1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnablePPCPCRelTLS(
125     "enable-ppc-pcrel-tls",
126     cl::desc("enable the use of PC relative memops in TLS instructions on PPC"),
127     cl::Hidden);
128 
129 STATISTIC(NumTailCalls, "Number of tail calls");
130 STATISTIC(NumSiblingCalls, "Number of sibling calls");
131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
133 
134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
135 
136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
137 
138 // FIXME: Remove this once the bug has been fixed!
139 extern cl::opt<bool> ANDIGlueBug;
140 
141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
142                                      const PPCSubtarget &STI)
143     : TargetLowering(TM), Subtarget(STI) {
144   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
145   // arguments are at least 4/8 bytes aligned.
146   bool isPPC64 = Subtarget.isPPC64();
147   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
148 
149   // Set up the register classes.
150   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
151   if (!useSoftFloat()) {
152     if (hasSPE()) {
153       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
154       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
155     } else {
156       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
157       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
158     }
159   }
160 
161   // Match BITREVERSE to customized fast code sequence in the td file.
162   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
163   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
164 
165   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
166   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
167 
168   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
169   for (MVT VT : MVT::integer_valuetypes()) {
170     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
171     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
172   }
173 
174   if (Subtarget.isISA3_0()) {
175     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
176     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
177     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
178     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
179   } else {
180     // No extending loads from f16 or HW conversions back and forth.
181     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
183     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
184     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
185     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
186     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
187     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
188     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
189   }
190 
191   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
192 
193   // PowerPC has pre-inc load and store's.
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
195   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
196   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
197   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
198   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
200   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
201   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
202   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
203   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
204   if (!Subtarget.hasSPE()) {
205     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
206     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
207     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
208     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
209   }
210 
211   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
212   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
213   for (MVT VT : ScalarIntVTs) {
214     setOperationAction(ISD::ADDC, VT, Legal);
215     setOperationAction(ISD::ADDE, VT, Legal);
216     setOperationAction(ISD::SUBC, VT, Legal);
217     setOperationAction(ISD::SUBE, VT, Legal);
218   }
219 
220   if (Subtarget.useCRBits()) {
221     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 
223     if (isPPC64 || Subtarget.hasFPCVT()) {
224       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
225       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
226                         isPPC64 ? MVT::i64 : MVT::i32);
227       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
228       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
229                         isPPC64 ? MVT::i64 : MVT::i32);
230 
231       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
232       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
233                          isPPC64 ? MVT::i64 : MVT::i32);
234       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
235       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
236                         isPPC64 ? MVT::i64 : MVT::i32);
237     } else {
238       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
239       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
240       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
241       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
242     }
243 
244     // PowerPC does not support direct load/store of condition registers.
245     setOperationAction(ISD::LOAD, MVT::i1, Custom);
246     setOperationAction(ISD::STORE, MVT::i1, Custom);
247 
248     // FIXME: Remove this once the ANDI glue bug is fixed:
249     if (ANDIGlueBug)
250       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
251 
252     for (MVT VT : MVT::integer_valuetypes()) {
253       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
254       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
255       setTruncStoreAction(VT, MVT::i1, Expand);
256     }
257 
258     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
259   }
260 
261   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
262   // PPC (the libcall is not available).
263   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
264   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
265   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
266   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
267 
268   // We do not currently implement these libm ops for PowerPC.
269   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
270   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
271   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
272   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
273   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
274   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
275 
276   // PowerPC has no SREM/UREM instructions unless we are on P9
277   // On P9 we may use a hardware instruction to compute the remainder.
278   // When the result of both the remainder and the division is required it is
279   // more efficient to compute the remainder from the result of the division
280   // rather than use the remainder instruction. The instructions are legalized
281   // directly because the DivRemPairsPass performs the transformation at the IR
282   // level.
283   if (Subtarget.isISA3_0()) {
284     setOperationAction(ISD::SREM, MVT::i32, Legal);
285     setOperationAction(ISD::UREM, MVT::i32, Legal);
286     setOperationAction(ISD::SREM, MVT::i64, Legal);
287     setOperationAction(ISD::UREM, MVT::i64, Legal);
288   } else {
289     setOperationAction(ISD::SREM, MVT::i32, Expand);
290     setOperationAction(ISD::UREM, MVT::i32, Expand);
291     setOperationAction(ISD::SREM, MVT::i64, Expand);
292     setOperationAction(ISD::UREM, MVT::i64, Expand);
293   }
294 
295   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
296   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
297   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
298   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
299   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
300   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
301   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
302   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
303   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
304 
305   // Handle constrained floating-point operations of scalar.
306   // TODO: Handle SPE specific operation.
307   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
308   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
309   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
310   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
311   setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
312   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
313 
314   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
315   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
316   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
317   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
318   setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
319   if (Subtarget.hasVSX()) {
320     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
321     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
322   }
323 
324   if (Subtarget.hasFSQRT()) {
325     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
326     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
327   }
328 
329   if (Subtarget.hasFPRND()) {
330     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
331     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
332     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
333     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
334 
335     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
336     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
337     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
338     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
339   }
340 
341   // We don't support sin/cos/sqrt/fmod/pow
342   setOperationAction(ISD::FSIN , MVT::f64, Expand);
343   setOperationAction(ISD::FCOS , MVT::f64, Expand);
344   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
345   setOperationAction(ISD::FREM , MVT::f64, Expand);
346   setOperationAction(ISD::FPOW , MVT::f64, Expand);
347   setOperationAction(ISD::FSIN , MVT::f32, Expand);
348   setOperationAction(ISD::FCOS , MVT::f32, Expand);
349   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
350   setOperationAction(ISD::FREM , MVT::f32, Expand);
351   setOperationAction(ISD::FPOW , MVT::f32, Expand);
352   if (Subtarget.hasSPE()) {
353     setOperationAction(ISD::FMA  , MVT::f64, Expand);
354     setOperationAction(ISD::FMA  , MVT::f32, Expand);
355   } else {
356     setOperationAction(ISD::FMA  , MVT::f64, Legal);
357     setOperationAction(ISD::FMA  , MVT::f32, Legal);
358   }
359 
360   if (Subtarget.hasSPE())
361     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
362 
363   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
364 
365   // If we're enabling GP optimizations, use hardware square root
366   if (!Subtarget.hasFSQRT() &&
367       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
368         Subtarget.hasFRE()))
369     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
370 
371   if (!Subtarget.hasFSQRT() &&
372       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
373         Subtarget.hasFRES()))
374     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
375 
376   if (Subtarget.hasFCPSGN()) {
377     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
378     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
379   } else {
380     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
381     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
382   }
383 
384   if (Subtarget.hasFPRND()) {
385     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
386     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
387     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
388     setOperationAction(ISD::FROUND, MVT::f64, Legal);
389 
390     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
391     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
392     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
393     setOperationAction(ISD::FROUND, MVT::f32, Legal);
394   }
395 
396   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
397   // to speed up scalar BSWAP64.
398   // CTPOP or CTTZ were introduced in P8/P9 respectively
399   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
400   if (Subtarget.hasP9Vector())
401     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
402   else
403     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
404   if (Subtarget.isISA3_0()) {
405     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
406     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
407   } else {
408     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
409     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
410   }
411 
412   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
413     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
414     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
415   } else {
416     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
417     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
418   }
419 
420   // PowerPC does not have ROTR
421   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
422   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
423 
424   if (!Subtarget.useCRBits()) {
425     // PowerPC does not have Select
426     setOperationAction(ISD::SELECT, MVT::i32, Expand);
427     setOperationAction(ISD::SELECT, MVT::i64, Expand);
428     setOperationAction(ISD::SELECT, MVT::f32, Expand);
429     setOperationAction(ISD::SELECT, MVT::f64, Expand);
430   }
431 
432   // PowerPC wants to turn select_cc of FP into fsel when possible.
433   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
434   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
435 
436   // PowerPC wants to optimize integer setcc a bit
437   if (!Subtarget.useCRBits())
438     setOperationAction(ISD::SETCC, MVT::i32, Custom);
439 
440   if (Subtarget.hasFPU()) {
441     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
442     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
443     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
444 
445     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
446     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
447     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
448   }
449 
450   // PowerPC does not have BRCOND which requires SetCC
451   if (!Subtarget.useCRBits())
452     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
453 
454   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
455 
456   if (Subtarget.hasSPE()) {
457     // SPE has built-in conversions
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
459     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
460     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
461     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
462     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
463     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
464   } else {
465     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
466     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
467     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
468 
469     // PowerPC does not have [U|S]INT_TO_FP
470     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
471     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
472     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
473     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
474   }
475 
476   if (Subtarget.hasDirectMove() && isPPC64) {
477     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
478     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
479     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
480     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
481     if (TM.Options.UnsafeFPMath) {
482       setOperationAction(ISD::LRINT, MVT::f64, Legal);
483       setOperationAction(ISD::LRINT, MVT::f32, Legal);
484       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
485       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
486       setOperationAction(ISD::LROUND, MVT::f64, Legal);
487       setOperationAction(ISD::LROUND, MVT::f32, Legal);
488       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
489       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
490     }
491   } else {
492     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
493     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
494     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
495     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
496   }
497 
498   // We cannot sextinreg(i1).  Expand to shifts.
499   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
500 
501   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
502   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
503   // support continuation, user-level threading, and etc.. As a result, no
504   // other SjLj exception interfaces are implemented and please don't build
505   // your own exception handling based on them.
506   // LLVM/Clang supports zero-cost DWARF exception handling.
507   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
508   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
509 
510   // We want to legalize GlobalAddress and ConstantPool nodes into the
511   // appropriate instructions to materialize the address.
512   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
513   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
514   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
515   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
516   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
517   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
518   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
519   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
520   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
521   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
522 
523   // TRAP is legal.
524   setOperationAction(ISD::TRAP, MVT::Other, Legal);
525 
526   // TRAMPOLINE is custom lowered.
527   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
528   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
529 
530   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
531   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
532 
533   if (Subtarget.is64BitELFABI()) {
534     // VAARG always uses double-word chunks, so promote anything smaller.
535     setOperationAction(ISD::VAARG, MVT::i1, Promote);
536     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
537     setOperationAction(ISD::VAARG, MVT::i8, Promote);
538     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
539     setOperationAction(ISD::VAARG, MVT::i16, Promote);
540     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
541     setOperationAction(ISD::VAARG, MVT::i32, Promote);
542     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
543     setOperationAction(ISD::VAARG, MVT::Other, Expand);
544   } else if (Subtarget.is32BitELFABI()) {
545     // VAARG is custom lowered with the 32-bit SVR4 ABI.
546     setOperationAction(ISD::VAARG, MVT::Other, Custom);
547     setOperationAction(ISD::VAARG, MVT::i64, Custom);
548   } else
549     setOperationAction(ISD::VAARG, MVT::Other, Expand);
550 
551   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
552   if (Subtarget.is32BitELFABI())
553     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
554   else
555     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
556 
557   // Use the default implementation.
558   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
559   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
560   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
561   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
562   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
563   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
564   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
565   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
566   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
567 
568   // We want to custom lower some of our intrinsics.
569   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
570 
571   // To handle counter-based loop conditions.
572   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
573 
574   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
575   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
576   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
577   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
578 
579   // Comparisons that require checking two conditions.
580   if (Subtarget.hasSPE()) {
581     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
582     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
583     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
584     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
585   }
586   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
587   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
588   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
589   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
590   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
591   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
592   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
593   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
594   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
595   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
596   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
597   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
598 
599   if (Subtarget.has64BitSupport()) {
600     // They also have instructions for converting between i64 and fp.
601     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
602     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
603     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
604     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
605     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
606     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
607     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
608     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
609     // This is just the low 32 bits of a (signed) fp->i64 conversion.
610     // We cannot do this with Promote because i64 is not a legal type.
611     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
612     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
613 
614     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
615       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
616       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
617     }
618   } else {
619     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
620     if (Subtarget.hasSPE()) {
621       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
622       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
623     } else {
624       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
625       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
626     }
627   }
628 
629   // With the instructions enabled under FPCVT, we can do everything.
630   if (Subtarget.hasFPCVT()) {
631     if (Subtarget.has64BitSupport()) {
632       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
633       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
634       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
635       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
636       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
637       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
638       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
639       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
640     }
641 
642     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
643     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
644     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
645     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
646     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
647     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
648     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
649     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
650   }
651 
652   if (Subtarget.use64BitRegs()) {
653     // 64-bit PowerPC implementations can support i64 types directly
654     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
655     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
656     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
657     // 64-bit PowerPC wants to expand i128 shifts itself.
658     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
659     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
660     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
661   } else {
662     // 32-bit PowerPC wants to expand i64 shifts itself.
663     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
664     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
665     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
666   }
667 
668   // PowerPC has better expansions for funnel shifts than the generic
669   // TargetLowering::expandFunnelShift.
670   if (Subtarget.has64BitSupport()) {
671     setOperationAction(ISD::FSHL, MVT::i64, Custom);
672     setOperationAction(ISD::FSHR, MVT::i64, Custom);
673   }
674   setOperationAction(ISD::FSHL, MVT::i32, Custom);
675   setOperationAction(ISD::FSHR, MVT::i32, Custom);
676 
677   if (Subtarget.hasVSX()) {
678     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
679     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
680     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
681     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
682   }
683 
684   if (Subtarget.hasAltivec()) {
685     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
686       setOperationAction(ISD::SADDSAT, VT, Legal);
687       setOperationAction(ISD::SSUBSAT, VT, Legal);
688       setOperationAction(ISD::UADDSAT, VT, Legal);
689       setOperationAction(ISD::USUBSAT, VT, Legal);
690     }
691     // First set operation action for all vector types to expand. Then we
692     // will selectively turn on ones that can be effectively codegen'd.
693     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
694       // add/sub are legal for all supported vector VT's.
695       setOperationAction(ISD::ADD, VT, Legal);
696       setOperationAction(ISD::SUB, VT, Legal);
697 
698       // For v2i64, these are only valid with P8Vector. This is corrected after
699       // the loop.
700       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
701         setOperationAction(ISD::SMAX, VT, Legal);
702         setOperationAction(ISD::SMIN, VT, Legal);
703         setOperationAction(ISD::UMAX, VT, Legal);
704         setOperationAction(ISD::UMIN, VT, Legal);
705       }
706       else {
707         setOperationAction(ISD::SMAX, VT, Expand);
708         setOperationAction(ISD::SMIN, VT, Expand);
709         setOperationAction(ISD::UMAX, VT, Expand);
710         setOperationAction(ISD::UMIN, VT, Expand);
711       }
712 
713       if (Subtarget.hasVSX()) {
714         setOperationAction(ISD::FMAXNUM, VT, Legal);
715         setOperationAction(ISD::FMINNUM, VT, Legal);
716       }
717 
718       // Vector instructions introduced in P8
719       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
720         setOperationAction(ISD::CTPOP, VT, Legal);
721         setOperationAction(ISD::CTLZ, VT, Legal);
722       }
723       else {
724         setOperationAction(ISD::CTPOP, VT, Expand);
725         setOperationAction(ISD::CTLZ, VT, Expand);
726       }
727 
728       // Vector instructions introduced in P9
729       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
730         setOperationAction(ISD::CTTZ, VT, Legal);
731       else
732         setOperationAction(ISD::CTTZ, VT, Expand);
733 
734       // We promote all shuffles to v16i8.
735       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
736       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
737 
738       // We promote all non-typed operations to v4i32.
739       setOperationAction(ISD::AND   , VT, Promote);
740       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
741       setOperationAction(ISD::OR    , VT, Promote);
742       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
743       setOperationAction(ISD::XOR   , VT, Promote);
744       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
745       setOperationAction(ISD::LOAD  , VT, Promote);
746       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
747       setOperationAction(ISD::SELECT, VT, Promote);
748       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
749       setOperationAction(ISD::VSELECT, VT, Legal);
750       setOperationAction(ISD::SELECT_CC, VT, Promote);
751       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
752       setOperationAction(ISD::STORE, VT, Promote);
753       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
754 
755       // No other operations are legal.
756       setOperationAction(ISD::MUL , VT, Expand);
757       setOperationAction(ISD::SDIV, VT, Expand);
758       setOperationAction(ISD::SREM, VT, Expand);
759       setOperationAction(ISD::UDIV, VT, Expand);
760       setOperationAction(ISD::UREM, VT, Expand);
761       setOperationAction(ISD::FDIV, VT, Expand);
762       setOperationAction(ISD::FREM, VT, Expand);
763       setOperationAction(ISD::FNEG, VT, Expand);
764       setOperationAction(ISD::FSQRT, VT, Expand);
765       setOperationAction(ISD::FLOG, VT, Expand);
766       setOperationAction(ISD::FLOG10, VT, Expand);
767       setOperationAction(ISD::FLOG2, VT, Expand);
768       setOperationAction(ISD::FEXP, VT, Expand);
769       setOperationAction(ISD::FEXP2, VT, Expand);
770       setOperationAction(ISD::FSIN, VT, Expand);
771       setOperationAction(ISD::FCOS, VT, Expand);
772       setOperationAction(ISD::FABS, VT, Expand);
773       setOperationAction(ISD::FFLOOR, VT, Expand);
774       setOperationAction(ISD::FCEIL,  VT, Expand);
775       setOperationAction(ISD::FTRUNC, VT, Expand);
776       setOperationAction(ISD::FRINT,  VT, Expand);
777       setOperationAction(ISD::FNEARBYINT, VT, Expand);
778       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
779       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
780       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
781       setOperationAction(ISD::MULHU, VT, Expand);
782       setOperationAction(ISD::MULHS, VT, Expand);
783       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
784       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
785       setOperationAction(ISD::UDIVREM, VT, Expand);
786       setOperationAction(ISD::SDIVREM, VT, Expand);
787       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
788       setOperationAction(ISD::FPOW, VT, Expand);
789       setOperationAction(ISD::BSWAP, VT, Expand);
790       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
791       setOperationAction(ISD::ROTL, VT, Expand);
792       setOperationAction(ISD::ROTR, VT, Expand);
793 
794       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
795         setTruncStoreAction(VT, InnerVT, Expand);
796         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
797         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
798         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
799       }
800     }
801     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
802     if (!Subtarget.hasP8Vector()) {
803       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
804       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
805       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
806       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
807     }
808 
809     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
810       setOperationAction(ISD::ABS, VT, Custom);
811 
812     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
813     // with merges, splats, etc.
814     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
815 
816     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
817     // are cheap, so handle them before they get expanded to scalar.
818     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
819     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
820     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
821     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
822     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
823 
824     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
825     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
826     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
827     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
828     setOperationAction(ISD::SELECT, MVT::v4i32,
829                        Subtarget.useCRBits() ? Legal : Expand);
830     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
831     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
832     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
833     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
834     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
835     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
836     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
837     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
838     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
839     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
840     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
841     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
842     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
843 
844     // Without hasP8Altivec set, v2i64 SMAX isn't available.
845     // But ABS custom lowering requires SMAX support.
846     if (!Subtarget.hasP8Altivec())
847       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
848 
849     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
850     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
851     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
852     if (Subtarget.hasAltivec())
853       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
854         setOperationAction(ISD::ROTL, VT, Legal);
855     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
856     if (Subtarget.hasP8Altivec())
857       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
858 
859     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
860     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
861     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
862     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
863 
864     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
865     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
866 
867     if (Subtarget.hasVSX()) {
868       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
869       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
870     }
871 
872     if (Subtarget.hasP8Altivec())
873       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
874     else
875       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
876 
877     if (Subtarget.isISA3_1()) {
878       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
879       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
880       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
881       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
882       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
883       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
884       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
885       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
886       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
887       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
888       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
889       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
890       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
891       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
892       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
893     }
894 
895     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
896     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
897 
898     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
899     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
900 
901     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
902     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
903     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
904     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
905 
906     // Altivec does not contain unordered floating-point compare instructions
907     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
908     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
909     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
910     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
911 
912     if (Subtarget.hasVSX()) {
913       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
914       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
915       if (Subtarget.hasP8Vector()) {
916         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
917         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
918       }
919       if (Subtarget.hasDirectMove() && isPPC64) {
920         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
921         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
922         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
923         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
924         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
925         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
926         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
927         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
928       }
929       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
930 
931       // The nearbyint variants are not allowed to raise the inexact exception
932       // so we can only code-gen them with unsafe math.
933       if (TM.Options.UnsafeFPMath) {
934         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
935         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
936       }
937 
938       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
939       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
940       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
941       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
942       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
943       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
944       setOperationAction(ISD::FROUND, MVT::f64, Legal);
945       setOperationAction(ISD::FRINT, MVT::f64, Legal);
946 
947       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
948       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
949       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
950       setOperationAction(ISD::FROUND, MVT::f32, Legal);
951       setOperationAction(ISD::FRINT, MVT::f32, Legal);
952 
953       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
954       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
955 
956       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
957       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
958 
959       // Share the Altivec comparison restrictions.
960       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
961       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
962       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
963       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
964 
965       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
966       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
967 
968       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
969 
970       if (Subtarget.hasP8Vector())
971         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
972 
973       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
974 
975       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
976       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
977       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
978 
979       if (Subtarget.hasP8Altivec()) {
980         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
981         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
982         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
983 
984         // 128 bit shifts can be accomplished via 3 instructions for SHL and
985         // SRL, but not for SRA because of the instructions available:
986         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
987         // doing
988         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
989         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
990         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
991 
992         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
993       }
994       else {
995         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
996         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
997         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
998 
999         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1000 
1001         // VSX v2i64 only supports non-arithmetic operations.
1002         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1003         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1004       }
1005 
1006       setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1007 
1008       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1009       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1010       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1011       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1012 
1013       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
1014 
1015       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1016       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1017       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1018       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1019       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1020       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1021       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1022       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1023 
1024       // Custom handling for partial vectors of integers converted to
1025       // floating point. We already have optimal handling for v2i32 through
1026       // the DAG combine, so those aren't necessary.
1027       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1028       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1029       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1030       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1031       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1032       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1033       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1034       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1035       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1036       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1037       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1038       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1039       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1040       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1041       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1042       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1043 
1044       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1045       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1046       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1047       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1048       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1049       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1050 
1051       if (Subtarget.hasDirectMove())
1052         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1053       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1054 
1055       // Handle constrained floating-point operations of vector.
1056       // The predictor is `hasVSX` because altivec instruction has
1057       // no exception but VSX vector instruction has.
1058       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1059       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1060       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1061       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1062       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1063       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1064       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1065       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1066       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1067       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1068       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1069       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1070       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1071 
1072       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1073       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1074       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1075       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1076       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1077       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1078       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1079       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1080       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1081       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1082       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1083       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1084       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1085 
1086       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1087     }
1088 
1089     if (Subtarget.hasP8Altivec()) {
1090       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1091       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1092     }
1093 
1094     if (Subtarget.hasP9Vector()) {
1095       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1096       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1097 
1098       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1099       // SRL, but not for SRA because of the instructions available:
1100       // VS{RL} and VS{RL}O.
1101       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1102       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1103       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1104 
1105       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1106       setOperationAction(ISD::FADD, MVT::f128, Legal);
1107       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1108       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1109       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1110       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1111       // No extending loads to f128 on PPC.
1112       for (MVT FPT : MVT::fp_valuetypes())
1113         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1114       setOperationAction(ISD::FMA, MVT::f128, Legal);
1115       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1116       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1117       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1118       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1119       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1120       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1121 
1122       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1123       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1124       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1125       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1126       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1127       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1128 
1129       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1130       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1131       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1132       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1133       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1134       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1135       // No implementation for these ops for PowerPC.
1136       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1137       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1138       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1139       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1140       setOperationAction(ISD::FREM, MVT::f128, Expand);
1141 
1142       // Handle constrained floating-point operations of fp128
1143       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1144       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1145       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1146       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1147       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1148       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1149       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1150       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1151       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1152       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1153       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1154       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1155       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1156       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1157       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1158       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1159       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1160       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1161       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1162       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1163     }
1164 
1165     if (Subtarget.hasP9Altivec()) {
1166       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1167       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1168 
1169       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1170       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1171       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1172       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1173       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1174       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1175       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1176     }
1177   }
1178 
1179   if (Subtarget.has64BitSupport())
1180     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1181 
1182   if (Subtarget.isISA3_1())
1183     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1184 
1185   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1186 
1187   if (!isPPC64) {
1188     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1189     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1190   }
1191 
1192   setBooleanContents(ZeroOrOneBooleanContent);
1193 
1194   if (Subtarget.hasAltivec()) {
1195     // Altivec instructions set fields to all zeros or all ones.
1196     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1197   }
1198 
1199   if (!isPPC64) {
1200     // These libcalls are not available in 32-bit.
1201     setLibcallName(RTLIB::SHL_I128, nullptr);
1202     setLibcallName(RTLIB::SRL_I128, nullptr);
1203     setLibcallName(RTLIB::SRA_I128, nullptr);
1204   }
1205 
1206   if (!isPPC64)
1207     setMaxAtomicSizeInBitsSupported(32);
1208 
1209   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1210 
1211   // We have target-specific dag combine patterns for the following nodes:
1212   setTargetDAGCombine(ISD::ADD);
1213   setTargetDAGCombine(ISD::SHL);
1214   setTargetDAGCombine(ISD::SRA);
1215   setTargetDAGCombine(ISD::SRL);
1216   setTargetDAGCombine(ISD::MUL);
1217   setTargetDAGCombine(ISD::FMA);
1218   setTargetDAGCombine(ISD::SINT_TO_FP);
1219   setTargetDAGCombine(ISD::BUILD_VECTOR);
1220   if (Subtarget.hasFPCVT())
1221     setTargetDAGCombine(ISD::UINT_TO_FP);
1222   setTargetDAGCombine(ISD::LOAD);
1223   setTargetDAGCombine(ISD::STORE);
1224   setTargetDAGCombine(ISD::BR_CC);
1225   if (Subtarget.useCRBits())
1226     setTargetDAGCombine(ISD::BRCOND);
1227   setTargetDAGCombine(ISD::BSWAP);
1228   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1229   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1230   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1231 
1232   setTargetDAGCombine(ISD::SIGN_EXTEND);
1233   setTargetDAGCombine(ISD::ZERO_EXTEND);
1234   setTargetDAGCombine(ISD::ANY_EXTEND);
1235 
1236   setTargetDAGCombine(ISD::TRUNCATE);
1237   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1238 
1239 
1240   if (Subtarget.useCRBits()) {
1241     setTargetDAGCombine(ISD::TRUNCATE);
1242     setTargetDAGCombine(ISD::SETCC);
1243     setTargetDAGCombine(ISD::SELECT_CC);
1244   }
1245 
1246   if (Subtarget.hasP9Altivec()) {
1247     setTargetDAGCombine(ISD::ABS);
1248     setTargetDAGCombine(ISD::VSELECT);
1249   }
1250 
1251   setLibcallName(RTLIB::LOG_F128, "logf128");
1252   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1253   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1254   setLibcallName(RTLIB::EXP_F128, "expf128");
1255   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1256   setLibcallName(RTLIB::SIN_F128, "sinf128");
1257   setLibcallName(RTLIB::COS_F128, "cosf128");
1258   setLibcallName(RTLIB::POW_F128, "powf128");
1259   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1260   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1261   setLibcallName(RTLIB::POWI_F128, "__powikf2");
1262   setLibcallName(RTLIB::REM_F128, "fmodf128");
1263 
1264   // With 32 condition bits, we don't need to sink (and duplicate) compares
1265   // aggressively in CodeGenPrep.
1266   if (Subtarget.useCRBits()) {
1267     setHasMultipleConditionRegisters();
1268     setJumpIsExpensive();
1269   }
1270 
1271   setMinFunctionAlignment(Align(4));
1272 
1273   switch (Subtarget.getCPUDirective()) {
1274   default: break;
1275   case PPC::DIR_970:
1276   case PPC::DIR_A2:
1277   case PPC::DIR_E500:
1278   case PPC::DIR_E500mc:
1279   case PPC::DIR_E5500:
1280   case PPC::DIR_PWR4:
1281   case PPC::DIR_PWR5:
1282   case PPC::DIR_PWR5X:
1283   case PPC::DIR_PWR6:
1284   case PPC::DIR_PWR6X:
1285   case PPC::DIR_PWR7:
1286   case PPC::DIR_PWR8:
1287   case PPC::DIR_PWR9:
1288   case PPC::DIR_PWR10:
1289   case PPC::DIR_PWR_FUTURE:
1290     setPrefLoopAlignment(Align(16));
1291     setPrefFunctionAlignment(Align(16));
1292     break;
1293   }
1294 
1295   if (Subtarget.enableMachineScheduler())
1296     setSchedulingPreference(Sched::Source);
1297   else
1298     setSchedulingPreference(Sched::Hybrid);
1299 
1300   computeRegisterProperties(STI.getRegisterInfo());
1301 
1302   // The Freescale cores do better with aggressive inlining of memcpy and
1303   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1304   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1305       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1306     MaxStoresPerMemset = 32;
1307     MaxStoresPerMemsetOptSize = 16;
1308     MaxStoresPerMemcpy = 32;
1309     MaxStoresPerMemcpyOptSize = 8;
1310     MaxStoresPerMemmove = 32;
1311     MaxStoresPerMemmoveOptSize = 8;
1312   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1313     // The A2 also benefits from (very) aggressive inlining of memcpy and
1314     // friends. The overhead of a the function call, even when warm, can be
1315     // over one hundred cycles.
1316     MaxStoresPerMemset = 128;
1317     MaxStoresPerMemcpy = 128;
1318     MaxStoresPerMemmove = 128;
1319     MaxLoadsPerMemcmp = 128;
1320   } else {
1321     MaxLoadsPerMemcmp = 8;
1322     MaxLoadsPerMemcmpOptSize = 4;
1323   }
1324 
1325   IsStrictFPEnabled = true;
1326 
1327   // Let the subtarget (CPU) decide if a predictable select is more expensive
1328   // than the corresponding branch. This information is used in CGP to decide
1329   // when to convert selects into branches.
1330   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1331 }
1332 
1333 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1334 /// the desired ByVal argument alignment.
1335 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1336   if (MaxAlign == MaxMaxAlign)
1337     return;
1338   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1339     if (MaxMaxAlign >= 32 &&
1340         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1341       MaxAlign = Align(32);
1342     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1343              MaxAlign < 16)
1344       MaxAlign = Align(16);
1345   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1346     Align EltAlign;
1347     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1348     if (EltAlign > MaxAlign)
1349       MaxAlign = EltAlign;
1350   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1351     for (auto *EltTy : STy->elements()) {
1352       Align EltAlign;
1353       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1354       if (EltAlign > MaxAlign)
1355         MaxAlign = EltAlign;
1356       if (MaxAlign == MaxMaxAlign)
1357         break;
1358     }
1359   }
1360 }
1361 
1362 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1363 /// function arguments in the caller parameter area.
1364 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1365                                                   const DataLayout &DL) const {
1366   // 16byte and wider vectors are passed on 16byte boundary.
1367   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1368   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1369   if (Subtarget.hasAltivec())
1370     getMaxByValAlign(Ty, Alignment, Align(16));
1371   return Alignment.value();
1372 }
1373 
1374 bool PPCTargetLowering::useSoftFloat() const {
1375   return Subtarget.useSoftFloat();
1376 }
1377 
1378 bool PPCTargetLowering::hasSPE() const {
1379   return Subtarget.hasSPE();
1380 }
1381 
1382 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1383   return VT.isScalarInteger();
1384 }
1385 
1386 /// isMulhCheaperThanMulShift - Return true if a mulh[s|u] node for a specific
1387 /// type is cheaper than a multiply followed by a shift.
1388 /// This is true for words and doublewords on 64-bit PowerPC.
1389 bool PPCTargetLowering::isMulhCheaperThanMulShift(EVT Type) const {
1390   if (Subtarget.isPPC64() && (isOperationLegal(ISD::MULHS, Type) ||
1391                               isOperationLegal(ISD::MULHU, Type)))
1392     return true;
1393   return TargetLowering::isMulhCheaperThanMulShift(Type);
1394 }
1395 
1396 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1397   switch ((PPCISD::NodeType)Opcode) {
1398   case PPCISD::FIRST_NUMBER:    break;
1399   case PPCISD::FSEL:            return "PPCISD::FSEL";
1400   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1401   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1402   case PPCISD::FCFID:           return "PPCISD::FCFID";
1403   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1404   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1405   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1406   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1407   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1408   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1409   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1410   case PPCISD::FP_TO_UINT_IN_VSR:
1411                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1412   case PPCISD::FP_TO_SINT_IN_VSR:
1413                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1414   case PPCISD::FRE:             return "PPCISD::FRE";
1415   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1416   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1417   case PPCISD::VPERM:           return "PPCISD::VPERM";
1418   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1419   case PPCISD::XXSPLTI_SP_TO_DP:
1420     return "PPCISD::XXSPLTI_SP_TO_DP";
1421   case PPCISD::XXSPLTI32DX:
1422     return "PPCISD::XXSPLTI32DX";
1423   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1424   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1425   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1426   case PPCISD::CMPB:            return "PPCISD::CMPB";
1427   case PPCISD::Hi:              return "PPCISD::Hi";
1428   case PPCISD::Lo:              return "PPCISD::Lo";
1429   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1430   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1431   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1432   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1433   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1434   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1435   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1436   case PPCISD::SRL:             return "PPCISD::SRL";
1437   case PPCISD::SRA:             return "PPCISD::SRA";
1438   case PPCISD::SHL:             return "PPCISD::SHL";
1439   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1440   case PPCISD::CALL:            return "PPCISD::CALL";
1441   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1442   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1443   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1444   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1445   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1446   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1447   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1448   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1449   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1450   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1451   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1452   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1453   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1454   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1455   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1456   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1457     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1458   case PPCISD::ANDI_rec_1_EQ_BIT:
1459     return "PPCISD::ANDI_rec_1_EQ_BIT";
1460   case PPCISD::ANDI_rec_1_GT_BIT:
1461     return "PPCISD::ANDI_rec_1_GT_BIT";
1462   case PPCISD::VCMP:            return "PPCISD::VCMP";
1463   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1464   case PPCISD::LBRX:            return "PPCISD::LBRX";
1465   case PPCISD::STBRX:           return "PPCISD::STBRX";
1466   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1467   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1468   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1469   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1470   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1471   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1472   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1473   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1474   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1475   case PPCISD::ST_VSR_SCAL_INT:
1476                                 return "PPCISD::ST_VSR_SCAL_INT";
1477   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1478   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1479   case PPCISD::BDZ:             return "PPCISD::BDZ";
1480   case PPCISD::MFFS:            return "PPCISD::MFFS";
1481   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1482   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1483   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1484   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1485   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1486   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1487   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1488   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1489   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1490   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1491   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1492   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1493   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1494   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1495   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1496   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1497   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1498   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1499   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1500   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1501   case PPCISD::SC:              return "PPCISD::SC";
1502   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1503   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1504   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1505   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1506   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1507   case PPCISD::VABSD:           return "PPCISD::VABSD";
1508   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1509   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1510   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1511   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1512   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1513   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1514   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1515   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1516     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1517   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1518     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1519   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1520   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1521   case PPCISD::STRICT_FADDRTZ:
1522     return "PPCISD::STRICT_FADDRTZ";
1523   case PPCISD::STRICT_FCTIDZ:
1524     return "PPCISD::STRICT_FCTIDZ";
1525   case PPCISD::STRICT_FCTIWZ:
1526     return "PPCISD::STRICT_FCTIWZ";
1527   case PPCISD::STRICT_FCTIDUZ:
1528     return "PPCISD::STRICT_FCTIDUZ";
1529   case PPCISD::STRICT_FCTIWUZ:
1530     return "PPCISD::STRICT_FCTIWUZ";
1531   case PPCISD::STRICT_FCFID:
1532     return "PPCISD::STRICT_FCFID";
1533   case PPCISD::STRICT_FCFIDU:
1534     return "PPCISD::STRICT_FCFIDU";
1535   case PPCISD::STRICT_FCFIDS:
1536     return "PPCISD::STRICT_FCFIDS";
1537   case PPCISD::STRICT_FCFIDUS:
1538     return "PPCISD::STRICT_FCFIDUS";
1539   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1540   }
1541   return nullptr;
1542 }
1543 
1544 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1545                                           EVT VT) const {
1546   if (!VT.isVector())
1547     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1548 
1549   return VT.changeVectorElementTypeToInteger();
1550 }
1551 
1552 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1553   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1554   return true;
1555 }
1556 
1557 //===----------------------------------------------------------------------===//
1558 // Node matching predicates, for use by the tblgen matching code.
1559 //===----------------------------------------------------------------------===//
1560 
1561 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1562 static bool isFloatingPointZero(SDValue Op) {
1563   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1564     return CFP->getValueAPF().isZero();
1565   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1566     // Maybe this has already been legalized into the constant pool?
1567     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1568       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1569         return CFP->getValueAPF().isZero();
1570   }
1571   return false;
1572 }
1573 
1574 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1575 /// true if Op is undef or if it matches the specified value.
1576 static bool isConstantOrUndef(int Op, int Val) {
1577   return Op < 0 || Op == Val;
1578 }
1579 
1580 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1581 /// VPKUHUM instruction.
1582 /// The ShuffleKind distinguishes between big-endian operations with
1583 /// two different inputs (0), either-endian operations with two identical
1584 /// inputs (1), and little-endian operations with two different inputs (2).
1585 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1586 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1587                                SelectionDAG &DAG) {
1588   bool IsLE = DAG.getDataLayout().isLittleEndian();
1589   if (ShuffleKind == 0) {
1590     if (IsLE)
1591       return false;
1592     for (unsigned i = 0; i != 16; ++i)
1593       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1594         return false;
1595   } else if (ShuffleKind == 2) {
1596     if (!IsLE)
1597       return false;
1598     for (unsigned i = 0; i != 16; ++i)
1599       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1600         return false;
1601   } else if (ShuffleKind == 1) {
1602     unsigned j = IsLE ? 0 : 1;
1603     for (unsigned i = 0; i != 8; ++i)
1604       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1605           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1606         return false;
1607   }
1608   return true;
1609 }
1610 
1611 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1612 /// VPKUWUM instruction.
1613 /// The ShuffleKind distinguishes between big-endian operations with
1614 /// two different inputs (0), either-endian operations with two identical
1615 /// inputs (1), and little-endian operations with two different inputs (2).
1616 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1617 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1618                                SelectionDAG &DAG) {
1619   bool IsLE = DAG.getDataLayout().isLittleEndian();
1620   if (ShuffleKind == 0) {
1621     if (IsLE)
1622       return false;
1623     for (unsigned i = 0; i != 16; i += 2)
1624       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1625           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1626         return false;
1627   } else if (ShuffleKind == 2) {
1628     if (!IsLE)
1629       return false;
1630     for (unsigned i = 0; i != 16; i += 2)
1631       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1632           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1633         return false;
1634   } else if (ShuffleKind == 1) {
1635     unsigned j = IsLE ? 0 : 2;
1636     for (unsigned i = 0; i != 8; i += 2)
1637       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1638           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1639           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1640           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1641         return false;
1642   }
1643   return true;
1644 }
1645 
1646 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1647 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1648 /// current subtarget.
1649 ///
1650 /// The ShuffleKind distinguishes between big-endian operations with
1651 /// two different inputs (0), either-endian operations with two identical
1652 /// inputs (1), and little-endian operations with two different inputs (2).
1653 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1654 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1655                                SelectionDAG &DAG) {
1656   const PPCSubtarget& Subtarget =
1657       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1658   if (!Subtarget.hasP8Vector())
1659     return false;
1660 
1661   bool IsLE = DAG.getDataLayout().isLittleEndian();
1662   if (ShuffleKind == 0) {
1663     if (IsLE)
1664       return false;
1665     for (unsigned i = 0; i != 16; i += 4)
1666       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1667           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1668           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1669           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1670         return false;
1671   } else if (ShuffleKind == 2) {
1672     if (!IsLE)
1673       return false;
1674     for (unsigned i = 0; i != 16; i += 4)
1675       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1676           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1677           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1678           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1679         return false;
1680   } else if (ShuffleKind == 1) {
1681     unsigned j = IsLE ? 0 : 4;
1682     for (unsigned i = 0; i != 8; i += 4)
1683       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1684           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1685           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1686           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1687           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1688           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1689           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1690           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1691         return false;
1692   }
1693   return true;
1694 }
1695 
1696 /// isVMerge - Common function, used to match vmrg* shuffles.
1697 ///
1698 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1699                      unsigned LHSStart, unsigned RHSStart) {
1700   if (N->getValueType(0) != MVT::v16i8)
1701     return false;
1702   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1703          "Unsupported merge size!");
1704 
1705   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1706     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1707       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1708                              LHSStart+j+i*UnitSize) ||
1709           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1710                              RHSStart+j+i*UnitSize))
1711         return false;
1712     }
1713   return true;
1714 }
1715 
1716 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1717 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1718 /// The ShuffleKind distinguishes between big-endian merges with two
1719 /// different inputs (0), either-endian merges with two identical inputs (1),
1720 /// and little-endian merges with two different inputs (2).  For the latter,
1721 /// the input operands are swapped (see PPCInstrAltivec.td).
1722 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1723                              unsigned ShuffleKind, SelectionDAG &DAG) {
1724   if (DAG.getDataLayout().isLittleEndian()) {
1725     if (ShuffleKind == 1) // unary
1726       return isVMerge(N, UnitSize, 0, 0);
1727     else if (ShuffleKind == 2) // swapped
1728       return isVMerge(N, UnitSize, 0, 16);
1729     else
1730       return false;
1731   } else {
1732     if (ShuffleKind == 1) // unary
1733       return isVMerge(N, UnitSize, 8, 8);
1734     else if (ShuffleKind == 0) // normal
1735       return isVMerge(N, UnitSize, 8, 24);
1736     else
1737       return false;
1738   }
1739 }
1740 
1741 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1742 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1743 /// The ShuffleKind distinguishes between big-endian merges with two
1744 /// different inputs (0), either-endian merges with two identical inputs (1),
1745 /// and little-endian merges with two different inputs (2).  For the latter,
1746 /// the input operands are swapped (see PPCInstrAltivec.td).
1747 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1748                              unsigned ShuffleKind, SelectionDAG &DAG) {
1749   if (DAG.getDataLayout().isLittleEndian()) {
1750     if (ShuffleKind == 1) // unary
1751       return isVMerge(N, UnitSize, 8, 8);
1752     else if (ShuffleKind == 2) // swapped
1753       return isVMerge(N, UnitSize, 8, 24);
1754     else
1755       return false;
1756   } else {
1757     if (ShuffleKind == 1) // unary
1758       return isVMerge(N, UnitSize, 0, 0);
1759     else if (ShuffleKind == 0) // normal
1760       return isVMerge(N, UnitSize, 0, 16);
1761     else
1762       return false;
1763   }
1764 }
1765 
1766 /**
1767  * Common function used to match vmrgew and vmrgow shuffles
1768  *
1769  * The indexOffset determines whether to look for even or odd words in
1770  * the shuffle mask. This is based on the of the endianness of the target
1771  * machine.
1772  *   - Little Endian:
1773  *     - Use offset of 0 to check for odd elements
1774  *     - Use offset of 4 to check for even elements
1775  *   - Big Endian:
1776  *     - Use offset of 0 to check for even elements
1777  *     - Use offset of 4 to check for odd elements
1778  * A detailed description of the vector element ordering for little endian and
1779  * big endian can be found at
1780  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1781  * Targeting your applications - what little endian and big endian IBM XL C/C++
1782  * compiler differences mean to you
1783  *
1784  * The mask to the shuffle vector instruction specifies the indices of the
1785  * elements from the two input vectors to place in the result. The elements are
1786  * numbered in array-access order, starting with the first vector. These vectors
1787  * are always of type v16i8, thus each vector will contain 16 elements of size
1788  * 8. More info on the shuffle vector can be found in the
1789  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1790  * Language Reference.
1791  *
1792  * The RHSStartValue indicates whether the same input vectors are used (unary)
1793  * or two different input vectors are used, based on the following:
1794  *   - If the instruction uses the same vector for both inputs, the range of the
1795  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1796  *     be 0.
1797  *   - If the instruction has two different vectors then the range of the
1798  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1799  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1800  *     to 31 specify elements in the second vector).
1801  *
1802  * \param[in] N The shuffle vector SD Node to analyze
1803  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1804  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1805  * vector to the shuffle_vector instruction
1806  * \return true iff this shuffle vector represents an even or odd word merge
1807  */
1808 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1809                      unsigned RHSStartValue) {
1810   if (N->getValueType(0) != MVT::v16i8)
1811     return false;
1812 
1813   for (unsigned i = 0; i < 2; ++i)
1814     for (unsigned j = 0; j < 4; ++j)
1815       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1816                              i*RHSStartValue+j+IndexOffset) ||
1817           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1818                              i*RHSStartValue+j+IndexOffset+8))
1819         return false;
1820   return true;
1821 }
1822 
1823 /**
1824  * Determine if the specified shuffle mask is suitable for the vmrgew or
1825  * vmrgow instructions.
1826  *
1827  * \param[in] N The shuffle vector SD Node to analyze
1828  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1829  * \param[in] ShuffleKind Identify the type of merge:
1830  *   - 0 = big-endian merge with two different inputs;
1831  *   - 1 = either-endian merge with two identical inputs;
1832  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1833  *     little-endian merges).
1834  * \param[in] DAG The current SelectionDAG
1835  * \return true iff this shuffle mask
1836  */
1837 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1838                               unsigned ShuffleKind, SelectionDAG &DAG) {
1839   if (DAG.getDataLayout().isLittleEndian()) {
1840     unsigned indexOffset = CheckEven ? 4 : 0;
1841     if (ShuffleKind == 1) // Unary
1842       return isVMerge(N, indexOffset, 0);
1843     else if (ShuffleKind == 2) // swapped
1844       return isVMerge(N, indexOffset, 16);
1845     else
1846       return false;
1847   }
1848   else {
1849     unsigned indexOffset = CheckEven ? 0 : 4;
1850     if (ShuffleKind == 1) // Unary
1851       return isVMerge(N, indexOffset, 0);
1852     else if (ShuffleKind == 0) // Normal
1853       return isVMerge(N, indexOffset, 16);
1854     else
1855       return false;
1856   }
1857   return false;
1858 }
1859 
1860 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1861 /// amount, otherwise return -1.
1862 /// The ShuffleKind distinguishes between big-endian operations with two
1863 /// different inputs (0), either-endian operations with two identical inputs
1864 /// (1), and little-endian operations with two different inputs (2).  For the
1865 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1866 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1867                              SelectionDAG &DAG) {
1868   if (N->getValueType(0) != MVT::v16i8)
1869     return -1;
1870 
1871   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1872 
1873   // Find the first non-undef value in the shuffle mask.
1874   unsigned i;
1875   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1876     /*search*/;
1877 
1878   if (i == 16) return -1;  // all undef.
1879 
1880   // Otherwise, check to see if the rest of the elements are consecutively
1881   // numbered from this value.
1882   unsigned ShiftAmt = SVOp->getMaskElt(i);
1883   if (ShiftAmt < i) return -1;
1884 
1885   ShiftAmt -= i;
1886   bool isLE = DAG.getDataLayout().isLittleEndian();
1887 
1888   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1889     // Check the rest of the elements to see if they are consecutive.
1890     for (++i; i != 16; ++i)
1891       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1892         return -1;
1893   } else if (ShuffleKind == 1) {
1894     // Check the rest of the elements to see if they are consecutive.
1895     for (++i; i != 16; ++i)
1896       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1897         return -1;
1898   } else
1899     return -1;
1900 
1901   if (isLE)
1902     ShiftAmt = 16 - ShiftAmt;
1903 
1904   return ShiftAmt;
1905 }
1906 
1907 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1908 /// specifies a splat of a single element that is suitable for input to
1909 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1910 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1911   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1912          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1913 
1914   // The consecutive indices need to specify an element, not part of two
1915   // different elements.  So abandon ship early if this isn't the case.
1916   if (N->getMaskElt(0) % EltSize != 0)
1917     return false;
1918 
1919   // This is a splat operation if each element of the permute is the same, and
1920   // if the value doesn't reference the second vector.
1921   unsigned ElementBase = N->getMaskElt(0);
1922 
1923   // FIXME: Handle UNDEF elements too!
1924   if (ElementBase >= 16)
1925     return false;
1926 
1927   // Check that the indices are consecutive, in the case of a multi-byte element
1928   // splatted with a v16i8 mask.
1929   for (unsigned i = 1; i != EltSize; ++i)
1930     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1931       return false;
1932 
1933   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1934     if (N->getMaskElt(i) < 0) continue;
1935     for (unsigned j = 0; j != EltSize; ++j)
1936       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1937         return false;
1938   }
1939   return true;
1940 }
1941 
1942 /// Check that the mask is shuffling N byte elements. Within each N byte
1943 /// element of the mask, the indices could be either in increasing or
1944 /// decreasing order as long as they are consecutive.
1945 /// \param[in] N the shuffle vector SD Node to analyze
1946 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1947 /// Word/DoubleWord/QuadWord).
1948 /// \param[in] StepLen the delta indices number among the N byte element, if
1949 /// the mask is in increasing/decreasing order then it is 1/-1.
1950 /// \return true iff the mask is shuffling N byte elements.
1951 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1952                                    int StepLen) {
1953   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1954          "Unexpected element width.");
1955   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1956 
1957   unsigned NumOfElem = 16 / Width;
1958   unsigned MaskVal[16]; //  Width is never greater than 16
1959   for (unsigned i = 0; i < NumOfElem; ++i) {
1960     MaskVal[0] = N->getMaskElt(i * Width);
1961     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1962       return false;
1963     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1964       return false;
1965     }
1966 
1967     for (unsigned int j = 1; j < Width; ++j) {
1968       MaskVal[j] = N->getMaskElt(i * Width + j);
1969       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1970         return false;
1971       }
1972     }
1973   }
1974 
1975   return true;
1976 }
1977 
1978 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1979                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1980   if (!isNByteElemShuffleMask(N, 4, 1))
1981     return false;
1982 
1983   // Now we look at mask elements 0,4,8,12
1984   unsigned M0 = N->getMaskElt(0) / 4;
1985   unsigned M1 = N->getMaskElt(4) / 4;
1986   unsigned M2 = N->getMaskElt(8) / 4;
1987   unsigned M3 = N->getMaskElt(12) / 4;
1988   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1989   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1990 
1991   // Below, let H and L be arbitrary elements of the shuffle mask
1992   // where H is in the range [4,7] and L is in the range [0,3].
1993   // H, 1, 2, 3 or L, 5, 6, 7
1994   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1995       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1996     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1997     InsertAtByte = IsLE ? 12 : 0;
1998     Swap = M0 < 4;
1999     return true;
2000   }
2001   // 0, H, 2, 3 or 4, L, 6, 7
2002   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2003       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2004     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2005     InsertAtByte = IsLE ? 8 : 4;
2006     Swap = M1 < 4;
2007     return true;
2008   }
2009   // 0, 1, H, 3 or 4, 5, L, 7
2010   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2011       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2012     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2013     InsertAtByte = IsLE ? 4 : 8;
2014     Swap = M2 < 4;
2015     return true;
2016   }
2017   // 0, 1, 2, H or 4, 5, 6, L
2018   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2019       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2020     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2021     InsertAtByte = IsLE ? 0 : 12;
2022     Swap = M3 < 4;
2023     return true;
2024   }
2025 
2026   // If both vector operands for the shuffle are the same vector, the mask will
2027   // contain only elements from the first one and the second one will be undef.
2028   if (N->getOperand(1).isUndef()) {
2029     ShiftElts = 0;
2030     Swap = true;
2031     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2032     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2033       InsertAtByte = IsLE ? 12 : 0;
2034       return true;
2035     }
2036     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2037       InsertAtByte = IsLE ? 8 : 4;
2038       return true;
2039     }
2040     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2041       InsertAtByte = IsLE ? 4 : 8;
2042       return true;
2043     }
2044     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2045       InsertAtByte = IsLE ? 0 : 12;
2046       return true;
2047     }
2048   }
2049 
2050   return false;
2051 }
2052 
2053 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2054                                bool &Swap, bool IsLE) {
2055   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2056   // Ensure each byte index of the word is consecutive.
2057   if (!isNByteElemShuffleMask(N, 4, 1))
2058     return false;
2059 
2060   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2061   unsigned M0 = N->getMaskElt(0) / 4;
2062   unsigned M1 = N->getMaskElt(4) / 4;
2063   unsigned M2 = N->getMaskElt(8) / 4;
2064   unsigned M3 = N->getMaskElt(12) / 4;
2065 
2066   // If both vector operands for the shuffle are the same vector, the mask will
2067   // contain only elements from the first one and the second one will be undef.
2068   if (N->getOperand(1).isUndef()) {
2069     assert(M0 < 4 && "Indexing into an undef vector?");
2070     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2071       return false;
2072 
2073     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2074     Swap = false;
2075     return true;
2076   }
2077 
2078   // Ensure each word index of the ShuffleVector Mask is consecutive.
2079   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2080     return false;
2081 
2082   if (IsLE) {
2083     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2084       // Input vectors don't need to be swapped if the leading element
2085       // of the result is one of the 3 left elements of the second vector
2086       // (or if there is no shift to be done at all).
2087       Swap = false;
2088       ShiftElts = (8 - M0) % 8;
2089     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2090       // Input vectors need to be swapped if the leading element
2091       // of the result is one of the 3 left elements of the first vector
2092       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2093       Swap = true;
2094       ShiftElts = (4 - M0) % 4;
2095     }
2096 
2097     return true;
2098   } else {                                          // BE
2099     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2100       // Input vectors don't need to be swapped if the leading element
2101       // of the result is one of the 4 elements of the first vector.
2102       Swap = false;
2103       ShiftElts = M0;
2104     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2105       // Input vectors need to be swapped if the leading element
2106       // of the result is one of the 4 elements of the right vector.
2107       Swap = true;
2108       ShiftElts = M0 - 4;
2109     }
2110 
2111     return true;
2112   }
2113 }
2114 
2115 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2116   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2117 
2118   if (!isNByteElemShuffleMask(N, Width, -1))
2119     return false;
2120 
2121   for (int i = 0; i < 16; i += Width)
2122     if (N->getMaskElt(i) != i + Width - 1)
2123       return false;
2124 
2125   return true;
2126 }
2127 
2128 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2129   return isXXBRShuffleMaskHelper(N, 2);
2130 }
2131 
2132 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2133   return isXXBRShuffleMaskHelper(N, 4);
2134 }
2135 
2136 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2137   return isXXBRShuffleMaskHelper(N, 8);
2138 }
2139 
2140 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2141   return isXXBRShuffleMaskHelper(N, 16);
2142 }
2143 
2144 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2145 /// if the inputs to the instruction should be swapped and set \p DM to the
2146 /// value for the immediate.
2147 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2148 /// AND element 0 of the result comes from the first input (LE) or second input
2149 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2150 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2151 /// mask.
2152 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2153                                bool &Swap, bool IsLE) {
2154   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2155 
2156   // Ensure each byte index of the double word is consecutive.
2157   if (!isNByteElemShuffleMask(N, 8, 1))
2158     return false;
2159 
2160   unsigned M0 = N->getMaskElt(0) / 8;
2161   unsigned M1 = N->getMaskElt(8) / 8;
2162   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2163 
2164   // If both vector operands for the shuffle are the same vector, the mask will
2165   // contain only elements from the first one and the second one will be undef.
2166   if (N->getOperand(1).isUndef()) {
2167     if ((M0 | M1) < 2) {
2168       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2169       Swap = false;
2170       return true;
2171     } else
2172       return false;
2173   }
2174 
2175   if (IsLE) {
2176     if (M0 > 1 && M1 < 2) {
2177       Swap = false;
2178     } else if (M0 < 2 && M1 > 1) {
2179       M0 = (M0 + 2) % 4;
2180       M1 = (M1 + 2) % 4;
2181       Swap = true;
2182     } else
2183       return false;
2184 
2185     // Note: if control flow comes here that means Swap is already set above
2186     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2187     return true;
2188   } else { // BE
2189     if (M0 < 2 && M1 > 1) {
2190       Swap = false;
2191     } else if (M0 > 1 && M1 < 2) {
2192       M0 = (M0 + 2) % 4;
2193       M1 = (M1 + 2) % 4;
2194       Swap = true;
2195     } else
2196       return false;
2197 
2198     // Note: if control flow comes here that means Swap is already set above
2199     DM = (M0 << 1) + (M1 & 1);
2200     return true;
2201   }
2202 }
2203 
2204 
2205 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2206 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2207 /// elements are counted from the left of the vector register).
2208 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2209                                          SelectionDAG &DAG) {
2210   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2211   assert(isSplatShuffleMask(SVOp, EltSize));
2212   if (DAG.getDataLayout().isLittleEndian())
2213     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2214   else
2215     return SVOp->getMaskElt(0) / EltSize;
2216 }
2217 
2218 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2219 /// by using a vspltis[bhw] instruction of the specified element size, return
2220 /// the constant being splatted.  The ByteSize field indicates the number of
2221 /// bytes of each element [124] -> [bhw].
2222 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2223   SDValue OpVal(nullptr, 0);
2224 
2225   // If ByteSize of the splat is bigger than the element size of the
2226   // build_vector, then we have a case where we are checking for a splat where
2227   // multiple elements of the buildvector are folded together into a single
2228   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2229   unsigned EltSize = 16/N->getNumOperands();
2230   if (EltSize < ByteSize) {
2231     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2232     SDValue UniquedVals[4];
2233     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2234 
2235     // See if all of the elements in the buildvector agree across.
2236     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2237       if (N->getOperand(i).isUndef()) continue;
2238       // If the element isn't a constant, bail fully out.
2239       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2240 
2241       if (!UniquedVals[i&(Multiple-1)].getNode())
2242         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2243       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2244         return SDValue();  // no match.
2245     }
2246 
2247     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2248     // either constant or undef values that are identical for each chunk.  See
2249     // if these chunks can form into a larger vspltis*.
2250 
2251     // Check to see if all of the leading entries are either 0 or -1.  If
2252     // neither, then this won't fit into the immediate field.
2253     bool LeadingZero = true;
2254     bool LeadingOnes = true;
2255     for (unsigned i = 0; i != Multiple-1; ++i) {
2256       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2257 
2258       LeadingZero &= isNullConstant(UniquedVals[i]);
2259       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2260     }
2261     // Finally, check the least significant entry.
2262     if (LeadingZero) {
2263       if (!UniquedVals[Multiple-1].getNode())
2264         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2265       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2266       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2267         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2268     }
2269     if (LeadingOnes) {
2270       if (!UniquedVals[Multiple-1].getNode())
2271         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2272       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2273       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2274         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2275     }
2276 
2277     return SDValue();
2278   }
2279 
2280   // Check to see if this buildvec has a single non-undef value in its elements.
2281   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2282     if (N->getOperand(i).isUndef()) continue;
2283     if (!OpVal.getNode())
2284       OpVal = N->getOperand(i);
2285     else if (OpVal != N->getOperand(i))
2286       return SDValue();
2287   }
2288 
2289   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2290 
2291   unsigned ValSizeInBytes = EltSize;
2292   uint64_t Value = 0;
2293   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2294     Value = CN->getZExtValue();
2295   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2296     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2297     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2298   }
2299 
2300   // If the splat value is larger than the element value, then we can never do
2301   // this splat.  The only case that we could fit the replicated bits into our
2302   // immediate field for would be zero, and we prefer to use vxor for it.
2303   if (ValSizeInBytes < ByteSize) return SDValue();
2304 
2305   // If the element value is larger than the splat value, check if it consists
2306   // of a repeated bit pattern of size ByteSize.
2307   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2308     return SDValue();
2309 
2310   // Properly sign extend the value.
2311   int MaskVal = SignExtend32(Value, ByteSize * 8);
2312 
2313   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2314   if (MaskVal == 0) return SDValue();
2315 
2316   // Finally, if this value fits in a 5 bit sext field, return it
2317   if (SignExtend32<5>(MaskVal) == MaskVal)
2318     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2319   return SDValue();
2320 }
2321 
2322 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2323 /// amount, otherwise return -1.
2324 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2325   EVT VT = N->getValueType(0);
2326   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2327     return -1;
2328 
2329   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2330 
2331   // Find the first non-undef value in the shuffle mask.
2332   unsigned i;
2333   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2334     /*search*/;
2335 
2336   if (i == 4) return -1;  // all undef.
2337 
2338   // Otherwise, check to see if the rest of the elements are consecutively
2339   // numbered from this value.
2340   unsigned ShiftAmt = SVOp->getMaskElt(i);
2341   if (ShiftAmt < i) return -1;
2342   ShiftAmt -= i;
2343 
2344   // Check the rest of the elements to see if they are consecutive.
2345   for (++i; i != 4; ++i)
2346     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2347       return -1;
2348 
2349   return ShiftAmt;
2350 }
2351 
2352 //===----------------------------------------------------------------------===//
2353 //  Addressing Mode Selection
2354 //===----------------------------------------------------------------------===//
2355 
2356 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2357 /// or 64-bit immediate, and if the value can be accurately represented as a
2358 /// sign extension from a 16-bit value.  If so, this returns true and the
2359 /// immediate.
2360 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2361   if (!isa<ConstantSDNode>(N))
2362     return false;
2363 
2364   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2365   if (N->getValueType(0) == MVT::i32)
2366     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2367   else
2368     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2369 }
2370 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2371   return isIntS16Immediate(Op.getNode(), Imm);
2372 }
2373 
2374 
2375 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2376 /// be represented as an indexed [r+r] operation.
