndianShifts[CurrentElement & 0xF];
9560         Swap = CurrentElement < BytesInVector;
9561       }
9562       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9563       FoundCandidate = true;
9564       break;
9565     }
9566   }
9567 
9568   if (!FoundCandidate)
9569     return SDValue();
9570 
9571   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9572   // optionally with VECSHL if shift is required.
9573   if (Swap)
9574     std::swap(V1, V2);
9575   if (V2.isUndef())
9576     V2 = V1;
9577   if (ShiftElts) {
9578     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9579                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9580     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9581                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9582   }
9583   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9584                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9585 }
9586 
9587 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9588 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9589 /// SDValue.
9590 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9591                                            SelectionDAG &DAG) const {
9592   const unsigned NumHalfWords = 8;
9593   const unsigned BytesInVector = NumHalfWords * 2;
9594   // Check that the shuffle is on half-words.
9595   if (!isNByteElemShuffleMask(N, 2, 1))
9596     return SDValue();
9597 
9598   bool IsLE = Subtarget.isLittleEndian();
9599   SDLoc dl(N);
9600   SDValue V1 = N->getOperand(0);
9601   SDValue V2 = N->getOperand(1);
9602   unsigned ShiftElts = 0, InsertAtByte = 0;
9603   bool Swap = false;
9604 
9605   // Shifts required to get the half-word we want at element 3.
9606   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9607   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9608 
9609   uint32_t Mask = 0;
9610   uint32_t OriginalOrderLow = 0x1234567;
9611   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9612   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9613   // 32-bit space, only need 4-bit nibbles per element.
9614   for (unsigned i = 0; i < NumHalfWords; ++i) {
9615     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9616     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9617   }
9618 
9619   // For each mask element, find out if we're just inserting something
9620   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9621   // from V2 into V1:
9622   //   X, 1, 2, 3, 4, 5, 6, 7
9623   //   0, X, 2, 3, 4, 5, 6, 7
9624   //   0, 1, X, 3, 4, 5, 6, 7
9625   //   0, 1, 2, X, 4, 5, 6, 7
9626   //   0, 1, 2, 3, X, 5, 6, 7
9627   //   0, 1, 2, 3, 4, X, 6, 7
9628   //   0, 1, 2, 3, 4, 5, X, 7
9629   //   0, 1, 2, 3, 4, 5, 6, X
9630   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9631 
9632   bool FoundCandidate = false;
9633   // Go through the mask of half-words to find an element that's being moved
9634   // from one vector to the other.
9635   for (unsigned i = 0; i < NumHalfWords; ++i) {
9636     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9637     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9638     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9639     uint32_t TargetOrder = 0x0;
9640 
9641     // If both vector operands for the shuffle are the same vector, the mask
9642     // will contain only elements from the first one and the second one will be
9643     // undef.
9644     if (V2.isUndef()) {
9645       ShiftElts = 0;
9646       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9647       TargetOrder = OriginalOrderLow;
9648       Swap = false;
9649       // Skip if not the correct element or mask of other elements don't equal
9650       // to our expected order.
9651       if (MaskOneElt == VINSERTHSrcElem &&
9652           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9653         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9654         FoundCandidate = true;
9655         break;
9656       }
9657     } else { // If both operands are defined.
9658       // Target order is [8,15] if the current mask is between [0,7].
9659       TargetOrder =
9660           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9661       // Skip if mask of other elements don't equal our expected order.
9662       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9663         // We only need the last 3 bits for the number of shifts.
9664         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9665                          : BigEndianShifts[MaskOneElt & 0x7];
9666         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9667         Swap = MaskOneElt < NumHalfWords;
9668         FoundCandidate = true;
9669         break;
9670       }
9671     }
9672   }
9673 
9674   if (!FoundCandidate)
9675     return SDValue();
9676 
9677   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9678   // optionally with VECSHL if shift is required.
9679   if (Swap)
9680     std::swap(V1, V2);
9681   if (V2.isUndef())
9682     V2 = V1;
9683   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9684   if (ShiftElts) {
9685     // Double ShiftElts because we're left shifting on v16i8 type.
9686     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9687                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9688     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9689     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9690                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9691     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9692   }
9693   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9694   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9695                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9696   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9697 }
9698 
9699 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9700 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9701 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9702 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9703 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9704   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9705   assert(Op.getValueType() == MVT::v1i128 &&
9706          "Only set v1i128 as custom, other type shouldn't reach here!");
9707   SDLoc dl(Op);
9708   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9709   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9710   unsigned SHLAmt = N1.getConstantOperandVal(0);
9711   if (SHLAmt % 8 == 0) {
9712     SmallVector<int, 16> Mask(16, 0);
9713     std::iota(Mask.begin(), Mask.end(), 0);
9714     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9715     if (SDValue Shuffle =
9716             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9717                                  DAG.getUNDEF(MVT::v16i8), Mask))
9718       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9719   }
9720   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9721   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9722                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9723   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9724                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9725   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9726   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9727 }
9728 
9729 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9730 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9731 /// return the code it can be lowered into.  Worst case, it can always be
9732 /// lowered into a vperm.
9733 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9734                                                SelectionDAG &DAG) const {
9735   SDLoc dl(Op);
9736   SDValue V1 = Op.getOperand(0);
9737   SDValue V2 = Op.getOperand(1);
9738   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9739 
9740   // Any nodes that were combined in the target-independent combiner prior
9741   // to vector legalization will not be sent to the target combine. Try to
9742   // combine it here.
9743   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9744     DAG.ReplaceAllUsesOfValueWith(Op, NewShuffle);
9745     Op = NewShuffle;
9746     SVOp = cast<ShuffleVectorSDNode>(Op);
9747   }
9748   EVT VT = Op.getValueType();
9749   bool isLittleEndian = Subtarget.isLittleEndian();
9750 
9751   unsigned ShiftElts, InsertAtByte;
9752   bool Swap = false;
9753 
9754   // If this is a load-and-splat, we can do that with a single instruction
9755   // in some cases. However if the load has multiple uses, we don't want to
9756   // combine it because that will just produce multiple loads.
9757   const SDValue *InputLoad = getNormalLoadInput(V1);
9758   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9759       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9760       InputLoad->hasOneUse()) {
9761     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9762     int SplatIdx =
9763       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9764 
9765     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9766     // For 4-byte load-and-splat, we need Power9.
9767     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9768       uint64_t Offset = 0;
9769       if (IsFourByte)
9770         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9771       else
9772         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9773 
9774       // If we are loading a partial vector, it does not make sense to adjust
9775       // the base pointer. This happens with (splat (s_to_v_permuted (ld))).
9776       if (LD->getMemoryVT().getSizeInBits() == (IsFourByte ? 32 : 64))
9777         Offset = 0;
9778       SDValue BasePtr = LD->getBasePtr();
9779       if (Offset != 0)
9780         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9781                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9782       SDValue Ops[] = {
9783         LD->getChain(),    // Chain
9784         BasePtr,           // BasePtr
9785         DAG.getValueType(Op.getValueType()) // VT
9786       };
9787       SDVTList VTL =
9788         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9789       SDValue LdSplt =
9790         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9791                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9792       if (LdSplt.getValueType() != SVOp->getValueType(0))
9793         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9794       return LdSplt;
9795     }
9796   }
9797   if (Subtarget.hasP9Vector() &&
9798       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9799                            isLittleEndian)) {
9800     if (Swap)
9801       std::swap(V1, V2);
9802     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9803     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9804     if (ShiftElts) {
9805       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9806                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9807       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9808                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9809       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9810     }
9811     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9812                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9813     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9814   }
9815 
9816   if (Subtarget.hasP9Altivec()) {
9817     SDValue NewISDNode;
9818     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9819       return NewISDNode;
9820 
9821     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9822       return NewISDNode;
9823   }
9824 
9825   if (Subtarget.hasVSX() &&
9826       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9827     if (Swap)
9828       std::swap(V1, V2);
9829     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9830     SDValue Conv2 =
9831         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9832 
9833     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9834                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9835     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9836   }
9837 
9838   if (Subtarget.hasVSX() &&
9839     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9840     if (Swap)
9841       std::swap(V1, V2);
9842     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9843     SDValue Conv2 =
9844         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9845 
9846     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9847                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9848     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9849   }
9850 
9851   if (Subtarget.hasP9Vector()) {
9852      if (PPC::isXXBRHShuffleMask(SVOp)) {
9853       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9854       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9855       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9856     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9857       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9858       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9859       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9860     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9861       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9862       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9863       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9864     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9865       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9866       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9867       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9868     }
9869   }
9870 
9871   if (Subtarget.hasVSX()) {
9872     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9873       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9874 
9875       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9876       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9877                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9878       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9879     }
9880 
9881     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9882     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9883       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9884       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9885       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9886     }
9887   }
9888 
9889   if (Subtarget.hasQPX()) {
9890     if (VT.getVectorNumElements() != 4)
9891       return SDValue();
9892 
9893     if (V2.isUndef()) V2 = V1;
9894 
9895     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9896     if (AlignIdx != -1) {
9897       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9898                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9899     } else if (SVOp->isSplat()) {
9900       int SplatIdx = SVOp->getSplatIndex();
9901       if (SplatIdx >= 4) {
9902         std::swap(V1, V2);
9903         SplatIdx -= 4;
9904       }
9905 
9906       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9907                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9908     }
9909 
9910     // Lower this into a qvgpci/qvfperm pair.
9911 
9912     // Compute the qvgpci literal
9913     unsigned idx = 0;
9914     for (unsigned i = 0; i < 4; ++i) {
9915       int m = SVOp->getMaskElt(i);
9916       unsigned mm = m >= 0 ? (unsigned) m : i;
9917       idx |= mm << (3-i)*3;
9918     }
9919 
9920     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9921                              DAG.getConstant(idx, dl, MVT::i32));
9922     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9923   }
9924 
9925   // Cases that are handled by instructions that take permute immediates
9926   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9927   // selected by the instruction selector.
9928   if (V2.isUndef()) {
9929     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9930         PPC::isSplatShuffleMask(SVOp, 2) ||
9931         PPC::isSplatShuffleMask(SVOp, 4) ||
9932         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9933         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9934         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9935         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9936         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9937         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9938         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9939         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9940         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9941         (Subtarget.hasP8Altivec() && (
9942          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9943          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9944          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9945       return Op;
9946     }
9947   }
9948 
9949   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9950   // and produce a fixed permutation.  If any of these match, do not lower to
9951   // VPERM.
9952   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9953   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9954       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9955       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9956       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9957       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9958       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9959       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9960       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9961       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9962       (Subtarget.hasP8Altivec() && (
9963        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9964        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9965        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9966     return Op;
9967 
9968   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9969   // perfect shuffle table to emit an optimal matching sequence.
9970   ArrayRef<int> PermMask = SVOp->getMask();
9971 
9972   unsigned PFIndexes[4];
9973   bool isFourElementShuffle = true;
9974   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9975     unsigned EltNo = 8;   // Start out undef.
9976     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9977       if (PermMask[i*4+j] < 0)
9978         continue;   // Undef, ignore it.
9979 
9980       unsigned ByteSource = PermMask[i*4+j];
9981       if ((ByteSource & 3) != j) {
9982         isFourElementShuffle = false;
9983         break;
9984       }
9985 
9986       if (EltNo == 8) {
9987         EltNo = ByteSource/4;
9988       } else if (EltNo != ByteSource/4) {
9989         isFourElementShuffle = false;
9990         break;
9991       }
9992     }
9993     PFIndexes[i] = EltNo;
9994   }
9995 
9996   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9997   // perfect shuffle vector to determine if it is cost effective to do this as
9998   // discrete instructions, or whether we should use a vperm.
9999   // For now, we skip this for little endian until such time as we have a
10000   // little-endian perfect shuffle table.
10001   if (isFourElementShuffle && !isLittleEndian) {
10002     // Compute the index in the perfect shuffle table.
10003     unsigned PFTableIndex =
10004       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10005 
10006     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10007     unsigned Cost  = (PFEntry >> 30);
10008 
10009     // Determining when to avoid vperm is tricky.  Many things affect the cost
10010     // of vperm, particularly how many times the perm mask needs to be computed.
10011     // For example, if the perm mask can be hoisted out of a loop or is already
10012     // used (perhaps because there are multiple permutes with the same shuffle
10013     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10014     // the loop requires an extra register.
10015     //
10016     // As a compromise, we only emit discrete instructions if the shuffle can be
10017     // generated in 3 or fewer operations.  When we have loop information
10018     // available, if this block is within a loop, we should avoid using vperm
10019     // for 3-operation perms and use a constant pool load instead.
10020     if (Cost < 3)
10021       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10022   }
10023 
10024   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10025   // vector that will get spilled to the constant pool.
10026   if (V2.isUndef()) V2 = V1;
10027 
10028   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10029   // that it is in input element units, not in bytes.  Convert now.
10030 
10031   // For little endian, the order of the input vectors is reversed, and
10032   // the permutation mask is complemented with respect to 31.  This is
10033   // necessary to produce proper semantics with the big-endian-biased vperm
10034   // instruction.
10035   EVT EltVT = V1.getValueType().getVectorElementType();
10036   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10037 
10038   SmallVector<SDValue, 16> ResultMask;
10039   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10040     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10041 
10042     for (unsigned j = 0; j != BytesPerElement; ++j)
10043       if (isLittleEndian)
10044         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10045                                              dl, MVT::i32));
10046       else
10047         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10048                                              MVT::i32));
10049   }
10050 
10051   ShufflesHandledWithVPERM++;
10052   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10053   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10054   LLVM_DEBUG(SVOp->dump());
10055   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10056   LLVM_DEBUG(VPermMask.dump());
10057 
10058   if (isLittleEndian)
10059     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10060                        V2, V1, VPermMask);
10061   else
10062     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10063                        V1, V2, VPermMask);
10064 }
10065 
10066 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10067 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10068 /// information about the intrinsic.
10069 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10070                                  bool &isDot, const PPCSubtarget &Subtarget) {
10071   unsigned IntrinsicID =
10072       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10073   CompareOpc = -1;
10074   isDot = false;
10075   switch (IntrinsicID) {
10076   default:
10077     return false;
10078   // Comparison predicates.
10079   case Intrinsic::ppc_altivec_vcmpbfp_p:
10080     CompareOpc = 966;
10081     isDot = true;
10082     break;
10083   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10084     CompareOpc = 198;
10085     isDot = true;
10086     break;
10087   case Intrinsic::ppc_altivec_vcmpequb_p:
10088     CompareOpc = 6;
10089     isDot = true;
10090     break;
10091   case Intrinsic::ppc_altivec_vcmpequh_p:
10092     CompareOpc = 70;
10093     isDot = true;
10094     break;
10095   case Intrinsic::ppc_altivec_vcmpequw_p:
10096     CompareOpc = 134;
10097     isDot = true;
10098     break;
10099   case Intrinsic::ppc_altivec_vcmpequd_p:
10100     if (Subtarget.hasP8Altivec()) {
10101       CompareOpc = 199;
10102       isDot = true;
10103     } else
10104       return false;
10105     break;
10106   case Intrinsic::ppc_altivec_vcmpneb_p:
10107   case Intrinsic::ppc_altivec_vcmpneh_p:
10108   case Intrinsic::ppc_altivec_vcmpnew_p:
10109   case Intrinsic::ppc_altivec_vcmpnezb_p:
10110   case Intrinsic::ppc_altivec_vcmpnezh_p:
10111   case Intrinsic::ppc_altivec_vcmpnezw_p:
10112     if (Subtarget.hasP9Altivec()) {
10113       switch (IntrinsicID) {
10114       default:
10115         llvm_unreachable("Unknown comparison intrinsic.");
10116       case Intrinsic::ppc_altivec_vcmpneb_p:
10117         CompareOpc = 7;
10118         break;
10119       case Intrinsic::ppc_altivec_vcmpneh_p:
10120         CompareOpc = 71;
10121         break;
10122       case Intrinsic::ppc_altivec_vcmpnew_p:
10123         CompareOpc = 135;
10124         break;
10125       case Intrinsic::ppc_altivec_vcmpnezb_p:
10126         CompareOpc = 263;
10127         break;
10128       case Intrinsic::ppc_altivec_vcmpnezh_p:
10129         CompareOpc = 327;
10130         break;
10131       case Intrinsic::ppc_altivec_vcmpnezw_p:
10132         CompareOpc = 391;
10133         break;
10134       }
10135       isDot = true;
10136     } else
10137       return false;
10138     break;
10139   case Intrinsic::ppc_altivec_vcmpgefp_p:
10140     CompareOpc = 454;
10141     isDot = true;
10142     break;
10143   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10144     CompareOpc = 710;
10145     isDot = true;
10146     break;
10147   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10148     CompareOpc = 774;
10149     isDot = true;
10150     break;
10151   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10152     CompareOpc = 838;
10153     isDot = true;
10154     break;
10155   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10156     CompareOpc = 902;
10157     isDot = true;
10158     break;
10159   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10160     if (Subtarget.hasP8Altivec()) {
10161       CompareOpc = 967;
10162       isDot = true;
10163     } else
10164       return false;
10165     break;
10166   case Intrinsic::ppc_altivec_vcmpgtub_p:
10167     CompareOpc = 518;
10168     isDot = true;
10169     break;
10170   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10171     CompareOpc = 582;
10172     isDot = true;
10173     break;
10174   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10175     CompareOpc = 646;
10176     isDot = true;
10177     break;
10178   case Intrinsic::ppc_altivec_vcmpgtud_p:
10179     if (Subtarget.hasP8Altivec()) {
10180       CompareOpc = 711;
10181       isDot = true;
10182     } else
10183       return false;
10184     break;
10185 
10186   // VSX predicate comparisons use the same infrastructure
10187   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10188   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10189   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10190   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10191   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10192   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10193     if (Subtarget.hasVSX()) {
10194       switch (IntrinsicID) {
10195       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10196         CompareOpc = 99;
10197         break;
10198       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10199         CompareOpc = 115;
10200         break;
10201       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10202         CompareOpc = 107;
10203         break;
10204       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10205         CompareOpc = 67;
10206         break;
10207       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10208         CompareOpc = 83;
10209         break;
10210       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10211         CompareOpc = 75;
10212         break;
10213       }
10214       isDot = true;
10215     } else
10216       return false;
10217     break;
10218 
10219   // Normal Comparisons.
10220   case Intrinsic::ppc_altivec_vcmpbfp:
10221     CompareOpc = 966;
10222     break;
10223   case Intrinsic::ppc_altivec_vcmpeqfp:
10224     CompareOpc = 198;
10225     break;
10226   case Intrinsic::ppc_altivec_vcmpequb:
10227     CompareOpc = 6;
10228     break;
10229   case Intrinsic::ppc_altivec_vcmpequh:
10230     CompareOpc = 70;
10231     break;
10232   case Intrinsic::ppc_altivec_vcmpequw:
10233     CompareOpc = 134;
10234     break;
10235   case Intrinsic::ppc_altivec_vcmpequd:
10236     if (Subtarget.hasP8Altivec())
10237       CompareOpc = 199;
10238     else
10239       return false;
10240     break;
10241   case Intrinsic::ppc_altivec_vcmpneb:
10242   case Intrinsic::ppc_altivec_vcmpneh:
10243   case Intrinsic::ppc_altivec_vcmpnew:
10244   case Intrinsic::ppc_altivec_vcmpnezb:
10245   case Intrinsic::ppc_altivec_vcmpnezh:
10246   case Intrinsic::ppc_altivec_vcmpnezw:
10247     if (Subtarget.hasP9Altivec())
10248       switch (IntrinsicID) {
10249       default:
10250         llvm_unreachable("Unknown comparison intrinsic.");
10251       case Intrinsic::ppc_altivec_vcmpneb:
10252         CompareOpc = 7;
10253         break;
10254       case Intrinsic::ppc_altivec_vcmpneh:
10255         CompareOpc = 71;
10256         break;
10257       case Intrinsic::ppc_altivec_vcmpnew:
10258         CompareOpc = 135;
10259         break;
10260       case Intrinsic::ppc_altivec_vcmpnezb:
10261         CompareOpc = 263;
10262         break;
10263       case Intrinsic::ppc_altivec_vcmpnezh:
10264         CompareOpc = 327;
10265         break;
10266       case Intrinsic::ppc_altivec_vcmpnezw:
10267         CompareOpc = 391;
10268         break;
10269       }
10270     else
10271       return false;
10272     break;
10273   case Intrinsic::ppc_altivec_vcmpgefp:
10274     CompareOpc = 454;
10275     break;
10276   case Intrinsic::ppc_altivec_vcmpgtfp:
10277     CompareOpc = 710;
10278     break;
10279   case Intrinsic::ppc_altivec_vcmpgtsb:
10280     CompareOpc = 774;
10281     break;
10282   case Intrinsic::ppc_altivec_vcmpgtsh:
10283     CompareOpc = 838;
10284     break;
10285   case Intrinsic::ppc_altivec_vcmpgtsw:
10286     CompareOpc = 902;
10287     break;
10288   case Intrinsic::ppc_altivec_vcmpgtsd:
10289     if (Subtarget.hasP8Altivec())
10290       CompareOpc = 967;
10291     else
10292       return false;
10293     break;
10294   case Intrinsic::ppc_altivec_vcmpgtub:
10295     CompareOpc = 518;
10296     break;
10297   case Intrinsic::ppc_altivec_vcmpgtuh:
10298     CompareOpc = 582;
10299     break;
10300   case Intrinsic::ppc_altivec_vcmpgtuw:
10301     CompareOpc = 646;
10302     break;
10303   case Intrinsic::ppc_altivec_vcmpgtud:
10304     if (Subtarget.hasP8Altivec())
10305       CompareOpc = 711;
10306     else
10307       return false;
10308     break;
10309   }
10310   return true;
10311 }
10312 
10313 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10314 /// lower, do it, otherwise return null.
10315 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10316                                                    SelectionDAG &DAG) const {
10317   unsigned IntrinsicID =
10318     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10319 
10320   SDLoc dl(Op);
10321 
10322   if (IntrinsicID == Intrinsic::thread_pointer) {
10323     // Reads the thread pointer register, used for __builtin_thread_pointer.
10324     if (Subtarget.isPPC64())
10325       return DAG.getRegister(PPC::X13, MVT::i64);
10326     return DAG.getRegister(PPC::R2, MVT::i32);
10327   }
10328 
10329   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10330   // opcode number of the comparison.
10331   int CompareOpc;
10332   bool isDot;
10333   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10334     return SDValue();    // Don't custom lower most intrinsics.
10335 
10336   // If this is a non-dot comparison, make the VCMP node and we are done.
10337   if (!isDot) {
10338     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10339                               Op.getOperand(1), Op.getOperand(2),
10340                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10341     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10342   }
10343 
10344   // Create the PPCISD altivec 'dot' comparison node.
10345   SDValue Ops[] = {
10346     Op.getOperand(2),  // LHS
10347     Op.getOperand(3),  // RHS
10348     DAG.getConstant(CompareOpc, dl, MVT::i32)
10349   };
10350   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10351   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10352 
10353   // Now that we have the comparison, emit a copy from the CR to a GPR.
10354   // This is flagged to the above dot comparison.
10355   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10356                                 DAG.getRegister(PPC::CR6, MVT::i32),
10357                                 CompNode.getValue(1));
10358 
10359   // Unpack the result based on how the target uses it.
10360   unsigned BitNo;   // Bit # of CR6.
10361   bool InvertBit;   // Invert result?
10362   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10363   default:  // Can't happen, don't crash on invalid number though.
10364   case 0:   // Return the value of the EQ bit of CR6.
10365     BitNo = 0; InvertBit = false;
10366     break;
10367   case 1:   // Return the inverted value of the EQ bit of CR6.
10368     BitNo = 0; InvertBit = true;
10369     break;
10370   case 2:   // Return the value of the LT bit of CR6.
10371     BitNo = 2; InvertBit = false;
10372     break;
10373   case 3:   // Return the inverted value of the LT bit of CR6.
10374     BitNo = 2; InvertBit = true;
10375     break;
10376   }
10377 
10378   // Shift the bit into the low position.
10379   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10380                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10381   // Isolate the bit.
10382   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10383                       DAG.getConstant(1, dl, MVT::i32));
10384 
10385   // If we are supposed to, toggle the bit.
10386   if (InvertBit)
10387     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10388                         DAG.getConstant(1, dl, MVT::i32));
10389   return Flags;
10390 }
10391 
10392 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10393                                                SelectionDAG &DAG) const {
10394   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10395   // the beginning of the argument list.
10396   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10397   SDLoc DL(Op);
10398   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10399   case Intrinsic::ppc_cfence: {
10400     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10401     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10402     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10403                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10404                                                   Op.getOperand(ArgStart + 1)),
10405                                       Op.getOperand(0)),
10406                    0);
10407   }
10408   default:
10409     break;
10410   }
10411   return SDValue();
10412 }
10413 
10414 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
10415   // Check for a DIV with the same operands as this REM.
10416   for (auto UI : Op.getOperand(1)->uses()) {
10417     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
10418         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
10419       if (UI->getOperand(0) == Op.getOperand(0) &&
10420           UI->getOperand(1) == Op.getOperand(1))
10421         return SDValue();
10422   }
10423   return Op;
10424 }
10425 
10426 // Lower scalar BSWAP64 to xxbrd.
10427 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10428   SDLoc dl(Op);
10429   // MTVSRDD
10430   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10431                    Op.getOperand(0));
10432   // XXBRD
10433   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10434   // MFVSRD
10435   int VectorIndex = 0;
10436   if (Subtarget.isLittleEndian())
10437     VectorIndex = 1;
10438   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10439                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10440   return Op;
10441 }
10442 
10443 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10444 // compared to a value that is atomically loaded (atomic loads zero-extend).
10445 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10446                                                 SelectionDAG &DAG) const {
10447   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10448          "Expecting an atomic compare-and-swap here.");
10449   SDLoc dl(Op);
10450   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10451   EVT MemVT = AtomicNode->getMemoryVT();
10452   if (MemVT.getSizeInBits() >= 32)
10453     return Op;
10454 
10455   SDValue CmpOp = Op.getOperand(2);
10456   // If this is already correctly zero-extended, leave it alone.
10457   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10458   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10459     return Op;
10460 
10461   // Clear the high bits of the compare operand.
10462   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10463   SDValue NewCmpOp =
10464     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10465                 DAG.getConstant(MaskVal, dl, MVT::i32));
10466 
10467   // Replace the existing compare operand with the properly zero-extended one.
10468   SmallVector<SDValue, 4> Ops;
10469   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10470     Ops.push_back(AtomicNode->getOperand(i));
10471   Ops[2] = NewCmpOp;
10472   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10473   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10474   auto NodeTy =
10475     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10476   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10477 }
10478 
10479 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10480                                                  SelectionDAG &DAG) const {
10481   SDLoc dl(Op);
10482   // Create a stack slot that is 16-byte aligned.
10483   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10484   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10485   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10486   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10487 
10488   // Store the input value into Value#0 of the stack slot.
10489   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10490                                MachinePointerInfo());
10491   // Load it out.
10492   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10493 }
10494 
10495 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10496                                                   SelectionDAG &DAG) const {
10497   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10498          "Should only be called for ISD::INSERT_VECTOR_ELT");
10499 
10500   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10501   // We have legal lowering for constant indices but not for variable ones.
10502   if (!C)
10503     return SDValue();
10504 
10505   EVT VT = Op.getValueType();
10506   SDLoc dl(Op);
10507   SDValue V1 = Op.getOperand(0);
10508   SDValue V2 = Op.getOperand(1);
10509   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10510   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10511     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10512     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10513     unsigned InsertAtElement = C->getZExtValue();
10514     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10515     if (Subtarget.isLittleEndian()) {
10516       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10517     }
10518     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10519                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10520   }
10521   return Op;
10522 }
10523 
10524 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
10525                                                    SelectionDAG &DAG) const {
10526   SDLoc dl(Op);
10527   SDNode *N = Op.getNode();
10528 
10529   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
10530          "Unknown extract_vector_elt type");
10531 
10532   SDValue Value = N->getOperand(0);
10533 
10534   // The first part of this is like the store lowering except that we don't
10535   // need to track the chain.
10536 
10537   // The values are now known to be -1 (false) or 1 (true). To convert this
10538   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10539   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10540   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10541 
10542   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10543   // understand how to form the extending load.
10544   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10545 
10546   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10547 
10548   // Now convert to an integer and store.
10549   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10550     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10551     Value);
10552 
10553   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10554   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10555   MachinePointerInfo PtrInfo =
10556       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10557   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10558   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10559 
10560   SDValue StoreChain = DAG.getEntryNode();
10561   SDValue Ops[] = {StoreChain,
10562                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10563                    Value, FIdx};
10564   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10565 
10566   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10567     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10568 
10569   // Extract the value requested.
10570   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10571   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10572   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10573 
10574   SDValue IntVal =
10575       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10576 
10577   if (!Subtarget.useCRBits())
10578     return IntVal;
10579 
10580   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10581 }
10582 
10583 /// Lowering for QPX v4i1 loads
10584 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10585                                            SelectionDAG &DAG) const {
10586   SDLoc dl(Op);
10587   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10588   SDValue LoadChain = LN->getChain();
10589   SDValue BasePtr = LN->getBasePtr();
10590 
10591   if (Op.getValueType() == MVT::v4f64 ||
10592       Op.getValueType() == MVT::v4f32) {
10593     EVT MemVT = LN->getMemoryVT();
10594     unsigned Alignment = LN->getAlignment();
10595 
10596     // If this load is properly aligned, then it is legal.
10597     if (Alignment >= MemVT.getStoreSize())
10598       return Op;
10599 
10600     EVT ScalarVT = Op.getValueType().getScalarType(),
10601         ScalarMemVT = MemVT.getScalarType();
10602     unsigned Stride = ScalarMemVT.getStoreSize();
10603 
10604     SDValue Vals[4], LoadChains[4];
10605     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10606       SDValue Load;
10607       if (ScalarVT != ScalarMemVT)
10608         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10609                               BasePtr,
10610                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10611                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10612                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10613       else
10614         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10615                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10616                            MinAlign(Alignment, Idx * Stride),
10617                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10618 
10619       if (Idx == 0 && LN->isIndexed()) {
10620         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10621                "Unknown addressing mode on vector load");
10622         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10623                                   LN->getAddressingMode());
10624       }
10625 
10626       Vals[Idx] = Load;
10627       LoadChains[Idx] = Load.getValue(1);
10628 
10629       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10630                             DAG.getConstant(Stride, dl,
10631                                             BasePtr.getValueType()));
10632     }
10633 
10634     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10635     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10636 
10637     if (LN->isIndexed()) {
10638       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10639       return DAG.getMergeValues(RetOps, dl);
10640     }
10641 
10642     SDValue RetOps[] = { Value, TF };
10643     return DAG.getMergeValues(RetOps, dl);
10644   }
10645 
10646   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10647   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10648 
10649   // To lower v4i1 from a byte array, we load the byte elements of the
10650   // vector and then reuse the BUILD_VECTOR logic.
10651 
10652   SDValue VectElmts[4], VectElmtChains[4];
10653   for (unsigned i = 0; i < 4; ++i) {
10654     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10655     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10656 
10657     VectElmts[i] = DAG.getExtLoad(
10658         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10659         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10660         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10661     VectElmtChains[i] = VectElmts[i].getValue(1);
10662   }
10663 
10664   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10665   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10666 
10667   SDValue RVals[] = { Value, LoadChain };
10668   return DAG.getMergeValues(RVals, dl);
10669 }
10670 
10671 /// Lowering for QPX v4i1 stores
10672 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10673                                             SelectionDAG &DAG) const {
10674   SDLoc dl(Op);
10675   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10676   SDValue StoreChain = SN->getChain();
10677   SDValue BasePtr = SN->getBasePtr();
10678   SDValue Value = SN->getValue();
10679 
10680   if (Value.getValueType() == MVT::v4f64 ||
10681       Value.getValueType() == MVT::v4f32) {
10682     EVT MemVT = SN->getMemoryVT();
10683     unsigned Alignment = SN->getAlignment();
10684 
10685     // If this store is properly aligned, then it is legal.
10686     if (Alignment >= MemVT.getStoreSize())
10687       return Op;
10688 
10689     EVT ScalarVT = Value.getValueType().getScalarType(),
10690         ScalarMemVT = MemVT.getScalarType();
10691     unsigned Stride = ScalarMemVT.getStoreSize();
10692 
10693     SDValue Stores[4];
10694     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10695       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10696                                DAG.getVectorIdxConstant(Idx, dl));
10697       SDValue Store;
10698       if (ScalarVT != ScalarMemVT)
10699         Store =
10700             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10701                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10702                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10703                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10704       else
10705         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10706                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10707                              MinAlign(Alignment, Idx * Stride),
10708                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10709 
10710       if (Idx == 0 && SN->isIndexed()) {
10711         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10712                "Unknown addressing mode on vector store");
10713         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10714                                     SN->getAddressingMode());
10715       }
10716 
10717       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10718                             DAG.getConstant(Stride, dl,
10719                                             BasePtr.getValueType()));
10720       Stores[Idx] = Store;
10721     }
10722 
10723     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10724 
10725     if (SN->isIndexed()) {
10726       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10727       return DAG.getMergeValues(RetOps, dl);
10728     }
10729 
10730     return TF;
10731   }
10732 
10733   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10734   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10735 
10736   // The values are now known to be -1 (false) or 1 (true). To convert this
10737   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10738   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10739   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10740 
10741   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10742   // understand how to form the extending load.
10743   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10744 
10745   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10746 
10747   // Now convert to an integer and store.
10748   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10749     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10750     Value);
10751 
10752   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10753   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10754   MachinePointerInfo PtrInfo =
10755       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10756   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10757   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10758 
10759   SDValue Ops[] = {StoreChain,
10760                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10761                    Value, FIdx};
10762   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10763 
10764   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10765     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10766 
10767   // Move data into the byte array.
10768   SDValue Loads[4], LoadChains[4];
10769   for (unsigned i = 0; i < 4; ++i) {
10770     unsigned Offset = 4*i;
10771     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10772     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10773 
10774     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10775                            PtrInfo.getWithOffset(Offset));
10776     LoadChains[i] = Loads[i].getValue(1);
10777   }
10778 
10779   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10780 
10781   SDValue Stores[4];
10782   for (unsigned i = 0; i < 4; ++i) {
10783     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10784     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10785 
10786     Stores[i] = DAG.getTruncStore(
10787         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10788         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10789         SN->getAAInfo());
10790   }
10791 
10792   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10793 
10794   return StoreChain;
10795 }
10796 
10797 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10798   SDLoc dl(Op);
10799   if (Op.getValueType() == MVT::v4i32) {
10800     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10801 
10802     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10803     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10804 
10805     SDValue RHSSwap =   // = vrlw RHS, 16
10806       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10807 
10808     // Shrinkify inputs to v8i16.
10809     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10810     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10811     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10812 
10813     // Low parts multiplied together, generating 32-bit results (we ignore the
10814     // top parts).
10815     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10816                                         LHS, RHS, DAG, dl, MVT::v4i32);
10817 
10818     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10819                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10820     // Shift the high parts up 16 bits.
10821     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10822                               Neg16, DAG, dl);
10823     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10824   } else if (Op.getValueType() == MVT::v16i8) {
10825     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10826     bool isLittleEndian = Subtarget.isLittleEndian();
10827 
10828     // Multiply the even 8-bit parts, producing 16-bit sums.
10829     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10830                                            LHS, RHS, DAG, dl, MVT::v8i16);
10831     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10832 
10833     // Multiply the odd 8-bit parts, producing 16-bit sums.
10834     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10835                                           LHS, RHS, DAG, dl, MVT::v8i16);
10836     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10837 
10838     // Merge the results together.  Because vmuleub and vmuloub are
10839     // instructions with a big-endian bias, we must reverse the
10840     // element numbering and reverse the meaning of "odd" and "even"
10841     // when generating little endian code.
10842     int Ops[16];
10843     for (unsigned i = 0; i != 8; ++i) {
10844       if (isLittleEndian) {
10845         Ops[i*2  ] = 2*i;
10846         Ops[i*2+1] = 2*i+16;
10847       } else {
10848         Ops[i*2  ] = 2*i+1;
10849         Ops[i*2+1] = 2*i+1+16;
10850       }
10851     }
10852     if (isLittleEndian)
10853       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10854     else
10855       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10856   } else {
10857     llvm_unreachable("Unknown mul to lower!");
10858   }
10859 }
10860 
10861 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10862 
10863   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10864 
10865   EVT VT = Op.getValueType();
10866   assert(VT.isVector() &&
10867          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10868   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10869           VT == MVT::v16i8) &&
10870          "Unexpected vector element type!");
10871   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10872          "Current subtarget doesn't support smax v2i64!");
10873 
10874   // For vector abs, it can be lowered to:
10875   // abs x
10876   // ==>
10877   // y = -x
10878   // smax(x, y)
10879 
10880   SDLoc dl(Op);
10881   SDValue X = Op.getOperand(0);
10882   SDValue Zero = DAG.getConstant(0, dl, VT);
10883   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10884 
10885   // SMAX patch https://reviews.llvm.org/D47332
10886   // hasn't landed yet, so use intrinsic first here.
10887   // TODO: Should use SMAX directly once SMAX patch landed
10888   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10889   if (VT == MVT::v2i64)
10890     BifID = Intrinsic::ppc_altivec_vmaxsd;
10891   else if (VT == MVT::v8i16)
10892     BifID = Intrinsic::ppc_altivec_vmaxsh;
10893   else if (VT == MVT::v16i8)
10894     BifID = Intrinsic::ppc_altivec_vmaxsb;
10895 
10896   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10897 }
10898 
10899 // Custom lowering for fpext vf32 to v2f64
10900 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10901 
10902   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10903          "Should only be called for ISD::FP_EXTEND");
10904 
10905   // FIXME: handle extends from half precision float vectors on P9.
10906   // We only want to custom lower an extend from v2f32 to v2f64.
10907   if (Op.getValueType() != MVT::v2f64 ||
10908       Op.getOperand(0).getValueType() != MVT::v2f32)
10909     return SDValue();
10910 
10911   SDLoc dl(Op);
10912   SDValue Op0 = Op.getOperand(0);
10913 
10914   switch (Op0.getOpcode()) {
10915   default:
10916     return SDValue();
10917   case ISD::EXTRACT_SUBVECTOR: {
10918     assert(Op0.getNumOperands() == 2 &&
10919            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10920            "Node should have 2 operands with second one being a constant!");
10921 
10922     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10923       return SDValue();
10924 
10925     // Custom lower is only done for high or low doubleword.
10926     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10927     if (Idx % 2 != 0)
10928       return SDValue();
10929 
10930     // Since input is v4f32, at this point Idx is either 0 or 2.
10931     // Shift to get the doubleword position we want.
10932     int DWord = Idx >> 1;
10933 
10934     // High and low word positions are different on little endian.
10935     if (Subtarget.isLittleEndian())
10936       DWord ^= 0x1;
10937 
10938     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10939                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10940   }
10941   case ISD::FADD:
10942   case ISD::FMUL:
10943   case ISD::FSUB: {
10944     SDValue NewLoad[2];
10945     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10946       // Ensure both input are loads.
10947       SDValue LdOp = Op0.getOperand(i);
10948       if (LdOp.getOpcode() != ISD::LOAD)
10949         return SDValue();
10950       // Generate new load node.
10951       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10952       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10953       NewLoad[i] = DAG.getMemIntrinsicNode(
10954           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10955           LD->getMemoryVT(), LD->getMemOperand());
10956     }
10957     SDValue NewOp =
10958         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10959                     NewLoad[1], Op0.getNode()->getFlags());
10960     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10961                        DAG.getConstant(0, dl, MVT::i32));
10962   }
10963   case ISD::LOAD: {
10964     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10965     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10966     SDValue NewLd = DAG.getMemIntrinsicNode(
10967         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10968         LD->getMemoryVT(), LD->getMemOperand());
10969     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10970                        DAG.getConstant(0, dl, MVT::i32));
10971   }
10972   }
10973   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10974 }
10975 
10976 /// LowerOperation - Provide custom lowering hooks for some operations.
10977 ///
10978 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10979   switch (Op.getOpcode()) {
10980   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10981   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10982   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10983   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10984   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10985   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10986   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10987   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10988   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10989 
10990   // Variable argument lowering.
10991   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10992   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10993   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10994 
10995   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10996   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10997   case ISD::GET_DYNAMIC_AREA_OFFSET:
10998     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10999 
11000   // Exception handling lowering.
11001   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11002   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11003   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11004 
11005   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11006   case ISD::STORE:              return LowerSTORE(Op, DAG);
11007   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11008   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11009   case ISD::FP_TO_UINT:
11010   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11011   case ISD::UINT_TO_FP:
11012   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11013   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11014 
11015   // Lower 64-bit shifts.
11016   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11017   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11018   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11019 
11020   // Vector-related lowering.
11021   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11022   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11023   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11024   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11025   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11026   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11027   case ISD::MUL:                return LowerMUL(Op, DAG);
11028   case ISD::ABS:                return LowerABS(Op, DAG);
11029   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11030   case ISD::ROTL:               return LowerROTL(Op, DAG);
11031 
11032   // For counter-based loop handling.
11033   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11034 
11035   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11036 
11037   // Frame & Return address.
11038   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11039   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11040 
11041   case ISD::INTRINSIC_VOID:
11042     return LowerINTRINSIC_VOID(Op, DAG);
11043   case ISD::SREM:
11044   case ISD::UREM:
11045     return LowerREM(Op, DAG);
11046   case ISD::BSWAP:
11047     return LowerBSWAP(Op, DAG);
11048   case ISD::ATOMIC_CMP_SWAP:
11049     return LowerATOMIC_CMP_SWAP(Op, DAG);
11050   }
11051 }
11052 
11053 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11054                                            SmallVectorImpl<SDValue>&Results,
11055                                            SelectionDAG &DAG) const {
11056   SDLoc dl(N);
11057   switch (N->getOpcode()) {
11058   default:
11059     llvm_unreachable("Do not know how to custom type legalize this operation!");
11060   case ISD::READCYCLECOUNTER: {
11061     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11062     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11063 
11064     Results.push_back(
11065         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11066     Results.push_back(RTB.getValue(2));
11067     break;
11068   }
11069   case ISD::INTRINSIC_W_CHAIN: {
11070     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11071         Intrinsic::loop_decrement)
11072       break;
11073 
11074     assert(N->getValueType(0) == MVT::i1 &&
11075            "Unexpected result type for CTR decrement intrinsic");
11076     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11077                                  N->getValueType(0));
11078     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11079     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11080                                  N->getOperand(1));
11081 
11082     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11083     Results.push_back(NewInt.getValue(1));
11084     break;
11085   }
11086   case ISD::VAARG: {
11087     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11088       return;
11089 
11090     EVT VT = N->getValueType(0);
11091 
11092     if (VT == MVT::i64) {
11093       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11094 
11095       Results.push_back(NewNode);
11096       Results.push_back(NewNode.getValue(1));
11097     }
11098     return;
11099   }
11100   case ISD::FP_TO_SINT:
11101   case ISD::FP_TO_UINT:
11102     // LowerFP_TO_INT() can only handle f32 and f64.
11103     if (N->getOperand(0).getValueType() == MVT::ppcf128)
11104       return;
11105     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
11106     return;
11107   case ISD::TRUNCATE: {
11108     EVT TrgVT = N->getValueType(0);
11109     EVT OpVT = N->getOperand(0).getValueType();
11110     if (TrgVT.isVector() &&
11111         isOperationCustom(N->getOpcode(), TrgVT) &&
11112         OpVT.getSizeInBits() <= 128 &&
11113         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
11114       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
11115     return;
11116   }
11117   case ISD::BITCAST:
11118     // Don't handle bitcast here.
11119     return;
11120   case ISD::FP_EXTEND:
11121     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11122     if (Lowered)
11123       Results.push_back(Lowered);
11124     return;
11125   }
11126 }
11127 
11128 //===----------------------------------------------------------------------===//
11129 //  Other Lowering Code
11130 //===----------------------------------------------------------------------===//
11131 
11132 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
11133   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11134   Function *Func = Intrinsic::getDeclaration(M, Id);
11135   return Builder.CreateCall(Func, {});
11136 }
11137 
11138 // The mappings for emitLeading/TrailingFence is taken from
11139 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11140 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
11141                                                  Instruction *Inst,
11142                                                  AtomicOrdering Ord) const {
11143   if (Ord == AtomicOrdering::SequentiallyConsistent)
11144     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11145   if (isReleaseOrStronger(Ord))
11146     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11147   return nullptr;
11148 }
11149 
11150 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
11151                                                   Instruction *Inst,
11152                                                   AtomicOrdering Ord) const {
11153   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11154     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11155     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11156     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11157     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11158       return Builder.CreateCall(
11159           Intrinsic::getDeclaration(
11160               Builder.GetInsertBlock()->getParent()->getParent(),
11161               Intrinsic::ppc_cfence, {Inst->getType()}),
11162           {Inst});
11163     // FIXME: Can use isync for rmw operation.
11164     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11165   }
11166   return nullptr;
11167 }
11168 
11169 MachineBasicBlock *
11170 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11171                                     unsigned AtomicSize,
11172                                     unsigned BinOpcode,
11173                                     unsigned CmpOpcode,
11174                                     unsigned CmpPred) const {
11175   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11176   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11177 
11178   auto LoadMnemonic = PPC::LDARX;
11179   auto StoreMnemonic = PPC::STDCX;
11180   switch (AtomicSize) {
11181   default:
11182     llvm_unreachable("Unexpected size of atomic entity");
11183   case 1:
11184     LoadMnemonic = PPC::LBARX;
11185     StoreMnemonic = PPC::STBCX;
11186     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11187     break;
11188   case 2:
11189     LoadMnemonic = PPC::LHARX;
11190     StoreMnemonic = PPC::STHCX;
11191     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11192     break;
11193   case 4:
11194     LoadMnemonic = PPC::LWARX;
11195     StoreMnemonic = PPC::STWCX;
11196     break;
11197   case 8:
11198     LoadMnemonic = PPC::LDARX;
11199     StoreMnemonic = PPC::STDCX;
11200     break;
11201   }
11202 
11203   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11204   MachineFunction *F = BB->getParent();
11205   MachineFunction::iterator It = ++BB->getIterator();
11206 
11207   Register dest = MI.getOperand(0).getReg();
11208   Register ptrA = MI.getOperand(1).getReg();
11209   Register ptrB = MI.getOperand(2).getReg();
11210   Register incr = MI.getOperand(3).getReg();
11211   DebugLoc dl = MI.getDebugLoc();
11212 
11213   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11214   MachineBasicBlock *loop2MBB =
11215     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11216   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11217   F->insert(It, loopMBB);
11218   if (CmpOpcode)
11219     F->insert(It, loop2MBB);
11220   F->insert(It, exitMBB);
11221   exitMBB->splice(exitMBB->begin(), BB,
11222                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11223   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11224 
11225   MachineRegisterInfo &RegInfo = F->getRegInfo();
11226   Register TmpReg = (!BinOpcode) ? incr :
11227     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11228                                            : &PPC::GPRCRegClass);
11229 
11230   //  thisMBB:
11231   //   ...
11232   //   fallthrough --> loopMBB
11233   BB->addSuccessor(loopMBB);
11234 
11235   //  loopMBB:
11236   //   l[wd]arx dest, ptr
11237   //   add r0, dest, incr
11238   //   st[wd]cx. r0, ptr
11239   //   bne- loopMBB
11240   //   fallthrough --> exitMBB
11241 
11242   // For max/min...
11243   //  loopMBB:
11244   //   l[wd]arx dest, ptr
11245   //   cmpl?[wd] incr, dest
11246   //   bgt exitMBB
11247   //  loop2MBB:
11248   //   st[wd]cx. dest, ptr
11249   //   bne- loopMBB
11250   //   fallthrough --> exitMBB
11251 
11252   BB = loopMBB;
11253   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11254     .addReg(ptrA).addReg(ptrB);
11255   if (BinOpcode)
11256     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11257   if (CmpOpcode) {
11258     // Signed comparisons of byte or halfword values must be sign-extended.
11259     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11260       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11261       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11262               ExtReg).addReg(dest);
11263       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11264         .addReg(incr).addReg(ExtReg);
11265     } else
11266       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11267         .addReg(incr).addReg(dest);
11268 
11269     BuildMI(BB, dl, TII->get(PPC::BCC))
11270       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11271     BB->addSuccessor(loop2MBB);
11272     BB->addSuccessor(exitMBB);
11273     BB = loop2MBB;
11274   }
11275   BuildMI(BB, dl, TII->get(StoreMnemonic))
11276     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11277   BuildMI(BB, dl, TII->get(PPC::BCC))
11278     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11279   BB->addSuccessor(loopMBB);
11280   BB->addSuccessor(exitMBB);
11281 
11282   //  exitMBB:
11283   //   ...
11284   BB = exitMBB;
11285   return BB;
11286 }
11287 
11288 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11289     MachineInstr &MI, MachineBasicBlock *BB,
11290     bool is8bit, // operation
11291     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11292   // If we support part-word atomic mnemonics, just use them
11293   if (Subtarget.hasPartwordAtomics())
11294     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11295                             CmpPred);
11296 
11297   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11298   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11299   // In 64 bit mode we have to use 64 bits for addresses, even though the
11300   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11301   // registers without caring whether they're 32 or 64, but here we're
11302   // doing actual arithmetic on the addresses.
11303   bool is64bit = Subtarget.isPPC64();
11304   bool isLittleEndian = Subtarget.isLittleEndian();
11305   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11306 
11307   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11308   MachineFunction *F = BB->getParent();
11309   MachineFunction::iterator It = ++BB->getIterator();
11310 
11311   Register dest = MI.getOperand(0).getReg();
11312   Register ptrA = MI.getOperand(1).getReg();
11313   Register ptrB = MI.getOperand(2).getReg();
11314   Register incr = MI.getOperand(3).getReg();
11315   DebugLoc dl = MI.getDebugLoc();
11316 
11317   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11318   MachineBasicBlock *loop2MBB =
11319       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11320   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11321   F->insert(It, loopMBB);
11322   if (CmpOpcode)
11323     F->insert(It, loop2MBB);
11324   F->insert(It, exitMBB);
11325   exitMBB->splice(exitMBB->begin(), BB,
11326                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11327   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11328 
11329   MachineRegisterInfo &RegInfo = F->getRegInfo();
11330   const TargetRegisterClass *RC =
11331       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11332   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11333 
11334   Register PtrReg = RegInfo.createVirtualRegister(RC);
11335   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11336   Register ShiftReg =
11337       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11338   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11339   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11340   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11341   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11342   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11343   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11344   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11345   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11346   Register Ptr1Reg;
11347   Register TmpReg =
11348       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11349 
11350   //  thisMBB:
11351   //   ...
11352   //   fallthrough --> loopMBB
11353   BB->addSuccessor(loopMBB);
11354 
11355   // The 4-byte load must be aligned, while a char or short may be
11356   // anywhere in the word.  Hence all this nasty bookkeeping code.
11357   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11358   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11359   //   xori shift, shift1, 24 [16]
11360   //   rlwinm ptr, ptr1, 0, 0, 29
11361   //   slw incr2, incr, shift
11362   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11363   //   slw mask, mask2, shift
11364   //  loopMBB:
11365   //   lwarx tmpDest, ptr
11366   //   add tmp, tmpDest, incr2
11367   //   andc tmp2, tmpDest, mask
11368   //   and tmp3, tmp, mask
11369   //   or tmp4, tmp3, tmp2
11370   //   stwcx. tmp4, ptr
11371   //   bne- loopMBB
11372   //   fallthrough --> exitMBB
11373   //   srw dest, tmpDest, shift
11374   if (ptrA != ZeroReg) {
11375     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11376     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11377         .addReg(ptrA)
11378         .addReg(ptrB);
11379   } else {
11380     Ptr1Reg = ptrB;
11381   }
11382   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11383   // mode.
11384   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11385       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11386       .addImm(3)
11387       .addImm(27)
11388       .addImm(is8bit ? 28 : 27);
11389   if (!isLittleEndian)
11390     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11391         .addReg(Shift1Reg)
11392         .addImm(is8bit ? 24 : 16);
11393   if (is64bit)
11394     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11395         .addReg(Ptr1Reg)
11396         .addImm(0)
11397         .addImm(61);
11398   else
11399     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11400         .addReg(Ptr1Reg)
11401         .addImm(0)
11402         .addImm(0)
11403         .addImm(29);
11404   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11405   if (is8bit)
11406     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11407   else {
11408     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11409     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11410         .addReg(Mask3Reg)
11411         .addImm(65535);
11412   }
11413   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11414       .addReg(Mask2Reg)
11415       .addReg(ShiftReg);
11416 
11417   BB = loopMBB;
11418   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11419       .addReg(ZeroReg)
11420       .addReg(PtrReg);
11421   if (BinOpcode)
11422     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11423         .addReg(Incr2Reg)
11424         .addReg(TmpDestReg);
11425   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11426       .addReg(TmpDestReg)
11427       .addReg(MaskReg);
11428   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11429   if (CmpOpcode) {
11430     // For unsigned comparisons, we can directly compare the shifted values.
11431     // For signed comparisons we shift and sign extend.
11432     Register SReg = RegInfo.createVirtualRegister(GPRC);
11433     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11434         .addReg(TmpDestReg)
11435         .addReg(MaskReg);
11436     unsigned ValueReg = SReg;
11437     unsigned CmpReg = Incr2Reg;
11438     if (CmpOpcode == PPC::CMPW) {
11439       ValueReg = RegInfo.createVirtualRegister(GPRC);
11440       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11441           .addReg(SReg)
11442           .addReg(ShiftReg);
11443       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11444       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11445           .addReg(ValueReg);
11446       ValueReg = ValueSReg;
11447       CmpReg = incr;
11448     }
11449     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11450         .addReg(CmpReg)
11451         .addReg(ValueReg);
11452     BuildMI(BB, dl, TII->get(PPC::BCC))
11453         .addImm(CmpPred)
11454         .addReg(PPC::CR0)
11455         .addMBB(exitMBB);
11456     BB->addSuccessor(loop2MBB);
11457     BB->addSuccessor(exitMBB);
11458     BB = loop2MBB;
11459   }
11460   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11461   BuildMI(BB, dl, TII->get(PPC::STWCX))
11462       .addReg(Tmp4Reg)
11463       .addReg(ZeroReg)
11464       .addReg(PtrReg);
11465   BuildMI(BB, dl, TII->get(PPC::BCC))
11466       .addImm(PPC::PRED_NE)
11467       .addReg(PPC::CR0)
11468       .addMBB(loopMBB);
11469   BB->addSuccessor(loopMBB);
11470   BB->addSuccessor(exitMBB);
11471 
11472   //  exitMBB:
11473   //   ...