2377 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2378                                                SDValue &Index,
2379                                                SelectionDAG &DAG) const {
2380   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2381       UI != E; ++UI) {
2382     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2383       if (Memop->getMemoryVT() == MVT::f64) {
2384           Base = N.getOperand(0);
2385           Index = N.getOperand(1);
2386           return true;
2387       }
2388     }
2389   }
2390   return false;
2391 }
2392 
2393 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2394 /// can be represented as an indexed [r+r] operation.  Returns false if it
2395 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2396 /// non-zero and N can be represented by a base register plus a signed 16-bit
2397 /// displacement, make a more precise judgement by checking (displacement % \p
2398 /// EncodingAlignment).
2399 bool PPCTargetLowering::SelectAddressRegReg(
2400     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2401     MaybeAlign EncodingAlignment) const {
2402   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2403   // a [pc+imm].
2404   if (SelectAddressPCRel(N, Base))
2405     return false;
2406 
2407   int16_t Imm = 0;
2408   if (N.getOpcode() == ISD::ADD) {
2409     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2410     // SPE load/store can only handle 8-bit offsets.
2411     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2412         return true;
2413     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2414         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2415       return false; // r+i
2416     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2417       return false;    // r+i
2418 
2419     Base = N.getOperand(0);
2420     Index = N.getOperand(1);
2421     return true;
2422   } else if (N.getOpcode() == ISD::OR) {
2423     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2424         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2425       return false; // r+i can fold it if we can.
2426 
2427     // If this is an or of disjoint bitfields, we can codegen this as an add
2428     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2429     // disjoint.
2430     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2431 
2432     if (LHSKnown.Zero.getBoolValue()) {
2433       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2434       // If all of the bits are known zero on the LHS or RHS, the add won't
2435       // carry.
2436       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2437         Base = N.getOperand(0);
2438         Index = N.getOperand(1);
2439         return true;
2440       }
2441     }
2442   }
2443 
2444   return false;
2445 }
2446 
2447 // If we happen to be doing an i64 load or store into a stack slot that has
2448 // less than a 4-byte alignment, then the frame-index elimination may need to
2449 // use an indexed load or store instruction (because the offset may not be a
2450 // multiple of 4). The extra register needed to hold the offset comes from the
2451 // register scavenger, and it is possible that the scavenger will need to use
2452 // an emergency spill slot. As a result, we need to make sure that a spill slot
2453 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2454 // stack slot.
2455 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2456   // FIXME: This does not handle the LWA case.
2457   if (VT != MVT::i64)
2458     return;
2459 
2460   // NOTE: We'll exclude negative FIs here, which come from argument
2461   // lowering, because there are no known test cases triggering this problem
2462   // using packed structures (or similar). We can remove this exclusion if
2463   // we find such a test case. The reason why this is so test-case driven is
2464   // because this entire 'fixup' is only to prevent crashes (from the
2465   // register scavenger) on not-really-valid inputs. For example, if we have:
2466   //   %a = alloca i1
2467   //   %b = bitcast i1* %a to i64*
2468   //   store i64* a, i64 b
2469   // then the store should really be marked as 'align 1', but is not. If it
2470   // were marked as 'align 1' then the indexed form would have been
2471   // instruction-selected initially, and the problem this 'fixup' is preventing
2472   // won't happen regardless.
2473   if (FrameIdx < 0)
2474     return;
2475 
2476   MachineFunction &MF = DAG.getMachineFunction();
2477   MachineFrameInfo &MFI = MF.getFrameInfo();
2478 
2479   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2480     return;
2481 
2482   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2483   FuncInfo->setHasNonRISpills();
2484 }
2485 
2486 /// Returns true if the address N can be represented by a base register plus
2487 /// a signed 16-bit displacement [r+imm], and if it is not better
2488 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2489 /// displacements that are multiples of that value.
2490 bool PPCTargetLowering::SelectAddressRegImm(
2491     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2492     MaybeAlign EncodingAlignment) const {
2493   // FIXME dl should come from parent load or store, not from address
2494   SDLoc dl(N);
2495 
2496   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2497   // a [pc+imm].
2498   if (SelectAddressPCRel(N, Base))
2499     return false;
2500 
2501   // If this can be more profitably realized as r+r, fail.
2502   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2503     return false;
2504 
2505   if (N.getOpcode() == ISD::ADD) {
2506     int16_t imm = 0;
2507     if (isIntS16Immediate(N.getOperand(1), imm) &&
2508         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2509       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2510       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2511         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2512         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2513       } else {
2514         Base = N.getOperand(0);
2515       }
2516       return true; // [r+i]
2517     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2518       // Match LOAD (ADD (X, Lo(G))).
2519       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2520              && "Cannot handle constant offsets yet!");
2521       Disp = N.getOperand(1).getOperand(0);  // The global address.
2522       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2523              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2524              Disp.getOpcode() == ISD::TargetConstantPool ||
2525              Disp.getOpcode() == ISD::TargetJumpTable);
2526       Base = N.getOperand(0);
2527       return true;  // [&g+r]
2528     }
2529   } else if (N.getOpcode() == ISD::OR) {
2530     int16_t imm = 0;
2531     if (isIntS16Immediate(N.getOperand(1), imm) &&
2532         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2533       // If this is an or of disjoint bitfields, we can codegen this as an add
2534       // (for better address arithmetic) if the LHS and RHS of the OR are
2535       // provably disjoint.
2536       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2537 
2538       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2539         // If all of the bits are known zero on the LHS or RHS, the add won't
2540         // carry.
2541         if (FrameIndexSDNode *FI =
2542               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2543           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2544           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2545         } else {
2546           Base = N.getOperand(0);
2547         }
2548         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2549         return true;
2550       }
2551     }
2552   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2553     // Loading from a constant address.
2554 
2555     // If this address fits entirely in a 16-bit sext immediate field, codegen
2556     // this as "d, 0"
2557     int16_t Imm;
2558     if (isIntS16Immediate(CN, Imm) &&
2559         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2560       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2561       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2562                              CN->getValueType(0));
2563       return true;
2564     }
2565 
2566     // Handle 32-bit sext immediates with LIS + addr mode.
2567     if ((CN->getValueType(0) == MVT::i32 ||
2568          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2569         (!EncodingAlignment ||
2570          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2571       int Addr = (int)CN->getZExtValue();
2572 
2573       // Otherwise, break this down into an LIS + disp.
2574       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2575 
2576       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2577                                    MVT::i32);
2578       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2579       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2580       return true;
2581     }
2582   }
2583 
2584   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2585   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2586     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2587     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2588   } else
2589     Base = N;
2590   return true;      // [r+0]
2591 }
2592 
2593 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2594 /// represented as an indexed [r+r] operation.
2595 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2596                                                 SDValue &Index,
2597                                                 SelectionDAG &DAG) const {
2598   // Check to see if we can easily represent this as an [r+r] address.  This
2599   // will fail if it thinks that the address is more profitably represented as
2600   // reg+imm, e.g. where imm = 0.
2601   if (SelectAddressRegReg(N, Base, Index, DAG))
2602     return true;
2603 
2604   // If the address is the result of an add, we will utilize the fact that the
2605   // address calculation includes an implicit add.  However, we can reduce
2606   // register pressure if we do not materialize a constant just for use as the
2607   // index register.  We only get rid of the add if it is not an add of a
2608   // value and a 16-bit signed constant and both have a single use.
2609   int16_t imm = 0;
2610   if (N.getOpcode() == ISD::ADD &&
2611       (!isIntS16Immediate(N.getOperand(1), imm) ||
2612        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2613     Base = N.getOperand(0);
2614     Index = N.getOperand(1);
2615     return true;
2616   }
2617 
2618   // Otherwise, do it the hard way, using R0 as the base register.
2619   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2620                          N.getValueType());
2621   Index = N;
2622   return true;
2623 }
2624 
2625 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2626   Ty *PCRelCand = dyn_cast<Ty>(N);
2627   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2628 }
2629 
2630 /// Returns true if this address is a PC Relative address.
2631 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2632 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2633 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2634   // This is a materialize PC Relative node. Always select this as PC Relative.
2635   Base = N;
2636   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2637     return true;
2638   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2639       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2640       isValidPCRelNode<JumpTableSDNode>(N) ||
2641       isValidPCRelNode<BlockAddressSDNode>(N))
2642     return true;
2643   return false;
2644 }
2645 
2646 /// Returns true if we should use a direct load into vector instruction
2647 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2648 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2649 
2650   // If there are any other uses other than scalar to vector, then we should
2651   // keep it as a scalar load -> direct move pattern to prevent multiple
2652   // loads.
2653   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2654   if (!LD)
2655     return false;
2656 
2657   EVT MemVT = LD->getMemoryVT();
2658   if (!MemVT.isSimple())
2659     return false;
2660   switch(MemVT.getSimpleVT().SimpleTy) {
2661   case MVT::i64:
2662     break;
2663   case MVT::i32:
2664     if (!ST.hasP8Vector())
2665       return false;
2666     break;
2667   case MVT::i16:
2668   case MVT::i8:
2669     if (!ST.hasP9Vector())
2670       return false;
2671     break;
2672   default:
2673     return false;
2674   }
2675 
2676   SDValue LoadedVal(N, 0);
2677   if (!LoadedVal.hasOneUse())
2678     return false;
2679 
2680   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2681        UI != UE; ++UI)
2682     if (UI.getUse().get().getResNo() == 0 &&
2683         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2684         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2685       return false;
2686 
2687   return true;
2688 }
2689 
2690 /// getPreIndexedAddressParts - returns true by value, base pointer and
2691 /// offset pointer and addressing mode by reference if the node's address
2692 /// can be legally represented as pre-indexed load / store address.
2693 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2694                                                   SDValue &Offset,
2695                                                   ISD::MemIndexedMode &AM,
2696                                                   SelectionDAG &DAG) const {
2697   if (DisablePPCPreinc) return false;
2698 
2699   bool isLoad = true;
2700   SDValue Ptr;
2701   EVT VT;
2702   unsigned Alignment;
2703   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2704     Ptr = LD->getBasePtr();
2705     VT = LD->getMemoryVT();
2706     Alignment = LD->getAlignment();
2707   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2708     Ptr = ST->getBasePtr();
2709     VT  = ST->getMemoryVT();
2710     Alignment = ST->getAlignment();
2711     isLoad = false;
2712   } else
2713     return false;
2714 
2715   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2716   // instructions because we can fold these into a more efficient instruction
2717   // instead, (such as LXSD).
2718   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2719     return false;
2720   }
2721 
2722   // PowerPC doesn't have preinc load/store instructions for vectors
2723   if (VT.isVector())
2724     return false;
2725 
2726   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2727     // Common code will reject creating a pre-inc form if the base pointer
2728     // is a frame index, or if N is a store and the base pointer is either
2729     // the same as or a predecessor of the value being stored.  Check for
2730     // those situations here, and try with swapped Base/Offset instead.
2731     bool Swap = false;
2732 
2733     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2734       Swap = true;
2735     else if (!isLoad) {
2736       SDValue Val = cast<StoreSDNode>(N)->getValue();
2737       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2738         Swap = true;
2739     }
2740 
2741     if (Swap)
2742       std::swap(Base, Offset);
2743 
2744     AM = ISD::PRE_INC;
2745     return true;
2746   }
2747 
2748   // LDU/STU can only handle immediates that are a multiple of 4.
2749   if (VT != MVT::i64) {
2750     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
2751       return false;
2752   } else {
2753     // LDU/STU need an address with at least 4-byte alignment.
2754     if (Alignment < 4)
2755       return false;
2756 
2757     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
2758       return false;
2759   }
2760 
2761   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2762     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2763     // sext i32 to i64 when addr mode is r+i.
2764     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2765         LD->getExtensionType() == ISD::SEXTLOAD &&
2766         isa<ConstantSDNode>(Offset))
2767       return false;
2768   }
2769 
2770   AM = ISD::PRE_INC;
2771   return true;
2772 }
2773 
2774 //===----------------------------------------------------------------------===//
2775 //  LowerOperation implementation
2776 //===----------------------------------------------------------------------===//
2777 
2778 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2779 /// and LoOpFlags to the target MO flags.
2780 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2781                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2782                                const GlobalValue *GV = nullptr) {
2783   HiOpFlags = PPCII::MO_HA;
2784   LoOpFlags = PPCII::MO_LO;
2785 
2786   // Don't use the pic base if not in PIC relocation model.
2787   if (IsPIC) {
2788     HiOpFlags |= PPCII::MO_PIC_FLAG;
2789     LoOpFlags |= PPCII::MO_PIC_FLAG;
2790   }
2791 }
2792 
2793 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2794                              SelectionDAG &DAG) {
2795   SDLoc DL(HiPart);
2796   EVT PtrVT = HiPart.getValueType();
2797   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2798 
2799   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2800   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2801 
2802   // With PIC, the first instruction is actually "GR+hi(&G)".
2803   if (isPIC)
2804     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2805                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2806 
2807   // Generate non-pic code that has direct accesses to the constant pool.
2808   // The address of the global is just (hi(&g)+lo(&g)).
2809   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2810 }
2811 
2812 static void setUsesTOCBasePtr(MachineFunction &MF) {
2813   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2814   FuncInfo->setUsesTOCBasePtr();
2815 }
2816 
2817 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2818   setUsesTOCBasePtr(DAG.getMachineFunction());
2819 }
2820 
2821 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2822                                        SDValue GA) const {
2823   const bool Is64Bit = Subtarget.isPPC64();
2824   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2825   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2826                         : Subtarget.isAIXABI()
2827                               ? DAG.getRegister(PPC::R2, VT)
2828                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2829   SDValue Ops[] = { GA, Reg };
2830   return DAG.getMemIntrinsicNode(
2831       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2832       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
2833       MachineMemOperand::MOLoad);
2834 }
2835 
2836 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2837                                              SelectionDAG &DAG) const {
2838   EVT PtrVT = Op.getValueType();
2839   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2840   const Constant *C = CP->getConstVal();
2841 
2842   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2843   // The actual address of the GlobalValue is stored in the TOC.
2844   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2845     if (Subtarget.isUsingPCRelativeCalls()) {
2846       SDLoc DL(CP);
2847       EVT Ty = getPointerTy(DAG.getDataLayout());
2848       SDValue ConstPool = DAG.getTargetConstantPool(
2849           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
2850       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
2851     }
2852     setUsesTOCBasePtr(DAG);
2853     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
2854     return getTOCEntry(DAG, SDLoc(CP), GA);
2855   }
2856 
2857   unsigned MOHiFlag, MOLoFlag;
2858   bool IsPIC = isPositionIndependent();
2859   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2860 
2861   if (IsPIC && Subtarget.isSVR4ABI()) {
2862     SDValue GA =
2863         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
2864     return getTOCEntry(DAG, SDLoc(CP), GA);
2865   }
2866 
2867   SDValue CPIHi =
2868       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
2869   SDValue CPILo =
2870       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
2871   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2872 }
2873 
2874 // For 64-bit PowerPC, prefer the more compact relative encodings.
2875 // This trades 32 bits per jump table entry for one or two instructions
2876 // on the jump site.
2877 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2878   if (isJumpTableRelative())
2879     return MachineJumpTableInfo::EK_LabelDifference32;
2880 
2881   return TargetLowering::getJumpTableEncoding();
2882 }
2883 
2884 bool PPCTargetLowering::isJumpTableRelative() const {
2885   if (UseAbsoluteJumpTables)
2886     return false;
2887   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2888     return true;
2889   return TargetLowering::isJumpTableRelative();
2890 }
2891 
2892 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2893                                                     SelectionDAG &DAG) const {
2894   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2895     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2896 
2897   switch (getTargetMachine().getCodeModel()) {
2898   case CodeModel::Small:
2899   case CodeModel::Medium:
2900     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2901   default:
2902     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2903                        getPointerTy(DAG.getDataLayout()));
2904   }
2905 }
2906 
2907 const MCExpr *
2908 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2909                                                 unsigned JTI,
2910                                                 MCContext &Ctx) const {
2911   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2912     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2913 
2914   switch (getTargetMachine().getCodeModel()) {
2915   case CodeModel::Small:
2916   case CodeModel::Medium:
2917     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2918   default:
2919     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2920   }
2921 }
2922 
2923 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2924   EVT PtrVT = Op.getValueType();
2925   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2926 
2927   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2928   if (Subtarget.isUsingPCRelativeCalls()) {
2929     SDLoc DL(JT);
2930     EVT Ty = getPointerTy(DAG.getDataLayout());
2931     SDValue GA =
2932         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
2933     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2934     return MatAddr;
2935   }
2936 
2937   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2938   // The actual address of the GlobalValue is stored in the TOC.
2939   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2940     setUsesTOCBasePtr(DAG);
2941     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2942     return getTOCEntry(DAG, SDLoc(JT), GA);
2943   }
2944 
2945   unsigned MOHiFlag, MOLoFlag;
2946   bool IsPIC = isPositionIndependent();
2947   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2948 
2949   if (IsPIC && Subtarget.isSVR4ABI()) {
2950     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2951                                         PPCII::MO_PIC_FLAG);
2952     return getTOCEntry(DAG, SDLoc(GA), GA);
2953   }
2954 
2955   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2956   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2957   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2958 }
2959 
2960 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2961                                              SelectionDAG &DAG) const {
2962   EVT PtrVT = Op.getValueType();
2963   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2964   const BlockAddress *BA = BASDN->getBlockAddress();
2965 
2966   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
2967   if (Subtarget.isUsingPCRelativeCalls()) {
2968     SDLoc DL(BASDN);
2969     EVT Ty = getPointerTy(DAG.getDataLayout());
2970     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
2971                                            PPCII::MO_PCREL_FLAG);
2972     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
2973     return MatAddr;
2974   }
2975 
2976   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2977   // The actual BlockAddress is stored in the TOC.
2978   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2979     setUsesTOCBasePtr(DAG);
2980     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2981     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2982   }
2983 
2984   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2985   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2986     return getTOCEntry(
2987         DAG, SDLoc(BASDN),
2988         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2989 
2990   unsigned MOHiFlag, MOLoFlag;
2991   bool IsPIC = isPositionIndependent();
2992   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2993   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2994   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2995   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2996 }
2997 
2998 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2999                                               SelectionDAG &DAG) const {
3000   // FIXME: TLS addresses currently use medium model code sequences,
3001   // which is the most useful form.  Eventually support for small and
3002   // large models could be added if users need it, at the cost of
3003   // additional complexity.
3004   if (Subtarget.isUsingPCRelativeCalls() && !EnablePPCPCRelTLS)
3005     report_fatal_error("Thread local storage is not supported with pc-relative"
3006                        " addressing - please compile with -mno-pcrel");
3007   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3008   if (DAG.getTarget().useEmulatedTLS())
3009     return LowerToTLSEmulatedModel(GA, DAG);
3010 
3011   SDLoc dl(GA);
3012   const GlobalValue *GV = GA->getGlobal();
3013   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3014   bool is64bit = Subtarget.isPPC64();
3015   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3016   PICLevel::Level picLevel = M->getPICLevel();
3017 
3018   const TargetMachine &TM = getTargetMachine();
3019   TLSModel::Model Model = TM.getTLSModel(GV);
3020 
3021   if (Model == TLSModel::LocalExec) {
3022     if (Subtarget.isUsingPCRelativeCalls()) {
3023       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3024       SDValue TGA = DAG.getTargetGlobalAddress(
3025           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3026       SDValue MatAddr =
3027           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3028       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3029     }
3030 
3031     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3032                                                PPCII::MO_TPREL_HA);
3033     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3034                                                PPCII::MO_TPREL_LO);
3035     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3036                              : DAG.getRegister(PPC::R2, MVT::i32);
3037 
3038     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3039     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3040   }
3041 
3042   if (Model == TLSModel::InitialExec) {
3043     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3044     SDValue TGA = DAG.getTargetGlobalAddress(
3045         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3046     SDValue TGATLS = DAG.getTargetGlobalAddress(
3047         GV, dl, PtrVT, 0,
3048         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3049     SDValue TPOffset;
3050     if (IsPCRel) {
3051       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3052       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3053                              MachinePointerInfo());
3054     } else {
3055       SDValue GOTPtr;
3056       if (is64bit) {
3057         setUsesTOCBasePtr(DAG);
3058         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3059         GOTPtr =
3060             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3061       } else {
3062         if (!TM.isPositionIndependent())
3063           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3064         else if (picLevel == PICLevel::SmallPIC)
3065           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3066         else
3067           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3068       }
3069       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3070     }
3071     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3072   }
3073 
3074   if (Model == TLSModel::GeneralDynamic) {
3075     if (Subtarget.isUsingPCRelativeCalls()) {
3076       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3077                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3078       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3079     }
3080 
3081     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3082     SDValue GOTPtr;
3083     if (is64bit) {
3084       setUsesTOCBasePtr(DAG);
3085       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3086       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3087                                    GOTReg, TGA);
3088     } else {
3089       if (picLevel == PICLevel::SmallPIC)
3090         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3091       else
3092         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3093     }
3094     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3095                        GOTPtr, TGA, TGA);
3096   }
3097 
3098   if (Model == TLSModel::LocalDynamic) {
3099     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3100     SDValue GOTPtr;
3101     if (is64bit) {
3102       setUsesTOCBasePtr(DAG);
3103       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3104       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3105                            GOTReg, TGA);
3106     } else {
3107       if (picLevel == PICLevel::SmallPIC)
3108         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3109       else
3110         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3111     }
3112     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3113                                   PtrVT, GOTPtr, TGA, TGA);
3114     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3115                                       PtrVT, TLSAddr, TGA);
3116     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3117   }
3118 
3119   llvm_unreachable("Unknown TLS model!");
3120 }
3121 
3122 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3123                                               SelectionDAG &DAG) const {
3124   EVT PtrVT = Op.getValueType();
3125   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3126   SDLoc DL(GSDN);
3127   const GlobalValue *GV = GSDN->getGlobal();
3128 
3129   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3130   // The actual address of the GlobalValue is stored in the TOC.
3131   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3132     if (Subtarget.isUsingPCRelativeCalls()) {
3133       EVT Ty = getPointerTy(DAG.getDataLayout());
3134       if (isAccessedAsGotIndirect(Op)) {
3135         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3136                                                 PPCII::MO_PCREL_FLAG |
3137                                                     PPCII::MO_GOT_FLAG);
3138         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3139         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3140                                    MachinePointerInfo());
3141         return Load;
3142       } else {
3143         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3144                                                 PPCII::MO_PCREL_FLAG);
3145         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3146       }
3147     }
3148     setUsesTOCBasePtr(DAG);
3149     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3150     return getTOCEntry(DAG, DL, GA);
3151   }
3152 
3153   unsigned MOHiFlag, MOLoFlag;
3154   bool IsPIC = isPositionIndependent();
3155   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3156 
3157   if (IsPIC && Subtarget.isSVR4ABI()) {
3158     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3159                                             GSDN->getOffset(),
3160                                             PPCII::MO_PIC_FLAG);
3161     return getTOCEntry(DAG, DL, GA);
3162   }
3163 
3164   SDValue GAHi =
3165     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3166   SDValue GALo =
3167     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3168 
3169   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3170 }
3171 
3172 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3173   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3174   SDLoc dl(Op);
3175 
3176   if (Op.getValueType() == MVT::v2i64) {
3177     // When the operands themselves are v2i64 values, we need to do something
3178     // special because VSX has no underlying comparison operations for these.
3179     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3180       // Equality can be handled by casting to the legal type for Altivec
3181       // comparisons, everything else needs to be expanded.
3182       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3183         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3184                  DAG.getSetCC(dl, MVT::v4i32,
3185                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3186                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3187                    CC));
3188       }
3189 
3190       return SDValue();
3191     }
3192 
3193     // We handle most of these in the usual way.
3194     return Op;
3195   }
3196 
3197   // If we're comparing for equality to zero, expose the fact that this is
3198   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3199   // fold the new nodes.
3200   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3201     return V;
3202 
3203   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3204     // Leave comparisons against 0 and -1 alone for now, since they're usually
3205     // optimized.  FIXME: revisit this when we can custom lower all setcc
3206     // optimizations.
3207     if (C->isAllOnesValue() || C->isNullValue())
3208       return SDValue();
3209   }
3210 
3211   // If we have an integer seteq/setne, turn it into a compare against zero
3212   // by xor'ing the rhs with the lhs, which is faster than setting a
3213   // condition register, reading it back out, and masking the correct bit.  The
3214   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3215   // the result to other bit-twiddling opportunities.
3216   EVT LHSVT = Op.getOperand(0).getValueType();
3217   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3218     EVT VT = Op.getValueType();
3219     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3220                                 Op.getOperand(1));
3221     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3222   }
3223   return SDValue();
3224 }
3225 
3226 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3227   SDNode *Node = Op.getNode();
3228   EVT VT = Node->getValueType(0);
3229   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3230   SDValue InChain = Node->getOperand(0);
3231   SDValue VAListPtr = Node->getOperand(1);
3232   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3233   SDLoc dl(Node);
3234 
3235   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3236 
3237   // gpr_index
3238   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3239                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3240   InChain = GprIndex.getValue(1);
3241 
3242   if (VT == MVT::i64) {
3243     // Check if GprIndex is even
3244     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3245                                  DAG.getConstant(1, dl, MVT::i32));
3246     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3247                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3248     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3249                                           DAG.getConstant(1, dl, MVT::i32));
3250     // Align GprIndex to be even if it isn't
3251     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3252                            GprIndex);
3253   }
3254 
3255   // fpr index is 1 byte after gpr
3256   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3257                                DAG.getConstant(1, dl, MVT::i32));
3258 
3259   // fpr
3260   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3261                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3262   InChain = FprIndex.getValue(1);
3263 
3264   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3265                                        DAG.getConstant(8, dl, MVT::i32));
3266 
3267   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3268                                         DAG.getConstant(4, dl, MVT::i32));
3269 
3270   // areas
3271   SDValue OverflowArea =
3272       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3273   InChain = OverflowArea.getValue(1);
3274 
3275   SDValue RegSaveArea =
3276       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3277   InChain = RegSaveArea.getValue(1);
3278 
3279   // select overflow_area if index > 8
3280   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3281                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3282 
3283   // adjustment constant gpr_index * 4/8
3284   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3285                                     VT.isInteger() ? GprIndex : FprIndex,
3286                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3287                                                     MVT::i32));
3288 
3289   // OurReg = RegSaveArea + RegConstant
3290   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3291                                RegConstant);
3292 
3293   // Floating types are 32 bytes into RegSaveArea
3294   if (VT.isFloatingPoint())
3295     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3296                          DAG.getConstant(32, dl, MVT::i32));
3297 
3298   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3299   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3300                                    VT.isInteger() ? GprIndex : FprIndex,
3301                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3302                                                    MVT::i32));
3303 
3304   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3305                               VT.isInteger() ? VAListPtr : FprPtr,
3306                               MachinePointerInfo(SV), MVT::i8);
3307 
3308   // determine if we should load from reg_save_area or overflow_area
3309   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3310 
3311   // increase overflow_area by 4/8 if gpr/fpr > 8
3312   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3313                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3314                                           dl, MVT::i32));
3315 
3316   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3317                              OverflowAreaPlusN);
3318 
3319   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3320                               MachinePointerInfo(), MVT::i32);
3321 
3322   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3323 }
3324 
3325 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3326   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3327 
3328   // We have to copy the entire va_list struct:
3329   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3330   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3331                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3332                        false, true, false, MachinePointerInfo(),
3333                        MachinePointerInfo());
3334 }
3335 
3336 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3337                                                   SelectionDAG &DAG) const {
3338   if (Subtarget.isAIXABI())
3339     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3340 
3341   return Op.getOperand(0);
3342 }
3343 
3344 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3345                                                 SelectionDAG &DAG) const {
3346   if (Subtarget.isAIXABI())
3347     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3348 
3349   SDValue Chain = Op.getOperand(0);
3350   SDValue Trmp = Op.getOperand(1); // trampoline
3351   SDValue FPtr = Op.getOperand(2); // nested function
3352   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3353   SDLoc dl(Op);
3354 
3355   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3356   bool isPPC64 = (PtrVT == MVT::i64);
3357   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3358 
3359   TargetLowering::ArgListTy Args;
3360   TargetLowering::ArgListEntry Entry;
3361 
3362   Entry.Ty = IntPtrTy;
3363   Entry.Node = Trmp; Args.push_back(Entry);
3364 
3365   // TrampSize == (isPPC64 ? 48 : 40);
3366   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3367                                isPPC64 ? MVT::i64 : MVT::i32);
3368   Args.push_back(Entry);
3369 
3370   Entry.Node = FPtr; Args.push_back(Entry);
3371   Entry.Node = Nest; Args.push_back(Entry);
3372 
3373   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3374   TargetLowering::CallLoweringInfo CLI(DAG);
3375   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3376       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3377       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3378 
3379   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3380   return CallResult.second;
3381 }
3382 
3383 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3384   MachineFunction &MF = DAG.getMachineFunction();
3385   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3386   EVT PtrVT = getPointerTy(MF.getDataLayout());
3387 
3388   SDLoc dl(Op);
3389 
3390   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3391     // vastart just stores the address of the VarArgsFrameIndex slot into the
3392     // memory location argument.
3393     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3394     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3395     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3396                         MachinePointerInfo(SV));
3397   }
3398 
3399   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3400   // We suppose the given va_list is already allocated.
3401   //
3402   // typedef struct {
3403   //  char gpr;     /* index into the array of 8 GPRs
3404   //                 * stored in the register save area
3405   //                 * gpr=0 corresponds to r3,
3406   //                 * gpr=1 to r4, etc.
3407   //                 */
3408   //  char fpr;     /* index into the array of 8 FPRs
3409   //                 * stored in the register save area
3410   //                 * fpr=0 corresponds to f1,
3411   //                 * fpr=1 to f2, etc.
3412   //                 */
3413   //  char *overflow_arg_area;
3414   //                /* location on stack that holds
3415   //                 * the next overflow argument
3416   //                 */
3417   //  char *reg_save_area;
3418   //               /* where r3:r10 and f1:f8 (if saved)
3419   //                * are stored
3420   //                */
3421   // } va_list[1];
3422 
3423   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3424   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3425   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3426                                             PtrVT);
3427   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3428                                  PtrVT);
3429 
3430   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3431   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3432 
3433   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3434   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3435 
3436   uint64_t FPROffset = 1;
3437   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3438 
3439   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3440 
3441   // Store first byte : number of int regs
3442   SDValue firstStore =
3443       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3444                         MachinePointerInfo(SV), MVT::i8);
3445   uint64_t nextOffset = FPROffset;
3446   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3447                                   ConstFPROffset);
3448 
3449   // Store second byte : number of float regs
3450   SDValue secondStore =
3451       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3452                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3453   nextOffset += StackOffset;
3454   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3455 
3456   // Store second word : arguments given on stack
3457   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3458                                     MachinePointerInfo(SV, nextOffset));
3459   nextOffset += FrameOffset;
3460   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3461 
3462   // Store third word : arguments given in registers
3463   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3464                       MachinePointerInfo(SV, nextOffset));
3465 }
3466 
3467 /// FPR - The set of FP registers that should be allocated for arguments
3468 /// on Darwin and AIX.
3469 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3470                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3471                                 PPC::F11, PPC::F12, PPC::F13};
3472 
3473 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3474 /// the stack.
3475 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3476                                        unsigned PtrByteSize) {
3477   unsigned ArgSize = ArgVT.getStoreSize();
3478   if (Flags.isByVal())
3479     ArgSize = Flags.getByValSize();
3480 
3481   // Round up to multiples of the pointer size, except for array members,
3482   // which are always packed.
3483   if (!Flags.isInConsecutiveRegs())
3484     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3485 
3486   return ArgSize;
3487 }
3488 
3489 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3490 /// on the stack.
3491 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3492                                          ISD::ArgFlagsTy Flags,
3493                                          unsigned PtrByteSize) {
3494   Align Alignment(PtrByteSize);
3495 
3496   // Altivec parameters are padded to a 16 byte boundary.
3497   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3498       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3499       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3500       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3501     Alignment = Align(16);
3502 
3503   // ByVal parameters are aligned as requested.
3504   if (Flags.isByVal()) {
3505     auto BVAlign = Flags.getNonZeroByValAlign();
3506     if (BVAlign > PtrByteSize) {
3507       if (BVAlign.value() % PtrByteSize != 0)
3508         llvm_unreachable(
3509             "ByVal alignment is not a multiple of the pointer size");
3510 
3511       Alignment = BVAlign;
3512     }
3513   }
3514 
3515   // Array members are always packed to their original alignment.
3516   if (Flags.isInConsecutiveRegs()) {
3517     // If the array member was split into multiple registers, the first
3518     // needs to be aligned to the size of the full type.  (Except for
3519     // ppcf128, which is only aligned as its f64 components.)
3520     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3521       Alignment = Align(OrigVT.getStoreSize());
3522     else
3523       Alignment = Align(ArgVT.getStoreSize());
3524   }
3525 
3526   return Alignment;
3527 }
3528 
3529 /// CalculateStackSlotUsed - Return whether this argument will use its
3530 /// stack slot (instead of being passed in registers).  ArgOffset,
3531 /// AvailableFPRs, and AvailableVRs must hold the current argument
3532 /// position, and will be updated to account for this argument.
3533 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3534                                    unsigned PtrByteSize, unsigned LinkageSize,
3535                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3536                                    unsigned &AvailableFPRs,
3537                                    unsigned &AvailableVRs) {
3538   bool UseMemory = false;
3539 
3540   // Respect alignment of argument on the stack.
3541   Align Alignment =
3542       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3543   ArgOffset = alignTo(ArgOffset, Alignment);
3544   // If there's no space left in the argument save area, we must
3545   // use memory (this check also catches zero-sized arguments).
3546   if (ArgOffset >= LinkageSize + ParamAreaSize)
3547     UseMemory = true;
3548 
3549   // Allocate argument on the stack.
3550   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3551   if (Flags.isInConsecutiveRegsLast())
3552     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3553   // If we overran the argument save area, we must use memory
3554   // (this check catches arguments passed partially in memory)
3555   if (ArgOffset > LinkageSize + ParamAreaSize)
3556     UseMemory = true;
3557 
3558   // However, if the argument is actually passed in an FPR or a VR,
3559   // we don't use memory after all.
3560   if (!Flags.isByVal()) {
3561     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3562       if (AvailableFPRs > 0) {
3563         --AvailableFPRs;
3564         return false;
3565       }
3566     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3567         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3568         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3569         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3570       if (AvailableVRs > 0) {
3571         --AvailableVRs;
3572         return false;
3573       }
3574   }
3575 
3576   return UseMemory;
3577 }
3578 
3579 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3580 /// ensure minimum alignment required for target.
3581 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3582                                      unsigned NumBytes) {
3583   return alignTo(NumBytes, Lowering->getStackAlign());
3584 }
3585 
3586 SDValue PPCTargetLowering::LowerFormalArguments(
3587     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3588     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3589     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3590   if (Subtarget.isAIXABI())
3591     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3592                                     InVals);
3593   if (Subtarget.is64BitELFABI())
3594     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3595                                        InVals);
3596   if (Subtarget.is32BitELFABI())
3597     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3598                                        InVals);
3599 
3600   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3601                                      InVals);
3602 }
3603 
3604 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3605     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3606     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3607     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3608 
3609   // 32-bit SVR4 ABI Stack Frame Layout:
3610   //              +-----------------------------------+
3611   //        +-->  |            Back chain             |
3612   //        |     +-----------------------------------+
3613   //        |     | Floating-point register save area |
3614   //        |     +-----------------------------------+
3615   //        |     |    General register save area     |
3616   //        |     +-----------------------------------+
3617   //        |     |          CR save word             |
3618   //        |     +-----------------------------------+
3619   //        |     |         VRSAVE save word          |
3620   //        |     +-----------------------------------+
3621   //        |     |         Alignment padding         |
3622   //        |     +-----------------------------------+
3623   //        |     |     Vector register save area     |
3624   //        |     +-----------------------------------+
3625   //        |     |       Local variable space        |
3626   //        |     +-----------------------------------+
3627   //        |     |        Parameter list area        |
3628   //        |     +-----------------------------------+
3629   //        |     |           LR save word            |
3630   //        |     +-----------------------------------+
3631   // SP-->  +---  |            Back chain             |
3632   //              +-----------------------------------+
3633   //
3634   // Specifications:
3635   //   System V Application Binary Interface PowerPC Processor Supplement
3636   //   AltiVec Technology Programming Interface Manual
3637 
3638   MachineFunction &MF = DAG.getMachineFunction();
3639   MachineFrameInfo &MFI = MF.getFrameInfo();
3640   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3641 
3642   EVT PtrVT = getPointerTy(MF.getDataLayout());
3643   // Potential tail calls could cause overwriting of argument stack slots.
3644   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3645                        (CallConv == CallingConv::Fast));
3646   const Align PtrAlign(4);
3647 
3648   // Assign locations to all of the incoming arguments.
3649   SmallVector<CCValAssign, 16> ArgLocs;
3650   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3651                  *DAG.getContext());
3652 
3653   // Reserve space for the linkage area on the stack.
3654   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3655   CCInfo.AllocateStack(LinkageSize, PtrAlign);
3656   if (useSoftFloat())
3657     CCInfo.PreAnalyzeFormalArguments(Ins);
3658 
3659   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3660   CCInfo.clearWasPPCF128();
3661 
3662   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3663     CCValAssign &VA = ArgLocs[i];
3664 
3665     // Arguments stored in registers.
3666     if (VA.isRegLoc()) {
3667       const TargetRegisterClass *RC;
3668       EVT ValVT = VA.getValVT();
3669 
3670       switch (ValVT.getSimpleVT().SimpleTy) {
3671         default:
3672           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3673         case MVT::i1:
3674         case MVT::i32:
3675           RC = &PPC::GPRCRegClass;
3676           break;
3677         case MVT::f32:
3678           if (Subtarget.hasP8Vector())
3679             RC = &PPC::VSSRCRegClass;
3680           else if (Subtarget.hasSPE())
3681             RC = &PPC::GPRCRegClass;
3682           else
3683             RC = &PPC::F4RCRegClass;
3684           break;
3685         case MVT::f64:
3686           if (Subtarget.hasVSX())
3687             RC = &PPC::VSFRCRegClass;
3688           else if (Subtarget.hasSPE())
3689             // SPE passes doubles in GPR pairs.
3690             RC = &PPC::GPRCRegClass;
3691           else
3692             RC = &PPC::F8RCRegClass;
3693           break;
3694         case MVT::v16i8:
3695         case MVT::v8i16:
3696         case MVT::v4i32:
3697           RC = &PPC::VRRCRegClass;
3698           break;
3699         case MVT::v4f32:
3700           RC = &PPC::VRRCRegClass;
3701           break;
3702         case MVT::v2f64:
3703         case MVT::v2i64:
3704           RC = &PPC::VRRCRegClass;
3705           break;
3706       }
3707 
3708       SDValue ArgValue;
3709       // Transform the arguments stored in physical registers into
3710       // virtual ones.
3711       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3712         assert(i + 1 < e && "No second half of double precision argument");
3713         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3714         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3715         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3716         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3717         if (!Subtarget.isLittleEndian())
3718           std::swap (ArgValueLo, ArgValueHi);
3719         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3720                                ArgValueHi);
3721       } else {
3722         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3723         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3724                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3725         if (ValVT == MVT::i1)
3726           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3727       }
3728 
3729       InVals.push_back(ArgValue);
3730     } else {
3731       // Argument stored in memory.
3732       assert(VA.isMemLoc());
3733 
3734       // Get the extended size of the argument type in stack
3735       unsigned ArgSize = VA.getLocVT().getStoreSize();
3736       // Get the actual size of the argument type
3737       unsigned ObjSize = VA.getValVT().getStoreSize();
3738       unsigned ArgOffset = VA.getLocMemOffset();
3739       // Stack objects in PPC32 are right justified.
3740       ArgOffset += ArgSize - ObjSize;
3741       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3742 
3743       // Create load nodes to retrieve arguments from the stack.
3744       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3745       InVals.push_back(
3746           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3747     }
3748   }
3749 
3750   // Assign locations to all of the incoming aggregate by value arguments.
3751   // Aggregates passed by value are stored in the local variable space of the
3752   // caller's stack frame, right above the parameter list area.
3753   SmallVector<CCValAssign, 16> ByValArgLocs;
3754   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3755                       ByValArgLocs, *DAG.getContext());
3756 
3757   // Reserve stack space for the allocations in CCInfo.
3758   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
3759 
3760   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3761 
3762   // Area that is at least reserved in the caller of this function.
3763   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3764   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3765 
3766   // Set the size that is at least reserved in caller of this function.  Tail
3767   // call optimized function's reserved stack space needs to be aligned so that
3768   // taking the difference between two stack areas will result in an aligned
3769   // stack.
3770   MinReservedArea =
3771       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3772   FuncInfo->setMinReservedArea(MinReservedArea);
3773 
3774   SmallVector<SDValue, 8> MemOps;
3775 
3776   // If the function takes variable number of arguments, make a frame index for
3777   // the start of the first vararg value... for expansion of llvm.va_start.
3778   if (isVarArg) {
3779     static const MCPhysReg GPArgRegs[] = {
3780       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3781       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3782     };
3783     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3784 
3785     static const MCPhysReg FPArgRegs[] = {
3786       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3787       PPC::F8
3788     };
3789     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3790 
3791     if (useSoftFloat() || hasSPE())
3792        NumFPArgRegs = 0;
3793 
3794     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3795     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3796 
3797     // Make room for NumGPArgRegs and NumFPArgRegs.
3798     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3799                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3800 
3801     FuncInfo->setVarArgsStackOffset(
3802       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3803                             CCInfo.getNextStackOffset(), true));
3804 
3805     FuncInfo->setVarArgsFrameIndex(
3806         MFI.CreateStackObject(Depth, Align(8), false));
3807     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3808 
3809     // The fixed integer arguments of a variadic function are stored to the
3810     // VarArgsFrameIndex on the stack so that they may be loaded by
3811     // dereferencing the result of va_next.
3812     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3813       // Get an existing live-in vreg, or add a new one.
3814       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3815       if (!VReg)
3816         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3817 
3818       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3819       SDValue Store =
3820           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3821       MemOps.push_back(Store);
3822       // Increment the address by four for the next argument to store
3823       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3824       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3825     }
3826 
3827     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3828     // is set.
3829     // The double arguments are stored to the VarArgsFrameIndex
3830     // on the stack.
3831     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3832       // Get an existing live-in vreg, or add a new one.
3833       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3834       if (!VReg)
3835         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3836 
3837       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3838       SDValue Store =
3839           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3840       MemOps.push_back(Store);
3841       // Increment the address by eight for the next argument to store
3842       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3843                                          PtrVT);
3844       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3845     }
3846   }
3847 
3848   if (!MemOps.empty())
3849     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3850 
3851   return Chain;
3852 }
3853 
3854 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3855 // value to MVT::i64 and then truncate to the correct register size.
3856 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3857                                              EVT ObjectVT, SelectionDAG &DAG,
3858                                              SDValue ArgVal,
3859                                              const SDLoc &dl) const {
3860   if (Flags.isSExt())
3861     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3862                          DAG.getValueType(ObjectVT));
3863   else if (Flags.isZExt())
3864     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3865                          DAG.getValueType(ObjectVT));
3866 
3867   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3868 }
3869 
3870 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3871     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3872     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3873     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3874   // TODO: add description of PPC stack frame format, or at least some docs.
3875   //
3876   bool isELFv2ABI = Subtarget.isELFv2ABI();
3877   bool isLittleEndian = Subtarget.isLittleEndian();
3878   MachineFunction &MF = DAG.getMachineFunction();
3879   MachineFrameInfo &MFI = MF.getFrameInfo();
3880   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3881 
3882   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3883          "fastcc not supported on varargs functions");
3884 
3885   EVT PtrVT = getPointerTy(MF.getDataLayout());
3886   // Potential tail calls could cause overwriting of argument stack slots.
3887   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3888                        (CallConv == CallingConv::Fast));
3889   unsigned PtrByteSize = 8;
3890   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3891 
3892   static const MCPhysReg GPR[] = {
3893     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3894     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3895   };
3896   static const MCPhysReg VR[] = {
3897     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3898     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3899   };
3900 
3901   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3902   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3903   const unsigned Num_VR_Regs  = array_lengthof(VR);
3904 
3905   // Do a first pass over the arguments to determine whether the ABI
3906   // guarantees that our caller has allocated the parameter save area
3907   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3908   // in the ELFv2 ABI, it is true if this is a vararg function or if
3909   // any parameter is located in a stack slot.
3910 
3911   bool HasParameterArea = !isELFv2ABI || isVarArg;
3912   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3913   unsigned NumBytes = LinkageSize;
3914   unsigned AvailableFPRs = Num_FPR_Regs;
3915   unsigned AvailableVRs = Num_VR_Regs;
3916   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3917     if (Ins[i].Flags.isNest())
3918       continue;
3919 
3920     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3921                                PtrByteSize, LinkageSize, ParamAreaSize,
3922                                NumBytes, AvailableFPRs, AvailableVRs))
3923       HasParameterArea = true;
3924   }
3925 
3926   // Add DAG nodes to load the arguments or copy them out of registers.  On
3927   // entry to a function on PPC, the arguments start after the linkage area,
3928   // although the first ones are often in registers.
3929 
3930   unsigned ArgOffset = LinkageSize;
3931   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3932   SmallVector<SDValue, 8> MemOps;
3933   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3934   unsigned CurArgIdx = 0;
3935   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3936     SDValue ArgVal;
3937     bool needsLoad = false;
3938     EVT ObjectVT = Ins[ArgNo].VT;
3939     EVT OrigVT = Ins[ArgNo].ArgVT;
3940     unsigned ObjSize = ObjectVT.getStoreSize();
3941     unsigned ArgSize = ObjSize;
3942     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3943     if (Ins[ArgNo].isOrigArg()) {
3944       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3945       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3946     }
3947     // We re-align the argument offset for each argument, except when using the
3948     // fast calling convention, when we need to make sure we do that only when
3949     // we'll actually use a stack slot.
3950     unsigned CurArgOffset;
3951     Align Alignment;
3952     auto ComputeArgOffset = [&]() {
3953       /* Respect alignment of argument on the stack.  */
3954       Alignment =
3955           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3956       ArgOffset = alignTo(ArgOffset, Alignment);
3957       CurArgOffset = ArgOffset;
3958     };
3959 
3960     if (CallConv != CallingConv::Fast) {
3961       ComputeArgOffset();
3962 
3963       /* Compute GPR index associated with argument offset.  */
3964       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3965       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3966     }
3967 
3968     // FIXME the codegen can be much improved in some cases.
3969     // We do not have to keep everything in memory.
3970     if (Flags.isByVal()) {
3971       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3972 
3973       if (CallConv == CallingConv::Fast)
3974         ComputeArgOffset();
3975 
3976       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3977       ObjSize = Flags.getByValSize();
3978       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3979       // Empty aggregate parameters do not take up registers.  Examples:
3980       //   struct { } a;
3981       //   union  { } b;
3982       //   int c[0];
3983       // etc.  However, we have to provide a place-holder in InVals, so
3984       // pretend we have an 8-byte item at the current address for that
3985       // purpose.
3986       if (!ObjSize) {
3987         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3988         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3989         InVals.push_back(FIN);
3990         continue;
3991       }
3992 
3993       // Create a stack object covering all stack doublewords occupied
3994       // by the argument.  If the argument is (fully or partially) on
3995       // the stack, or if the argument is fully in registers but the
3996       // caller has allocated the parameter save anyway, we can refer
3997       // directly to the caller's stack frame.  Otherwise, create a
3998       // local copy in our own frame.
3999       int FI;
4000       if (HasParameterArea ||
4001           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4002         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4003       else
4004         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4005       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4006 
4007       // Handle aggregates smaller than 8 bytes.
4008       if (ObjSize < PtrByteSize) {
4009         // The value of the object is its address, which differs from the
4010         // address of the enclosing doubleword on big-endian systems.
4011         SDValue Arg = FIN;
4012         if (!isLittleEndian) {
4013           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4014           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4015         }
4016         InVals.push_back(Arg);
4017 
4018         if (GPR_idx != Num_GPR_Regs) {
4019           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4020           FuncInfo->addLiveInAttr(VReg, Flags);
4021           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4022           SDValue Store;
4023 
4024           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
4025             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
4026                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
4027             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4028                                       MachinePointerInfo(&*FuncArg), ObjType);
4029           } else {
4030             // For sizes that don't fit a truncating store (3, 5, 6, 7),
4031             // store the whole register as-is to the parameter save area
4032             // slot.
4033             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4034                                  MachinePointerInfo(&*FuncArg));
4035           }
4036 
4037           MemOps.push_back(Store);
4038         }
4039         // Whether we copied from a register or not, advance the offset
4040         // into the parameter save area by a full doubleword.
4041         ArgOffset += PtrByteSize;
4042         continue;
4043       }
4044 
4045       // The value of the object is its address, which is the address of
4046       // its first stack doubleword.
4047       InVals.push_back(FIN);
4048 
4049       // Store whatever pieces of the object are in registers to memory.
4050       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4051         if (GPR_idx == Num_GPR_Regs)
4052           break;
4053 
4054         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4055         FuncInfo->addLiveInAttr(VReg, Flags);
4056         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4057         SDValue Addr = FIN;
4058         if (j) {
4059           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4060           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4061         }
4062         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
4063                                      MachinePointerInfo(&*FuncArg, j));
4064         MemOps.push_back(Store);
4065         ++GPR_idx;
4066       }
4067       ArgOffset += ArgSize;
4068       continue;
4069     }
4070 
4071     switch (ObjectVT.getSimpleVT().SimpleTy) {
4072     default: llvm_unreachable("Unhandled argument type!");
4073     case MVT::i1:
4074     case MVT::i32:
4075     case MVT::i64:
4076       if (Flags.isNest()) {
4077         // The 'nest' parameter, if any, is passed in R11.
4078         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4079         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4080 
4081         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4082           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4083 
4084         break;
4085       }
4086 
4087       // These can be scalar arguments or elements of an integer array type
4088       // passed directly.  Clang may use those instead of "byval" aggregate
4089       // types to avoid forcing arguments to memory unnecessarily.
4090       if (GPR_idx != Num_GPR_Regs) {
4091         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4092         FuncInfo->addLiveInAttr(VReg, Flags);
4093         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4094 
4095         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4096           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4097           // value to MVT::i64 and then truncate to the correct register size.
4098           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4099       } else {
4100         if (CallConv == CallingConv::Fast)
4101           ComputeArgOffset();
4102 
4103         needsLoad = true;
4104         ArgSize = PtrByteSize;
4105       }
4106       if (CallConv != CallingConv::Fast || needsLoad)
4107         ArgOffset += 8;
4108       break;
4109 
4110     case MVT::f32:
4111     case MVT::f64:
4112       // These can be scalar arguments or elements of a float array type
4113       // passed directly.  The latter are used to implement ELFv2 homogenous
4114       // float aggregates.
4115       if (FPR_idx != Num_FPR_Regs) {
4116         unsigned VReg;
4117 
4118         if (ObjectVT == MVT::f32)
4119           VReg = MF.addLiveIn(FPR[FPR_idx],
4120                               Subtarget.hasP8Vector()
4121                                   ? &PPC::VSSRCRegClass
4122                                   : &PPC::F4RCRegClass);
4123         else
4124           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4125                                                 ? &PPC::VSFRCRegClass
4126                                                 : &PPC::F8RCRegClass);
4127 
4128         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4129         ++FPR_idx;
4130       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4131         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4132         // once we support fp <-> gpr moves.
4133 
4134         // This can only ever happen in the presence of f32 array types,
4135         // since otherwise we never run out of FPRs before running out
4136         // of GPRs.
4137         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4138         FuncInfo->addLiveInAttr(VReg, Flags);
4139         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4140 
4141         if (ObjectVT == MVT::f32) {
4142           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4143             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4144                                  DAG.getConstant(32, dl, MVT::i32));
4145           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4146         }
4147 
4148         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4149       } else {
4150         if (CallConv == CallingConv::Fast)
4151           ComputeArgOffset();
4152 
4153         needsLoad = true;
4154       }
4155 
4156       // When passing an array of floats, the array occupies consecutive
4157       // space in the argument area; only round up to the next doubleword
4158       // at the end of the array.  Otherwise, each float takes 8 bytes.
4159       if (CallConv != CallingConv::Fast || needsLoad) {
4160         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4161         ArgOffset += ArgSize;
4162         if (Flags.isInConsecutiveRegsLast())
4163           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4164       }
4165       break;
4166     case MVT::v4f32:
4167     case MVT::v4i32:
4168     case MVT::v8i16:
4169     case MVT::v16i8:
4170     case MVT::v2f64:
4171     case MVT::v2i64:
4172     case MVT::v1i128:
4173     case MVT::f128:
4174       // These can be scalar arguments or elements of a vector array type
4175       // passed directly.  The latter are used to implement ELFv2 homogenous
4176       // vector aggregates.
4177       if (VR_idx != Num_VR_Regs) {
4178         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4179         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4180         ++VR_idx;
4181       } else {
4182         if (CallConv == CallingConv::Fast)
4183           ComputeArgOffset();
4184         needsLoad = true;
4185       }
4186       if (CallConv != CallingConv::Fast || needsLoad)
4187         ArgOffset += 16;
4188       break;
4189     }
4190 
4191     // We need to load the argument to a virtual register if we determined
4192     // above that we ran out of physical registers of the appropriate type.
4193     if (needsLoad) {
4194       if (ObjSize < ArgSize && !isLittleEndian)
4195         CurArgOffset += ArgSize - ObjSize;
4196       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4197       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4198       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4199     }
4200 
4201     InVals.push_back(ArgVal);
4202   }
4203 
4204   // Area that is at least reserved in the caller of this function.
4205   unsigned MinReservedArea;
4206   if (HasParameterArea)
4207     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4208   else
4209     MinReservedArea = LinkageSize;
4210 
4211   // Set the size that is at least reserved in caller of this function.  Tail
4212   // call optimized functions' reserved stack space needs to be aligned so that
4213   // taking the difference between two stack areas will result in an aligned
4214   // stack.
4215   MinReservedArea =
4216       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4217   FuncInfo->setMinReservedArea(MinReservedArea);
4218 
4219   // If the function takes variable number of arguments, make a frame index for
4220   // the start of the first vararg value... for expansion of llvm.va_start.
4221   // On ELFv2ABI spec, it writes:
4222   // C programs that are intended to be *portable* across different compilers
4223   // and architectures must use the header file <stdarg.h> to deal with variable
4224   // argument lists.
4225   if (isVarArg && MFI.hasVAStart()) {
4226     int Depth = ArgOffset;
4227 
4228     FuncInfo->setVarArgsFrameIndex(
4229       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4230     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4231 
4232     // If this function is vararg, store any remaining integer argument regs
4233     // to their spots on the stack so that they may be loaded by dereferencing
4234     // the result of va_next.
4235     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4236          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4237       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4238       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4239       SDValue Store =
4240           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4241       MemOps.push_back(Store);
4242       // Increment the address by four for the next argument to store
4243       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4244       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4245     }
4246   }
4247 
4248   if (!MemOps.empty())
4249     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4250 
4251   return Chain;
4252 }
4253 
4254 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4255     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4256     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4257     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4258   // TODO: add description of PPC stack frame format, or at least some docs.
4259   //
4260   MachineFunction &MF = DAG.getMachineFunction();
4261   MachineFrameInfo &MFI = MF.getFrameInfo();
4262   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4263 
4264   EVT PtrVT = getPointerTy(MF.getDataLayout());
4265   bool isPPC64 = PtrVT == MVT::i64;
4266   // Potential tail calls could cause overwriting of argument stack slots.
4267   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4268                        (CallConv == CallingConv::Fast));
4269   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4270   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4271   unsigned ArgOffset = LinkageSize;
4272   // Area that is at least reserved in caller of this function.
4273   unsigned MinReservedArea = ArgOffset;
4274 
4275   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4276     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4277     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4278   };
4279   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4280     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4281     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4282   };
4283   static const MCPhysReg VR[] = {
4284     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4285     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4286   };
4287 
4288   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4289   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4290   const unsigned Num_VR_Regs  = array_lengthof( VR);
4291 
4292   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4293 
4294   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4295 
4296   // In 32-bit non-varargs functions, the stack space for vectors is after the
4297   // stack space for non-vectors.  We do not use this space unless we have
4298   // too many vectors to fit in registers, something that only occurs in
4299   // constructed examples:), but we have to walk the arglist to figure
4300   // that out...for the pathological case, compute VecArgOffset as the
4301   // start of the vector parameter area.  Computing VecArgOffset is the
4302   // entire point of the following loop.
4303   unsigned VecArgOffset = ArgOffset;
4304   if (!isVarArg && !isPPC64) {
4305     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4306          ++ArgNo) {
4307       EVT ObjectVT = Ins[ArgNo].VT;
4308       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4309 
4310       if (Flags.isByVal()) {
4311         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4312         unsigned ObjSize = Flags.getByValSize();
4313         unsigned ArgSize =
4314                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4315         VecArgOffset += ArgSize;
4316         continue;
4317       }
4318 
4319       switch(ObjectVT.getSimpleVT().SimpleTy) {
4320       default: llvm_unreachable("Unhandled argument type!");
4321       case MVT::i1:
4322       case MVT::i32:
4323       case MVT::f32:
4324         VecArgOffset += 4;
4325         break;
4326       case MVT::i64:  // PPC64
4327       case MVT::f64:
4328         // FIXME: We are guaranteed to be !isPPC64 at this point.
4329         // Does MVT::i64 apply?
4330         VecArgOffset += 8;
4331         break;
4332       case MVT::v4f32:
4333       case MVT::v4i32:
4334       case MVT::v8i16:
4335       case MVT::v16i8:
4336         // Nothing to do, we're only looking at Nonvector args here.
4337         break;
4338       }
4339     }
4340   }
4341   // We've found where the vector parameter area in memory is.  Skip the
4342   // first 12 parameters; these don't use that memory.
4343   VecArgOffset = ((VecArgOffset+15)/16)*16;
4344   VecArgOffset += 12*16;
4345 
4346   // Add DAG nodes to load the arguments or copy them out of registers.  On
4347   // entry to a function on PPC, the arguments start after the linkage area,
4348   // although the first ones are often in registers.
4349 
4350   SmallVector<SDValue, 8> MemOps;
4351   unsigned nAltivecParamsAtEnd = 0;
4352   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4353   unsigned CurArgIdx = 0;
4354   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4355     SDValue ArgVal;
4356     bool needsLoad = false;
4357     EVT ObjectVT = Ins[ArgNo].VT;
4358     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4359     unsigned ArgSize = ObjSize;
4360     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4361     if (Ins[ArgNo].isOrigArg()) {
4362       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4363       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4364     }
4365     unsigned CurArgOffset = ArgOffset;
4366 
4367     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4368     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4369         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4370       if (isVarArg || isPPC64) {
4371         MinReservedArea = ((MinReservedArea+15)/16)*16;
4372         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4373                                                   Flags,
4374                                                   PtrByteSize);
4375       } else  nAltivecParamsAtEnd++;
4376     } else
4377       // Calculate min reserved area.
4378       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4379                                                 Flags,
4380                                                 PtrByteSize);
4381 
4382     // FIXME the codegen can be much improved in some cases.
4383     // We do not have to keep everything in memory.
4384     if (Flags.isByVal()) {
4385       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4386 
4387       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4388       ObjSize = Flags.getByValSize();
4389       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4390       // Objects of size 1 and 2 are right justified, everything else is
4391       // left justified.  This means the memory address is adjusted forwards.
4392       if (ObjSize==1 || ObjSize==2) {
4393         CurArgOffset = CurArgOffset + (4 - ObjSize);
4394       }
4395       // The value of the object is its address.
4396       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4397       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4398       InVals.push_back(FIN);
4399       if (ObjSize==1 || ObjSize==2) {
4400         if (GPR_idx != Num_GPR_Regs) {
4401           unsigned VReg;
4402           if (isPPC64)
4403             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4404           else
4405             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4406           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4407           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4408           SDValue Store =
4409               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4410                                 MachinePointerInfo(&*FuncArg), ObjType);
4411           MemOps.push_back(Store);
4412           ++GPR_idx;
4413         }
4414 
4415         ArgOffset += PtrByteSize;
4416 
4417         continue;
4418       }
4419       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4420         // Store whatever pieces of the object are in registers
4421         // to memory.  ArgOffset will be the address of the beginning
4422         // of the object.
4423         if (GPR_idx != Num_GPR_Regs) {
4424           unsigned VReg;
4425           if (isPPC64)
4426             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4427           else
4428             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4429           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4430           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4431           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4432           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4433                                        MachinePointerInfo(&*FuncArg, j));
4434           MemOps.push_back(Store);
4435           ++GPR_idx;
4436           ArgOffset += PtrByteSize;
4437         } else {
4438           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4439           break;
4440         }
4441       }
4442       continue;
4443     }
4444 
4445     switch (ObjectVT.getSimpleVT().SimpleTy) {
4446     default: llvm_unreachable("Unhandled argument type!");
4447     case MVT::i1:
4448     case MVT::i32:
4449       if (!isPPC64) {
4450         if (GPR_idx != Num_GPR_Regs) {
4451           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4452           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4453 
4454           if (ObjectVT == MVT::i1)
4455             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4456 
4457           ++GPR_idx;
4458         } else {
4459           needsLoad = true;
4460           ArgSize = PtrByteSize;
4461         }
4462         // All int arguments reserve stack space in the Darwin ABI.
4463         ArgOffset += PtrByteSize;
4464         break;
4465       }
4466       LLVM_FALLTHROUGH;
4467     case MVT::i64:  // PPC64
4468       if (GPR_idx != Num_GPR_Regs) {
4469         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4470         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4471 
4472         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4473           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4474           // value to MVT::i64 and then truncate to the correct register size.