11474   BB = exitMBB;
11475   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11476       .addReg(TmpDestReg)
11477       .addReg(ShiftReg);
11478   return BB;
11479 }
11480 
11481 llvm::MachineBasicBlock *
11482 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11483                                     MachineBasicBlock *MBB) const {
11484   DebugLoc DL = MI.getDebugLoc();
11485   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11486   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11487 
11488   MachineFunction *MF = MBB->getParent();
11489   MachineRegisterInfo &MRI = MF->getRegInfo();
11490 
11491   const BasicBlock *BB = MBB->getBasicBlock();
11492   MachineFunction::iterator I = ++MBB->getIterator();
11493 
11494   Register DstReg = MI.getOperand(0).getReg();
11495   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11496   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11497   Register mainDstReg = MRI.createVirtualRegister(RC);
11498   Register restoreDstReg = MRI.createVirtualRegister(RC);
11499 
11500   MVT PVT = getPointerTy(MF->getDataLayout());
11501   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11502          "Invalid Pointer Size!");
11503   // For v = setjmp(buf), we generate
11504   //
11505   // thisMBB:
11506   //  SjLjSetup mainMBB
11507   //  bl mainMBB
11508   //  v_restore = 1
11509   //  b sinkMBB
11510   //
11511   // mainMBB:
11512   //  buf[LabelOffset] = LR
11513   //  v_main = 0
11514   //
11515   // sinkMBB:
11516   //  v = phi(main, restore)
11517   //
11518 
11519   MachineBasicBlock *thisMBB = MBB;
11520   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11521   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11522   MF->insert(I, mainMBB);
11523   MF->insert(I, sinkMBB);
11524 
11525   MachineInstrBuilder MIB;
11526 
11527   // Transfer the remainder of BB and its successor edges to sinkMBB.
11528   sinkMBB->splice(sinkMBB->begin(), MBB,
11529                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11530   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11531 
11532   // Note that the structure of the jmp_buf used here is not compatible
11533   // with that used by libc, and is not designed to be. Specifically, it
11534   // stores only those 'reserved' registers that LLVM does not otherwise
11535   // understand how to spill. Also, by convention, by the time this
11536   // intrinsic is called, Clang has already stored the frame address in the
11537   // first slot of the buffer and stack address in the third. Following the
11538   // X86 target code, we'll store the jump address in the second slot. We also
11539   // need to save the TOC pointer (R2) to handle jumps between shared
11540   // libraries, and that will be stored in the fourth slot. The thread
11541   // identifier (R13) is not affected.
11542 
11543   // thisMBB:
11544   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11545   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11546   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11547 
11548   // Prepare IP either in reg.
11549   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11550   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11551   Register BufReg = MI.getOperand(1).getReg();
11552 
11553   if (Subtarget.is64BitELFABI()) {
11554     setUsesTOCBasePtr(*MBB->getParent());
11555     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11556               .addReg(PPC::X2)
11557               .addImm(TOCOffset)
11558               .addReg(BufReg)
11559               .cloneMemRefs(MI);
11560   }
11561 
11562   // Naked functions never have a base pointer, and so we use r1. For all
11563   // other functions, this decision must be delayed until during PEI.
11564   unsigned BaseReg;
11565   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11566     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11567   else
11568     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11569 
11570   MIB = BuildMI(*thisMBB, MI, DL,
11571                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11572             .addReg(BaseReg)
11573             .addImm(BPOffset)
11574             .addReg(BufReg)
11575             .cloneMemRefs(MI);
11576 
11577   // Setup
11578   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11579   MIB.addRegMask(TRI->getNoPreservedMask());
11580 
11581   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11582 
11583   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11584           .addMBB(mainMBB);
11585   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11586 
11587   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11588   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11589 
11590   // mainMBB:
11591   //  mainDstReg = 0
11592   MIB =
11593       BuildMI(mainMBB, DL,
11594               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11595 
11596   // Store IP
11597   if (Subtarget.isPPC64()) {
11598     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11599             .addReg(LabelReg)
11600             .addImm(LabelOffset)
11601             .addReg(BufReg);
11602   } else {
11603     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11604             .addReg(LabelReg)
11605             .addImm(LabelOffset)
11606             .addReg(BufReg);
11607   }
11608   MIB.cloneMemRefs(MI);
11609 
11610   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11611   mainMBB->addSuccessor(sinkMBB);
11612 
11613   // sinkMBB:
11614   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11615           TII->get(PPC::PHI), DstReg)
11616     .addReg(mainDstReg).addMBB(mainMBB)
11617     .addReg(restoreDstReg).addMBB(thisMBB);
11618 
11619   MI.eraseFromParent();
11620   return sinkMBB;
11621 }
11622 
11623 MachineBasicBlock *
11624 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11625                                      MachineBasicBlock *MBB) const {
11626   DebugLoc DL = MI.getDebugLoc();
11627   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11628 
11629   MachineFunction *MF = MBB->getParent();
11630   MachineRegisterInfo &MRI = MF->getRegInfo();
11631 
11632   MVT PVT = getPointerTy(MF->getDataLayout());
11633   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11634          "Invalid Pointer Size!");
11635 
11636   const TargetRegisterClass *RC =
11637     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11638   Register Tmp = MRI.createVirtualRegister(RC);
11639   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11640   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11641   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11642   unsigned BP =
11643       (PVT == MVT::i64)
11644           ? PPC::X30
11645           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11646                                                               : PPC::R30);
11647 
11648   MachineInstrBuilder MIB;
11649 
11650   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11651   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11652   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11653   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11654 
11655   Register BufReg = MI.getOperand(0).getReg();
11656 
11657   // Reload FP (the jumped-to function may not have had a
11658   // frame pointer, and if so, then its r31 will be restored
11659   // as necessary).
11660   if (PVT == MVT::i64) {
11661     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11662             .addImm(0)
11663             .addReg(BufReg);
11664   } else {
11665     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11666             .addImm(0)
11667             .addReg(BufReg);
11668   }
11669   MIB.cloneMemRefs(MI);
11670 
11671   // Reload IP
11672   if (PVT == MVT::i64) {
11673     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11674             .addImm(LabelOffset)
11675             .addReg(BufReg);
11676   } else {
11677     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11678             .addImm(LabelOffset)
11679             .addReg(BufReg);
11680   }
11681   MIB.cloneMemRefs(MI);
11682 
11683   // Reload SP
11684   if (PVT == MVT::i64) {
11685     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11686             .addImm(SPOffset)
11687             .addReg(BufReg);
11688   } else {
11689     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11690             .addImm(SPOffset)
11691             .addReg(BufReg);
11692   }
11693   MIB.cloneMemRefs(MI);
11694 
11695   // Reload BP
11696   if (PVT == MVT::i64) {
11697     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11698             .addImm(BPOffset)
11699             .addReg(BufReg);
11700   } else {
11701     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11702             .addImm(BPOffset)
11703             .addReg(BufReg);
11704   }
11705   MIB.cloneMemRefs(MI);
11706 
11707   // Reload TOC
11708   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11709     setUsesTOCBasePtr(*MBB->getParent());
11710     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11711               .addImm(TOCOffset)
11712               .addReg(BufReg)
11713               .cloneMemRefs(MI);
11714   }
11715 
11716   // Jump
11717   BuildMI(*MBB, MI, DL,
11718           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11719   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11720 
11721   MI.eraseFromParent();
11722   return MBB;
11723 }
11724 
11725 MachineBasicBlock *
11726 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11727                                                MachineBasicBlock *BB) const {
11728   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11729       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11730     if (Subtarget.is64BitELFABI() &&
11731         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11732         !Subtarget.isUsingPCRelativeCalls()) {
11733       // Call lowering should have added an r2 operand to indicate a dependence
11734       // on the TOC base pointer value. It can't however, because there is no
11735       // way to mark the dependence as implicit there, and so the stackmap code
11736       // will confuse it with a regular operand. Instead, add the dependence
11737       // here.
11738       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11739     }
11740 
11741     return emitPatchPoint(MI, BB);
11742   }
11743 
11744   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11745       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11746     return emitEHSjLjSetJmp(MI, BB);
11747   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11748              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11749     return emitEHSjLjLongJmp(MI, BB);
11750   }
11751 
11752   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11753 
11754   // To "insert" these instructions we actually have to insert their
11755   // control-flow patterns.
11756   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11757   MachineFunction::iterator It = ++BB->getIterator();
11758 
11759   MachineFunction *F = BB->getParent();
11760 
11761   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11762       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11763       MI.getOpcode() == PPC::SELECT_I8) {
11764     SmallVector<MachineOperand, 2> Cond;
11765     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11766         MI.getOpcode() == PPC::SELECT_CC_I8)
11767       Cond.push_back(MI.getOperand(4));
11768     else
11769       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11770     Cond.push_back(MI.getOperand(1));
11771 
11772     DebugLoc dl = MI.getDebugLoc();
11773     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11774                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11775   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11776              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11777              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11778              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11779              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11780              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11781              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11782              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11783              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11784              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11785              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11786              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11787              MI.getOpcode() == PPC::SELECT_F4 ||
11788              MI.getOpcode() == PPC::SELECT_F8 ||
11789              MI.getOpcode() == PPC::SELECT_F16 ||
11790              MI.getOpcode() == PPC::SELECT_QFRC ||
11791              MI.getOpcode() == PPC::SELECT_QSRC ||
11792              MI.getOpcode() == PPC::SELECT_QBRC ||
11793              MI.getOpcode() == PPC::SELECT_SPE ||
11794              MI.getOpcode() == PPC::SELECT_SPE4 ||
11795              MI.getOpcode() == PPC::SELECT_VRRC ||
11796              MI.getOpcode() == PPC::SELECT_VSFRC ||
11797              MI.getOpcode() == PPC::SELECT_VSSRC ||
11798              MI.getOpcode() == PPC::SELECT_VSRC) {
11799     // The incoming instruction knows the destination vreg to set, the
11800     // condition code register to branch on, the true/false values to
11801     // select between, and a branch opcode to use.
11802 
11803     //  thisMBB:
11804     //  ...
11805     //   TrueVal = ...
11806     //   cmpTY ccX, r1, r2
11807     //   bCC copy1MBB
11808     //   fallthrough --> copy0MBB
11809     MachineBasicBlock *thisMBB = BB;
11810     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11811     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11812     DebugLoc dl = MI.getDebugLoc();
11813     F->insert(It, copy0MBB);
11814     F->insert(It, sinkMBB);
11815 
11816     // Transfer the remainder of BB and its successor edges to sinkMBB.
11817     sinkMBB->splice(sinkMBB->begin(), BB,
11818                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11819     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11820 
11821     // Next, add the true and fallthrough blocks as its successors.
11822     BB->addSuccessor(copy0MBB);
11823     BB->addSuccessor(sinkMBB);
11824 
11825     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11826         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11827         MI.getOpcode() == PPC::SELECT_F16 ||
11828         MI.getOpcode() == PPC::SELECT_SPE4 ||
11829         MI.getOpcode() == PPC::SELECT_SPE ||
11830         MI.getOpcode() == PPC::SELECT_QFRC ||
11831         MI.getOpcode() == PPC::SELECT_QSRC ||
11832         MI.getOpcode() == PPC::SELECT_QBRC ||
11833         MI.getOpcode() == PPC::SELECT_VRRC ||
11834         MI.getOpcode() == PPC::SELECT_VSFRC ||
11835         MI.getOpcode() == PPC::SELECT_VSSRC ||
11836         MI.getOpcode() == PPC::SELECT_VSRC) {
11837       BuildMI(BB, dl, TII->get(PPC::BC))
11838           .addReg(MI.getOperand(1).getReg())
11839           .addMBB(sinkMBB);
11840     } else {
11841       unsigned SelectPred = MI.getOperand(4).getImm();
11842       BuildMI(BB, dl, TII->get(PPC::BCC))
11843           .addImm(SelectPred)
11844           .addReg(MI.getOperand(1).getReg())
11845           .addMBB(sinkMBB);
11846     }
11847 
11848     //  copy0MBB:
11849     //   %FalseValue = ...
11850     //   # fallthrough to sinkMBB
11851     BB = copy0MBB;
11852 
11853     // Update machine-CFG edges
11854     BB->addSuccessor(sinkMBB);
11855 
11856     //  sinkMBB:
11857     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11858     //  ...
11859     BB = sinkMBB;
11860     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11861         .addReg(MI.getOperand(3).getReg())
11862         .addMBB(copy0MBB)
11863         .addReg(MI.getOperand(2).getReg())
11864         .addMBB(thisMBB);
11865   } else if (MI.getOpcode() == PPC::ReadTB) {
11866     // To read the 64-bit time-base register on a 32-bit target, we read the
11867     // two halves. Should the counter have wrapped while it was being read, we
11868     // need to try again.
11869     // ...
11870     // readLoop:
11871     // mfspr Rx,TBU # load from TBU
11872     // mfspr Ry,TB  # load from TB
11873     // mfspr Rz,TBU # load from TBU
11874     // cmpw crX,Rx,Rz # check if 'old'='new'
11875     // bne readLoop   # branch if they're not equal
11876     // ...
11877 
11878     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11879     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11880     DebugLoc dl = MI.getDebugLoc();
11881     F->insert(It, readMBB);
11882     F->insert(It, sinkMBB);
11883 
11884     // Transfer the remainder of BB and its successor edges to sinkMBB.
11885     sinkMBB->splice(sinkMBB->begin(), BB,
11886                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11887     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11888 
11889     BB->addSuccessor(readMBB);
11890     BB = readMBB;
11891 
11892     MachineRegisterInfo &RegInfo = F->getRegInfo();
11893     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11894     Register LoReg = MI.getOperand(0).getReg();
11895     Register HiReg = MI.getOperand(1).getReg();
11896 
11897     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11898     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11899     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11900 
11901     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11902 
11903     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11904         .addReg(HiReg)
11905         .addReg(ReadAgainReg);
11906     BuildMI(BB, dl, TII->get(PPC::BCC))
11907         .addImm(PPC::PRED_NE)
11908         .addReg(CmpReg)
11909         .addMBB(readMBB);
11910 
11911     BB->addSuccessor(readMBB);
11912     BB->addSuccessor(sinkMBB);
11913   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11914     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11915   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11916     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11917   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11918     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11919   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11920     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11921 
11922   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11923     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11924   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11925     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11926   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11927     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11928   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11929     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11930 
11931   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11932     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11933   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11934     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11935   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11936     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11937   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11938     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11939 
11940   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11941     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11942   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11943     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11944   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11945     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11946   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11947     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11948 
11949   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11950     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11951   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11952     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11953   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11954     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11955   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11956     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11957 
11958   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11959     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11960   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11961     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11962   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11963     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11964   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11965     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11966 
11967   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11968     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11969   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11970     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11971   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11972     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11973   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11974     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11975 
11976   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11977     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11978   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11979     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11980   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11981     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11982   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11983     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11984 
11985   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11986     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11987   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11988     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11989   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11990     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11991   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11992     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11993 
11994   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11995     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11996   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11997     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11998   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11999     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12000   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12001     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12002 
12003   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12004     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12005   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12006     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12007   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12008     BB = EmitAtomicBinary(MI, BB, 4, 0);
12009   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12010     BB = EmitAtomicBinary(MI, BB, 8, 0);
12011   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12012            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12013            (Subtarget.hasPartwordAtomics() &&
12014             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12015            (Subtarget.hasPartwordAtomics() &&
12016             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12017     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12018 
12019     auto LoadMnemonic = PPC::LDARX;
12020     auto StoreMnemonic = PPC::STDCX;
12021     switch (MI.getOpcode()) {
12022     default:
12023       llvm_unreachable("Compare and swap of unknown size");
12024     case PPC::ATOMIC_CMP_SWAP_I8:
12025       LoadMnemonic = PPC::LBARX;
12026       StoreMnemonic = PPC::STBCX;
12027       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12028       break;
12029     case PPC::ATOMIC_CMP_SWAP_I16:
12030       LoadMnemonic = PPC::LHARX;
12031       StoreMnemonic = PPC::STHCX;
12032       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12033       break;
12034     case PPC::ATOMIC_CMP_SWAP_I32:
12035       LoadMnemonic = PPC::LWARX;
12036       StoreMnemonic = PPC::STWCX;
12037       break;
12038     case PPC::ATOMIC_CMP_SWAP_I64:
12039       LoadMnemonic = PPC::LDARX;
12040       StoreMnemonic = PPC::STDCX;
12041       break;
12042     }
12043     Register dest = MI.getOperand(0).getReg();
12044     Register ptrA = MI.getOperand(1).getReg();
12045     Register ptrB = MI.getOperand(2).getReg();
12046     Register oldval = MI.getOperand(3).getReg();
12047     Register newval = MI.getOperand(4).getReg();
12048     DebugLoc dl = MI.getDebugLoc();
12049 
12050     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12051     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12052     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12053     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12054     F->insert(It, loop1MBB);
12055     F->insert(It, loop2MBB);
12056     F->insert(It, midMBB);
12057     F->insert(It, exitMBB);
12058     exitMBB->splice(exitMBB->begin(), BB,
12059                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12060     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12061 
12062     //  thisMBB:
12063     //   ...
12064     //   fallthrough --> loopMBB
12065     BB->addSuccessor(loop1MBB);
12066 
12067     // loop1MBB:
12068     //   l[bhwd]arx dest, ptr
12069     //   cmp[wd] dest, oldval
12070     //   bne- midMBB
12071     // loop2MBB:
12072     //   st[bhwd]cx. newval, ptr
12073     //   bne- loopMBB
12074     //   b exitBB
12075     // midMBB:
12076     //   st[bhwd]cx. dest, ptr
12077     // exitBB:
12078     BB = loop1MBB;
12079     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12080     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12081         .addReg(oldval)
12082         .addReg(dest);
12083     BuildMI(BB, dl, TII->get(PPC::BCC))
12084         .addImm(PPC::PRED_NE)
12085         .addReg(PPC::CR0)
12086         .addMBB(midMBB);
12087     BB->addSuccessor(loop2MBB);
12088     BB->addSuccessor(midMBB);
12089 
12090     BB = loop2MBB;
12091     BuildMI(BB, dl, TII->get(StoreMnemonic))
12092         .addReg(newval)
12093         .addReg(ptrA)
12094         .addReg(ptrB);
12095     BuildMI(BB, dl, TII->get(PPC::BCC))
12096         .addImm(PPC::PRED_NE)
12097         .addReg(PPC::CR0)
12098         .addMBB(loop1MBB);
12099     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12100     BB->addSuccessor(loop1MBB);
12101     BB->addSuccessor(exitMBB);
12102 
12103     BB = midMBB;
12104     BuildMI(BB, dl, TII->get(StoreMnemonic))
12105         .addReg(dest)
12106         .addReg(ptrA)
12107         .addReg(ptrB);
12108     BB->addSuccessor(exitMBB);
12109 
12110     //  exitMBB:
12111     //   ...
12112     BB = exitMBB;
12113   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12114              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12115     // We must use 64-bit registers for addresses when targeting 64-bit,
12116     // since we're actually doing arithmetic on them.  Other registers
12117     // can be 32-bit.
12118     bool is64bit = Subtarget.isPPC64();
12119     bool isLittleEndian = Subtarget.isLittleEndian();
12120     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12121 
12122     Register dest = MI.getOperand(0).getReg();
12123     Register ptrA = MI.getOperand(1).getReg();
12124     Register ptrB = MI.getOperand(2).getReg();
12125     Register oldval = MI.getOperand(3).getReg();
12126     Register newval = MI.getOperand(4).getReg();
12127     DebugLoc dl = MI.getDebugLoc();
12128 
12129     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12130     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12131     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12132     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12133     F->insert(It, loop1MBB);
12134     F->insert(It, loop2MBB);
12135     F->insert(It, midMBB);
12136     F->insert(It, exitMBB);
12137     exitMBB->splice(exitMBB->begin(), BB,
12138                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12139     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12140 
12141     MachineRegisterInfo &RegInfo = F->getRegInfo();
12142     const TargetRegisterClass *RC =
12143         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12144     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12145 
12146     Register PtrReg = RegInfo.createVirtualRegister(RC);
12147     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12148     Register ShiftReg =
12149         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12150     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12151     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12152     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12153     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12154     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12155     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12156     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12157     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12158     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12159     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12160     Register Ptr1Reg;
12161     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12162     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12163     //  thisMBB:
12164     //   ...
12165     //   fallthrough --> loopMBB
12166     BB->addSuccessor(loop1MBB);
12167 
12168     // The 4-byte load must be aligned, while a char or short may be
12169     // anywhere in the word.  Hence all this nasty bookkeeping code.
12170     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12171     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12172     //   xori shift, shift1, 24 [16]
12173     //   rlwinm ptr, ptr1, 0, 0, 29
12174     //   slw newval2, newval, shift
12175     //   slw oldval2, oldval,shift
12176     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12177     //   slw mask, mask2, shift
12178     //   and newval3, newval2, mask
12179     //   and oldval3, oldval2, mask
12180     // loop1MBB:
12181     //   lwarx tmpDest, ptr
12182     //   and tmp, tmpDest, mask
12183     //   cmpw tmp, oldval3
12184     //   bne- midMBB
12185     // loop2MBB:
12186     //   andc tmp2, tmpDest, mask
12187     //   or tmp4, tmp2, newval3
12188     //   stwcx. tmp4, ptr
12189     //   bne- loop1MBB
12190     //   b exitBB
12191     // midMBB:
12192     //   stwcx. tmpDest, ptr
12193     // exitBB:
12194     //   srw dest, tmpDest, shift
12195     if (ptrA != ZeroReg) {
12196       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12197       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12198           .addReg(ptrA)
12199           .addReg(ptrB);
12200     } else {
12201       Ptr1Reg = ptrB;
12202     }
12203 
12204     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12205     // mode.
12206     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12207         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12208         .addImm(3)
12209         .addImm(27)
12210         .addImm(is8bit ? 28 : 27);
12211     if (!isLittleEndian)
12212       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12213           .addReg(Shift1Reg)
12214           .addImm(is8bit ? 24 : 16);
12215     if (is64bit)
12216       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12217           .addReg(Ptr1Reg)
12218           .addImm(0)
12219           .addImm(61);
12220     else
12221       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12222           .addReg(Ptr1Reg)
12223           .addImm(0)
12224           .addImm(0)
12225           .addImm(29);
12226     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12227         .addReg(newval)
12228         .addReg(ShiftReg);
12229     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12230         .addReg(oldval)
12231         .addReg(ShiftReg);
12232     if (is8bit)
12233       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12234     else {
12235       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12236       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12237           .addReg(Mask3Reg)
12238           .addImm(65535);
12239     }
12240     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12241         .addReg(Mask2Reg)
12242         .addReg(ShiftReg);
12243     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12244         .addReg(NewVal2Reg)
12245         .addReg(MaskReg);
12246     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12247         .addReg(OldVal2Reg)
12248         .addReg(MaskReg);
12249 
12250     BB = loop1MBB;
12251     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12252         .addReg(ZeroReg)
12253         .addReg(PtrReg);
12254     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12255         .addReg(TmpDestReg)
12256         .addReg(MaskReg);
12257     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12258         .addReg(TmpReg)
12259         .addReg(OldVal3Reg);
12260     BuildMI(BB, dl, TII->get(PPC::BCC))
12261         .addImm(PPC::PRED_NE)
12262         .addReg(PPC::CR0)
12263         .addMBB(midMBB);
12264     BB->addSuccessor(loop2MBB);
12265     BB->addSuccessor(midMBB);
12266 
12267     BB = loop2MBB;
12268     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12269         .addReg(TmpDestReg)
12270         .addReg(MaskReg);
12271     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12272         .addReg(Tmp2Reg)
12273         .addReg(NewVal3Reg);
12274     BuildMI(BB, dl, TII->get(PPC::STWCX))
12275         .addReg(Tmp4Reg)
12276         .addReg(ZeroReg)
12277         .addReg(PtrReg);
12278     BuildMI(BB, dl, TII->get(PPC::BCC))
12279         .addImm(PPC::PRED_NE)
12280         .addReg(PPC::CR0)
12281         .addMBB(loop1MBB);
12282     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12283     BB->addSuccessor(loop1MBB);
12284     BB->addSuccessor(exitMBB);
12285 
12286     BB = midMBB;
12287     BuildMI(BB, dl, TII->get(PPC::STWCX))
12288         .addReg(TmpDestReg)
12289         .addReg(ZeroReg)
12290         .addReg(PtrReg);
12291     BB->addSuccessor(exitMBB);
12292 
12293     //  exitMBB:
12294     //   ...
12295     BB = exitMBB;
12296     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12297         .addReg(TmpReg)
12298         .addReg(ShiftReg);
12299   } else if (MI.getOpcode() == PPC::FADDrtz) {
12300     // This pseudo performs an FADD with rounding mode temporarily forced
12301     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12302     // is not modeled at the SelectionDAG level.
12303     Register Dest = MI.getOperand(0).getReg();
12304     Register Src1 = MI.getOperand(1).getReg();
12305     Register Src2 = MI.getOperand(2).getReg();
12306     DebugLoc dl = MI.getDebugLoc();
12307 
12308     MachineRegisterInfo &RegInfo = F->getRegInfo();
12309     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12310 
12311     // Save FPSCR value.
12312     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12313 
12314     // Set rounding mode to round-to-zero.
12315     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
12316     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
12317 
12318     // Perform addition.
12319     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
12320 
12321     // Restore FPSCR value.
12322     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12323   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12324              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12325              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12326              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12327     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12328                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12329                           ? PPC::ANDI8_rec
12330                           : PPC::ANDI_rec;
12331     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12332                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12333 
12334     MachineRegisterInfo &RegInfo = F->getRegInfo();
12335     Register Dest = RegInfo.createVirtualRegister(
12336         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12337 
12338     DebugLoc Dl = MI.getDebugLoc();
12339     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12340         .addReg(MI.getOperand(1).getReg())
12341         .addImm(1);
12342     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12343             MI.getOperand(0).getReg())
12344         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12345   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12346     DebugLoc Dl = MI.getDebugLoc();
12347     MachineRegisterInfo &RegInfo = F->getRegInfo();
12348     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12349     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12350     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12351             MI.getOperand(0).getReg())
12352         .addReg(CRReg);
12353   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12354     DebugLoc Dl = MI.getDebugLoc();
12355     unsigned Imm = MI.getOperand(1).getImm();
12356     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12357     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12358             MI.getOperand(0).getReg())
12359         .addReg(PPC::CR0EQ);
12360   } else if (MI.getOpcode() == PPC::SETRNDi) {
12361     DebugLoc dl = MI.getDebugLoc();
12362     Register OldFPSCRReg = MI.getOperand(0).getReg();
12363 
12364     // Save FPSCR value.
12365     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12366 
12367     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12368     // the following settings:
12369     //   00 Round to nearest
12370     //   01 Round to 0
12371     //   10 Round to +inf
12372     //   11 Round to -inf
12373 
12374     // When the operand is immediate, using the two least significant bits of
12375     // the immediate to set the bits 62:63 of FPSCR.
12376     unsigned Mode = MI.getOperand(1).getImm();
12377     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12378       .addImm(31);
12379 
12380     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12381       .addImm(30);
12382   } else if (MI.getOpcode() == PPC::SETRND) {
12383     DebugLoc dl = MI.getDebugLoc();
12384 
12385     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12386     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12387     // If the target doesn't have DirectMove, we should use stack to do the
12388     // conversion, because the target doesn't have the instructions like mtvsrd
12389     // or mfvsrd to do this conversion directly.
12390     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12391       if (Subtarget.hasDirectMove()) {
12392         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12393           .addReg(SrcReg);
12394       } else {
12395         // Use stack to do the register copy.
12396         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12397         MachineRegisterInfo &RegInfo = F->getRegInfo();
12398         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12399         if (RC == &PPC::F8RCRegClass) {
12400           // Copy register from F8RCRegClass to G8RCRegclass.
12401           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12402                  "Unsupported RegClass.");
12403 
12404           StoreOp = PPC::STFD;
12405           LoadOp = PPC::LD;
12406         } else {
12407           // Copy register from G8RCRegClass to F8RCRegclass.
12408           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12409                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12410                  "Unsupported RegClass.");
12411         }
12412 
12413         MachineFrameInfo &MFI = F->getFrameInfo();
12414         int FrameIdx = MFI.CreateStackObject(8, 8, false);
12415 
12416         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12417             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12418             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12419             MFI.getObjectAlign(FrameIdx));
12420 
12421         // Store the SrcReg into the stack.