4475           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4476 
4477         ++GPR_idx;
4478       } else {
4479         needsLoad = true;
4480         ArgSize = PtrByteSize;
4481       }
4482       // All int arguments reserve stack space in the Darwin ABI.
4483       ArgOffset += 8;
4484       break;
4485 
4486     case MVT::f32:
4487     case MVT::f64:
4488       // Every 4 bytes of argument space consumes one of the GPRs available for
4489       // argument passing.
4490       if (GPR_idx != Num_GPR_Regs) {
4491         ++GPR_idx;
4492         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4493           ++GPR_idx;
4494       }
4495       if (FPR_idx != Num_FPR_Regs) {
4496         unsigned VReg;
4497 
4498         if (ObjectVT == MVT::f32)
4499           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4500         else
4501           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4502 
4503         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4504         ++FPR_idx;
4505       } else {
4506         needsLoad = true;
4507       }
4508 
4509       // All FP arguments reserve stack space in the Darwin ABI.
4510       ArgOffset += isPPC64 ? 8 : ObjSize;
4511       break;
4512     case MVT::v4f32:
4513     case MVT::v4i32:
4514     case MVT::v8i16:
4515     case MVT::v16i8:
4516       // Note that vector arguments in registers don't reserve stack space,
4517       // except in varargs functions.
4518       if (VR_idx != Num_VR_Regs) {
4519         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4520         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4521         if (isVarArg) {
4522           while ((ArgOffset % 16) != 0) {
4523             ArgOffset += PtrByteSize;
4524             if (GPR_idx != Num_GPR_Regs)
4525               GPR_idx++;
4526           }
4527           ArgOffset += 16;
4528           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4529         }
4530         ++VR_idx;
4531       } else {
4532         if (!isVarArg && !isPPC64) {
4533           // Vectors go after all the nonvectors.
4534           CurArgOffset = VecArgOffset;
4535           VecArgOffset += 16;
4536         } else {
4537           // Vectors are aligned.
4538           ArgOffset = ((ArgOffset+15)/16)*16;
4539           CurArgOffset = ArgOffset;
4540           ArgOffset += 16;
4541         }
4542         needsLoad = true;
4543       }
4544       break;
4545     }
4546 
4547     // We need to load the argument to a virtual register if we determined above
4548     // that we ran out of physical registers of the appropriate type.
4549     if (needsLoad) {
4550       int FI = MFI.CreateFixedObject(ObjSize,
4551                                      CurArgOffset + (ArgSize - ObjSize),
4552                                      isImmutable);
4553       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4554       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4555     }
4556 
4557     InVals.push_back(ArgVal);
4558   }
4559 
4560   // Allow for Altivec parameters at the end, if needed.
4561   if (nAltivecParamsAtEnd) {
4562     MinReservedArea = ((MinReservedArea+15)/16)*16;
4563     MinReservedArea += 16*nAltivecParamsAtEnd;
4564   }
4565 
4566   // Area that is at least reserved in the caller of this function.
4567   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4568 
4569   // Set the size that is at least reserved in caller of this function.  Tail
4570   // call optimized functions' reserved stack space needs to be aligned so that
4571   // taking the difference between two stack areas will result in an aligned
4572   // stack.
4573   MinReservedArea =
4574       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4575   FuncInfo->setMinReservedArea(MinReservedArea);
4576 
4577   // If the function takes variable number of arguments, make a frame index for
4578   // the start of the first vararg value... for expansion of llvm.va_start.
4579   if (isVarArg) {
4580     int Depth = ArgOffset;
4581 
4582     FuncInfo->setVarArgsFrameIndex(
4583       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4584                             Depth, true));
4585     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4586 
4587     // If this function is vararg, store any remaining integer argument regs
4588     // to their spots on the stack so that they may be loaded by dereferencing
4589     // the result of va_next.
4590     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4591       unsigned VReg;
4592 
4593       if (isPPC64)
4594         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4595       else
4596         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4597 
4598       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4599       SDValue Store =
4600           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4601       MemOps.push_back(Store);
4602       // Increment the address by four for the next argument to store
4603       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4604       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4605     }
4606   }
4607 
4608   if (!MemOps.empty())
4609     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4610 
4611   return Chain;
4612 }
4613 
4614 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4615 /// adjusted to accommodate the arguments for the tailcall.
4616 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4617                                    unsigned ParamSize) {
4618 
4619   if (!isTailCall) return 0;
4620 
4621   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4622   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4623   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4624   // Remember only if the new adjustment is bigger.
4625   if (SPDiff < FI->getTailCallSPDelta())
4626     FI->setTailCallSPDelta(SPDiff);
4627 
4628   return SPDiff;
4629 }
4630 
4631 static bool isFunctionGlobalAddress(SDValue Callee);
4632 
4633 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4634                               const TargetMachine &TM) {
4635   // It does not make sense to call callsShareTOCBase() with a caller that
4636   // is PC Relative since PC Relative callers do not have a TOC.
4637 #ifndef NDEBUG
4638   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4639   assert(!STICaller->isUsingPCRelativeCalls() &&
4640          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4641 #endif
4642 
4643   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4644   // don't have enough information to determine if the caller and callee share
4645   // the same  TOC base, so we have to pessimistically assume they don't for
4646   // correctness.
4647   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4648   if (!G)
4649     return false;
4650 
4651   const GlobalValue *GV = G->getGlobal();
4652 
4653   // If the callee is preemptable, then the static linker will use a plt-stub
4654   // which saves the toc to the stack, and needs a nop after the call
4655   // instruction to convert to a toc-restore.
4656   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4657     return false;
4658 
4659   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4660   // We may need a TOC restore in the situation where the caller requires a
4661   // valid TOC but the callee is PC Relative and does not.
4662   const Function *F = dyn_cast<Function>(GV);
4663   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4664 
4665   // If we have an Alias we can try to get the function from there.
4666   if (Alias) {
4667     const GlobalObject *GlobalObj = Alias->getBaseObject();
4668     F = dyn_cast<Function>(GlobalObj);
4669   }
4670 
4671   // If we still have no valid function pointer we do not have enough
4672   // information to determine if the callee uses PC Relative calls so we must
4673   // assume that it does.
4674   if (!F)
4675     return false;
4676 
4677   // If the callee uses PC Relative we cannot guarantee that the callee won't
4678   // clobber the TOC of the caller and so we must assume that the two
4679   // functions do not share a TOC base.
4680   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4681   if (STICallee->isUsingPCRelativeCalls())
4682     return false;
4683 
4684   // The medium and large code models are expected to provide a sufficiently
4685   // large TOC to provide all data addressing needs of a module with a
4686   // single TOC.
4687   if (CodeModel::Medium == TM.getCodeModel() ||
4688       CodeModel::Large == TM.getCodeModel())
4689     return true;
4690 
4691   // Otherwise we need to ensure callee and caller are in the same section,
4692   // since the linker may allocate multiple TOCs, and we don't know which
4693   // sections will belong to the same TOC base.
4694   if (!GV->isStrongDefinitionForLinker())
4695     return false;
4696 
4697   // Any explicitly-specified sections and section prefixes must also match.
4698   // Also, if we're using -ffunction-sections, then each function is always in
4699   // a different section (the same is true for COMDAT functions).
4700   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4701       GV->getSection() != Caller->getSection())
4702     return false;
4703   if (const auto *F = dyn_cast<Function>(GV)) {
4704     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4705       return false;
4706   }
4707 
4708   return true;
4709 }
4710 
4711 static bool
4712 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4713                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4714   assert(Subtarget.is64BitELFABI());
4715 
4716   const unsigned PtrByteSize = 8;
4717   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4718 
4719   static const MCPhysReg GPR[] = {
4720     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4721     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4722   };
4723   static const MCPhysReg VR[] = {
4724     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4725     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4726   };
4727 
4728   const unsigned NumGPRs = array_lengthof(GPR);
4729   const unsigned NumFPRs = 13;
4730   const unsigned NumVRs = array_lengthof(VR);
4731   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4732 
4733   unsigned NumBytes = LinkageSize;
4734   unsigned AvailableFPRs = NumFPRs;
4735   unsigned AvailableVRs = NumVRs;
4736 
4737   for (const ISD::OutputArg& Param : Outs) {
4738     if (Param.Flags.isNest()) continue;
4739 
4740     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4741                                LinkageSize, ParamAreaSize, NumBytes,
4742                                AvailableFPRs, AvailableVRs))
4743       return true;
4744   }
4745   return false;
4746 }
4747 
4748 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4749   if (CB.arg_size() != CallerFn->arg_size())
4750     return false;
4751 
4752   auto CalleeArgIter = CB.arg_begin();
4753   auto CalleeArgEnd = CB.arg_end();
4754   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4755 
4756   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4757     const Value* CalleeArg = *CalleeArgIter;
4758     const Value* CallerArg = &(*CallerArgIter);
4759     if (CalleeArg == CallerArg)
4760       continue;
4761 
4762     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4763     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4764     //      }
4765     // 1st argument of callee is undef and has the same type as caller.
4766     if (CalleeArg->getType() == CallerArg->getType() &&
4767         isa<UndefValue>(CalleeArg))
4768       continue;
4769 
4770     return false;
4771   }
4772 
4773   return true;
4774 }
4775 
4776 // Returns true if TCO is possible between the callers and callees
4777 // calling conventions.
4778 static bool
4779 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4780                                     CallingConv::ID CalleeCC) {
4781   // Tail calls are possible with fastcc and ccc.
4782   auto isTailCallableCC  = [] (CallingConv::ID CC){
4783       return  CC == CallingConv::C || CC == CallingConv::Fast;
4784   };
4785   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4786     return false;
4787 
4788   // We can safely tail call both fastcc and ccc callees from a c calling
4789   // convention caller. If the caller is fastcc, we may have less stack space
4790   // than a non-fastcc caller with the same signature so disable tail-calls in
4791   // that case.
4792   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4793 }
4794 
4795 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4796     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4797     const SmallVectorImpl<ISD::OutputArg> &Outs,
4798     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4799   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4800 
4801   if (DisableSCO && !TailCallOpt) return false;
4802 
4803   // Variadic argument functions are not supported.
4804   if (isVarArg) return false;
4805 
4806   auto &Caller = DAG.getMachineFunction().getFunction();
4807   // Check that the calling conventions are compatible for tco.
4808   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4809     return false;
4810 
4811   // Caller contains any byval parameter is not supported.
4812   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4813     return false;
4814 
4815   // Callee contains any byval parameter is not supported, too.
4816   // Note: This is a quick work around, because in some cases, e.g.
4817   // caller's stack size > callee's stack size, we are still able to apply
4818   // sibling call optimization. For example, gcc is able to do SCO for caller1
4819   // in the following example, but not for caller2.
4820   //   struct test {
4821   //     long int a;
4822   //     char ary[56];
4823   //   } gTest;
4824   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4825   //     b->a = v.a;
4826   //     return 0;
4827   //   }
4828   //   void caller1(struct test a, struct test c, struct test *b) {
4829   //     callee(gTest, b); }
4830   //   void caller2(struct test *b) { callee(gTest, b); }
4831   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4832     return false;
4833 
4834   // If callee and caller use different calling conventions, we cannot pass
4835   // parameters on stack since offsets for the parameter area may be different.
4836   if (Caller.getCallingConv() != CalleeCC &&
4837       needStackSlotPassParameters(Subtarget, Outs))
4838     return false;
4839 
4840   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4841   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4842   // callee potentially have different TOC bases then we cannot tail call since
4843   // we need to restore the TOC pointer after the call.
4844   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4845   // We cannot guarantee this for indirect calls or calls to external functions.
4846   // When PC-Relative addressing is used, the concept of the TOC is no longer
4847   // applicable so this check is not required.
4848   // Check first for indirect calls.
4849   if (!Subtarget.isUsingPCRelativeCalls() &&
4850       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4851     return false;
4852 
4853   // Check if we share the TOC base.
4854   if (!Subtarget.isUsingPCRelativeCalls() &&
4855       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4856     return false;
4857 
4858   // TCO allows altering callee ABI, so we don't have to check further.
4859   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4860     return true;
4861 
4862   if (DisableSCO) return false;
4863 
4864   // If callee use the same argument list that caller is using, then we can
4865   // apply SCO on this case. If it is not, then we need to check if callee needs
4866   // stack for passing arguments.
4867   // PC Relative tail calls may not have a CallBase.
4868   // If there is no CallBase we cannot verify if we have the same argument
4869   // list so assume that we don't have the same argument list.
4870   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4871       needStackSlotPassParameters(Subtarget, Outs))
4872     return false;
4873   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4874     return false;
4875 
4876   return true;
4877 }
4878 
4879 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4880 /// for tail call optimization. Targets which want to do tail call
4881 /// optimization should implement this function.
4882 bool
4883 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4884                                                      CallingConv::ID CalleeCC,
4885                                                      bool isVarArg,
4886                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4887                                                      SelectionDAG& DAG) const {
4888   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4889     return false;
4890 
4891   // Variable argument functions are not supported.
4892   if (isVarArg)
4893     return false;
4894 
4895   MachineFunction &MF = DAG.getMachineFunction();
4896   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4897   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4898     // Functions containing by val parameters are not supported.
4899     for (unsigned i = 0; i != Ins.size(); i++) {
4900        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4901        if (Flags.isByVal()) return false;
4902     }
4903 
4904     // Non-PIC/GOT tail calls are supported.
4905     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4906       return true;
4907 
4908     // At the moment we can only do local tail calls (in same module, hidden
4909     // or protected) if we are generating PIC.
4910     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4911       return G->getGlobal()->hasHiddenVisibility()
4912           || G->getGlobal()->hasProtectedVisibility();
4913   }
4914 
4915   return false;
4916 }
4917 
4918 /// isCallCompatibleAddress - Return the immediate to use if the specified
4919 /// 32-bit value is representable in the immediate field of a BxA instruction.
4920 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4921   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4922   if (!C) return nullptr;
4923 
4924   int Addr = C->getZExtValue();
4925   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4926       SignExtend32<26>(Addr) != Addr)
4927     return nullptr;  // Top 6 bits have to be sext of immediate.
4928 
4929   return DAG
4930       .getConstant(
4931           (int)C->getZExtValue() >> 2, SDLoc(Op),
4932           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4933       .getNode();
4934 }
4935 
4936 namespace {
4937 
4938 struct TailCallArgumentInfo {
4939   SDValue Arg;
4940   SDValue FrameIdxOp;
4941   int FrameIdx = 0;
4942 
4943   TailCallArgumentInfo() = default;
4944 };
4945 
4946 } // end anonymous namespace
4947 
4948 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4949 static void StoreTailCallArgumentsToStackSlot(
4950     SelectionDAG &DAG, SDValue Chain,
4951     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4952     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4953   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4954     SDValue Arg = TailCallArgs[i].Arg;
4955     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4956     int FI = TailCallArgs[i].FrameIdx;
4957     // Store relative to framepointer.
4958     MemOpChains.push_back(DAG.getStore(
4959         Chain, dl, Arg, FIN,
4960         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4961   }
4962 }
4963 
4964 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4965 /// the appropriate stack slot for the tail call optimized function call.
4966 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4967                                              SDValue OldRetAddr, SDValue OldFP,
4968                                              int SPDiff, const SDLoc &dl) {
4969   if (SPDiff) {
4970     // Calculate the new stack slot for the return address.
4971     MachineFunction &MF = DAG.getMachineFunction();
4972     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4973     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4974     bool isPPC64 = Subtarget.isPPC64();
4975     int SlotSize = isPPC64 ? 8 : 4;
4976     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4977     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4978                                                          NewRetAddrLoc, true);
4979     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4980     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4981     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4982                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4983   }
4984   return Chain;
4985 }
4986 
4987 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4988 /// the position of the argument.
4989 static void
4990 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4991                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4992                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4993   int Offset = ArgOffset + SPDiff;
4994   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4995   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4996   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4997   SDValue FIN = DAG.getFrameIndex(FI, VT);
4998   TailCallArgumentInfo Info;
4999   Info.Arg = Arg;
5000   Info.FrameIdxOp = FIN;
5001   Info.FrameIdx = FI;
5002   TailCallArguments.push_back(Info);
5003 }
5004 
5005 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5006 /// stack slot. Returns the chain as result and the loaded frame pointers in
5007 /// LROpOut/FPOpout. Used when tail calling.
5008 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5009     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5010     SDValue &FPOpOut, const SDLoc &dl) const {
5011   if (SPDiff) {
5012     // Load the LR and FP stack slot for later adjusting.
5013     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5014     LROpOut = getReturnAddrFrameIndex(DAG);
5015     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5016     Chain = SDValue(LROpOut.getNode(), 1);
5017   }
5018   return Chain;
5019 }
5020 
5021 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5022 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5023 /// specified by the specific parameter attribute. The copy will be passed as
5024 /// a byval function parameter.
5025 /// Sometimes what we are copying is the end of a larger object, the part that
5026 /// does not fit in registers.
5027 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5028                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5029                                          SelectionDAG &DAG, const SDLoc &dl) {
5030   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5031   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5032                        Flags.getNonZeroByValAlign(), false, false, false,
5033                        MachinePointerInfo(), MachinePointerInfo());
5034 }
5035 
5036 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5037 /// tail calls.
5038 static void LowerMemOpCallTo(
5039     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5040     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5041     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5042     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5043   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5044   if (!isTailCall) {
5045     if (isVector) {
5046       SDValue StackPtr;
5047       if (isPPC64)
5048         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5049       else
5050         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5051       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5052                            DAG.getConstant(ArgOffset, dl, PtrVT));
5053     }
5054     MemOpChains.push_back(
5055         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5056     // Calculate and remember argument location.
5057   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5058                                   TailCallArguments);
5059 }
5060 
5061 static void
5062 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5063                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5064                 SDValue FPOp,
5065                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5066   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5067   // might overwrite each other in case of tail call optimization.
5068   SmallVector<SDValue, 8> MemOpChains2;
5069   // Do not flag preceding copytoreg stuff together with the following stuff.
5070   InFlag = SDValue();
5071   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5072                                     MemOpChains2, dl);
5073   if (!MemOpChains2.empty())
5074     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5075 
5076   // Store the return address to the appropriate stack slot.
5077   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5078 
5079   // Emit callseq_end just before tailcall node.
5080   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5081                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5082   InFlag = Chain.getValue(1);
5083 }
5084 
5085 // Is this global address that of a function that can be called by name? (as
5086 // opposed to something that must hold a descriptor for an indirect call).
5087 static bool isFunctionGlobalAddress(SDValue Callee) {
5088   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5089     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5090         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5091       return false;
5092 
5093     return G->getGlobal()->getValueType()->isFunctionTy();
5094   }
5095 
5096   return false;
5097 }
5098 
5099 SDValue PPCTargetLowering::LowerCallResult(
5100     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5101     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5102     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5103   SmallVector<CCValAssign, 16> RVLocs;
5104   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5105                     *DAG.getContext());
5106 
5107   CCRetInfo.AnalyzeCallResult(
5108       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5109                ? RetCC_PPC_Cold
5110                : RetCC_PPC);
5111 
5112   // Copy all of the result registers out of their specified physreg.
5113   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5114     CCValAssign &VA = RVLocs[i];
5115     assert(VA.isRegLoc() && "Can only return in registers!");
5116 
5117     SDValue Val;
5118 
5119     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5120       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5121                                       InFlag);
5122       Chain = Lo.getValue(1);
5123       InFlag = Lo.getValue(2);
5124       VA = RVLocs[++i]; // skip ahead to next loc
5125       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5126                                       InFlag);
5127       Chain = Hi.getValue(1);
5128       InFlag = Hi.getValue(2);
5129       if (!Subtarget.isLittleEndian())
5130         std::swap (Lo, Hi);
5131       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5132     } else {
5133       Val = DAG.getCopyFromReg(Chain, dl,
5134                                VA.getLocReg(), VA.getLocVT(), InFlag);
5135       Chain = Val.getValue(1);
5136       InFlag = Val.getValue(2);
5137     }
5138 
5139     switch (VA.getLocInfo()) {
5140     default: llvm_unreachable("Unknown loc info!");
5141     case CCValAssign::Full: break;
5142     case CCValAssign::AExt:
5143       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5144       break;
5145     case CCValAssign::ZExt:
5146       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5147                         DAG.getValueType(VA.getValVT()));
5148       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5149       break;
5150     case CCValAssign::SExt:
5151       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5152                         DAG.getValueType(VA.getValVT()));
5153       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5154       break;
5155     }
5156 
5157     InVals.push_back(Val);
5158   }
5159 
5160   return Chain;
5161 }
5162 
5163 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5164                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5165   // PatchPoint calls are not indirect.
5166   if (isPatchPoint)
5167     return false;
5168 
5169   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5170     return false;
5171 
5172   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5173   // becuase the immediate function pointer points to a descriptor instead of
5174   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5175   // pointer immediate points to the global entry point, while the BLA would
5176   // need to jump to the local entry point (see rL211174).
5177   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5178       isBLACompatibleAddress(Callee, DAG))
5179     return false;
5180 
5181   return true;
5182 }
5183 
5184 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5185 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5186   return Subtarget.isAIXABI() ||
5187          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5188 }
5189 
5190 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5191                               const Function &Caller,
5192                               const SDValue &Callee,
5193                               const PPCSubtarget &Subtarget,
5194                               const TargetMachine &TM) {
5195   if (CFlags.IsTailCall)
5196     return PPCISD::TC_RETURN;
5197 
5198   // This is a call through a function pointer.
5199   if (CFlags.IsIndirect) {
5200     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5201     // indirect calls. The save of the caller's TOC pointer to the stack will be
5202     // inserted into the DAG as part of call lowering. The restore of the TOC
5203     // pointer is modeled by using a pseudo instruction for the call opcode that
5204     // represents the 2 instruction sequence of an indirect branch and link,
5205     // immediately followed by a load of the TOC pointer from the the stack save
5206     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5207     // as it is not saved or used.
5208     return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5209                                                : PPCISD::BCTRL;
5210   }
5211 
5212   if (Subtarget.isUsingPCRelativeCalls()) {
5213     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5214     return PPCISD::CALL_NOTOC;
5215   }
5216 
5217   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5218   // immediately following the call instruction if the caller and callee may
5219   // have different TOC bases. At link time if the linker determines the calls
5220   // may not share a TOC base, the call is redirected to a trampoline inserted
5221   // by the linker. The trampoline will (among other things) save the callers
5222   // TOC pointer at an ABI designated offset in the linkage area and the linker
5223   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5224   // into gpr2.
5225   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5226     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5227                                                   : PPCISD::CALL_NOP;
5228 
5229   return PPCISD::CALL;
5230 }
5231 
5232 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5233                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5234   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5235     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5236       return SDValue(Dest, 0);
5237 
5238   // Returns true if the callee is local, and false otherwise.
5239   auto isLocalCallee = [&]() {
5240     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5241     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5242     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5243 
5244     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5245            !dyn_cast_or_null<GlobalIFunc>(GV);
5246   };
5247 
5248   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5249   // a static relocation model causes some versions of GNU LD (2.17.50, at
5250   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5251   // built with secure-PLT.
5252   bool UsePlt =
5253       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5254       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5255 
5256   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5257     const TargetMachine &TM = Subtarget.getTargetMachine();
5258     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5259     MCSymbolXCOFF *S =
5260         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5261 
5262     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5263     return DAG.getMCSymbol(S, PtrVT);
5264   };
5265 
5266   if (isFunctionGlobalAddress(Callee)) {
5267     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5268 
5269     if (Subtarget.isAIXABI()) {
5270       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5271       return getAIXFuncEntryPointSymbolSDNode(GV);
5272     }
5273     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5274                                       UsePlt ? PPCII::MO_PLT : 0);
5275   }
5276 
5277   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5278     const char *SymName = S->getSymbol();
5279     if (Subtarget.isAIXABI()) {
5280       // If there exists a user-declared function whose name is the same as the
5281       // ExternalSymbol's, then we pick up the user-declared version.
5282       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5283       if (const Function *F =
5284               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5285         return getAIXFuncEntryPointSymbolSDNode(F);
5286 
5287       // On AIX, direct function calls reference the symbol for the function's
5288       // entry point, which is named by prepending a "." before the function's
5289       // C-linkage name. A Qualname is returned here because an external
5290       // function entry point is a csect with XTY_ER property.
5291       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5292         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5293         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5294             (Twine(".") + Twine(SymName)).str(), XCOFF::XMC_PR, XCOFF::XTY_ER,
5295             SectionKind::getMetadata());
5296         return Sec->getQualNameSymbol();
5297       };
5298 
5299       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5300     }
5301     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5302                                        UsePlt ? PPCII::MO_PLT : 0);
5303   }
5304 
5305   // No transformation needed.
5306   assert(Callee.getNode() && "What no callee?");
5307   return Callee;
5308 }
5309 
5310 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5311   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5312          "Expected a CALLSEQ_STARTSDNode.");
5313 
5314   // The last operand is the chain, except when the node has glue. If the node
5315   // has glue, then the last operand is the glue, and the chain is the second
5316   // last operand.
5317   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5318   if (LastValue.getValueType() != MVT::Glue)
5319     return LastValue;
5320 
5321   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5322 }
5323 
5324 // Creates the node that moves a functions address into the count register
5325 // to prepare for an indirect call instruction.
5326 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5327                                 SDValue &Glue, SDValue &Chain,
5328                                 const SDLoc &dl) {
5329   SDValue MTCTROps[] = {Chain, Callee, Glue};
5330   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5331   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5332                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5333   // The glue is the second value produced.
5334   Glue = Chain.getValue(1);
5335 }
5336 
5337 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5338                                           SDValue &Glue, SDValue &Chain,
5339                                           SDValue CallSeqStart,
5340                                           const CallBase *CB, const SDLoc &dl,
5341                                           bool hasNest,
5342                                           const PPCSubtarget &Subtarget) {
5343   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5344   // entry point, but to the function descriptor (the function entry point
5345   // address is part of the function descriptor though).
5346   // The function descriptor is a three doubleword structure with the
5347   // following fields: function entry point, TOC base address and
5348   // environment pointer.
5349   // Thus for a call through a function pointer, the following actions need
5350   // to be performed:
5351   //   1. Save the TOC of the caller in the TOC save area of its stack
5352   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5353   //   2. Load the address of the function entry point from the function
5354   //      descriptor.
5355   //   3. Load the TOC of the callee from the function descriptor into r2.
5356   //   4. Load the environment pointer from the function descriptor into
5357   //      r11.
5358   //   5. Branch to the function entry point address.
5359   //   6. On return of the callee, the TOC of the caller needs to be
5360   //      restored (this is done in FinishCall()).
5361   //
5362   // The loads are scheduled at the beginning of the call sequence, and the
5363   // register copies are flagged together to ensure that no other
5364   // operations can be scheduled in between. E.g. without flagging the
5365   // copies together, a TOC access in the caller could be scheduled between
5366   // the assignment of the callee TOC and the branch to the callee, which leads
5367   // to incorrect code.
5368 
5369   // Start by loading the function address from the descriptor.
5370   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5371   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5372                       ? (MachineMemOperand::MODereferenceable |
5373                          MachineMemOperand::MOInvariant)
5374                       : MachineMemOperand::MONone;
5375 
5376   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5377 
5378   // Registers used in building the DAG.
5379   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5380   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5381 
5382   // Offsets of descriptor members.
5383   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5384   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5385 
5386   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5387   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5388 
5389   // One load for the functions entry point address.
5390   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5391                                     Alignment, MMOFlags);
5392 
5393   // One for loading the TOC anchor for the module that contains the called
5394   // function.
5395   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5396   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5397   SDValue TOCPtr =
5398       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5399                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5400 
5401   // One for loading the environment pointer.
5402   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5403   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5404   SDValue LoadEnvPtr =
5405       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5406                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5407 
5408 
5409   // Then copy the newly loaded TOC anchor to the TOC pointer.
5410   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5411   Chain = TOCVal.getValue(0);
5412   Glue = TOCVal.getValue(1);
5413 
5414   // If the function call has an explicit 'nest' parameter, it takes the
5415   // place of the environment pointer.
5416   assert((!hasNest || !Subtarget.isAIXABI()) &&
5417          "Nest parameter is not supported on AIX.");
5418   if (!hasNest) {
5419     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5420     Chain = EnvVal.getValue(0);
5421     Glue = EnvVal.getValue(1);
5422   }
5423 
5424   // The rest of the indirect call sequence is the same as the non-descriptor
5425   // DAG.
5426   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5427 }
5428 
5429 static void
5430 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5431                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5432                   SelectionDAG &DAG,
5433                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5434                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5435                   const PPCSubtarget &Subtarget) {
5436   const bool IsPPC64 = Subtarget.isPPC64();
5437   // MVT for a general purpose register.
5438   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5439 
5440   // First operand is always the chain.
5441   Ops.push_back(Chain);
5442 
5443   // If it's a direct call pass the callee as the second operand.
5444   if (!CFlags.IsIndirect)
5445     Ops.push_back(Callee);
5446   else {
5447     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5448 
5449     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5450     // on the stack (this would have been done in `LowerCall_64SVR4` or
5451     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5452     // represents both the indirect branch and a load that restores the TOC
5453     // pointer from the linkage area. The operand for the TOC restore is an add
5454     // of the TOC save offset to the stack pointer. This must be the second
5455     // operand: after the chain input but before any other variadic arguments.
5456     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5457     // saved or used.
5458     if (isTOCSaveRestoreRequired(Subtarget)) {
5459       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5460 
5461       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5462       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5463       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5464       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5465       Ops.push_back(AddTOC);
5466     }
5467 
5468     // Add the register used for the environment pointer.
5469     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5470       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5471                                     RegVT));
5472 
5473 
5474     // Add CTR register as callee so a bctr can be emitted later.
5475     if (CFlags.IsTailCall)
5476       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5477   }
5478 
5479   // If this is a tail call add stack pointer delta.
5480   if (CFlags.IsTailCall)
5481     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5482 
5483   // Add argument registers to the end of the list so that they are known live
5484   // into the call.
5485   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5486     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5487                                   RegsToPass[i].second.getValueType()));
5488 
5489   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5490   // no way to mark dependencies as implicit here.
5491   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5492   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5493        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5494     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5495 
5496   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5497   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5498     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5499 
5500   // Add a register mask operand representing the call-preserved registers.
5501   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5502   const uint32_t *Mask =
5503       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5504   assert(Mask && "Missing call preserved mask for calling convention");
5505   Ops.push_back(DAG.getRegisterMask(Mask));
5506 
5507   // If the glue is valid, it is the last operand.
5508   if (Glue.getNode())
5509     Ops.push_back(Glue);
5510 }
5511 
5512 SDValue PPCTargetLowering::FinishCall(
5513     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5514     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5515     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5516     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5517     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5518 
5519   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5520       Subtarget.isAIXABI())
5521     setUsesTOCBasePtr(DAG);
5522 
5523   unsigned CallOpc =
5524       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5525                     Subtarget, DAG.getTarget());
5526 
5527   if (!CFlags.IsIndirect)
5528     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5529   else if (Subtarget.usesFunctionDescriptors())
5530     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5531                                   dl, CFlags.HasNest, Subtarget);
5532   else
5533     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5534 
5535   // Build the operand list for the call instruction.
5536   SmallVector<SDValue, 8> Ops;
5537   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5538                     SPDiff, Subtarget);
5539 
5540   // Emit tail call.
5541   if (CFlags.IsTailCall) {
5542     // Indirect tail call when using PC Relative calls do not have the same
5543     // constraints.
5544     assert(((Callee.getOpcode() == ISD::Register &&
5545              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5546             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5547             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5548             isa<ConstantSDNode>(Callee) ||
5549             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5550            "Expecting a global address, external symbol, absolute value, "
5551            "register or an indirect tail call when PC Relative calls are "
5552            "used.");
5553     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5554     assert(CallOpc == PPCISD::TC_RETURN &&
5555            "Unexpected call opcode for a tail call.");
5556     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5557     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5558   }
5559 
5560   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5561   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5562   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5563   Glue = Chain.getValue(1);
5564 
5565   // When performing tail call optimization the callee pops its arguments off
5566   // the stack. Account for this here so these bytes can be pushed back on in
5567   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5568   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5569                          getTargetMachine().Options.GuaranteedTailCallOpt)
5570                             ? NumBytes
5571                             : 0;
5572 
5573   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5574                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5575                              Glue, dl);
5576   Glue = Chain.getValue(1);
5577 
5578   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5579                          DAG, InVals);
5580 }
5581 
5582 SDValue
5583 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5584                              SmallVectorImpl<SDValue> &InVals) const {
5585   SelectionDAG &DAG                     = CLI.DAG;
5586   SDLoc &dl                             = CLI.DL;
5587   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5588   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5589   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5590   SDValue Chain                         = CLI.Chain;
5591   SDValue Callee                        = CLI.Callee;
5592   bool &isTailCall                      = CLI.IsTailCall;
5593   CallingConv::ID CallConv              = CLI.CallConv;
5594   bool isVarArg                         = CLI.IsVarArg;
5595   bool isPatchPoint                     = CLI.IsPatchPoint;
5596   const CallBase *CB                    = CLI.CB;
5597 
5598   if (isTailCall) {
5599     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5600       isTailCall = false;
5601     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5602       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5603           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5604     else
5605       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5606                                                      Ins, DAG);
5607     if (isTailCall) {
5608       ++NumTailCalls;
5609       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5610         ++NumSiblingCalls;
5611 
5612       // PC Relative calls no longer guarantee that the callee is a Global
5613       // Address Node. The callee could be an indirect tail call in which
5614       // case the SDValue for the callee could be a load (to load the address
5615       // of a function pointer) or it may be a register copy (to move the
5616       // address of the callee from a function parameter into a virtual
5617       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5618       assert((Subtarget.isUsingPCRelativeCalls() ||
5619               isa<GlobalAddressSDNode>(Callee)) &&
5620              "Callee should be an llvm::Function object.");
5621 
5622       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5623                         << "\nTCO callee: ");
5624       LLVM_DEBUG(Callee.dump());
5625     }
5626   }
5627 
5628   if (!isTailCall && CB && CB->isMustTailCall())
5629     report_fatal_error("failed to perform tail call elimination on a call "
5630                        "site marked musttail");
5631 
5632   // When long calls (i.e. indirect calls) are always used, calls are always
5633   // made via function pointer. If we have a function name, first translate it
5634   // into a pointer.
5635   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5636       !isTailCall)
5637     Callee = LowerGlobalAddress(Callee, DAG);
5638 
5639   CallFlags CFlags(
5640       CallConv, isTailCall, isVarArg, isPatchPoint,
5641       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5642       // hasNest
5643       Subtarget.is64BitELFABI() &&
5644           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5645       CLI.NoMerge);
5646 
5647   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5648     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5649                             InVals, CB);
5650 
5651   if (Subtarget.isSVR4ABI())
5652     return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5653                             InVals, CB);
5654 
5655   if (Subtarget.isAIXABI())
5656     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5657                          InVals, CB);
5658 
5659   return LowerCall_Darwin(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5660                           InVals, CB);
5661 }
5662 
5663 SDValue PPCTargetLowering::LowerCall_32SVR4(
5664     SDValue Chain, SDValue Callee, CallFlags CFlags,
5665     const SmallVectorImpl<ISD::OutputArg> &Outs,
5666     const SmallVectorImpl<SDValue> &OutVals,
5667     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5668     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5669     const CallBase *CB) const {
5670   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5671   // of the 32-bit SVR4 ABI stack frame layout.
5672 
5673   const CallingConv::ID CallConv = CFlags.CallConv;
5674   const bool IsVarArg = CFlags.IsVarArg;
5675   const bool IsTailCall = CFlags.IsTailCall;
5676 
5677   assert((CallConv == CallingConv::C ||
5678           CallConv == CallingConv::Cold ||
5679           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5680 
5681   const Align PtrAlign(4);
5682 
5683   MachineFunction &MF = DAG.getMachineFunction();
5684 
5685   // Mark this function as potentially containing a function that contains a
5686   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5687   // and restoring the callers stack pointer in this functions epilog. This is
5688   // done because by tail calling the called function might overwrite the value
5689   // in this function's (MF) stack pointer stack slot 0(SP).
5690   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5691       CallConv == CallingConv::Fast)
5692     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5693 
5694   // Count how many bytes are to be pushed on the stack, including the linkage
5695   // area, parameter list area and the part of the local variable space which
5696   // contains copies of aggregates which are passed by value.
5697 
5698   // Assign locations to all of the outgoing arguments.
5699   SmallVector<CCValAssign, 16> ArgLocs;
5700   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5701 
5702   // Reserve space for the linkage area on the stack.
5703   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5704                        PtrAlign);
5705   if (useSoftFloat())
5706     CCInfo.PreAnalyzeCallOperands(Outs);
5707 
5708   if (IsVarArg) {
5709     // Handle fixed and variable vector arguments differently.
5710     // Fixed vector arguments go into registers as long as registers are
5711     // available. Variable vector arguments always go into memory.
5712     unsigned NumArgs = Outs.size();
5713 
5714     for (unsigned i = 0; i != NumArgs; ++i) {
5715       MVT ArgVT = Outs[i].VT;
5716       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5717       bool Result;
5718 
5719       if (Outs[i].IsFixed) {
5720         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5721                                CCInfo);
5722       } else {
5723         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5724                                       ArgFlags, CCInfo);
5725       }
5726 
5727       if (Result) {
5728 #ifndef NDEBUG
5729         errs() << "Call operand #" << i << " has unhandled type "
5730              << EVT(ArgVT).getEVTString() << "\n";
5731 #endif
5732         llvm_unreachable(nullptr);
5733       }
5734     }
5735   } else {
5736     // All arguments are treated the same.
5737     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5738   }
5739   CCInfo.clearWasPPCF128();
5740 
5741   // Assign locations to all of the outgoing aggregate by value arguments.
5742   SmallVector<CCValAssign, 16> ByValArgLocs;
5743   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5744 
5745   // Reserve stack space for the allocations in CCInfo.
5746   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5747 
5748   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5749 
5750   // Size of the linkage area, parameter list area and the part of the local
5751   // space variable where copies of aggregates which are passed by value are
5752   // stored.
5753   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5754 
5755   // Calculate by how many bytes the stack has to be adjusted in case of tail
5756   // call optimization.
5757   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5758 
5759   // Adjust the stack pointer for the new arguments...
5760   // These operations are automatically eliminated by the prolog/epilog pass
5761   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5762   SDValue CallSeqStart = Chain;
5763 
5764   // Load the return address and frame pointer so it can be moved somewhere else
5765   // later.
5766   SDValue LROp, FPOp;
5767   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5768 
5769   // Set up a copy of the stack pointer for use loading and storing any
5770   // arguments that may not fit in the registers available for argument
5771   // passing.
5772   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5773 
5774   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5775   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5776   SmallVector<SDValue, 8> MemOpChains;
5777 
5778   bool seenFloatArg = false;
5779   // Walk the register/memloc assignments, inserting copies/loads.
5780   // i - Tracks the index into the list of registers allocated for the call
5781   // RealArgIdx - Tracks the index into the list of actual function arguments
5782   // j - Tracks the index into the list of byval arguments
5783   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5784        i != e;
5785        ++i, ++RealArgIdx) {
5786     CCValAssign &VA = ArgLocs[i];
5787     SDValue Arg = OutVals[RealArgIdx];
5788     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5789 
5790     if (Flags.isByVal()) {
5791       // Argument is an aggregate which is passed by value, thus we need to
5792       // create a copy of it in the local variable space of the current stack
5793       // frame (which is the stack frame of the caller) and pass the address of
5794       // this copy to the callee.
5795       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5796       CCValAssign &ByValVA = ByValArgLocs[j++];
5797       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5798 
5799       // Memory reserved in the local variable space of the callers stack frame.
5800       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5801 
5802       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5803       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5804                            StackPtr, PtrOff);
5805 
5806       // Create a copy of the argument in the local area of the current
5807       // stack frame.
5808       SDValue MemcpyCall =
5809         CreateCopyOfByValArgument(Arg, PtrOff,
5810                                   CallSeqStart.getNode()->getOperand(0),
5811                                   Flags, DAG, dl);
5812 
5813       // This must go outside the CALLSEQ_START..END.
5814       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5815                                                      SDLoc(MemcpyCall));
5816       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5817                              NewCallSeqStart.getNode());
5818       Chain = CallSeqStart = NewCallSeqStart;
5819 
5820       // Pass the address of the aggregate copy on the stack either in a
5821       // physical register or in the parameter list area of the current stack
5822       // frame to the callee.
5823       Arg = PtrOff;
5824     }
5825 
5826     // When useCRBits() is true, there can be i1 arguments.
5827     // It is because getRegisterType(MVT::i1) => MVT::i1,
5828     // and for other integer types getRegisterType() => MVT::i32.
5829     // Extend i1 and ensure callee will get i32.
5830     if (Arg.getValueType() == MVT::i1)
5831       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5832                         dl, MVT::i32, Arg);
5833 
5834     if (VA.isRegLoc()) {
5835       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5836       // Put argument in a physical register.
5837       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5838         bool IsLE = Subtarget.isLittleEndian();
5839         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5840                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5841         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5842         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5843                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5844         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5845                              SVal.getValue(0)));
5846       } else
5847         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5848     } else {
5849       // Put argument in the parameter list area of the current stack frame.
5850       assert(VA.isMemLoc());
5851       unsigned LocMemOffset = VA.getLocMemOffset();
5852 
5853       if (!IsTailCall) {
5854         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5855         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5856                              StackPtr, PtrOff);
5857 
5858         MemOpChains.push_back(
5859             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5860       } else {
5861         // Calculate and remember argument location.
5862         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5863                                  TailCallArguments);
5864       }
5865     }
5866   }
5867 
5868   if (!MemOpChains.empty())
5869     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5870 
5871   // Build a sequence of copy-to-reg nodes chained together with token chain
5872   // and flag operands which copy the outgoing args into the appropriate regs.
5873   SDValue InFlag;
5874   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5875     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5876                              RegsToPass[i].second, InFlag);
5877     InFlag = Chain.getValue(1);
5878   }
5879 
5880   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5881   // registers.
5882   if (IsVarArg) {
5883     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5884     SDValue Ops[] = { Chain, InFlag };
5885 
5886     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5887                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5888 
5889     InFlag = Chain.getValue(1);
5890   }
5891 
5892   if (IsTailCall)
5893     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5894                     TailCallArguments);
5895 
5896   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5897                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5898 }
5899 
5900 // Copy an argument into memory, being careful to do this outside the
5901 // call sequence for the call to which the argument belongs.
5902 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5903     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5904     SelectionDAG &DAG, const SDLoc &dl) const {
5905   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5906                         CallSeqStart.getNode()->getOperand(0),
5907                         Flags, DAG, dl);
5908   // The MEMCPY must go outside the CALLSEQ_START..END.
5909   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5910   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5911                                                  SDLoc(MemcpyCall));
5912   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5913                          NewCallSeqStart.getNode());
5914   return NewCallSeqStart;
5915 }
5916 
5917 SDValue PPCTargetLowering::LowerCall_64SVR4(
5918     SDValue Chain, SDValue Callee, CallFlags CFlags,
5919     const SmallVectorImpl<ISD::OutputArg> &Outs,
5920     const SmallVectorImpl<SDValue> &OutVals,
5921     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5922     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5923     const CallBase *CB) const {
5924   bool isELFv2ABI = Subtarget.isELFv2ABI();
5925   bool isLittleEndian = Subtarget.isLittleEndian();
5926   unsigned NumOps = Outs.size();
5927   bool IsSibCall = false;
5928   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5929 
5930   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5931   unsigned PtrByteSize = 8;
5932 
5933   MachineFunction &MF = DAG.getMachineFunction();
5934 
5935   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5936     IsSibCall = true;
5937 
5938   // Mark this function as potentially containing a function that contains a
5939   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5940   // and restoring the callers stack pointer in this functions epilog. This is
5941   // done because by tail calling the called function might overwrite the value
5942   // in this function's (MF) stack pointer stack slot 0(SP).
5943   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5944     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5945 
5946   assert(!(IsFastCall && CFlags.IsVarArg) &&
5947          "fastcc not supported on varargs functions");
5948 
5949   // Count how many bytes are to be pushed on the stack, including the linkage
5950   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5951   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5952   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5953   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5954   unsigned NumBytes = LinkageSize;
5955   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5956 
5957   static const MCPhysReg GPR[] = {
5958     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5959     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5960   };
5961   static const MCPhysReg VR[] = {
5962     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5963     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5964   };
5965 
5966   const unsigned NumGPRs = array_lengthof(GPR);
5967   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5968   const unsigned NumVRs  = array_lengthof(VR);
5969 
5970   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5971   // can be passed to the callee in registers.
5972   // For the fast calling convention, there is another check below.
5973   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5974   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
5975   if (!HasParameterArea) {
5976     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5977     unsigned AvailableFPRs = NumFPRs;
5978     unsigned AvailableVRs = NumVRs;
5979     unsigned NumBytesTmp = NumBytes;
5980     for (unsigned i = 0; i != NumOps; ++i) {
5981       if (Outs[i].Flags.isNest()) continue;
5982       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5983                                  PtrByteSize, LinkageSize, ParamAreaSize,
5984                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
5985         HasParameterArea = true;
5986     }
5987   }
5988 
5989   // When using the fast calling convention, we don't provide backing for
5990   // arguments that will be in registers.
5991   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5992 
5993   // Avoid allocating parameter area for fastcc functions if all the arguments
5994   // can be passed in the registers.
5995   if (IsFastCall)
5996     HasParameterArea = false;
5997 
5998   // Add up all the space actually used.
5999   for (unsigned i = 0; i != NumOps; ++i) {
6000     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6001     EVT ArgVT = Outs[i].VT;
6002     EVT OrigVT = Outs[i].ArgVT;
6003 
6004     if (Flags.isNest())
6005       continue;
6006 
6007     if (IsFastCall) {
6008       if (Flags.isByVal()) {
6009         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6010         if (NumGPRsUsed > NumGPRs)
6011           HasParameterArea = true;
6012       } else {
6013         switch (ArgVT.getSimpleVT().SimpleTy) {
6014         default: llvm_unreachable("Unexpected ValueType for argument!");
6015         case MVT::i1:
6016         case MVT::i32:
6017         case MVT::i64:
6018           if (++NumGPRsUsed <= NumGPRs)
6019             continue;
6020           break;
6021         case MVT::v4i32:
6022         case MVT::v8i16:
6023         case MVT::v16i8:
6024         case MVT::v2f64:
6025         case MVT::v2i64:
6026         case MVT::v1i128:
6027         case MVT::f128:
6028           if (++NumVRsUsed <= NumVRs)
6029             continue;
6030           break;
6031         case MVT::v4f32:
6032           if (++NumVRsUsed <= NumVRs)
6033             continue;
6034           break;
6035         case MVT::f32:
6036         case MVT::f64:
6037           if (++NumFPRsUsed <= NumFPRs)
6038             continue;
6039           break;
6040         }
6041         HasParameterArea = true;
6042       }
6043     }
6044 
6045     /* Respect alignment of argument on the stack.  */
6046     auto Alignement =
6047         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6048     NumBytes = alignTo(NumBytes, Alignement);
6049 
6050     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6051     if (Flags.isInConsecutiveRegsLast())
6052       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6053   }
6054 
6055   unsigned NumBytesActuallyUsed = NumBytes;
6056 
6057   // In the old ELFv1 ABI,
6058   // the prolog code of the callee may store up to 8 GPR argument registers to
6059   // the stack, allowing va_start to index over them in memory if its varargs.
6060   // Because we cannot tell if this is needed on the caller side, we have to
6061   // conservatively assume that it is needed.  As such, make sure we have at
6062   // least enough stack space for the caller to store the 8 GPRs.
6063   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6064   // really requires memory operands, e.g. a vararg function.
6065   if (HasParameterArea)
6066     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6067   else
6068     NumBytes = LinkageSize;
6069 
6070   // Tail call needs the stack to be aligned.
6071   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6072     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6073 
6074   int SPDiff = 0;
6075 
6076   // Calculate by how many bytes the stack has to be adjusted in case of tail
6077   // call optimization.
6078   if (!IsSibCall)
6079     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6080 
6081   // To protect arguments on the stack from being clobbered in a tail call,
6082   // force all the loads to happen before doing any other lowering.
6083   if (CFlags.IsTailCall)
6084     Chain = DAG.getStackArgumentTokenFactor(Chain);
6085 
6086   // Adjust the stack pointer for the new arguments...
6087   // These operations are automatically eliminated by the prolog/epilog pass
6088   if (!IsSibCall)
6089     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6090   SDValue CallSeqStart = Chain;
6091 
6092   // Load the return address and frame pointer so it can be move somewhere else
6093   // later.
6094   SDValue LROp, FPOp;
6095   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6096 
6097   // Set up a copy of the stack pointer for use loading and storing any
6098   // arguments that may not fit in the registers available for argument
6099   // passing.
6100   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6101 
6102   // Figure out which arguments are going to go in registers, and which in
6103   // memory.  Also, if this is a vararg function, floating point operations
6104   // must be stored to our stack, and loaded into integer regs as well, if
6105   // any integer regs are available for argument passing.
6106   unsigned ArgOffset = LinkageSize;
6107 
6108   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6109   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6110 
6111   SmallVector<SDValue, 8> MemOpChains;
6112   for (unsigned i = 0; i != NumOps; ++i) {
6113     SDValue Arg = OutVals[i];
6114     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6115     EVT ArgVT = Outs[i].VT;
6116     EVT OrigVT = Outs[i].ArgVT;
6117 
6118     // PtrOff will be used to store the current argument to the stack if a
6119     // register cannot be found for it.
6120     SDValue PtrOff;
6121 
6122     // We re-align the argument offset for each argument, except when using the
6123     // fast calling convention, when we need to make sure we do that only when
6124     // we'll actually use a stack slot.
6125     auto ComputePtrOff = [&]() {
6126       /* Respect alignment of argument on the stack.  */
6127       auto Alignment =
6128           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6129       ArgOffset = alignTo(ArgOffset, Alignment);
6130 
6131       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6132 
6133       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6134     };
6135 
6136     if (!IsFastCall) {
6137       ComputePtrOff();
6138 
6139       /* Compute GPR index associated with argument offset.  */
6140       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6141       GPR_idx = std::min(GPR_idx, NumGPRs);
6142     }
6143 
6144     // Promote integers to 64-bit values.
6145     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6146       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6147       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6148       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6149     }
6150 
6151     // FIXME memcpy is used way more than necessary.  Correctness first.
6152     // Note: "by value" is code for passing a structure by value, not
6153     // basic types.
6154     if (Flags.isByVal()) {
6155       // Note: Size includes alignment padding, so
6156       //   struct x { short a; char b; }
6157       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6158       // These are the proper values we need for right-justifying the
6159       // aggregate in a parameter register.
6160       unsigned Size = Flags.getByValSize();
6161 
6162       // An empty aggregate parameter takes up no storage and no
6163       // registers.
6164       if (Size == 0)
6165         continue;
6166 
6167       if (IsFastCall)
6168         ComputePtrOff();
6169 
6170       // All aggregates smaller than 8 bytes must be passed right-justified.
6171       if (Size==1 || Size==2 || Size==4) {
6172         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6173         if (GPR_idx != NumGPRs) {
6174           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6175                                         MachinePointerInfo(), VT);
6176           MemOpChains.push_back(Load.getValue(1));
6177           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6178 
6179           ArgOffset += PtrByteSize;
6180           continue;
6181         }
6182       }
6183 
6184       if (GPR_idx == NumGPRs && Size < 8) {
6185         SDValue AddPtr = PtrOff;
6186         if (!isLittleEndian) {
6187           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6188                                           PtrOff.getValueType());
6189           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6190         }
6191         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6192                                                           CallSeqStart,
6193                                                           Flags, DAG, dl);
6194         ArgOffset += PtrByteSize;
6195         continue;
6196       }
6197       // Copy entire object into memory.  There are cases where gcc-generated
6198       // code assumes it is there, even if it could be put entirely into
6199       // registers.  (This is not what the doc says.)
6200 
6201       // FIXME: The above statement is likely due to a misunderstanding of the
6202       // documents.  All arguments must be copied into the parameter area BY
6203       // THE CALLEE in the event that the callee takes the address of any
6204       // formal argument.  That has not yet been implemented.  However, it is
6205       // reasonable to use the stack area as a staging area for the register
6206       // load.
6207 
6208       // Skip this for small aggregates, as we will use the same slot for a
6209       // right-justified copy, below.
6210       if (Size >= 8)
6211         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6212                                                           CallSeqStart,
6213                                                           Flags, DAG, dl);
6214 
6215       // When a register is available, pass a small aggregate right-justified.
6216       if (Size < 8 && GPR_idx != NumGPRs) {
6217         // The easiest way to get this right-justified in a register
6218         // is to copy the structure into the rightmost portion of a
6219         // local variable slot, then load the whole slot into the
6220         // register.
6221         // FIXME: The memcpy seems to produce pretty awful code for
6222         // small aggregates, particularly for packed ones.
6223         // FIXME: It would be preferable to use the slot in the
6224         // parameter save area instead of a new local variable.
6225         SDValue AddPtr = PtrOff;
6226         if (!isLittleEndian) {
6227           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6228           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6229         }
6230         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6231                                                           CallSeqStart,
6232                                                           Flags, DAG, dl);
6233 
6234         // Load the slot into the register.
6235         SDValue Load =
6236             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6237         MemOpChains.push_back(Load.getValue(1));
6238         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6239 
6240         // Done with this argument.
6241         ArgOffset += PtrByteSize;
6242         continue;
6243       }
6244 
6245       // For aggregates larger than PtrByteSize, copy the pieces of the
6246       // object that fit into registers from the parameter save area.
6247       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6248         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6249         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6250         if (GPR_idx != NumGPRs) {
6251           SDValue Load =
6252               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6253           MemOpChains.push_back(Load.getValue(1));
6254           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6255           ArgOffset += PtrByteSize;
6256         } else {
6257           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6258           break;
6259         }
6260       }
6261       continue;
6262     }
6263 
6264     switch (Arg.getSimpleValueType().SimpleTy) {
6265     default: llvm_unreachable("Unexpected ValueType for argument!");
6266     case MVT::i1:
6267     case MVT::i32:
6268     case MVT::i64:
6269       if (Flags.isNest()) {
6270         // The 'nest' parameter, if any, is passed in R11.
6271         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6272         break;
6273       }
6274 
6275       // These can be scalar arguments or elements of an integer array type
6276       // passed directly.  Clang may use those instead of "byval" aggregate
6277       // types to avoid forcing arguments to memory unnecessarily.
6278       if (GPR_idx != NumGPRs) {
6279         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6280       } else {
6281         if (IsFastCall)
6282           ComputePtrOff();
6283 
6284         assert(HasParameterArea &&
6285                "Parameter area must exist to pass an argument in memory.");
6286         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6287                          true, CFlags.IsTailCall, false, MemOpChains,
6288                          TailCallArguments, dl);
6289         if (IsFastCall)
6290           ArgOffset += PtrByteSize;
6291       }
6292       if (!IsFastCall)
6293         ArgOffset += PtrByteSize;
6294       break;
6295     case MVT::f32:
6296     case MVT::f64: {
6297       // These can be scalar arguments or elements of a float array type
6298       // passed directly.  The latter are used to implement ELFv2 homogenous
6299       // float aggregates.
6300 
6301       // Named arguments go into FPRs first, and once they overflow, the
6302       // remaining arguments go into GPRs and then the parameter save area.
6303       // Unnamed arguments for vararg functions always go to GPRs and
6304       // then the parameter save area.  For now, put all arguments to vararg
6305       // routines always in both locations (FPR *and* GPR or stack slot).
6306       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6307       bool NeededLoad = false;
6308 
6309       // First load the argument into the next available FPR.
6310       if (FPR_idx != NumFPRs)
6311         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6312 
6313       // Next, load the argument into GPR or stack slot if needed.
6314       if (!NeedGPROrStack)
6315         ;
6316       else if (GPR_idx != NumGPRs && !IsFastCall) {
6317         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6318         // once we support fp <-> gpr moves.
6319 
6320         // In the non-vararg case, this can only ever happen in the
6321         // presence of f32 array types, since otherwise we never run
6322         // out of FPRs before running out of GPRs.
6323         SDValue ArgVal;
6324 
6325         // Double values are always passed in a single GPR.
6326         if (Arg.getValueType() != MVT::f32) {
6327           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6328 
6329         // Non-array float values are extended and passed in a GPR.
6330         } else if (!Flags.isInConsecutiveRegs()) {
6331           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6332           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6333 
6334         // If we have an array of floats, we collect every odd element
6335         // together with its predecessor into one GPR.
6336         } else if (ArgOffset % PtrByteSize != 0) {
6337           SDValue Lo, Hi;
6338           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6339           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6340           if (!isLittleEndian)
6341             std::swap(Lo, Hi);
6342           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6343 
6344         // The final element, if even, goes into the first half of a GPR.
6345         } else if (Flags.isInConsecutiveRegsLast()) {
6346           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6347           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6348           if (!isLittleEndian)
6349             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6350                                  DAG.getConstant(32, dl, MVT::i32));
6351 
6352         // Non-final even elements are skipped; they will be handled
6353         // together the with subsequent argument on the next go-around.
6354         } else
6355           ArgVal = SDValue();
6356 
6357         if (ArgVal.getNode())
6358           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6359       } else {
6360         if (IsFastCall)
6361           ComputePtrOff();
6362 
6363         // Single-precision floating-point values are mapped to the
6364         // second (rightmost) word of the stack doubleword.
6365         if (Arg.getValueType() == MVT::f32 &&
6366             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6367           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6368           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6369         }
6370 
6371         assert(HasParameterArea &&
6372                "Parameter area must exist to pass an argument in memory.");
6373         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6374                          true, CFlags.IsTailCall, false, MemOpChains,
6375                          TailCallArguments, dl);
6376 
6377         NeededLoad = true;
6378       }
6379       // When passing an array of floats, the array occupies consecutive
6380       // space in the argument area; only round up to the next doubleword
6381       // at the end of the array.  Otherwise, each float takes 8 bytes.
6382       if (!IsFastCall || NeededLoad) {
6383         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6384                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6385         if (Flags.isInConsecutiveRegsLast())
6386           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6387       }
6388       break;
6389     }
6390     case MVT::v4f32:
6391     case MVT::v4i32:
6392     case MVT::v8i16:
6393     case MVT::v16i8:
6394     case MVT::v2f64:
6395     case MVT::v2i64:
6396     case MVT::v1i128:
6397     case MVT::f128:
6398       // These can be scalar arguments or elements of a vector array type
6399       // passed directly.  The latter are used to implement ELFv2 homogenous
6400       // vector aggregates.
6401 
6402       // For a varargs call, named arguments go into VRs or on the stack as
6403       // usual; unnamed arguments always go to the stack or the corresponding
6404       // GPRs when within range.  For now, we always put the value in both
6405       // locations (or even all three).
6406       if (CFlags.IsVarArg) {
6407         assert(HasParameterArea &&
6408                "Parameter area must exist if we have a varargs call.");
6409         // We could elide this store in the case where the object fits
6410         // entirely in R registers.  Maybe later.
6411         SDValue Store =
6412             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6413         MemOpChains.push_back(Store);
6414         if (VR_idx != NumVRs) {
6415           SDValue Load =
6416               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6417           MemOpChains.push_back(Load.getValue(1));
6418           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6419         }
6420         ArgOffset += 16;
6421         for (unsigned i=0; i<16; i+=PtrByteSize) {
6422           if (GPR_idx == NumGPRs)
6423             break;
6424           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6425                                    DAG.getConstant(i, dl, PtrVT));
6426           SDValue Load =
6427               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6428           MemOpChains.push_back(Load.getValue(1));
6429           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6430         }
6431         break;
6432       }
6433 
6434       // Non-varargs Altivec params go into VRs or on the stack.
6435       if (VR_idx != NumVRs) {
6436         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6437       } else {
6438         if (IsFastCall)
6439           ComputePtrOff();
6440 
6441         assert(HasParameterArea &&
6442                "Parameter area must exist to pass an argument in memory.");
6443         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6444                          true, CFlags.IsTailCall, true, MemOpChains,
6445                          TailCallArguments, dl);
6446         if (IsFastCall)
6447           ArgOffset += 16;
6448       }
6449 
6450       if (!IsFastCall)
6451         ArgOffset += 16;
6452       break;
6453     }
6454   }
6455 
6456   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6457          "mismatch in size of parameter area");
6458   (void)NumBytesActuallyUsed;
6459 
6460   if (!MemOpChains.empty())
6461     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6462 
6463   // Check if this is an indirect call (MTCTR/BCTRL).
6464   // See prepareDescriptorIndirectCall and buildCallOperands for more
6465   // information about calls through function pointers in the 64-bit SVR4 ABI.
6466   if (CFlags.IsIndirect) {
6467     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6468     // caller in the TOC save area.
6469     if (isTOCSaveRestoreRequired(Subtarget)) {
6470       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6471       // Load r2 into a virtual register and store it to the TOC save area.
6472       setUsesTOCBasePtr(DAG);
6473       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6474       // TOC save area offset.
6475       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6476       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6477       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6478       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6479                            MachinePointerInfo::getStack(
6480                                DAG.getMachineFunction(), TOCSaveOffset));
6481     }
6482     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6483     // This does not mean the MTCTR instruction must use R12; it's easier
6484     // to model this as an extra parameter, so do that.
6485     if (isELFv2ABI && !CFlags.IsPatchPoint)
6486       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6487   }
6488 
6489   // Build a sequence of copy-to-reg nodes chained together with token chain
6490   // and flag operands which copy the outgoing args into the appropriate regs.