12422         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12423           .addReg(SrcReg)
12424           .addImm(0)
12425           .addFrameIndex(FrameIdx)
12426           .addMemOperand(MMOStore);
12427 
12428         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12429             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12430             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12431             MFI.getObjectAlign(FrameIdx));
12432 
12433         // Load from the stack where SrcReg is stored, and save to DestReg,
12434         // so we have done the RegClass conversion from RegClass::SrcReg to
12435         // RegClass::DestReg.
12436         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12437           .addImm(0)
12438           .addFrameIndex(FrameIdx)
12439           .addMemOperand(MMOLoad);
12440       }
12441     };
12442 
12443     Register OldFPSCRReg = MI.getOperand(0).getReg();
12444 
12445     // Save FPSCR value.
12446     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12447 
12448     // When the operand is gprc register, use two least significant bits of the
12449     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12450     //
12451     // copy OldFPSCRTmpReg, OldFPSCRReg
12452     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12453     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12454     // copy NewFPSCRReg, NewFPSCRTmpReg
12455     // mtfsf 255, NewFPSCRReg
12456     MachineOperand SrcOp = MI.getOperand(1);
12457     MachineRegisterInfo &RegInfo = F->getRegInfo();
12458     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12459 
12460     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12461 
12462     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12463     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12464 
12465     // The first operand of INSERT_SUBREG should be a register which has
12466     // subregisters, we only care about its RegClass, so we should use an
12467     // IMPLICIT_DEF register.
12468     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12469     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12470       .addReg(ImDefReg)
12471       .add(SrcOp)
12472       .addImm(1);
12473 
12474     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12475     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12476       .addReg(OldFPSCRTmpReg)
12477       .addReg(ExtSrcReg)
12478       .addImm(0)
12479       .addImm(62);
12480 
12481     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12482     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12483 
12484     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12485     // bits of FPSCR.
12486     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12487       .addImm(255)
12488       .addReg(NewFPSCRReg)
12489       .addImm(0)
12490       .addImm(0);
12491   } else {
12492     llvm_unreachable("Unexpected instr type to insert");
12493   }
12494 
12495   MI.eraseFromParent(); // The pseudo instruction is gone now.
12496   return BB;
12497 }
12498 
12499 //===----------------------------------------------------------------------===//
12500 // Target Optimization Hooks
12501 //===----------------------------------------------------------------------===//
12502 
12503 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12504   // For the estimates, convergence is quadratic, so we essentially double the
12505   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12506   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12507   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12508   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12509   if (VT.getScalarType() == MVT::f64)
12510     RefinementSteps++;
12511   return RefinementSteps;
12512 }
12513 
12514 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12515                                            int Enabled, int &RefinementSteps,
12516                                            bool &UseOneConstNR,
12517                                            bool Reciprocal) const {
12518   EVT VT = Operand.getValueType();
12519   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12520       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12521       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12522       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12523       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12524       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12525     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12526       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12527 
12528     // The Newton-Raphson computation with a single constant does not provide
12529     // enough accuracy on some CPUs.
12530     UseOneConstNR = !Subtarget.needsTwoConstNR();
12531     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12532   }
12533   return SDValue();
12534 }
12535 
12536 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12537                                             int Enabled,
12538                                             int &RefinementSteps) const {
12539   EVT VT = Operand.getValueType();
12540   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12541       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12542       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12543       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12544       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12545       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12546     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12547       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12548     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12549   }
12550   return SDValue();
12551 }
12552 
12553 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12554   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12555   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12556   // enabled for division), this functionality is redundant with the default
12557   // combiner logic (once the division -> reciprocal/multiply transformation
12558   // has taken place). As a result, this matters more for older cores than for
12559   // newer ones.
12560 
12561   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12562   // reciprocal if there are two or more FDIVs (for embedded cores with only
12563   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12564   switch (Subtarget.getCPUDirective()) {
12565   default:
12566     return 3;
12567   case PPC::DIR_440:
12568   case PPC::DIR_A2:
12569   case PPC::DIR_E500:
12570   case PPC::DIR_E500mc:
12571   case PPC::DIR_E5500:
12572     return 2;
12573   }
12574 }
12575 
12576 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12577 // collapsed, and so we need to look through chains of them.
12578 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12579                                      int64_t& Offset, SelectionDAG &DAG) {
12580   if (DAG.isBaseWithConstantOffset(Loc)) {
12581     Base = Loc.getOperand(0);
12582     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12583 
12584     // The base might itself be a base plus an offset, and if so, accumulate
12585     // that as well.
12586     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12587   }
12588 }
12589 
12590 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12591                             unsigned Bytes, int Dist,
12592                             SelectionDAG &DAG) {
12593   if (VT.getSizeInBits() / 8 != Bytes)
12594     return false;
12595 
12596   SDValue BaseLoc = Base->getBasePtr();
12597   if (Loc.getOpcode() == ISD::FrameIndex) {
12598     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12599       return false;
12600     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12601     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12602     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12603     int FS  = MFI.getObjectSize(FI);
12604     int BFS = MFI.getObjectSize(BFI);
12605     if (FS != BFS || FS != (int)Bytes) return false;
12606     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12607   }
12608 
12609   SDValue Base1 = Loc, Base2 = BaseLoc;
12610   int64_t Offset1 = 0, Offset2 = 0;
12611   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12612   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12613   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12614     return true;
12615 
12616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12617   const GlobalValue *GV1 = nullptr;
12618   const GlobalValue *GV2 = nullptr;
12619   Offset1 = 0;
12620   Offset2 = 0;
12621   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12622   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12623   if (isGA1 && isGA2 && GV1 == GV2)
12624     return Offset1 == (Offset2 + Dist*Bytes);
12625   return false;
12626 }
12627 
12628 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12629 // not enforce equality of the chain operands.
12630 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12631                             unsigned Bytes, int Dist,
12632                             SelectionDAG &DAG) {
12633   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12634     EVT VT = LS->getMemoryVT();
12635     SDValue Loc = LS->getBasePtr();
12636     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12637   }
12638 
12639   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12640     EVT VT;
12641     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12642     default: return false;
12643     case Intrinsic::ppc_qpx_qvlfd:
12644     case Intrinsic::ppc_qpx_qvlfda:
12645       VT = MVT::v4f64;
12646       break;
12647     case Intrinsic::ppc_qpx_qvlfs:
12648     case Intrinsic::ppc_qpx_qvlfsa:
12649       VT = MVT::v4f32;
12650       break;
12651     case Intrinsic::ppc_qpx_qvlfcd:
12652     case Intrinsic::ppc_qpx_qvlfcda:
12653       VT = MVT::v2f64;
12654       break;
12655     case Intrinsic::ppc_qpx_qvlfcs:
12656     case Intrinsic::ppc_qpx_qvlfcsa:
12657       VT = MVT::v2f32;
12658       break;
12659     case Intrinsic::ppc_qpx_qvlfiwa:
12660     case Intrinsic::ppc_qpx_qvlfiwz:
12661     case Intrinsic::ppc_altivec_lvx:
12662     case Intrinsic::ppc_altivec_lvxl:
12663     case Intrinsic::ppc_vsx_lxvw4x:
12664     case Intrinsic::ppc_vsx_lxvw4x_be:
12665       VT = MVT::v4i32;
12666       break;
12667     case Intrinsic::ppc_vsx_lxvd2x:
12668     case Intrinsic::ppc_vsx_lxvd2x_be:
12669       VT = MVT::v2f64;
12670       break;
12671     case Intrinsic::ppc_altivec_lvebx:
12672       VT = MVT::i8;
12673       break;
12674     case Intrinsic::ppc_altivec_lvehx:
12675       VT = MVT::i16;
12676       break;
12677     case Intrinsic::ppc_altivec_lvewx:
12678       VT = MVT::i32;
12679       break;
12680     }
12681 
12682     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12683   }
12684 
12685   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12686     EVT VT;
12687     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12688     default: return false;
12689     case Intrinsic::ppc_qpx_qvstfd:
12690     case Intrinsic::ppc_qpx_qvstfda:
12691       VT = MVT::v4f64;
12692       break;
12693     case Intrinsic::ppc_qpx_qvstfs:
12694     case Intrinsic::ppc_qpx_qvstfsa:
12695       VT = MVT::v4f32;
12696       break;
12697     case Intrinsic::ppc_qpx_qvstfcd:
12698     case Intrinsic::ppc_qpx_qvstfcda:
12699       VT = MVT::v2f64;
12700       break;
12701     case Intrinsic::ppc_qpx_qvstfcs:
12702     case Intrinsic::ppc_qpx_qvstfcsa:
12703       VT = MVT::v2f32;
12704       break;
12705     case Intrinsic::ppc_qpx_qvstfiw:
12706     case Intrinsic::ppc_qpx_qvstfiwa:
12707     case Intrinsic::ppc_altivec_stvx:
12708     case Intrinsic::ppc_altivec_stvxl:
12709     case Intrinsic::ppc_vsx_stxvw4x:
12710       VT = MVT::v4i32;
12711       break;
12712     case Intrinsic::ppc_vsx_stxvd2x:
12713       VT = MVT::v2f64;
12714       break;
12715     case Intrinsic::ppc_vsx_stxvw4x_be:
12716       VT = MVT::v4i32;
12717       break;
12718     case Intrinsic::ppc_vsx_stxvd2x_be:
12719       VT = MVT::v2f64;
12720       break;
12721     case Intrinsic::ppc_altivec_stvebx:
12722       VT = MVT::i8;
12723       break;
12724     case Intrinsic::ppc_altivec_stvehx:
12725       VT = MVT::i16;
12726       break;
12727     case Intrinsic::ppc_altivec_stvewx:
12728       VT = MVT::i32;
12729       break;
12730     }
12731 
12732     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12733   }
12734 
12735   return false;
12736 }
12737 
12738 // Return true is there is a nearyby consecutive load to the one provided
12739 // (regardless of alignment). We search up and down the chain, looking though
12740 // token factors and other loads (but nothing else). As a result, a true result
12741 // indicates that it is safe to create a new consecutive load adjacent to the
12742 // load provided.
12743 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12744   SDValue Chain = LD->getChain();
12745   EVT VT = LD->getMemoryVT();
12746 
12747   SmallSet<SDNode *, 16> LoadRoots;
12748   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12749   SmallSet<SDNode *, 16> Visited;
12750 
12751   // First, search up the chain, branching to follow all token-factor operands.
12752   // If we find a consecutive load, then we're done, otherwise, record all
12753   // nodes just above the top-level loads and token factors.
12754   while (!Queue.empty()) {
12755     SDNode *ChainNext = Queue.pop_back_val();
12756     if (!Visited.insert(ChainNext).second)
12757       continue;
12758 
12759     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12760       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12761         return true;
12762 
12763       if (!Visited.count(ChainLD->getChain().getNode()))
12764         Queue.push_back(ChainLD->getChain().getNode());
12765     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12766       for (const SDUse &O : ChainNext->ops())
12767         if (!Visited.count(O.getNode()))
12768           Queue.push_back(O.getNode());
12769     } else
12770       LoadRoots.insert(ChainNext);
12771   }
12772 
12773   // Second, search down the chain, starting from the top-level nodes recorded
12774   // in the first phase. These top-level nodes are the nodes just above all
12775   // loads and token factors. Starting with their uses, recursively look though
12776   // all loads (just the chain uses) and token factors to find a consecutive
12777   // load.
12778   Visited.clear();
12779   Queue.clear();
12780 
12781   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12782        IE = LoadRoots.end(); I != IE; ++I) {
12783     Queue.push_back(*I);
12784 
12785     while (!Queue.empty()) {
12786       SDNode *LoadRoot = Queue.pop_back_val();
12787       if (!Visited.insert(LoadRoot).second)
12788         continue;
12789 
12790       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12791         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12792           return true;
12793 
12794       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12795            UE = LoadRoot->use_end(); UI != UE; ++UI)
12796         if (((isa<MemSDNode>(*UI) &&
12797             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12798             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12799           Queue.push_back(*UI);
12800     }
12801   }
12802 
12803   return false;
12804 }
12805 
12806 /// This function is called when we have proved that a SETCC node can be replaced
12807 /// by subtraction (and other supporting instructions) so that the result of
12808 /// comparison is kept in a GPR instead of CR. This function is purely for
12809 /// codegen purposes and has some flags to guide the codegen process.
12810 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12811                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12812   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12813 
12814   // Zero extend the operands to the largest legal integer. Originally, they
12815   // must be of a strictly smaller size.
12816   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12817                          DAG.getConstant(Size, DL, MVT::i32));
12818   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12819                          DAG.getConstant(Size, DL, MVT::i32));
12820 
12821   // Swap if needed. Depends on the condition code.
12822   if (Swap)
12823     std::swap(Op0, Op1);
12824 
12825   // Subtract extended integers.
12826   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12827 
12828   // Move the sign bit to the least significant position and zero out the rest.
12829   // Now the least significant bit carries the result of original comparison.
12830   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12831                              DAG.getConstant(Size - 1, DL, MVT::i32));
12832   auto Final = Shifted;
12833 
12834   // Complement the result if needed. Based on the condition code.
12835   if (Complement)
12836     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12837                         DAG.getConstant(1, DL, MVT::i64));
12838 
12839   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12840 }
12841 
12842 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12843                                                   DAGCombinerInfo &DCI) const {
12844   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12845 
12846   SelectionDAG &DAG = DCI.DAG;
12847   SDLoc DL(N);
12848 
12849   // Size of integers being compared has a critical role in the following
12850   // analysis, so we prefer to do this when all types are legal.
12851   if (!DCI.isAfterLegalizeDAG())
12852     return SDValue();
12853 
12854   // If all users of SETCC extend its value to a legal integer type
12855   // then we replace SETCC with a subtraction
12856   for (SDNode::use_iterator UI = N->use_begin(),
12857        UE = N->use_end(); UI != UE; ++UI) {
12858     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12859       return SDValue();
12860   }
12861 
12862   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12863   auto OpSize = N->getOperand(0).getValueSizeInBits();
12864 
12865   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12866 
12867   if (OpSize < Size) {
12868     switch (CC) {
12869     default: break;
12870     case ISD::SETULT:
12871       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12872     case ISD::SETULE:
12873       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12874     case ISD::SETUGT:
12875       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12876     case ISD::SETUGE:
12877       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12878     }
12879   }
12880 
12881   return SDValue();
12882 }
12883 
12884 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12885                                                   DAGCombinerInfo &DCI) const {
12886   SelectionDAG &DAG = DCI.DAG;
12887   SDLoc dl(N);
12888 
12889   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12890   // If we're tracking CR bits, we need to be careful that we don't have:
12891   //   trunc(binary-ops(zext(x), zext(y)))
12892   // or
12893   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12894   // such that we're unnecessarily moving things into GPRs when it would be
12895   // better to keep them in CR bits.
12896 
12897   // Note that trunc here can be an actual i1 trunc, or can be the effective
12898   // truncation that comes from a setcc or select_cc.
12899   if (N->getOpcode() == ISD::TRUNCATE &&
12900       N->getValueType(0) != MVT::i1)
12901     return SDValue();
12902 
12903   if (N->getOperand(0).getValueType() != MVT::i32 &&
12904       N->getOperand(0).getValueType() != MVT::i64)
12905     return SDValue();
12906 
12907   if (N->getOpcode() == ISD::SETCC ||
12908       N->getOpcode() == ISD::SELECT_CC) {
12909     // If we're looking at a comparison, then we need to make sure that the
12910     // high bits (all except for the first) don't matter the result.
12911     ISD::CondCode CC =
12912       cast<CondCodeSDNode>(N->getOperand(
12913         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12914     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12915 
12916     if (ISD::isSignedIntSetCC(CC)) {
12917       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12918           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12919         return SDValue();
12920     } else if (ISD::isUnsignedIntSetCC(CC)) {
12921       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12922                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12923           !DAG.MaskedValueIsZero(N->getOperand(1),
12924                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12925         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12926                                              : SDValue());
12927     } else {
12928       // This is neither a signed nor an unsigned comparison, just make sure
12929       // that the high bits are equal.
12930       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12931       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12932 
12933       // We don't really care about what is known about the first bit (if
12934       // anything), so clear it in all masks prior to comparing them.
12935       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12936       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12937 
12938       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12939         return SDValue();
12940     }
12941   }
12942 
12943   // We now know that the higher-order bits are irrelevant, we just need to
12944   // make sure that all of the intermediate operations are bit operations, and
12945   // all inputs are extensions.
12946   if (N->getOperand(0).getOpcode() != ISD::AND &&
12947       N->getOperand(0).getOpcode() != ISD::OR  &&
12948       N->getOperand(0).getOpcode() != ISD::XOR &&
12949       N->getOperand(0).getOpcode() != ISD::SELECT &&
12950       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12951       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12952       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12953       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12954       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12955     return SDValue();
12956 
12957   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12958       N->getOperand(1).getOpcode() != ISD::AND &&
12959       N->getOperand(1).getOpcode() != ISD::OR  &&
12960       N->getOperand(1).getOpcode() != ISD::XOR &&
12961       N->getOperand(1).getOpcode() != ISD::SELECT &&
12962       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12963       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12964       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12965       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12966       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12967     return SDValue();
12968 
12969   SmallVector<SDValue, 4> Inputs;
12970   SmallVector<SDValue, 8> BinOps, PromOps;
12971   SmallPtrSet<SDNode *, 16> Visited;
12972 
12973   for (unsigned i = 0; i < 2; ++i) {
12974     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12975           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12976           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12977           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12978         isa<ConstantSDNode>(N->getOperand(i)))
12979       Inputs.push_back(N->getOperand(i));
12980     else
12981       BinOps.push_back(N->getOperand(i));
12982 
12983     if (N->getOpcode() == ISD::TRUNCATE)
12984       break;
12985   }
12986 
12987   // Visit all inputs, collect all binary operations (and, or, xor and
12988   // select) that are all fed by extensions.
12989   while (!BinOps.empty()) {
12990     SDValue BinOp = BinOps.back();
12991     BinOps.pop_back();
12992 
12993     if (!Visited.insert(BinOp.getNode()).second)
12994       continue;
12995 
12996     PromOps.push_back(BinOp);
12997 
12998     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12999       // The condition of the select is not promoted.
13000       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13001         continue;
13002       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13003         continue;
13004 
13005       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13006             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13007             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13008            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13009           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13010         Inputs.push_back(BinOp.getOperand(i));
13011       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13012                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13013                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13014                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13015                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13016                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13017                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13018                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13019                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13020         BinOps.push_back(BinOp.getOperand(i));
13021       } else {
13022         // We have an input that is not an extension or another binary
13023         // operation; we'll abort this transformation.
13024         return SDValue();
13025       }
13026     }
13027   }
13028 
13029   // Make sure that this is a self-contained cluster of operations (which
13030   // is not quite the same thing as saying that everything has only one
13031   // use).
13032   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13033     if (isa<ConstantSDNode>(Inputs[i]))
13034       continue;
13035 
13036     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13037                               UE = Inputs[i].getNode()->use_end();
13038          UI != UE; ++UI) {
13039       SDNode *User = *UI;
13040       if (User != N && !Visited.count(User))
13041         return SDValue();
13042 
13043       // Make sure that we're not going to promote the non-output-value
13044       // operand(s) or SELECT or SELECT_CC.
13045       // FIXME: Although we could sometimes handle this, and it does occur in
13046       // practice that one of the condition inputs to the select is also one of
13047       // the outputs, we currently can't deal with this.
13048       if (User->getOpcode() == ISD::SELECT) {
13049         if (User->getOperand(0) == Inputs[i])
13050           return SDValue();
13051       } else if (User->getOpcode() == ISD::SELECT_CC) {
13052         if (User->getOperand(0) == Inputs[i] ||
13053             User->getOperand(1) == Inputs[i])
13054           return SDValue();
13055       }
13056     }
13057   }
13058 
13059   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13060     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13061                               UE = PromOps[i].getNode()->use_end();
13062          UI != UE; ++UI) {
13063       SDNode *User = *UI;
13064       if (User != N && !Visited.count(User))
13065         return SDValue();
13066 
13067       // Make sure that we're not going to promote the non-output-value
13068       // operand(s) or SELECT or SELECT_CC.
13069       // FIXME: Although we could sometimes handle this, and it does occur in
13070       // practice that one of the condition inputs to the select is also one of
13071       // the outputs, we currently can't deal with this.
13072       if (User->getOpcode() == ISD::SELECT) {
13073         if (User->getOperand(0) == PromOps[i])
13074           return SDValue();
13075       } else if (User->getOpcode() == ISD::SELECT_CC) {
13076         if (User->getOperand(0) == PromOps[i] ||
13077             User->getOperand(1) == PromOps[i])
13078           return SDValue();
13079       }
13080     }
13081   }
13082 
13083   // Replace all inputs with the extension operand.
13084   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13085     // Constants may have users outside the cluster of to-be-promoted nodes,
13086     // and so we need to replace those as we do the promotions.
13087     if (isa<ConstantSDNode>(Inputs[i]))
13088       continue;
13089     else
13090       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13091   }
13092 
13093   std::list<HandleSDNode> PromOpHandles;
13094   for (auto &PromOp : PromOps)
13095     PromOpHandles.emplace_back(PromOp);
13096 
13097   // Replace all operations (these are all the same, but have a different
13098   // (i1) return type). DAG.getNode will validate that the types of
13099   // a binary operator match, so go through the list in reverse so that
13100   // we've likely promoted both operands first. Any intermediate truncations or
13101   // extensions disappear.
13102   while (!PromOpHandles.empty()) {
13103     SDValue PromOp = PromOpHandles.back().getValue();
13104     PromOpHandles.pop_back();
13105 
13106     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13107         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13108         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13109         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13110       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13111           PromOp.getOperand(0).getValueType() != MVT::i1) {
13112         // The operand is not yet ready (see comment below).
13113         PromOpHandles.emplace_front(PromOp);
13114         continue;
13115       }
13116 
13117       SDValue RepValue = PromOp.getOperand(0);
13118       if (isa<ConstantSDNode>(RepValue))
13119         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13120 
13121       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13122       continue;
13123     }
13124 
13125     unsigned C;
13126     switch (PromOp.getOpcode()) {
13127     default:             C = 0; break;
13128     case ISD::SELECT:    C = 1; break;
13129     case ISD::SELECT_CC: C = 2; break;
13130     }
13131 
13132     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13133          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13134         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13135          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13136       // The to-be-promoted operands of this node have not yet been
13137       // promoted (this should be rare because we're going through the
13138       // list backward, but if one of the operands has several users in
13139       // this cluster of to-be-promoted nodes, it is possible).
13140       PromOpHandles.emplace_front(PromOp);
13141       continue;
13142     }
13143 
13144     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13145                                 PromOp.getNode()->op_end());
13146 
13147     // If there are any constant inputs, make sure they're replaced now.
13148     for (unsigned i = 0; i < 2; ++i)
13149       if (isa<ConstantSDNode>(Ops[C+i]))
13150         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13151 
13152     DAG.ReplaceAllUsesOfValueWith(PromOp,
13153       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13154   }
13155 
13156   // Now we're left with the initial truncation itself.
13157   if (N->getOpcode() == ISD::TRUNCATE)
13158     return N->getOperand(0);
13159 
13160   // Otherwise, this is a comparison. The operands to be compared have just
13161   // changed type (to i1), but everything else is the same.
13162   return SDValue(N, 0);
13163 }
13164 
13165 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13166                                                   DAGCombinerInfo &DCI) const {
13167   SelectionDAG &DAG = DCI.DAG;
13168   SDLoc dl(N);
13169 
13170   // If we're tracking CR bits, we need to be careful that we don't have:
13171   //   zext(binary-ops(trunc(x), trunc(y)))
13172   // or
13173   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13174   // such that we're unnecessarily moving things into CR bits that can more
13175   // efficiently stay in GPRs. Note that if we're not certain that the high
13176   // bits are set as required by the final extension, we still may need to do
13177   // some masking to get the proper behavior.
13178 
13179   // This same functionality is important on PPC64 when dealing with
13180   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13181   // the return values of functions. Because it is so similar, it is handled
13182   // here as well.
13183 
13184   if (N->getValueType(0) != MVT::i32 &&
13185       N->getValueType(0) != MVT::i64)
13186     return SDValue();
13187 
13188   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13189         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13190     return SDValue();
13191 
13192   if (N->getOperand(0).getOpcode() != ISD::AND &&
13193       N->getOperand(0).getOpcode() != ISD::OR  &&
13194       N->getOperand(0).getOpcode() != ISD::XOR &&
13195       N->getOperand(0).getOpcode() != ISD::SELECT &&
13196       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13197     return SDValue();
13198 
13199   SmallVector<SDValue, 4> Inputs;
13200   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13201   SmallPtrSet<SDNode *, 16> Visited;
13202 
13203   // Visit all inputs, collect all binary operations (and, or, xor and
13204   // select) that are all fed by truncations.
13205   while (!BinOps.empty()) {
13206     SDValue BinOp = BinOps.back();
13207     BinOps.pop_back();
13208 
13209     if (!Visited.insert(BinOp.getNode()).second)
13210       continue;
13211 
13212     PromOps.push_back(BinOp);
13213 
13214     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13215       // The condition of the select is not promoted.
13216       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13217         continue;
13218       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13219         continue;
13220 
13221       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13222           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13223         Inputs.push_back(BinOp.getOperand(i));
13224       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13225                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13226                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13227                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13228                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13229         BinOps.push_back(BinOp.getOperand(i));
13230       } else {
13231         // We have an input that is not a truncation or another binary
13232         // operation; we'll abort this transformation.
13233         return SDValue();
13234       }
13235     }
13236   }
13237 
13238   // The operands of a select that must be truncated when the select is
13239   // promoted because the operand is actually part of the to-be-promoted set.
13240   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13241 
13242   // Make sure that this is a self-contained cluster of operations (which
13243   // is not quite the same thing as saying that everything has only one
13244   // use).
13245   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13246     if (isa<ConstantSDNode>(Inputs[i]))
13247       continue;
13248 
13249     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13250                               UE = Inputs[i].getNode()->use_end();
13251          UI != UE; ++UI) {
13252       SDNode *User = *UI;
13253       if (User != N && !Visited.count(User))
13254         return SDValue();
13255 
13256       // If we're going to promote the non-output-value operand(s) or SELECT or
13257       // SELECT_CC, record them for truncation.
13258       if (User->getOpcode() == ISD::SELECT) {
13259         if (User->getOperand(0) == Inputs[i])
13260           SelectTruncOp[0].insert(std::make_pair(User,
13261                                     User->getOperand(0).getValueType()));
13262       } else if (User->getOpcode() == ISD::SELECT_CC) {
13263         if (User->getOperand(0) == Inputs[i])
13264           SelectTruncOp[0].insert(std::make_pair(User,
13265                                     User->getOperand(0).getValueType()));
13266         if (User->getOperand(1) == Inputs[i])
13267           SelectTruncOp[1].insert(std::make_pair(User,
13268                                     User->getOperand(1).getValueType()));
13269       }
13270     }
13271   }
13272 
13273   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13274     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13275                               UE = PromOps[i].getNode()->use_end();
13276          UI != UE; ++UI) {
13277       SDNode *User = *UI;
13278       if (User != N && !Visited.count(User))
13279         return SDValue();
13280 
13281       // If we're going to promote the non-output-value operand(s) or SELECT or
13282       // SELECT_CC, record them for truncation.
13283       if (User->getOpcode() == ISD::SELECT) {
13284         if (User->getOperand(0) == PromOps[i])
13285           SelectTruncOp[0].insert(std::make_pair(User,
13286                                     User->getOperand(0).getValueType()));
13287       } else if (User->getOpcode() == ISD::SELECT_CC) {
13288         if (User->getOperand(0) == PromOps[i])
13289           SelectTruncOp[0].insert(std::make_pair(User,
13290                                     User->getOperand(0).getValueType()));
13291         if (User->getOperand(1) == PromOps[i])
13292           SelectTruncOp[1].insert(std::make_pair(User,
13293                                     User->getOperand(1).getValueType()));
13294       }
13295     }
13296   }
13297 
13298   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13299   bool ReallyNeedsExt = false;
13300   if (N->getOpcode() != ISD::ANY_EXTEND) {
13301     // If all of the inputs are not already sign/zero extended, then
13302     // we'll still need to do that at the end.
13303     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13304       if (isa<ConstantSDNode>(Inputs[i]))
13305         continue;
13306 
13307       unsigned OpBits =
13308         Inputs[i].getOperand(0).getValueSizeInBits();
13309       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13310 
13311       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13312            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13313                                   APInt::getHighBitsSet(OpBits,
13314                                                         OpBits-PromBits))) ||
13315           (N->getOpcode() == ISD::SIGN_EXTEND &&
13316            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13317              (OpBits-(PromBits-1)))) {
13318         ReallyNeedsExt = true;
13319         break;
13320       }
13321     }
13322   }
13323 
13324   // Replace all inputs, either with the truncation operand, or a
13325   // truncation or extension to the final output type.
13326   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13327     // Constant inputs need to be replaced with the to-be-promoted nodes that
13328     // use them because they might have users outside of the cluster of
13329     // promoted nodes.
13330     if (isa<ConstantSDNode>(Inputs[i]))
13331       continue;
13332 
13333     SDValue InSrc = Inputs[i].getOperand(0);
13334     if (Inputs[i].getValueType() == N->getValueType(0))
13335       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13336     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13337       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13338         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13339     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13340       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13341         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13342     else
13343       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13344         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13345   }
13346 
13347   std::list<HandleSDNode> PromOpHandles;
13348   for (auto &PromOp : PromOps)
13349     PromOpHandles.emplace_back(PromOp);
13350 
13351   // Replace all operations (these are all the same, but have a different
13352   // (promoted) return type). DAG.getNode will validate that the types of
13353   // a binary operator match, so go through the list in reverse so that
13354   // we've likely promoted both operands first.
13355   while (!PromOpHandles.empty()) {
13356     SDValue PromOp = PromOpHandles.back().getValue();
13357     PromOpHandles.pop_back();
13358 
13359     unsigned C;
13360     switch (PromOp.getOpcode()) {
13361     default:             C = 0; break;
13362     case ISD::SELECT:    C = 1; break;
13363     case ISD::SELECT_CC: C = 2; break;
13364     }
13365 
13366     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13367          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13368         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13369          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13370       // The to-be-promoted operands of this node have not yet been
13371       // promoted (this should be rare because we're going through the
13372       // list backward, but if one of the operands has several users in
13373       // this cluster of to-be-promoted nodes, it is possible).
13374       PromOpHandles.emplace_front(PromOp);
13375       continue;
13376     }
13377 
13378     // For SELECT and SELECT_CC nodes, we do a similar check for any
13379     // to-be-promoted comparison inputs.
13380     if (PromOp.getOpcode() == ISD::SELECT ||
13381         PromOp.getOpcode() == ISD::SELECT_CC) {
13382       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13383            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13384           (SelectTruncOp[1].count(PromOp.getNode()) &&
13385            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13386         PromOpHandles.emplace_front(PromOp);
13387         continue;
13388       }
13389     }
13390 
13391     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13392                                 PromOp.getNode()->op_end());
13393 
13394     // If this node has constant inputs, then they'll need to be promoted here.
13395     for (unsigned i = 0; i < 2; ++i) {
13396       if (!isa<ConstantSDNode>(Ops[C+i]))
13397         continue;
13398       if (Ops[C+i].getValueType() == N->getValueType(0))
13399         continue;
13400 
13401       if (N->getOpcode() == ISD::SIGN_EXTEND)
13402         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13403       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13404         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13405       else
13406         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13407     }
13408 
13409     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13410     // truncate them again to the original value type.
13411     if (PromOp.getOpcode() == ISD::SELECT ||
13412         PromOp.getOpcode() == ISD::SELECT_CC) {
13413       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13414       if (SI0 != SelectTruncOp[0].end())
13415         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13416       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13417       if (SI1 != SelectTruncOp[1].end())
13418         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13419     }
13420 
13421     DAG.ReplaceAllUsesOfValueWith(PromOp,
13422       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13423   }
13424 
13425   // Now we're left with the initial extension itself.
13426   if (!ReallyNeedsExt)
13427     return N->getOperand(0);
13428 
13429   // To zero extend, just mask off everything except for the first bit (in the
13430   // i1 case).
13431   if (N->getOpcode() == ISD::ZERO_EXTEND)
13432     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13433                        DAG.getConstant(APInt::getLowBitsSet(
13434                                          N->getValueSizeInBits(0), PromBits),
13435                                        dl, N->getValueType(0)));
13436 
13437   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13438          "Invalid extension type");
13439   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13440   SDValue ShiftCst =
13441       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13442   return DAG.getNode(
13443       ISD::SRA, dl, N->getValueType(0),
13444       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13445       ShiftCst);
13446 }
13447 
13448 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13449                                         DAGCombinerInfo &DCI) const {
13450   assert(N->getOpcode() == ISD::SETCC &&
13451          "Should be called with a SETCC node");
13452 
13453   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13454   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13455     SDValue LHS = N->getOperand(0);
13456     SDValue RHS = N->getOperand(1);
13457 
13458     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13459     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13460         LHS.hasOneUse())
13461       std::swap(LHS, RHS);
13462 
13463     // x == 0-y --> x+y == 0
13464     // x != 0-y --> x+y != 0
13465     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13466         RHS.hasOneUse()) {
13467       SDLoc DL(N);
13468       SelectionDAG &DAG = DCI.DAG;
13469       EVT VT = N->getValueType(0);
13470       EVT OpVT = LHS.getValueType();
13471       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13472       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13473     }
13474   }
13475 
13476   return DAGCombineTruncBoolExt(N, DCI);
13477 }
13478 
13479 // Is this an extending load from an f32 to an f64?
13480 static bool isFPExtLoad(SDValue Op) {
13481   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13482     return LD->getExtensionType() == ISD::EXTLOAD &&
13483       Op.getValueType() == MVT::f64;
13484   return false;
13485 }
13486 
13487 /// Reduces the number of fp-to-int conversion when building a vector.
13488 ///
13489 /// If this vector is built out of floating to integer conversions,
13490 /// transform it to a vector built out of floating point values followed by a
13491 /// single floating to integer conversion of the vector.
13492 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13493 /// becomes (fptosi (build_vector ($A, $B, ...)))
13494 SDValue PPCTargetLowering::
13495 combineElementTruncationToVectorTruncation(SDNode *N,
13496                                            DAGCombinerInfo &DCI) const {
13497   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13498          "Should be called with a BUILD_VECTOR node");
13499 
13500   SelectionDAG &DAG = DCI.DAG;
13501   SDLoc dl(N);
13502 
13503   SDValue FirstInput = N->getOperand(0);
13504   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13505          "The input operand must be an fp-to-int conversion.");
13506 
13507   // This combine happens after legalization so the fp_to_[su]i nodes are
13508   // already converted to PPCSISD nodes.
13509   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13510   if (FirstConversion == PPCISD::FCTIDZ ||
13511       FirstConversion == PPCISD::FCTIDUZ ||
13512       FirstConversion == PPCISD::FCTIWZ ||
13513       FirstConversion == PPCISD::FCTIWUZ) {
13514     bool IsSplat = true;
13515     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13516       FirstConversion == PPCISD::FCTIWUZ;
13517     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13518     SmallVector<SDValue, 4> Ops;
13519     EVT TargetVT = N->getValueType(0);
13520     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13521       SDValue NextOp = N->getOperand(i);
13522       if (NextOp.getOpcode() != PPCISD::MFVSR)
13523         return SDValue();
13524       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13525       if (NextConversion != FirstConversion)
13526         return SDValue();
13527       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13528       // This is not valid if the input was originally double precision. It is
13529       // also not profitable to do unless this is an extending load in which
13530       // case doing this combine will allow us to combine consecutive loads.
13531       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13532         return SDValue();
13533       if (N->getOperand(i) != FirstInput)
13534         IsSplat = false;
13535     }
13536 
13537     // If this is a splat, we leave it as-is since there will be only a single
13538     // fp-to-int conversion followed by a splat of the integer. This is better
13539     // for 32-bit and smaller ints and neutral for 64-bit ints.
13540     if (IsSplat)
13541       return SDValue();
13542 
13543     // Now that we know we have the right type of node, get its operands
13544     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13545       SDValue In = N->getOperand(i).getOperand(0);
13546       if (Is32Bit) {
13547         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13548         // here, we know that all inputs are extending loads so this is safe).
13549         if (In.isUndef())
13550           Ops.push_back(DAG.getUNDEF(SrcVT));
13551         else {
13552           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13553                                       MVT::f32, In.getOperand(0),
13554                                       DAG.getIntPtrConstant(1, dl));
13555           Ops.push_back(Trunc);
13556         }
13557       } else
13558         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13559     }
13560 
13561     unsigned Opcode;
13562     if (FirstConversion == PPCISD::FCTIDZ ||
13563         FirstConversion == PPCISD::FCTIWZ)
13564       Opcode = ISD::FP_TO_SINT;
13565     else
13566       Opcode = ISD::FP_TO_UINT;
13567 
13568     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13569     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13570     return DAG.getNode(Opcode, dl, TargetVT, BV);
13571   }
13572   return SDValue();
13573 }
13574 
13575 /// Reduce the number of loads when building a vector.
13576 ///
13577 /// Building a vector out of multiple loads can be converted to a load
13578 /// of the vector type if the loads are consecutive. If the loads are
13579 /// consecutive but in descending order, a shuffle is added at the end
13580 /// to reorder the vector.
13581 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13582   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13583          "Should be called with a BUILD_VECTOR node");
13584 
13585   SDLoc dl(N);
13586 
13587   // Return early for non byte-sized type, as they can't be consecutive.
13588   if (!N->getValueType(0).getVectorElementType().isByteSized())
13589     return SDValue();
13590 
13591   bool InputsAreConsecutiveLoads = true;
13592   bool InputsAreReverseConsecutive = true;
13593   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13594   SDValue FirstInput = N->getOperand(0);
13595   bool IsRoundOfExtLoad = false;
13596 
13597   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13598       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13599     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13600     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13601   }
13602   // Not a build vector of (possibly fp_rounded) loads.
13603   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13604       N->getNumOperands() == 1)
13605     return SDValue();
13606 
13607   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13608     // If any inputs are fp_round(extload), they all must be.
13609     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13610       return SDValue();
13611 
13612     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13613       N->getOperand(i);
13614     if (NextInput.getOpcode() != ISD::LOAD)
13615       return SDValue();
13616 
13617     SDValue PreviousInput =
13618       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13619     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13620     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13621 
13622     // If any inputs are fp_round(extload), they all must be.
13623     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13624       return SDValue();
13625 
13626     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13627       InputsAreConsecutiveLoads = false;
13628     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13629       InputsAreReverseConsecutive = false;
13630 
13631     // Exit early if the loads are neither consecutive nor reverse consecutive.
13632     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13633       return SDValue();
13634   }
13635 
13636   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13637          "The loads cannot be both consecutive and reverse consecutive.");
13638 
13639   SDValue FirstLoadOp =
13640     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13641   SDValue LastLoadOp =
13642     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13643                        N->getOperand(N->getNumOperands()-1);
13644 
13645   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13646   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13647   if (InputsAreConsecutiveLoads) {
13648     assert(LD1 && "Input needs to be a LoadSDNode.");
13649     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13650                        LD1->getBasePtr(), LD1->getPointerInfo(),
13651                        LD1->getAlignment());
13652   }
13653   if (InputsAreReverseConsecutive) {
13654     assert(LDL && "Input needs to be a LoadSDNode.");
13655     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13656                                LDL->getBasePtr(), LDL->getPointerInfo(),
13657                                LDL->getAlignment());
13658     SmallVector<int, 16> Ops;
13659     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13660       Ops.push_back(i);
13661 
13662     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13663                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13664   }
13665   return SDValue();
13666 }
13667 
13668 // This function adds the required vector_shuffle needed to get
13669 // the elements of the vector extract in the correct position
13670 // as specified by the CorrectElems encoding.
13671 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13672                                       SDValue Input, uint64_t Elems,
13673                                       uint64_t CorrectElems) {
13674   SDLoc dl(N);
13675 
13676   unsigned NumElems = Input.getValueType().getVectorNumElements();
13677   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13678 
13679   // Knowing the element indices being extracted from the original
13680   // vector and the order in which they're being inserted, just put
13681   // them at element indices required for the instruction.
13682   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13683     if (DAG.getDataLayout().isLittleEndian())
13684       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13685     else
13686       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13687     CorrectElems = CorrectElems >> 8;
13688     Elems = Elems >> 8;
13689   }
13690 
13691   SDValue Shuffle =
13692       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13693                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13694 
13695   EVT VT = N->getValueType(0);
13696   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13697 
13698   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13699                                Input.getValueType().getVectorElementType(),
13700                                VT.getVectorNumElements());
13701   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13702                      DAG.getValueType(ExtVT));
13703 }
13704 
13705 // Look for build vector patterns where input operands come from sign
13706 // extended vector_extract elements of specific indices. If the correct indices
13707 // aren't used, add a vector shuffle to fix up the indices and create
13708 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13709 // during instruction selection.
13710 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13711   // This array encodes the indices that the vector sign extend instructions
13712   // extract from when extending from one type to another for both BE and LE.
13713   // The right nibble of each byte corresponds to the LE incides.
13714   // and the left nibble of each byte corresponds to the BE incides.
13715   // For example: 0x3074B8FC  byte->word
13716   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13717   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13718   // For example: 0x000070F8  byte->double word
13719   // For LE: the allowed indices are: 0x0,0x8
13720   // For BE: the allowed indices are: 0x7,0xF
13721   uint64_t TargetElems[] = {
13722       0x3074B8FC, // b->w
13723       0x000070F8, // b->d
13724       0x10325476, // h->w
13725       0x00003074, // h->d
13726       0x00001032, // w->d
13727   };
13728 
13729   uint64_t Elems = 0;
13730   int Index;
13731   SDValue Input;
13732 
13733   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13734     if (!Op)
13735       return false;
13736     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13737         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13738       return false;
13739 
13740     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13741     // of the right width.
13742     SDValue Extract = Op.getOperand(0);
13743     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13744       Extract = Extract.getOperand(0);
13745     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13746       return false;
13747 
13748     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13749     if (!ExtOp)
13750       return false;
13751 
13752     Index = ExtOp->getZExtValue();
13753     if (Input && Input != Extract.getOperand(0))
13754       return false;
13755 
13756     if (!Input)
13757       Input = Extract.getOperand(0);
13758 
13759     Elems = Elems << 8;
13760     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13761     Elems |= Index;
13762 
13763     return true;
13764   };
13765 
13766   // If the build vector operands aren't sign extended vector extracts,
13767   // of the same input vector, then return.
13768   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13769     if (!isSExtOfVecExtract(N->getOperand(i))) {
13770       return SDValue();
13771     }
13772   }
13773 
13774   // If the vector extract indicies are not correct, add the appropriate
13775   // vector_shuffle.
13776   int TgtElemArrayIdx;
13777   int InputSize = Input.getValueType().getScalarSizeInBits();
13778   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13779   if (InputSize + OutputSize == 40)
13780     TgtElemArrayIdx = 0;
13781   else if (InputSize + OutputSize == 72)
13782     TgtElemArrayIdx = 1;
13783   else if (InputSize + OutputSize == 48)
13784     TgtElemArrayIdx = 2;
13785   else if (InputSize + OutputSize == 80)
13786     TgtElemArrayIdx = 3;
13787   else if (InputSize + OutputSize == 96)
13788     TgtElemArrayIdx = 4;
13789   else
13790     return SDValue();
13791 
13792   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13793   CorrectElems = DAG.getDataLayout().isLittleEndian()
13794                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13795                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13796   if (Elems != CorrectElems) {
13797     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13798   }
13799 
13800   // Regular lowering will catch cases where a shuffle is not needed.
13801   return SDValue();
13802 }
13803 
13804 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13805                                                  DAGCombinerInfo &DCI) const {
13806   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13807          "Should be called with a BUILD_VECTOR node");
13808 
13809   SelectionDAG &DAG = DCI.DAG;
13810   SDLoc dl(N);
13811 
13812   if (!Subtarget.hasVSX())
13813     return SDValue();
13814 
13815   // The target independent DAG combiner will leave a build_vector of
13816   // float-to-int conversions intact. We can generate MUCH better code for
13817   // a float-to-int conversion of a vector of floats.
13818   SDValue FirstInput = N->getOperand(0);
13819   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13820     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13821     if (Reduced)
13822       return Reduced;
13823   }
13824 
13825   // If we're building a vector out of consecutive loads, just load that
13826   // vector type.
13827   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13828   if (Reduced)
13829     return Reduced;
13830 
13831   // If we're building a vector out of extended elements from another vector
13832   // we have P9 vector integer extend instructions. The code assumes legal
13833   // input types (i.e. it can't handle things like v4i16) so do not run before
13834   // legalization.
13835   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13836     Reduced = combineBVOfVecSExt(N, DAG);
13837     if (Reduced)
13838       return Reduced;
13839   }
13840 
13841 
13842   if (N->getValueType(0) != MVT::v2f64)
13843     return SDValue();
13844 
13845   // Looking for:
13846   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13847   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13848       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13849     return SDValue();
13850   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13851       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13852     return SDValue();
13853   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13854     return SDValue();
13855 
13856   SDValue Ext1 = FirstInput.getOperand(0);
13857   SDValue Ext2 = N->getOperand(1).getOperand(0);
13858   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13859      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13860     return SDValue();
13861 
13862   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13863   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13864   if (!Ext1Op || !Ext2Op)
13865     return SDValue();
13866   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13867       Ext1.getOperand(0) != Ext2.getOperand(0))
13868     return SDValue();
13869 
13870   int FirstElem = Ext1Op->getZExtValue();
13871   int SecondElem = Ext2Op->getZExtValue();
13872   int SubvecIdx;
13873   if (FirstElem == 0 && SecondElem == 1)
13874     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13875   else if (FirstElem == 2 && SecondElem == 3)
13876     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13877   else
13878     return SDValue();
13879 
13880   SDValue SrcVec = Ext1.getOperand(0);
13881   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13882     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13883   return DAG.getNode(NodeType, dl, MVT::v2f64,
13884                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13885 }
13886 
13887 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13888                                               DAGCombinerInfo &DCI) const {
13889   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13890           N->getOpcode() == ISD::UINT_TO_FP) &&
13891          "Need an int -> FP conversion node here");
13892 
13893   if (useSoftFloat() || !Subtarget.has64BitSupport())
13894     return SDValue();
13895 
13896   SelectionDAG &DAG = DCI.DAG;
13897   SDLoc dl(N);
13898   SDValue Op(N, 0);
13899 
13900   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13901   // from the hardware.
13902   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13903     return SDValue();
13904   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13905       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13906     return SDValue();
13907 
13908   SDValue FirstOperand(Op.getOperand(0));
13909   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13910     (FirstOperand.getValueType() == MVT::i8 ||
13911      FirstOperand.getValueType() == MVT::i16);
13912   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13913     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13914     bool DstDouble = Op.getValueType() == MVT::f64;
13915     unsigned ConvOp = Signed ?
13916       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13917       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13918     SDValue WidthConst =
13919       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13920                             dl, false);
13921     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13922     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13923     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13924                                          DAG.getVTList(MVT::f64, MVT::Other),
13925                                          Ops, MVT::i8, LDN->getMemOperand());
13926 
13927     // For signed conversion, we need to sign-extend the value in the VSR
13928     if (Signed) {
13929       SDValue ExtOps[] = { Ld, WidthConst };
13930       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13931       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13932     } else
13933       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13934   }
13935 
13936 
13937   // For i32 intermediate values, unfortunately, the conversion functions
13938   // leave the upper 32 bits of the value are undefined. Within the set of
13939   // scalar instructions, we have no method for zero- or sign-extending the
13940   // value. Thus, we cannot handle i32 intermediate values here.
13941   if (Op.getOperand(0).getValueType() == MVT::i32)
13942     return SDValue();
13943 
13944   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13945          "UINT_TO_FP is supported only with FPCVT");
13946 
13947   // If we have FCFIDS, then use it when converting to single-precision.
13948   // Otherwise, convert to double-precision and then round.
13949   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13950                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13951                                                             : PPCISD::FCFIDS)
13952                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13953                                                             : PPCISD::FCFID);
13954   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13955                   ? MVT::f32
13956                   : MVT::f64;
13957 
13958   // If we're converting from a float, to an int, and back to a float again,
13959   // then we don't need the store/load pair at all.
13960   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13961        Subtarget.hasFPCVT()) ||
13962       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13963     SDValue Src = Op.getOperand(0).getOperand(0);
13964     if (Src.getValueType() == MVT::f32) {
13965       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13966       DCI.AddToWorklist(Src.getNode());
13967     } else if (Src.getValueType() != MVT::f64) {
13968       // Make sure that we don't pick up a ppc_fp128 source value.
13969       return SDValue();
13970     }
13971 
13972     unsigned FCTOp =
13973       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13974                                                         PPCISD::FCTIDUZ;
13975 
13976     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13977     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13978 
13979     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13980       FP = DAG.getNode(ISD::FP_ROUND, dl,
13981                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13982       DCI.AddToWorklist(FP.getNode());
13983     }
13984 
13985     return FP;
13986   }
13987 
13988   return SDValue();
13989 }
13990 
13991 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13992 // builtins) into loads with swaps.
13993 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13994                                               DAGCombinerInfo &DCI) const {
13995   SelectionDAG &DAG = DCI.DAG;
13996   SDLoc dl(N);
13997   SDValue Chain;
13998   SDValue Base;
13999   MachineMemOperand *MMO;
14000 
14001   switch (N->getOpcode()) {
14002   default:
14003     llvm_unreachable("Unexpected opcode for little endian VSX load");
14004   case ISD::LOAD: {
14005     LoadSDNode *LD = cast<LoadSDNode>(N);
14006     Chain = LD->getChain();
14007     Base = LD->getBasePtr();
14008     MMO = LD->getMemOperand();
14009     // If the MMO suggests this isn't a load of a full vector, leave
14010     // things alone.  For a built-in, we have to make the change for
14011     // correctness, so if there is a size problem that will be a bug.
14012     if (MMO->getSize() < 16)
14013       return SDValue();
14014     break;
14015   }
14016   case ISD::INTRINSIC_W_CHAIN: {
14017     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14018     Chain = Intrin->getChain();
14019     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14020     // us what we want. Get operand 2 instead.
14021     Base = Intrin->getOperand(2);
14022     MMO = Intrin->getMemOperand();
14023     break;
14024   }
14025   }
14026 
14027   MVT VecTy = N->getValueType(0).getSimpleVT();
14028 
14029   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14030   // aligned and the type is a vector with elements up to 4 bytes
14031   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14032       VecTy.getScalarSizeInBits() <= 32) {
14033     return SDValue();
14034   }
14035 
14036   SDValue LoadOps[] = { Chain, Base };
14037   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14038                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14039                                          LoadOps, MVT::v2f64, MMO);
14040 
14041   DCI.AddToWorklist(Load.getNode());
14042   Chain = Load.getValue(1);
14043   SDValue Swap = DAG.getNode(
14044       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14045   DCI.AddToWorklist(Swap.getNode());
14046 
14047   // Add a bitcast if the resulting load type doesn't match v2f64.
14048   if (VecTy != MVT::v2f64) {
14049     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14050     DCI.AddToWorklist(N.getNode());
14051     // Package {bitcast value, swap's chain} to match Load's shape.
14052     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14053                        N, Swap.getValue(1));
14054   }
14055 
14056   return Swap;
14057 }
14058 
14059 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14060 // builtins) into stores with swaps.
14061 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14062                                                DAGCombinerInfo &DCI) const {
14063   SelectionDAG &DAG = DCI.DAG;
14064   SDLoc dl(N);
14065   SDValue Chain;
14066   SDValue Base;
14067   unsigned SrcOpnd;
14068   MachineMemOperand *MMO;
14069 
14070   switch (N->getOpcode()) {
14071   default:
14072     llvm_unreachable("Unexpected opcode for little endian VSX store");
14073   case ISD::STORE: {
14074     StoreSDNode *ST = cast<StoreSDNode>(N);
14075     Chain = ST->getChain();
14076     Base = ST->getBasePtr();
14077     MMO = ST->getMemOperand();
14078     SrcOpnd = 1;
14079     // If the MMO suggests this isn't a store of a full vector, leave
14080     // things alone.  For a built-in, we have to make the change for
14081     // correctness, so if there is a size problem that will be a bug.
14082     if (MMO->getSize() < 16)
14083       return SDValue();
14084     break;
14085   }
14086   case ISD::INTRINSIC_VOID: {
14087     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14088     Chain = Intrin->getChain();
14089     // Intrin->getBasePtr() oddly does not get what we want.
14090     Base = Intrin->getOperand(3);
14091     MMO = Intrin->getMemOperand();
14092     SrcOpnd = 2;
14093     break;
14094   }
14095   }
14096 
14097   SDValue Src = N->getOperand(SrcOpnd);
14098   MVT VecTy = Src.getValueType().getSimpleVT();
14099 
14100   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14101   // aligned and the type is a vector with elements up to 4 bytes
14102   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14103       VecTy.getScalarSizeInBits() <= 32) {
14104     return SDValue();
14105   }
14106 
14107   // All stores are done as v2f64 and possible bit cast.
14108   if (VecTy != MVT::v2f64) {
14109     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14110     DCI.AddToWorklist(Src.getNode());
14111   }
14112 
14113   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14114                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14115   DCI.AddToWorklist(Swap.getNode());
14116   Chain = Swap.getValue(1);
14117   SDValue StoreOps[] = { Chain, Swap, Base };
14118   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14119                                           DAG.getVTList(MVT::Other),
14120                                           StoreOps, VecTy, MMO);
14121   DCI.AddToWorklist(Store.getNode());
14122   return Store;
14123 }
14124 
14125 // Handle DAG combine for STORE (FP_TO_INT F).
14126 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14127                                                DAGCombinerInfo &DCI) const {
14128 
14129   SelectionDAG &DAG = DCI.DAG;
14130   SDLoc dl(N);
14131   unsigned Opcode = N->getOperand(1).getOpcode();
14132 
14133   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14134          && "Not a FP_TO_INT Instruction!");
14135 
14136   SDValue Val = N->getOperand(1).getOperand(0);
14137   EVT Op1VT = N->getOperand(1).getValueType();
14138   EVT ResVT = Val.getValueType();
14139 
14140   // Floating point types smaller than 32 bits are not legal on Power.
14141   if (ResVT.getScalarSizeInBits() < 32)
14142     return SDValue();
14143 
14144   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14145   bool ValidTypeForStoreFltAsInt =
14146         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14147          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14148 
14149   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14150       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14151     return SDValue();
14152 
14153   // Extend f32 values to f64
14154   if (ResVT.getScalarSizeInBits() == 32) {
14155     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14156     DCI.AddToWorklist(Val.getNode());
14157   }
14158 
14159   // Set signed or unsigned conversion opcode.
14160   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14161                           PPCISD::FP_TO_SINT_IN_VSR :
14162                           PPCISD::FP_TO_UINT_IN_VSR;
14163 
14164   Val = DAG.getNode(ConvOpcode,
14165                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14166   DCI.AddToWorklist(Val.getNode());
14167 
14168   // Set number of bytes being converted.
14169   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14170   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14171                     DAG.getIntPtrConstant(ByteSize, dl, false),
14172                     DAG.getValueType(Op1VT) };
14173 
14174   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14175           DAG.getVTList(MVT::Other), Ops,
14176           cast<StoreSDNode>(N)->getMemoryVT(),
14177           cast<StoreSDNode>(N)->getMemOperand());
14178 
14179   DCI.AddToWorklist(Val.getNode());
14180   return Val;
14181 }
14182 
14183 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14184   // Check that the source of the element keeps flipping
14185   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14186   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14187   for (int i = 1, e = Mask.size(); i < e; i++) {
14188     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14189       return false;
14190     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14191       return false;
14192     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14193   }
14194   return true;
14195 }
14196 
14197 static bool isSplatBV(SDValue Op) {
14198   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14199     return false;
14200   SDValue FirstOp;
14201 
14202   // Find first non-undef input.