6491   SDValue InFlag;
6492   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6493     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6494                              RegsToPass[i].second, InFlag);
6495     InFlag = Chain.getValue(1);
6496   }
6497 
6498   if (CFlags.IsTailCall && !IsSibCall)
6499     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6500                     TailCallArguments);
6501 
6502   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6503                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6504 }
6505 
6506 SDValue PPCTargetLowering::LowerCall_Darwin(
6507     SDValue Chain, SDValue Callee, CallFlags CFlags,
6508     const SmallVectorImpl<ISD::OutputArg> &Outs,
6509     const SmallVectorImpl<SDValue> &OutVals,
6510     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6511     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6512     const CallBase *CB) const {
6513   unsigned NumOps = Outs.size();
6514 
6515   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6516   bool isPPC64 = PtrVT == MVT::i64;
6517   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6518 
6519   MachineFunction &MF = DAG.getMachineFunction();
6520 
6521   // Mark this function as potentially containing a function that contains a
6522   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6523   // and restoring the callers stack pointer in this functions epilog. This is
6524   // done because by tail calling the called function might overwrite the value
6525   // in this function's (MF) stack pointer stack slot 0(SP).
6526   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6527       CFlags.CallConv == CallingConv::Fast)
6528     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6529 
6530   // Count how many bytes are to be pushed on the stack, including the linkage
6531   // area, and parameter passing area.  We start with 24/48 bytes, which is
6532   // prereserved space for [SP][CR][LR][3 x unused].
6533   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6534   unsigned NumBytes = LinkageSize;
6535 
6536   // Add up all the space actually used.
6537   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6538   // they all go in registers, but we must reserve stack space for them for
6539   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6540   // assigned stack space in order, with padding so Altivec parameters are
6541   // 16-byte aligned.
6542   unsigned nAltivecParamsAtEnd = 0;
6543   for (unsigned i = 0; i != NumOps; ++i) {
6544     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6545     EVT ArgVT = Outs[i].VT;
6546     // Varargs Altivec parameters are padded to a 16 byte boundary.
6547     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6548         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6549         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6550       if (!CFlags.IsVarArg && !isPPC64) {
6551         // Non-varargs Altivec parameters go after all the non-Altivec
6552         // parameters; handle those later so we know how much padding we need.
6553         nAltivecParamsAtEnd++;
6554         continue;
6555       }
6556       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6557       NumBytes = ((NumBytes+15)/16)*16;
6558     }
6559     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6560   }
6561 
6562   // Allow for Altivec parameters at the end, if needed.
6563   if (nAltivecParamsAtEnd) {
6564     NumBytes = ((NumBytes+15)/16)*16;
6565     NumBytes += 16*nAltivecParamsAtEnd;
6566   }
6567 
6568   // The prolog code of the callee may store up to 8 GPR argument registers to
6569   // the stack, allowing va_start to index over them in memory if its varargs.
6570   // Because we cannot tell if this is needed on the caller side, we have to
6571   // conservatively assume that it is needed.  As such, make sure we have at
6572   // least enough stack space for the caller to store the 8 GPRs.
6573   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6574 
6575   // Tail call needs the stack to be aligned.
6576   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6577       CFlags.CallConv == CallingConv::Fast)
6578     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6579 
6580   // Calculate by how many bytes the stack has to be adjusted in case of tail
6581   // call optimization.
6582   int SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6583 
6584   // To protect arguments on the stack from being clobbered in a tail call,
6585   // force all the loads to happen before doing any other lowering.
6586   if (CFlags.IsTailCall)
6587     Chain = DAG.getStackArgumentTokenFactor(Chain);
6588 
6589   // Adjust the stack pointer for the new arguments...
6590   // These operations are automatically eliminated by the prolog/epilog pass
6591   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6592   SDValue CallSeqStart = Chain;
6593 
6594   // Load the return address and frame pointer so it can be move somewhere else
6595   // later.
6596   SDValue LROp, FPOp;
6597   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6598 
6599   // Set up a copy of the stack pointer for use loading and storing any
6600   // arguments that may not fit in the registers available for argument
6601   // passing.
6602   SDValue StackPtr;
6603   if (isPPC64)
6604     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6605   else
6606     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6607 
6608   // Figure out which arguments are going to go in registers, and which in
6609   // memory.  Also, if this is a vararg function, floating point operations
6610   // must be stored to our stack, and loaded into integer regs as well, if
6611   // any integer regs are available for argument passing.
6612   unsigned ArgOffset = LinkageSize;
6613   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6614 
6615   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6616     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6617     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6618   };
6619   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6620     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6621     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6622   };
6623   static const MCPhysReg VR[] = {
6624     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6625     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6626   };
6627   const unsigned NumGPRs = array_lengthof(GPR_32);
6628   const unsigned NumFPRs = 13;
6629   const unsigned NumVRs  = array_lengthof(VR);
6630 
6631   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6632 
6633   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6634   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6635 
6636   SmallVector<SDValue, 8> MemOpChains;
6637   for (unsigned i = 0; i != NumOps; ++i) {
6638     SDValue Arg = OutVals[i];
6639     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6640 
6641     // PtrOff will be used to store the current argument to the stack if a
6642     // register cannot be found for it.
6643     SDValue PtrOff;
6644 
6645     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6646 
6647     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6648 
6649     // On PPC64, promote integers to 64-bit values.
6650     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6651       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6652       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6653       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6654     }
6655 
6656     // FIXME memcpy is used way more than necessary.  Correctness first.
6657     // Note: "by value" is code for passing a structure by value, not
6658     // basic types.
6659     if (Flags.isByVal()) {
6660       unsigned Size = Flags.getByValSize();
6661       // Very small objects are passed right-justified.  Everything else is
6662       // passed left-justified.
6663       if (Size==1 || Size==2) {
6664         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6665         if (GPR_idx != NumGPRs) {
6666           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6667                                         MachinePointerInfo(), VT);
6668           MemOpChains.push_back(Load.getValue(1));
6669           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6670 
6671           ArgOffset += PtrByteSize;
6672         } else {
6673           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6674                                           PtrOff.getValueType());
6675           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6676           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6677                                                             CallSeqStart,
6678                                                             Flags, DAG, dl);
6679           ArgOffset += PtrByteSize;
6680         }
6681         continue;
6682       }
6683       // Copy entire object into memory.  There are cases where gcc-generated
6684       // code assumes it is there, even if it could be put entirely into
6685       // registers.  (This is not what the doc says.)
6686       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6687                                                         CallSeqStart,
6688                                                         Flags, DAG, dl);
6689 
6690       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6691       // copy the pieces of the object that fit into registers from the
6692       // parameter save area.
6693       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6694         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6695         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6696         if (GPR_idx != NumGPRs) {
6697           SDValue Load =
6698               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6699           MemOpChains.push_back(Load.getValue(1));
6700           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6701           ArgOffset += PtrByteSize;
6702         } else {
6703           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6704           break;
6705         }
6706       }
6707       continue;
6708     }
6709 
6710     switch (Arg.getSimpleValueType().SimpleTy) {
6711     default: llvm_unreachable("Unexpected ValueType for argument!");
6712     case MVT::i1:
6713     case MVT::i32:
6714     case MVT::i64:
6715       if (GPR_idx != NumGPRs) {
6716         if (Arg.getValueType() == MVT::i1)
6717           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6718 
6719         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6720       } else {
6721         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6722                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6723                          TailCallArguments, dl);
6724       }
6725       ArgOffset += PtrByteSize;
6726       break;
6727     case MVT::f32:
6728     case MVT::f64:
6729       if (FPR_idx != NumFPRs) {
6730         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6731 
6732         if (CFlags.IsVarArg) {
6733           SDValue Store =
6734               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6735           MemOpChains.push_back(Store);
6736 
6737           // Float varargs are always shadowed in available integer registers
6738           if (GPR_idx != NumGPRs) {
6739             SDValue Load =
6740                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6741             MemOpChains.push_back(Load.getValue(1));
6742             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6743           }
6744           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6745             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6746             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6747             SDValue Load =
6748                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6749             MemOpChains.push_back(Load.getValue(1));
6750             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6751           }
6752         } else {
6753           // If we have any FPRs remaining, we may also have GPRs remaining.
6754           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6755           // GPRs.
6756           if (GPR_idx != NumGPRs)
6757             ++GPR_idx;
6758           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6759               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6760             ++GPR_idx;
6761         }
6762       } else
6763         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6764                          isPPC64, CFlags.IsTailCall, false, MemOpChains,
6765                          TailCallArguments, dl);
6766       if (isPPC64)
6767         ArgOffset += 8;
6768       else
6769         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6770       break;
6771     case MVT::v4f32:
6772     case MVT::v4i32:
6773     case MVT::v8i16:
6774     case MVT::v16i8:
6775       if (CFlags.IsVarArg) {
6776         // These go aligned on the stack, or in the corresponding R registers
6777         // when within range.  The Darwin PPC ABI doc claims they also go in
6778         // V registers; in fact gcc does this only for arguments that are
6779         // prototyped, not for those that match the ...  We do it for all
6780         // arguments, seems to work.
6781         while (ArgOffset % 16 !=0) {
6782           ArgOffset += PtrByteSize;
6783           if (GPR_idx != NumGPRs)
6784             GPR_idx++;
6785         }
6786         // We could elide this store in the case where the object fits
6787         // entirely in R registers.  Maybe later.
6788         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6789                              DAG.getConstant(ArgOffset, dl, PtrVT));
6790         SDValue Store =
6791             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6792         MemOpChains.push_back(Store);
6793         if (VR_idx != NumVRs) {
6794           SDValue Load =
6795               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6796           MemOpChains.push_back(Load.getValue(1));
6797           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6798         }
6799         ArgOffset += 16;
6800         for (unsigned i=0; i<16; i+=PtrByteSize) {
6801           if (GPR_idx == NumGPRs)
6802             break;
6803           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6804                                    DAG.getConstant(i, dl, PtrVT));
6805           SDValue Load =
6806               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6807           MemOpChains.push_back(Load.getValue(1));
6808           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6809         }
6810         break;
6811       }
6812 
6813       // Non-varargs Altivec params generally go in registers, but have
6814       // stack space allocated at the end.
6815       if (VR_idx != NumVRs) {
6816         // Doesn't have GPR space allocated.
6817         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6818       } else if (nAltivecParamsAtEnd==0) {
6819         // We are emitting Altivec params in order.
6820         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6821                          isPPC64, CFlags.IsTailCall, true, MemOpChains,
6822                          TailCallArguments, dl);
6823         ArgOffset += 16;
6824       }
6825       break;
6826     }
6827   }
6828   // If all Altivec parameters fit in registers, as they usually do,
6829   // they get stack space following the non-Altivec parameters.  We
6830   // don't track this here because nobody below needs it.
6831   // If there are more Altivec parameters than fit in registers emit
6832   // the stores here.
6833   if (!CFlags.IsVarArg && nAltivecParamsAtEnd > NumVRs) {
6834     unsigned j = 0;
6835     // Offset is aligned; skip 1st 12 params which go in V registers.
6836     ArgOffset = ((ArgOffset+15)/16)*16;
6837     ArgOffset += 12*16;
6838     for (unsigned i = 0; i != NumOps; ++i) {
6839       SDValue Arg = OutVals[i];
6840       EVT ArgType = Outs[i].VT;
6841       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6842           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6843         if (++j > NumVRs) {
6844           SDValue PtrOff;
6845           // We are emitting Altivec params in order.
6846           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6847                            isPPC64, CFlags.IsTailCall, true, MemOpChains,
6848                            TailCallArguments, dl);
6849           ArgOffset += 16;
6850         }
6851       }
6852     }
6853   }
6854 
6855   if (!MemOpChains.empty())
6856     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6857 
6858   // On Darwin, R12 must contain the address of an indirect callee.  This does
6859   // not mean the MTCTR instruction must use R12; it's easier to model this as
6860   // an extra parameter, so do that.
6861   if (CFlags.IsIndirect) {
6862     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
6863     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6864                                                    PPC::R12), Callee));
6865   }
6866 
6867   // Build a sequence of copy-to-reg nodes chained together with token chain
6868   // and flag operands which copy the outgoing args into the appropriate regs.
6869   SDValue InFlag;
6870   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6871     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6872                              RegsToPass[i].second, InFlag);
6873     InFlag = Chain.getValue(1);
6874   }
6875 
6876   if (CFlags.IsTailCall)
6877     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6878                     TailCallArguments);
6879 
6880   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6881                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6882 }
6883 
6884 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6885                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6886                    CCState &State) {
6887 
6888   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6889       State.getMachineFunction().getSubtarget());
6890   const bool IsPPC64 = Subtarget.isPPC64();
6891   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6892   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6893 
6894   assert((!ValVT.isInteger() ||
6895           (ValVT.getSizeInBits() <= RegVT.getSizeInBits())) &&
6896          "Integer argument exceeds register size: should have been legalized");
6897 
6898   if (ValVT == MVT::f128)
6899     report_fatal_error("f128 is unimplemented on AIX.");
6900 
6901   if (ArgFlags.isNest())
6902     report_fatal_error("Nest arguments are unimplemented.");
6903 
6904   if (ValVT.isVector() || LocVT.isVector())
6905     report_fatal_error("Vector arguments are unimplemented on AIX.");
6906 
6907   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6908                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6909                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6910   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6911                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6912                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6913 
6914   if (ArgFlags.isByVal()) {
6915     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6916       report_fatal_error("Pass-by-value arguments with alignment greater than "
6917                          "register width are not supported.");
6918 
6919     const unsigned ByValSize = ArgFlags.getByValSize();
6920 
6921     // An empty aggregate parameter takes up no storage and no registers,
6922     // but needs a MemLoc for a stack slot for the formal arguments side.
6923     if (ByValSize == 0) {
6924       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6925                                        State.getNextStackOffset(), RegVT,
6926                                        LocInfo));
6927       return false;
6928     }
6929 
6930     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6931     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6932     for (const unsigned E = Offset + StackSize; Offset < E;
6933          Offset += PtrAlign.value()) {
6934       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6935         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6936       else {
6937         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6938                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6939                                          LocInfo));
6940         break;
6941       }
6942     }
6943     return false;
6944   }
6945 
6946   // Arguments always reserve parameter save area.
6947   switch (ValVT.SimpleTy) {
6948   default:
6949     report_fatal_error("Unhandled value type for argument.");
6950   case MVT::i64:
6951     // i64 arguments should have been split to i32 for PPC32.
6952     assert(IsPPC64 && "PPC32 should have split i64 values.");
6953     LLVM_FALLTHROUGH;
6954   case MVT::i1:
6955   case MVT::i32: {
6956     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6957     // AIX integer arguments are always passed in register width.
6958     if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6959       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6960                                   : CCValAssign::LocInfo::ZExt;
6961     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6962       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6963     else
6964       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6965 
6966     return false;
6967   }
6968   case MVT::f32:
6969   case MVT::f64: {
6970     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6971     const unsigned StoreSize = LocVT.getStoreSize();
6972     // Floats are always 4-byte aligned in the PSA on AIX.
6973     // This includes f64 in 64-bit mode for ABI compatibility.
6974     const unsigned Offset =
6975         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6976     unsigned FReg = State.AllocateReg(FPR);
6977     if (FReg)
6978       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6979 
6980     // Reserve and initialize GPRs or initialize the PSA as required.
6981     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6982       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6983         assert(FReg && "An FPR should be available when a GPR is reserved.");
6984         if (State.isVarArg()) {
6985           // Successfully reserved GPRs are only initialized for vararg calls.
6986           // Custom handling is required for:
6987           //   f64 in PPC32 needs to be split into 2 GPRs.
6988           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6989           State.addLoc(
6990               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6991         }
6992       } else {
6993         // If there are insufficient GPRs, the PSA needs to be initialized.
6994         // Initialization occurs even if an FPR was initialized for
6995         // compatibility with the AIX XL compiler. The full memory for the
6996         // argument will be initialized even if a prior word is saved in GPR.
6997         // A custom memLoc is used when the argument also passes in FPR so
6998         // that the callee handling can skip over it easily.
6999         State.addLoc(
7000             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
7001                                              LocInfo)
7002                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
7003         break;
7004       }
7005     }
7006 
7007     return false;
7008   }
7009   }
7010   return true;
7011 }
7012 
7013 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
7014                                                     bool IsPPC64) {
7015   assert((IsPPC64 || SVT != MVT::i64) &&
7016          "i64 should have been split for 32-bit codegen.");
7017 
7018   switch (SVT) {
7019   default:
7020     report_fatal_error("Unexpected value type for formal argument");
7021   case MVT::i1:
7022   case MVT::i32:
7023   case MVT::i64:
7024     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7025   case MVT::f32:
7026     return &PPC::F4RCRegClass;
7027   case MVT::f64:
7028     return &PPC::F8RCRegClass;
7029   }
7030 }
7031 
7032 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
7033                                         SelectionDAG &DAG, SDValue ArgValue,
7034                                         MVT LocVT, const SDLoc &dl) {
7035   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
7036   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
7037 
7038   if (Flags.isSExt())
7039     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
7040                            DAG.getValueType(ValVT));
7041   else if (Flags.isZExt())
7042     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
7043                            DAG.getValueType(ValVT));
7044 
7045   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7046 }
7047 
7048 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7049   const unsigned LASize = FL->getLinkageSize();
7050 
7051   if (PPC::GPRCRegClass.contains(Reg)) {
7052     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7053            "Reg must be a valid argument register!");
7054     return LASize + 4 * (Reg - PPC::R3);
7055   }
7056 
7057   if (PPC::G8RCRegClass.contains(Reg)) {
7058     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7059            "Reg must be a valid argument register!");
7060     return LASize + 8 * (Reg - PPC::X3);
7061   }
7062 
7063   llvm_unreachable("Only general purpose registers expected.");
7064 }
7065 
7066 //   AIX ABI Stack Frame Layout:
7067 //
7068 //   Low Memory +--------------------------------------------+
7069 //   SP   +---> | Back chain                                 | ---+
7070 //        |     +--------------------------------------------+    |
7071 //        |     | Saved Condition Register                   |    |
7072 //        |     +--------------------------------------------+    |
7073 //        |     | Saved Linkage Register                     |    |
7074 //        |     +--------------------------------------------+    | Linkage Area
7075 //        |     | Reserved for compilers                     |    |
7076 //        |     +--------------------------------------------+    |
7077 //        |     | Reserved for binders                       |    |
7078 //        |     +--------------------------------------------+    |
7079 //        |     | Saved TOC pointer                          | ---+
7080 //        |     +--------------------------------------------+
7081 //        |     | Parameter save area                        |
7082 //        |     +--------------------------------------------+
7083 //        |     | Alloca space                               |
7084 //        |     +--------------------------------------------+
7085 //        |     | Local variable space                       |
7086 //        |     +--------------------------------------------+
7087 //        |     | Float/int conversion temporary             |
7088 //        |     +--------------------------------------------+
7089 //        |     | Save area for AltiVec registers            |
7090 //        |     +--------------------------------------------+
7091 //        |     | AltiVec alignment padding                  |
7092 //        |     +--------------------------------------------+
7093 //        |     | Save area for VRSAVE register              |
7094 //        |     +--------------------------------------------+
7095 //        |     | Save area for General Purpose registers    |
7096 //        |     +--------------------------------------------+
7097 //        |     | Save area for Floating Point registers     |
7098 //        |     +--------------------------------------------+
7099 //        +---- | Back chain                                 |
7100 // High Memory  +--------------------------------------------+
7101 //
7102 //  Specifications:
7103 //  AIX 7.2 Assembler Language Reference
7104 //  Subroutine linkage convention
7105 
7106 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7107     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7108     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7109     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7110 
7111   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7112           CallConv == CallingConv::Fast) &&
7113          "Unexpected calling convention!");
7114 
7115   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7116     report_fatal_error("Tail call support is unimplemented on AIX.");
7117 
7118   if (useSoftFloat())
7119     report_fatal_error("Soft float support is unimplemented on AIX.");
7120 
7121   const PPCSubtarget &Subtarget =
7122       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7123 
7124   const bool IsPPC64 = Subtarget.isPPC64();
7125   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7126 
7127   // Assign locations to all of the incoming arguments.
7128   SmallVector<CCValAssign, 16> ArgLocs;
7129   MachineFunction &MF = DAG.getMachineFunction();
7130   MachineFrameInfo &MFI = MF.getFrameInfo();
7131   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7132 
7133   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7134   // Reserve space for the linkage area on the stack.
7135   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7136   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7137   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7138 
7139   SmallVector<SDValue, 8> MemOps;
7140 
7141   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7142     CCValAssign &VA = ArgLocs[I++];
7143     MVT LocVT = VA.getLocVT();
7144     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7145 
7146     // For compatibility with the AIX XL compiler, the float args in the
7147     // parameter save area are initialized even if the argument is available
7148     // in register.  The caller is required to initialize both the register
7149     // and memory, however, the callee can choose to expect it in either.
7150     // The memloc is dismissed here because the argument is retrieved from
7151     // the register.
7152     if (VA.isMemLoc() && VA.needsCustom())
7153       continue;
7154 
7155     if (Flags.isByVal() && VA.isMemLoc()) {
7156       const unsigned Size =
7157           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7158                   PtrByteSize);
7159       const int FI = MF.getFrameInfo().CreateFixedObject(
7160           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7161           /* IsAliased */ true);
7162       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7163       InVals.push_back(FIN);
7164 
7165       continue;
7166     }
7167 
7168     if (Flags.isByVal()) {
7169       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7170 
7171       const MCPhysReg ArgReg = VA.getLocReg();
7172       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7173 
7174       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7175         report_fatal_error("Over aligned byvals not supported yet.");
7176 
7177       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7178       const int FI = MF.getFrameInfo().CreateFixedObject(
7179           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7180           /* IsAliased */ true);
7181       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7182       InVals.push_back(FIN);
7183 
7184       // Add live ins for all the RegLocs for the same ByVal.
7185       const TargetRegisterClass *RegClass =
7186           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7187 
7188       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7189                                                unsigned Offset) {
7190         const unsigned VReg = MF.addLiveIn(PhysReg, RegClass);
7191         // Since the callers side has left justified the aggregate in the
7192         // register, we can simply store the entire register into the stack
7193         // slot.
7194         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7195         // The store to the fixedstack object is needed becuase accessing a
7196         // field of the ByVal will use a gep and load. Ideally we will optimize
7197         // to extracting the value from the register directly, and elide the
7198         // stores when the arguments address is not taken, but that will need to
7199         // be future work.
7200         SDValue Store = DAG.getStore(
7201             CopyFrom.getValue(1), dl, CopyFrom,
7202             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7203             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7204 
7205         MemOps.push_back(Store);
7206       };
7207 
7208       unsigned Offset = 0;
7209       HandleRegLoc(VA.getLocReg(), Offset);
7210       Offset += PtrByteSize;
7211       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7212            Offset += PtrByteSize) {
7213         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7214                "RegLocs should be for ByVal argument.");
7215 
7216         const CCValAssign RL = ArgLocs[I++];
7217         HandleRegLoc(RL.getLocReg(), Offset);
7218       }
7219 
7220       if (Offset != StackSize) {
7221         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7222                "Expected MemLoc for remaining bytes.");
7223         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7224         // Consume the MemLoc.The InVal has already been emitted, so nothing
7225         // more needs to be done.
7226         ++I;
7227       }
7228 
7229       continue;
7230     }
7231 
7232     EVT ValVT = VA.getValVT();
7233     if (VA.isRegLoc() && !VA.needsCustom()) {
7234       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7235       unsigned VReg =
7236           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7237       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7238       if (ValVT.isScalarInteger() &&
7239           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7240         ArgValue =
7241             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7242       }
7243       InVals.push_back(ArgValue);
7244       continue;
7245     }
7246     if (VA.isMemLoc()) {
7247       const unsigned LocSize = LocVT.getStoreSize();
7248       const unsigned ValSize = ValVT.getStoreSize();
7249       assert((ValSize <= LocSize) &&
7250              "Object size is larger than size of MemLoc");
7251       int CurArgOffset = VA.getLocMemOffset();
7252       // Objects are right-justified because AIX is big-endian.
7253       if (LocSize > ValSize)
7254         CurArgOffset += LocSize - ValSize;
7255       // Potential tail calls could cause overwriting of argument stack slots.
7256       const bool IsImmutable =
7257           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7258             (CallConv == CallingConv::Fast));
7259       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7260       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7261       SDValue ArgValue =
7262           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7263       InVals.push_back(ArgValue);
7264       continue;
7265     }
7266   }
7267 
7268   // On AIX a minimum of 8 words is saved to the parameter save area.
7269   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7270   // Area that is at least reserved in the caller of this function.
7271   unsigned CallerReservedArea =
7272       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7273 
7274   // Set the size that is at least reserved in caller of this function. Tail
7275   // call optimized function's reserved stack space needs to be aligned so
7276   // that taking the difference between two stack areas will result in an
7277   // aligned stack.
7278   CallerReservedArea =
7279       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7280   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7281   FuncInfo->setMinReservedArea(CallerReservedArea);
7282 
7283   if (isVarArg) {
7284     FuncInfo->setVarArgsFrameIndex(
7285         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7286     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7287 
7288     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7289                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7290 
7291     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7292                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7293     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7294 
7295     // The fixed integer arguments of a variadic function are stored to the
7296     // VarArgsFrameIndex on the stack so that they may be loaded by
7297     // dereferencing the result of va_next.
7298     for (unsigned GPRIndex =
7299              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7300          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7301 
7302       const unsigned VReg =
7303           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7304                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7305 
7306       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7307       SDValue Store =
7308           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7309       MemOps.push_back(Store);
7310       // Increment the address for the next argument to store.
7311       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7312       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7313     }
7314   }
7315 
7316   if (!MemOps.empty())
7317     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7318 
7319   return Chain;
7320 }
7321 
7322 SDValue PPCTargetLowering::LowerCall_AIX(
7323     SDValue Chain, SDValue Callee, CallFlags CFlags,
7324     const SmallVectorImpl<ISD::OutputArg> &Outs,
7325     const SmallVectorImpl<SDValue> &OutVals,
7326     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7327     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7328     const CallBase *CB) const {
7329   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7330   // AIX ABI stack frame layout.
7331 
7332   assert((CFlags.CallConv == CallingConv::C ||
7333           CFlags.CallConv == CallingConv::Cold ||
7334           CFlags.CallConv == CallingConv::Fast) &&
7335          "Unexpected calling convention!");
7336 
7337   if (CFlags.IsPatchPoint)
7338     report_fatal_error("This call type is unimplemented on AIX.");
7339 
7340   const PPCSubtarget& Subtarget =
7341       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7342   if (Subtarget.hasAltivec())
7343     report_fatal_error("Altivec support is unimplemented on AIX.");
7344 
7345   MachineFunction &MF = DAG.getMachineFunction();
7346   SmallVector<CCValAssign, 16> ArgLocs;
7347   CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7348                  *DAG.getContext());
7349 
7350   // Reserve space for the linkage save area (LSA) on the stack.
7351   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7352   //   [SP][CR][LR][2 x reserved][TOC].
7353   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7354   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7355   const bool IsPPC64 = Subtarget.isPPC64();
7356   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7357   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7358   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7359   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7360 
7361   // The prolog code of the callee may store up to 8 GPR argument registers to
7362   // the stack, allowing va_start to index over them in memory if the callee
7363   // is variadic.
7364   // Because we cannot tell if this is needed on the caller side, we have to
7365   // conservatively assume that it is needed.  As such, make sure we have at
7366   // least enough stack space for the caller to store the 8 GPRs.
7367   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7368   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7369                                      CCInfo.getNextStackOffset());
7370 
7371   // Adjust the stack pointer for the new arguments...
7372   // These operations are automatically eliminated by the prolog/epilog pass.
7373   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7374   SDValue CallSeqStart = Chain;
7375 
7376   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7377   SmallVector<SDValue, 8> MemOpChains;
7378 
7379   // Set up a copy of the stack pointer for loading and storing any
7380   // arguments that may not fit in the registers available for argument
7381   // passing.
7382   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7383                                    : DAG.getRegister(PPC::R1, MVT::i32);
7384 
7385   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7386     const unsigned ValNo = ArgLocs[I].getValNo();
7387     SDValue Arg = OutVals[ValNo];
7388     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7389 
7390     if (Flags.isByVal()) {
7391       const unsigned ByValSize = Flags.getByValSize();
7392 
7393       // Nothing to do for zero-sized ByVals on the caller side.
7394       if (!ByValSize) {
7395         ++I;
7396         continue;
7397       }
7398 
7399       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7400         return DAG.getExtLoad(
7401             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7402             (LoadOffset != 0)
7403                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7404                 : Arg,
7405             MachinePointerInfo(), VT);
7406       };
7407 
7408       unsigned LoadOffset = 0;
7409 
7410       // Initialize registers, which are fully occupied by the by-val argument.
7411       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7412         SDValue Load = GetLoad(PtrVT, LoadOffset);
7413         MemOpChains.push_back(Load.getValue(1));
7414         LoadOffset += PtrByteSize;
7415         const CCValAssign &ByValVA = ArgLocs[I++];
7416         assert(ByValVA.getValNo() == ValNo &&
7417                "Unexpected location for pass-by-value argument.");
7418         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7419       }
7420 
7421       if (LoadOffset == ByValSize)
7422         continue;
7423 
7424       // There must be one more loc to handle the remainder.
7425       assert(ArgLocs[I].getValNo() == ValNo &&
7426              "Expected additional location for by-value argument.");
7427 
7428       if (ArgLocs[I].isMemLoc()) {
7429         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7430         const CCValAssign &ByValVA = ArgLocs[I++];
7431         ISD::ArgFlagsTy MemcpyFlags = Flags;
7432         // Only memcpy the bytes that don't pass in register.
7433         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7434         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7435             (LoadOffset != 0)
7436                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7437                 : Arg,
7438             DAG.getObjectPtrOffset(dl, StackPtr,
7439                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7440             CallSeqStart, MemcpyFlags, DAG, dl);
7441         continue;
7442       }
7443 
7444       // Initialize the final register residue.
7445       // Any residue that occupies the final by-val arg register must be
7446       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7447       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7448       // 2 and 1 byte loads.
7449       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7450       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7451              "Unexpected register residue for by-value argument.");
7452       SDValue ResidueVal;
7453       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7454         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7455         const MVT VT =
7456             N == 1 ? MVT::i8
7457                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7458         SDValue Load = GetLoad(VT, LoadOffset);
7459         MemOpChains.push_back(Load.getValue(1));
7460         LoadOffset += N;
7461         Bytes += N;
7462 
7463         // By-val arguments are passed left-justfied in register.
7464         // Every load here needs to be shifted, otherwise a full register load
7465         // should have been used.
7466         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7467                "Unexpected load emitted during handling of pass-by-value "
7468                "argument.");
7469         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7470         EVT ShiftAmountTy =
7471             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7472         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7473         SDValue ShiftedLoad =
7474             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7475         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7476                                               ShiftedLoad)
7477                                 : ShiftedLoad;
7478       }
7479 
7480       const CCValAssign &ByValVA = ArgLocs[I++];
7481       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7482       continue;
7483     }
7484 
7485     CCValAssign &VA = ArgLocs[I++];
7486     const MVT LocVT = VA.getLocVT();
7487     const MVT ValVT = VA.getValVT();
7488 
7489     switch (VA.getLocInfo()) {
7490     default:
7491       report_fatal_error("Unexpected argument extension type.");
7492     case CCValAssign::Full:
7493       break;
7494     case CCValAssign::ZExt:
7495       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7496       break;
7497     case CCValAssign::SExt:
7498       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7499       break;
7500     }
7501 
7502     if (VA.isRegLoc() && !VA.needsCustom()) {
7503       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7504       continue;
7505     }
7506 
7507     if (VA.isMemLoc()) {
7508       SDValue PtrOff =
7509           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7510       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7511       MemOpChains.push_back(
7512           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7513 
7514       continue;
7515     }
7516 
7517     // Custom handling is used for GPR initializations for vararg float
7518     // arguments.
7519     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7520            ValVT.isFloatingPoint() && LocVT.isInteger() &&
7521            "Unexpected register handling for calling convention.");
7522 
7523     SDValue ArgAsInt =
7524         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7525 
7526     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7527       // f32 in 32-bit GPR
7528       // f64 in 64-bit GPR
7529       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7530     else if (Arg.getValueType().getSizeInBits() < LocVT.getSizeInBits())
7531       // f32 in 64-bit GPR.
7532       RegsToPass.push_back(std::make_pair(
7533           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7534     else {
7535       // f64 in two 32-bit GPRs
7536       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7537       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7538              "Unexpected custom register for argument!");
7539       CCValAssign &GPR1 = VA;
7540       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7541                                      DAG.getConstant(32, dl, MVT::i8));
7542       RegsToPass.push_back(std::make_pair(
7543           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7544 
7545       if (I != E) {
7546         // If only 1 GPR was available, there will only be one custom GPR and
7547         // the argument will also pass in memory.
7548         CCValAssign &PeekArg = ArgLocs[I];
7549         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7550           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7551           CCValAssign &GPR2 = ArgLocs[I++];
7552           RegsToPass.push_back(std::make_pair(
7553               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7554         }
7555       }
7556     }
7557   }
7558 
7559   if (!MemOpChains.empty())
7560     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7561 
7562   // For indirect calls, we need to save the TOC base to the stack for
7563   // restoration after the call.
7564   if (CFlags.IsIndirect) {
7565     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7566     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7567     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7568     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7569     const unsigned TOCSaveOffset =
7570         Subtarget.getFrameLowering()->getTOCSaveOffset();
7571 
7572     setUsesTOCBasePtr(DAG);
7573     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7574     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7575     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7576     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7577     Chain = DAG.getStore(
7578         Val.getValue(1), dl, Val, AddPtr,
7579         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7580   }
7581 
7582   // Build a sequence of copy-to-reg nodes chained together with token chain
7583   // and flag operands which copy the outgoing args into the appropriate regs.
7584   SDValue InFlag;
7585   for (auto Reg : RegsToPass) {
7586     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7587     InFlag = Chain.getValue(1);
7588   }
7589 
7590   const int SPDiff = 0;
7591   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7592                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7593 }
7594 
7595 bool
7596 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7597                                   MachineFunction &MF, bool isVarArg,
7598                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7599                                   LLVMContext &Context) const {
7600   SmallVector<CCValAssign, 16> RVLocs;
7601   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7602   return CCInfo.CheckReturn(
7603       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7604                 ? RetCC_PPC_Cold
7605                 : RetCC_PPC);
7606 }
7607 
7608 SDValue
7609 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7610                                bool isVarArg,
7611                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7612                                const SmallVectorImpl<SDValue> &OutVals,
7613                                const SDLoc &dl, SelectionDAG &DAG) const {
7614   SmallVector<CCValAssign, 16> RVLocs;
7615   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7616                  *DAG.getContext());
7617   CCInfo.AnalyzeReturn(Outs,
7618                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7619                            ? RetCC_PPC_Cold
7620                            : RetCC_PPC);
7621 
7622   SDValue Flag;
7623   SmallVector<SDValue, 4> RetOps(1, Chain);
7624 
7625   // Copy the result values into the output registers.
7626   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7627     CCValAssign &VA = RVLocs[i];
7628     assert(VA.isRegLoc() && "Can only return in registers!");
7629 
7630     SDValue Arg = OutVals[RealResIdx];
7631 
7632     switch (VA.getLocInfo()) {
7633     default: llvm_unreachable("Unknown loc info!");
7634     case CCValAssign::Full: break;
7635     case CCValAssign::AExt:
7636       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7637       break;
7638     case CCValAssign::ZExt:
7639       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7640       break;
7641     case CCValAssign::SExt:
7642       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7643       break;
7644     }
7645     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7646       bool isLittleEndian = Subtarget.isLittleEndian();
7647       // Legalize ret f64 -> ret 2 x i32.
7648       SDValue SVal =
7649           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7650                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7651       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7652       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7653       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7654                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7655       Flag = Chain.getValue(1);
7656       VA = RVLocs[++i]; // skip ahead to next loc
7657       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7658     } else
7659       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7660     Flag = Chain.getValue(1);
7661     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7662   }
7663 
7664   RetOps[0] = Chain;  // Update chain.
7665 
7666   // Add the flag if we have it.
7667   if (Flag.getNode())
7668     RetOps.push_back(Flag);
7669 
7670   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7671 }
7672 
7673 SDValue
7674 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7675                                                 SelectionDAG &DAG) const {
7676   SDLoc dl(Op);
7677 
7678   // Get the correct type for integers.
7679   EVT IntVT = Op.getValueType();
7680 
7681   // Get the inputs.
7682   SDValue Chain = Op.getOperand(0);
7683   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7684   // Build a DYNAREAOFFSET node.
7685   SDValue Ops[2] = {Chain, FPSIdx};
7686   SDVTList VTs = DAG.getVTList(IntVT);
7687   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7688 }
7689 
7690 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7691                                              SelectionDAG &DAG) const {
7692   // When we pop the dynamic allocation we need to restore the SP link.
7693   SDLoc dl(Op);
7694 
7695   // Get the correct type for pointers.
7696   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7697 
7698   // Construct the stack pointer operand.
7699   bool isPPC64 = Subtarget.isPPC64();
7700   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7701   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7702 
7703   // Get the operands for the STACKRESTORE.
7704   SDValue Chain = Op.getOperand(0);
7705   SDValue SaveSP = Op.getOperand(1);
7706 
7707   // Load the old link SP.
7708   SDValue LoadLinkSP =
7709       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7710 
7711   // Restore the stack pointer.
7712   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7713 
7714   // Store the old link SP.
7715   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7716 }
7717 
7718 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7719   MachineFunction &MF = DAG.getMachineFunction();
7720   bool isPPC64 = Subtarget.isPPC64();
7721   EVT PtrVT = getPointerTy(MF.getDataLayout());
7722 
7723   // Get current frame pointer save index.  The users of this index will be
7724   // primarily DYNALLOC instructions.
7725   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7726   int RASI = FI->getReturnAddrSaveIndex();
7727 
7728   // If the frame pointer save index hasn't been defined yet.
7729   if (!RASI) {
7730     // Find out what the fix offset of the frame pointer save area.
7731     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7732     // Allocate the frame index for frame pointer save area.
7733     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7734     // Save the result.
7735     FI->setReturnAddrSaveIndex(RASI);
7736   }
7737   return DAG.getFrameIndex(RASI, PtrVT);
7738 }
7739 
7740 SDValue
7741 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7742   MachineFunction &MF = DAG.getMachineFunction();
7743   bool isPPC64 = Subtarget.isPPC64();
7744   EVT PtrVT = getPointerTy(MF.getDataLayout());
7745 
7746   // Get current frame pointer save index.  The users of this index will be
7747   // primarily DYNALLOC instructions.
7748   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7749   int FPSI = FI->getFramePointerSaveIndex();
7750 
7751   // If the frame pointer save index hasn't been defined yet.
7752   if (!FPSI) {
7753     // Find out what the fix offset of the frame pointer save area.
7754     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7755     // Allocate the frame index for frame pointer save area.
7756     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7757     // Save the result.
7758     FI->setFramePointerSaveIndex(FPSI);
7759   }
7760   return DAG.getFrameIndex(FPSI, PtrVT);
7761 }
7762 
7763 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7764                                                    SelectionDAG &DAG) const {
7765   MachineFunction &MF = DAG.getMachineFunction();
7766   // Get the inputs.
7767   SDValue Chain = Op.getOperand(0);
7768   SDValue Size  = Op.getOperand(1);
7769   SDLoc dl(Op);
7770 
7771   // Get the correct type for pointers.
7772   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7773   // Negate the size.
7774   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7775                                 DAG.getConstant(0, dl, PtrVT), Size);
7776   // Construct a node for the frame pointer save index.
7777   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7778   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7779   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7780   if (hasInlineStackProbe(MF))
7781     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7782   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7783 }
7784 
7785 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7786                                                      SelectionDAG &DAG) const {
7787   MachineFunction &MF = DAG.getMachineFunction();
7788 
7789   bool isPPC64 = Subtarget.isPPC64();
7790   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7791 
7792   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7793   return DAG.getFrameIndex(FI, PtrVT);
7794 }
7795 
7796 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7797                                                SelectionDAG &DAG) const {
7798   SDLoc DL(Op);
7799   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7800                      DAG.getVTList(MVT::i32, MVT::Other),
7801                      Op.getOperand(0), Op.getOperand(1));
7802 }
7803 
7804 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7805                                                 SelectionDAG &DAG) const {
7806   SDLoc DL(Op);
7807   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7808                      Op.getOperand(0), Op.getOperand(1));
7809 }
7810 
7811 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7812 
7813   assert(Op.getValueType() == MVT::i1 &&
7814          "Custom lowering only for i1 loads");
7815 
7816   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7817 
7818   SDLoc dl(Op);
7819   LoadSDNode *LD = cast<LoadSDNode>(Op);
7820 
7821   SDValue Chain = LD->getChain();
7822   SDValue BasePtr = LD->getBasePtr();
7823   MachineMemOperand *MMO = LD->getMemOperand();
7824 
7825   SDValue NewLD =
7826       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7827                      BasePtr, MVT::i8, MMO);
7828   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7829 
7830   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7831   return DAG.getMergeValues(Ops, dl);
7832 }
7833 
7834 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7835   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7836          "Custom lowering only for i1 stores");
7837 
7838   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7839 
7840   SDLoc dl(Op);
7841   StoreSDNode *ST = cast<StoreSDNode>(Op);
7842 
7843   SDValue Chain = ST->getChain();
7844   SDValue BasePtr = ST->getBasePtr();
7845   SDValue Value = ST->getValue();
7846   MachineMemOperand *MMO = ST->getMemOperand();
7847 
7848   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7849                       Value);
7850   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7851 }
7852 
7853 // FIXME: Remove this once the ANDI glue bug is fixed:
7854 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7855   assert(Op.getValueType() == MVT::i1 &&
7856          "Custom lowering only for i1 results");
7857 
7858   SDLoc DL(Op);
7859   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7860 }
7861 
7862 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7863                                                SelectionDAG &DAG) const {
7864 
7865   // Implements a vector truncate that fits in a vector register as a shuffle.
7866   // We want to legalize vector truncates down to where the source fits in
7867   // a vector register (and target is therefore smaller than vector register
7868   // size).  At that point legalization will try to custom lower the sub-legal
7869   // result and get here - where we can contain the truncate as a single target
7870   // operation.
7871 
7872   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7873   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7874   //
7875   // We will implement it for big-endian ordering as this (where x denotes
7876   // undefined):
7877   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7878   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7879   //
7880   // The same operation in little-endian ordering will be:
7881   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7882   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7883 
7884   EVT TrgVT = Op.getValueType();
7885   assert(TrgVT.isVector() && "Vector type expected.");
7886   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7887   EVT EltVT = TrgVT.getVectorElementType();
7888   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7889       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7890       !isPowerOf2_32(EltVT.getSizeInBits()))
7891     return SDValue();
7892 
7893   SDValue N1 = Op.getOperand(0);
7894   EVT SrcVT = N1.getValueType();
7895   unsigned SrcSize = SrcVT.getSizeInBits();
7896   if (SrcSize > 256 ||
7897       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7898       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7899     return SDValue();
7900   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7901     return SDValue();
7902 
7903   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7904   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7905 
7906   SDLoc DL(Op);
7907   SDValue Op1, Op2;
7908   if (SrcSize == 256) {
7909     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7910     EVT SplitVT =
7911         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7912     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7913     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7914                       DAG.getConstant(0, DL, VecIdxTy));
7915     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7916                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7917   }
7918   else {
7919     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7920     Op2 = DAG.getUNDEF(WideVT);
7921   }
7922 
7923   // First list the elements we want to keep.
7924   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7925   SmallVector<int, 16> ShuffV;
7926   if (Subtarget.isLittleEndian())
7927     for (unsigned i = 0; i < TrgNumElts; ++i)
7928       ShuffV.push_back(i * SizeMult);
7929   else
7930     for (unsigned i = 1; i <= TrgNumElts; ++i)
7931       ShuffV.push_back(i * SizeMult - 1);
7932 
7933   // Populate the remaining elements with undefs.
7934   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7935     // ShuffV.push_back(i + WideNumElts);
7936     ShuffV.push_back(WideNumElts + 1);
7937 
7938   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7939   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7940   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7941 }
7942 
7943 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7944 /// possible.
7945 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7946   // Not FP, or using SPE? Not a fsel.
7947   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7948       !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE())
7949     return Op;
7950 
7951   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7952 
7953   EVT ResVT = Op.getValueType();
7954   EVT CmpVT = Op.getOperand(0).getValueType();
7955   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7956   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7957   SDLoc dl(Op);
7958   SDNodeFlags Flags = Op.getNode()->getFlags();
7959 
7960   // We have xsmaxcdp/xsmincdp which are OK to emit even in the
7961   // presence of infinities.
7962   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7963     switch (CC) {
7964     default:
7965       break;
7966     case ISD::SETOGT:
7967     case ISD::SETGT:
7968       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7969     case ISD::SETOLT:
7970     case ISD::SETLT:
7971       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7972     }
7973   }
7974 
7975   // We might be able to do better than this under some circumstances, but in
7976   // general, fsel-based lowering of select is a finite-math-only optimization.
7977   // For more information, see section F.3 of the 2.06 ISA specification.
7978   // With ISA 3.0
7979   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7980       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7981     return Op;
7982 
7983   // If the RHS of the comparison is a 0.0, we don't need to do the
7984   // subtraction at all.
7985   SDValue Sel1;
7986   if (isFloatingPointZero(RHS))
7987     switch (CC) {
7988     default: break;       // SETUO etc aren't handled by fsel.
7989     case ISD::SETNE:
7990       std::swap(TV, FV);
7991       LLVM_FALLTHROUGH;
7992     case ISD::SETEQ:
7993       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7994         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7995       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7996       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7997         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7998       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7999                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8000     case ISD::SETULT:
8001     case ISD::SETLT:
8002       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8003       LLVM_FALLTHROUGH;
8004     case ISD::SETOGE:
8005     case ISD::SETGE:
8006       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8007         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8008       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8009     case ISD::SETUGT:
8010     case ISD::SETGT:
8011       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8012       LLVM_FALLTHROUGH;
8013     case ISD::SETOLE:
8014     case ISD::SETLE:
8015       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8016         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8017       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8018                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8019     }
8020 
8021   SDValue Cmp;
8022   switch (CC) {
8023   default: break;       // SETUO etc aren't handled by fsel.
8024   case ISD::SETNE:
8025     std::swap(TV, FV);
8026     LLVM_FALLTHROUGH;
8027   case ISD::SETEQ:
8028     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8029     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8030       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8031     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8032     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8033       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8034     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8035                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8036   case ISD::SETULT:
8037   case ISD::SETLT:
8038     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8039     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8040       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8041     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8042   case ISD::SETOGE:
8043   case ISD::SETGE:
8044     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8045     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8046       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8047     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8048   case ISD::SETUGT:
8049   case ISD::SETGT:
8050     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8051     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8052       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8053     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8054   case ISD::SETOLE:
8055   case ISD::SETLE:
8056     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8057     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8058       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8059     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8060   }
8061   return Op;
8062 }
8063 
8064 static unsigned getPPCStrictOpcode(unsigned Opc) {
8065   switch (Opc) {
8066   default:
8067     llvm_unreachable("No strict version of this opcode!");
8068   case PPCISD::FCTIDZ:
8069     return PPCISD::STRICT_FCTIDZ;
8070   case PPCISD::FCTIWZ:
8071     return PPCISD::STRICT_FCTIWZ;
8072   case PPCISD::FCTIDUZ:
8073     return PPCISD::STRICT_FCTIDUZ;
8074   case PPCISD::FCTIWUZ:
8075     return PPCISD::STRICT_FCTIWUZ;
8076   case PPCISD::FCFID:
8077     return PPCISD::STRICT_FCFID;
8078   case PPCISD::FCFIDU:
8079     return PPCISD::STRICT_FCFIDU;
8080   case PPCISD::FCFIDS:
8081     return PPCISD::STRICT_FCFIDS;
8082   case PPCISD::FCFIDUS:
8083     return PPCISD::STRICT_FCFIDUS;
8084   }
8085 }
8086 
8087 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8088                               const PPCSubtarget &Subtarget) {
8089   SDLoc dl(Op);
8090   bool IsStrict = Op->isStrictFPOpcode();
8091   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8092                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8093 
8094   // TODO: Any other flags to propagate?
8095   SDNodeFlags Flags;
8096   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8097 
8098   // For strict nodes, source is the second operand.
8099   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8100   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8101   assert(Src.getValueType().isFloatingPoint());
8102   if (Src.getValueType() == MVT::f32) {
8103     if (IsStrict) {
8104       Src =
8105           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8106                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8107       Chain = Src.getValue(1);
8108     } else
8109       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8110   }
8111   SDValue Conv;
8112   unsigned Opc = ISD::DELETED_NODE;
8113   switch (Op.getSimpleValueType().SimpleTy) {
8114   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8115   case MVT::i32:
8116     Opc = IsSigned ? PPCISD::FCTIWZ
8117                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8118     break;
8119   case MVT::i64:
8120     assert((IsSigned || Subtarget.hasFPCVT()) &&
8121            "i64 FP_TO_UINT is supported only with FPCVT");
8122     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8123   }
8124   if (IsStrict) {
8125     Opc = getPPCStrictOpcode(Opc);
8126     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8127                        {Chain, Src}, Flags);
8128   } else {
8129     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8130   }
8131   return Conv;
8132 }
8133 
8134 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8135                                                SelectionDAG &DAG,
8136                                                const SDLoc &dl) const {
8137   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8138   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8139                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8140   bool IsStrict = Op->isStrictFPOpcode();
8141 
8142   // Convert the FP value to an int value through memory.
8143   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8144                   (IsSigned || Subtarget.hasFPCVT());
8145   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8146   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8147   MachinePointerInfo MPI =
8148       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8149 
8150   // Emit a store to the stack slot.
8151   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8152   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8153   if (i32Stack) {
8154     MachineFunction &MF = DAG.getMachineFunction();
8155     Alignment = Align(4);
8156     MachineMemOperand *MMO =
8157         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8158     SDValue Ops[] = { Chain, Tmp, FIPtr };
8159     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8160               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8161   } else
8162     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8163 
8164   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8165   // add in a bias on big endian.
8166   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8167     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8168                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8169     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8170   }
8171 
8172   RLI.Chain = Chain;
8173   RLI.Ptr = FIPtr;
8174   RLI.MPI = MPI;
8175   RLI.Alignment = Alignment;
8176 }
8177 
8178 /// Custom lowers floating point to integer conversions to use
8179 /// the direct move instructions available in ISA 2.07 to avoid the
8180 /// need for load/store combinations.
8181 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8182                                                     SelectionDAG &DAG,
8183                                                     const SDLoc &dl) const {
8184   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8185   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8186   if (Op->isStrictFPOpcode())
8187     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8188   else
8189     return Mov;
8190 }
8191 
8192 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8193                                           const SDLoc &dl) const {
8194   bool IsStrict = Op->isStrictFPOpcode();
8195   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8196                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8197   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8198   EVT SrcVT = Src.getValueType();
8199   EVT DstVT = Op.getValueType();
8200 
8201   // FP to INT conversions are legal for f128.
8202   if (SrcVT == MVT::f128)
8203     return Op;
8204 
8205   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8206   // PPC (the libcall is not available).
8207   if (SrcVT == MVT::ppcf128) {
8208     if (DstVT == MVT::i32) {
8209       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8210       // set other fast-math flags to FP operations in both strict and
8211       // non-strict cases. (FP_TO_SINT, FSUB)
8212       SDNodeFlags Flags;
8213       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8214 
8215       if (IsSigned) {
8216         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8217                                  DAG.getIntPtrConstant(0, dl));
8218         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8219                                  DAG.getIntPtrConstant(1, dl));
8220 
8221         // Add the two halves of the long double in round-to-zero mode, and use
8222         // a smaller FP_TO_SINT.
8223         if (IsStrict) {
8224           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8225                                     DAG.getVTList(MVT::f64, MVT::Other),
8226                                     {Op.getOperand(0), Lo, Hi}, Flags);
8227           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8228                              DAG.getVTList(MVT::i32, MVT::Other),
8229                              {Res.getValue(1), Res}, Flags);
8230         } else {
8231           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8232           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8233         }
8234       } else {
8235         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8236         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8237         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8238         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8239         if (IsStrict) {
8240           // Sel = Src < 0x80000000
8241           // FltOfs = select Sel, 0.0, 0x80000000
8242           // IntOfs = select Sel, 0, 0x80000000
8243           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8244           SDValue Chain = Op.getOperand(0);
8245           EVT SetCCVT =
8246               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8247           EVT DstSetCCVT =
8248               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8249           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8250                                      SDNodeFlags(), Chain, true);
8251           Chain = Sel.getValue(1);
8252 
8253           SDValue FltOfs = DAG.getSelect(
8254               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8255           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8256 
8257           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8258                                     DAG.getVTList(SrcVT, MVT::Other),
8259                                     {Chain, Src, FltOfs}, Flags);
8260           Chain = Val.getValue(1);
8261           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8262                                      DAG.getVTList(DstVT, MVT::Other),
8263                                      {Chain, Val}, Flags);
8264           Chain = SInt.getValue(1);
8265           SDValue IntOfs = DAG.getSelect(
8266               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8267           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8268           return DAG.getMergeValues({Result, Chain}, dl);
8269         } else {
8270           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8271           // FIXME: generated code sucks.
8272           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8273           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8274           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8275           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8276           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8277         }
8278       }
8279     }
8280 
8281     return SDValue();
8282   }
8283 
8284   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8285     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8286 
8287   ReuseLoadInfo RLI;
8288   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8289 
8290   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8291                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8292 }
8293 
8294 // We're trying to insert a regular store, S, and then a load, L. If the
8295 // incoming value, O, is a load, we might just be able to have our load use the
8296 // address used by O. However, we don't know if anything else will store to
8297 // that address before we can load from it. To prevent this situation, we need
8298 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8299 // the same chain operand as O, we create a token factor from the chain results
8300 // of O and L, and we replace all uses of O's chain result with that token
8301 // factor (see spliceIntoChain below for this last part).
8302 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8303                                             ReuseLoadInfo &RLI,
8304                                             SelectionDAG &DAG,
8305                                             ISD::LoadExtType ET) const {
8306   // Conservatively skip reusing for constrained FP nodes.
8307   if (Op->isStrictFPOpcode())
8308     return false;
8309 
8310   SDLoc dl(Op);
8311   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8312                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8313   if (ET == ISD::NON_EXTLOAD &&
8314       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8315       isOperationLegalOrCustom(Op.getOpcode(),
8316                                Op.getOperand(0).getValueType())) {
8317 
8318     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8319     return true;
8320   }
8321 
8322   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8323   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8324       LD->isNonTemporal())
8325     return false;
8326   if (LD->getMemoryVT() != MemVT)
8327     return false;
8328 
8329   RLI.Ptr = LD->getBasePtr();
8330   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8331     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8332            "Non-pre-inc AM on PPC?");
8333     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8334                           LD->getOffset());
8335   }
8336 
8337   RLI.Chain = LD->getChain();
8338   RLI.MPI = LD->getPointerInfo();
8339   RLI.IsDereferenceable = LD->isDereferenceable();
8340   RLI.IsInvariant = LD->isInvariant();
8341   RLI.Alignment = LD->getAlign();
8342   RLI.AAInfo = LD->getAAInfo();
8343   RLI.Ranges = LD->getRanges();
8344 
8345   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8346   return true;
8347 }
8348 
8349 // Given the head of the old chain, ResChain, insert a token factor containing
8350 // it and NewResChain, and make users of ResChain now be users of that token
8351 // factor.
8352 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8353 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8354                                         SDValue NewResChain,
8355                                         SelectionDAG &DAG) const {
8356   if (!ResChain)
8357     return;
8358 
8359   SDLoc dl(NewResChain);
8360 
8361   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8362                            NewResChain, DAG.getUNDEF(MVT::Other));
8363   assert(TF.getNode() != NewResChain.getNode() &&
8364          "A new TF really is required here");
8365 
8366   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8367   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8368 }
8369 
8370 /// Analyze profitability of direct move
8371 /// prefer float load to int load plus direct move
8372 /// when there is no integer use of int load
8373 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8374   SDNode *Origin = Op.getOperand(0).getNode();
8375   if (Origin->getOpcode() != ISD::LOAD)
8376     return true;
8377 
8378   // If there is no LXSIBZX/LXSIHZX, like Power8,
8379   // prefer direct move if the memory size is 1 or 2 bytes.
8380   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8381   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8382     return true;
8383 
8384   for (SDNode::use_iterator UI = Origin->use_begin(),
8385                             UE = Origin->use_end();
8386        UI != UE; ++UI) {
8387 
8388     // Only look at the users of the loaded value.
8389     if (UI.getUse().get().getResNo() != 0)
8390       continue;
8391 
8392     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8393         UI->getOpcode() != ISD::UINT_TO_FP &&
8394         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8395         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8396       return true;
8397   }
8398 
8399   return false;
8400 }
8401 
8402 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8403                               const PPCSubtarget &Subtarget,
8404                               SDValue Chain = SDValue()) {
8405   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8406                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8407   SDLoc dl(Op);
8408 
8409   // TODO: Any other flags to propagate?
8410   SDNodeFlags Flags;
8411   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8412 
8413   // If we have FCFIDS, then use it when converting to single-precision.
8414   // Otherwise, convert to double-precision and then round.
8415   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8416   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8417                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8418   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8419   if (Op->isStrictFPOpcode()) {
8420     if (!Chain)
8421       Chain = Op.getOperand(0);
8422     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8423                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8424   } else
8425     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8426 }
8427 
8428 /// Custom lowers integer to floating point conversions to use
8429 /// the direct move instructions available in ISA 2.07 to avoid the
8430 /// need for load/store combinations.
8431 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8432                                                     SelectionDAG &DAG,
8433                                                     const SDLoc &dl) const {
8434   assert((Op.getValueType() == MVT::f32 ||
8435           Op.getValueType() == MVT::f64) &&
8436          "Invalid floating point type as target of conversion");
8437   assert(Subtarget.hasFPCVT() &&
8438          "Int to FP conversions with direct moves require FPCVT");
8439   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8440   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8441   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8442                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8443   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8444   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8445   return convertIntToFP(Op, Mov, DAG, Subtarget);
8446 }
8447 
8448 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8449 
8450   EVT VecVT = Vec.getValueType();
8451   assert(VecVT.isVector() && "Expected a vector type.");
8452   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8453 
8454   EVT EltVT = VecVT.getVectorElementType();
8455   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8456   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8457 
8458   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8459   SmallVector<SDValue, 16> Ops(NumConcat);
8460   Ops[0] = Vec;
8461   SDValue UndefVec = DAG.getUNDEF(VecVT);
8462   for (unsigned i = 1; i < NumConcat; ++i)
8463     Ops[i] = UndefVec;
8464 
8465   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8466 }
8467 
8468 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8469                                                 const SDLoc &dl) const {
8470   bool IsStrict = Op->isStrictFPOpcode();
8471   unsigned Opc = Op.getOpcode();
8472   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8473   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8474           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8475          "Unexpected conversion type");
8476   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8477          "Supports conversions to v2f64/v4f32 only.");
8478 
8479   // TODO: Any other flags to propagate?
8480   SDNodeFlags Flags;
8481   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8482 
8483   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8484   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8485 
8486   SDValue Wide = widenVec(DAG, Src, dl);
8487   EVT WideVT = Wide.getValueType();
8488   unsigned WideNumElts = WideVT.getVectorNumElements();
8489   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8490 
8491   SmallVector<int, 16> ShuffV;
8492   for (unsigned i = 0; i < WideNumElts; ++i)
8493     ShuffV.push_back(i + WideNumElts);
8494 
8495   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8496   int SaveElts = FourEltRes ? 4 : 2;
8497   if (Subtarget.isLittleEndian())
8498     for (int i = 0; i < SaveElts; i++)
8499       ShuffV[i * Stride] = i;
8500   else
8501     for (int i = 1; i <= SaveElts; i++)
8502       ShuffV[i * Stride - 1] = i - 1;
8503 
8504   SDValue ShuffleSrc2 =
8505       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8506   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8507 
8508   SDValue Extend;
8509   if (SignedConv) {
8510     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8511     EVT ExtVT = Src.getValueType();
8512     if (Subtarget.hasP9Altivec())
8513       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8514                                IntermediateVT.getVectorNumElements());
8515 
8516     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8517                          DAG.getValueType(ExtVT));
8518   } else
8519     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8520 
8521   if (IsStrict)
8522     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8523                        {Op.getOperand(0), Extend}, Flags);
8524 
8525   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8526 }
8527 
8528 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8529                                           SelectionDAG &DAG) const {
8530   SDLoc dl(Op);
8531   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8532                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8533   bool IsStrict = Op->isStrictFPOpcode();
8534   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8535   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8536 
8537   // TODO: Any other flags to propagate?
8538   SDNodeFlags Flags;
8539   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8540 
8541   EVT InVT = Src.getValueType();
8542   EVT OutVT = Op.getValueType();
8543   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8544       isOperationCustom(Op.getOpcode(), InVT))
8545     return LowerINT_TO_FPVector(Op, DAG, dl);
8546 
8547   // Conversions to f128 are legal.
8548   if (Op.getValueType() == MVT::f128)
8549     return Op;
8550 
8551   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8552   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8553     return SDValue();
8554 
8555   if (Src.getValueType() == MVT::i1)
8556     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8557                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8558                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8559 
8560   // If we have direct moves, we can do all the conversion, skip the store/load
8561   // however, without FPCVT we can't do most conversions.