14203   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14204     FirstOp = Op.getOperand(i);
14205     if (!FirstOp.isUndef())
14206       break;
14207   }
14208 
14209   // All inputs are undef or the same as the first non-undef input.
14210   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14211     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14212       return false;
14213   return true;
14214 }
14215 
14216 static SDValue isScalarToVec(SDValue Op) {
14217   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14218     return Op;
14219   if (Op.getOpcode() != ISD::BITCAST)
14220     return SDValue();
14221   Op = Op.getOperand(0);
14222   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14223     return Op;
14224   return SDValue();
14225 }
14226 
14227 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14228                                             int LHSMaxIdx, int RHSMinIdx,
14229                                             int RHSMaxIdx, int HalfVec) {
14230   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14231     int Idx = ShuffV[i];
14232     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14233       ShuffV[i] += HalfVec;
14234   }
14235   return;
14236 }
14237 
14238 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14239 // the original is:
14240 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14241 // In such a case, just change the shuffle mask to extract the element
14242 // from the permuted index.
14243 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14244   SDLoc dl(OrigSToV);
14245   EVT VT = OrigSToV.getValueType();
14246   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14247          "Expecting a SCALAR_TO_VECTOR here");
14248   SDValue Input = OrigSToV.getOperand(0);
14249 
14250   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14251     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14252     SDValue OrigVector = Input.getOperand(0);
14253 
14254     // Can't handle non-const element indices or different vector types
14255     // for the input to the extract and the output of the scalar_to_vector.
14256     if (Idx && VT == OrigVector.getValueType()) {
14257       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14258       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14259       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14260     }
14261   }
14262   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14263                      OrigSToV.getOperand(0));
14264 }
14265 
14266 // On little endian subtargets, combine shuffles such as:
14267 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14268 // into:
14269 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14270 // because the latter can be matched to a single instruction merge.
14271 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14272 // to put the value into element zero. Adjust the shuffle mask so that the
14273 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14274 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14275                                                 SelectionDAG &DAG) const {
14276   SDValue LHS = SVN->getOperand(0);
14277   SDValue RHS = SVN->getOperand(1);
14278   auto Mask = SVN->getMask();
14279   int NumElts = LHS.getValueType().getVectorNumElements();
14280   SDValue Res(SVN, 0);
14281   SDLoc dl(SVN);
14282 
14283   // None of these combines are useful on big endian systems since the ISA
14284   // already has a big endian bias.
14285   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14286     return Res;
14287 
14288   // If this is not a shuffle of a shuffle and the first element comes from
14289   // the second vector, canonicalize to the commuted form. This will make it
14290   // more likely to match one of the single instruction patterns.
14291   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14292       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14293     std::swap(LHS, RHS);
14294     Res = DAG.getCommutedVectorShuffle(*SVN);
14295     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14296   }
14297 
14298   // Adjust the shuffle mask if either input vector comes from a
14299   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14300   // form (to prevent the need for a swap).
14301   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14302   SDValue SToVLHS = isScalarToVec(LHS);
14303   SDValue SToVRHS = isScalarToVec(RHS);
14304   if (SToVLHS || SToVRHS) {
14305     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14306                             : SToVRHS.getValueType().getVectorNumElements();
14307     int NumEltsOut = ShuffV.size();
14308 
14309     // Initially assume that neither input is permuted. These will be adjusted
14310     // accordingly if either input is.
14311     int LHSMaxIdx = -1;
14312     int RHSMinIdx = -1;
14313     int RHSMaxIdx = -1;
14314     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14315 
14316     // Get the permuted scalar to vector nodes for the source(s) that come from
14317     // ISD::SCALAR_TO_VECTOR.
14318     if (SToVLHS) {
14319       // Set up the values for the shuffle vector fixup.
14320       LHSMaxIdx = NumEltsOut / NumEltsIn;
14321       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14322       if (SToVLHS.getValueType() != LHS.getValueType())
14323         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14324       LHS = SToVLHS;
14325     }
14326     if (SToVRHS) {
14327       RHSMinIdx = NumEltsOut;
14328       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14329       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14330       if (SToVRHS.getValueType() != RHS.getValueType())
14331         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14332       RHS = SToVRHS;
14333     }
14334 
14335     // Fix up the shuffle mask to reflect where the desired element actually is.
14336     // The minimum and maximum indices that correspond to element zero for both
14337     // the LHS and RHS are computed and will control which shuffle mask entries
14338     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14339     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14340     // HalfVec to refer to the corresponding element in the permuted vector.
14341     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14342                                     HalfVec);
14343     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14344 
14345     // We may have simplified away the shuffle. We won't be able to do anything
14346     // further with it here.
14347     if (!isa<ShuffleVectorSDNode>(Res))
14348       return Res;
14349     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14350   }
14351 
14352   // The common case after we commuted the shuffle is that the RHS is a splat
14353   // and we have elements coming in from the splat at indices that are not
14354   // conducive to using a merge.
14355   // Example:
14356   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14357   if (!isSplatBV(RHS))
14358     return Res;
14359 
14360   // We are looking for a mask such that all even elements are from
14361   // one vector and all odd elements from the other.
14362   if (!isAlternatingShuffMask(Mask, NumElts))
14363     return Res;
14364 
14365   // Adjust the mask so we are pulling in the same index from the splat
14366   // as the index from the interesting vector in consecutive elements.
14367   // Example (even elements from first vector):
14368   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14369   if (Mask[0] < NumElts)
14370     for (int i = 1, e = Mask.size(); i < e; i += 2)
14371       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14372   // Example (odd elements from first vector):
14373   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14374   else
14375     for (int i = 0, e = Mask.size(); i < e; i += 2)
14376       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14377 
14378   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14379   return Res;
14380 }
14381 
14382 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14383                                                 LSBaseSDNode *LSBase,
14384                                                 DAGCombinerInfo &DCI) const {
14385   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14386         "Not a reverse memop pattern!");
14387 
14388   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14389     auto Mask = SVN->getMask();
14390     int i = 0;
14391     auto I = Mask.rbegin();
14392     auto E = Mask.rend();
14393 
14394     for (; I != E; ++I) {
14395       if (*I != i)
14396         return false;
14397       i++;
14398     }
14399     return true;
14400   };
14401 
14402   SelectionDAG &DAG = DCI.DAG;
14403   EVT VT = SVN->getValueType(0);
14404 
14405   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14406     return SDValue();
14407 
14408   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14409   // See comment in PPCVSXSwapRemoval.cpp.
14410   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14411   if (!Subtarget.hasP9Vector())
14412     return SDValue();
14413 
14414   if(!IsElementReverse(SVN))
14415     return SDValue();
14416 
14417   if (LSBase->getOpcode() == ISD::LOAD) {
14418     SDLoc dl(SVN);
14419     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14420     return DAG.getMemIntrinsicNode(
14421         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14422         LSBase->getMemoryVT(), LSBase->getMemOperand());
14423   }
14424 
14425   if (LSBase->getOpcode() == ISD::STORE) {
14426     SDLoc dl(LSBase);
14427     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14428                           LSBase->getBasePtr()};
14429     return DAG.getMemIntrinsicNode(
14430         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14431         LSBase->getMemoryVT(), LSBase->getMemOperand());
14432   }
14433 
14434   llvm_unreachable("Expected a load or store node here");
14435 }
14436 
14437 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14438                                              DAGCombinerInfo &DCI) const {
14439   SelectionDAG &DAG = DCI.DAG;
14440   SDLoc dl(N);
14441   switch (N->getOpcode()) {
14442   default: break;
14443   case ISD::ADD:
14444     return combineADD(N, DCI);
14445   case ISD::SHL:
14446     return combineSHL(N, DCI);
14447   case ISD::SRA:
14448     return combineSRA(N, DCI);
14449   case ISD::SRL:
14450     return combineSRL(N, DCI);
14451   case ISD::MUL:
14452     return combineMUL(N, DCI);
14453   case ISD::FMA:
14454   case PPCISD::FNMSUB:
14455     return combineFMALike(N, DCI);
14456   case PPCISD::SHL:
14457     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14458         return N->getOperand(0);
14459     break;
14460   case PPCISD::SRL:
14461     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14462         return N->getOperand(0);
14463     break;
14464   case PPCISD::SRA:
14465     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14466       if (C->isNullValue() ||   //  0 >>s V -> 0.
14467           C->isAllOnesValue())    // -1 >>s V -> -1.
14468         return N->getOperand(0);
14469     }
14470     break;
14471   case ISD::SIGN_EXTEND:
14472   case ISD::ZERO_EXTEND:
14473   case ISD::ANY_EXTEND:
14474     return DAGCombineExtBoolTrunc(N, DCI);
14475   case ISD::TRUNCATE:
14476     return combineTRUNCATE(N, DCI);
14477   case ISD::SETCC:
14478     if (SDValue CSCC = combineSetCC(N, DCI))
14479       return CSCC;
14480     LLVM_FALLTHROUGH;
14481   case ISD::SELECT_CC:
14482     return DAGCombineTruncBoolExt(N, DCI);
14483   case ISD::SINT_TO_FP:
14484   case ISD::UINT_TO_FP:
14485     return combineFPToIntToFP(N, DCI);
14486   case ISD::VECTOR_SHUFFLE:
14487     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14488       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14489       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14490     }
14491     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14492   case ISD::STORE: {
14493 
14494     EVT Op1VT = N->getOperand(1).getValueType();
14495     unsigned Opcode = N->getOperand(1).getOpcode();
14496 
14497     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14498       SDValue Val= combineStoreFPToInt(N, DCI);
14499       if (Val)
14500         return Val;
14501     }
14502 
14503     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14504       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14505       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14506       if (Val)
14507         return Val;
14508     }
14509 
14510     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14511     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14512         N->getOperand(1).getNode()->hasOneUse() &&
14513         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14514          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14515 
14516       // STBRX can only handle simple types and it makes no sense to store less
14517       // two bytes in byte-reversed order.
14518       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14519       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14520         break;
14521 
14522       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14523       // Do an any-extend to 32-bits if this is a half-word input.
14524       if (BSwapOp.getValueType() == MVT::i16)
14525         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14526 
14527       // If the type of BSWAP operand is wider than stored memory width
14528       // it need to be shifted to the right side before STBRX.
14529       if (Op1VT.bitsGT(mVT)) {
14530         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14531         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14532                               DAG.getConstant(Shift, dl, MVT::i32));
14533         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14534         if (Op1VT == MVT::i64)
14535           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14536       }
14537 
14538       SDValue Ops[] = {
14539         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14540       };
14541       return
14542         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14543                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14544                                 cast<StoreSDNode>(N)->getMemOperand());
14545     }
14546 
14547     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14548     // So it can increase the chance of CSE constant construction.
14549     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14550         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14551       // Need to sign-extended to 64-bits to handle negative values.
14552       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14553       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14554                                     MemVT.getSizeInBits());
14555       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14556 
14557       // DAG.getTruncStore() can't be used here because it doesn't accept
14558       // the general (base + offset) addressing mode.
14559       // So we use UpdateNodeOperands and setTruncatingStore instead.
14560       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14561                              N->getOperand(3));
14562       cast<StoreSDNode>(N)->setTruncatingStore(true);
14563       return SDValue(N, 0);
14564     }
14565 
14566     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14567     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14568     if (Op1VT.isSimple()) {
14569       MVT StoreVT = Op1VT.getSimpleVT();
14570       if (Subtarget.needsSwapsForVSXMemOps() &&
14571           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14572            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14573         return expandVSXStoreForLE(N, DCI);
14574     }
14575     break;
14576   }
14577   case ISD::LOAD: {
14578     LoadSDNode *LD = cast<LoadSDNode>(N);
14579     EVT VT = LD->getValueType(0);
14580 
14581     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14582     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14583     if (VT.isSimple()) {
14584       MVT LoadVT = VT.getSimpleVT();
14585       if (Subtarget.needsSwapsForVSXMemOps() &&
14586           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14587            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14588         return expandVSXLoadForLE(N, DCI);
14589     }
14590 
14591     // We sometimes end up with a 64-bit integer load, from which we extract
14592     // two single-precision floating-point numbers. This happens with
14593     // std::complex<float>, and other similar structures, because of the way we
14594     // canonicalize structure copies. However, if we lack direct moves,
14595     // then the final bitcasts from the extracted integer values to the
14596     // floating-point numbers turn into store/load pairs. Even with direct moves,
14597     // just loading the two floating-point numbers is likely better.
14598     auto ReplaceTwoFloatLoad = [&]() {
14599       if (VT != MVT::i64)
14600         return false;
14601 
14602       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14603           LD->isVolatile())
14604         return false;
14605 
14606       //  We're looking for a sequence like this:
14607       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14608       //      t16: i64 = srl t13, Constant:i32<32>
14609       //    t17: i32 = truncate t16
14610       //  t18: f32 = bitcast t17
14611       //    t19: i32 = truncate t13
14612       //  t20: f32 = bitcast t19
14613 
14614       if (!LD->hasNUsesOfValue(2, 0))
14615         return false;
14616 
14617       auto UI = LD->use_begin();
14618       while (UI.getUse().getResNo() != 0) ++UI;
14619       SDNode *Trunc = *UI++;
14620       while (UI.getUse().getResNo() != 0) ++UI;
14621       SDNode *RightShift = *UI;
14622       if (Trunc->getOpcode() != ISD::TRUNCATE)
14623         std::swap(Trunc, RightShift);
14624 
14625       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14626           Trunc->getValueType(0) != MVT::i32 ||
14627           !Trunc->hasOneUse())
14628         return false;
14629       if (RightShift->getOpcode() != ISD::SRL ||
14630           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14631           RightShift->getConstantOperandVal(1) != 32 ||
14632           !RightShift->hasOneUse())
14633         return false;
14634 
14635       SDNode *Trunc2 = *RightShift->use_begin();
14636       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14637           Trunc2->getValueType(0) != MVT::i32 ||
14638           !Trunc2->hasOneUse())
14639         return false;
14640 
14641       SDNode *Bitcast = *Trunc->use_begin();
14642       SDNode *Bitcast2 = *Trunc2->use_begin();
14643 
14644       if (Bitcast->getOpcode() != ISD::BITCAST ||
14645           Bitcast->getValueType(0) != MVT::f32)
14646         return false;
14647       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14648           Bitcast2->getValueType(0) != MVT::f32)
14649         return false;
14650 
14651       if (Subtarget.isLittleEndian())
14652         std::swap(Bitcast, Bitcast2);
14653 
14654       // Bitcast has the second float (in memory-layout order) and Bitcast2
14655       // has the first one.
14656 
14657       SDValue BasePtr = LD->getBasePtr();
14658       if (LD->isIndexed()) {
14659         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14660                "Non-pre-inc AM on PPC?");
14661         BasePtr =
14662           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14663                       LD->getOffset());
14664       }
14665 
14666       auto MMOFlags =
14667           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14668       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14669                                       LD->getPointerInfo(), LD->getAlignment(),
14670                                       MMOFlags, LD->getAAInfo());
14671       SDValue AddPtr =
14672         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14673                     BasePtr, DAG.getIntPtrConstant(4, dl));
14674       SDValue FloatLoad2 = DAG.getLoad(
14675           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14676           LD->getPointerInfo().getWithOffset(4),
14677           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14678 
14679       if (LD->isIndexed()) {
14680         // Note that DAGCombine should re-form any pre-increment load(s) from
14681         // what is produced here if that makes sense.
14682         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14683       }
14684 
14685       DCI.CombineTo(Bitcast2, FloatLoad);
14686       DCI.CombineTo(Bitcast, FloatLoad2);
14687 
14688       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14689                                     SDValue(FloatLoad2.getNode(), 1));
14690       return true;
14691     };
14692 
14693     if (ReplaceTwoFloatLoad())
14694       return SDValue(N, 0);
14695 
14696     EVT MemVT = LD->getMemoryVT();
14697     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14698     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
14699     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
14700     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
14701     if (LD->isUnindexed() && VT.isVector() &&
14702         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14703           // P8 and later hardware should just use LOAD.
14704           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
14705                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
14706          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
14707           LD->getAlignment() >= ScalarABIAlignment)) &&
14708         LD->getAlignment() < ABIAlignment) {
14709       // This is a type-legal unaligned Altivec or QPX load.
14710       SDValue Chain = LD->getChain();
14711       SDValue Ptr = LD->getBasePtr();
14712       bool isLittleEndian = Subtarget.isLittleEndian();
14713 
14714       // This implements the loading of unaligned vectors as described in
14715       // the venerable Apple Velocity Engine overview. Specifically:
14716       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14717       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14718       //
14719       // The general idea is to expand a sequence of one or more unaligned
14720       // loads into an alignment-based permutation-control instruction (lvsl
14721       // or lvsr), a series of regular vector loads (which always truncate
14722       // their input address to an aligned address), and a series of
14723       // permutations.  The results of these permutations are the requested
14724       // loaded values.  The trick is that the last "extra" load is not taken
14725       // from the address you might suspect (sizeof(vector) bytes after the
14726       // last requested load), but rather sizeof(vector) - 1 bytes after the
14727       // last requested vector. The point of this is to avoid a page fault if
14728       // the base address happened to be aligned. This works because if the
14729       // base address is aligned, then adding less than a full vector length
14730       // will cause the last vector in the sequence to be (re)loaded.
14731       // Otherwise, the next vector will be fetched as you might suspect was
14732       // necessary.
14733 
14734       // We might be able to reuse the permutation generation from
14735       // a different base address offset from this one by an aligned amount.
14736       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14737       // optimization later.
14738       Intrinsic::ID Intr, IntrLD, IntrPerm;
14739       MVT PermCntlTy, PermTy, LDTy;
14740       if (Subtarget.hasAltivec()) {
14741         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
14742                                  Intrinsic::ppc_altivec_lvsl;
14743         IntrLD = Intrinsic::ppc_altivec_lvx;
14744         IntrPerm = Intrinsic::ppc_altivec_vperm;
14745         PermCntlTy = MVT::v16i8;
14746         PermTy = MVT::v4i32;
14747         LDTy = MVT::v4i32;
14748       } else {
14749         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
14750                                        Intrinsic::ppc_qpx_qvlpcls;
14751         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
14752                                        Intrinsic::ppc_qpx_qvlfs;
14753         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
14754         PermCntlTy = MVT::v4f64;
14755         PermTy = MVT::v4f64;
14756         LDTy = MemVT.getSimpleVT();
14757       }
14758 
14759       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14760 
14761       // Create the new MMO for the new base load. It is like the original MMO,
14762       // but represents an area in memory almost twice the vector size centered
14763       // on the original address. If the address is unaligned, we might start
14764       // reading up to (sizeof(vector)-1) bytes below the address of the
14765       // original unaligned load.
14766       MachineFunction &MF = DAG.getMachineFunction();
14767       MachineMemOperand *BaseMMO =
14768         MF.getMachineMemOperand(LD->getMemOperand(),
14769                                 -(long)MemVT.getStoreSize()+1,
14770                                 2*MemVT.getStoreSize()-1);
14771 
14772       // Create the new base load.
14773       SDValue LDXIntID =
14774           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14775       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14776       SDValue BaseLoad =
14777         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14778                                 DAG.getVTList(PermTy, MVT::Other),
14779                                 BaseLoadOps, LDTy, BaseMMO);
14780 
14781       // Note that the value of IncOffset (which is provided to the next
14782       // load's pointer info offset value, and thus used to calculate the
14783       // alignment), and the value of IncValue (which is actually used to
14784       // increment the pointer value) are different! This is because we
14785       // require the next load to appear to be aligned, even though it
14786       // is actually offset from the base pointer by a lesser amount.
14787       int IncOffset = VT.getSizeInBits() / 8;
14788       int IncValue = IncOffset;
14789 
14790       // Walk (both up and down) the chain looking for another load at the real
14791       // (aligned) offset (the alignment of the other load does not matter in
14792       // this case). If found, then do not use the offset reduction trick, as
14793       // that will prevent the loads from being later combined (as they would
14794       // otherwise be duplicates).
14795       if (!findConsecutiveLoad(LD, DAG))
14796         --IncValue;
14797 
14798       SDValue Increment =
14799           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14800       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14801 
14802       MachineMemOperand *ExtraMMO =
14803         MF.getMachineMemOperand(LD->getMemOperand(),
14804                                 1, 2*MemVT.getStoreSize()-1);
14805       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14806       SDValue ExtraLoad =
14807         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14808                                 DAG.getVTList(PermTy, MVT::Other),
14809                                 ExtraLoadOps, LDTy, ExtraMMO);
14810 
14811       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14812         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14813 
14814       // Because vperm has a big-endian bias, we must reverse the order
14815       // of the input vectors and complement the permute control vector
14816       // when generating little endian code.  We have already handled the
14817       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14818       // and ExtraLoad here.
14819       SDValue Perm;
14820       if (isLittleEndian)
14821         Perm = BuildIntrinsicOp(IntrPerm,
14822                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14823       else
14824         Perm = BuildIntrinsicOp(IntrPerm,
14825                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14826 
14827       if (VT != PermTy)
14828         Perm = Subtarget.hasAltivec() ?
14829                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14830                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14831                                DAG.getTargetConstant(1, dl, MVT::i64));
14832                                // second argument is 1 because this rounding
14833                                // is always exact.
14834 
14835       // The output of the permutation is our loaded result, the TokenFactor is
14836       // our new chain.
14837       DCI.CombineTo(N, Perm, TF);
14838       return SDValue(N, 0);
14839     }
14840     }
14841     break;
14842     case ISD::INTRINSIC_WO_CHAIN: {
14843       bool isLittleEndian = Subtarget.isLittleEndian();
14844       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14845       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14846                                            : Intrinsic::ppc_altivec_lvsl);
14847       if ((IID == Intr ||
14848            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14849            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14850         N->getOperand(1)->getOpcode() == ISD::ADD) {
14851         SDValue Add = N->getOperand(1);
14852 
14853         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14854                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14855 
14856         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14857                                   APInt::getAllOnesValue(Bits /* alignment */)
14858                                       .zext(Add.getScalarValueSizeInBits()))) {
14859           SDNode *BasePtr = Add->getOperand(0).getNode();
14860           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14861                                     UE = BasePtr->use_end();
14862                UI != UE; ++UI) {
14863             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14864                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14865               // We've found another LVSL/LVSR, and this address is an aligned
14866               // multiple of that one. The results will be the same, so use the
14867               // one we've just found instead.
14868 
14869               return SDValue(*UI, 0);
14870             }
14871           }
14872         }
14873 
14874         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14875           SDNode *BasePtr = Add->getOperand(0).getNode();
14876           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14877                UE = BasePtr->use_end(); UI != UE; ++UI) {
14878             if (UI->getOpcode() == ISD::ADD &&
14879                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14880                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14881                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14882                 (1ULL << Bits) == 0) {
14883               SDNode *OtherAdd = *UI;
14884               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14885                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14886                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14887                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14888                   return SDValue(*VI, 0);
14889                 }
14890               }
14891             }
14892           }
14893         }
14894       }
14895 
14896       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14897       // Expose the vabsduw/h/b opportunity for down stream
14898       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14899           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14900            IID == Intrinsic::ppc_altivec_vmaxsh ||
14901            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14902         SDValue V1 = N->getOperand(1);
14903         SDValue V2 = N->getOperand(2);
14904         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14905              V1.getSimpleValueType() == MVT::v8i16 ||
14906              V1.getSimpleValueType() == MVT::v16i8) &&
14907             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14908           // (0-a, a)
14909           if (V1.getOpcode() == ISD::SUB &&
14910               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14911               V1.getOperand(1) == V2) {
14912             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14913           }
14914           // (a, 0-a)
14915           if (V2.getOpcode() == ISD::SUB &&
14916               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14917               V2.getOperand(1) == V1) {
14918             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14919           }
14920           // (x-y, y-x)
14921           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14922               V1.getOperand(0) == V2.getOperand(1) &&
14923               V1.getOperand(1) == V2.getOperand(0)) {
14924             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14925           }
14926         }
14927       }
14928     }
14929 
14930     break;
14931   case ISD::INTRINSIC_W_CHAIN:
14932     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14933     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14934     if (Subtarget.needsSwapsForVSXMemOps()) {
14935       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14936       default:
14937         break;
14938       case Intrinsic::ppc_vsx_lxvw4x:
14939       case Intrinsic::ppc_vsx_lxvd2x:
14940         return expandVSXLoadForLE(N, DCI);
14941       }
14942     }
14943     break;
14944   case ISD::INTRINSIC_VOID:
14945     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14946     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14947     if (Subtarget.needsSwapsForVSXMemOps()) {
14948       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14949       default:
14950         break;
14951       case Intrinsic::ppc_vsx_stxvw4x:
14952       case Intrinsic::ppc_vsx_stxvd2x:
14953         return expandVSXStoreForLE(N, DCI);
14954       }
14955     }
14956     break;
14957   case ISD::BSWAP:
14958     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14959     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14960         N->getOperand(0).hasOneUse() &&
14961         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14962          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14963           N->getValueType(0) == MVT::i64))) {
14964       SDValue Load = N->getOperand(0);
14965       LoadSDNode *LD = cast<LoadSDNode>(Load);
14966       // Create the byte-swapping load.
14967       SDValue Ops[] = {
14968         LD->getChain(),    // Chain
14969         LD->getBasePtr(),  // Ptr
14970         DAG.getValueType(N->getValueType(0)) // VT
14971       };
14972       SDValue BSLoad =
14973         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14974                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14975                                               MVT::i64 : MVT::i32, MVT::Other),
14976                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14977 
14978       // If this is an i16 load, insert the truncate.
14979       SDValue ResVal = BSLoad;
14980       if (N->getValueType(0) == MVT::i16)
14981         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14982 
14983       // First, combine the bswap away.  This makes the value produced by the
14984       // load dead.
14985       DCI.CombineTo(N, ResVal);
14986 
14987       // Next, combine the load away, we give it a bogus result value but a real
14988       // chain result.  The result value is dead because the bswap is dead.
14989       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14990 
14991       // Return N so it doesn't get rechecked!
14992       return SDValue(N, 0);
14993     }
14994     break;
14995   case PPCISD::VCMP:
14996     // If a VCMPo node already exists with exactly the same operands as this
14997     // node, use its result instead of this node (VCMPo computes both a CR6 and
14998     // a normal output).
14999     //
15000     if (!N->getOperand(0).hasOneUse() &&
15001         !N->getOperand(1).hasOneUse() &&
15002         !N->getOperand(2).hasOneUse()) {
15003 
15004       // Scan all of the users of the LHS, looking for VCMPo's that match.
15005       SDNode *VCMPoNode = nullptr;
15006 
15007       SDNode *LHSN = N->getOperand(0).getNode();
15008       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15009            UI != E; ++UI)
15010         if (UI->getOpcode() == PPCISD::VCMPo &&
15011             UI->getOperand(1) == N->getOperand(1) &&
15012             UI->getOperand(2) == N->getOperand(2) &&
15013             UI->getOperand(0) == N->getOperand(0)) {
15014           VCMPoNode = *UI;
15015           break;
15016         }
15017 
15018       // If there is no VCMPo node, or if the flag value has a single use, don't
15019       // transform this.
15020       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
15021         break;
15022 
15023       // Look at the (necessarily single) use of the flag value.  If it has a
15024       // chain, this transformation is more complex.  Note that multiple things
15025       // could use the value result, which we should ignore.
15026       SDNode *FlagUser = nullptr;
15027       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
15028            FlagUser == nullptr; ++UI) {
15029         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
15030         SDNode *User = *UI;
15031         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15032           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
15033             FlagUser = User;
15034             break;
15035           }
15036         }
15037       }
15038 
15039       // If the user is a MFOCRF instruction, we know this is safe.