8562   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8563       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8564     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8565 
8566   assert((IsSigned || Subtarget.hasFPCVT()) &&
8567          "UINT_TO_FP is supported only with FPCVT");
8568 
8569   if (Src.getValueType() == MVT::i64) {
8570     SDValue SINT = Src;
8571     // When converting to single-precision, we actually need to convert
8572     // to double-precision first and then round to single-precision.
8573     // To avoid double-rounding effects during that operation, we have
8574     // to prepare the input operand.  Bits that might be truncated when
8575     // converting to double-precision are replaced by a bit that won't
8576     // be lost at this stage, but is below the single-precision rounding
8577     // position.
8578     //
8579     // However, if -enable-unsafe-fp-math is in effect, accept double
8580     // rounding to avoid the extra overhead.
8581     if (Op.getValueType() == MVT::f32 &&
8582         !Subtarget.hasFPCVT() &&
8583         !DAG.getTarget().Options.UnsafeFPMath) {
8584 
8585       // Twiddle input to make sure the low 11 bits are zero.  (If this
8586       // is the case, we are guaranteed the value will fit into the 53 bit
8587       // mantissa of an IEEE double-precision value without rounding.)
8588       // If any of those low 11 bits were not zero originally, make sure
8589       // bit 12 (value 2048) is set instead, so that the final rounding
8590       // to single-precision gets the correct result.
8591       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8592                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8593       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8594                           Round, DAG.getConstant(2047, dl, MVT::i64));
8595       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8596       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8597                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8598 
8599       // However, we cannot use that value unconditionally: if the magnitude
8600       // of the input value is small, the bit-twiddling we did above might
8601       // end up visibly changing the output.  Fortunately, in that case, we
8602       // don't need to twiddle bits since the original input will convert
8603       // exactly to double-precision floating-point already.  Therefore,
8604       // construct a conditional to use the original value if the top 11
8605       // bits are all sign-bit copies, and use the rounded value computed
8606       // above otherwise.
8607       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8608                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8609       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8610                          Cond, DAG.getConstant(1, dl, MVT::i64));
8611       Cond = DAG.getSetCC(
8612           dl,
8613           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8614           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8615 
8616       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8617     }
8618 
8619     ReuseLoadInfo RLI;
8620     SDValue Bits;
8621 
8622     MachineFunction &MF = DAG.getMachineFunction();
8623     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8624       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8625                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8626       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8627     } else if (Subtarget.hasLFIWAX() &&
8628                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8629       MachineMemOperand *MMO =
8630         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8631                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8632       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8633       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8634                                      DAG.getVTList(MVT::f64, MVT::Other),
8635                                      Ops, MVT::i32, MMO);
8636       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8637     } else if (Subtarget.hasFPCVT() &&
8638                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8639       MachineMemOperand *MMO =
8640         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8641                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8642       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8643       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8644                                      DAG.getVTList(MVT::f64, MVT::Other),
8645                                      Ops, MVT::i32, MMO);
8646       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8647     } else if (((Subtarget.hasLFIWAX() &&
8648                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8649                 (Subtarget.hasFPCVT() &&
8650                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8651                SINT.getOperand(0).getValueType() == MVT::i32) {
8652       MachineFrameInfo &MFI = MF.getFrameInfo();
8653       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8654 
8655       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8656       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8657 
8658       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8659                                    MachinePointerInfo::getFixedStack(
8660                                        DAG.getMachineFunction(), FrameIdx));
8661       Chain = Store;
8662 
8663       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8664              "Expected an i32 store");
8665 
8666       RLI.Ptr = FIdx;
8667       RLI.Chain = Chain;
8668       RLI.MPI =
8669           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8670       RLI.Alignment = Align(4);
8671 
8672       MachineMemOperand *MMO =
8673         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8674                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8675       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8676       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8677                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8678                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8679                                      Ops, MVT::i32, MMO);
8680       Chain = Bits.getValue(1);
8681     } else
8682       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8683 
8684     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8685     if (IsStrict)
8686       Chain = FP.getValue(1);
8687 
8688     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8689       if (IsStrict)
8690         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8691                          DAG.getVTList(MVT::f32, MVT::Other),
8692                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8693       else
8694         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8695                          DAG.getIntPtrConstant(0, dl));
8696     }
8697     return FP;
8698   }
8699 
8700   assert(Src.getValueType() == MVT::i32 &&
8701          "Unhandled INT_TO_FP type in custom expander!");
8702   // Since we only generate this in 64-bit mode, we can take advantage of
8703   // 64-bit registers.  In particular, sign extend the input value into the
8704   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8705   // then lfd it and fcfid it.
8706   MachineFunction &MF = DAG.getMachineFunction();
8707   MachineFrameInfo &MFI = MF.getFrameInfo();
8708   EVT PtrVT = getPointerTy(MF.getDataLayout());
8709 
8710   SDValue Ld;
8711   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8712     ReuseLoadInfo RLI;
8713     bool ReusingLoad;
8714     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8715       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8716       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8717 
8718       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8719                                    MachinePointerInfo::getFixedStack(
8720                                        DAG.getMachineFunction(), FrameIdx));
8721       Chain = Store;
8722 
8723       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8724              "Expected an i32 store");
8725 
8726       RLI.Ptr = FIdx;
8727       RLI.Chain = Chain;
8728       RLI.MPI =
8729           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8730       RLI.Alignment = Align(4);
8731     }
8732 
8733     MachineMemOperand *MMO =
8734       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8735                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8736     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8737     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8738                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8739                                  MVT::i32, MMO);
8740     Chain = Ld.getValue(1);
8741     if (ReusingLoad)
8742       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8743   } else {
8744     assert(Subtarget.isPPC64() &&
8745            "i32->FP without LFIWAX supported only on PPC64");
8746 
8747     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8748     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8749 
8750     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8751 
8752     // STD the extended value into the stack slot.
8753     SDValue Store = DAG.getStore(
8754         Chain, dl, Ext64, FIdx,
8755         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8756     Chain = Store;
8757 
8758     // Load the value as a double.
8759     Ld = DAG.getLoad(
8760         MVT::f64, dl, Chain, FIdx,
8761         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8762     Chain = Ld.getValue(1);
8763   }
8764 
8765   // FCFID it and return it.
8766   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8767   if (IsStrict)
8768     Chain = FP.getValue(1);
8769   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8770     if (IsStrict)
8771       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8772                        DAG.getVTList(MVT::f32, MVT::Other),
8773                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8774     else
8775       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8776                        DAG.getIntPtrConstant(0, dl));
8777   }
8778   return FP;
8779 }
8780 
8781 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8782                                             SelectionDAG &DAG) const {
8783   SDLoc dl(Op);
8784   /*
8785    The rounding mode is in bits 30:31 of FPSR, and has the following
8786    settings:
8787      00 Round to nearest
8788      01 Round to 0
8789      10 Round to +inf
8790      11 Round to -inf
8791 
8792   FLT_ROUNDS, on the other hand, expects the following:
8793     -1 Undefined
8794      0 Round to 0
8795      1 Round to nearest
8796      2 Round to +inf
8797      3 Round to -inf
8798 
8799   To perform the conversion, we do:
8800     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8801   */
8802 
8803   MachineFunction &MF = DAG.getMachineFunction();
8804   EVT VT = Op.getValueType();
8805   EVT PtrVT = getPointerTy(MF.getDataLayout());
8806 
8807   // Save FP Control Word to register
8808   SDValue Chain = Op.getOperand(0);
8809   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8810   Chain = MFFS.getValue(1);
8811 
8812   // Save FP register to stack slot
8813   int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8814   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8815   Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8816 
8817   // Load FP Control Word from low 32 bits of stack slot.
8818   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8819   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8820   SDValue CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8821   Chain = CWD.getValue(1);
8822 
8823   // Transform as necessary
8824   SDValue CWD1 =
8825     DAG.getNode(ISD::AND, dl, MVT::i32,
8826                 CWD, DAG.getConstant(3, dl, MVT::i32));
8827   SDValue CWD2 =
8828     DAG.getNode(ISD::SRL, dl, MVT::i32,
8829                 DAG.getNode(ISD::AND, dl, MVT::i32,
8830                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8831                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8832                             DAG.getConstant(3, dl, MVT::i32)),
8833                 DAG.getConstant(1, dl, MVT::i32));
8834 
8835   SDValue RetVal =
8836     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8837 
8838   RetVal =
8839       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8840                   dl, VT, RetVal);
8841 
8842   return DAG.getMergeValues({RetVal, Chain}, dl);
8843 }
8844 
8845 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8846   EVT VT = Op.getValueType();
8847   unsigned BitWidth = VT.getSizeInBits();
8848   SDLoc dl(Op);
8849   assert(Op.getNumOperands() == 3 &&
8850          VT == Op.getOperand(1).getValueType() &&
8851          "Unexpected SHL!");
8852 
8853   // Expand into a bunch of logical ops.  Note that these ops
8854   // depend on the PPC behavior for oversized shift amounts.
8855   SDValue Lo = Op.getOperand(0);
8856   SDValue Hi = Op.getOperand(1);
8857   SDValue Amt = Op.getOperand(2);
8858   EVT AmtVT = Amt.getValueType();
8859 
8860   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8861                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8862   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8863   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8864   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8865   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8866                              DAG.getConstant(-BitWidth, dl, AmtVT));
8867   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8868   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8869   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8870   SDValue OutOps[] = { OutLo, OutHi };
8871   return DAG.getMergeValues(OutOps, dl);
8872 }
8873 
8874 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8875   EVT VT = Op.getValueType();
8876   SDLoc dl(Op);
8877   unsigned BitWidth = VT.getSizeInBits();
8878   assert(Op.getNumOperands() == 3 &&
8879          VT == Op.getOperand(1).getValueType() &&
8880          "Unexpected SRL!");
8881 
8882   // Expand into a bunch of logical ops.  Note that these ops
8883   // depend on the PPC behavior for oversized shift amounts.
8884   SDValue Lo = Op.getOperand(0);
8885   SDValue Hi = Op.getOperand(1);
8886   SDValue Amt = Op.getOperand(2);
8887   EVT AmtVT = Amt.getValueType();
8888 
8889   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8890                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8891   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8892   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8893   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8894   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8895                              DAG.getConstant(-BitWidth, dl, AmtVT));
8896   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8897   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8898   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8899   SDValue OutOps[] = { OutLo, OutHi };
8900   return DAG.getMergeValues(OutOps, dl);
8901 }
8902 
8903 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8904   SDLoc dl(Op);
8905   EVT VT = Op.getValueType();
8906   unsigned BitWidth = VT.getSizeInBits();
8907   assert(Op.getNumOperands() == 3 &&
8908          VT == Op.getOperand(1).getValueType() &&
8909          "Unexpected SRA!");
8910 
8911   // Expand into a bunch of logical ops, followed by a select_cc.
8912   SDValue Lo = Op.getOperand(0);
8913   SDValue Hi = Op.getOperand(1);
8914   SDValue Amt = Op.getOperand(2);
8915   EVT AmtVT = Amt.getValueType();
8916 
8917   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8918                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8919   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8920   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8921   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8922   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8923                              DAG.getConstant(-BitWidth, dl, AmtVT));
8924   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8925   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8926   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8927                                   Tmp4, Tmp6, ISD::SETLE);
8928   SDValue OutOps[] = { OutLo, OutHi };
8929   return DAG.getMergeValues(OutOps, dl);
8930 }
8931 
8932 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8933                                             SelectionDAG &DAG) const {
8934   SDLoc dl(Op);
8935   EVT VT = Op.getValueType();
8936   unsigned BitWidth = VT.getSizeInBits();
8937 
8938   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8939   SDValue X = Op.getOperand(0);
8940   SDValue Y = Op.getOperand(1);
8941   SDValue Z = Op.getOperand(2);
8942   EVT AmtVT = Z.getValueType();
8943 
8944   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8945   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8946   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8947   // on PowerPC shift by BW being well defined.
8948   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8949                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8950   SDValue SubZ =
8951       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8952   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8953   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8954   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8955 }
8956 
8957 //===----------------------------------------------------------------------===//
8958 // Vector related lowering.
8959 //
8960 
8961 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8962 /// element size of SplatSize. Cast the result to VT.
8963 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8964                                       SelectionDAG &DAG, const SDLoc &dl) {
8965   static const MVT VTys[] = { // canonical VT to use for each size.
8966     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8967   };
8968 
8969   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8970 
8971   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8972   if (Val == ((1LU << (SplatSize * 8)) - 1)) {
8973     SplatSize = 1;
8974     Val = 0xFF;
8975   }
8976 
8977   EVT CanonicalVT = VTys[SplatSize-1];
8978 
8979   // Build a canonical splat for this value.
8980   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8981 }
8982 
8983 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8984 /// specified intrinsic ID.
8985 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8986                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8987   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8988   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8989                      DAG.getConstant(IID, dl, MVT::i32), Op);
8990 }
8991 
8992 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8993 /// specified intrinsic ID.
8994 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8995                                 SelectionDAG &DAG, const SDLoc &dl,
8996                                 EVT DestVT = MVT::Other) {
8997   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8998   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8999                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
9000 }
9001 
9002 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
9003 /// specified intrinsic ID.
9004 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
9005                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
9006                                 EVT DestVT = MVT::Other) {
9007   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
9008   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9009                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
9010 }
9011 
9012 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9013 /// amount.  The result has the specified value type.
9014 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9015                            SelectionDAG &DAG, const SDLoc &dl) {
9016   // Force LHS/RHS to be the right type.
9017   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9018   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9019 
9020   int Ops[16];
9021   for (unsigned i = 0; i != 16; ++i)
9022     Ops[i] = i + Amt;
9023   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9024   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9025 }
9026 
9027 /// Do we have an efficient pattern in a .td file for this node?
9028 ///
9029 /// \param V - pointer to the BuildVectorSDNode being matched
9030 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9031 ///
9032 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9033 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9034 /// the opposite is true (expansion is beneficial) are:
9035 /// - The node builds a vector out of integers that are not 32 or 64-bits
9036 /// - The node builds a vector out of constants
9037 /// - The node is a "load-and-splat"
9038 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9039 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9040                                             bool HasDirectMove,
9041                                             bool HasP8Vector) {
9042   EVT VecVT = V->getValueType(0);
9043   bool RightType = VecVT == MVT::v2f64 ||
9044     (HasP8Vector && VecVT == MVT::v4f32) ||
9045     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9046   if (!RightType)
9047     return false;
9048 
9049   bool IsSplat = true;
9050   bool IsLoad = false;
9051   SDValue Op0 = V->getOperand(0);
9052 
9053   // This function is called in a block that confirms the node is not a constant
9054   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9055   // different constants.
9056   if (V->isConstant())
9057     return false;
9058   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9059     if (V->getOperand(i).isUndef())
9060       return false;
9061     // We want to expand nodes that represent load-and-splat even if the
9062     // loaded value is a floating point truncation or conversion to int.
9063     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9064         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9065          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9066         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9067          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9068         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9069          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9070       IsLoad = true;
9071     // If the operands are different or the input is not a load and has more
9072     // uses than just this BV node, then it isn't a splat.
9073     if (V->getOperand(i) != Op0 ||
9074         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9075       IsSplat = false;
9076   }
9077   return !(IsSplat && IsLoad);
9078 }
9079 
9080 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9081 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9082 
9083   SDLoc dl(Op);
9084   SDValue Op0 = Op->getOperand(0);
9085 
9086   if ((Op.getValueType() != MVT::f128) ||
9087       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9088       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9089       (Op0.getOperand(1).getValueType() != MVT::i64))
9090     return SDValue();
9091 
9092   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9093                      Op0.getOperand(1));
9094 }
9095 
9096 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9097   const SDValue *InputLoad = &Op;
9098   if (InputLoad->getOpcode() == ISD::BITCAST)
9099     InputLoad = &InputLoad->getOperand(0);
9100   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9101       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9102     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9103     InputLoad = &InputLoad->getOperand(0);
9104   }
9105   if (InputLoad->getOpcode() != ISD::LOAD)
9106     return nullptr;
9107   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9108   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9109 }
9110 
9111 // Convert the argument APFloat to a single precision APFloat if there is no
9112 // loss in information during the conversion to single precision APFloat and the
9113 // resulting number is not a denormal number. Return true if successful.
9114 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9115   APFloat APFloatToConvert = ArgAPFloat;
9116   bool LosesInfo = true;
9117   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9118                            &LosesInfo);
9119   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9120   if (Success)
9121     ArgAPFloat = APFloatToConvert;
9122   return Success;
9123 }
9124 
9125 // Bitcast the argument APInt to a double and convert it to a single precision
9126 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9127 // argument if there is no loss in information during the conversion from
9128 // double to single precision APFloat and the resulting number is not a denormal
9129 // number. Return true if successful.
9130 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9131   double DpValue = ArgAPInt.bitsToDouble();
9132   APFloat APFloatDp(DpValue);
9133   bool Success = convertToNonDenormSingle(APFloatDp);
9134   if (Success)
9135     ArgAPInt = APFloatDp.bitcastToAPInt();
9136   return Success;
9137 }
9138 
9139 // If this is a case we can't handle, return null and let the default
9140 // expansion code take care of it.  If we CAN select this case, and if it
9141 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9142 // this case more efficiently than a constant pool load, lower it to the
9143 // sequence of ops that should be used.
9144 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9145                                              SelectionDAG &DAG) const {
9146   SDLoc dl(Op);
9147   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9148   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9149 
9150   // Check if this is a splat of a constant value.
9151   APInt APSplatBits, APSplatUndef;
9152   unsigned SplatBitSize;
9153   bool HasAnyUndefs;
9154   bool BVNIsConstantSplat =
9155       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9156                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9157 
9158   // If it is a splat of a double, check if we can shrink it to a 32 bit
9159   // non-denormal float which when converted back to double gives us the same
9160   // double. This is to exploit the XXSPLTIDP instruction.
9161   if (BVNIsConstantSplat && Subtarget.hasPrefixInstrs() &&
9162       (SplatBitSize == 64) && (Op->getValueType(0) == MVT::v2f64) &&
9163       convertToNonDenormSingle(APSplatBits)) {
9164     SDValue SplatNode = DAG.getNode(
9165         PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9166         DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9167     return DAG.getBitcast(Op.getValueType(), SplatNode);
9168   }
9169 
9170   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9171 
9172     bool IsPermutedLoad = false;
9173     const SDValue *InputLoad =
9174         getNormalLoadInput(Op.getOperand(0), IsPermutedLoad);
9175     // Handle load-and-splat patterns as we have instructions that will do this
9176     // in one go.
9177     if (InputLoad && DAG.isSplatValue(Op, true)) {
9178       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9179 
9180       // We have handling for 4 and 8 byte elements.
9181       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
9182 
9183       // Checking for a single use of this load, we have to check for vector
9184       // width (128 bits) / ElementSize uses (since each operand of the
9185       // BUILD_VECTOR is a separate use of the value.
9186       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
9187           ((Subtarget.hasVSX() && ElementSize == 64) ||
9188            (Subtarget.hasP9Vector() && ElementSize == 32))) {
9189         SDValue Ops[] = {
9190           LD->getChain(),    // Chain
9191           LD->getBasePtr(),  // Ptr
9192           DAG.getValueType(Op.getValueType()) // VT
9193         };
9194         return
9195           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
9196                                   DAG.getVTList(Op.getValueType(), MVT::Other),
9197                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
9198       }
9199     }
9200 
9201     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
9202     // lowered to VSX instructions under certain conditions.
9203     // Without VSX, there is no pattern more efficient than expanding the node.
9204     if (Subtarget.hasVSX() &&
9205         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9206                                         Subtarget.hasP8Vector()))
9207       return Op;
9208     return SDValue();
9209   }
9210 
9211   uint64_t SplatBits = APSplatBits.getZExtValue();
9212   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9213   unsigned SplatSize = SplatBitSize / 8;
9214 
9215   // First, handle single instruction cases.
9216 
9217   // All zeros?
9218   if (SplatBits == 0) {
9219     // Canonicalize all zero vectors to be v4i32.
9220     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9221       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9222       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9223     }
9224     return Op;
9225   }
9226 
9227   // We have XXSPLTIW for constant splats four bytes wide.
9228   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9229   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9230   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9231   // turned into a 4-byte splat of 0xABABABAB.
9232   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9233     return getCanonicalConstSplat((SplatBits |= SplatBits << 16), SplatSize * 2,
9234                                   Op.getValueType(), DAG, dl);
9235 
9236   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9237     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9238                                   dl);
9239 
9240   // We have XXSPLTIB for constant splats one byte wide.
9241   if (Subtarget.hasP9Vector() && SplatSize == 1)
9242     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9243                                   dl);
9244 
9245   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9246   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9247                     (32-SplatBitSize));
9248   if (SextVal >= -16 && SextVal <= 15)
9249     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9250                                   dl);
9251 
9252   // Two instruction sequences.
9253 
9254   // If this value is in the range [-32,30] and is even, use:
9255   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9256   // If this value is in the range [17,31] and is odd, use:
9257   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9258   // If this value is in the range [-31,-17] and is odd, use:
9259   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9260   // Note the last two are three-instruction sequences.
9261   if (SextVal >= -32 && SextVal <= 31) {
9262     // To avoid having these optimizations undone by constant folding,
9263     // we convert to a pseudo that will be expanded later into one of
9264     // the above forms.
9265     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9266     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9267               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9268     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9269     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9270     if (VT == Op.getValueType())
9271       return RetVal;
9272     else
9273       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9274   }
9275 
9276   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9277   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9278   // for fneg/fabs.
9279   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9280     // Make -1 and vspltisw -1:
9281     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9282 
9283     // Make the VSLW intrinsic, computing 0x8000_0000.
9284     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9285                                    OnesV, DAG, dl);
9286 
9287     // xor by OnesV to invert it.
9288     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9289     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9290   }
9291 
9292   // Check to see if this is a wide variety of vsplti*, binop self cases.
9293   static const signed char SplatCsts[] = {
9294     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9295     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9296   };
9297 
9298   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9299     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9300     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9301     int i = SplatCsts[idx];
9302 
9303     // Figure out what shift amount will be used by altivec if shifted by i in
9304     // this splat size.
9305     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9306 
9307     // vsplti + shl self.
9308     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9309       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9310       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9311         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9312         Intrinsic::ppc_altivec_vslw
9313       };
9314       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9315       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9316     }
9317 
9318     // vsplti + srl self.
9319     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9320       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9321       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9322         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9323         Intrinsic::ppc_altivec_vsrw
9324       };
9325       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9326       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9327     }
9328 
9329     // vsplti + sra self.
9330     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9331       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9332       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9333         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
9334         Intrinsic::ppc_altivec_vsraw
9335       };
9336       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9337       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9338     }
9339 
9340     // vsplti + rol self.
9341     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9342                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9343       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9344       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9345         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9346         Intrinsic::ppc_altivec_vrlw
9347       };
9348       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9349       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9350     }
9351 
9352     // t = vsplti c, result = vsldoi t, t, 1
9353     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9354       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9355       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9356       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9357     }
9358     // t = vsplti c, result = vsldoi t, t, 2
9359     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9360       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9361       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9362       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9363     }
9364     // t = vsplti c, result = vsldoi t, t, 3
9365     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9366       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9367       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9368       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9369     }
9370   }
9371 
9372   return SDValue();
9373 }
9374 
9375 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9376 /// the specified operations to build the shuffle.
9377 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9378                                       SDValue RHS, SelectionDAG &DAG,
9379                                       const SDLoc &dl) {
9380   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9381   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9382   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9383 
9384   enum {
9385     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9386     OP_VMRGHW,
9387     OP_VMRGLW,
9388     OP_VSPLTISW0,
9389     OP_VSPLTISW1,
9390     OP_VSPLTISW2,
9391     OP_VSPLTISW3,
9392     OP_VSLDOI4,
9393     OP_VSLDOI8,
9394     OP_VSLDOI12
9395   };
9396 
9397   if (OpNum == OP_COPY) {
9398     if (LHSID == (1*9+2)*9+3) return LHS;
9399     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9400     return RHS;
9401   }
9402 
9403   SDValue OpLHS, OpRHS;
9404   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9405   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9406 
9407   int ShufIdxs[16];
9408   switch (OpNum) {
9409   default: llvm_unreachable("Unknown i32 permute!");
9410   case OP_VMRGHW:
9411     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9412     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9413     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9414     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9415     break;
9416   case OP_VMRGLW:
9417     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9418     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9419     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9420     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9421     break;
9422   case OP_VSPLTISW0:
9423     for (unsigned i = 0; i != 16; ++i)
9424       ShufIdxs[i] = (i&3)+0;
9425     break;
9426   case OP_VSPLTISW1:
9427     for (unsigned i = 0; i != 16; ++i)
9428       ShufIdxs[i] = (i&3)+4;
9429     break;
9430   case OP_VSPLTISW2:
9431     for (unsigned i = 0; i != 16; ++i)
9432       ShufIdxs[i] = (i&3)+8;
9433     break;
9434   case OP_VSPLTISW3:
9435     for (unsigned i = 0; i != 16; ++i)
9436       ShufIdxs[i] = (i&3)+12;
9437     break;
9438   case OP_VSLDOI4:
9439     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9440   case OP_VSLDOI8:
9441     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9442   case OP_VSLDOI12:
9443     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9444   }
9445   EVT VT = OpLHS.getValueType();
9446   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9447   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9448   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9449   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9450 }
9451 
9452 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9453 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9454 /// SDValue.
9455 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9456                                            SelectionDAG &DAG) const {
9457   const unsigned BytesInVector = 16;
9458   bool IsLE = Subtarget.isLittleEndian();
9459   SDLoc dl(N);
9460   SDValue V1 = N->getOperand(0);
9461   SDValue V2 = N->getOperand(1);
9462   unsigned ShiftElts = 0, InsertAtByte = 0;
9463   bool Swap = false;
9464 
9465   // Shifts required to get the byte we want at element 7.
9466   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9467                                    0, 15, 14, 13, 12, 11, 10, 9};
9468   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9469                                 1, 2,  3,  4,  5,  6,  7,  8};
9470 
9471   ArrayRef<int> Mask = N->getMask();
9472   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9473 
9474   // For each mask element, find out if we're just inserting something
9475   // from V2 into V1 or vice versa.
9476   // Possible permutations inserting an element from V2 into V1:
9477   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9478   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9479   //   ...
9480   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9481   // Inserting from V1 into V2 will be similar, except mask range will be
9482   // [16,31].
9483 
9484   bool FoundCandidate = false;
9485   // If both vector operands for the shuffle are the same vector, the mask
9486   // will contain only elements from the first one and the second one will be
9487   // undef.
9488   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9489   // Go through the mask of half-words to find an element that's being moved
9490   // from one vector to the other.
9491   for (unsigned i = 0; i < BytesInVector; ++i) {
9492     unsigned CurrentElement = Mask[i];
9493     // If 2nd operand is undefined, we should only look for element 7 in the
9494     // Mask.
9495     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9496       continue;
9497 
9498     bool OtherElementsInOrder = true;
9499     // Examine the other elements in the Mask to see if they're in original
9500     // order.
9501     for (unsigned j = 0; j < BytesInVector; ++j) {
9502       if (j == i)
9503         continue;
9504       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9505       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9506       // in which we always assume we're always picking from the 1st operand.
9507       int MaskOffset =
9508           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9509       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9510         OtherElementsInOrder = false;
9511         break;
9512       }
9513     }
9514     // If other elements are in original order, we record the number of shifts
9515     // we need to get the element we want into element 7. Also record which byte
9516     // in the vector we should insert into.
9517     if (OtherElementsInOrder) {
9518       // If 2nd operand is undefined, we assume no shifts and no swapping.
9519       if (V2.isUndef()) {
9520         ShiftElts = 0;
9521         Swap = false;
9522       } else {
9523         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9524         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9525                          : BigEndianShifts[CurrentElement & 0xF];
9526         Swap = CurrentElement < BytesInVector;
9527       }
9528       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9529       FoundCandidate = true;
9530       break;
9531     }
9532   }
9533 
9534   if (!FoundCandidate)
9535     return SDValue();
9536 
9537   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9538   // optionally with VECSHL if shift is required.
9539   if (Swap)
9540     std::swap(V1, V2);
9541   if (V2.isUndef())
9542     V2 = V1;
9543   if (ShiftElts) {
9544     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9545                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9546     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9547                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9548   }
9549   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9550                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9551 }
9552 
9553 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9554 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9555 /// SDValue.
9556 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9557                                            SelectionDAG &DAG) const {
9558   const unsigned NumHalfWords = 8;
9559   const unsigned BytesInVector = NumHalfWords * 2;
9560   // Check that the shuffle is on half-words.
9561   if (!isNByteElemShuffleMask(N, 2, 1))
9562     return SDValue();
9563 
9564   bool IsLE = Subtarget.isLittleEndian();
9565   SDLoc dl(N);
9566   SDValue V1 = N->getOperand(0);
9567   SDValue V2 = N->getOperand(1);
9568   unsigned ShiftElts = 0, InsertAtByte = 0;
9569   bool Swap = false;
9570 
9571   // Shifts required to get the half-word we want at element 3.
9572   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9573   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9574 
9575   uint32_t Mask = 0;
9576   uint32_t OriginalOrderLow = 0x1234567;
9577   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9578   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9579   // 32-bit space, only need 4-bit nibbles per element.
9580   for (unsigned i = 0; i < NumHalfWords; ++i) {
9581     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9582     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9583   }
9584 
9585   // For each mask element, find out if we're just inserting something
9586   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9587   // from V2 into V1:
9588   //   X, 1, 2, 3, 4, 5, 6, 7
9589   //   0, X, 2, 3, 4, 5, 6, 7
9590   //   0, 1, X, 3, 4, 5, 6, 7
9591   //   0, 1, 2, X, 4, 5, 6, 7
9592   //   0, 1, 2, 3, X, 5, 6, 7
9593   //   0, 1, 2, 3, 4, X, 6, 7
9594   //   0, 1, 2, 3, 4, 5, X, 7
9595   //   0, 1, 2, 3, 4, 5, 6, X
9596   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9597 
9598   bool FoundCandidate = false;
9599   // Go through the mask of half-words to find an element that's being moved
9600   // from one vector to the other.
9601   for (unsigned i = 0; i < NumHalfWords; ++i) {
9602     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9603     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9604     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9605     uint32_t TargetOrder = 0x0;
9606 
9607     // If both vector operands for the shuffle are the same vector, the mask
9608     // will contain only elements from the first one and the second one will be
9609     // undef.
9610     if (V2.isUndef()) {
9611       ShiftElts = 0;
9612       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9613       TargetOrder = OriginalOrderLow;
9614       Swap = false;
9615       // Skip if not the correct element or mask of other elements don't equal
9616       // to our expected order.
9617       if (MaskOneElt == VINSERTHSrcElem &&
9618           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9619         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9620         FoundCandidate = true;
9621         break;
9622       }
9623     } else { // If both operands are defined.
9624       // Target order is [8,15] if the current mask is between [0,7].
9625       TargetOrder =
9626           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9627       // Skip if mask of other elements don't equal our expected order.
9628       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9629         // We only need the last 3 bits for the number of shifts.
9630         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9631                          : BigEndianShifts[MaskOneElt & 0x7];
9632         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9633         Swap = MaskOneElt < NumHalfWords;
9634         FoundCandidate = true;
9635         break;
9636       }
9637     }
9638   }
9639 
9640   if (!FoundCandidate)
9641     return SDValue();
9642 
9643   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9644   // optionally with VECSHL if shift is required.
9645   if (Swap)
9646     std::swap(V1, V2);
9647   if (V2.isUndef())
9648     V2 = V1;
9649   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9650   if (ShiftElts) {
9651     // Double ShiftElts because we're left shifting on v16i8 type.
9652     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9653                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9654     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9655     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9656                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9657     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9658   }
9659   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9660   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9661                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9662   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9663 }
9664 
9665 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9666 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9667 /// return the default SDValue.
9668 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9669                                               SelectionDAG &DAG) const {
9670   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9671   // to v16i8. Peek through the bitcasts to get the actual operands.
9672   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9673   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9674 
9675   auto ShuffleMask = SVN->getMask();
9676   SDValue VecShuffle(SVN, 0);
9677   SDLoc DL(SVN);
9678 
9679   // Check that we have a four byte shuffle.
9680   if (!isNByteElemShuffleMask(SVN, 4, 1))
9681     return SDValue();
9682 
9683   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9684   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9685     std::swap(LHS, RHS);
9686     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9687     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9688   }
9689 
9690   // Ensure that the RHS is a vector of constants.
9691   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9692   if (!BVN)
9693     return SDValue();
9694 
9695   // Check if RHS is a splat of 4-bytes (or smaller).
9696   APInt APSplatValue, APSplatUndef;
9697   unsigned SplatBitSize;
9698   bool HasAnyUndefs;
9699   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9700                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9701       SplatBitSize > 32)
9702     return SDValue();
9703 
9704   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9705   // The instruction splats a constant C into two words of the source vector
9706   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9707   // Thus we check that the shuffle mask is the equivalent  of
9708   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9709   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9710   // within each word are consecutive, so we only need to check the first byte.
9711   SDValue Index;
9712   bool IsLE = Subtarget.isLittleEndian();
9713   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9714       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9715        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9716     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9717   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9718            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9719             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9720     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9721   else
9722     return SDValue();
9723 
9724   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9725   // for XXSPLTI32DX.
9726   unsigned SplatVal = APSplatValue.getZExtValue();
9727   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9728     SplatVal |= (SplatVal << SplatBitSize);
9729 
9730   SDValue SplatNode = DAG.getNode(
9731       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9732       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9733   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9734 }
9735 
9736 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9737 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9738 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9739 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9740 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9741   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9742   assert(Op.getValueType() == MVT::v1i128 &&
9743          "Only set v1i128 as custom, other type shouldn't reach here!");
9744   SDLoc dl(Op);
9745   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9746   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9747   unsigned SHLAmt = N1.getConstantOperandVal(0);
9748   if (SHLAmt % 8 == 0) {
9749     SmallVector<int, 16> Mask(16, 0);
9750     std::iota(Mask.begin(), Mask.end(), 0);
9751     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9752     if (SDValue Shuffle =
9753             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9754                                  DAG.getUNDEF(MVT::v16i8), Mask))
9755       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9756   }
9757   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9758   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9759                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9760   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9761                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9762   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9763   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9764 }
9765 
9766 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9767 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9768 /// return the code it can be lowered into.  Worst case, it can always be
9769 /// lowered into a vperm.
9770 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9771                                                SelectionDAG &DAG) const {
9772   SDLoc dl(Op);
9773   SDValue V1 = Op.getOperand(0);
9774   SDValue V2 = Op.getOperand(1);
9775   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9776 
9777   // Any nodes that were combined in the target-independent combiner prior
9778   // to vector legalization will not be sent to the target combine. Try to
9779   // combine it here.
9780   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9781     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9782       return NewShuffle;
9783     Op = NewShuffle;
9784     SVOp = cast<ShuffleVectorSDNode>(Op);
9785     V1 = Op.getOperand(0);
9786     V2 = Op.getOperand(1);
9787   }
9788   EVT VT = Op.getValueType();
9789   bool isLittleEndian = Subtarget.isLittleEndian();
9790 
9791   unsigned ShiftElts, InsertAtByte;
9792   bool Swap = false;
9793 
9794   // If this is a load-and-splat, we can do that with a single instruction
9795   // in some cases. However if the load has multiple uses, we don't want to
9796   // combine it because that will just produce multiple loads.
9797   bool IsPermutedLoad = false;
9798   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9799   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9800       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9801       InputLoad->hasOneUse()) {
9802     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9803     int SplatIdx =
9804       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9805 
9806     // The splat index for permuted loads will be in the left half of the vector
9807     // which is strictly wider than the loaded value by 8 bytes. So we need to
9808     // adjust the splat index to point to the correct address in memory.
9809     if (IsPermutedLoad) {
9810       assert(isLittleEndian && "Unexpected permuted load on big endian target");
9811       SplatIdx += IsFourByte ? 2 : 1;
9812       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9813              "Splat of a value outside of the loaded memory");
9814     }
9815 
9816     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9817     // For 4-byte load-and-splat, we need Power9.
9818     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9819       uint64_t Offset = 0;
9820       if (IsFourByte)
9821         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9822       else
9823         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9824 
9825       SDValue BasePtr = LD->getBasePtr();
9826       if (Offset != 0)
9827         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9828                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9829       SDValue Ops[] = {
9830         LD->getChain(),    // Chain
9831         BasePtr,           // BasePtr
9832         DAG.getValueType(Op.getValueType()) // VT
9833       };
9834       SDVTList VTL =
9835         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9836       SDValue LdSplt =
9837         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9838                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9839       if (LdSplt.getValueType() != SVOp->getValueType(0))
9840         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9841       return LdSplt;
9842     }
9843   }
9844   if (Subtarget.hasP9Vector() &&
9845       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9846                            isLittleEndian)) {
9847     if (Swap)
9848       std::swap(V1, V2);
9849     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9850     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9851     if (ShiftElts) {
9852       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9853                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9854       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9855                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9856       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9857     }
9858     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9859                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9860     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9861   }
9862 
9863   if (Subtarget.hasPrefixInstrs()) {
9864     SDValue SplatInsertNode;
9865     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9866       return SplatInsertNode;
9867   }
9868 
9869   if (Subtarget.hasP9Altivec()) {
9870     SDValue NewISDNode;
9871     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9872       return NewISDNode;
9873 
9874     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9875       return NewISDNode;
9876   }
9877 
9878   if (Subtarget.hasVSX() &&
9879       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9880     if (Swap)
9881       std::swap(V1, V2);
9882     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9883     SDValue Conv2 =
9884         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9885 
9886     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9887                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9888     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9889   }
9890 
9891   if (Subtarget.hasVSX() &&
9892     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9893     if (Swap)
9894       std::swap(V1, V2);
9895     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9896     SDValue Conv2 =
9897         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9898 
9899     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9900                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9901     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9902   }
9903 
9904   if (Subtarget.hasP9Vector()) {
9905      if (PPC::isXXBRHShuffleMask(SVOp)) {
9906       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9907       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9908       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9909     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9910       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9911       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9912       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9913     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9914       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9915       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9916       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9917     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9918       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9919       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9920       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9921     }
9922   }
9923 
9924   if (Subtarget.hasVSX()) {
9925     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9926       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9927 
9928       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9929       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9930                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9931       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9932     }
9933 
9934     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9935     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9936       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9937       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9938       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9939     }
9940   }
9941 
9942   // Cases that are handled by instructions that take permute immediates
9943   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9944   // selected by the instruction selector.
9945   if (V2.isUndef()) {
9946     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9947         PPC::isSplatShuffleMask(SVOp, 2) ||
9948         PPC::isSplatShuffleMask(SVOp, 4) ||
9949         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9950         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9951         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9952         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9953         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9954         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9955         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9956         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9957         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9958         (Subtarget.hasP8Altivec() && (
9959          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9960          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9961          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9962       return Op;
9963     }
9964   }
9965 
9966   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9967   // and produce a fixed permutation.  If any of these match, do not lower to
9968   // VPERM.
9969   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9970   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9971       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9972       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9973       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9974       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9975       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9976       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9977       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9978       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9979       (Subtarget.hasP8Altivec() && (
9980        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9981        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9982        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9983     return Op;
9984 
9985   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9986   // perfect shuffle table to emit an optimal matching sequence.
9987   ArrayRef<int> PermMask = SVOp->getMask();
9988 
9989   unsigned PFIndexes[4];
9990   bool isFourElementShuffle = true;
9991   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9992     unsigned EltNo = 8;   // Start out undef.
9993     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9994       if (PermMask[i*4+j] < 0)
9995         continue;   // Undef, ignore it.
9996 
9997       unsigned ByteSource = PermMask[i*4+j];
9998       if ((ByteSource & 3) != j) {
9999         isFourElementShuffle = false;
10000         break;
10001       }
10002 
10003       if (EltNo == 8) {
10004         EltNo = ByteSource/4;
10005       } else if (EltNo != ByteSource/4) {
10006         isFourElementShuffle = false;
10007         break;
10008       }
10009     }
10010     PFIndexes[i] = EltNo;
10011   }
10012 
10013   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10014   // perfect shuffle vector to determine if it is cost effective to do this as
10015   // discrete instructions, or whether we should use a vperm.
10016   // For now, we skip this for little endian until such time as we have a
10017   // little-endian perfect shuffle table.
10018   if (isFourElementShuffle && !isLittleEndian) {
10019     // Compute the index in the perfect shuffle table.
10020     unsigned PFTableIndex =
10021       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
10022 
10023     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10024     unsigned Cost  = (PFEntry >> 30);
10025 
10026     // Determining when to avoid vperm is tricky.  Many things affect the cost
10027     // of vperm, particularly how many times the perm mask needs to be computed.
10028     // For example, if the perm mask can be hoisted out of a loop or is already
10029     // used (perhaps because there are multiple permutes with the same shuffle
10030     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
10031     // the loop requires an extra register.
10032     //
10033     // As a compromise, we only emit discrete instructions if the shuffle can be
10034     // generated in 3 or fewer operations.  When we have loop information
10035     // available, if this block is within a loop, we should avoid using vperm
10036     // for 3-operation perms and use a constant pool load instead.
10037     if (Cost < 3)
10038       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10039   }
10040 
10041   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10042   // vector that will get spilled to the constant pool.
10043   if (V2.isUndef()) V2 = V1;
10044 
10045   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10046   // that it is in input element units, not in bytes.  Convert now.
10047 
10048   // For little endian, the order of the input vectors is reversed, and
10049   // the permutation mask is complemented with respect to 31.  This is
10050   // necessary to produce proper semantics with the big-endian-biased vperm
10051   // instruction.
10052   EVT EltVT = V1.getValueType().getVectorElementType();
10053   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10054 
10055   SmallVector<SDValue, 16> ResultMask;
10056   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10057     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10058 
10059     for (unsigned j = 0; j != BytesPerElement; ++j)
10060       if (isLittleEndian)
10061         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10062                                              dl, MVT::i32));
10063       else
10064         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10065                                              MVT::i32));
10066   }
10067 
10068   ShufflesHandledWithVPERM++;
10069   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10070   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10071   LLVM_DEBUG(SVOp->dump());
10072   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10073   LLVM_DEBUG(VPermMask.dump());
10074 
10075   if (isLittleEndian)
10076     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10077                        V2, V1, VPermMask);
10078   else
10079     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10080                        V1, V2, VPermMask);
10081 }
10082 
10083 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10084 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10085 /// information about the intrinsic.
10086 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10087                                  bool &isDot, const PPCSubtarget &Subtarget) {
10088   unsigned IntrinsicID =
10089       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10090   CompareOpc = -1;
10091   isDot = false;
10092   switch (IntrinsicID) {
10093   default:
10094     return false;
10095   // Comparison predicates.
10096   case Intrinsic::ppc_altivec_vcmpbfp_p:
10097     CompareOpc = 966;
10098     isDot = true;
10099     break;
10100   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10101     CompareOpc = 198;
10102     isDot = true;
10103     break;
10104   case Intrinsic::ppc_altivec_vcmpequb_p:
10105     CompareOpc = 6;
10106     isDot = true;
10107     break;
10108   case Intrinsic::ppc_altivec_vcmpequh_p:
10109     CompareOpc = 70;
10110     isDot = true;
10111     break;
10112   case Intrinsic::ppc_altivec_vcmpequw_p:
10113     CompareOpc = 134;
10114     isDot = true;
10115     break;
10116   case Intrinsic::ppc_altivec_vcmpequd_p:
10117     if (Subtarget.hasP8Altivec()) {
10118       CompareOpc = 199;
10119       isDot = true;
10120     } else
10121       return false;
10122     break;
10123   case Intrinsic::ppc_altivec_vcmpneb_p:
10124   case Intrinsic::ppc_altivec_vcmpneh_p:
10125   case Intrinsic::ppc_altivec_vcmpnew_p:
10126   case Intrinsic::ppc_altivec_vcmpnezb_p:
10127   case Intrinsic::ppc_altivec_vcmpnezh_p:
10128   case Intrinsic::ppc_altivec_vcmpnezw_p:
10129     if (Subtarget.hasP9Altivec()) {
10130       switch (IntrinsicID) {
10131       default:
10132         llvm_unreachable("Unknown comparison intrinsic.");
10133       case Intrinsic::ppc_altivec_vcmpneb_p:
10134         CompareOpc = 7;
10135         break;
10136       case Intrinsic::ppc_altivec_vcmpneh_p:
10137         CompareOpc = 71;
10138         break;
10139       case Intrinsic::ppc_altivec_vcmpnew_p:
10140         CompareOpc = 135;
10141         break;
10142       case Intrinsic::ppc_altivec_vcmpnezb_p:
10143         CompareOpc = 263;
10144         break;
10145       case Intrinsic::ppc_altivec_vcmpnezh_p:
10146         CompareOpc = 327;
10147         break;
10148       case Intrinsic::ppc_altivec_vcmpnezw_p:
10149         CompareOpc = 391;
10150         break;
10151       }
10152       isDot = true;
10153     } else
10154       return false;
10155     break;
10156   case Intrinsic::ppc_altivec_vcmpgefp_p:
10157     CompareOpc = 454;
10158     isDot = true;
10159     break;
10160   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10161     CompareOpc = 710;
10162     isDot = true;
10163     break;
10164   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10165     CompareOpc = 774;
10166     isDot = true;
10167     break;
10168   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10169     CompareOpc = 838;
10170     isDot = true;
10171     break;
10172   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10173     CompareOpc = 902;
10174     isDot = true;
10175     break;
10176   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10177     if (Subtarget.hasP8Altivec()) {
10178       CompareOpc = 967;
10179       isDot = true;
10180     } else
10181       return false;
10182     break;
10183   case Intrinsic::ppc_altivec_vcmpgtub_p:
10184     CompareOpc = 518;
10185     isDot = true;
10186     break;
10187   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10188     CompareOpc = 582;
10189     isDot = true;
10190     break;
10191   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10192     CompareOpc = 646;
10193     isDot = true;
10194     break;
10195   case Intrinsic::ppc_altivec_vcmpgtud_p:
10196     if (Subtarget.hasP8Altivec()) {
10197       CompareOpc = 711;
10198       isDot = true;
10199     } else
10200       return false;
10201     break;
10202 
10203   // VSX predicate comparisons use the same infrastructure
10204   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10205   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10206   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10207   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10208   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10209   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10210     if (Subtarget.hasVSX()) {
10211       switch (IntrinsicID) {
10212       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10213         CompareOpc = 99;
10214         break;
10215       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10216         CompareOpc = 115;
10217         break;
10218       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10219         CompareOpc = 107;
10220         break;
10221       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10222         CompareOpc = 67;
10223         break;
10224       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10225         CompareOpc = 83;
10226         break;
10227       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10228         CompareOpc = 75;
10229         break;
10230       }
10231       isDot = true;
10232     } else
10233       return false;
10234     break;
10235 
10236   // Normal Comparisons.
10237   case Intrinsic::ppc_altivec_vcmpbfp:
10238     CompareOpc = 966;
10239     break;
10240   case Intrinsic::ppc_altivec_vcmpeqfp:
10241     CompareOpc = 198;
10242     break;
10243   case Intrinsic::ppc_altivec_vcmpequb:
10244     CompareOpc = 6;
10245     break;
10246   case Intrinsic::ppc_altivec_vcmpequh:
10247     CompareOpc = 70;
10248     break;
10249   case Intrinsic::ppc_altivec_vcmpequw:
10250     CompareOpc = 134;
10251     break;
10252   case Intrinsic::ppc_altivec_vcmpequd:
10253     if (Subtarget.hasP8Altivec())
10254       CompareOpc = 199;
10255     else
10256       return false;
10257     break;
10258   case Intrinsic::ppc_altivec_vcmpneb:
10259   case Intrinsic::ppc_altivec_vcmpneh:
10260   case Intrinsic::ppc_altivec_vcmpnew:
10261   case Intrinsic::ppc_altivec_vcmpnezb:
10262   case Intrinsic::ppc_altivec_vcmpnezh:
10263   case Intrinsic::ppc_altivec_vcmpnezw:
10264     if (Subtarget.hasP9Altivec())
10265       switch (IntrinsicID) {
10266       default:
10267         llvm_unreachable("Unknown comparison intrinsic.");
10268       case Intrinsic::ppc_altivec_vcmpneb:
10269         CompareOpc = 7;
10270         break;
10271       case Intrinsic::ppc_altivec_vcmpneh:
10272         CompareOpc = 71;
10273         break;
10274       case Intrinsic::ppc_altivec_vcmpnew:
10275         CompareOpc = 135;
10276         break;
10277       case Intrinsic::ppc_altivec_vcmpnezb:
10278         CompareOpc = 263;
10279         break;
10280       case Intrinsic::ppc_altivec_vcmpnezh:
10281         CompareOpc = 327;
10282         break;
10283       case Intrinsic::ppc_altivec_vcmpnezw:
10284         CompareOpc = 391;
10285         break;
10286       }
10287     else
10288       return false;
10289     break;
10290   case Intrinsic::ppc_altivec_vcmpgefp:
10291     CompareOpc = 454;
10292     break;
10293   case Intrinsic::ppc_altivec_vcmpgtfp:
10294     CompareOpc = 710;
10295     break;
10296   case Intrinsic::ppc_altivec_vcmpgtsb:
10297     CompareOpc = 774;
10298     break;
10299   case Intrinsic::ppc_altivec_vcmpgtsh:
10300     CompareOpc = 838;
10301     break;
10302   case Intrinsic::ppc_altivec_vcmpgtsw:
10303     CompareOpc = 902;
10304     break;
10305   case Intrinsic::ppc_altivec_vcmpgtsd:
10306     if (Subtarget.hasP8Altivec())
10307       CompareOpc = 967;
10308     else
10309       return false;
10310     break;
10311   case Intrinsic::ppc_altivec_vcmpgtub:
10312     CompareOpc = 518;
10313     break;
10314   case Intrinsic::ppc_altivec_vcmpgtuh:
10315     CompareOpc = 582;
10316     break;
10317   case Intrinsic::ppc_altivec_vcmpgtuw:
10318     CompareOpc = 646;
10319     break;
10320   case Intrinsic::ppc_altivec_vcmpgtud:
10321     if (Subtarget.hasP8Altivec())
10322       CompareOpc = 711;
10323     else
10324       return false;
10325     break;
10326   }
10327   return true;
10328 }
10329 
10330 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10331 /// lower, do it, otherwise return null.
10332 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10333                                                    SelectionDAG &DAG) const {
10334   unsigned IntrinsicID =
10335     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10336 
10337   SDLoc dl(Op);
10338 
10339   if (IntrinsicID == Intrinsic::thread_pointer) {
10340     // Reads the thread pointer register, used for __builtin_thread_pointer.
10341     if (Subtarget.isPPC64())
10342       return DAG.getRegister(PPC::X13, MVT::i64);
10343     return DAG.getRegister(PPC::R2, MVT::i32);
10344   }
10345 
10346   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10347   // opcode number of the comparison.
10348   int CompareOpc;
10349   bool isDot;
10350   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10351     return SDValue();    // Don't custom lower most intrinsics.
10352 
10353   // If this is a non-dot comparison, make the VCMP node and we are done.
10354   if (!isDot) {
10355     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10356                               Op.getOperand(1), Op.getOperand(2),
10357                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10358     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10359   }
10360 
10361   // Create the PPCISD altivec 'dot' comparison node.
10362   SDValue Ops[] = {
10363     Op.getOperand(2),  // LHS
10364     Op.getOperand(3),  // RHS
10365     DAG.getConstant(CompareOpc, dl, MVT::i32)
10366   };
10367   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10368   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
10369 
10370   // Now that we have the comparison, emit a copy from the CR to a GPR.
10371   // This is flagged to the above dot comparison.
10372   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10373                                 DAG.getRegister(PPC::CR6, MVT::i32),
10374                                 CompNode.getValue(1));
10375 
10376   // Unpack the result based on how the target uses it.
10377   unsigned BitNo;   // Bit # of CR6.
10378   bool InvertBit;   // Invert result?
10379   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10380   default:  // Can't happen, don't crash on invalid number though.
10381   case 0:   // Return the value of the EQ bit of CR6.
10382     BitNo = 0; InvertBit = false;
10383     break;
10384   case 1:   // Return the inverted value of the EQ bit of CR6.
10385     BitNo = 0; InvertBit = true;
10386     break;
10387   case 2:   // Return the value of the LT bit of CR6.
10388     BitNo = 2; InvertBit = false;
10389     break;
10390   case 3:   // Return the inverted value of the LT bit of CR6.
10391     BitNo = 2; InvertBit = true;
10392     break;
10393   }
10394 
10395   // Shift the bit into the low position.
10396   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10397                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10398   // Isolate the bit.
10399   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10400                       DAG.getConstant(1, dl, MVT::i32));
10401 
10402   // If we are supposed to, toggle the bit.
10403   if (InvertBit)
10404     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10405                         DAG.getConstant(1, dl, MVT::i32));
10406   return Flags;
10407 }
10408 
10409 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10410                                                SelectionDAG &DAG) const {
10411   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10412   // the beginning of the argument list.
10413   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10414   SDLoc DL(Op);
10415   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10416   case Intrinsic::ppc_cfence: {
10417     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10418     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10419     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10420                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
10421                                                   Op.getOperand(ArgStart + 1)),
10422                                       Op.getOperand(0)),
10423                    0);
10424   }
10425   default:
10426     break;
10427   }
10428   return SDValue();
10429 }
10430 
10431 // Lower scalar BSWAP64 to xxbrd.
10432 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10433   SDLoc dl(Op);
10434   // MTVSRDD
10435   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10436                    Op.getOperand(0));
10437   // XXBRD
10438   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10439   // MFVSRD
10440   int VectorIndex = 0;
10441   if (Subtarget.isLittleEndian())
10442     VectorIndex = 1;
10443   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10444                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10445   return Op;
10446 }
10447 
10448 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10449 // compared to a value that is atomically loaded (atomic loads zero-extend).
10450 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10451                                                 SelectionDAG &DAG) const {
10452   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10453          "Expecting an atomic compare-and-swap here.");
10454   SDLoc dl(Op);
10455   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10456   EVT MemVT = AtomicNode->getMemoryVT();
10457   if (MemVT.getSizeInBits() >= 32)
10458     return Op;
10459 
10460   SDValue CmpOp = Op.getOperand(2);
10461   // If this is already correctly zero-extended, leave it alone.
10462   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10463   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10464     return Op;
10465 
10466   // Clear the high bits of the compare operand.
10467   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10468   SDValue NewCmpOp =
10469     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10470                 DAG.getConstant(MaskVal, dl, MVT::i32));
10471 
10472   // Replace the existing compare operand with the properly zero-extended one.
10473   SmallVector<SDValue, 4> Ops;
10474   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10475     Ops.push_back(AtomicNode->getOperand(i));
10476   Ops[2] = NewCmpOp;
10477   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10478   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10479   auto NodeTy =
10480     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10481   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10482 }
10483 
10484 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10485                                                  SelectionDAG &DAG) const {
10486   SDLoc dl(Op);
10487   // Create a stack slot that is 16-byte aligned.
10488   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10489   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10490   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10491   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10492 
10493   // Store the input value into Value#0 of the stack slot.
10494   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10495                                MachinePointerInfo());
10496   // Load it out.
10497   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10498 }
10499 
10500 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10501                                                   SelectionDAG &DAG) const {
10502   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10503          "Should only be called for ISD::INSERT_VECTOR_ELT");
10504 
10505   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10506   // We have legal lowering for constant indices but not for variable ones.
10507   if (!C)
10508     return SDValue();
10509 
10510   EVT VT = Op.getValueType();
10511   SDLoc dl(Op);
10512   SDValue V1 = Op.getOperand(0);
10513   SDValue V2 = Op.getOperand(1);
10514   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10515   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10516     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10517     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10518     unsigned InsertAtElement = C->getZExtValue();
10519     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10520     if (Subtarget.isLittleEndian()) {
10521       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10522     }
10523     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10524                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10525   }
10526   return Op;
10527 }
10528 
10529 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10530   SDLoc dl(Op);
10531   if (Op.getValueType() == MVT::v4i32) {
10532     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10533 
10534     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10535     // +16 as shift amt.
10536     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10537     SDValue RHSSwap =   // = vrlw RHS, 16
10538       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10539 
10540     // Shrinkify inputs to v8i16.
10541     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10542     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10543     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10544 
10545     // Low parts multiplied together, generating 32-bit results (we ignore the
10546     // top parts).
10547     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10548                                         LHS, RHS, DAG, dl, MVT::v4i32);
10549 
10550     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10551                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10552     // Shift the high parts up 16 bits.
10553     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10554                               Neg16, DAG, dl);
10555     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10556   } else if (Op.getValueType() == MVT::v16i8) {
10557     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10558     bool isLittleEndian = Subtarget.isLittleEndian();
10559 
10560     // Multiply the even 8-bit parts, producing 16-bit sums.
10561     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10562                                            LHS, RHS, DAG, dl, MVT::v8i16);
10563     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10564 
10565     // Multiply the odd 8-bit parts, producing 16-bit sums.
10566     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10567                                           LHS, RHS, DAG, dl, MVT::v8i16);
10568     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10569 
10570     // Merge the results together.  Because vmuleub and vmuloub are
10571     // instructions with a big-endian bias, we must reverse the
10572     // element numbering and reverse the meaning of "odd" and "even"
10573     // when generating little endian code.
10574     int Ops[16];
10575     for (unsigned i = 0; i != 8; ++i) {
10576       if (isLittleEndian) {
10577         Ops[i*2  ] = 2*i;
10578         Ops[i*2+1] = 2*i+16;
10579       } else {
10580         Ops[i*2  ] = 2*i+1;
10581         Ops[i*2+1] = 2*i+1+16;
10582       }
10583     }
10584     if (isLittleEndian)
10585       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10586     else
10587       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10588   } else {
10589     llvm_unreachable("Unknown mul to lower!");
10590   }
10591 }
10592 
10593 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10594 
10595   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10596 
10597   EVT VT = Op.getValueType();
10598   assert(VT.isVector() &&
10599          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10600   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10601           VT == MVT::v16i8) &&
10602          "Unexpected vector element type!");
10603   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10604          "Current subtarget doesn't support smax v2i64!");
10605 
10606   // For vector abs, it can be lowered to:
10607   // abs x
10608   // ==>
10609   // y = -x
10610   // smax(x, y)
10611 
10612   SDLoc dl(Op);
10613   SDValue X = Op.getOperand(0);
10614   SDValue Zero = DAG.getConstant(0, dl, VT);
10615   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10616 
10617   // SMAX patch https://reviews.llvm.org/D47332
10618   // hasn't landed yet, so use intrinsic first here.
10619   // TODO: Should use SMAX directly once SMAX patch landed
10620   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10621   if (VT == MVT::v2i64)
10622     BifID = Intrinsic::ppc_altivec_vmaxsd;
10623   else if (VT == MVT::v8i16)
10624     BifID = Intrinsic::ppc_altivec_vmaxsh;
10625   else if (VT == MVT::v16i8)
10626     BifID = Intrinsic::ppc_altivec_vmaxsb;
10627 
10628   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10629 }
10630 
10631 // Custom lowering for fpext vf32 to v2f64
10632 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10633 
10634   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10635          "Should only be called for ISD::FP_EXTEND");
10636 
10637   // FIXME: handle extends from half precision float vectors on P9.
10638   // We only want to custom lower an extend from v2f32 to v2f64.
10639   if (Op.getValueType() != MVT::v2f64 ||
10640       Op.getOperand(0).getValueType() != MVT::v2f32)
10641     return SDValue();
10642 
10643   SDLoc dl(Op);
10644   SDValue Op0 = Op.getOperand(0);
10645 
10646   switch (Op0.getOpcode()) {
10647   default:
10648     return SDValue();
10649   case ISD::EXTRACT_SUBVECTOR: {
10650     assert(Op0.getNumOperands() == 2 &&
10651            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10652            "Node should have 2 operands with second one being a constant!");
10653 
10654     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10655       return SDValue();
10656 
10657     // Custom lower is only done for high or low doubleword.
10658     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10659     if (Idx % 2 != 0)
10660       return SDValue();
10661 
10662     // Since input is v4f32, at this point Idx is either 0 or 2.
10663     // Shift to get the doubleword position we want.
10664     int DWord = Idx >> 1;
10665 
10666     // High and low word positions are different on little endian.
10667     if (Subtarget.isLittleEndian())
10668       DWord ^= 0x1;
10669 
10670     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10671                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10672   }
10673   case ISD::FADD:
10674   case ISD::FMUL:
10675   case ISD::FSUB: {
10676     SDValue NewLoad[2];
10677     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10678       // Ensure both input are loads.
10679       SDValue LdOp = Op0.getOperand(i);
10680       if (LdOp.getOpcode() != ISD::LOAD)
10681         return SDValue();
10682       // Generate new load node.
10683       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10684       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10685       NewLoad[i] = DAG.getMemIntrinsicNode(
10686           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10687           LD->getMemoryVT(), LD->getMemOperand());
10688     }
10689     SDValue NewOp =
10690         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10691                     NewLoad[1], Op0.getNode()->getFlags());
10692     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10693                        DAG.getConstant(0, dl, MVT::i32));
10694   }
10695   case ISD::LOAD: {
10696     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10697     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10698     SDValue NewLd = DAG.getMemIntrinsicNode(
10699         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10700         LD->getMemoryVT(), LD->getMemOperand());
10701     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10702                        DAG.getConstant(0, dl, MVT::i32));
10703   }
10704   }
10705   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10706 }
10707 
10708 /// LowerOperation - Provide custom lowering hooks for some operations.
10709 ///
10710 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10711   switch (Op.getOpcode()) {
10712   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10713   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10714   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10715   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10716   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10717   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10718   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10719   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10720   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10721 
10722   // Variable argument lowering.
10723   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10724   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10725   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10726 
10727   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10728   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10729   case ISD::GET_DYNAMIC_AREA_OFFSET:
10730     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10731 
10732   // Exception handling lowering.
10733   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10734   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10735   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10736 
10737   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10738   case ISD::STORE:              return LowerSTORE(Op, DAG);
10739   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10740   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10741   case ISD::STRICT_FP_TO_UINT:
10742   case ISD::STRICT_FP_TO_SINT:
10743   case ISD::FP_TO_UINT:
10744   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10745   case ISD::STRICT_UINT_TO_FP:
10746   case ISD::STRICT_SINT_TO_FP:
10747   case ISD::UINT_TO_FP:
10748   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10749   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10750 
10751   // Lower 64-bit shifts.
10752   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10753   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10754   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10755 
10756   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
10757   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
10758 
10759   // Vector-related lowering.
10760   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10761   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10762   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10763   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10764   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10765   case ISD::MUL:                return LowerMUL(Op, DAG);
10766   case ISD::ABS:                return LowerABS(Op, DAG);
10767   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10768   case ISD::ROTL:               return LowerROTL(Op, DAG);
10769 
10770   // For counter-based loop handling.
10771   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10772 
10773   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10774 
10775   // Frame & Return address.
10776   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10777   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10778 
10779   case ISD::INTRINSIC_VOID:
10780     return LowerINTRINSIC_VOID(Op, DAG);
10781   case ISD::BSWAP:
10782     return LowerBSWAP(Op, DAG);
10783   case ISD::ATOMIC_CMP_SWAP:
10784     return LowerATOMIC_CMP_SWAP(Op, DAG);
10785   }
10786 }
10787 
10788 void PPCTargetLowering::LowerOperationWrapper(SDNode *N,
10789                                               SmallVectorImpl<SDValue> &Results,
10790                                               SelectionDAG &DAG) const {
10791   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10792 
10793   if (!Res.getNode())
10794     return;
10795 
10796   // Take the return value as-is if original node has only one result.
10797   if (N->getNumValues() == 1) {
10798     Results.push_back(Res);
10799     return;
10800   }
10801 
10802   // New node should have the same number of results.
10803   assert((N->getNumValues() == Res->getNumValues()) &&
10804       "Lowering returned the wrong number of results!");
10805 
10806   for (unsigned i = 0; i < N->getNumValues(); ++i)
10807     Results.push_back(Res.getValue(i));
10808 }
10809 
10810 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10811                                            SmallVectorImpl<SDValue>&Results,
10812                                            SelectionDAG &DAG) const {
10813   SDLoc dl(N);
10814   switch (N->getOpcode()) {
10815   default:
10816     llvm_unreachable("Do not know how to custom type legalize this operation!");
10817   case ISD::READCYCLECOUNTER: {
10818     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10819     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10820 
10821     Results.push_back(
10822         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
10823     Results.push_back(RTB.getValue(2));
10824     break;
10825   }
10826   case ISD::INTRINSIC_W_CHAIN: {
10827     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10828         Intrinsic::loop_decrement)
10829       break;
10830 
10831     assert(N->getValueType(0) == MVT::i1 &&
10832            "Unexpected result type for CTR decrement intrinsic");
10833     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10834                                  N->getValueType(0));
10835     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10836     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10837                                  N->getOperand(1));
10838 
10839     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10840     Results.push_back(NewInt.getValue(1));
10841     break;
10842   }
10843   case ISD::VAARG: {
10844     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10845       return;
10846 
10847     EVT VT = N->getValueType(0);
10848 
10849     if (VT == MVT::i64) {
10850       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10851 
10852       Results.push_back(NewNode);
10853       Results.push_back(NewNode.getValue(1));
10854     }
10855     return;
10856   }
10857   case ISD::STRICT_FP_TO_SINT:
10858   case ISD::STRICT_FP_TO_UINT:
10859   case ISD::FP_TO_SINT:
10860   case ISD::FP_TO_UINT:
10861     // LowerFP_TO_INT() can only handle f32 and f64.
10862     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
10863         MVT::ppcf128)
10864       return;
10865     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10866     return;
10867   case ISD::TRUNCATE: {
10868     if (!N->getValueType(0).isVector())
10869       return;
10870     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
10871     if (Lowered)
10872       Results.push_back(Lowered);
10873     return;
10874   }
10875   case ISD::BITCAST:
10876     // Don't handle bitcast here.
10877     return;
10878   case ISD::FP_EXTEND:
10879     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10880     if (Lowered)
10881       Results.push_back(Lowered);
10882     return;
10883   }
10884 }
10885 
10886 //===----------------------------------------------------------------------===//
10887 //  Other Lowering Code
10888 //===----------------------------------------------------------------------===//
10889 
10890 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10891   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10892   Function *Func = Intrinsic::getDeclaration(M, Id);
10893   return Builder.CreateCall(Func, {});
10894 }
10895 
10896 // The mappings for emitLeading/TrailingFence is taken from
10897 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10898 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10899                                                  Instruction *Inst,
10900                                                  AtomicOrdering Ord) const {
10901   if (Ord == AtomicOrdering::SequentiallyConsistent)
10902     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10903   if (isReleaseOrStronger(Ord))
10904     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10905   return nullptr;
10906 }
10907 
10908 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10909                                                   Instruction *Inst,
10910                                                   AtomicOrdering Ord) const {
10911   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10912     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10913     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10914     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10915     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10916       return Builder.CreateCall(
10917           Intrinsic::getDeclaration(
10918               Builder.GetInsertBlock()->getParent()->getParent(),
10919               Intrinsic::ppc_cfence, {Inst->getType()}),
10920           {Inst});
10921     // FIXME: Can use isync for rmw operation.
10922     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10923   }
10924   return nullptr;
10925 }
10926 
10927 MachineBasicBlock *
10928 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10929                                     unsigned AtomicSize,
10930                                     unsigned BinOpcode,
10931                                     unsigned CmpOpcode,
10932                                     unsigned CmpPred) const {
10933   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10934   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10935 
10936   auto LoadMnemonic = PPC::LDARX;
10937   auto StoreMnemonic = PPC::STDCX;
10938   switch (AtomicSize) {
10939   default:
10940     llvm_unreachable("Unexpected size of atomic entity");
10941   case 1:
10942     LoadMnemonic = PPC::LBARX;
10943     StoreMnemonic = PPC::STBCX;
10944     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10945     break;
10946   case 2:
10947     LoadMnemonic = PPC::LHARX;
10948     StoreMnemonic = PPC::STHCX;
10949     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10950     break;
10951   case 4:
10952     LoadMnemonic = PPC::LWARX;
10953     StoreMnemonic = PPC::STWCX;
10954     break;
10955   case 8:
10956     LoadMnemonic = PPC::LDARX;
10957     StoreMnemonic = PPC::STDCX;
10958     break;
10959   }
10960 
10961   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10962   MachineFunction *F = BB->getParent();
10963   MachineFunction::iterator It = ++BB->getIterator();
10964 
10965   Register dest = MI.getOperand(0).getReg();
10966   Register ptrA = MI.getOperand(1).getReg();
10967   Register ptrB = MI.getOperand(2).getReg();
10968   Register incr = MI.getOperand(3).getReg();
10969   DebugLoc dl = MI.getDebugLoc();
10970 
10971   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10972   MachineBasicBlock *loop2MBB =
10973     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10974   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10975   F->insert(It, loopMBB);
10976   if (CmpOpcode)
10977     F->insert(It, loop2MBB);
10978   F->insert(It, exitMBB);
10979   exitMBB->splice(exitMBB->begin(), BB,
10980                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10981   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10982 
10983   MachineRegisterInfo &RegInfo = F->getRegInfo();
10984   Register TmpReg = (!BinOpcode) ? incr :
10985     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10986                                            : &PPC::GPRCRegClass);
10987 
10988   //  thisMBB:
10989   //   ...
10990   //   fallthrough --> loopMBB
10991   BB->addSuccessor(loopMBB);
10992 
10993   //  loopMBB:
10994   //   l[wd]arx dest, ptr
10995   //   add r0, dest, incr
10996   //   st[wd]cx. r0, ptr
10997   //   bne- loopMBB
10998   //   fallthrough --> exitMBB
10999 
11000   // For max/min...
11001   //  loopMBB:
11002   //   l[wd]arx dest, ptr
11003   //   cmpl?[wd] incr, dest
11004   //   bgt exitMBB
11005   //  loop2MBB:
11006   //   st[wd]cx. dest, ptr
11007   //   bne- loopMBB
11008   //   fallthrough --> exitMBB
11009 
11010   BB = loopMBB;
11011   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11012     .addReg(ptrA).addReg(ptrB);
11013   if (BinOpcode)
11014     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11015   if (CmpOpcode) {
11016     // Signed comparisons of byte or halfword values must be sign-extended.
11017     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11018       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11019       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11020               ExtReg).addReg(dest);
11021       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11022         .addReg(incr).addReg(ExtReg);
11023     } else
11024       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11025         .addReg(incr).addReg(dest);
11026 
11027     BuildMI(BB, dl, TII->get(PPC::BCC))
11028       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11029     BB->addSuccessor(loop2MBB);
11030     BB->addSuccessor(exitMBB);
11031     BB = loop2MBB;
11032   }
11033   BuildMI(BB, dl, TII->get(StoreMnemonic))
11034     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11035   BuildMI(BB, dl, TII->get(PPC::BCC))
11036     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11037   BB->addSuccessor(loopMBB);
11038   BB->addSuccessor(exitMBB);
11039 
11040   //  exitMBB:
11041   //   ...
11042   BB = exitMBB;
11043   return BB;
11044 }
11045 
11046 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11047     MachineInstr &MI, MachineBasicBlock *BB,
11048     bool is8bit, // operation
11049     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11050   // If we support part-word atomic mnemonics, just use them
11051   if (Subtarget.hasPartwordAtomics())
11052     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11053                             CmpPred);
11054 
11055   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11056   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11057   // In 64 bit mode we have to use 64 bits for addresses, even though the
11058   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11059   // registers without caring whether they're 32 or 64, but here we're
11060   // doing actual arithmetic on the addresses.
11061   bool is64bit = Subtarget.isPPC64();
11062   bool isLittleEndian = Subtarget.isLittleEndian();
11063   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11064 
11065   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11066   MachineFunction *F = BB->getParent();
11067   MachineFunction::iterator It = ++BB->getIterator();
11068 
11069   Register dest = MI.getOperand(0).getReg();
11070   Register ptrA = MI.getOperand(1).getReg();
11071   Register ptrB = MI.getOperand(2).getReg();
11072   Register incr = MI.getOperand(3).getReg();
11073   DebugLoc dl = MI.getDebugLoc();
11074 
11075   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11076   MachineBasicBlock *loop2MBB =
11077       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11078   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11079   F->insert(It, loopMBB);
11080   if (CmpOpcode)
11081     F->insert(It, loop2MBB);
11082   F->insert(It, exitMBB);
11083   exitMBB->splice(exitMBB->begin(), BB,
11084                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11085   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11086 
11087   MachineRegisterInfo &RegInfo = F->getRegInfo();
11088   const TargetRegisterClass *RC =
11089       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11090   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11091 
11092   Register PtrReg = RegInfo.createVirtualRegister(RC);
11093   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11094   Register ShiftReg =
11095       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11096   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11097   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11098   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11099   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11100   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11101   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11102   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11103   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11104   Register Ptr1Reg;
11105   Register TmpReg =
11106       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11107 
11108   //  thisMBB:
11109   //   ...
11110   //   fallthrough --> loopMBB
11111   BB->addSuccessor(loopMBB);
11112 
11113   // The 4-byte load must be aligned, while a char or short may be
11114   // anywhere in the word.  Hence all this nasty bookkeeping code.
11115   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11116   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11117   //   xori shift, shift1, 24 [16]
11118   //   rlwinm ptr, ptr1, 0, 0, 29
11119   //   slw incr2, incr, shift
11120   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11121   //   slw mask, mask2, shift
11122   //  loopMBB:
11123   //   lwarx tmpDest, ptr
11124   //   add tmp, tmpDest, incr2
11125   //   andc tmp2, tmpDest, mask
11126   //   and tmp3, tmp, mask
11127   //   or tmp4, tmp3, tmp2
11128   //   stwcx. tmp4, ptr
11129   //   bne- loopMBB
11130   //   fallthrough --> exitMBB
11131   //   srw dest, tmpDest, shift
11132   if (ptrA != ZeroReg) {
11133     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11134     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11135         .addReg(ptrA)
11136         .addReg(ptrB);
11137   } else {
11138     Ptr1Reg = ptrB;
11139   }
11140   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11141   // mode.
11142   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11143       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11144       .addImm(3)
11145       .addImm(27)
11146       .addImm(is8bit ? 28 : 27);
11147   if (!isLittleEndian)
11148     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11149         .addReg(Shift1Reg)
11150         .addImm(is8bit ? 24 : 16);
11151   if (is64bit)
11152     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11153         .addReg(Ptr1Reg)
11154         .addImm(0)
11155         .addImm(61);
11156   else
11157     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11158         .addReg(Ptr1Reg)
11159         .addImm(0)
11160         .addImm(0)
11161         .addImm(29);
11162   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11163   if (is8bit)
11164     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11165   else {
11166     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11167     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11168         .addReg(Mask3Reg)
11169         .addImm(65535);
11170   }
11171   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11172       .addReg(Mask2Reg)
11173       .addReg(ShiftReg);
11174 
11175   BB = loopMBB;
11176   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11177       .addReg(ZeroReg)
11178       .addReg(PtrReg);
11179   if (BinOpcode)
11180     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11181         .addReg(Incr2Reg)
11182         .addReg(TmpDestReg);
11183   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11184       .addReg(TmpDestReg)
11185       .addReg(MaskReg);
11186   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11187   if (CmpOpcode) {
11188     // For unsigned comparisons, we can directly compare the shifted values.
11189     // For signed comparisons we shift and sign extend.
11190     Register SReg = RegInfo.createVirtualRegister(GPRC);
11191     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11192         .addReg(TmpDestReg)
11193         .addReg(MaskReg);
11194     unsigned ValueReg = SReg;
11195     unsigned CmpReg = Incr2Reg;
11196     if (CmpOpcode == PPC::CMPW) {
11197       ValueReg = RegInfo.createVirtualRegister(GPRC);
11198       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11199           .addReg(SReg)
11200           .addReg(ShiftReg);
11201       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11202       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11203           .addReg(ValueReg);
11204       ValueReg = ValueSReg;
11205       CmpReg = incr;
11206     }
11207     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11208         .addReg(CmpReg)
11209         .addReg(ValueReg);
11210     BuildMI(BB, dl, TII->get(PPC::BCC))
11211         .addImm(CmpPred)
11212         .addReg(PPC::CR0)
11213         .addMBB(exitMBB);
11214     BB->addSuccessor(loop2MBB);
11215     BB->addSuccessor(exitMBB);
11216     BB = loop2MBB;
11217   }
11218   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11219   BuildMI(BB, dl, TII->get(PPC::STWCX))
11220       .addReg(Tmp4Reg)
11221       .addReg(ZeroReg)
11222       .addReg(PtrReg);
11223   BuildMI(BB, dl, TII->get(PPC::BCC))
11224       .addImm(PPC::PRED_NE)
11225       .addReg(PPC::CR0)
11226       .addMBB(loopMBB);
11227   BB->addSuccessor(loopMBB);
11228   BB->addSuccessor(exitMBB);
11229 
11230   //  exitMBB:
11231   //   ...
11232   BB = exitMBB;
11233   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11234       .addReg(TmpDestReg)
11235       .addReg(ShiftReg);
11236   return BB;
11237 }
11238 
11239 llvm::MachineBasicBlock *
11240 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11241                                     MachineBasicBlock *MBB) const {
11242   DebugLoc DL = MI.getDebugLoc();
11243   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11244   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11245 
11246   MachineFunction *MF = MBB->getParent();
11247   MachineRegisterInfo &MRI = MF->getRegInfo();
11248 
11249   const BasicBlock *BB = MBB->getBasicBlock();
11250   MachineFunction::iterator I = ++MBB->getIterator();
11251 
11252   Register DstReg = MI.getOperand(0).getReg();
11253   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11254   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11255   Register mainDstReg = MRI.createVirtualRegister(RC);
11256   Register restoreDstReg = MRI.createVirtualRegister(RC);
11257 
11258   MVT PVT = getPointerTy(MF->getDataLayout());
11259   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11260          "Invalid Pointer Size!");
11261   // For v = setjmp(buf), we generate
11262   //
11263   // thisMBB:
11264   //  SjLjSetup mainMBB
11265   //  bl mainMBB
11266   //  v_restore = 1
11267   //  b sinkMBB
11268   //
11269   // mainMBB:
11270   //  buf[LabelOffset] = LR
11271   //  v_main = 0
11272   //
11273   // sinkMBB:
11274   //  v = phi(main, restore)
11275   //
11276 
11277   MachineBasicBlock *thisMBB = MBB;
11278   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11279   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11280   MF->insert(I, mainMBB);
11281   MF->insert(I, sinkMBB);
11282 
11283   MachineInstrBuilder MIB;
11284 
11285   // Transfer the remainder of BB and its successor edges to sinkMBB.
11286   sinkMBB->splice(sinkMBB->begin(), MBB,
11287                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11288   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11289 
11290   // Note that the structure of the jmp_buf used here is not compatible
11291   // with that used by libc, and is not designed to be. Specifically, it
11292   // stores only those 'reserved' registers that LLVM does not otherwise
11293   // understand how to spill. Also, by convention, by the time this
11294   // intrinsic is called, Clang has already stored the frame address in the
11295   // first slot of the buffer and stack address in the third. Following the
11296   // X86 target code, we'll store the jump address in the second slot. We also
11297   // need to save the TOC pointer (R2) to handle jumps between shared
11298   // libraries, and that will be stored in the fourth slot. The thread
11299   // identifier (R13) is not affected.
11300 
11301   // thisMBB:
11302   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11303   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11304   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11305 
11306   // Prepare IP either in reg.
11307   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11308   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11309   Register BufReg = MI.getOperand(1).getReg();
11310 
11311   if (Subtarget.is64BitELFABI()) {
11312     setUsesTOCBasePtr(*MBB->getParent());
11313     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11314               .addReg(PPC::X2)
11315               .addImm(TOCOffset)
11316               .addReg(BufReg)
11317               .cloneMemRefs(MI);
11318   }
11319 
11320   // Naked functions never have a base pointer, and so we use r1. For all
11321   // other functions, this decision must be delayed until during PEI.
11322   unsigned BaseReg;
11323   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11324     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11325   else
11326     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11327 
11328   MIB = BuildMI(*thisMBB, MI, DL,
11329                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11330             .addReg(BaseReg)
11331             .addImm(BPOffset)
11332             .addReg(BufReg)
11333             .cloneMemRefs(MI);
11334 
11335   // Setup
11336   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11337   MIB.addRegMask(TRI->getNoPreservedMask());
11338 
11339   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11340 
11341   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11342           .addMBB(mainMBB);
11343   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11344 
11345   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11346   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11347 
11348   // mainMBB:
11349   //  mainDstReg = 0
11350   MIB =
11351       BuildMI(mainMBB, DL,
11352               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11353 
11354   // Store IP
11355   if (Subtarget.isPPC64()) {
11356     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11357             .addReg(LabelReg)
11358             .addImm(LabelOffset)
11359             .addReg(BufReg);
11360   } else {
11361     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11362             .addReg(LabelReg)
11363             .addImm(LabelOffset)
11364             .addReg(BufReg);
11365   }
11366   MIB.cloneMemRefs(MI);
11367 
11368   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11369   mainMBB->addSuccessor(sinkMBB);
11370 
11371   // sinkMBB:
11372   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11373           TII->get(PPC::PHI), DstReg)
11374     .addReg(mainDstReg).addMBB(mainMBB)
11375     .addReg(restoreDstReg).addMBB(thisMBB);
11376 
11377   MI.eraseFromParent();
11378   return sinkMBB;
11379 }
11380 
11381 MachineBasicBlock *
11382 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11383                                      MachineBasicBlock *MBB) const {
11384   DebugLoc DL = MI.getDebugLoc();
11385   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11386 
11387   MachineFunction *MF = MBB->getParent();
11388   MachineRegisterInfo &MRI = MF->getRegInfo();
11389 
11390   MVT PVT = getPointerTy(MF->getDataLayout());
11391   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11392          "Invalid Pointer Size!");
11393 
11394   const TargetRegisterClass *RC =
11395     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11396   Register Tmp = MRI.createVirtualRegister(RC);
11397   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11398   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11399   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11400   unsigned BP =
11401       (PVT == MVT::i64)
11402           ? PPC::X30
11403           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11404                                                               : PPC::R30);
11405 
11406   MachineInstrBuilder MIB;
11407 
11408   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11409   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11410   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11411   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11412 
11413   Register BufReg = MI.getOperand(0).getReg();
11414 
11415   // Reload FP (the jumped-to function may not have had a
11416   // frame pointer, and if so, then its r31 will be restored
11417   // as necessary).
11418   if (PVT == MVT::i64) {
11419     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11420             .addImm(0)
11421             .addReg(BufReg);
11422   } else {
11423     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11424             .addImm(0)
11425             .addReg(BufReg);
11426   }
11427   MIB.cloneMemRefs(MI);
11428 
11429   // Reload IP
11430   if (PVT == MVT::i64) {
11431     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11432             .addImm(LabelOffset)
11433             .addReg(BufReg);
11434   } else {
11435     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11436             .addImm(LabelOffset)
11437             .addReg(BufReg);
11438   }
11439   MIB.cloneMemRefs(MI);
11440 
11441   // Reload SP
11442   if (PVT == MVT::i64) {
11443     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11444             .addImm(SPOffset)
11445             .addReg(BufReg);
11446   } else {
11447     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11448             .addImm(SPOffset)
11449             .addReg(BufReg);
11450   }
11451   MIB.cloneMemRefs(MI);
11452 
11453   // Reload BP
11454   if (PVT == MVT::i64) {
11455     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11456             .addImm(BPOffset)
11457             .addReg(BufReg);
11458   } else {
11459     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11460             .addImm(BPOffset)
11461             .addReg(BufReg);
11462   }
11463   MIB.cloneMemRefs(MI);
11464 
11465   // Reload TOC
11466   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11467     setUsesTOCBasePtr(*MBB->getParent());
11468     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11469               .addImm(TOCOffset)
11470               .addReg(BufReg)
11471               .cloneMemRefs(MI);
11472   }
11473 
11474   // Jump
11475   BuildMI(*MBB, MI, DL,
11476           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11477   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11478 
11479   MI.eraseFromParent();
11480   return MBB;
11481 }
11482 
11483 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
11484   // If the function specifically requests inline stack probes, emit them.
11485   if (MF.getFunction().hasFnAttribute("probe-stack"))
11486     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
11487            "inline-asm";
11488   return false;
11489 }
11490 
11491 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
11492   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
11493   unsigned StackAlign = TFI->getStackAlignment();
11494   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
11495          "Unexpected stack alignment");
11496   // The default stack probe size is 4096 if the function has no
11497   // stack-probe-size attribute.
11498   unsigned StackProbeSize = 4096;
11499   const Function &Fn = MF.getFunction();
11500   if (Fn.hasFnAttribute("stack-probe-size"))
11501     Fn.getFnAttribute("stack-probe-size")
11502         .getValueAsString()
11503         .getAsInteger(0, StackProbeSize);
11504   // Round down to the stack alignment.
11505   StackProbeSize &= ~(StackAlign - 1);
11506   return StackProbeSize ? StackProbeSize : StackAlign;
11507 }
11508 
11509 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
11510 // into three phases. In the first phase, it uses pseudo instruction
11511 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
11512 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
11513 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
11514 // MaxCallFrameSize so that it can calculate correct data area pointer.
11515 MachineBasicBlock *
11516 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
11517                                     MachineBasicBlock *MBB) const {
11518   const bool isPPC64 = Subtarget.isPPC64();
11519   MachineFunction *MF = MBB->getParent();
11520   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11521   DebugLoc DL = MI.getDebugLoc();
11522   const unsigned ProbeSize = getStackProbeSize(*MF);
11523   const BasicBlock *ProbedBB = MBB->getBasicBlock();
11524   MachineRegisterInfo &MRI = MF->getRegInfo();
11525   // The CFG of probing stack looks as
11526   //         +-----+
11527   //         | MBB |
11528   //         +--+--+
11529   //            |
11530   //       +----v----+
11531   //  +--->+ TestMBB +---+
11532   //  |    +----+----+   |
11533   //  |         |        |
11534   //  |   +-----v----+   |
11535   //  +---+ BlockMBB |   |
11536   //      +----------+   |
11537   //                     |
11538   //       +---------+   |
11539   //       | TailMBB +<--+
11540   //       +---------+
11541   // In MBB, calculate previous frame pointer and final stack pointer.
11542   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
11543   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
11544   // TailMBB is spliced via \p MI.
11545   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
11546   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
11547   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
11548 
11549   MachineFunction::iterator MBBIter = ++MBB->getIterator();
11550   MF->insert(MBBIter, TestMBB);
11551   MF->insert(MBBIter, BlockMBB);
11552   MF->insert(MBBIter, TailMBB);
11553 
11554   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
11555   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11556 
11557   Register DstReg = MI.getOperand(0).getReg();
11558   Register NegSizeReg = MI.getOperand(1).getReg();
11559   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
11560   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11561   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11562   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11563 
11564   // Since value of NegSizeReg might be realigned in prologepilog, insert a
11565   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
11566   // NegSize.
11567   unsigned ProbeOpc;
11568   if (!MRI.hasOneNonDBGUse(NegSizeReg))
11569     ProbeOpc =
11570         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
11571   else
11572     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
11573     // and NegSizeReg will be allocated in the same phyreg to avoid
11574     // redundant copy when NegSizeReg has only one use which is current MI and
11575     // will be replaced by PREPARE_PROBED_ALLOCA then.
11576     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
11577                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
11578   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
11579       .addDef(ActualNegSizeReg)
11580       .addReg(NegSizeReg)
11581       .add(MI.getOperand(2))
11582       .add(MI.getOperand(3));
11583 
11584   // Calculate final stack pointer, which equals to SP + ActualNegSize.
11585   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
11586           FinalStackPtr)
11587       .addReg(SPReg)
11588       .addReg(ActualNegSizeReg);
11589 
11590   // Materialize a scratch register for update.
11591   int64_t NegProbeSize = -(int64_t)ProbeSize;
11592   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
11593   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11594   if (!isInt<16>(NegProbeSize)) {
11595     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11596     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
11597         .addImm(NegProbeSize >> 16);
11598     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
11599             ScratchReg)
11600         .addReg(TempReg)
11601         .addImm(NegProbeSize & 0xFFFF);
11602   } else
11603     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
11604         .addImm(NegProbeSize);
11605 
11606   {
11607     // Probing leading residual part.
11608     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11609     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
11610         .addReg(ActualNegSizeReg)
11611         .addReg(ScratchReg);
11612     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11613     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
11614         .addReg(Div)
11615         .addReg(ScratchReg);
11616     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11617     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
11618         .addReg(Mul)
11619         .addReg(ActualNegSizeReg);
11620     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11621         .addReg(FramePointer)
11622         .addReg(SPReg)
11623         .addReg(NegMod);
11624   }
11625 
11626   {
11627     // Remaining part should be multiple of ProbeSize.
11628     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
11629     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
11630         .addReg(SPReg)
11631         .addReg(FinalStackPtr);
11632     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
11633         .addImm(PPC::PRED_EQ)
11634         .addReg(CmpResult)
11635         .addMBB(TailMBB);
11636     TestMBB->addSuccessor(BlockMBB);
11637     TestMBB->addSuccessor(TailMBB);
11638   }
11639 
11640   {
11641     // Touch the block.
11642     // |P...|P...|P...
11643     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
11644         .addReg(FramePointer)
11645         .addReg(SPReg)
11646         .addReg(ScratchReg);
11647     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
11648     BlockMBB->addSuccessor(TestMBB);
11649   }
11650 
11651   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
11652   // DYNAREAOFFSET pseudo instruction to get the future result.
11653   Register MaxCallFrameSizeReg =
11654       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
11655   BuildMI(TailMBB, DL,
11656           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
11657           MaxCallFrameSizeReg)
11658       .add(MI.getOperand(2))
11659       .add(MI.getOperand(3));
11660   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
11661       .addReg(SPReg)
11662       .addReg(MaxCallFrameSizeReg);
11663 
11664   // Splice instructions after MI to TailMBB.
11665   TailMBB->splice(TailMBB->end(), MBB,
11666                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11667   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
11668   MBB->addSuccessor(TestMBB);
11669 
11670   // Delete the pseudo instruction.
11671   MI.eraseFromParent();
11672 
11673   ++NumDynamicAllocaProbed;
11674   return TailMBB;
11675 }
11676 
11677 MachineBasicBlock *
11678 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11679                                                MachineBasicBlock *BB) const {
11680   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11681       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11682     if (Subtarget.is64BitELFABI() &&
11683         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
11684         !Subtarget.isUsingPCRelativeCalls()) {
11685       // Call lowering should have added an r2 operand to indicate a dependence
11686       // on the TOC base pointer value. It can't however, because there is no
11687       // way to mark the dependence as implicit there, and so the stackmap code
11688       // will confuse it with a regular operand. Instead, add the dependence
11689       // here.
11690       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11691     }
11692 
11693     return emitPatchPoint(MI, BB);
11694   }
11695 
11696   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11697       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11698     return emitEHSjLjSetJmp(MI, BB);
11699   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11700              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11701     return emitEHSjLjLongJmp(MI, BB);
11702   }
11703 
11704   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11705 
11706   // To "insert" these instructions we actually have to insert their
11707   // control-flow patterns.
11708   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11709   MachineFunction::iterator It = ++BB->getIterator();
11710 
11711   MachineFunction *F = BB->getParent();
11712 
11713   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11714       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11715       MI.getOpcode() == PPC::SELECT_I8) {
11716     SmallVector<MachineOperand, 2> Cond;
11717     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11718         MI.getOpcode() == PPC::SELECT_CC_I8)
11719       Cond.push_back(MI.getOperand(4));
11720     else
11721       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11722     Cond.push_back(MI.getOperand(1));
11723 
11724     DebugLoc dl = MI.getDebugLoc();
11725     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11726                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11727   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11728              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11729              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11730              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11731              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11732              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11733              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11734              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11735              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11736              MI.getOpcode() == PPC::SELECT_F4 ||
11737              MI.getOpcode() == PPC::SELECT_F8 ||
11738              MI.getOpcode() == PPC::SELECT_F16 ||
11739              MI.getOpcode() == PPC::SELECT_SPE ||
11740              MI.getOpcode() == PPC::SELECT_SPE4 ||
11741              MI.getOpcode() == PPC::SELECT_VRRC ||
11742              MI.getOpcode() == PPC::SELECT_VSFRC ||
11743              MI.getOpcode() == PPC::SELECT_VSSRC ||
11744              MI.getOpcode() == PPC::SELECT_VSRC) {
11745     // The incoming instruction knows the destination vreg to set, the
11746     // condition code register to branch on, the true/false values to
11747     // select between, and a branch opcode to use.
11748 
11749     //  thisMBB:
11750     //  ...
11751     //   TrueVal = ...
11752     //   cmpTY ccX, r1, r2
11753     //   bCC copy1MBB
11754     //   fallthrough --> copy0MBB
11755     MachineBasicBlock *thisMBB = BB;
11756     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11757     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11758     DebugLoc dl = MI.getDebugLoc();
11759     F->insert(It, copy0MBB);
11760     F->insert(It, sinkMBB);
11761 
11762     // Transfer the remainder of BB and its successor edges to sinkMBB.
11763     sinkMBB->splice(sinkMBB->begin(), BB,
11764                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11765     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11766 
11767     // Next, add the true and fallthrough blocks as its successors.
11768     BB->addSuccessor(copy0MBB);
11769     BB->addSuccessor(sinkMBB);
11770 
11771     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11772         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11773         MI.getOpcode() == PPC::SELECT_F16 ||
11774         MI.getOpcode() == PPC::SELECT_SPE4 ||
11775         MI.getOpcode() == PPC::SELECT_SPE ||
11776         MI.getOpcode() == PPC::SELECT_VRRC ||
11777         MI.getOpcode() == PPC::SELECT_VSFRC ||
11778         MI.getOpcode() == PPC::SELECT_VSSRC ||
11779         MI.getOpcode() == PPC::SELECT_VSRC) {
11780       BuildMI(BB, dl, TII->get(PPC::BC))
11781           .addReg(MI.getOperand(1).getReg())
11782           .addMBB(sinkMBB);
11783     } else {
11784       unsigned SelectPred = MI.getOperand(4).getImm();
11785       BuildMI(BB, dl, TII->get(PPC::BCC))
11786           .addImm(SelectPred)
11787           .addReg(MI.getOperand(1).getReg())
11788           .addMBB(sinkMBB);
11789     }
11790 
11791     //  copy0MBB:
11792     //   %FalseValue = ...
11793     //   # fallthrough to sinkMBB
11794     BB = copy0MBB;
11795 
11796     // Update machine-CFG edges
11797     BB->addSuccessor(sinkMBB);
11798 
11799     //  sinkMBB:
11800     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11801     //  ...
11802     BB = sinkMBB;
11803     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11804         .addReg(MI.getOperand(3).getReg())
11805         .addMBB(copy0MBB)
11806         .addReg(MI.getOperand(2).getReg())
11807         .addMBB(thisMBB);
11808   } else if (MI.getOpcode() == PPC::ReadTB) {
11809     // To read the 64-bit time-base register on a 32-bit target, we read the
11810     // two halves. Should the counter have wrapped while it was being read, we
11811     // need to try again.
11812     // ...
11813     // readLoop:
11814     // mfspr Rx,TBU # load from TBU
11815     // mfspr Ry,TB  # load from TB
11816     // mfspr Rz,TBU # load from TBU
11817     // cmpw crX,Rx,Rz # check if 'old'='new'
11818     // bne readLoop   # branch if they're not equal
11819     // ...
11820 
11821     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11822     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11823     DebugLoc dl = MI.getDebugLoc();
11824     F->insert(It, readMBB);
11825     F->insert(It, sinkMBB);
11826 
11827     // Transfer the remainder of BB and its successor edges to sinkMBB.
11828     sinkMBB->splice(sinkMBB->begin(), BB,
11829                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11830     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11831 
11832     BB->addSuccessor(readMBB);
11833     BB = readMBB;
11834 
11835     MachineRegisterInfo &RegInfo = F->getRegInfo();
11836     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11837     Register LoReg = MI.getOperand(0).getReg();
11838     Register HiReg = MI.getOperand(1).getReg();
11839 
11840     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11841     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11842     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11843 
11844     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11845 
11846     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11847         .addReg(HiReg)
11848         .addReg(ReadAgainReg);
11849     BuildMI(BB, dl, TII->get(PPC::BCC))
11850         .addImm(PPC::PRED_NE)
11851         .addReg(CmpReg)
11852         .addMBB(readMBB);
11853 
11854     BB->addSuccessor(readMBB);
11855     BB->addSuccessor(sinkMBB);
11856   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11857     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11858   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11859     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11860   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11861     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11862   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11863     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11864 
11865   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11866     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11867   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11868     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11869   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11870     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11871   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11872     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11873 
11874   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11875     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11876   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11877     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11878   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11879     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11880   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11881     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11882 
11883   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11884     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11885   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11886     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11887   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11888     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11889   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11890     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11891 
11892   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11893     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11894   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11895     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11896   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11897     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11898   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11899     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11900 
11901   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11902     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11903   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11904     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11905   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11906     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11907   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11908     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11909 
11910   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11911     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11912   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11913     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11914   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11915     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11916   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11917     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11918 
11919   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11920     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11921   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11922     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11923   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11924     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11925   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11926     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11927 
11928   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11929     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11930   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11931     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11932   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11933     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11934   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11935     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11936 
11937   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11938     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11939   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11940     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11941   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11942     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11943   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11944     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11945 
11946   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11947     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11948   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11949     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11950   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11951     BB = EmitAtomicBinary(MI, BB, 4, 0);
11952   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11953     BB = EmitAtomicBinary(MI, BB, 8, 0);
11954   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11955            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11956            (Subtarget.hasPartwordAtomics() &&
11957             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11958            (Subtarget.hasPartwordAtomics() &&
11959             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11960     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11961 
11962     auto LoadMnemonic = PPC::LDARX;
11963     auto StoreMnemonic = PPC::STDCX;
11964     switch (MI.getOpcode()) {
11965     default:
11966       llvm_unreachable("Compare and swap of unknown size");
11967     case PPC::ATOMIC_CMP_SWAP_I8:
11968       LoadMnemonic = PPC::LBARX;
11969       StoreMnemonic = PPC::STBCX;
11970       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11971       break;
11972     case PPC::ATOMIC_CMP_SWAP_I16:
11973       LoadMnemonic = PPC::LHARX;
11974       StoreMnemonic = PPC::STHCX;
11975       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11976       break;
11977     case PPC::ATOMIC_CMP_SWAP_I32:
11978       LoadMnemonic = PPC::LWARX;
11979       StoreMnemonic = PPC::STWCX;
11980       break;
11981     case PPC::ATOMIC_CMP_SWAP_I64:
11982       LoadMnemonic = PPC::LDARX;
11983       StoreMnemonic = PPC::STDCX;
11984       break;
11985     }
11986     Register dest = MI.getOperand(0).getReg();
11987     Register ptrA = MI.getOperand(1).getReg();
11988     Register ptrB = MI.getOperand(2).getReg();
11989     Register oldval = MI.getOperand(3).getReg();
11990     Register newval = MI.getOperand(4).getReg();
11991     DebugLoc dl = MI.getDebugLoc();
11992 
11993     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11994     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11995     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11996     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11997     F->insert(It, loop1MBB);
11998     F->insert(It, loop2MBB);
11999     F->insert(It, midMBB);
12000     F->insert(It, exitMBB);
12001     exitMBB->splice(exitMBB->begin(), BB,
12002                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12003     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12004 
12005     //  thisMBB:
12006     //   ...
12007     //   fallthrough --> loopMBB
12008     BB->addSuccessor(loop1MBB);
12009 
12010     // loop1MBB:
12011     //   l[bhwd]arx dest, ptr
12012     //   cmp[wd] dest, oldval
12013     //   bne- midMBB
12014     // loop2MBB:
12015     //   st[bhwd]cx. newval, ptr
12016     //   bne- loopMBB
12017     //   b exitBB
12018     // midMBB:
12019     //   st[bhwd]cx. dest, ptr
12020     // exitBB:
12021     BB = loop1MBB;
12022     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12023     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12024         .addReg(oldval)
12025         .addReg(dest);
12026     BuildMI(BB, dl, TII->get(PPC::BCC))
12027         .addImm(PPC::PRED_NE)
12028         .addReg(PPC::CR0)
12029         .addMBB(midMBB);
12030     BB->addSuccessor(loop2MBB);
12031     BB->addSuccessor(midMBB);
12032 
12033     BB = loop2MBB;
12034     BuildMI(BB, dl, TII->get(StoreMnemonic))
12035         .addReg(newval)
12036         .addReg(ptrA)
12037         .addReg(ptrB);
12038     BuildMI(BB, dl, TII->get(PPC::BCC))
12039         .addImm(PPC::PRED_NE)
12040         .addReg(PPC::CR0)
12041         .addMBB(loop1MBB);
12042     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12043     BB->addSuccessor(loop1MBB);
12044     BB->addSuccessor(exitMBB);
12045 
12046     BB = midMBB;
12047     BuildMI(BB, dl, TII->get(StoreMnemonic))
12048         .addReg(dest)
12049         .addReg(ptrA)
12050         .addReg(ptrB);
12051     BB->addSuccessor(exitMBB);
12052 
12053     //  exitMBB:
12054     //   ...
12055     BB = exitMBB;
12056   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12057              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12058     // We must use 64-bit registers for addresses when targeting 64-bit,
12059     // since we're actually doing arithmetic on them.  Other registers
12060     // can be 32-bit.
12061     bool is64bit = Subtarget.isPPC64();
12062     bool isLittleEndian = Subtarget.isLittleEndian();
12063     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12064 
12065     Register dest = MI.getOperand(0).getReg();
12066     Register ptrA = MI.getOperand(1).getReg();
12067     Register ptrB = MI.getOperand(2).getReg();
12068     Register oldval = MI.getOperand(3).getReg();
12069     Register newval = MI.getOperand(4).getReg();
12070     DebugLoc dl = MI.getDebugLoc();
12071 
12072     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12073     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12074     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12075     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12076     F->insert(It, loop1MBB);
12077     F->insert(It, loop2MBB);
12078     F->insert(It, midMBB);
12079     F->insert(It, exitMBB);
12080     exitMBB->splice(exitMBB->begin(), BB,
12081                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12082     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12083 
12084     MachineRegisterInfo &RegInfo = F->getRegInfo();
12085     const TargetRegisterClass *RC =
12086         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12087     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12088 
12089     Register PtrReg = RegInfo.createVirtualRegister(RC);
12090     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12091     Register ShiftReg =
12092         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12093     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12094     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12095     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12096     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12097     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12098     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12099     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12100     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12101     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12102     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12103     Register Ptr1Reg;
12104     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12105     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12106     //  thisMBB:
12107     //   ...
12108     //   fallthrough --> loopMBB
12109     BB->addSuccessor(loop1MBB);
12110 
12111     // The 4-byte load must be aligned, while a char or short may be
12112     // anywhere in the word.  Hence all this nasty bookkeeping code.
12113     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12114     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12115     //   xori shift, shift1, 24 [16]
12116     //   rlwinm ptr, ptr1, 0, 0, 29
12117     //   slw newval2, newval, shift
12118     //   slw oldval2, oldval,shift
12119     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12120     //   slw mask, mask2, shift
12121     //   and newval3, newval2, mask
12122     //   and oldval3, oldval2, mask
12123     // loop1MBB:
12124     //   lwarx tmpDest, ptr
12125     //   and tmp, tmpDest, mask
12126     //   cmpw tmp, oldval3
12127     //   bne- midMBB
12128     // loop2MBB:
12129     //   andc tmp2, tmpDest, mask
12130     //   or tmp4, tmp2, newval3
12131     //   stwcx. tmp4, ptr
12132     //   bne- loop1MBB
12133     //   b exitBB
12134     // midMBB:
12135     //   stwcx. tmpDest, ptr
12136     // exitBB:
12137     //   srw dest, tmpDest, shift
12138     if (ptrA != ZeroReg) {
12139       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12140       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12141           .addReg(ptrA)
12142           .addReg(ptrB);
12143     } else {
12144       Ptr1Reg = ptrB;
12145     }
12146 
12147     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12148     // mode.
12149     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12150         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12151         .addImm(3)
12152         .addImm(27)
12153         .addImm(is8bit ? 28 : 27);
12154     if (!isLittleEndian)
12155       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12156           .addReg(Shift1Reg)
12157           .addImm(is8bit ? 24 : 16);
12158     if (is64bit)
12159       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12160           .addReg(Ptr1Reg)
12161           .addImm(0)
12162           .addImm(61);
12163     else
12164       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12165           .addReg(Ptr1Reg)
12166           .addImm(0)
12167           .addImm(0)
12168           .addImm(29);
12169     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12170         .addReg(newval)
12171         .addReg(ShiftReg);
12172     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12173         .addReg(oldval)
12174         .addReg(ShiftReg);
12175     if (is8bit)
12176       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12177     else {
12178       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12179       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12180           .addReg(Mask3Reg)
12181           .addImm(65535);
12182     }
12183     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12184         .addReg(Mask2Reg)
12185         .addReg(ShiftReg);
12186     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12187         .addReg(NewVal2Reg)
12188         .addReg(MaskReg);
12189     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12190         .addReg(OldVal2Reg)
12191         .addReg(MaskReg);
12192 
12193     BB = loop1MBB;
12194     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12195         .addReg(ZeroReg)
12196         .addReg(PtrReg);
12197     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12198         .addReg(TmpDestReg)
12199         .addReg(MaskReg);
12200     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12201         .addReg(TmpReg)
12202         .addReg(OldVal3Reg);
12203     BuildMI(BB, dl, TII->get(PPC::BCC))
12204         .addImm(PPC::PRED_NE)
12205         .addReg(PPC::CR0)
12206         .addMBB(midMBB);
12207     BB->addSuccessor(loop2MBB);
12208     BB->addSuccessor(midMBB);
12209 
12210     BB = loop2MBB;
12211     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12212         .addReg(TmpDestReg)
12213         .addReg(MaskReg);
12214     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12215         .addReg(Tmp2Reg)
12216         .addReg(NewVal3Reg);
12217     BuildMI(BB, dl, TII->get(PPC::STWCX))
12218         .addReg(Tmp4Reg)
12219         .addReg(ZeroReg)
12220         .addReg(PtrReg);
12221     BuildMI(BB, dl, TII->get(PPC::BCC))
12222         .addImm(PPC::PRED_NE)
12223         .addReg(PPC::CR0)
12224         .addMBB(loop1MBB);
12225     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12226     BB->addSuccessor(loop1MBB);
12227     BB->addSuccessor(exitMBB);
12228 
12229     BB = midMBB;
12230     BuildMI(BB, dl, TII->get(PPC::STWCX))
12231         .addReg(TmpDestReg)
12232         .addReg(ZeroReg)
12233         .addReg(PtrReg);
12234     BB->addSuccessor(exitMBB);
12235 
12236     //  exitMBB:
12237     //   ...
12238     BB = exitMBB;
12239     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12240         .addReg(TmpReg)
12241         .addReg(ShiftReg);
12242   } else if (MI.getOpcode() == PPC::FADDrtz) {
12243     // This pseudo performs an FADD with rounding mode temporarily forced
12244     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12245     // is not modeled at the SelectionDAG level.
12246     Register Dest = MI.getOperand(0).getReg();
12247     Register Src1 = MI.getOperand(1).getReg();
12248     Register Src2 = MI.getOperand(2).getReg();
12249     DebugLoc dl = MI.getDebugLoc();
12250 
12251     MachineRegisterInfo &RegInfo = F->getRegInfo();
12252     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12253 
12254     // Save FPSCR value.
12255     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12256 
12257     // Set rounding mode to round-to-zero.
12258     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12259         .addImm(31)
12260         .addReg(PPC::RM, RegState::ImplicitDefine);
12261 
12262     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12263         .addImm(30)
12264         .addReg(PPC::RM, RegState::ImplicitDefine);
12265 
12266     // Perform addition.
12267     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12268                    .addReg(Src1)
12269                    .addReg(Src2);
12270     if (MI.getFlag(MachineInstr::NoFPExcept))
12271       MIB.setMIFlag(MachineInstr::NoFPExcept);
12272 
12273     // Restore FPSCR value.
12274     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12275   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12276              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12277              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12278              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12279     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12280                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12281                           ? PPC::ANDI8_rec
12282                           : PPC::ANDI_rec;
12283     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12284                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12285 
12286     MachineRegisterInfo &RegInfo = F->getRegInfo();
12287     Register Dest = RegInfo.createVirtualRegister(
12288         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12289 
12290     DebugLoc Dl = MI.getDebugLoc();
12291     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12292         .addReg(MI.getOperand(1).getReg())
12293         .addImm(1);
12294     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12295             MI.getOperand(0).getReg())
12296         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12297   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12298     DebugLoc Dl = MI.getDebugLoc();
12299     MachineRegisterInfo &RegInfo = F->getRegInfo();
12300     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12301     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12302     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12303             MI.getOperand(0).getReg())
12304         .addReg(CRReg);
12305   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12306     DebugLoc Dl = MI.getDebugLoc();
12307     unsigned Imm = MI.getOperand(1).getImm();
12308     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12309     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12310             MI.getOperand(0).getReg())
12311         .addReg(PPC::CR0EQ);
12312   } else if (MI.getOpcode() == PPC::SETRNDi) {
12313     DebugLoc dl = MI.getDebugLoc();
12314     Register OldFPSCRReg = MI.getOperand(0).getReg();
12315 
12316     // Save FPSCR value.
12317     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12318 
12319     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12320     // the following settings:
12321     //   00 Round to nearest
12322     //   01 Round to 0
12323     //   10 Round to +inf
12324     //   11 Round to -inf
12325 
12326     // When the operand is immediate, using the two least significant bits of
12327     // the immediate to set the bits 62:63 of FPSCR.
12328     unsigned Mode = MI.getOperand(1).getImm();
12329     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12330         .addImm(31)
12331         .addReg(PPC::RM, RegState::ImplicitDefine);
12332 
12333     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12334         .addImm(30)
12335         .addReg(PPC::RM, RegState::ImplicitDefine);
12336   } else if (MI.getOpcode() == PPC::SETRND) {
12337     DebugLoc dl = MI.getDebugLoc();
12338 
12339     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12340     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12341     // If the target doesn't have DirectMove, we should use stack to do the
12342     // conversion, because the target doesn't have the instructions like mtvsrd
12343     // or mfvsrd to do this conversion directly.
12344     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12345       if (Subtarget.hasDirectMove()) {
12346         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12347           .addReg(SrcReg);
12348       } else {
12349         // Use stack to do the register copy.
12350         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12351         MachineRegisterInfo &RegInfo = F->getRegInfo();
12352         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12353         if (RC == &PPC::F8RCRegClass) {
12354           // Copy register from F8RCRegClass to G8RCRegclass.
12355           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12356                  "Unsupported RegClass.");
12357 
12358           StoreOp = PPC::STFD;
12359           LoadOp = PPC::LD;
12360         } else {
12361           // Copy register from G8RCRegClass to F8RCRegclass.
12362           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12363                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12364                  "Unsupported RegClass.");
12365         }
12366 
12367         MachineFrameInfo &MFI = F->getFrameInfo();
12368         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12369 
12370         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12371             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12372             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12373             MFI.getObjectAlign(FrameIdx));
12374 
12375         // Store the SrcReg into the stack.
12376         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12377           .addReg(SrcReg)
12378           .addImm(0)
12379           .addFrameIndex(FrameIdx)
12380           .addMemOperand(MMOStore);
12381 
12382         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12383             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12384             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12385             MFI.getObjectAlign(FrameIdx));
12386 
12387         // Load from the stack where SrcReg is stored, and save to DestReg,
12388         // so we have done the RegClass conversion from RegClass::SrcReg to
12389         // RegClass::DestReg.
12390         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12391           .addImm(0)
12392           .addFrameIndex(FrameIdx)
12393           .addMemOperand(MMOLoad);
12394       }
12395     };
12396 
12397     Register OldFPSCRReg = MI.getOperand(0).getReg();
12398 
12399     // Save FPSCR value.
12400     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12401 
12402     // When the operand is gprc register, use two least significant bits of the
12403     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12404     //
12405     // copy OldFPSCRTmpReg, OldFPSCRReg
12406     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12407     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12408     // copy NewFPSCRReg, NewFPSCRTmpReg
12409     // mtfsf 255, NewFPSCRReg
12410     MachineOperand SrcOp = MI.getOperand(1);
12411     MachineRegisterInfo &RegInfo = F->getRegInfo();
12412     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12413 
12414     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12415 
12416     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12417     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12418 
12419     // The first operand of INSERT_SUBREG should be a register which has
12420     // subregisters, we only care about its RegClass, so we should use an
12421     // IMPLICIT_DEF register.
12422     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12423     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12424       .addReg(ImDefReg)
12425       .add(SrcOp)
12426       .addImm(1);
12427 
12428     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12429     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12430       .addReg(OldFPSCRTmpReg)
12431       .addReg(ExtSrcReg)
12432       .addImm(0)
12433       .addImm(62);
12434 
12435     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12436     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12437 
12438     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12439     // bits of FPSCR.
12440     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12441       .addImm(255)
12442       .addReg(NewFPSCRReg)
12443       .addImm(0)
12444       .addImm(0);
12445   } else if (MI.getOpcode() == PPC::SETFLM) {
12446     DebugLoc Dl = MI.getDebugLoc();
12447 
12448     // Result of setflm is previous FPSCR content, so we need to save it first.
12449     Register OldFPSCRReg = MI.getOperand(0).getReg();
12450     BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12451 
12452     // Put bits in 32:63 to FPSCR.
12453     Register NewFPSCRReg = MI.getOperand(1).getReg();
12454     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12455         .addImm(255)
12456         .addReg(NewFPSCRReg)
12457         .addImm(0)
12458         .addImm(0);
12459   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12460              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12461     return emitProbedAlloca(MI, BB);
12462   } else {
12463     llvm_unreachable("Unexpected instr type to insert");
12464   }
12465 
12466   MI.eraseFromParent(); // The pseudo instruction is gone now.
12467   return BB;
12468 }
12469 
12470 //===----------------------------------------------------------------------===//
12471 // Target Optimization Hooks
12472 //===----------------------------------------------------------------------===//
12473 
12474 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
12475   // For the estimates, convergence is quadratic, so we essentially double the
12476   // number of digits correct after every iteration. For both FRE and FRSQRTE,
12477   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
12478   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
12479   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
12480   if (VT.getScalarType() == MVT::f64)
12481     RefinementSteps++;
12482   return RefinementSteps;
12483 }
12484 
12485 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
12486                                            int Enabled, int &RefinementSteps,
12487                                            bool &UseOneConstNR,
12488                                            bool Reciprocal) const {
12489   EVT VT = Operand.getValueType();
12490   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
12491       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
12492       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12493       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12494     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12495       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12496 
12497     // The Newton-Raphson computation with a single constant does not provide
12498     // enough accuracy on some CPUs.
12499     UseOneConstNR = !Subtarget.needsTwoConstNR();
12500     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12501   }
12502   return SDValue();
12503 }
12504 
12505 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12506                                             int Enabled,
12507                                             int &RefinementSteps) const {
12508   EVT VT = Operand.getValueType();
12509   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12510       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12511       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12512       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
12513     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12514       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12515     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12516   }
12517   return SDValue();
12518 }
12519 
12520 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12521   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12522   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12523   // enabled for division), this functionality is redundant with the default
12524   // combiner logic (once the division -> reciprocal/multiply transformation
12525   // has taken place). As a result, this matters more for older cores than for
12526   // newer ones.
12527 
12528   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12529   // reciprocal if there are two or more FDIVs (for embedded cores with only
12530   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12531   switch (Subtarget.getCPUDirective()) {
12532   default:
12533     return 3;
12534   case PPC::DIR_440:
12535   case PPC::DIR_A2:
12536   case PPC::DIR_E500:
12537   case PPC::DIR_E500mc:
12538   case PPC::DIR_E5500:
12539     return 2;
12540   }
12541 }
12542 
12543 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12544 // collapsed, and so we need to look through chains of them.
12545 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12546                                      int64_t& Offset, SelectionDAG &DAG) {
12547   if (DAG.isBaseWithConstantOffset(Loc)) {
12548     Base = Loc.getOperand(0);
12549     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12550 
12551     // The base might itself be a base plus an offset, and if so, accumulate
12552     // that as well.
12553     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12554   }
12555 }
12556 
12557 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12558                             unsigned Bytes, int Dist,
12559                             SelectionDAG &DAG) {
12560   if (VT.getSizeInBits() / 8 != Bytes)
12561     return false;
12562 
12563   SDValue BaseLoc = Base->getBasePtr();
12564   if (Loc.getOpcode() == ISD::FrameIndex) {
12565     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12566       return false;
12567     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12568     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12569     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12570     int FS  = MFI.getObjectSize(FI);
12571     int BFS = MFI.getObjectSize(BFI);
12572     if (FS != BFS || FS != (int)Bytes) return false;
12573     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12574   }
12575 
12576   SDValue Base1 = Loc, Base2 = BaseLoc;
12577   int64_t Offset1 = 0, Offset2 = 0;
12578   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12579   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12580   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12581     return true;
12582 
12583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12584   const GlobalValue *GV1 = nullptr;
12585   const GlobalValue *GV2 = nullptr;
12586   Offset1 = 0;
12587   Offset2 = 0;
12588   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12589   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12590   if (isGA1 && isGA2 && GV1 == GV2)
12591     return Offset1 == (Offset2 + Dist*Bytes);
12592   return false;
12593 }
12594 
12595 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12596 // not enforce equality of the chain operands.
12597 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12598                             unsigned Bytes, int Dist,
12599                             SelectionDAG &DAG) {
12600   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12601     EVT VT = LS->getMemoryVT();
12602     SDValue Loc = LS->getBasePtr();
12603     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12604   }
12605 
12606   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12607     EVT VT;
12608     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12609     default: return false;
12610     case Intrinsic::ppc_altivec_lvx:
12611     case Intrinsic::ppc_altivec_lvxl:
12612     case Intrinsic::ppc_vsx_lxvw4x:
12613     case Intrinsic::ppc_vsx_lxvw4x_be:
12614       VT = MVT::v4i32;
12615       break;
12616     case Intrinsic::ppc_vsx_lxvd2x:
12617     case Intrinsic::ppc_vsx_lxvd2x_be:
12618       VT = MVT::v2f64;
12619       break;
12620     case Intrinsic::ppc_altivec_lvebx:
12621       VT = MVT::i8;
12622       break;
12623     case Intrinsic::ppc_altivec_lvehx:
12624       VT = MVT::i16;
12625       break;
12626     case Intrinsic::ppc_altivec_lvewx:
12627       VT = MVT::i32;
12628       break;
12629     }
12630 
12631     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12632   }
12633 
12634   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12635     EVT VT;
12636     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12637     default: return false;
12638     case Intrinsic::ppc_altivec_stvx:
12639     case Intrinsic::ppc_altivec_stvxl:
12640     case Intrinsic::ppc_vsx_stxvw4x:
12641       VT = MVT::v4i32;
12642       break;
12643     case Intrinsic::ppc_vsx_stxvd2x:
12644       VT = MVT::v2f64;
12645       break;
12646     case Intrinsic::ppc_vsx_stxvw4x_be:
12647       VT = MVT::v4i32;
12648       break;
12649     case Intrinsic::ppc_vsx_stxvd2x_be:
12650       VT = MVT::v2f64;
12651       break;
12652     case Intrinsic::ppc_altivec_stvebx:
12653       VT = MVT::i8;
12654       break;
12655     case Intrinsic::ppc_altivec_stvehx:
12656       VT = MVT::i16;
12657       break;
12658     case Intrinsic::ppc_altivec_stvewx:
12659       VT = MVT::i32;
12660       break;
12661     }
12662 
12663     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12664   }
12665 
12666   return false;
12667 }
12668 
12669 // Return true is there is a nearyby consecutive load to the one provided
12670 // (regardless of alignment). We search up and down the chain, looking though
12671 // token factors and other loads (but nothing else). As a result, a true result
12672 // indicates that it is safe to create a new consecutive load adjacent to the
12673 // load provided.
12674 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12675   SDValue Chain = LD->getChain();
12676   EVT VT = LD->getMemoryVT();
12677 
12678   SmallSet<SDNode *, 16> LoadRoots;
12679   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12680   SmallSet<SDNode *, 16> Visited;
12681 
12682   // First, search up the chain, branching to follow all token-factor operands.
12683   // If we find a consecutive load, then we're done, otherwise, record all
12684   // nodes just above the top-level loads and token factors.
12685   while (!Queue.empty()) {
12686     SDNode *ChainNext = Queue.pop_back_val();
12687     if (!Visited.insert(ChainNext).second)
12688       continue;
12689 
12690     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12691       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12692         return true;
12693 
12694       if (!Visited.count(ChainLD->getChain().getNode()))
12695         Queue.push_back(ChainLD->getChain().getNode());
12696     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12697       for (const SDUse &O : ChainNext->ops())
12698         if (!Visited.count(O.getNode()))
12699           Queue.push_back(O.getNode());
12700     } else
12701       LoadRoots.insert(ChainNext);
12702   }
12703 
12704   // Second, search down the chain, starting from the top-level nodes recorded
12705   // in the first phase. These top-level nodes are the nodes just above all
12706   // loads and token factors. Starting with their uses, recursively look though
12707   // all loads (just the chain uses) and token factors to find a consecutive
12708   // load.
12709   Visited.clear();
12710   Queue.clear();
12711 
12712   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12713        IE = LoadRoots.end(); I != IE; ++I) {
12714     Queue.push_back(*I);
12715 
12716     while (!Queue.empty()) {
12717       SDNode *LoadRoot = Queue.pop_back_val();
12718       if (!Visited.insert(LoadRoot).second)
12719         continue;
12720 
12721       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12722         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12723           return true;
12724 
12725       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12726            UE = LoadRoot->use_end(); UI != UE; ++UI)
12727         if (((isa<MemSDNode>(*UI) &&
12728             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12729             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12730           Queue.push_back(*UI);
12731     }
12732   }
12733 
12734   return false;
12735 }
12736 
12737 /// This function is called when we have proved that a SETCC node can be replaced
12738 /// by subtraction (and other supporting instructions) so that the result of
12739 /// comparison is kept in a GPR instead of CR. This function is purely for
12740 /// codegen purposes and has some flags to guide the codegen process.
12741 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12742                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12743   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12744 
12745   // Zero extend the operands to the largest legal integer. Originally, they
12746   // must be of a strictly smaller size.
12747   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12748                          DAG.getConstant(Size, DL, MVT::i32));
12749   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12750                          DAG.getConstant(Size, DL, MVT::i32));
12751 
12752   // Swap if needed. Depends on the condition code.
12753   if (Swap)
12754     std::swap(Op0, Op1);
12755 
12756   // Subtract extended integers.
12757   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12758 
12759   // Move the sign bit to the least significant position and zero out the rest.