15040       // Otherwise we give up for right now.
15041       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15042         return SDValue(VCMPoNode, 0);
15043     }
15044     break;
15045   case ISD::BRCOND: {
15046     SDValue Cond = N->getOperand(1);
15047     SDValue Target = N->getOperand(2);
15048 
15049     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15050         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15051           Intrinsic::loop_decrement) {
15052 
15053       // We now need to make the intrinsic dead (it cannot be instruction
15054       // selected).
15055       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15056       assert(Cond.getNode()->hasOneUse() &&
15057              "Counter decrement has more than one use");
15058 
15059       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15060                          N->getOperand(0), Target);
15061     }
15062   }
15063   break;
15064   case ISD::BR_CC: {
15065     // If this is a branch on an altivec predicate comparison, lower this so
15066     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15067     // lowering is done pre-legalize, because the legalizer lowers the predicate
15068     // compare down to code that is difficult to reassemble.
15069     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15070     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15071 
15072     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15073     // value. If so, pass-through the AND to get to the intrinsic.
15074     if (LHS.getOpcode() == ISD::AND &&
15075         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15076         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15077           Intrinsic::loop_decrement &&
15078         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15079         !isNullConstant(LHS.getOperand(1)))
15080       LHS = LHS.getOperand(0);
15081 
15082     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15083         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15084           Intrinsic::loop_decrement &&
15085         isa<ConstantSDNode>(RHS)) {
15086       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15087              "Counter decrement comparison is not EQ or NE");
15088 
15089       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15090       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15091                     (CC == ISD::SETNE && !Val);
15092 
15093       // We now need to make the intrinsic dead (it cannot be instruction
15094       // selected).
15095       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15096       assert(LHS.getNode()->hasOneUse() &&
15097              "Counter decrement has more than one use");
15098 
15099       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15100                          N->getOperand(0), N->getOperand(4));
15101     }
15102 
15103     int CompareOpc;
15104     bool isDot;
15105 
15106     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15107         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15108         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15109       assert(isDot && "Can't compare against a vector result!");
15110 
15111       // If this is a comparison against something other than 0/1, then we know
15112       // that the condition is never/always true.
15113       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15114       if (Val != 0 && Val != 1) {
15115         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15116           return N->getOperand(0);
15117         // Always !=, turn it into an unconditional branch.
15118         return DAG.getNode(ISD::BR, dl, MVT::Other,
15119                            N->getOperand(0), N->getOperand(4));
15120       }
15121 
15122       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15123 
15124       // Create the PPCISD altivec 'dot' comparison node.
15125       SDValue Ops[] = {
15126         LHS.getOperand(2),  // LHS of compare
15127         LHS.getOperand(3),  // RHS of compare
15128         DAG.getConstant(CompareOpc, dl, MVT::i32)
15129       };
15130       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15131       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15132 
15133       // Unpack the result based on how the target uses it.
15134       PPC::Predicate CompOpc;
15135       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15136       default:  // Can't happen, don't crash on invalid number though.
15137       case 0:   // Branch on the value of the EQ bit of CR6.
15138         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15139         break;
15140       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15141         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15142         break;
15143       case 2:   // Branch on the value of the LT bit of CR6.
15144         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15145         break;
15146       case 3:   // Branch on the inverted value of the LT bit of CR6.
15147         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15148         break;
15149       }
15150 
15151       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15152                          DAG.getConstant(CompOpc, dl, MVT::i32),
15153                          DAG.getRegister(PPC::CR6, MVT::i32),
15154                          N->getOperand(4), CompNode.getValue(1));
15155     }
15156     break;
15157   }
15158   case ISD::BUILD_VECTOR:
15159     return DAGCombineBuildVector(N, DCI);
15160   case ISD::ABS:
15161     return combineABS(N, DCI);
15162   case ISD::VSELECT:
15163     return combineVSelect(N, DCI);
15164   }
15165 
15166   return SDValue();
15167 }
15168 
15169 SDValue
15170 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15171                                  SelectionDAG &DAG,
15172                                  SmallVectorImpl<SDNode *> &Created) const {
15173   // fold (sdiv X, pow2)
15174   EVT VT = N->getValueType(0);
15175   if (VT == MVT::i64 && !Subtarget.isPPC64())
15176     return SDValue();
15177   if ((VT != MVT::i32 && VT != MVT::i64) ||
15178       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15179     return SDValue();
15180 
15181   SDLoc DL(N);
15182   SDValue N0 = N->getOperand(0);
15183 
15184   bool IsNegPow2 = (-Divisor).isPowerOf2();
15185   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15186   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15187 
15188   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15189   Created.push_back(Op.getNode());
15190 
15191   if (IsNegPow2) {
15192     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15193     Created.push_back(Op.getNode());
15194   }
15195 
15196   return Op;
15197 }
15198 
15199 //===----------------------------------------------------------------------===//
15200 // Inline Assembly Support
15201 //===----------------------------------------------------------------------===//
15202 
15203 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15204                                                       KnownBits &Known,
15205                                                       const APInt &DemandedElts,
15206                                                       const SelectionDAG &DAG,
15207                                                       unsigned Depth) const {
15208   Known.resetAll();
15209   switch (Op.getOpcode()) {
15210   default: break;
15211   case PPCISD::LBRX: {
15212     // lhbrx is known to have the top bits cleared out.
15213     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15214       Known.Zero = 0xFFFF0000;
15215     break;
15216   }
15217   case ISD::INTRINSIC_WO_CHAIN: {
15218     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15219     default: break;
15220     case Intrinsic::ppc_altivec_vcmpbfp_p:
15221     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15222     case Intrinsic::ppc_altivec_vcmpequb_p:
15223     case Intrinsic::ppc_altivec_vcmpequh_p:
15224     case Intrinsic::ppc_altivec_vcmpequw_p:
15225     case Intrinsic::ppc_altivec_vcmpequd_p:
15226     case Intrinsic::ppc_altivec_vcmpgefp_p:
15227     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15228     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15229     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15230     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15231     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15232     case Intrinsic::ppc_altivec_vcmpgtub_p:
15233     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15234     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15235     case Intrinsic::ppc_altivec_vcmpgtud_p:
15236       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15237       break;
15238     }
15239   }
15240   }
15241 }
15242 
15243 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15244   switch (Subtarget.getCPUDirective()) {
15245   default: break;
15246   case PPC::DIR_970:
15247   case PPC::DIR_PWR4:
15248   case PPC::DIR_PWR5:
15249   case PPC::DIR_PWR5X:
15250   case PPC::DIR_PWR6:
15251   case PPC::DIR_PWR6X:
15252   case PPC::DIR_PWR7:
15253   case PPC::DIR_PWR8:
15254   case PPC::DIR_PWR9:
15255   case PPC::DIR_PWR10:
15256   case PPC::DIR_PWR_FUTURE: {
15257     if (!ML)
15258       break;
15259 
15260     if (!DisableInnermostLoopAlign32) {
15261       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15262       // so that we can decrease cache misses and branch-prediction misses.
15263       // Actual alignment of the loop will depend on the hotness check and other
15264       // logic in alignBlocks.
15265       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15266         return Align(32);
15267     }
15268 
15269     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15270 
15271     // For small loops (between 5 and 8 instructions), align to a 32-byte
15272     // boundary so that the entire loop fits in one instruction-cache line.
15273     uint64_t LoopSize = 0;
15274     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15275       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15276         LoopSize += TII->getInstSizeInBytes(*J);
15277         if (LoopSize > 32)
15278           break;
15279       }
15280 
15281     if (LoopSize > 16 && LoopSize <= 32)
15282       return Align(32);
15283 
15284     break;
15285   }
15286   }
15287 
15288   return TargetLowering::getPrefLoopAlignment(ML);
15289 }
15290 
15291 /// getConstraintType - Given a constraint, return the type of
15292 /// constraint it is for this target.
15293 PPCTargetLowering::ConstraintType
15294 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15295   if (Constraint.size() == 1) {
15296     switch (Constraint[0]) {
15297     default: break;
15298     case 'b':
15299     case 'r':
15300     case 'f':
15301     case 'd':
15302     case 'v':
15303     case 'y':
15304       return C_RegisterClass;
15305     case 'Z':
15306       // FIXME: While Z does indicate a memory constraint, it specifically
15307       // indicates an r+r address (used in conjunction with the 'y' modifier
15308       // in the replacement string). Currently, we're forcing the base
15309       // register to be r0 in the asm printer (which is interpreted as zero)
15310       // and forming the complete address in the second register. This is
15311       // suboptimal.
15312       return C_Memory;
15313     }
15314   } else if (Constraint == "wc") { // individual CR bits.
15315     return C_RegisterClass;
15316   } else if (Constraint == "wa" || Constraint == "wd" ||
15317              Constraint == "wf" || Constraint == "ws" ||
15318              Constraint == "wi" || Constraint == "ww") {
15319     return C_RegisterClass; // VSX registers.
15320   }
15321   return TargetLowering::getConstraintType(Constraint);
15322 }
15323 
15324 /// Examine constraint type and operand type and determine a weight value.
15325 /// This object must already have been set up with the operand type
15326 /// and the current alternative constraint selected.
15327 TargetLowering::ConstraintWeight
15328 PPCTargetLowering::getSingleConstraintMatchWeight(
15329     AsmOperandInfo &info, const char *constraint) const {
15330   ConstraintWeight weight = CW_Invalid;
15331   Value *CallOperandVal = info.CallOperandVal;
15332     // If we don't have a value, we can't do a match,
15333     // but allow it at the lowest weight.
15334   if (!CallOperandVal)
15335     return CW_Default;
15336   Type *type = CallOperandVal->getType();
15337 
15338   // Look at the constraint type.
15339   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15340     return CW_Register; // an individual CR bit.
15341   else if ((StringRef(constraint) == "wa" ||
15342             StringRef(constraint) == "wd" ||
15343             StringRef(constraint) == "wf") &&
15344            type->isVectorTy())
15345     return CW_Register;
15346   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15347     return CW_Register; // just hold 64-bit integers data.
15348   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15349     return CW_Register;
15350   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15351     return CW_Register;
15352 
15353   switch (*constraint) {
15354   default:
15355     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15356     break;
15357   case 'b':
15358     if (type->isIntegerTy())
15359       weight = CW_Register;
15360     break;
15361   case 'f':
15362     if (type->isFloatTy())
15363       weight = CW_Register;
15364     break;
15365   case 'd':
15366     if (type->isDoubleTy())
15367       weight = CW_Register;
15368     break;
15369   case 'v':
15370     if (type->isVectorTy())
15371       weight = CW_Register;
15372     break;
15373   case 'y':
15374     weight = CW_Register;
15375     break;
15376   case 'Z':
15377     weight = CW_Memory;
15378     break;
15379   }
15380   return weight;
15381 }
15382 
15383 std::pair<unsigned, const TargetRegisterClass *>
15384 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15385                                                 StringRef Constraint,
15386                                                 MVT VT) const {
15387   if (Constraint.size() == 1) {
15388     // GCC RS6000 Constraint Letters
15389     switch (Constraint[0]) {
15390     case 'b':   // R1-R31
15391       if (VT == MVT::i64 && Subtarget.isPPC64())
15392         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15393       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15394     case 'r':   // R0-R31
15395       if (VT == MVT::i64 && Subtarget.isPPC64())
15396         return std::make_pair(0U, &PPC::G8RCRegClass);
15397       return std::make_pair(0U, &PPC::GPRCRegClass);
15398     // 'd' and 'f' constraints are both defined to be "the floating point
15399     // registers", where one is for 32-bit and the other for 64-bit. We don't
15400     // really care overly much here so just give them all the same reg classes.
15401     case 'd':
15402     case 'f':
15403       if (Subtarget.hasSPE()) {
15404         if (VT == MVT::f32 || VT == MVT::i32)
15405           return std::make_pair(0U, &PPC::GPRCRegClass);
15406         if (VT == MVT::f64 || VT == MVT::i64)
15407           return std::make_pair(0U, &PPC::SPERCRegClass);
15408       } else {
15409         if (VT == MVT::f32 || VT == MVT::i32)
15410           return std::make_pair(0U, &PPC::F4RCRegClass);
15411         if (VT == MVT::f64 || VT == MVT::i64)
15412           return std::make_pair(0U, &PPC::F8RCRegClass);
15413         if (VT == MVT::v4f64 && Subtarget.hasQPX())
15414           return std::make_pair(0U, &PPC::QFRCRegClass);
15415         if (VT == MVT::v4f32 && Subtarget.hasQPX())
15416           return std::make_pair(0U, &PPC::QSRCRegClass);
15417       }
15418       break;
15419     case 'v':
15420       if (VT == MVT::v4f64 && Subtarget.hasQPX())
15421         return std::make_pair(0U, &PPC::QFRCRegClass);
15422       if (VT == MVT::v4f32 && Subtarget.hasQPX())
15423         return std::make_pair(0U, &PPC::QSRCRegClass);
15424       if (Subtarget.hasAltivec())
15425         return std::make_pair(0U, &PPC::VRRCRegClass);
15426       break;
15427     case 'y':   // crrc
15428       return std::make_pair(0U, &PPC::CRRCRegClass);
15429     }
15430   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15431     // An individual CR bit.
15432     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15433   } else if ((Constraint == "wa" || Constraint == "wd" ||
15434              Constraint == "wf" || Constraint == "wi") &&
15435              Subtarget.hasVSX()) {
15436     return std::make_pair(0U, &PPC::VSRCRegClass);
15437   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15438     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15439       return std::make_pair(0U, &PPC::VSSRCRegClass);
15440     else
15441       return std::make_pair(0U, &PPC::VSFRCRegClass);
15442   }
15443 
15444   // If we name a VSX register, we can't defer to the base class because it
15445   // will not recognize the correct register (their names will be VSL{0-31}
15446   // and V{0-31} so they won't match). So we match them here.
15447   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15448     int VSNum = atoi(Constraint.data() + 3);
15449     assert(VSNum >= 0 && VSNum <= 63 &&
15450            "Attempted to access a vsr out of range");
15451     if (VSNum < 32)
15452       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15453     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15454   }
15455   std::pair<unsigned, const TargetRegisterClass *> R =
15456       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15457 
15458   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15459   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15460   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15461   // register.
15462   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15463   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15464   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15465       PPC::GPRCRegClass.contains(R.first))
15466     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15467                             PPC::sub_32, &PPC::G8RCRegClass),
15468                           &PPC::G8RCRegClass);
15469 
15470   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15471   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15472     R.first = PPC::CR0;
15473     R.second = &PPC::CRRCRegClass;
15474   }
15475 
15476   return R;
15477 }
15478 
15479 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15480 /// vector.  If it is invalid, don't add anything to Ops.
15481 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15482                                                      std::string &Constraint,
15483                                                      std::vector<SDValue>&Ops,
15484                                                      SelectionDAG &DAG) const {
15485   SDValue Result;
15486 
15487   // Only support length 1 constraints.
15488   if (Constraint.length() > 1) return;
15489 
15490   char Letter = Constraint[0];
15491   switch (Letter) {
15492   default: break;
15493   case 'I':
15494   case 'J':
15495   case 'K':
15496   case 'L':
15497   case 'M':
15498   case 'N':
15499   case 'O':
15500   case 'P': {
15501     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15502     if (!CST) return; // Must be an immediate to match.
15503     SDLoc dl(Op);
15504     int64_t Value = CST->getSExtValue();
15505     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15506                          // numbers are printed as such.
15507     switch (Letter) {
15508     default: llvm_unreachable("Unknown constraint letter!");
15509     case 'I':  // "I" is a signed 16-bit constant.
15510       if (isInt<16>(Value))
15511         Result = DAG.getTargetConstant(Value, dl, TCVT);
15512       break;
15513     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15514       if (isShiftedUInt<16, 16>(Value))
15515         Result = DAG.getTargetConstant(Value, dl, TCVT);
15516       break;
15517     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15518       if (isShiftedInt<16, 16>(Value))
15519         Result = DAG.getTargetConstant(Value, dl, TCVT);
15520       break;
15521     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15522       if (isUInt<16>(Value))
15523         Result = DAG.getTargetConstant(Value, dl, TCVT);
15524       break;
15525     case 'M':  // "M" is a constant that is greater than 31.
15526       if (Value > 31)
15527         Result = DAG.getTargetConstant(Value, dl, TCVT);
15528       break;
15529     case 'N':  // "N" is a positive constant that is an exact power of two.
15530       if (Value > 0 && isPowerOf2_64(Value))
15531         Result = DAG.getTargetConstant(Value, dl, TCVT);
15532       break;
15533     case 'O':  // "O" is the constant zero.
15534       if (Value == 0)
15535         Result = DAG.getTargetConstant(Value, dl, TCVT);
15536       break;
15537     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15538       if (isInt<16>(-Value))
15539         Result = DAG.getTargetConstant(Value, dl, TCVT);
15540       break;
15541     }
15542     break;
15543   }
15544   }
15545 
15546   if (Result.getNode()) {
15547     Ops.push_back(Result);
15548     return;
15549   }
15550 
15551   // Handle standard constraint letters.
15552   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15553 }
15554 
15555 // isLegalAddressingMode - Return true if the addressing mode represented
15556 // by AM is legal for this target, for a load/store of the specified type.
15557 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15558                                               const AddrMode &AM, Type *Ty,
15559                                               unsigned AS, Instruction *I) const {
15560   // PPC does not allow r+i addressing modes for vectors!
15561   if (Ty->isVectorTy() && AM.BaseOffs != 0)
15562     return false;
15563 
15564   // PPC allows a sign-extended 16-bit immediate field.
15565   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15566     return false;
15567 
15568   // No global is ever allowed as a base.
15569   if (AM.BaseGV)
15570     return false;
15571 
15572   // PPC only support r+r,
15573   switch (AM.Scale) {
15574   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15575     break;
15576   case 1:
15577     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15578       return false;
15579     // Otherwise we have r+r or r+i.
15580     break;
15581   case 2:
15582     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15583       return false;
15584     // Allow 2*r as r+r.
15585     break;
15586   default:
15587     // No other scales are supported.
15588     return false;
15589   }
15590 
15591   return true;
15592 }
15593 
15594 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15595                                            SelectionDAG &DAG) const {
15596   MachineFunction &MF = DAG.getMachineFunction();
15597   MachineFrameInfo &MFI = MF.getFrameInfo();
15598   MFI.setReturnAddressIsTaken(true);
15599 
15600   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15601     return SDValue();
15602 
15603   SDLoc dl(Op);
15604   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15605 
15606   // Make sure the function does not optimize away the store of the RA to
15607   // the stack.
15608   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15609   FuncInfo->setLRStoreRequired();
15610   bool isPPC64 = Subtarget.isPPC64();
15611   auto PtrVT = getPointerTy(MF.getDataLayout());
15612 
15613   if (Depth > 0) {
15614     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15615     SDValue Offset =
15616         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15617                         isPPC64 ? MVT::i64 : MVT::i32);
15618     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15619                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15620                        MachinePointerInfo());
15621   }
15622 
15623   // Just load the return address off the stack.
15624   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15625   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15626                      MachinePointerInfo());
15627 }
15628 
15629 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15630                                           SelectionDAG &DAG) const {
15631   SDLoc dl(Op);
15632   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15633 
15634   MachineFunction &MF = DAG.getMachineFunction();
15635   MachineFrameInfo &MFI = MF.getFrameInfo();
15636   MFI.setFrameAddressIsTaken(true);
15637 
15638   EVT PtrVT = getPointerTy(MF.getDataLayout());
15639   bool isPPC64 = PtrVT == MVT::i64;
15640 
15641   // Naked functions never have a frame pointer, and so we use r1. For all
15642   // other functions, this decision must be delayed until during PEI.
15643   unsigned FrameReg;
15644   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15645     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15646   else
15647     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15648 
15649   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15650                                          PtrVT);
15651   while (Depth--)
15652     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15653                             FrameAddr, MachinePointerInfo());
15654   return FrameAddr;
15655 }
15656 
15657 // FIXME? Maybe this could be a TableGen attribute on some registers and
15658 // this table could be generated automatically from RegInfo.
15659 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15660                                               const MachineFunction &MF) const {
15661   bool isPPC64 = Subtarget.isPPC64();
15662 
15663   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15664   if (!is64Bit && VT != LLT::scalar(32))
15665     report_fatal_error("Invalid register global variable type");
15666 
15667   Register Reg = StringSwitch<Register>(RegName)
15668                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15669                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15670                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15671                      .Default(Register());
15672 
15673   if (Reg)
15674     return Reg;
15675   report_fatal_error("Invalid register name global variable");
15676 }
15677 
15678 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15679   // 32-bit SVR4 ABI access everything as got-indirect.
15680   if (Subtarget.is32BitELFABI())
15681     return true;
15682 
15683   // AIX accesses everything indirectly through the TOC, which is similar to
15684   // the GOT.
15685   if (Subtarget.isAIXABI())
15686     return true;
15687 
15688   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15689   // If it is small or large code model, module locals are accessed
15690   // indirectly by loading their address from .toc/.got.
15691   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15692     return true;
15693 
15694   // JumpTable and BlockAddress are accessed as got-indirect.
15695   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15696     return true;
15697 
15698   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15699     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15700 
15701   return false;
15702 }
15703 
15704 bool
15705 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15706   // The PowerPC target isn't yet aware of offsets.
15707   return false;
15708 }
15709 
15710 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15711                                            const CallInst &I,
15712                                            MachineFunction &MF,
15713                                            unsigned Intrinsic) const {
15714   switch (Intrinsic) {
15715   case Intrinsic::ppc_qpx_qvlfd:
15716   case Intrinsic::ppc_qpx_qvlfs:
15717   case Intrinsic::ppc_qpx_qvlfcd:
15718   case Intrinsic::ppc_qpx_qvlfcs:
15719   case Intrinsic::ppc_qpx_qvlfiwa:
15720   case Intrinsic::ppc_qpx_qvlfiwz:
15721   case Intrinsic::ppc_altivec_lvx:
15722   case Intrinsic::ppc_altivec_lvxl:
15723   case Intrinsic::ppc_altivec_lvebx:
15724   case Intrinsic::ppc_altivec_lvehx:
15725   case Intrinsic::ppc_altivec_lvewx:
15726   case Intrinsic::ppc_vsx_lxvd2x:
15727   case Intrinsic::ppc_vsx_lxvw4x: {
15728     EVT VT;
15729     switch (Intrinsic) {
15730     case Intrinsic::ppc_altivec_lvebx:
15731       VT = MVT::i8;
15732       break;
15733     case Intrinsic::ppc_altivec_lvehx:
15734       VT = MVT::i16;
15735       break;
15736     case Intrinsic::ppc_altivec_lvewx:
15737       VT = MVT::i32;
15738       break;
15739     case Intrinsic::ppc_vsx_lxvd2x:
15740       VT = MVT::v2f64;
15741       break;
15742     case Intrinsic::ppc_qpx_qvlfd:
15743       VT = MVT::v4f64;
15744       break;
15745     case Intrinsic::ppc_qpx_qvlfs:
15746       VT = MVT::v4f32;
15747       break;
15748     case Intrinsic::ppc_qpx_qvlfcd:
15749       VT = MVT::v2f64;
15750       break;
15751     case Intrinsic::ppc_qpx_qvlfcs:
15752       VT = MVT::v2f32;
15753       break;
15754     default:
15755       VT = MVT::v4i32;
15756       break;
15757     }
15758 
15759     Info.opc = ISD::INTRINSIC_W_CHAIN;
15760     Info.memVT = VT;
15761     Info.ptrVal = I.getArgOperand(0);
15762     Info.offset = -VT.getStoreSize()+1;
15763     Info.size = 2*VT.getStoreSize()-1;
15764     Info.align = Align(1);
15765     Info.flags = MachineMemOperand::MOLoad;
15766     return true;
15767   }
15768   case Intrinsic::ppc_qpx_qvlfda:
15769   case Intrinsic::ppc_qpx_qvlfsa:
15770   case Intrinsic::ppc_qpx_qvlfcda:
15771   case Intrinsic::ppc_qpx_qvlfcsa:
15772   case Intrinsic::ppc_qpx_qvlfiwaa:
15773   case Intrinsic::ppc_qpx_qvlfiwza: {
15774     EVT VT;
15775     switch (Intrinsic) {
15776     case Intrinsic::ppc_qpx_qvlfda:
15777       VT = MVT::v4f64;
15778       break;
15779     case Intrinsic::ppc_qpx_qvlfsa:
15780       VT = MVT::v4f32;
15781       break;
15782     case Intrinsic::ppc_qpx_qvlfcda:
15783       VT = MVT::v2f64;
15784       break;
15785     case Intrinsic::ppc_qpx_qvlfcsa:
15786       VT = MVT::v2f32;
15787       break;
15788     default:
15789       VT = MVT::v4i32;
15790       break;
15791     }
15792 
15793     Info.opc = ISD::INTRINSIC_W_CHAIN;
15794     Info.memVT = VT;
15795     Info.ptrVal = I.getArgOperand(0);
15796     Info.offset = 0;
15797     Info.size = VT.getStoreSize();
15798     Info.align = Align(1);
15799     Info.flags = MachineMemOperand::MOLoad;
15800     return true;
15801   }
15802   case Intrinsic::ppc_qpx_qvstfd:
15803   case Intrinsic::ppc_qpx_qvstfs:
15804   case Intrinsic::ppc_qpx_qvstfcd:
15805   case Intrinsic::ppc_qpx_qvstfcs:
15806   case Intrinsic::ppc_qpx_qvstfiw:
15807   case Intrinsic::ppc_altivec_stvx:
15808   case Intrinsic::ppc_altivec_stvxl:
15809   case Intrinsic::ppc_altivec_stvebx:
15810   case Intrinsic::ppc_altivec_stvehx:
15811   case Intrinsic::ppc_altivec_stvewx:
15812   case Intrinsic::ppc_vsx_stxvd2x:
15813   case Intrinsic::ppc_vsx_stxvw4x: {
15814     EVT VT;
15815     switch (Intrinsic) {
15816     case Intrinsic::ppc_altivec_stvebx:
15817       VT = MVT::i8;
15818       break;
15819     case Intrinsic::ppc_altivec_stvehx:
15820       VT = MVT::i16;
15821       break;
15822     case Intrinsic::ppc_altivec_stvewx:
15823       VT = MVT::i32;
15824       break;
15825     case Intrinsic::ppc_vsx_stxvd2x:
15826       VT = MVT::v2f64;
15827       break;
15828     case Intrinsic::ppc_qpx_qvstfd:
15829       VT = MVT::v4f64;
15830       break;
15831     case Intrinsic::ppc_qpx_qvstfs:
15832       VT = MVT::v4f32;
15833       break;
15834     case Intrinsic::ppc_qpx_qvstfcd:
15835       VT = MVT::v2f64;
15836       break;
15837     case Intrinsic::ppc_qpx_qvstfcs:
15838       VT = MVT::v2f32;
15839       break;
15840     default:
15841       VT = MVT::v4i32;
15842       break;
15843     }
15844 
15845     Info.opc = ISD::INTRINSIC_VOID;
15846     Info.memVT = VT;
15847     Info.ptrVal = I.getArgOperand(1);
15848     Info.offset = -VT.getStoreSize()+1;
15849     Info.size = 2*VT.getStoreSize()-1;
15850     Info.align = Align(1);
15851     Info.flags = MachineMemOperand::MOStore;
15852     return true;
15853   }
15854   case Intrinsic::ppc_qpx_qvstfda:
15855   case Intrinsic::ppc_qpx_qvstfsa:
15856   case Intrinsic::ppc_qpx_qvstfcda:
15857   case Intrinsic::ppc_qpx_qvstfcsa:
15858   case Intrinsic::ppc_qpx_qvstfiwa: {
15859     EVT VT;
15860     switch (Intrinsic) {
15861     case Intrinsic::ppc_qpx_qvstfda:
15862       VT = MVT::v4f64;
15863       break;
15864     case Intrinsic::ppc_qpx_qvstfsa:
15865       VT = MVT::v4f32;
15866       break;
15867     case Intrinsic::ppc_qpx_qvstfcda:
15868       VT = MVT::v2f64;
15869       break;
15870     case Intrinsic::ppc_qpx_qvstfcsa:
15871       VT = MVT::v2f32;
15872       break;
15873     default:
15874       VT = MVT::v4i32;
15875       break;
15876     }
15877 
15878     Info.opc = ISD::INTRINSIC_VOID;
15879     Info.memVT = VT;
15880     Info.ptrVal = I.getArgOperand(1);
15881     Info.offset = 0;
15882     Info.size = VT.getStoreSize();
15883     Info.align = Align(1);
15884     Info.flags = MachineMemOperand::MOStore;
15885     return true;
15886   }
15887   default:
15888     break;
15889   }
15890 
15891   return false;
15892 }
15893 
15894 /// It returns EVT::Other if the type should be determined using generic
15895 /// target-independent logic.
15896 EVT PPCTargetLowering::getOptimalMemOpType(
15897     const MemOp &Op, const AttributeList &FuncAttributes) const {
15898   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15899     // When expanding a memset, require at least two QPX instructions to cover
15900     // the cost of loading the value to be stored from the constant pool.
15901     if (Subtarget.hasQPX() && Op.size() >= 32 &&
15902         (Op.isMemcpy() || Op.size() >= 64) && Op.isAligned(Align(32)) &&
15903         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15904       return MVT::v4f64;
15905     }
15906 
15907     // We should use Altivec/VSX loads and stores when available. For unaligned
15908     // addresses, unaligned VSX loads are only fast starting with the P8.
15909     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15910         (Op.isAligned(Align(16)) ||
15911          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15912       return MVT::v4i32;
15913   }
15914 
15915   if (Subtarget.isPPC64()) {
15916     return MVT::i64;
15917   }
15918 
15919   return MVT::i32;
15920 }
15921 
15922 /// Returns true if it is beneficial to convert a load of a constant
15923 /// to just the constant itself.
15924 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15925                                                           Type *Ty) const {
15926   assert(Ty->isIntegerTy());
15927 
15928   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15929   return !(BitSize == 0 || BitSize > 64);
15930 }
15931 
15932 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15933   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15934     return false;
15935   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15936   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15937   return NumBits1 == 64 && NumBits2 == 32;
15938 }
15939 
15940 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15941   if (!VT1.isInteger() || !VT2.isInteger())
15942     return false;
15943   unsigned NumBits1 = VT1.getSizeInBits();
15944   unsigned NumBits2 = VT2.getSizeInBits();
15945   return NumBits1 == 64 && NumBits2 == 32;
15946 }
15947 
15948 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15949   // Generally speaking, zexts are not free, but they are free when they can be
15950   // folded with other operations.
15951   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15952     EVT MemVT = LD->getMemoryVT();
15953     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15954          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15955         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15956          LD->getExtensionType() == ISD::ZEXTLOAD))
15957       return true;
15958   }
15959 
15960   // FIXME: Add other cases...
15961   //  - 32-bit shifts with a zext to i64
15962   //  - zext after ctlz, bswap, etc.
15963   //  - zext after and by a constant mask
15964 
15965   return TargetLowering::isZExtFree(Val, VT2);
15966 }
15967 
15968 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15969   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15970          "invalid fpext types");
15971   // Extending to float128 is not free.
15972   if (DestVT == MVT::f128)
15973     return false;
15974   return true;
15975 }
15976 
15977 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15978   return isInt<16>(Imm) || isUInt<16>(Imm);
15979 }
15980 
15981 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15982   return isInt<16>(Imm) || isUInt<16>(Imm);
15983 }
15984 
15985 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15986                                                        unsigned,
15987                                                        unsigned,
15988                                                        MachineMemOperand::Flags,
15989                                                        bool *Fast) const {
15990   if (DisablePPCUnaligned)
15991     return false;
15992 
15993   // PowerPC supports unaligned memory access for simple non-vector types.
15994   // Although accessing unaligned addresses is not as efficient as accessing
15995   // aligned addresses, it is generally more efficient than manual expansion,
15996   // and generally only traps for software emulation when crossing page
15997   // boundaries.
15998 
15999   if (!VT.isSimple())
16000     return false;
16001 
16002   if (VT.isFloatingPoint() && !VT.isVector() &&
16003       !Subtarget.allowsUnalignedFPAccess())
16004     return false;
16005 
16006   if (VT.getSimpleVT().isVector()) {
16007     if (Subtarget.hasVSX()) {
16008       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16009           VT != MVT::v4f32 && VT != MVT::v4i32)
16010         return false;
16011     } else {
16012       return false;
16013     }
16014   }
16015 
16016   if (VT == MVT::ppcf128)
16017     return false;
16018 
16019   if (Fast)
16020     *Fast = true;
16021 
16022   return true;
16023 }
16024 
16025 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16026                                                    EVT VT) const {
16027   return isFMAFasterThanFMulAndFAdd(
16028       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16029 }
16030 
16031 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16032                                                    Type *Ty) const {
16033   switch (Ty->getScalarType()->getTypeID()) {
16034   case Type::FloatTyID:
16035   case Type::DoubleTyID:
16036     return true;
16037   case Type::FP128TyID:
16038     return EnableQuadPrecision && Subtarget.hasP9Vector();
16039   default:
16040     return false;
16041   }
16042 }
16043 
16044 // Currently this is a copy from AArch64TargetLowering::isProfitableToHoist.
16045 // FIXME: add more patterns which are profitable to hoist.
16046 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16047   if (I->getOpcode() != Instruction::FMul)
16048     return true;
16049 
16050   if (!I->hasOneUse())
16051     return true;
16052 
16053   Instruction *User = I->user_back();
16054   assert(User && "A single use instruction with no uses.");
16055 
16056   if (User->getOpcode() != Instruction::FSub &&
16057       User->getOpcode() != Instruction::FAdd)
16058     return true;
16059 
16060   const TargetOptions &Options = getTargetMachine().Options;
16061   const Function *F = I->getFunction();
16062   const DataLayout &DL = F->getParent()->getDataLayout();
16063   Type *Ty = User->getOperand(0)->getType();
16064 
16065   return !(
16066       isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16067       isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16068       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16069 }
16070 
16071 const MCPhysReg *
16072 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16073   // LR is a callee-save register, but we must treat it as clobbered by any call
16074   // site. Hence we include LR in the scratch registers, which are in turn added
16075   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16076   // to CTR, which is used by any indirect call.
16077   static const MCPhysReg ScratchRegs[] = {
16078     PPC::X12, PPC::LR8, PPC::CTR8, 0
16079   };
16080 
16081   return ScratchRegs;
16082 }
16083 
16084 Register PPCTargetLowering::getExceptionPointerRegister(
16085     const Constant *PersonalityFn) const {
16086   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16087 }
16088 
16089 Register PPCTargetLowering::getExceptionSelectorRegister(
16090     const Constant *PersonalityFn) const {
16091   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16092 }
16093 
16094 bool
16095 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16096                      EVT VT , unsigned DefinedValues) const {
16097   if (VT == MVT::v2i64)
16098     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16099 
16100   if (Subtarget.hasVSX() || Subtarget.hasQPX())
16101     return true;
16102 
16103   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16104 }
16105 
16106 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16107   if (DisableILPPref || Subtarget.enableMachineScheduler())
16108     return TargetLowering::getSchedulingPreference(N);
16109 
16110   return Sched::ILP;
16111 }
16112 
16113 // Create a fast isel object.
16114 FastISel *
16115 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16116                                   const TargetLibraryInfo *LibInfo) const {
16117   return PPC::createFastISel(FuncInfo, LibInfo);
16118 }
16119 
16120 // 'Inverted' means the FMA opcode after negating one multiplicand.
16121 // For example, (fma -a b c) = (fnmsub a b c)
16122 static unsigned invertFMAOpcode(unsigned Opc) {
16123   switch (Opc) {
16124   default:
16125     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16126   case ISD::FMA:
16127     return PPCISD::FNMSUB;
16128   case PPCISD::FNMSUB:
16129     return ISD::FMA;
16130   }
16131 }
16132 
16133 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16134                                                 bool LegalOps, bool OptForSize,
16135                                                 NegatibleCost &Cost,
16136                                                 unsigned Depth) const {
16137   if (Depth > SelectionDAG::MaxRecursionDepth)
16138     return SDValue();
16139 
16140   unsigned Opc = Op.getOpcode();
16141   EVT VT = Op.getValueType();
16142   SDNodeFlags Flags = Op.getNode()->getFlags();
16143 
16144   switch (Opc) {
16145   case PPCISD::FNMSUB:
16146     // TODO: QPX subtarget is deprecated. No transformation here.
16147     if (!Op.hasOneUse() || !isTypeLegal(VT) || Subtarget.hasQPX())
16148       break;
16149 
16150     const TargetOptions &Options = getTargetMachine().Options;
16151     SDValue N0 = Op.getOperand(0);
16152     SDValue N1 = Op.getOperand(1);
16153     SDValue N2 = Op.getOperand(2);
16154     SDLoc Loc(Op);
16155 
16156     NegatibleCost N2Cost = NegatibleCost::Expensive;
16157     SDValue NegN2 =
16158         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16159 
16160     if (!NegN2)
16161       return SDValue();
16162 
16163     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16164     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16165     // These transformations may change sign of zeroes. For example,
16166     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16167     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16168       // Try and choose the cheaper one to negate.
16169       NegatibleCost N0Cost = NegatibleCost::Expensive;
16170       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16171                                            N0Cost, Depth + 1);
16172 
16173       NegatibleCost N1Cost = NegatibleCost::Expensive;
16174       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16175                                            N1Cost, Depth + 1);
16176 
16177       if (NegN0 && N0Cost <= N1Cost) {
16178         Cost = std::min(N0Cost, N2Cost);
16179         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16180       } else if (NegN1) {
16181         Cost = std::min(N1Cost, N2Cost);
16182         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16183       }
16184     }
16185 
16186     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16187     if (isOperationLegal(ISD::FMA, VT)) {
16188       Cost = N2Cost;
16189       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16190     }
16191 
16192     break;
16193   }
16194 
16195   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16196                                               Cost, Depth);
16197 }
16198 
16199 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16200 bool PPCTargetLowering::useLoadStackGuardNode() const {
16201   if (!Subtarget.isTargetLinux())
16202     return TargetLowering::useLoadStackGuardNode();
16203   return true;
16204 }
16205 
16206 // Override to disable global variable loading on Linux.
16207 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16208   if (!Subtarget.isTargetLinux())
16209     return TargetLowering::insertSSPDeclarations(M);
16210 }
16211 
16212 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16213                                      bool ForCodeSize) const {
16214   if (!VT.isSimple() || !Subtarget.hasVSX())
16215     return false;
16216 
16217   switch(VT.getSimpleVT().SimpleTy) {
16218   default:
16219     // For FP types that are currently not supported by PPC backend, return
16220     // false. Examples: f16, f80.
16221     return false;
16222   case MVT::f32:
16223   case MVT::f64:
16224   case MVT::ppcf128:
16225     return Imm.isPosZero();
16226   }
16227 }
16228 
16229 // For vector shift operation op, fold
16230 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16231 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16232                                   SelectionDAG &DAG) {
16233   SDValue N0 = N->getOperand(0);
16234   SDValue N1 = N->getOperand(1);
16235   EVT VT = N0.getValueType();
16236   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16237   unsigned Opcode = N->getOpcode();
16238   unsigned TargetOpcode;
16239 
16240   switch (Opcode) {
16241   default:
16242     llvm_unreachable("Unexpected shift operation");
16243   case ISD::SHL:
16244     TargetOpcode = PPCISD::SHL;
16245     break;
16246   case ISD::SRL:
16247     TargetOpcode = PPCISD::SRL;
16248     break;
16249   case ISD::SRA:
16250     TargetOpcode = PPCISD::SRA;
16251     break;
16252   }
16253 
16254   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16255       N1->getOpcode() == ISD::AND)
16256     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16257       if (Mask->getZExtValue() == OpSizeInBits - 1)
16258         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16259 
16260   return SDValue();
16261 }
16262 
16263 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16264   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16265     return Value;
16266 
16267   SDValue N0 = N->getOperand(0);
16268   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16269   if (!Subtarget.isISA3_0() ||
16270       N0.getOpcode() != ISD::SIGN_EXTEND ||
16271       N0.getOperand(0).getValueType() != MVT::i32 ||
16272       CN1 == nullptr || N->getValueType(0) != MVT::i64)
16273     return SDValue();
16274 
16275   // We can't save an operation here if the value is already extended, and
16276   // the existing shift is easier to combine.
16277   SDValue ExtsSrc = N0.getOperand(0);
16278   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16279       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16280     return SDValue();
16281 
16282   SDLoc DL(N0);
16283   SDValue ShiftBy = SDValue(CN1, 0);
16284   // We want the shift amount to be i32 on the extswli, but the shift could
16285   // have an i64.
16286   if (ShiftBy.getValueType() == MVT::i64)
16287     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16288 
16289   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16290                          ShiftBy);
16291 }
16292 
16293 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16294   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16295     return Value;
16296 
16297   return SDValue();
16298 }
16299 
16300 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16301   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16302     return Value;
16303 
16304   return SDValue();
16305 }
16306 
16307 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16308 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16309 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16310 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16311 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16312                                  const PPCSubtarget &Subtarget) {
16313   if (!Subtarget.isPPC64())
16314     return SDValue();
16315 
16316   SDValue LHS = N->getOperand(0);
16317   SDValue RHS = N->getOperand(1);
16318 
16319   auto isZextOfCompareWithConstant = [](SDValue Op) {
16320     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16321         Op.getValueType() != MVT::i64)
16322       return false;
16323 
16324     SDValue Cmp = Op.getOperand(0);
16325     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16326         Cmp.getOperand(0).getValueType() != MVT::i64)
16327       return false;
16328 
16329     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16330       int64_t NegConstant = 0 - Constant->getSExtValue();
16331       // Due to the limitations of the addi instruction,
16332       // -C is required to be [-32768, 32767].
16333       return isInt<16>(NegConstant);
16334     }
16335 
16336     return false;
16337   };
16338 
16339   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16340   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16341 
16342   // If there is a pattern, canonicalize a zext operand to the RHS.
16343   if (LHSHasPattern && !RHSHasPattern)
16344     std::swap(LHS, RHS);
16345   else if (!LHSHasPattern && !RHSHasPattern)
16346     return SDValue();
16347 
16348   SDLoc DL(N);
16349   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16350   SDValue Cmp = RHS.getOperand(0);
16351   SDValue Z = Cmp.getOperand(0);
16352   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16353 
16354   assert(Constant && "Constant Should not be a null pointer.");
16355   int64_t NegConstant = 0 - Constant->getSExtValue();
16356 
16357   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16358   default: break;
16359   case ISD::SETNE: {
16360     //                                 when C == 0
16361     //                             --> addze X, (addic Z, -1).carry
16362     //                            /
16363     // add X, (zext(setne Z, C))--
16364     //                            \    when -32768 <= -C <= 32767 && C != 0
16365     //                             --> addze X, (addic (addi Z, -C), -1).carry
16366     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16367                               DAG.getConstant(NegConstant, DL, MVT::i64));
16368     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16369     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16370                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16371     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16372                        SDValue(Addc.getNode(), 1));
16373     }
16374   case ISD::SETEQ: {
16375     //                                 when C == 0
16376     //                             --> addze X, (subfic Z, 0).carry
16377     //                            /
16378     // add X, (zext(sete  Z, C))--
16379     //                            \    when -32768 <= -C <= 32767 && C != 0
16380     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16381     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16382                               DAG.getConstant(NegConstant, DL, MVT::i64));
16383     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16384     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16385                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16386     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16387                        SDValue(Subc.getNode(), 1));
16388     }
16389   }
16390 
16391   return SDValue();
16392 }
16393 
16394 // Transform
16395 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16396 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16397 // In this case both C1 and C2 must be known constants.
16398 // C1+C2 must fit into a 34 bit signed integer.
16399 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16400                                           const PPCSubtarget &Subtarget) {
16401   if (!Subtarget.isUsingPCRelativeCalls())
16402     return SDValue();
16403 
16404   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16405   // If we find that node try to cast the Global Address and the Constant.
16406   SDValue LHS = N->getOperand(0);
16407   SDValue RHS = N->getOperand(1);
16408 
16409   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16410     std::swap(LHS, RHS);
16411 
16412   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16413     return SDValue();
16414 
16415   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16416   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16417   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16418 
16419   // Check that both casts succeeded.
16420   if (!GSDN || !ConstNode)
16421     return SDValue();
16422 
16423   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16424   SDLoc DL(GSDN);
16425 
16426   // The signed int offset needs to fit in 34 bits.
16427   if (!isInt<34>(NewOffset))
16428     return SDValue();
16429 
16430   // The new global address is a copy of the old global address except
16431   // that it has the updated Offset.
16432   SDValue GA =
16433       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16434                                  NewOffset, GSDN->getTargetFlags());
16435   SDValue MatPCRel =
16436       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16437   return MatPCRel;
16438 }
16439 
16440 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16441   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16442     return Value;
16443 
16444   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16445     return Value;
16446 
16447   return SDValue();
16448 }
16449 
16450 // Detect TRUNCATE operations on bitcasts of float128 values.
16451 // What we are looking for here is the situtation where we extract a subset
16452 // of bits from a 128 bit float.
16453 // This can be of two forms:
16454 // 1) BITCAST of f128 feeding TRUNCATE
16455 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16456 // The reason this is required is because we do not have a legal i128 type
16457 // and so we want to prevent having to store the f128 and then reload part
16458 // of it.
16459 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16460                                            DAGCombinerInfo &DCI) const {
16461   // If we are using CRBits then try that first.
16462   if (Subtarget.useCRBits()) {
16463     // Check if CRBits did anything and return that if it did.
16464     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16465       return CRTruncValue;
16466   }
16467 
16468   SDLoc dl(N);
16469   SDValue Op0 = N->getOperand(0);
16470 
16471   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16472   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16473     EVT VT = N->getValueType(0);
16474     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16475       return SDValue();
16476     SDValue Sub = Op0.getOperand(0);
16477     if (Sub.getOpcode() == ISD::SUB) {
16478       SDValue SubOp0 = Sub.getOperand(0);
16479       SDValue SubOp1 = Sub.getOperand(1);
16480       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16481           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16482         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16483                                SubOp1.getOperand(0),
16484                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16485       }
16486     }
16487   }
16488 
16489   // Looking for a truncate of i128 to i64.
16490   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16491     return SDValue();
16492 
16493   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16494 
16495   // SRL feeding TRUNCATE.
16496   if (Op0.getOpcode() == ISD::SRL) {
16497     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16498     // The right shift has to be by 64 bits.
16499     if (!ConstNode || ConstNode->getZExtValue() != 64)
16500       return SDValue();
16501 
16502     // Switch the element number to extract.
16503     EltToExtract = EltToExtract ? 0 : 1;
16504     // Update Op0 past the SRL.
16505     Op0 = Op0.getOperand(0);
16506   }
16507 
16508   // BITCAST feeding a TRUNCATE possibly via SRL.
16509   if (Op0.getOpcode() == ISD::BITCAST &&
16510       Op0.getValueType() == MVT::i128 &&
16511       Op0.getOperand(0).getValueType() == MVT::f128) {
16512     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16513     return DCI.DAG.getNode(
16514         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16515         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16516   }
16517   return SDValue();
16518 }
16519 
16520 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16521   SelectionDAG &DAG = DCI.DAG;
16522 
16523   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16524   if (!ConstOpOrElement)
16525     return SDValue();
16526 
16527   // An imul is usually smaller than the alternative sequence for legal type.
16528   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16529       isOperationLegal(ISD::MUL, N->getValueType(0)))
16530     return SDValue();
16531 
16532   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16533     switch (this->Subtarget.getCPUDirective()) {
16534     default:
16535       // TODO: enhance the condition for subtarget before pwr8
16536       return false;
16537     case PPC::DIR_PWR8:
16538       //  type        mul     add    shl
16539       // scalar        4       1      1
16540       // vector        7       2      2
16541       return true;
16542     case PPC::DIR_PWR9:
16543     case PPC::DIR_PWR10:
16544     case PPC::DIR_PWR_FUTURE:
16545       //  type        mul     add    shl
16546       // scalar        5       2      2
16547       // vector        7       2      2
16548 
16549       // The cycle RATIO of related operations are showed as a table above.
16550       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16551       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16552       // are 4, it is always profitable; but for 3 instrs patterns
16553       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16554       // So we should only do it for vector type.
16555       return IsAddOne && IsNeg ? VT.isVector() : true;
16556     }
16557   };
16558 
16559   EVT VT = N->getValueType(0);
16560   SDLoc DL(N);
16561 
16562   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16563   bool IsNeg = MulAmt.isNegative();
16564   APInt MulAmtAbs = MulAmt.abs();
16565 
16566   if ((MulAmtAbs - 1).isPowerOf2()) {
16567     // (mul x, 2^N + 1) => (add (shl x, N), x)
16568     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16569 
16570     if (!IsProfitable(IsNeg, true, VT))
16571       return SDValue();
16572 
16573     SDValue Op0 = N->getOperand(0);
16574     SDValue Op1 =
16575         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16576                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16577     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16578 
16579     if (!IsNeg)
16580       return Res;
16581 
16582     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16583   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16584     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16585     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16586 
16587     if (!IsProfitable(IsNeg, false, VT))
16588       return SDValue();
16589 
16590     SDValue Op0 = N->getOperand(0);
16591     SDValue Op1 =
16592         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16593                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16594 
16595     if (!IsNeg)
16596       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16597     else
16598       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16599 
16600   } else {
16601     return SDValue();
16602   }
16603 }
16604 
16605 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16606 // in combiner since we need to check SD flags and other subtarget features.
16607 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16608                                           DAGCombinerInfo &DCI) const {
16609   SDValue N0 = N->getOperand(0);
16610   SDValue N1 = N->getOperand(1);
16611   SDValue N2 = N->getOperand(2);
16612   SDNodeFlags Flags = N->getFlags();
16613   EVT VT = N->getValueType(0);
16614   SelectionDAG &DAG = DCI.DAG;
16615   const TargetOptions &Options = getTargetMachine().Options;
16616   unsigned Opc = N->getOpcode();
16617   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16618   bool LegalOps = !DCI.isBeforeLegalizeOps();
16619   SDLoc Loc(N);
16620 
16621   // TODO: QPX subtarget is deprecated. No transformation here.
16622   if (Subtarget.hasQPX() || !isOperationLegal(ISD::FMA, VT))
16623     return SDValue();
16624 
16625   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16626   // since (fnmsub a b c)=-0 while c-ab=+0.
16627   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16628     return SDValue();
16629 
16630   // (fma (fneg a) b c) => (fnmsub a b c)
16631   // (fnmsub (fneg a) b c) => (fma a b c)
16632   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16633     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16634 
16635   // (fma a (fneg b) c) => (fnmsub a b c)
16636   // (fnmsub a (fneg b) c) => (fma a b c)
16637   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16638     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16639 
16640   return SDValue();
16641 }
16642 
16643 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16644   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16645   if (!Subtarget.is64BitELFABI())
16646     return false;
16647 
16648   // If not a tail call then no need to proceed.
16649   if (!CI->isTailCall())
16650     return false;
16651 
16652   // If sibling calls have been disabled and tail-calls aren't guaranteed
16653   // there is no reason to duplicate.
16654   auto &TM = getTargetMachine();
16655   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16656     return false;
16657 
16658   // Can't tail call a function called indirectly, or if it has variadic args.
16659   const Function *Callee = CI->getCalledFunction();
16660   if (!Callee || Callee->isVarArg())
16661     return false;
16662 
16663   // Make sure the callee and caller calling conventions are eligible for tco.
16664   const Function *Caller = CI->getParent()->getParent();
16665   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16666                                            CI->getCallingConv()))
16667       return false;
16668 
16669   // If the function is local then we have a good chance at tail-calling it
16670   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16671 }
16672 
16673 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16674   if (!Subtarget.hasVSX())
16675     return false;
16676   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16677     return true;
16678   return VT == MVT::f32 || VT == MVT::f64 ||
16679     VT == MVT::v4f32 || VT == MVT::v2f64;
16680 }
16681 
16682 bool PPCTargetLowering::
16683 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16684   const Value *Mask = AndI.getOperand(1);
16685   // If the mask is suitable for andi. or andis. we should sink the and.
16686   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16687     // Can't handle constants wider than 64-bits.
16688     if (CI->getBitWidth() > 64)
16689       return false;
16690     int64_t ConstVal = CI->getZExtValue();
16691     return isUInt<16>(ConstVal) ||
16692       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16693   }
16694 
16695   // For non-constant masks, we can always use the record-form and.
16696   return true;
16697 }
16698 
16699 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16700 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16701 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16702 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16703 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16704 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16705   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16706   assert(Subtarget.hasP9Altivec() &&
16707          "Only combine this when P9 altivec supported!");
16708   EVT VT = N->getValueType(0);
16709   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16710     return SDValue();
16711 
16712   SelectionDAG &DAG = DCI.DAG;
16713   SDLoc dl(N);
16714   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16715     // Even for signed integers, if it's known to be positive (as signed
16716     // integer) due to zero-extended inputs.
16717     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16718     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16719     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16720          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16721         (SubOpcd1 == ISD::ZERO_EXTEND ||
16722          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16723       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16724                          N->getOperand(0)->getOperand(0),
16725                          N->getOperand(0)->getOperand(1),
16726                          DAG.getTargetConstant(0, dl, MVT::i32));
16727     }
16728 
16729     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16730     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16731         N->getOperand(0).hasOneUse()) {
16732       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16733                          N->getOperand(0)->getOperand(0),
16734                          N->getOperand(0)->getOperand(1),
16735                          DAG.getTargetConstant(1, dl, MVT::i32));
16736     }
16737   }
16738 
16739   return SDValue();
16740 }
16741 
16742 // For type v4i32/v8ii16/v16i8, transform
16743 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16744 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16745 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16746 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16747 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16748                                           DAGCombinerInfo &DCI) const {
16749   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16750   assert(Subtarget.hasP9Altivec() &&
16751          "Only combine this when P9 altivec supported!");
16752 
16753   SelectionDAG &DAG = DCI.DAG;
16754   SDLoc dl(N);
16755   SDValue Cond = N->getOperand(0);
16756   SDValue TrueOpnd = N->getOperand(1);
16757   SDValue FalseOpnd = N->getOperand(2);
16758   EVT VT = N->getOperand(1).getValueType();
16759 
16760   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16761       FalseOpnd.getOpcode() != ISD::SUB)
16762     return SDValue();
16763 
16764   // ABSD only available for type v4i32/v8i16/v16i8
16765   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16766     return SDValue();
16767 
16768   // At least to save one more dependent computation
16769   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16770     return SDValue();
16771 
16772   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16773 
16774   // Can only handle unsigned comparison here
16775   switch (CC) {
16776   default:
16777     return SDValue();
16778   case ISD::SETUGT:
16779   case ISD::SETUGE:
16780     break;
16781   case ISD::SETULT:
16782   case ISD::SETULE:
16783     std::swap(TrueOpnd, FalseOpnd);
16784     break;
16785   }
16786 
16787   SDValue CmpOpnd1 = Cond.getOperand(0);
16788   SDValue CmpOpnd2 = Cond.getOperand(1);
16789 
16790   // SETCC CmpOpnd1 CmpOpnd2 cond
16791   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16792   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16793   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16794       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16795       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16796       FalseOpnd.getOperand(1) == CmpOpnd1) {
16797     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16798                        CmpOpnd1, CmpOpnd2,
16799                        DAG.getTargetConstant(0, dl, MVT::i32));
16800   }
16801 
16802   return SDValue();
16803 }
16804