12760   // Now the least significant bit carries the result of original comparison.
12761   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12762                              DAG.getConstant(Size - 1, DL, MVT::i32));
12763   auto Final = Shifted;
12764 
12765   // Complement the result if needed. Based on the condition code.
12766   if (Complement)
12767     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12768                         DAG.getConstant(1, DL, MVT::i64));
12769 
12770   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12771 }
12772 
12773 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12774                                                   DAGCombinerInfo &DCI) const {
12775   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12776 
12777   SelectionDAG &DAG = DCI.DAG;
12778   SDLoc DL(N);
12779 
12780   // Size of integers being compared has a critical role in the following
12781   // analysis, so we prefer to do this when all types are legal.
12782   if (!DCI.isAfterLegalizeDAG())
12783     return SDValue();
12784 
12785   // If all users of SETCC extend its value to a legal integer type
12786   // then we replace SETCC with a subtraction
12787   for (SDNode::use_iterator UI = N->use_begin(),
12788        UE = N->use_end(); UI != UE; ++UI) {
12789     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12790       return SDValue();
12791   }
12792 
12793   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12794   auto OpSize = N->getOperand(0).getValueSizeInBits();
12795 
12796   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12797 
12798   if (OpSize < Size) {
12799     switch (CC) {
12800     default: break;
12801     case ISD::SETULT:
12802       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12803     case ISD::SETULE:
12804       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12805     case ISD::SETUGT:
12806       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12807     case ISD::SETUGE:
12808       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12809     }
12810   }
12811 
12812   return SDValue();
12813 }
12814 
12815 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12816                                                   DAGCombinerInfo &DCI) const {
12817   SelectionDAG &DAG = DCI.DAG;
12818   SDLoc dl(N);
12819 
12820   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12821   // If we're tracking CR bits, we need to be careful that we don't have:
12822   //   trunc(binary-ops(zext(x), zext(y)))
12823   // or
12824   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12825   // such that we're unnecessarily moving things into GPRs when it would be
12826   // better to keep them in CR bits.
12827 
12828   // Note that trunc here can be an actual i1 trunc, or can be the effective
12829   // truncation that comes from a setcc or select_cc.
12830   if (N->getOpcode() == ISD::TRUNCATE &&
12831       N->getValueType(0) != MVT::i1)
12832     return SDValue();
12833 
12834   if (N->getOperand(0).getValueType() != MVT::i32 &&
12835       N->getOperand(0).getValueType() != MVT::i64)
12836     return SDValue();
12837 
12838   if (N->getOpcode() == ISD::SETCC ||
12839       N->getOpcode() == ISD::SELECT_CC) {
12840     // If we're looking at a comparison, then we need to make sure that the
12841     // high bits (all except for the first) don't matter the result.
12842     ISD::CondCode CC =
12843       cast<CondCodeSDNode>(N->getOperand(
12844         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12845     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12846 
12847     if (ISD::isSignedIntSetCC(CC)) {
12848       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12849           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12850         return SDValue();
12851     } else if (ISD::isUnsignedIntSetCC(CC)) {
12852       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12853                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12854           !DAG.MaskedValueIsZero(N->getOperand(1),
12855                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12856         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12857                                              : SDValue());
12858     } else {
12859       // This is neither a signed nor an unsigned comparison, just make sure
12860       // that the high bits are equal.
12861       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12862       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12863 
12864       // We don't really care about what is known about the first bit (if
12865       // anything), so clear it in all masks prior to comparing them.
12866       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12867       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12868 
12869       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12870         return SDValue();
12871     }
12872   }
12873 
12874   // We now know that the higher-order bits are irrelevant, we just need to
12875   // make sure that all of the intermediate operations are bit operations, and
12876   // all inputs are extensions.
12877   if (N->getOperand(0).getOpcode() != ISD::AND &&
12878       N->getOperand(0).getOpcode() != ISD::OR  &&
12879       N->getOperand(0).getOpcode() != ISD::XOR &&
12880       N->getOperand(0).getOpcode() != ISD::SELECT &&
12881       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12882       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12883       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12884       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12885       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12886     return SDValue();
12887 
12888   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12889       N->getOperand(1).getOpcode() != ISD::AND &&
12890       N->getOperand(1).getOpcode() != ISD::OR  &&
12891       N->getOperand(1).getOpcode() != ISD::XOR &&
12892       N->getOperand(1).getOpcode() != ISD::SELECT &&
12893       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12894       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12895       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12896       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12897       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12898     return SDValue();
12899 
12900   SmallVector<SDValue, 4> Inputs;
12901   SmallVector<SDValue, 8> BinOps, PromOps;
12902   SmallPtrSet<SDNode *, 16> Visited;
12903 
12904   for (unsigned i = 0; i < 2; ++i) {
12905     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12906           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12907           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12908           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12909         isa<ConstantSDNode>(N->getOperand(i)))
12910       Inputs.push_back(N->getOperand(i));
12911     else
12912       BinOps.push_back(N->getOperand(i));
12913 
12914     if (N->getOpcode() == ISD::TRUNCATE)
12915       break;
12916   }
12917 
12918   // Visit all inputs, collect all binary operations (and, or, xor and
12919   // select) that are all fed by extensions.
12920   while (!BinOps.empty()) {
12921     SDValue BinOp = BinOps.back();
12922     BinOps.pop_back();
12923 
12924     if (!Visited.insert(BinOp.getNode()).second)
12925       continue;
12926 
12927     PromOps.push_back(BinOp);
12928 
12929     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12930       // The condition of the select is not promoted.
12931       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12932         continue;
12933       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12934         continue;
12935 
12936       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12937             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12938             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12939            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12940           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12941         Inputs.push_back(BinOp.getOperand(i));
12942       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12943                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12944                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12945                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12946                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12947                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12948                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12949                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12950                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12951         BinOps.push_back(BinOp.getOperand(i));
12952       } else {
12953         // We have an input that is not an extension or another binary
12954         // operation; we'll abort this transformation.
12955         return SDValue();
12956       }
12957     }
12958   }
12959 
12960   // Make sure that this is a self-contained cluster of operations (which
12961   // is not quite the same thing as saying that everything has only one
12962   // use).
12963   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12964     if (isa<ConstantSDNode>(Inputs[i]))
12965       continue;
12966 
12967     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12968                               UE = Inputs[i].getNode()->use_end();
12969          UI != UE; ++UI) {
12970       SDNode *User = *UI;
12971       if (User != N && !Visited.count(User))
12972         return SDValue();
12973 
12974       // Make sure that we're not going to promote the non-output-value
12975       // operand(s) or SELECT or SELECT_CC.
12976       // FIXME: Although we could sometimes handle this, and it does occur in
12977       // practice that one of the condition inputs to the select is also one of
12978       // the outputs, we currently can't deal with this.
12979       if (User->getOpcode() == ISD::SELECT) {
12980         if (User->getOperand(0) == Inputs[i])
12981           return SDValue();
12982       } else if (User->getOpcode() == ISD::SELECT_CC) {
12983         if (User->getOperand(0) == Inputs[i] ||
12984             User->getOperand(1) == Inputs[i])
12985           return SDValue();
12986       }
12987     }
12988   }
12989 
12990   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12991     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12992                               UE = PromOps[i].getNode()->use_end();
12993          UI != UE; ++UI) {
12994       SDNode *User = *UI;
12995       if (User != N && !Visited.count(User))
12996         return SDValue();
12997 
12998       // Make sure that we're not going to promote the non-output-value
12999       // operand(s) or SELECT or SELECT_CC.
13000       // FIXME: Although we could sometimes handle this, and it does occur in
13001       // practice that one of the condition inputs to the select is also one of
13002       // the outputs, we currently can't deal with this.
13003       if (User->getOpcode() == ISD::SELECT) {
13004         if (User->getOperand(0) == PromOps[i])
13005           return SDValue();
13006       } else if (User->getOpcode() == ISD::SELECT_CC) {
13007         if (User->getOperand(0) == PromOps[i] ||
13008             User->getOperand(1) == PromOps[i])
13009           return SDValue();
13010       }
13011     }
13012   }
13013 
13014   // Replace all inputs with the extension operand.
13015   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13016     // Constants may have users outside the cluster of to-be-promoted nodes,
13017     // and so we need to replace those as we do the promotions.
13018     if (isa<ConstantSDNode>(Inputs[i]))
13019       continue;
13020     else
13021       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13022   }
13023 
13024   std::list<HandleSDNode> PromOpHandles;
13025   for (auto &PromOp : PromOps)
13026     PromOpHandles.emplace_back(PromOp);
13027 
13028   // Replace all operations (these are all the same, but have a different
13029   // (i1) return type). DAG.getNode will validate that the types of
13030   // a binary operator match, so go through the list in reverse so that
13031   // we've likely promoted both operands first. Any intermediate truncations or
13032   // extensions disappear.
13033   while (!PromOpHandles.empty()) {
13034     SDValue PromOp = PromOpHandles.back().getValue();
13035     PromOpHandles.pop_back();
13036 
13037     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13038         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13039         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13040         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13041       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13042           PromOp.getOperand(0).getValueType() != MVT::i1) {
13043         // The operand is not yet ready (see comment below).
13044         PromOpHandles.emplace_front(PromOp);
13045         continue;
13046       }
13047 
13048       SDValue RepValue = PromOp.getOperand(0);
13049       if (isa<ConstantSDNode>(RepValue))
13050         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13051 
13052       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13053       continue;
13054     }
13055 
13056     unsigned C;
13057     switch (PromOp.getOpcode()) {
13058     default:             C = 0; break;
13059     case ISD::SELECT:    C = 1; break;
13060     case ISD::SELECT_CC: C = 2; break;
13061     }
13062 
13063     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13064          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13065         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13066          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13067       // The to-be-promoted operands of this node have not yet been
13068       // promoted (this should be rare because we're going through the
13069       // list backward, but if one of the operands has several users in
13070       // this cluster of to-be-promoted nodes, it is possible).
13071       PromOpHandles.emplace_front(PromOp);
13072       continue;
13073     }
13074 
13075     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13076                                 PromOp.getNode()->op_end());
13077 
13078     // If there are any constant inputs, make sure they're replaced now.
13079     for (unsigned i = 0; i < 2; ++i)
13080       if (isa<ConstantSDNode>(Ops[C+i]))
13081         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13082 
13083     DAG.ReplaceAllUsesOfValueWith(PromOp,
13084       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13085   }
13086 
13087   // Now we're left with the initial truncation itself.
13088   if (N->getOpcode() == ISD::TRUNCATE)
13089     return N->getOperand(0);
13090 
13091   // Otherwise, this is a comparison. The operands to be compared have just
13092   // changed type (to i1), but everything else is the same.
13093   return SDValue(N, 0);
13094 }
13095 
13096 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13097                                                   DAGCombinerInfo &DCI) const {
13098   SelectionDAG &DAG = DCI.DAG;
13099   SDLoc dl(N);
13100 
13101   // If we're tracking CR bits, we need to be careful that we don't have:
13102   //   zext(binary-ops(trunc(x), trunc(y)))
13103   // or
13104   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13105   // such that we're unnecessarily moving things into CR bits that can more
13106   // efficiently stay in GPRs. Note that if we're not certain that the high
13107   // bits are set as required by the final extension, we still may need to do
13108   // some masking to get the proper behavior.
13109 
13110   // This same functionality is important on PPC64 when dealing with
13111   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13112   // the return values of functions. Because it is so similar, it is handled
13113   // here as well.
13114 
13115   if (N->getValueType(0) != MVT::i32 &&
13116       N->getValueType(0) != MVT::i64)
13117     return SDValue();
13118 
13119   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13120         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13121     return SDValue();
13122 
13123   if (N->getOperand(0).getOpcode() != ISD::AND &&
13124       N->getOperand(0).getOpcode() != ISD::OR  &&
13125       N->getOperand(0).getOpcode() != ISD::XOR &&
13126       N->getOperand(0).getOpcode() != ISD::SELECT &&
13127       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13128     return SDValue();
13129 
13130   SmallVector<SDValue, 4> Inputs;
13131   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13132   SmallPtrSet<SDNode *, 16> Visited;
13133 
13134   // Visit all inputs, collect all binary operations (and, or, xor and
13135   // select) that are all fed by truncations.
13136   while (!BinOps.empty()) {
13137     SDValue BinOp = BinOps.back();
13138     BinOps.pop_back();
13139 
13140     if (!Visited.insert(BinOp.getNode()).second)
13141       continue;
13142 
13143     PromOps.push_back(BinOp);
13144 
13145     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13146       // The condition of the select is not promoted.
13147       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13148         continue;
13149       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13150         continue;
13151 
13152       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13153           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13154         Inputs.push_back(BinOp.getOperand(i));
13155       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13156                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13157                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13158                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13159                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13160         BinOps.push_back(BinOp.getOperand(i));
13161       } else {
13162         // We have an input that is not a truncation or another binary
13163         // operation; we'll abort this transformation.
13164         return SDValue();
13165       }
13166     }
13167   }
13168 
13169   // The operands of a select that must be truncated when the select is
13170   // promoted because the operand is actually part of the to-be-promoted set.
13171   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13172 
13173   // Make sure that this is a self-contained cluster of operations (which
13174   // is not quite the same thing as saying that everything has only one
13175   // use).
13176   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13177     if (isa<ConstantSDNode>(Inputs[i]))
13178       continue;
13179 
13180     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
13181                               UE = Inputs[i].getNode()->use_end();
13182          UI != UE; ++UI) {
13183       SDNode *User = *UI;
13184       if (User != N && !Visited.count(User))
13185         return SDValue();
13186 
13187       // If we're going to promote the non-output-value operand(s) or SELECT or
13188       // SELECT_CC, record them for truncation.
13189       if (User->getOpcode() == ISD::SELECT) {
13190         if (User->getOperand(0) == Inputs[i])
13191           SelectTruncOp[0].insert(std::make_pair(User,
13192                                     User->getOperand(0).getValueType()));
13193       } else if (User->getOpcode() == ISD::SELECT_CC) {
13194         if (User->getOperand(0) == Inputs[i])
13195           SelectTruncOp[0].insert(std::make_pair(User,
13196                                     User->getOperand(0).getValueType()));
13197         if (User->getOperand(1) == Inputs[i])
13198           SelectTruncOp[1].insert(std::make_pair(User,
13199                                     User->getOperand(1).getValueType()));
13200       }
13201     }
13202   }
13203 
13204   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13205     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
13206                               UE = PromOps[i].getNode()->use_end();
13207          UI != UE; ++UI) {
13208       SDNode *User = *UI;
13209       if (User != N && !Visited.count(User))
13210         return SDValue();
13211 
13212       // If we're going to promote the non-output-value operand(s) or SELECT or
13213       // SELECT_CC, record them for truncation.
13214       if (User->getOpcode() == ISD::SELECT) {
13215         if (User->getOperand(0) == PromOps[i])
13216           SelectTruncOp[0].insert(std::make_pair(User,
13217                                     User->getOperand(0).getValueType()));
13218       } else if (User->getOpcode() == ISD::SELECT_CC) {
13219         if (User->getOperand(0) == PromOps[i])
13220           SelectTruncOp[0].insert(std::make_pair(User,
13221                                     User->getOperand(0).getValueType()));
13222         if (User->getOperand(1) == PromOps[i])
13223           SelectTruncOp[1].insert(std::make_pair(User,
13224                                     User->getOperand(1).getValueType()));
13225       }
13226     }
13227   }
13228 
13229   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13230   bool ReallyNeedsExt = false;
13231   if (N->getOpcode() != ISD::ANY_EXTEND) {
13232     // If all of the inputs are not already sign/zero extended, then
13233     // we'll still need to do that at the end.
13234     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13235       if (isa<ConstantSDNode>(Inputs[i]))
13236         continue;
13237 
13238       unsigned OpBits =
13239         Inputs[i].getOperand(0).getValueSizeInBits();
13240       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13241 
13242       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13243            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13244                                   APInt::getHighBitsSet(OpBits,
13245                                                         OpBits-PromBits))) ||
13246           (N->getOpcode() == ISD::SIGN_EXTEND &&
13247            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13248              (OpBits-(PromBits-1)))) {
13249         ReallyNeedsExt = true;
13250         break;
13251       }
13252     }
13253   }
13254 
13255   // Replace all inputs, either with the truncation operand, or a
13256   // truncation or extension to the final output type.
13257   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13258     // Constant inputs need to be replaced with the to-be-promoted nodes that
13259     // use them because they might have users outside of the cluster of
13260     // promoted nodes.
13261     if (isa<ConstantSDNode>(Inputs[i]))
13262       continue;
13263 
13264     SDValue InSrc = Inputs[i].getOperand(0);
13265     if (Inputs[i].getValueType() == N->getValueType(0))
13266       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13267     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13268       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13269         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13270     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13271       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13272         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13273     else
13274       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13275         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13276   }
13277 
13278   std::list<HandleSDNode> PromOpHandles;
13279   for (auto &PromOp : PromOps)
13280     PromOpHandles.emplace_back(PromOp);
13281 
13282   // Replace all operations (these are all the same, but have a different
13283   // (promoted) return type). DAG.getNode will validate that the types of
13284   // a binary operator match, so go through the list in reverse so that
13285   // we've likely promoted both operands first.
13286   while (!PromOpHandles.empty()) {
13287     SDValue PromOp = PromOpHandles.back().getValue();
13288     PromOpHandles.pop_back();
13289 
13290     unsigned C;
13291     switch (PromOp.getOpcode()) {
13292     default:             C = 0; break;
13293     case ISD::SELECT:    C = 1; break;
13294     case ISD::SELECT_CC: C = 2; break;
13295     }
13296 
13297     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13298          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13299         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13300          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13301       // The to-be-promoted operands of this node have not yet been
13302       // promoted (this should be rare because we're going through the
13303       // list backward, but if one of the operands has several users in
13304       // this cluster of to-be-promoted nodes, it is possible).
13305       PromOpHandles.emplace_front(PromOp);
13306       continue;
13307     }
13308 
13309     // For SELECT and SELECT_CC nodes, we do a similar check for any
13310     // to-be-promoted comparison inputs.
13311     if (PromOp.getOpcode() == ISD::SELECT ||
13312         PromOp.getOpcode() == ISD::SELECT_CC) {
13313       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13314            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13315           (SelectTruncOp[1].count(PromOp.getNode()) &&
13316            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13317         PromOpHandles.emplace_front(PromOp);
13318         continue;
13319       }
13320     }
13321 
13322     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13323                                 PromOp.getNode()->op_end());
13324 
13325     // If this node has constant inputs, then they'll need to be promoted here.
13326     for (unsigned i = 0; i < 2; ++i) {
13327       if (!isa<ConstantSDNode>(Ops[C+i]))
13328         continue;
13329       if (Ops[C+i].getValueType() == N->getValueType(0))
13330         continue;
13331 
13332       if (N->getOpcode() == ISD::SIGN_EXTEND)
13333         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13334       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13335         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13336       else
13337         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13338     }
13339 
13340     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13341     // truncate them again to the original value type.
13342     if (PromOp.getOpcode() == ISD::SELECT ||
13343         PromOp.getOpcode() == ISD::SELECT_CC) {
13344       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13345       if (SI0 != SelectTruncOp[0].end())
13346         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13347       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13348       if (SI1 != SelectTruncOp[1].end())
13349         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13350     }
13351 
13352     DAG.ReplaceAllUsesOfValueWith(PromOp,
13353       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13354   }
13355 
13356   // Now we're left with the initial extension itself.
13357   if (!ReallyNeedsExt)
13358     return N->getOperand(0);
13359 
13360   // To zero extend, just mask off everything except for the first bit (in the
13361   // i1 case).
13362   if (N->getOpcode() == ISD::ZERO_EXTEND)
13363     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13364                        DAG.getConstant(APInt::getLowBitsSet(
13365                                          N->getValueSizeInBits(0), PromBits),
13366                                        dl, N->getValueType(0)));
13367 
13368   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13369          "Invalid extension type");
13370   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13371   SDValue ShiftCst =
13372       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13373   return DAG.getNode(
13374       ISD::SRA, dl, N->getValueType(0),
13375       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13376       ShiftCst);
13377 }
13378 
13379 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13380                                         DAGCombinerInfo &DCI) const {
13381   assert(N->getOpcode() == ISD::SETCC &&
13382          "Should be called with a SETCC node");
13383 
13384   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13385   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13386     SDValue LHS = N->getOperand(0);
13387     SDValue RHS = N->getOperand(1);
13388 
13389     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13390     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13391         LHS.hasOneUse())
13392       std::swap(LHS, RHS);
13393 
13394     // x == 0-y --> x+y == 0
13395     // x != 0-y --> x+y != 0
13396     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13397         RHS.hasOneUse()) {
13398       SDLoc DL(N);
13399       SelectionDAG &DAG = DCI.DAG;
13400       EVT VT = N->getValueType(0);
13401       EVT OpVT = LHS.getValueType();
13402       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13403       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13404     }
13405   }
13406 
13407   return DAGCombineTruncBoolExt(N, DCI);
13408 }
13409 
13410 // Is this an extending load from an f32 to an f64?
13411 static bool isFPExtLoad(SDValue Op) {
13412   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13413     return LD->getExtensionType() == ISD::EXTLOAD &&
13414       Op.getValueType() == MVT::f64;
13415   return false;
13416 }
13417 
13418 /// Reduces the number of fp-to-int conversion when building a vector.
13419 ///
13420 /// If this vector is built out of floating to integer conversions,
13421 /// transform it to a vector built out of floating point values followed by a
13422 /// single floating to integer conversion of the vector.
13423 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
13424 /// becomes (fptosi (build_vector ($A, $B, ...)))
13425 SDValue PPCTargetLowering::
13426 combineElementTruncationToVectorTruncation(SDNode *N,
13427                                            DAGCombinerInfo &DCI) const {
13428   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13429          "Should be called with a BUILD_VECTOR node");
13430 
13431   SelectionDAG &DAG = DCI.DAG;
13432   SDLoc dl(N);
13433 
13434   SDValue FirstInput = N->getOperand(0);
13435   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
13436          "The input operand must be an fp-to-int conversion.");
13437 
13438   // This combine happens after legalization so the fp_to_[su]i nodes are
13439   // already converted to PPCSISD nodes.
13440   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
13441   if (FirstConversion == PPCISD::FCTIDZ ||
13442       FirstConversion == PPCISD::FCTIDUZ ||
13443       FirstConversion == PPCISD::FCTIWZ ||
13444       FirstConversion == PPCISD::FCTIWUZ) {
13445     bool IsSplat = true;
13446     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
13447       FirstConversion == PPCISD::FCTIWUZ;
13448     EVT SrcVT = FirstInput.getOperand(0).getValueType();
13449     SmallVector<SDValue, 4> Ops;
13450     EVT TargetVT = N->getValueType(0);
13451     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13452       SDValue NextOp = N->getOperand(i);
13453       if (NextOp.getOpcode() != PPCISD::MFVSR)
13454         return SDValue();
13455       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13456       if (NextConversion != FirstConversion)
13457         return SDValue();
13458       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13459       // This is not valid if the input was originally double precision. It is
13460       // also not profitable to do unless this is an extending load in which
13461       // case doing this combine will allow us to combine consecutive loads.
13462       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13463         return SDValue();
13464       if (N->getOperand(i) != FirstInput)
13465         IsSplat = false;
13466     }
13467 
13468     // If this is a splat, we leave it as-is since there will be only a single
13469     // fp-to-int conversion followed by a splat of the integer. This is better
13470     // for 32-bit and smaller ints and neutral for 64-bit ints.
13471     if (IsSplat)
13472       return SDValue();
13473 
13474     // Now that we know we have the right type of node, get its operands
13475     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13476       SDValue In = N->getOperand(i).getOperand(0);
13477       if (Is32Bit) {
13478         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13479         // here, we know that all inputs are extending loads so this is safe).
13480         if (In.isUndef())
13481           Ops.push_back(DAG.getUNDEF(SrcVT));
13482         else {
13483           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13484                                       MVT::f32, In.getOperand(0),
13485                                       DAG.getIntPtrConstant(1, dl));
13486           Ops.push_back(Trunc);
13487         }
13488       } else
13489         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13490     }
13491 
13492     unsigned Opcode;
13493     if (FirstConversion == PPCISD::FCTIDZ ||
13494         FirstConversion == PPCISD::FCTIWZ)
13495       Opcode = ISD::FP_TO_SINT;
13496     else
13497       Opcode = ISD::FP_TO_UINT;
13498 
13499     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13500     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13501     return DAG.getNode(Opcode, dl, TargetVT, BV);
13502   }
13503   return SDValue();
13504 }
13505 
13506 /// Reduce the number of loads when building a vector.
13507 ///
13508 /// Building a vector out of multiple loads can be converted to a load
13509 /// of the vector type if the loads are consecutive. If the loads are
13510 /// consecutive but in descending order, a shuffle is added at the end
13511 /// to reorder the vector.
13512 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13513   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13514          "Should be called with a BUILD_VECTOR node");
13515 
13516   SDLoc dl(N);
13517 
13518   // Return early for non byte-sized type, as they can't be consecutive.
13519   if (!N->getValueType(0).getVectorElementType().isByteSized())
13520     return SDValue();
13521 
13522   bool InputsAreConsecutiveLoads = true;
13523   bool InputsAreReverseConsecutive = true;
13524   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13525   SDValue FirstInput = N->getOperand(0);
13526   bool IsRoundOfExtLoad = false;
13527 
13528   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13529       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13530     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13531     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13532   }
13533   // Not a build vector of (possibly fp_rounded) loads.
13534   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13535       N->getNumOperands() == 1)
13536     return SDValue();
13537 
13538   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13539     // If any inputs are fp_round(extload), they all must be.
13540     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13541       return SDValue();
13542 
13543     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13544       N->getOperand(i);
13545     if (NextInput.getOpcode() != ISD::LOAD)
13546       return SDValue();
13547 
13548     SDValue PreviousInput =
13549       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13550     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13551     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13552 
13553     // If any inputs are fp_round(extload), they all must be.
13554     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13555       return SDValue();
13556 
13557     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13558       InputsAreConsecutiveLoads = false;
13559     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13560       InputsAreReverseConsecutive = false;
13561 
13562     // Exit early if the loads are neither consecutive nor reverse consecutive.
13563     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13564       return SDValue();
13565   }
13566 
13567   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13568          "The loads cannot be both consecutive and reverse consecutive.");
13569 
13570   SDValue FirstLoadOp =
13571     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13572   SDValue LastLoadOp =
13573     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13574                        N->getOperand(N->getNumOperands()-1);
13575 
13576   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13577   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13578   if (InputsAreConsecutiveLoads) {
13579     assert(LD1 && "Input needs to be a LoadSDNode.");
13580     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13581                        LD1->getBasePtr(), LD1->getPointerInfo(),
13582                        LD1->getAlignment());
13583   }
13584   if (InputsAreReverseConsecutive) {
13585     assert(LDL && "Input needs to be a LoadSDNode.");
13586     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13587                                LDL->getBasePtr(), LDL->getPointerInfo(),
13588                                LDL->getAlignment());
13589     SmallVector<int, 16> Ops;
13590     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13591       Ops.push_back(i);
13592 
13593     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13594                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13595   }
13596   return SDValue();
13597 }
13598 
13599 // This function adds the required vector_shuffle needed to get
13600 // the elements of the vector extract in the correct position
13601 // as specified by the CorrectElems encoding.
13602 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13603                                       SDValue Input, uint64_t Elems,
13604                                       uint64_t CorrectElems) {
13605   SDLoc dl(N);
13606 
13607   unsigned NumElems = Input.getValueType().getVectorNumElements();
13608   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13609 
13610   // Knowing the element indices being extracted from the original
13611   // vector and the order in which they're being inserted, just put
13612   // them at element indices required for the instruction.
13613   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13614     if (DAG.getDataLayout().isLittleEndian())
13615       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13616     else
13617       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13618     CorrectElems = CorrectElems >> 8;
13619     Elems = Elems >> 8;
13620   }
13621 
13622   SDValue Shuffle =
13623       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13624                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13625 
13626   EVT VT = N->getValueType(0);
13627   SDValue Conv = DAG.getBitcast(VT, Shuffle);
13628 
13629   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
13630                                Input.getValueType().getVectorElementType(),
13631                                VT.getVectorNumElements());
13632   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
13633                      DAG.getValueType(ExtVT));
13634 }
13635 
13636 // Look for build vector patterns where input operands come from sign
13637 // extended vector_extract elements of specific indices. If the correct indices
13638 // aren't used, add a vector shuffle to fix up the indices and create
13639 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
13640 // during instruction selection.
13641 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13642   // This array encodes the indices that the vector sign extend instructions
13643   // extract from when extending from one type to another for both BE and LE.
13644   // The right nibble of each byte corresponds to the LE incides.
13645   // and the left nibble of each byte corresponds to the BE incides.
13646   // For example: 0x3074B8FC  byte->word
13647   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13648   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13649   // For example: 0x000070F8  byte->double word
13650   // For LE: the allowed indices are: 0x0,0x8
13651   // For BE: the allowed indices are: 0x7,0xF
13652   uint64_t TargetElems[] = {
13653       0x3074B8FC, // b->w
13654       0x000070F8, // b->d
13655       0x10325476, // h->w
13656       0x00003074, // h->d
13657       0x00001032, // w->d
13658   };
13659 
13660   uint64_t Elems = 0;
13661   int Index;
13662   SDValue Input;
13663 
13664   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13665     if (!Op)
13666       return false;
13667     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13668         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13669       return false;
13670 
13671     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13672     // of the right width.
13673     SDValue Extract = Op.getOperand(0);
13674     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13675       Extract = Extract.getOperand(0);
13676     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13677       return false;
13678 
13679     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13680     if (!ExtOp)
13681       return false;
13682 
13683     Index = ExtOp->getZExtValue();
13684     if (Input && Input != Extract.getOperand(0))
13685       return false;
13686 
13687     if (!Input)
13688       Input = Extract.getOperand(0);
13689 
13690     Elems = Elems << 8;
13691     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13692     Elems |= Index;
13693 
13694     return true;
13695   };
13696 
13697   // If the build vector operands aren't sign extended vector extracts,
13698   // of the same input vector, then return.
13699   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13700     if (!isSExtOfVecExtract(N->getOperand(i))) {
13701       return SDValue();
13702     }
13703   }
13704 
13705   // If the vector extract indicies are not correct, add the appropriate
13706   // vector_shuffle.
13707   int TgtElemArrayIdx;
13708   int InputSize = Input.getValueType().getScalarSizeInBits();
13709   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13710   if (InputSize + OutputSize == 40)
13711     TgtElemArrayIdx = 0;
13712   else if (InputSize + OutputSize == 72)
13713     TgtElemArrayIdx = 1;
13714   else if (InputSize + OutputSize == 48)
13715     TgtElemArrayIdx = 2;
13716   else if (InputSize + OutputSize == 80)
13717     TgtElemArrayIdx = 3;
13718   else if (InputSize + OutputSize == 96)
13719     TgtElemArrayIdx = 4;
13720   else
13721     return SDValue();
13722 
13723   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13724   CorrectElems = DAG.getDataLayout().isLittleEndian()
13725                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13726                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13727   if (Elems != CorrectElems) {
13728     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13729   }
13730 
13731   // Regular lowering will catch cases where a shuffle is not needed.
13732   return SDValue();
13733 }
13734 
13735 // Look for the pattern of a load from a narrow width to i128, feeding
13736 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
13737 // (LXVRZX). This node represents a zero extending load that will be matched
13738 // to the Load VSX Vector Rightmost instructions.
13739 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
13740   SDLoc DL(N);
13741 
13742   // This combine is only eligible for a BUILD_VECTOR of v1i128.
13743   if (N->getValueType(0) != MVT::v1i128)
13744     return SDValue();
13745 
13746   SDValue Operand = N->getOperand(0);
13747   // Proceed with the transformation if the operand to the BUILD_VECTOR
13748   // is a load instruction.
13749   if (Operand.getOpcode() != ISD::LOAD)
13750     return SDValue();
13751 
13752   LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand);
13753   EVT MemoryType = LD->getMemoryVT();
13754 
13755   // This transformation is only valid if the we are loading either a byte,
13756   // halfword, word, or doubleword.
13757   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
13758                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
13759 
13760   // Ensure that the load from the narrow width is being zero extended to i128.
13761   if (!ValidLDType ||
13762       (LD->getExtensionType() != ISD::ZEXTLOAD &&
13763        LD->getExtensionType() != ISD::EXTLOAD))
13764     return SDValue();
13765 
13766   SDValue LoadOps[] = {
13767       LD->getChain(), LD->getBasePtr(),
13768       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
13769 
13770   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
13771                                  DAG.getVTList(MVT::v1i128, MVT::Other),
13772                                  LoadOps, MemoryType, LD->getMemOperand());
13773 }
13774 
13775 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13776                                                  DAGCombinerInfo &DCI) const {
13777   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13778          "Should be called with a BUILD_VECTOR node");
13779 
13780   SelectionDAG &DAG = DCI.DAG;
13781   SDLoc dl(N);
13782 
13783   if (!Subtarget.hasVSX())
13784     return SDValue();
13785 
13786   // The target independent DAG combiner will leave a build_vector of
13787   // float-to-int conversions intact. We can generate MUCH better code for
13788   // a float-to-int conversion of a vector of floats.
13789   SDValue FirstInput = N->getOperand(0);
13790   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13791     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13792     if (Reduced)
13793       return Reduced;
13794   }
13795 
13796   // If we're building a vector out of consecutive loads, just load that
13797   // vector type.
13798   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13799   if (Reduced)
13800     return Reduced;
13801 
13802   // If we're building a vector out of extended elements from another vector
13803   // we have P9 vector integer extend instructions. The code assumes legal
13804   // input types (i.e. it can't handle things like v4i16) so do not run before
13805   // legalization.
13806   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13807     Reduced = combineBVOfVecSExt(N, DAG);
13808     if (Reduced)
13809       return Reduced;
13810   }
13811 
13812   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
13813   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
13814   // is a load from <valid narrow width> to i128.
13815   if (Subtarget.isISA3_1()) {
13816     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
13817     if (BVOfZLoad)
13818       return BVOfZLoad;
13819   }
13820 
13821   if (N->getValueType(0) != MVT::v2f64)
13822     return SDValue();
13823 
13824   // Looking for:
13825   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13826   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13827       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13828     return SDValue();
13829   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13830       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13831     return SDValue();
13832   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13833     return SDValue();
13834 
13835   SDValue Ext1 = FirstInput.getOperand(0);
13836   SDValue Ext2 = N->getOperand(1).getOperand(0);
13837   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13838      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13839     return SDValue();
13840 
13841   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13842   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13843   if (!Ext1Op || !Ext2Op)
13844     return SDValue();
13845   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13846       Ext1.getOperand(0) != Ext2.getOperand(0))
13847     return SDValue();
13848 
13849   int FirstElem = Ext1Op->getZExtValue();
13850   int SecondElem = Ext2Op->getZExtValue();
13851   int SubvecIdx;
13852   if (FirstElem == 0 && SecondElem == 1)
13853     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13854   else if (FirstElem == 2 && SecondElem == 3)
13855     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13856   else
13857     return SDValue();
13858 
13859   SDValue SrcVec = Ext1.getOperand(0);
13860   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13861     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13862   return DAG.getNode(NodeType, dl, MVT::v2f64,
13863                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13864 }
13865 
13866 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13867                                               DAGCombinerInfo &DCI) const {
13868   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13869           N->getOpcode() == ISD::UINT_TO_FP) &&
13870          "Need an int -> FP conversion node here");
13871 
13872   if (useSoftFloat() || !Subtarget.has64BitSupport())
13873     return SDValue();
13874 
13875   SelectionDAG &DAG = DCI.DAG;
13876   SDLoc dl(N);
13877   SDValue Op(N, 0);
13878 
13879   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13880   // from the hardware.
13881   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13882     return SDValue();
13883   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13884       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13885     return SDValue();
13886 
13887   SDValue FirstOperand(Op.getOperand(0));
13888   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13889     (FirstOperand.getValueType() == MVT::i8 ||
13890      FirstOperand.getValueType() == MVT::i16);
13891   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13892     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13893     bool DstDouble = Op.getValueType() == MVT::f64;
13894     unsigned ConvOp = Signed ?
13895       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13896       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13897     SDValue WidthConst =
13898       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13899                             dl, false);
13900     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13901     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13902     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13903                                          DAG.getVTList(MVT::f64, MVT::Other),
13904                                          Ops, MVT::i8, LDN->getMemOperand());
13905 
13906     // For signed conversion, we need to sign-extend the value in the VSR
13907     if (Signed) {
13908       SDValue ExtOps[] = { Ld, WidthConst };
13909       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13910       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13911     } else
13912       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13913   }
13914 
13915 
13916   // For i32 intermediate values, unfortunately, the conversion functions
13917   // leave the upper 32 bits of the value are undefined. Within the set of
13918   // scalar instructions, we have no method for zero- or sign-extending the
13919   // value. Thus, we cannot handle i32 intermediate values here.
13920   if (Op.getOperand(0).getValueType() == MVT::i32)
13921     return SDValue();
13922 
13923   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13924          "UINT_TO_FP is supported only with FPCVT");
13925 
13926   // If we have FCFIDS, then use it when converting to single-precision.
13927   // Otherwise, convert to double-precision and then round.
13928   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13929                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13930                                                             : PPCISD::FCFIDS)
13931                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13932                                                             : PPCISD::FCFID);
13933   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13934                   ? MVT::f32
13935                   : MVT::f64;
13936 
13937   // If we're converting from a float, to an int, and back to a float again,
13938   // then we don't need the store/load pair at all.
13939   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13940        Subtarget.hasFPCVT()) ||
13941       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13942     SDValue Src = Op.getOperand(0).getOperand(0);
13943     if (Src.getValueType() == MVT::f32) {
13944       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13945       DCI.AddToWorklist(Src.getNode());
13946     } else if (Src.getValueType() != MVT::f64) {
13947       // Make sure that we don't pick up a ppc_fp128 source value.
13948       return SDValue();
13949     }
13950 
13951     unsigned FCTOp =
13952       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13953                                                         PPCISD::FCTIDUZ;
13954 
13955     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13956     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13957 
13958     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13959       FP = DAG.getNode(ISD::FP_ROUND, dl,
13960                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13961       DCI.AddToWorklist(FP.getNode());
13962     }
13963 
13964     return FP;
13965   }
13966 
13967   return SDValue();
13968 }
13969 
13970 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13971 // builtins) into loads with swaps.
13972 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13973                                               DAGCombinerInfo &DCI) const {
13974   SelectionDAG &DAG = DCI.DAG;
13975   SDLoc dl(N);
13976   SDValue Chain;
13977   SDValue Base;
13978   MachineMemOperand *MMO;
13979 
13980   switch (N->getOpcode()) {
13981   default:
13982     llvm_unreachable("Unexpected opcode for little endian VSX load");
13983   case ISD::LOAD: {
13984     LoadSDNode *LD = cast<LoadSDNode>(N);
13985     Chain = LD->getChain();
13986     Base = LD->getBasePtr();
13987     MMO = LD->getMemOperand();
13988     // If the MMO suggests this isn't a load of a full vector, leave
13989     // things alone.  For a built-in, we have to make the change for
13990     // correctness, so if there is a size problem that will be a bug.
13991     if (MMO->getSize() < 16)
13992       return SDValue();
13993     break;
13994   }
13995   case ISD::INTRINSIC_W_CHAIN: {
13996     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13997     Chain = Intrin->getChain();
13998     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13999     // us what we want. Get operand 2 instead.
14000     Base = Intrin->getOperand(2);
14001     MMO = Intrin->getMemOperand();
14002     break;
14003   }
14004   }
14005 
14006   MVT VecTy = N->getValueType(0).getSimpleVT();
14007 
14008   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
14009   // aligned and the type is a vector with elements up to 4 bytes
14010   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14011       VecTy.getScalarSizeInBits() <= 32) {
14012     return SDValue();
14013   }
14014 
14015   SDValue LoadOps[] = { Chain, Base };
14016   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14017                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14018                                          LoadOps, MVT::v2f64, MMO);
14019 
14020   DCI.AddToWorklist(Load.getNode());
14021   Chain = Load.getValue(1);
14022   SDValue Swap = DAG.getNode(
14023       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14024   DCI.AddToWorklist(Swap.getNode());
14025 
14026   // Add a bitcast if the resulting load type doesn't match v2f64.
14027   if (VecTy != MVT::v2f64) {
14028     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14029     DCI.AddToWorklist(N.getNode());
14030     // Package {bitcast value, swap's chain} to match Load's shape.
14031     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14032                        N, Swap.getValue(1));
14033   }
14034 
14035   return Swap;
14036 }
14037 
14038 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14039 // builtins) into stores with swaps.
14040 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14041                                                DAGCombinerInfo &DCI) const {
14042   SelectionDAG &DAG = DCI.DAG;
14043   SDLoc dl(N);
14044   SDValue Chain;
14045   SDValue Base;
14046   unsigned SrcOpnd;
14047   MachineMemOperand *MMO;
14048 
14049   switch (N->getOpcode()) {
14050   default:
14051     llvm_unreachable("Unexpected opcode for little endian VSX store");
14052   case ISD::STORE: {
14053     StoreSDNode *ST = cast<StoreSDNode>(N);
14054     Chain = ST->getChain();
14055     Base = ST->getBasePtr();
14056     MMO = ST->getMemOperand();
14057     SrcOpnd = 1;
14058     // If the MMO suggests this isn't a store of a full vector, leave
14059     // things alone.  For a built-in, we have to make the change for
14060     // correctness, so if there is a size problem that will be a bug.
14061     if (MMO->getSize() < 16)
14062       return SDValue();
14063     break;
14064   }
14065   case ISD::INTRINSIC_VOID: {
14066     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14067     Chain = Intrin->getChain();
14068     // Intrin->getBasePtr() oddly does not get what we want.
14069     Base = Intrin->getOperand(3);
14070     MMO = Intrin->getMemOperand();
14071     SrcOpnd = 2;
14072     break;
14073   }
14074   }
14075 
14076   SDValue Src = N->getOperand(SrcOpnd);
14077   MVT VecTy = Src.getValueType().getSimpleVT();
14078 
14079   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
14080   // aligned and the type is a vector with elements up to 4 bytes
14081   if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) &&
14082       VecTy.getScalarSizeInBits() <= 32) {
14083     return SDValue();
14084   }
14085 
14086   // All stores are done as v2f64 and possible bit cast.
14087   if (VecTy != MVT::v2f64) {
14088     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14089     DCI.AddToWorklist(Src.getNode());
14090   }
14091 
14092   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14093                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14094   DCI.AddToWorklist(Swap.getNode());
14095   Chain = Swap.getValue(1);
14096   SDValue StoreOps[] = { Chain, Swap, Base };
14097   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14098                                           DAG.getVTList(MVT::Other),
14099                                           StoreOps, VecTy, MMO);
14100   DCI.AddToWorklist(Store.getNode());
14101   return Store;
14102 }
14103 
14104 // Handle DAG combine for STORE (FP_TO_INT F).
14105 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14106                                                DAGCombinerInfo &DCI) const {
14107 
14108   SelectionDAG &DAG = DCI.DAG;
14109   SDLoc dl(N);
14110   unsigned Opcode = N->getOperand(1).getOpcode();
14111 
14112   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14113          && "Not a FP_TO_INT Instruction!");
14114 
14115   SDValue Val = N->getOperand(1).getOperand(0);
14116   EVT Op1VT = N->getOperand(1).getValueType();
14117   EVT ResVT = Val.getValueType();
14118 
14119   if (!isTypeLegal(ResVT))
14120     return SDValue();
14121 
14122   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14123   bool ValidTypeForStoreFltAsInt =
14124         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14125          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14126 
14127   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14128       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14129     return SDValue();
14130 
14131   // Extend f32 values to f64
14132   if (ResVT.getScalarSizeInBits() == 32) {
14133     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14134     DCI.AddToWorklist(Val.getNode());
14135   }
14136 
14137   // Set signed or unsigned conversion opcode.
14138   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14139                           PPCISD::FP_TO_SINT_IN_VSR :
14140                           PPCISD::FP_TO_UINT_IN_VSR;
14141 
14142   Val = DAG.getNode(ConvOpcode,
14143                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14144   DCI.AddToWorklist(Val.getNode());
14145 
14146   // Set number of bytes being converted.
14147   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14148   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14149                     DAG.getIntPtrConstant(ByteSize, dl, false),
14150                     DAG.getValueType(Op1VT) };
14151 
14152   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14153           DAG.getVTList(MVT::Other), Ops,
14154           cast<StoreSDNode>(N)->getMemoryVT(),
14155           cast<StoreSDNode>(N)->getMemOperand());
14156 
14157   DCI.AddToWorklist(Val.getNode());
14158   return Val;
14159 }
14160 
14161 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14162   // Check that the source of the element keeps flipping
14163   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14164   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14165   for (int i = 1, e = Mask.size(); i < e; i++) {
14166     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14167       return false;
14168     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14169       return false;
14170     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14171   }
14172   return true;
14173 }
14174 
14175 static bool isSplatBV(SDValue Op) {
14176   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14177     return false;
14178   SDValue FirstOp;
14179 
14180   // Find first non-undef input.
14181   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14182     FirstOp = Op.getOperand(i);
14183     if (!FirstOp.isUndef())
14184       break;
14185   }
14186 
14187   // All inputs are undef or the same as the first non-undef input.
14188   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14189     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14190       return false;
14191   return true;
14192 }
14193 
14194 static SDValue isScalarToVec(SDValue Op) {
14195   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14196     return Op;
14197   if (Op.getOpcode() != ISD::BITCAST)
14198     return SDValue();
14199   Op = Op.getOperand(0);
14200   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14201     return Op;
14202   return SDValue();
14203 }
14204 
14205 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14206                                             int LHSMaxIdx, int RHSMinIdx,
14207                                             int RHSMaxIdx, int HalfVec) {
14208   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14209     int Idx = ShuffV[i];
14210     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14211       ShuffV[i] += HalfVec;
14212   }
14213   return;
14214 }
14215 
14216 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14217 // the original is:
14218 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14219 // In such a case, just change the shuffle mask to extract the element
14220 // from the permuted index.
14221 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) {
14222   SDLoc dl(OrigSToV);
14223   EVT VT = OrigSToV.getValueType();
14224   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14225          "Expecting a SCALAR_TO_VECTOR here");
14226   SDValue Input = OrigSToV.getOperand(0);
14227 
14228   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14229     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14230     SDValue OrigVector = Input.getOperand(0);
14231 
14232     // Can't handle non-const element indices or different vector types
14233     // for the input to the extract and the output of the scalar_to_vector.
14234     if (Idx && VT == OrigVector.getValueType()) {
14235       SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1);
14236       NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue();
14237       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14238     }
14239   }
14240   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14241                      OrigSToV.getOperand(0));
14242 }
14243 
14244 // On little endian subtargets, combine shuffles such as:
14245 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14246 // into:
14247 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14248 // because the latter can be matched to a single instruction merge.
14249 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14250 // to put the value into element zero. Adjust the shuffle mask so that the
14251 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14252 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14253                                                 SelectionDAG &DAG) const {
14254   SDValue LHS = SVN->getOperand(0);
14255   SDValue RHS = SVN->getOperand(1);
14256   auto Mask = SVN->getMask();
14257   int NumElts = LHS.getValueType().getVectorNumElements();
14258   SDValue Res(SVN, 0);
14259   SDLoc dl(SVN);
14260 
14261   // None of these combines are useful on big endian systems since the ISA
14262   // already has a big endian bias.
14263   if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14264     return Res;
14265 
14266   // If this is not a shuffle of a shuffle and the first element comes from
14267   // the second vector, canonicalize to the commuted form. This will make it
14268   // more likely to match one of the single instruction patterns.
14269   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14270       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14271     std::swap(LHS, RHS);
14272     Res = DAG.getCommutedVectorShuffle(*SVN);
14273     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14274   }
14275 
14276   // Adjust the shuffle mask if either input vector comes from a
14277   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14278   // form (to prevent the need for a swap).
14279   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14280   SDValue SToVLHS = isScalarToVec(LHS);
14281   SDValue SToVRHS = isScalarToVec(RHS);
14282   if (SToVLHS || SToVRHS) {
14283     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14284                             : SToVRHS.getValueType().getVectorNumElements();
14285     int NumEltsOut = ShuffV.size();
14286 
14287     // Initially assume that neither input is permuted. These will be adjusted
14288     // accordingly if either input is.
14289     int LHSMaxIdx = -1;
14290     int RHSMinIdx = -1;
14291     int RHSMaxIdx = -1;
14292     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14293 
14294     // Get the permuted scalar to vector nodes for the source(s) that come from
14295     // ISD::SCALAR_TO_VECTOR.
14296     if (SToVLHS) {
14297       // Set up the values for the shuffle vector fixup.
14298       LHSMaxIdx = NumEltsOut / NumEltsIn;
14299       SToVLHS = getSToVPermuted(SToVLHS, DAG);
14300       if (SToVLHS.getValueType() != LHS.getValueType())
14301         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14302       LHS = SToVLHS;
14303     }
14304     if (SToVRHS) {
14305       RHSMinIdx = NumEltsOut;
14306       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14307       SToVRHS = getSToVPermuted(SToVRHS, DAG);
14308       if (SToVRHS.getValueType() != RHS.getValueType())
14309         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14310       RHS = SToVRHS;
14311     }
14312 
14313     // Fix up the shuffle mask to reflect where the desired element actually is.
14314     // The minimum and maximum indices that correspond to element zero for both
14315     // the LHS and RHS are computed and will control which shuffle mask entries
14316     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14317     // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by
14318     // HalfVec to refer to the corresponding element in the permuted vector.
14319     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14320                                     HalfVec);
14321     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14322 
14323     // We may have simplified away the shuffle. We won't be able to do anything
14324     // further with it here.
14325     if (!isa<ShuffleVectorSDNode>(Res))
14326       return Res;
14327     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14328   }
14329 
14330   // The common case after we commuted the shuffle is that the RHS is a splat
14331   // and we have elements coming in from the splat at indices that are not
14332   // conducive to using a merge.
14333   // Example:
14334   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14335   if (!isSplatBV(RHS))
14336     return Res;
14337 
14338   // We are looking for a mask such that all even elements are from
14339   // one vector and all odd elements from the other.
14340   if (!isAlternatingShuffMask(Mask, NumElts))
14341     return Res;
14342 
14343   // Adjust the mask so we are pulling in the same index from the splat
14344   // as the index from the interesting vector in consecutive elements.
14345   // Example (even elements from first vector):
14346   // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14347   if (Mask[0] < NumElts)
14348     for (int i = 1, e = Mask.size(); i < e; i += 2)
14349       ShuffV[i] = (ShuffV[i - 1] + NumElts);
14350   // Example (odd elements from first vector):
14351   // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14352   else
14353     for (int i = 0, e = Mask.size(); i < e; i += 2)
14354       ShuffV[i] = (ShuffV[i + 1] + NumElts);
14355 
14356   // If the RHS has undefs, we need to remove them since we may have created
14357   // a shuffle that adds those instead of the splat value.
14358   SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue();
14359   RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal);
14360 
14361   Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14362   return Res;
14363 }
14364 
14365 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
14366                                                 LSBaseSDNode *LSBase,
14367                                                 DAGCombinerInfo &DCI) const {
14368   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
14369         "Not a reverse memop pattern!");
14370 
14371   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
14372     auto Mask = SVN->getMask();
14373     int i = 0;
14374     auto I = Mask.rbegin();
14375     auto E = Mask.rend();
14376 
14377     for (; I != E; ++I) {
14378       if (*I != i)
14379         return false;
14380       i++;
14381     }
14382     return true;
14383   };
14384 
14385   SelectionDAG &DAG = DCI.DAG;
14386   EVT VT = SVN->getValueType(0);
14387 
14388   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
14389     return SDValue();
14390 
14391   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
14392   // See comment in PPCVSXSwapRemoval.cpp.
14393   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
14394   if (!Subtarget.hasP9Vector())
14395     return SDValue();
14396 
14397   if(!IsElementReverse(SVN))
14398     return SDValue();
14399 
14400   if (LSBase->getOpcode() == ISD::LOAD) {
14401     SDLoc dl(SVN);
14402     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
14403     return DAG.getMemIntrinsicNode(
14404         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
14405         LSBase->getMemoryVT(), LSBase->getMemOperand());
14406   }
14407 
14408   if (LSBase->getOpcode() == ISD::STORE) {
14409     SDLoc dl(LSBase);
14410     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
14411                           LSBase->getBasePtr()};
14412     return DAG.getMemIntrinsicNode(
14413         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
14414         LSBase->getMemoryVT(), LSBase->getMemOperand());
14415   }
14416 
14417   llvm_unreachable("Expected a load or store node here");
14418 }
14419 
14420 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
14421                                              DAGCombinerInfo &DCI) const {
14422   SelectionDAG &DAG = DCI.DAG;
14423   SDLoc dl(N);
14424   switch (N->getOpcode()) {
14425   default: break;
14426   case ISD::ADD:
14427     return combineADD(N, DCI);
14428   case ISD::SHL:
14429     return combineSHL(N, DCI);
14430   case ISD::SRA:
14431     return combineSRA(N, DCI);
14432   case ISD::SRL:
14433     return combineSRL(N, DCI);
14434   case ISD::MUL:
14435     return combineMUL(N, DCI);
14436   case ISD::FMA:
14437   case PPCISD::FNMSUB:
14438     return combineFMALike(N, DCI);
14439   case PPCISD::SHL:
14440     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
14441         return N->getOperand(0);
14442     break;
14443   case PPCISD::SRL:
14444     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
14445         return N->getOperand(0);
14446     break;
14447   case PPCISD::SRA:
14448     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
14449       if (C->isNullValue() ||   //  0 >>s V -> 0.
14450           C->isAllOnesValue())    // -1 >>s V -> -1.
14451         return N->getOperand(0);
14452     }
14453     break;
14454   case ISD::SIGN_EXTEND:
14455   case ISD::ZERO_EXTEND:
14456   case ISD::ANY_EXTEND:
14457     return DAGCombineExtBoolTrunc(N, DCI);
14458   case ISD::TRUNCATE:
14459     return combineTRUNCATE(N, DCI);
14460   case ISD::SETCC:
14461     if (SDValue CSCC = combineSetCC(N, DCI))
14462       return CSCC;
14463     LLVM_FALLTHROUGH;
14464   case ISD::SELECT_CC:
14465     return DAGCombineTruncBoolExt(N, DCI);
14466   case ISD::SINT_TO_FP:
14467   case ISD::UINT_TO_FP:
14468     return combineFPToIntToFP(N, DCI);
14469   case ISD::VECTOR_SHUFFLE:
14470     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
14471       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
14472       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
14473     }
14474     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
14475   case ISD::STORE: {
14476 
14477     EVT Op1VT = N->getOperand(1).getValueType();
14478     unsigned Opcode = N->getOperand(1).getOpcode();
14479 
14480     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
14481       SDValue Val= combineStoreFPToInt(N, DCI);
14482       if (Val)
14483         return Val;
14484     }
14485 
14486     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
14487       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
14488       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
14489       if (Val)
14490         return Val;
14491     }
14492 
14493     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
14494     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
14495         N->getOperand(1).getNode()->hasOneUse() &&
14496         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
14497          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
14498 
14499       // STBRX can only handle simple types and it makes no sense to store less
14500       // two bytes in byte-reversed order.
14501       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
14502       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
14503         break;
14504 
14505       SDValue BSwapOp = N->getOperand(1).getOperand(0);
14506       // Do an any-extend to 32-bits if this is a half-word input.
14507       if (BSwapOp.getValueType() == MVT::i16)
14508         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
14509 
14510       // If the type of BSWAP operand is wider than stored memory width
14511       // it need to be shifted to the right side before STBRX.
14512       if (Op1VT.bitsGT(mVT)) {
14513         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
14514         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
14515                               DAG.getConstant(Shift, dl, MVT::i32));
14516         // Need to truncate if this is a bswap of i64 stored as i32/i16.
14517         if (Op1VT == MVT::i64)
14518           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
14519       }
14520 
14521       SDValue Ops[] = {
14522         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
14523       };
14524       return
14525         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
14526                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
14527                                 cast<StoreSDNode>(N)->getMemOperand());
14528     }
14529 
14530     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
14531     // So it can increase the chance of CSE constant construction.
14532     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
14533         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
14534       // Need to sign-extended to 64-bits to handle negative values.
14535       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
14536       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
14537                                     MemVT.getSizeInBits());
14538       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
14539 
14540       // DAG.getTruncStore() can't be used here because it doesn't accept
14541       // the general (base + offset) addressing mode.
14542       // So we use UpdateNodeOperands and setTruncatingStore instead.
14543       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
14544                              N->getOperand(3));
14545       cast<StoreSDNode>(N)->setTruncatingStore(true);
14546       return SDValue(N, 0);
14547     }
14548 
14549     // For little endian, VSX stores require generating xxswapd/lxvd2x.
14550     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14551     if (Op1VT.isSimple()) {
14552       MVT StoreVT = Op1VT.getSimpleVT();
14553       if (Subtarget.needsSwapsForVSXMemOps() &&
14554           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
14555            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
14556         return expandVSXStoreForLE(N, DCI);
14557     }
14558     break;
14559   }
14560   case ISD::LOAD: {
14561     LoadSDNode *LD = cast<LoadSDNode>(N);
14562     EVT VT = LD->getValueType(0);
14563 
14564     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14565     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14566     if (VT.isSimple()) {
14567       MVT LoadVT = VT.getSimpleVT();
14568       if (Subtarget.needsSwapsForVSXMemOps() &&
14569           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
14570            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
14571         return expandVSXLoadForLE(N, DCI);
14572     }
14573 
14574     // We sometimes end up with a 64-bit integer load, from which we extract
14575     // two single-precision floating-point numbers. This happens with
14576     // std::complex<float>, and other similar structures, because of the way we
14577     // canonicalize structure copies. However, if we lack direct moves,
14578     // then the final bitcasts from the extracted integer values to the
14579     // floating-point numbers turn into store/load pairs. Even with direct moves,
14580     // just loading the two floating-point numbers is likely better.
14581     auto ReplaceTwoFloatLoad = [&]() {
14582       if (VT != MVT::i64)
14583         return false;
14584 
14585       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
14586           LD->isVolatile())
14587         return false;
14588 
14589       //  We're looking for a sequence like this:
14590       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
14591       //      t16: i64 = srl t13, Constant:i32<32>
14592       //    t17: i32 = truncate t16
14593       //  t18: f32 = bitcast t17
14594       //    t19: i32 = truncate t13
14595       //  t20: f32 = bitcast t19
14596 
14597       if (!LD->hasNUsesOfValue(2, 0))
14598         return false;
14599 
14600       auto UI = LD->use_begin();
14601       while (UI.getUse().getResNo() != 0) ++UI;
14602       SDNode *Trunc = *UI++;
14603       while (UI.getUse().getResNo() != 0) ++UI;
14604       SDNode *RightShift = *UI;
14605       if (Trunc->getOpcode() != ISD::TRUNCATE)
14606         std::swap(Trunc, RightShift);
14607 
14608       if (Trunc->getOpcode() != ISD::TRUNCATE ||
14609           Trunc->getValueType(0) != MVT::i32 ||
14610           !Trunc->hasOneUse())
14611         return false;
14612       if (RightShift->getOpcode() != ISD::SRL ||
14613           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
14614           RightShift->getConstantOperandVal(1) != 32 ||
14615           !RightShift->hasOneUse())
14616         return false;
14617 
14618       SDNode *Trunc2 = *RightShift->use_begin();
14619       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
14620           Trunc2->getValueType(0) != MVT::i32 ||
14621           !Trunc2->hasOneUse())
14622         return false;
14623 
14624       SDNode *Bitcast = *Trunc->use_begin();
14625       SDNode *Bitcast2 = *Trunc2->use_begin();
14626 
14627       if (Bitcast->getOpcode() != ISD::BITCAST ||
14628           Bitcast->getValueType(0) != MVT::f32)
14629         return false;
14630       if (Bitcast2->getOpcode() != ISD::BITCAST ||
14631           Bitcast2->getValueType(0) != MVT::f32)
14632         return false;
14633 
14634       if (Subtarget.isLittleEndian())
14635         std::swap(Bitcast, Bitcast2);
14636 
14637       // Bitcast has the second float (in memory-layout order) and Bitcast2
14638       // has the first one.
14639 
14640       SDValue BasePtr = LD->getBasePtr();
14641       if (LD->isIndexed()) {
14642         assert(LD->getAddressingMode() == ISD::PRE_INC &&
14643                "Non-pre-inc AM on PPC?");
14644         BasePtr =
14645           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
14646                       LD->getOffset());
14647       }
14648 
14649       auto MMOFlags =
14650           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
14651       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
14652                                       LD->getPointerInfo(), LD->getAlignment(),
14653                                       MMOFlags, LD->getAAInfo());
14654       SDValue AddPtr =
14655         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
14656                     BasePtr, DAG.getIntPtrConstant(4, dl));
14657       SDValue FloatLoad2 = DAG.getLoad(
14658           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
14659           LD->getPointerInfo().getWithOffset(4),
14660           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
14661 
14662       if (LD->isIndexed()) {
14663         // Note that DAGCombine should re-form any pre-increment load(s) from
14664         // what is produced here if that makes sense.
14665         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
14666       }
14667 
14668       DCI.CombineTo(Bitcast2, FloatLoad);
14669       DCI.CombineTo(Bitcast, FloatLoad2);
14670 
14671       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
14672                                     SDValue(FloatLoad2.getNode(), 1));
14673       return true;
14674     };
14675 
14676     if (ReplaceTwoFloatLoad())
14677       return SDValue(N, 0);
14678 
14679     EVT MemVT = LD->getMemoryVT();
14680     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
14681     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
14682     if (LD->isUnindexed() && VT.isVector() &&
14683         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
14684           // P8 and later hardware should just use LOAD.
14685           !Subtarget.hasP8Vector() &&
14686           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
14687            VT == MVT::v4f32))) &&
14688         LD->getAlign() < ABIAlignment) {
14689       // This is a type-legal unaligned Altivec load.
14690       SDValue Chain = LD->getChain();
14691       SDValue Ptr = LD->getBasePtr();
14692       bool isLittleEndian = Subtarget.isLittleEndian();
14693 
14694       // This implements the loading of unaligned vectors as described in
14695       // the venerable Apple Velocity Engine overview. Specifically:
14696       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
14697       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
14698       //
14699       // The general idea is to expand a sequence of one or more unaligned
14700       // loads into an alignment-based permutation-control instruction (lvsl
14701       // or lvsr), a series of regular vector loads (which always truncate
14702       // their input address to an aligned address), and a series of
14703       // permutations.  The results of these permutations are the requested
14704       // loaded values.  The trick is that the last "extra" load is not taken
14705       // from the address you might suspect (sizeof(vector) bytes after the
14706       // last requested load), but rather sizeof(vector) - 1 bytes after the
14707       // last requested vector. The point of this is to avoid a page fault if
14708       // the base address happened to be aligned. This works because if the
14709       // base address is aligned, then adding less than a full vector length
14710       // will cause the last vector in the sequence to be (re)loaded.
14711       // Otherwise, the next vector will be fetched as you might suspect was
14712       // necessary.
14713 
14714       // We might be able to reuse the permutation generation from
14715       // a different base address offset from this one by an aligned amount.
14716       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14717       // optimization later.
14718       Intrinsic::ID Intr, IntrLD, IntrPerm;
14719       MVT PermCntlTy, PermTy, LDTy;
14720       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14721                             : Intrinsic::ppc_altivec_lvsl;
14722       IntrLD = Intrinsic::ppc_altivec_lvx;
14723       IntrPerm = Intrinsic::ppc_altivec_vperm;
14724       PermCntlTy = MVT::v16i8;
14725       PermTy = MVT::v4i32;
14726       LDTy = MVT::v4i32;
14727 
14728       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14729 
14730       // Create the new MMO for the new base load. It is like the original MMO,
14731       // but represents an area in memory almost twice the vector size centered
14732       // on the original address. If the address is unaligned, we might start
14733       // reading up to (sizeof(vector)-1) bytes below the address of the
14734       // original unaligned load.
14735       MachineFunction &MF = DAG.getMachineFunction();
14736       MachineMemOperand *BaseMMO =
14737         MF.getMachineMemOperand(LD->getMemOperand(),
14738                                 -(long)MemVT.getStoreSize()+1,
14739                                 2*MemVT.getStoreSize()-1);
14740 
14741       // Create the new base load.
14742       SDValue LDXIntID =
14743           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14744       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14745       SDValue BaseLoad =
14746         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14747                                 DAG.getVTList(PermTy, MVT::Other),
14748                                 BaseLoadOps, LDTy, BaseMMO);
14749 
14750       // Note that the value of IncOffset (which is provided to the next
14751       // load's pointer info offset value, and thus used to calculate the
14752       // alignment), and the value of IncValue (which is actually used to
14753       // increment the pointer value) are different! This is because we
14754       // require the next load to appear to be aligned, even though it
14755       // is actually offset from the base pointer by a lesser amount.
14756       int IncOffset = VT.getSizeInBits() / 8;
14757       int IncValue = IncOffset;
14758 
14759       // Walk (both up and down) the chain looking for another load at the real
14760       // (aligned) offset (the alignment of the other load does not matter in
14761       // this case). If found, then do not use the offset reduction trick, as
14762       // that will prevent the loads from being later combined (as they would
14763       // otherwise be duplicates).
14764       if (!findConsecutiveLoad(LD, DAG))
14765         --IncValue;
14766 
14767       SDValue Increment =
14768           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14769       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14770 
14771       MachineMemOperand *ExtraMMO =
14772         MF.getMachineMemOperand(LD->getMemOperand(),
14773                                 1, 2*MemVT.getStoreSize()-1);
14774       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14775       SDValue ExtraLoad =
14776         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14777                                 DAG.getVTList(PermTy, MVT::Other),
14778                                 ExtraLoadOps, LDTy, ExtraMMO);
14779 
14780       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14781         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14782 
14783       // Because vperm has a big-endian bias, we must reverse the order
14784       // of the input vectors and complement the permute control vector
14785       // when generating little endian code.  We have already handled the
14786       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14787       // and ExtraLoad here.
14788       SDValue Perm;
14789       if (isLittleEndian)
14790         Perm = BuildIntrinsicOp(IntrPerm,
14791                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14792       else
14793         Perm = BuildIntrinsicOp(IntrPerm,
14794                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14795 
14796       if (VT != PermTy)
14797         Perm = Subtarget.hasAltivec()
14798                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
14799                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
14800                                  DAG.getTargetConstant(1, dl, MVT::i64));
14801                                // second argument is 1 because this rounding
14802                                // is always exact.
14803 
14804       // The output of the permutation is our loaded result, the TokenFactor is
14805       // our new chain.
14806       DCI.CombineTo(N, Perm, TF);
14807       return SDValue(N, 0);
14808     }
14809     }
14810     break;
14811     case ISD::INTRINSIC_WO_CHAIN: {
14812       bool isLittleEndian = Subtarget.isLittleEndian();
14813       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14814       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14815                                            : Intrinsic::ppc_altivec_lvsl);
14816       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
14817         SDValue Add = N->getOperand(1);
14818 
14819         int Bits = 4 /* 16 byte alignment */;
14820 
14821         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14822                                   APInt::getAllOnesValue(Bits /* alignment */)
14823                                       .zext(Add.getScalarValueSizeInBits()))) {
14824           SDNode *BasePtr = Add->getOperand(0).getNode();
14825           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14826                                     UE = BasePtr->use_end();
14827                UI != UE; ++UI) {
14828             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14829                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
14830                     IID) {
14831               // We've found another LVSL/LVSR, and this address is an aligned
14832               // multiple of that one. The results will be the same, so use the
14833               // one we've just found instead.
14834 
14835               return SDValue(*UI, 0);
14836             }
14837           }
14838         }
14839 
14840         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14841           SDNode *BasePtr = Add->getOperand(0).getNode();
14842           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14843                UE = BasePtr->use_end(); UI != UE; ++UI) {
14844             if (UI->getOpcode() == ISD::ADD &&
14845                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14846                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14847                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14848                 (1ULL << Bits) == 0) {
14849               SDNode *OtherAdd = *UI;
14850               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14851                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14852                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14853                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14854                   return SDValue(*VI, 0);
14855                 }
14856               }
14857             }
14858           }
14859         }
14860       }
14861 
14862       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14863       // Expose the vabsduw/h/b opportunity for down stream
14864       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14865           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14866            IID == Intrinsic::ppc_altivec_vmaxsh ||
14867            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14868         SDValue V1 = N->getOperand(1);
14869         SDValue V2 = N->getOperand(2);
14870         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14871              V1.getSimpleValueType() == MVT::v8i16 ||
14872              V1.getSimpleValueType() == MVT::v16i8) &&
14873             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14874           // (0-a, a)
14875           if (V1.getOpcode() == ISD::SUB &&
14876               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14877               V1.getOperand(1) == V2) {
14878             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14879           }
14880           // (a, 0-a)
14881           if (V2.getOpcode() == ISD::SUB &&
14882               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14883               V2.getOperand(1) == V1) {
14884             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14885           }
14886           // (x-y, y-x)
14887           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14888               V1.getOperand(0) == V2.getOperand(1) &&
14889               V1.getOperand(1) == V2.getOperand(0)) {
14890             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14891           }
14892         }
14893       }
14894     }
14895 
14896     break;
14897   case ISD::INTRINSIC_W_CHAIN:
14898     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14899     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14900     if (Subtarget.needsSwapsForVSXMemOps()) {
14901       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14902       default:
14903         break;
14904       case Intrinsic::ppc_vsx_lxvw4x:
14905       case Intrinsic::ppc_vsx_lxvd2x:
14906         return expandVSXLoadForLE(N, DCI);
14907       }
14908     }
14909     break;
14910   case ISD::INTRINSIC_VOID:
14911     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14912     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14913     if (Subtarget.needsSwapsForVSXMemOps()) {
14914       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14915       default:
14916         break;
14917       case Intrinsic::ppc_vsx_stxvw4x:
14918       case Intrinsic::ppc_vsx_stxvd2x:
14919         return expandVSXStoreForLE(N, DCI);
14920       }
14921     }
14922     break;
14923   case ISD::BSWAP:
14924     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14925     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14926         N->getOperand(0).hasOneUse() &&
14927         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14928          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14929           N->getValueType(0) == MVT::i64))) {
14930       SDValue Load = N->getOperand(0);
14931       LoadSDNode *LD = cast<LoadSDNode>(Load);
14932       // Create the byte-swapping load.
14933       SDValue Ops[] = {
14934         LD->getChain(),    // Chain
14935         LD->getBasePtr(),  // Ptr
14936         DAG.getValueType(N->getValueType(0)) // VT
14937       };
14938       SDValue BSLoad =
14939         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14940                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14941                                               MVT::i64 : MVT::i32, MVT::Other),
14942                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14943 
14944       // If this is an i16 load, insert the truncate.
14945       SDValue ResVal = BSLoad;
14946       if (N->getValueType(0) == MVT::i16)
14947         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14948 
14949       // First, combine the bswap away.  This makes the value produced by the
14950       // load dead.
14951       DCI.CombineTo(N, ResVal);
14952 
14953       // Next, combine the load away, we give it a bogus result value but a real
14954       // chain result.  The result value is dead because the bswap is dead.
14955       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14956 
14957       // Return N so it doesn't get rechecked!
14958       return SDValue(N, 0);
14959     }
14960     break;
14961   case PPCISD::VCMP:
14962     // If a VCMPo node already exists with exactly the same operands as this
14963     // node, use its result instead of this node (VCMPo computes both a CR6 and
14964     // a normal output).
14965     //
14966     if (!N->getOperand(0).hasOneUse() &&
14967         !N->getOperand(1).hasOneUse() &&
14968         !N->getOperand(2).hasOneUse()) {
14969 
14970       // Scan all of the users of the LHS, looking for VCMPo's that match.
14971       SDNode *VCMPoNode = nullptr;
14972 
14973       SDNode *LHSN = N->getOperand(0).getNode();
14974       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14975            UI != E; ++UI)
14976         if (UI->getOpcode() == PPCISD::VCMPo &&
14977             UI->getOperand(1) == N->getOperand(1) &&
14978             UI->getOperand(2) == N->getOperand(2) &&
14979             UI->getOperand(0) == N->getOperand(0)) {
14980           VCMPoNode = *UI;
14981           break;
14982         }
14983 
14984       // If there is no VCMPo node, or if the flag value has a single use, don't
14985       // transform this.
14986       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14987         break;
14988 
14989       // Look at the (necessarily single) use of the flag value.  If it has a
14990       // chain, this transformation is more complex.  Note that multiple things
14991       // could use the value result, which we should ignore.
14992       SDNode *FlagUser = nullptr;
14993       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14994            FlagUser == nullptr; ++UI) {
14995         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14996         SDNode *User = *UI;
14997         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14998           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14999             FlagUser = User;
15000             break;
15001           }
15002         }
15003       }
15004 
15005       // If the user is a MFOCRF instruction, we know this is safe.
15006       // Otherwise we give up for right now.
15007       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15008         return SDValue(VCMPoNode, 0);
15009     }
15010     break;
15011   case ISD::BRCOND: {
15012     SDValue Cond = N->getOperand(1);
15013     SDValue Target = N->getOperand(2);
15014 
15015     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15016         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15017           Intrinsic::loop_decrement) {
15018 
15019       // We now need to make the intrinsic dead (it cannot be instruction
15020       // selected).
15021       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15022       assert(Cond.getNode()->hasOneUse() &&
15023              "Counter decrement has more than one use");
15024 
15025       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15026                          N->getOperand(0), Target);
15027     }
15028   }
15029   break;
15030   case ISD::BR_CC: {
15031     // If this is a branch on an altivec predicate comparison, lower this so
15032     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15033     // lowering is done pre-legalize, because the legalizer lowers the predicate
15034     // compare down to code that is difficult to reassemble.
15035     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15036     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15037 
15038     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15039     // value. If so, pass-through the AND to get to the intrinsic.
15040     if (LHS.getOpcode() == ISD::AND &&
15041         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15042         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15043           Intrinsic::loop_decrement &&
15044         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15045         !isNullConstant(LHS.getOperand(1)))
15046       LHS = LHS.getOperand(0);
15047 
15048     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15049         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15050           Intrinsic::loop_decrement &&
15051         isa<ConstantSDNode>(RHS)) {
15052       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15053              "Counter decrement comparison is not EQ or NE");
15054 
15055       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15056       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15057                     (CC == ISD::SETNE && !Val);
15058 
15059       // We now need to make the intrinsic dead (it cannot be instruction
15060       // selected).
15061       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15062       assert(LHS.getNode()->hasOneUse() &&
15063              "Counter decrement has more than one use");
15064 
15065       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15066                          N->getOperand(0), N->getOperand(4));
15067     }
15068 
15069     int CompareOpc;
15070     bool isDot;
15071 
15072     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15073         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15074         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15075       assert(isDot && "Can't compare against a vector result!");
15076 
15077       // If this is a comparison against something other than 0/1, then we know
15078       // that the condition is never/always true.
15079       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15080       if (Val != 0 && Val != 1) {
15081         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15082           return N->getOperand(0);
15083         // Always !=, turn it into an unconditional branch.
15084         return DAG.getNode(ISD::BR, dl, MVT::Other,
15085                            N->getOperand(0), N->getOperand(4));
15086       }
15087 
15088       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15089 
15090       // Create the PPCISD altivec 'dot' comparison node.
15091       SDValue Ops[] = {
15092         LHS.getOperand(2),  // LHS of compare
15093         LHS.getOperand(3),  // RHS of compare
15094         DAG.getConstant(CompareOpc, dl, MVT::i32)
15095       };
15096       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15097       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
15098 
15099       // Unpack the result based on how the target uses it.
15100       PPC::Predicate CompOpc;
15101       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15102       default:  // Can't happen, don't crash on invalid number though.
15103       case 0:   // Branch on the value of the EQ bit of CR6.
15104         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15105         break;
15106       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15107         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15108         break;
15109       case 2:   // Branch on the value of the LT bit of CR6.
15110         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15111         break;
15112       case 3:   // Branch on the inverted value of the LT bit of CR6.
15113         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15114         break;
15115       }
15116 
15117       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15118                          DAG.getConstant(CompOpc, dl, MVT::i32),
15119                          DAG.getRegister(PPC::CR6, MVT::i32),
15120                          N->getOperand(4), CompNode.getValue(1));
15121     }
15122     break;
15123   }
15124   case ISD::BUILD_VECTOR:
15125     return DAGCombineBuildVector(N, DCI);
15126   case ISD::ABS:
15127     return combineABS(N, DCI);
15128   case ISD::VSELECT:
15129     return combineVSelect(N, DCI);
15130   }
15131 
15132   return SDValue();
15133 }
15134 
15135 SDValue
15136 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15137                                  SelectionDAG &DAG,
15138                                  SmallVectorImpl<SDNode *> &Created) const {
15139   // fold (sdiv X, pow2)
15140   EVT VT = N->getValueType(0);
15141   if (VT == MVT::i64 && !Subtarget.isPPC64())
15142     return SDValue();
15143   if ((VT != MVT::i32 && VT != MVT::i64) ||
15144       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
15145     return SDValue();
15146 
15147   SDLoc DL(N);
15148   SDValue N0 = N->getOperand(0);
15149 
15150   bool IsNegPow2 = (-Divisor).isPowerOf2();
15151   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15152   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15153 
15154   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15155   Created.push_back(Op.getNode());
15156 
15157   if (IsNegPow2) {
15158     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15159     Created.push_back(Op.getNode());
15160   }
15161 
15162   return Op;
15163 }
15164 
15165 //===----------------------------------------------------------------------===//
15166 // Inline Assembly Support
15167 //===----------------------------------------------------------------------===//
15168 
15169 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15170                                                       KnownBits &Known,
15171                                                       const APInt &DemandedElts,
15172                                                       const SelectionDAG &DAG,
15173                                                       unsigned Depth) const {
15174   Known.resetAll();
15175   switch (Op.getOpcode()) {
15176   default: break;
15177   case PPCISD::LBRX: {
15178     // lhbrx is known to have the top bits cleared out.
15179     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15180       Known.Zero = 0xFFFF0000;
15181     break;
15182   }
15183   case ISD::INTRINSIC_WO_CHAIN: {
15184     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15185     default: break;
15186     case Intrinsic::ppc_altivec_vcmpbfp_p:
15187     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15188     case Intrinsic::ppc_altivec_vcmpequb_p:
15189     case Intrinsic::ppc_altivec_vcmpequh_p:
15190     case Intrinsic::ppc_altivec_vcmpequw_p:
15191     case Intrinsic::ppc_altivec_vcmpequd_p:
15192     case Intrinsic::ppc_altivec_vcmpgefp_p:
15193     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15194     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15195     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15196     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15197     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15198     case Intrinsic::ppc_altivec_vcmpgtub_p:
15199     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15200     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15201     case Intrinsic::ppc_altivec_vcmpgtud_p:
15202       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15203       break;
15204     }
15205   }
15206   }
15207 }
15208 
15209 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15210   switch (Subtarget.getCPUDirective()) {
15211   default: break;
15212   case PPC::DIR_970:
15213   case PPC::DIR_PWR4:
15214   case PPC::DIR_PWR5:
15215   case PPC::DIR_PWR5X:
15216   case PPC::DIR_PWR6:
15217   case PPC::DIR_PWR6X:
15218   case PPC::DIR_PWR7:
15219   case PPC::DIR_PWR8:
15220   case PPC::DIR_PWR9:
15221   case PPC::DIR_PWR10:
15222   case PPC::DIR_PWR_FUTURE: {
15223     if (!ML)
15224       break;
15225 
15226     if (!DisableInnermostLoopAlign32) {
15227       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15228       // so that we can decrease cache misses and branch-prediction misses.
15229       // Actual alignment of the loop will depend on the hotness check and other
15230       // logic in alignBlocks.
15231       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15232         return Align(32);
15233     }
15234 
15235     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15236 
15237     // For small loops (between 5 and 8 instructions), align to a 32-byte
15238     // boundary so that the entire loop fits in one instruction-cache line.
15239     uint64_t LoopSize = 0;
15240     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15241       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15242         LoopSize += TII->getInstSizeInBytes(*J);
15243         if (LoopSize > 32)
15244           break;
15245       }
15246 
15247     if (LoopSize > 16 && LoopSize <= 32)
15248       return Align(32);
15249 
15250     break;
15251   }
15252   }
15253 
15254   return TargetLowering::getPrefLoopAlignment(ML);
15255 }
15256 
15257 /// getConstraintType - Given a constraint, return the type of
15258 /// constraint it is for this target.
15259 PPCTargetLowering::ConstraintType
15260 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15261   if (Constraint.size() == 1) {
15262     switch (Constraint[0]) {
15263     default: break;
15264     case 'b':
15265     case 'r':
15266     case 'f':
15267     case 'd':
15268     case 'v':
15269     case 'y':
15270       return C_RegisterClass;
15271     case 'Z':
15272       // FIXME: While Z does indicate a memory constraint, it specifically
15273       // indicates an r+r address (used in conjunction with the 'y' modifier
15274       // in the replacement string). Currently, we're forcing the base
15275       // register to be r0 in the asm printer (which is interpreted as zero)
15276       // and forming the complete address in the second register. This is
15277       // suboptimal.
15278       return C_Memory;
15279     }
15280   } else if (Constraint == "wc") { // individual CR bits.
15281     return C_RegisterClass;
15282   } else if (Constraint == "wa" || Constraint == "wd" ||
15283              Constraint == "wf" || Constraint == "ws" ||
15284              Constraint == "wi" || Constraint == "ww") {
15285     return C_RegisterClass; // VSX registers.
15286   }
15287   return TargetLowering::getConstraintType(Constraint);
15288 }
15289 
15290 /// Examine constraint type and operand type and determine a weight value.
15291 /// This object must already have been set up with the operand type
15292 /// and the current alternative constraint selected.
15293 TargetLowering::ConstraintWeight
15294 PPCTargetLowering::getSingleConstraintMatchWeight(
15295     AsmOperandInfo &info, const char *constraint) const {
15296   ConstraintWeight weight = CW_Invalid;
15297   Value *CallOperandVal = info.CallOperandVal;
15298     // If we don't have a value, we can't do a match,
15299     // but allow it at the lowest weight.
15300   if (!CallOperandVal)
15301     return CW_Default;
15302   Type *type = CallOperandVal->getType();
15303 
15304   // Look at the constraint type.
15305   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
15306     return CW_Register; // an individual CR bit.
15307   else if ((StringRef(constraint) == "wa" ||
15308             StringRef(constraint) == "wd" ||
15309             StringRef(constraint) == "wf") &&
15310            type->isVectorTy())
15311     return CW_Register;
15312   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
15313     return CW_Register; // just hold 64-bit integers data.
15314   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
15315     return CW_Register;
15316   else if (StringRef(constraint) == "ww" && type->isFloatTy())
15317     return CW_Register;
15318 
15319   switch (*constraint) {
15320   default:
15321     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15322     break;
15323   case 'b':
15324     if (type->isIntegerTy())
15325       weight = CW_Register;
15326     break;
15327   case 'f':
15328     if (type->isFloatTy())
15329       weight = CW_Register;
15330     break;
15331   case 'd':
15332     if (type->isDoubleTy())
15333       weight = CW_Register;
15334     break;
15335   case 'v':
15336     if (type->isVectorTy())
15337       weight = CW_Register;
15338     break;
15339   case 'y':
15340     weight = CW_Register;
15341     break;
15342   case 'Z':
15343     weight = CW_Memory;
15344     break;
15345   }
15346   return weight;
15347 }
15348 
15349 std::pair<unsigned, const TargetRegisterClass *>
15350 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
15351                                                 StringRef Constraint,
15352                                                 MVT VT) const {
15353   if (Constraint.size() == 1) {
15354     // GCC RS6000 Constraint Letters
15355     switch (Constraint[0]) {
15356     case 'b':   // R1-R31
15357       if (VT == MVT::i64 && Subtarget.isPPC64())
15358         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
15359       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
15360     case 'r':   // R0-R31
15361       if (VT == MVT::i64 && Subtarget.isPPC64())
15362         return std::make_pair(0U, &PPC::G8RCRegClass);
15363       return std::make_pair(0U, &PPC::GPRCRegClass);
15364     // 'd' and 'f' constraints are both defined to be "the floating point
15365     // registers", where one is for 32-bit and the other for 64-bit. We don't
15366     // really care overly much here so just give them all the same reg classes.
15367     case 'd':
15368     case 'f':
15369       if (Subtarget.hasSPE()) {
15370         if (VT == MVT::f32 || VT == MVT::i32)
15371           return std::make_pair(0U, &PPC::GPRCRegClass);
15372         if (VT == MVT::f64 || VT == MVT::i64)
15373           return std::make_pair(0U, &PPC::SPERCRegClass);
15374       } else {
15375         if (VT == MVT::f32 || VT == MVT::i32)
15376           return std::make_pair(0U, &PPC::F4RCRegClass);
15377         if (VT == MVT::f64 || VT == MVT::i64)
15378           return std::make_pair(0U, &PPC::F8RCRegClass);
15379       }
15380       break;
15381     case 'v':
15382       if (Subtarget.hasAltivec())
15383         return std::make_pair(0U, &PPC::VRRCRegClass);
15384       break;
15385     case 'y':   // crrc
15386       return std::make_pair(0U, &PPC::CRRCRegClass);
15387     }
15388   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
15389     // An individual CR bit.
15390     return std::make_pair(0U, &PPC::CRBITRCRegClass);
15391   } else if ((Constraint == "wa" || Constraint == "wd" ||
15392              Constraint == "wf" || Constraint == "wi") &&
15393              Subtarget.hasVSX()) {
15394     return std::make_pair(0U, &PPC::VSRCRegClass);
15395   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
15396     if (VT == MVT::f32 && Subtarget.hasP8Vector())
15397       return std::make_pair(0U, &PPC::VSSRCRegClass);
15398     else
15399       return std::make_pair(0U, &PPC::VSFRCRegClass);
15400   }
15401 
15402   // If we name a VSX register, we can't defer to the base class because it
15403   // will not recognize the correct register (their names will be VSL{0-31}
15404   // and V{0-31} so they won't match). So we match them here.
15405   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
15406     int VSNum = atoi(Constraint.data() + 3);
15407     assert(VSNum >= 0 && VSNum <= 63 &&
15408            "Attempted to access a vsr out of range");
15409     if (VSNum < 32)
15410       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
15411     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
15412   }
15413   std::pair<unsigned, const TargetRegisterClass *> R =
15414       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15415 
15416   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
15417   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
15418   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
15419   // register.
15420   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
15421   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
15422   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
15423       PPC::GPRCRegClass.contains(R.first))
15424     return std::make_pair(TRI->getMatchingSuperReg(R.first,
15425                             PPC::sub_32, &PPC::G8RCRegClass),
15426                           &PPC::G8RCRegClass);
15427 
15428   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
15429   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
15430     R.first = PPC::CR0;
15431     R.second = &PPC::CRRCRegClass;
15432   }
15433 
15434   return R;
15435 }
15436 
15437 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15438 /// vector.  If it is invalid, don't add anything to Ops.
15439 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15440                                                      std::string &Constraint,
15441                                                      std::vector<SDValue>&Ops,
15442                                                      SelectionDAG &DAG) const {
15443   SDValue Result;
15444 
15445   // Only support length 1 constraints.
15446   if (Constraint.length() > 1) return;
15447 
15448   char Letter = Constraint[0];
15449   switch (Letter) {
15450   default: break;
15451   case 'I':
15452   case 'J':
15453   case 'K':
15454   case 'L':
15455   case 'M':
15456   case 'N':
15457   case 'O':
15458   case 'P': {
15459     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
15460     if (!CST) return; // Must be an immediate to match.
15461     SDLoc dl(Op);
15462     int64_t Value = CST->getSExtValue();
15463     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
15464                          // numbers are printed as such.
15465     switch (Letter) {
15466     default: llvm_unreachable("Unknown constraint letter!");
15467     case 'I':  // "I" is a signed 16-bit constant.
15468       if (isInt<16>(Value))
15469         Result = DAG.getTargetConstant(Value, dl, TCVT);
15470       break;
15471     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
15472       if (isShiftedUInt<16, 16>(Value))
15473         Result = DAG.getTargetConstant(Value, dl, TCVT);
15474       break;
15475     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
15476       if (isShiftedInt<16, 16>(Value))
15477         Result = DAG.getTargetConstant(Value, dl, TCVT);
15478       break;
15479     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
15480       if (isUInt<16>(Value))
15481         Result = DAG.getTargetConstant(Value, dl, TCVT);
15482       break;
15483     case 'M':  // "M" is a constant that is greater than 31.
15484       if (Value > 31)
15485         Result = DAG.getTargetConstant(Value, dl, TCVT);
15486       break;
15487     case 'N':  // "N" is a positive constant that is an exact power of two.
15488       if (Value > 0 && isPowerOf2_64(Value))
15489         Result = DAG.getTargetConstant(Value, dl, TCVT);
15490       break;
15491     case 'O':  // "O" is the constant zero.
15492       if (Value == 0)
15493         Result = DAG.getTargetConstant(Value, dl, TCVT);
15494       break;
15495     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
15496       if (isInt<16>(-Value))
15497         Result = DAG.getTargetConstant(Value, dl, TCVT);
15498       break;
15499     }
15500     break;
15501   }
15502   }
15503 
15504   if (Result.getNode()) {
15505     Ops.push_back(Result);
15506     return;
15507   }
15508 
15509   // Handle standard constraint letters.
15510   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15511 }
15512 
15513 // isLegalAddressingMode - Return true if the addressing mode represented
15514 // by AM is legal for this target, for a load/store of the specified type.
15515 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15516                                               const AddrMode &AM, Type *Ty,
15517                                               unsigned AS,
15518                                               Instruction *I) const {
15519   // Vector type r+i form is supported since power9 as DQ form. We don't check
15520   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
15521   // imm form is preferred and the offset can be adjusted to use imm form later
15522   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
15523   // max offset to check legal addressing mode, we should be a little aggressive
15524   // to contain other offsets for that LSRUse.
15525   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
15526     return false;
15527 
15528   // PPC allows a sign-extended 16-bit immediate field.
15529   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
15530     return false;
15531 
15532   // No global is ever allowed as a base.
15533   if (AM.BaseGV)
15534     return false;
15535 
15536   // PPC only support r+r,
15537   switch (AM.Scale) {
15538   case 0:  // "r+i" or just "i", depending on HasBaseReg.
15539     break;
15540   case 1:
15541     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
15542       return false;
15543     // Otherwise we have r+r or r+i.
15544     break;
15545   case 2:
15546     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
15547       return false;
15548     // Allow 2*r as r+r.
15549     break;
15550   default:
15551     // No other scales are supported.
15552     return false;
15553   }
15554 
15555   return true;
15556 }
15557 
15558 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
15559                                            SelectionDAG &DAG) const {
15560   MachineFunction &MF = DAG.getMachineFunction();
15561   MachineFrameInfo &MFI = MF.getFrameInfo();
15562   MFI.setReturnAddressIsTaken(true);
15563 
15564   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
15565     return SDValue();
15566 
15567   SDLoc dl(Op);
15568   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15569 
15570   // Make sure the function does not optimize away the store of the RA to
15571   // the stack.
15572   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
15573   FuncInfo->setLRStoreRequired();
15574   bool isPPC64 = Subtarget.isPPC64();
15575   auto PtrVT = getPointerTy(MF.getDataLayout());
15576 
15577   if (Depth > 0) {
15578     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
15579     SDValue Offset =
15580         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
15581                         isPPC64 ? MVT::i64 : MVT::i32);
15582     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
15583                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
15584                        MachinePointerInfo());
15585   }
15586 
15587   // Just load the return address off the stack.
15588   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
15589   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
15590                      MachinePointerInfo());
15591 }
15592 
15593 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
15594                                           SelectionDAG &DAG) const {
15595   SDLoc dl(Op);
15596   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15597 
15598   MachineFunction &MF = DAG.getMachineFunction();
15599   MachineFrameInfo &MFI = MF.getFrameInfo();
15600   MFI.setFrameAddressIsTaken(true);
15601 
15602   EVT PtrVT = getPointerTy(MF.getDataLayout());
15603   bool isPPC64 = PtrVT == MVT::i64;
15604 
15605   // Naked functions never have a frame pointer, and so we use r1. For all
15606   // other functions, this decision must be delayed until during PEI.
15607   unsigned FrameReg;
15608   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
15609     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
15610   else
15611     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
15612 
15613   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
15614                                          PtrVT);
15615   while (Depth--)
15616     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
15617                             FrameAddr, MachinePointerInfo());
15618   return FrameAddr;
15619 }
15620 
15621 // FIXME? Maybe this could be a TableGen attribute on some registers and
15622 // this table could be generated automatically from RegInfo.
15623 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
15624                                               const MachineFunction &MF) const {
15625   bool isPPC64 = Subtarget.isPPC64();
15626 
15627   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
15628   if (!is64Bit && VT != LLT::scalar(32))
15629     report_fatal_error("Invalid register global variable type");
15630 
15631   Register Reg = StringSwitch<Register>(RegName)
15632                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
15633                      .Case("r2", isPPC64 ? Register() : PPC::R2)
15634                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
15635                      .Default(Register());
15636 
15637   if (Reg)
15638     return Reg;
15639   report_fatal_error("Invalid register name global variable");
15640 }
15641 
15642 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
15643   // 32-bit SVR4 ABI access everything as got-indirect.
15644   if (Subtarget.is32BitELFABI())
15645     return true;
15646 
15647   // AIX accesses everything indirectly through the TOC, which is similar to
15648   // the GOT.
15649   if (Subtarget.isAIXABI())
15650     return true;
15651 
15652   CodeModel::Model CModel = getTargetMachine().getCodeModel();
15653   // If it is small or large code model, module locals are accessed
15654   // indirectly by loading their address from .toc/.got.
15655   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
15656     return true;
15657 
15658   // JumpTable and BlockAddress are accessed as got-indirect.
15659   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
15660     return true;
15661 
15662   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
15663     return Subtarget.isGVIndirectSymbol(G->getGlobal());
15664 
15665   return false;
15666 }
15667 
15668 bool
15669 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15670   // The PowerPC target isn't yet aware of offsets.
15671   return false;
15672 }
15673 
15674 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15675                                            const CallInst &I,
15676                                            MachineFunction &MF,
15677                                            unsigned Intrinsic) const {
15678   switch (Intrinsic) {
15679   case Intrinsic::ppc_altivec_lvx:
15680   case Intrinsic::ppc_altivec_lvxl:
15681   case Intrinsic::ppc_altivec_lvebx:
15682   case Intrinsic::ppc_altivec_lvehx:
15683   case Intrinsic::ppc_altivec_lvewx:
15684   case Intrinsic::ppc_vsx_lxvd2x:
15685   case Intrinsic::ppc_vsx_lxvw4x: {
15686     EVT VT;
15687     switch (Intrinsic) {
15688     case Intrinsic::ppc_altivec_lvebx:
15689       VT = MVT::i8;
15690       break;
15691     case Intrinsic::ppc_altivec_lvehx:
15692       VT = MVT::i16;
15693       break;
15694     case Intrinsic::ppc_altivec_lvewx:
15695       VT = MVT::i32;
15696       break;
15697     case Intrinsic::ppc_vsx_lxvd2x:
15698       VT = MVT::v2f64;
15699       break;
15700     default:
15701       VT = MVT::v4i32;
15702       break;
15703     }
15704 
15705     Info.opc = ISD::INTRINSIC_W_CHAIN;
15706     Info.memVT = VT;
15707     Info.ptrVal = I.getArgOperand(0);
15708     Info.offset = -VT.getStoreSize()+1;
15709     Info.size = 2*VT.getStoreSize()-1;
15710     Info.align = Align(1);
15711     Info.flags = MachineMemOperand::MOLoad;
15712     return true;
15713   }
15714   case Intrinsic::ppc_altivec_stvx:
15715   case Intrinsic::ppc_altivec_stvxl:
15716   case Intrinsic::ppc_altivec_stvebx:
15717   case Intrinsic::ppc_altivec_stvehx:
15718   case Intrinsic::ppc_altivec_stvewx:
15719   case Intrinsic::ppc_vsx_stxvd2x:
15720   case Intrinsic::ppc_vsx_stxvw4x: {
15721     EVT VT;
15722     switch (Intrinsic) {
15723     case Intrinsic::ppc_altivec_stvebx:
15724       VT = MVT::i8;
15725       break;
15726     case Intrinsic::ppc_altivec_stvehx:
15727       VT = MVT::i16;
15728       break;
15729     case Intrinsic::ppc_altivec_stvewx:
15730       VT = MVT::i32;
15731       break;
15732     case Intrinsic::ppc_vsx_stxvd2x:
15733       VT = MVT::v2f64;
15734       break;
15735     default:
15736       VT = MVT::v4i32;
15737       break;
15738     }
15739 
15740     Info.opc = ISD::INTRINSIC_VOID;
15741     Info.memVT = VT;
15742     Info.ptrVal = I.getArgOperand(1);
15743     Info.offset = -VT.getStoreSize()+1;
15744     Info.size = 2*VT.getStoreSize()-1;
15745     Info.align = Align(1);
15746     Info.flags = MachineMemOperand::MOStore;
15747     return true;
15748   }
15749   default:
15750     break;
15751   }
15752 
15753   return false;
15754 }
15755 
15756 /// It returns EVT::Other if the type should be determined using generic
15757 /// target-independent logic.
15758 EVT PPCTargetLowering::getOptimalMemOpType(
15759     const MemOp &Op, const AttributeList &FuncAttributes) const {
15760   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15761     // We should use Altivec/VSX loads and stores when available. For unaligned
15762     // addresses, unaligned VSX loads are only fast starting with the P8.
15763     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
15764         (Op.isAligned(Align(16)) ||
15765          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15766       return MVT::v4i32;
15767   }
15768 
15769   if (Subtarget.isPPC64()) {
15770     return MVT::i64;
15771   }
15772 
15773   return MVT::i32;
15774 }
15775 
15776 /// Returns true if it is beneficial to convert a load of a constant
15777 /// to just the constant itself.
15778 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15779                                                           Type *Ty) const {
15780   assert(Ty->isIntegerTy());
15781 
15782   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15783   return !(BitSize == 0 || BitSize > 64);
15784 }
15785 
15786 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15787   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15788     return false;
15789   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15790   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15791   return NumBits1 == 64 && NumBits2 == 32;
15792 }
15793 
15794 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15795   if (!VT1.isInteger() || !VT2.isInteger())
15796     return false;
15797   unsigned NumBits1 = VT1.getSizeInBits();
15798   unsigned NumBits2 = VT2.getSizeInBits();
15799   return NumBits1 == 64 && NumBits2 == 32;
15800 }
15801 
15802 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15803   // Generally speaking, zexts are not free, but they are free when they can be
15804   // folded with other operations.
15805   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15806     EVT MemVT = LD->getMemoryVT();
15807     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15808          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15809         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15810          LD->getExtensionType() == ISD::ZEXTLOAD))
15811       return true;
15812   }
15813 
15814   // FIXME: Add other cases...
15815   //  - 32-bit shifts with a zext to i64
15816   //  - zext after ctlz, bswap, etc.
15817   //  - zext after and by a constant mask
15818 
15819   return TargetLowering::isZExtFree(Val, VT2);
15820 }
15821 
15822 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15823   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15824          "invalid fpext types");
15825   // Extending to float128 is not free.
15826   if (DestVT == MVT::f128)
15827     return false;
15828   return true;
15829 }
15830 
15831 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15832   return isInt<16>(Imm) || isUInt<16>(Imm);
15833 }
15834 
15835 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15836   return isInt<16>(Imm) || isUInt<16>(Imm);
15837 }
15838 
15839 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15840                                                        unsigned,
15841                                                        unsigned,
15842                                                        MachineMemOperand::Flags,
15843                                                        bool *Fast) const {
15844   if (DisablePPCUnaligned)
15845     return false;
15846 
15847   // PowerPC supports unaligned memory access for simple non-vector types.
15848   // Although accessing unaligned addresses is not as efficient as accessing
15849   // aligned addresses, it is generally more efficient than manual expansion,
15850   // and generally only traps for software emulation when crossing page
15851   // boundaries.
15852 
15853   if (!VT.isSimple())
15854     return false;
15855 
15856   if (VT.isFloatingPoint() && !VT.isVector() &&
15857       !Subtarget.allowsUnalignedFPAccess())
15858     return false;
15859 
15860   if (VT.getSimpleVT().isVector()) {
15861     if (Subtarget.hasVSX()) {
15862       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15863           VT != MVT::v4f32 && VT != MVT::v4i32)
15864         return false;
15865     } else {
15866       return false;
15867     }
15868   }
15869 
15870   if (VT == MVT::ppcf128)
15871     return false;
15872 
15873   if (Fast)
15874     *Fast = true;
15875 
15876   return true;
15877 }
15878 
15879 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15880                                                    EVT VT) const {
15881   return isFMAFasterThanFMulAndFAdd(
15882       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
15883 }
15884 
15885 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
15886                                                    Type *Ty) const {
15887   switch (Ty->getScalarType()->getTypeID()) {
15888   case Type::FloatTyID:
15889   case Type::DoubleTyID:
15890     return true;
15891   case Type::FP128TyID:
15892     return Subtarget.hasP9Vector();
15893   default:
15894     return false;
15895   }
15896 }
15897 
15898 // FIXME: add more patterns which are not profitable to hoist.
15899 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
15900   if (!I->hasOneUse())
15901     return true;
15902 
15903   Instruction *User = I->user_back();
15904   assert(User && "A single use instruction with no uses.");
15905 
15906   switch (I->getOpcode()) {
15907   case Instruction::FMul: {
15908     // Don't break FMA, PowerPC prefers FMA.
15909     if (User->getOpcode() != Instruction::FSub &&
15910         User->getOpcode() != Instruction::FAdd)
15911       return true;
15912 
15913     const TargetOptions &Options = getTargetMachine().Options;
15914     const Function *F = I->getFunction();
15915     const DataLayout &DL = F->getParent()->getDataLayout();
15916     Type *Ty = User->getOperand(0)->getType();
15917 
15918     return !(
15919         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
15920         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
15921         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
15922   }
15923   case Instruction::Load: {
15924     // Don't break "store (load float*)" pattern, this pattern will be combined
15925     // to "store (load int32)" in later InstCombine pass. See function
15926     // combineLoadToOperationType. On PowerPC, loading a float point takes more
15927     // cycles than loading a 32 bit integer.
15928     LoadInst *LI = cast<LoadInst>(I);
15929     // For the loads that combineLoadToOperationType does nothing, like
15930     // ordered load, it should be profitable to hoist them.
15931     // For swifterror load, it can only be used for pointer to pointer type, so
15932     // later type check should get rid of this case.
15933     if (!LI->isUnordered())
15934       return true;
15935 
15936     if (User->getOpcode() != Instruction::Store)
15937       return true;
15938 
15939     if (I->getType()->getTypeID() != Type::FloatTyID)
15940       return true;
15941 
15942     return false;
15943   }
15944   default:
15945     return true;
15946   }
15947   return true;
15948 }
15949 
15950 const MCPhysReg *
15951 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15952   // LR is a callee-save register, but we must treat it as clobbered by any call
15953   // site. Hence we include LR in the scratch registers, which are in turn added
15954   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15955   // to CTR, which is used by any indirect call.
15956   static const MCPhysReg ScratchRegs[] = {
15957     PPC::X12, PPC::LR8, PPC::CTR8, 0
15958   };
15959 
15960   return ScratchRegs;
15961 }
15962 
15963 Register PPCTargetLowering::getExceptionPointerRegister(
15964     const Constant *PersonalityFn) const {
15965   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15966 }
15967 
15968 Register PPCTargetLowering::getExceptionSelectorRegister(
15969     const Constant *PersonalityFn) const {
15970   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15971 }
15972 
15973 bool
15974 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15975                      EVT VT , unsigned DefinedValues) const {
15976   if (VT == MVT::v2i64)
15977     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15978 
15979   if (Subtarget.hasVSX())
15980     return true;
15981 
15982   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15983 }
15984 
15985 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15986   if (DisableILPPref || Subtarget.enableMachineScheduler())
15987     return TargetLowering::getSchedulingPreference(N);
15988 
15989   return Sched::ILP;
15990 }
15991 
15992 // Create a fast isel object.
15993 FastISel *
15994 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15995                                   const TargetLibraryInfo *LibInfo) const {
15996   return PPC::createFastISel(FuncInfo, LibInfo);
15997 }
15998 
15999 // 'Inverted' means the FMA opcode after negating one multiplicand.
16000 // For example, (fma -a b c) = (fnmsub a b c)
16001 static unsigned invertFMAOpcode(unsigned Opc) {
16002   switch (Opc) {
16003   default:
16004     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16005   case ISD::FMA:
16006     return PPCISD::FNMSUB;
16007   case PPCISD::FNMSUB:
16008     return ISD::FMA;
16009   }
16010 }
16011 
16012 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16013                                                 bool LegalOps, bool OptForSize,
16014                                                 NegatibleCost &Cost,
16015                                                 unsigned Depth) const {
16016   if (Depth > SelectionDAG::MaxRecursionDepth)
16017     return SDValue();
16018 
16019   unsigned Opc = Op.getOpcode();
16020   EVT VT = Op.getValueType();
16021   SDNodeFlags Flags = Op.getNode()->getFlags();
16022 
16023   switch (Opc) {
16024   case PPCISD::FNMSUB:
16025     if (!Op.hasOneUse() || !isTypeLegal(VT))
16026       break;
16027 
16028     const TargetOptions &Options = getTargetMachine().Options;
16029     SDValue N0 = Op.getOperand(0);
16030     SDValue N1 = Op.getOperand(1);
16031     SDValue N2 = Op.getOperand(2);
16032     SDLoc Loc(Op);
16033 
16034     NegatibleCost N2Cost = NegatibleCost::Expensive;
16035     SDValue NegN2 =
16036         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16037 
16038     if (!NegN2)
16039       return SDValue();
16040 
16041     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16042     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16043     // These transformations may change sign of zeroes. For example,
16044     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16045     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16046       // Try and choose the cheaper one to negate.
16047       NegatibleCost N0Cost = NegatibleCost::Expensive;
16048       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16049                                            N0Cost, Depth + 1);
16050 
16051       NegatibleCost N1Cost = NegatibleCost::Expensive;
16052       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16053                                            N1Cost, Depth + 1);
16054 
16055       if (NegN0 && N0Cost <= N1Cost) {
16056         Cost = std::min(N0Cost, N2Cost);
16057         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16058       } else if (NegN1) {
16059         Cost = std::min(N1Cost, N2Cost);
16060         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16061       }
16062     }
16063 
16064     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16065     if (isOperationLegal(ISD::FMA, VT)) {
16066       Cost = N2Cost;
16067       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16068     }
16069 
16070     break;
16071   }
16072 
16073   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16074                                               Cost, Depth);
16075 }
16076 
16077 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16078 bool PPCTargetLowering::useLoadStackGuardNode() const {
16079   if (!Subtarget.isTargetLinux())
16080     return TargetLowering::useLoadStackGuardNode();
16081   return true;
16082 }
16083 
16084 // Override to disable global variable loading on Linux.
16085 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16086   if (!Subtarget.isTargetLinux())
16087     return TargetLowering::insertSSPDeclarations(M);
16088 }
16089 
16090 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16091                                      bool ForCodeSize) const {
16092   if (!VT.isSimple() || !Subtarget.hasVSX())
16093     return false;
16094 
16095   switch(VT.getSimpleVT().SimpleTy) {
16096   default:
16097     // For FP types that are currently not supported by PPC backend, return
16098     // false. Examples: f16, f80.
16099     return false;
16100   case MVT::f32:
16101   case MVT::f64:
16102     if (Subtarget.hasPrefixInstrs()) {
16103       // With prefixed instructions, we can materialize anything that can be
16104       // represented with a 32-bit immediate, not just positive zero.
16105       APFloat APFloatOfImm = Imm;
16106       return convertToNonDenormSingle(APFloatOfImm);
16107     }
16108     LLVM_FALLTHROUGH;
16109   case MVT::ppcf128:
16110     return Imm.isPosZero();
16111   }
16112 }
16113 
16114 // For vector shift operation op, fold
16115 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16116 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16117                                   SelectionDAG &DAG) {
16118   SDValue N0 = N->getOperand(0);
16119   SDValue N1 = N->getOperand(1);
16120   EVT VT = N0.getValueType();
16121   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16122   unsigned Opcode = N->getOpcode();
16123   unsigned TargetOpcode;
16124 
16125   switch (Opcode) {
16126   default:
16127     llvm_unreachable("Unexpected shift operation");
16128   case ISD::SHL:
16129     TargetOpcode = PPCISD::SHL;
16130     break;
16131   case ISD::SRL:
16132     TargetOpcode = PPCISD::SRL;
16133     break;
16134   case ISD::SRA:
16135     TargetOpcode = PPCISD::SRA;
16136     break;
16137   }
16138 
16139   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16140       N1->getOpcode() == ISD::AND)
16141     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16142       if (Mask->getZExtValue() == OpSizeInBits - 1)
16143         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16144 
16145   return SDValue();
16146 }
16147 
16148 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
16149   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16150     return Value;
16151 
16152   SDValue N0 = N->getOperand(0);
16153   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
16154   if (!Subtarget.isISA3_0() ||
16155       N0.getOpcode() != ISD::SIGN_EXTEND ||
16156       N0.getOperand(0).getValueType() != MVT::i32 ||
16157       CN1 == nullptr || N->getValueType(0) != MVT::i64)
16158     return SDValue();
16159 
16160   // We can't save an operation here if the value is already extended, and
16161   // the existing shift is easier to combine.
16162   SDValue ExtsSrc = N0.getOperand(0);
16163   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
16164       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
16165     return SDValue();
16166 
16167   SDLoc DL(N0);
16168   SDValue ShiftBy = SDValue(CN1, 0);
16169   // We want the shift amount to be i32 on the extswli, but the shift could
16170   // have an i64.
16171   if (ShiftBy.getValueType() == MVT::i64)
16172     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
16173 
16174   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
16175                          ShiftBy);
16176 }
16177 
16178 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
16179   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16180     return Value;
16181 
16182   return SDValue();
16183 }
16184 
16185 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
16186   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
16187     return Value;
16188 
16189   return SDValue();
16190 }
16191 
16192 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
16193 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
16194 // When C is zero, the equation (addi Z, -C) can be simplified to Z
16195 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
16196 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
16197                                  const PPCSubtarget &Subtarget) {
16198   if (!Subtarget.isPPC64())
16199     return SDValue();
16200 
16201   SDValue LHS = N->getOperand(0);
16202   SDValue RHS = N->getOperand(1);
16203 
16204   auto isZextOfCompareWithConstant = [](SDValue Op) {
16205     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
16206         Op.getValueType() != MVT::i64)
16207       return false;
16208 
16209     SDValue Cmp = Op.getOperand(0);
16210     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
16211         Cmp.getOperand(0).getValueType() != MVT::i64)
16212       return false;
16213 
16214     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
16215       int64_t NegConstant = 0 - Constant->getSExtValue();
16216       // Due to the limitations of the addi instruction,
16217       // -C is required to be [-32768, 32767].
16218       return isInt<16>(NegConstant);
16219     }
16220 
16221     return false;
16222   };
16223 
16224   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
16225   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
16226 
16227   // If there is a pattern, canonicalize a zext operand to the RHS.
16228   if (LHSHasPattern && !RHSHasPattern)
16229     std::swap(LHS, RHS);
16230   else if (!LHSHasPattern && !RHSHasPattern)
16231     return SDValue();
16232 
16233   SDLoc DL(N);
16234   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
16235   SDValue Cmp = RHS.getOperand(0);
16236   SDValue Z = Cmp.getOperand(0);
16237   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
16238 
16239   assert(Constant && "Constant Should not be a null pointer.");
16240   int64_t NegConstant = 0 - Constant->getSExtValue();
16241 
16242   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
16243   default: break;
16244   case ISD::SETNE: {
16245     //                                 when C == 0
16246     //                             --> addze X, (addic Z, -1).carry
16247     //                            /
16248     // add X, (zext(setne Z, C))--
16249     //                            \    when -32768 <= -C <= 32767 && C != 0
16250     //                             --> addze X, (addic (addi Z, -C), -1).carry
16251     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16252                               DAG.getConstant(NegConstant, DL, MVT::i64));
16253     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16254     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16255                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
16256     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16257                        SDValue(Addc.getNode(), 1));
16258     }
16259   case ISD::SETEQ: {
16260     //                                 when C == 0
16261     //                             --> addze X, (subfic Z, 0).carry
16262     //                            /
16263     // add X, (zext(sete  Z, C))--
16264     //                            \    when -32768 <= -C <= 32767 && C != 0
16265     //                             --> addze X, (subfic (addi Z, -C), 0).carry
16266     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
16267                               DAG.getConstant(NegConstant, DL, MVT::i64));
16268     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
16269     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
16270                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
16271     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
16272                        SDValue(Subc.getNode(), 1));
16273     }
16274   }
16275 
16276   return SDValue();
16277 }
16278 
16279 // Transform
16280 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
16281 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
16282 // In this case both C1 and C2 must be known constants.
16283 // C1+C2 must fit into a 34 bit signed integer.
16284 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
16285                                           const PPCSubtarget &Subtarget) {
16286   if (!Subtarget.isUsingPCRelativeCalls())
16287     return SDValue();
16288 
16289   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
16290   // If we find that node try to cast the Global Address and the Constant.
16291   SDValue LHS = N->getOperand(0);
16292   SDValue RHS = N->getOperand(1);
16293 
16294   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16295     std::swap(LHS, RHS);
16296 
16297   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
16298     return SDValue();
16299 
16300   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
16301   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
16302   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
16303 
16304   // Check that both casts succeeded.
16305   if (!GSDN || !ConstNode)
16306     return SDValue();
16307 
16308   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
16309   SDLoc DL(GSDN);
16310 
16311   // The signed int offset needs to fit in 34 bits.
16312   if (!isInt<34>(NewOffset))
16313     return SDValue();
16314 
16315   // The new global address is a copy of the old global address except
16316   // that it has the updated Offset.
16317   SDValue GA =
16318       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
16319                                  NewOffset, GSDN->getTargetFlags());
16320   SDValue MatPCRel =
16321       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
16322   return MatPCRel;
16323 }
16324 
16325 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
16326   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
16327     return Value;
16328 
16329   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
16330     return Value;
16331 
16332   return SDValue();
16333 }
16334 
16335 // Detect TRUNCATE operations on bitcasts of float128 values.
16336 // What we are looking for here is the situtation where we extract a subset
16337 // of bits from a 128 bit float.
16338 // This can be of two forms:
16339 // 1) BITCAST of f128 feeding TRUNCATE
16340 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
16341 // The reason this is required is because we do not have a legal i128 type
16342 // and so we want to prevent having to store the f128 and then reload part
16343 // of it.
16344 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
16345                                            DAGCombinerInfo &DCI) const {
16346   // If we are using CRBits then try that first.
16347   if (Subtarget.useCRBits()) {
16348     // Check if CRBits did anything and return that if it did.
16349     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
16350       return CRTruncValue;
16351   }
16352 
16353   SDLoc dl(N);
16354   SDValue Op0 = N->getOperand(0);
16355 
16356   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
16357   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
16358     EVT VT = N->getValueType(0);
16359     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16360       return SDValue();
16361     SDValue Sub = Op0.getOperand(0);
16362     if (Sub.getOpcode() == ISD::SUB) {
16363       SDValue SubOp0 = Sub.getOperand(0);
16364       SDValue SubOp1 = Sub.getOperand(1);
16365       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
16366           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
16367         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
16368                                SubOp1.getOperand(0),
16369                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
16370       }
16371     }
16372   }
16373 
16374   // Looking for a truncate of i128 to i64.
16375   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
16376     return SDValue();
16377 
16378   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
16379 
16380   // SRL feeding TRUNCATE.
16381   if (Op0.getOpcode() == ISD::SRL) {
16382     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
16383     // The right shift has to be by 64 bits.
16384     if (!ConstNode || ConstNode->getZExtValue() != 64)
16385       return SDValue();
16386 
16387     // Switch the element number to extract.
16388     EltToExtract = EltToExtract ? 0 : 1;
16389     // Update Op0 past the SRL.
16390     Op0 = Op0.getOperand(0);
16391   }
16392 
16393   // BITCAST feeding a TRUNCATE possibly via SRL.
16394   if (Op0.getOpcode() == ISD::BITCAST &&
16395       Op0.getValueType() == MVT::i128 &&
16396       Op0.getOperand(0).getValueType() == MVT::f128) {
16397     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
16398     return DCI.DAG.getNode(
16399         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
16400         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
16401   }
16402   return SDValue();
16403 }
16404 
16405 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
16406   SelectionDAG &DAG = DCI.DAG;
16407 
16408   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
16409   if (!ConstOpOrElement)
16410     return SDValue();
16411 
16412   // An imul is usually smaller than the alternative sequence for legal type.
16413   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
16414       isOperationLegal(ISD::MUL, N->getValueType(0)))
16415     return SDValue();
16416 
16417   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
16418     switch (this->Subtarget.getCPUDirective()) {
16419     default:
16420       // TODO: enhance the condition for subtarget before pwr8
16421       return false;
16422     case PPC::DIR_PWR8:
16423       //  type        mul     add    shl
16424       // scalar        4       1      1
16425       // vector        7       2      2
16426       return true;
16427     case PPC::DIR_PWR9:
16428     case PPC::DIR_PWR10:
16429     case PPC::DIR_PWR_FUTURE:
16430       //  type        mul     add    shl
16431       // scalar        5       2      2
16432       // vector        7       2      2
16433 
16434       // The cycle RATIO of related operations are showed as a table above.
16435       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
16436       // scalar and vector type. For 2 instrs patterns, add/sub + shl
16437       // are 4, it is always profitable; but for 3 instrs patterns
16438       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
16439       // So we should only do it for vector type.
16440       return IsAddOne && IsNeg ? VT.isVector() : true;
16441     }
16442   };
16443 
16444   EVT VT = N->getValueType(0);
16445   SDLoc DL(N);
16446 
16447   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
16448   bool IsNeg = MulAmt.isNegative();
16449   APInt MulAmtAbs = MulAmt.abs();
16450 
16451   if ((MulAmtAbs - 1).isPowerOf2()) {
16452     // (mul x, 2^N + 1) => (add (shl x, N), x)
16453     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
16454 
16455     if (!IsProfitable(IsNeg, true, VT))
16456       return SDValue();
16457 
16458     SDValue Op0 = N->getOperand(0);
16459     SDValue Op1 =
16460         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16461                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
16462     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
16463 
16464     if (!IsNeg)
16465       return Res;
16466 
16467     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
16468   } else if ((MulAmtAbs + 1).isPowerOf2()) {
16469     // (mul x, 2^N - 1) => (sub (shl x, N), x)
16470     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
16471 
16472     if (!IsProfitable(IsNeg, false, VT))
16473       return SDValue();
16474 
16475     SDValue Op0 = N->getOperand(0);
16476     SDValue Op1 =
16477         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16478                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
16479 
16480     if (!IsNeg)
16481       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
16482     else
16483       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
16484 
16485   } else {
16486     return SDValue();
16487   }
16488 }
16489 
16490 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
16491 // in combiner since we need to check SD flags and other subtarget features.
16492 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
16493                                           DAGCombinerInfo &DCI) const {
16494   SDValue N0 = N->getOperand(0);
16495   SDValue N1 = N->getOperand(1);
16496   SDValue N2 = N->getOperand(2);
16497   SDNodeFlags Flags = N->getFlags();
16498   EVT VT = N->getValueType(0);
16499   SelectionDAG &DAG = DCI.DAG;
16500   const TargetOptions &Options = getTargetMachine().Options;
16501   unsigned Opc = N->getOpcode();
16502   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
16503   bool LegalOps = !DCI.isBeforeLegalizeOps();
16504   SDLoc Loc(N);
16505 
16506   if (!isOperationLegal(ISD::FMA, VT))
16507     return SDValue();
16508 
16509   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
16510   // since (fnmsub a b c)=-0 while c-ab=+0.
16511   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
16512     return SDValue();
16513 
16514   // (fma (fneg a) b c) => (fnmsub a b c)
16515   // (fnmsub (fneg a) b c) => (fma a b c)
16516   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
16517     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
16518 
16519   // (fma a (fneg b) c) => (fnmsub a b c)
16520   // (fnmsub a (fneg b) c) => (fma a b c)
16521   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
16522     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
16523 
16524   return SDValue();
16525 }
16526 
16527 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
16528   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
16529   if (!Subtarget.is64BitELFABI())
16530     return false;
16531 
16532   // If not a tail call then no need to proceed.
16533   if (!CI->isTailCall())
16534     return false;
16535 
16536   // If sibling calls have been disabled and tail-calls aren't guaranteed
16537   // there is no reason to duplicate.
16538   auto &TM = getTargetMachine();
16539   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
16540     return false;
16541 
16542   // Can't tail call a function called indirectly, or if it has variadic args.
16543   const Function *Callee = CI->getCalledFunction();
16544   if (!Callee || Callee->isVarArg())
16545     return false;
16546 
16547   // Make sure the callee and caller calling conventions are eligible for tco.
16548   const Function *Caller = CI->getParent()->getParent();
16549   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
16550                                            CI->getCallingConv()))
16551       return false;
16552 
16553   // If the function is local then we have a good chance at tail-calling it
16554   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
16555 }
16556 
16557 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
16558   if (!Subtarget.hasVSX())
16559     return false;
16560   if (Subtarget.hasP9Vector() && VT == MVT::f128)
16561     return true;
16562   return VT == MVT::f32 || VT == MVT::f64 ||
16563     VT == MVT::v4f32 || VT == MVT::v2f64;
16564 }
16565 
16566 bool PPCTargetLowering::
16567 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
16568   const Value *Mask = AndI.getOperand(1);
16569   // If the mask is suitable for andi. or andis. we should sink the and.
16570   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
16571     // Can't handle constants wider than 64-bits.
16572     if (CI->getBitWidth() > 64)
16573       return false;
16574     int64_t ConstVal = CI->getZExtValue();
16575     return isUInt<16>(ConstVal) ||
16576       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
16577   }
16578 
16579   // For non-constant masks, we can always use the record-form and.
16580   return true;
16581 }
16582 
16583 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
16584 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
16585 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
16586 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
16587 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
16588 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
16589   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
16590   assert(Subtarget.hasP9Altivec() &&
16591          "Only combine this when P9 altivec supported!");
16592   EVT VT = N->getValueType(0);
16593   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16594     return SDValue();
16595 
16596   SelectionDAG &DAG = DCI.DAG;
16597   SDLoc dl(N);
16598   if (N->getOperand(0).getOpcode() == ISD::SUB) {
16599     // Even for signed integers, if it's known to be positive (as signed
16600     // integer) due to zero-extended inputs.
16601     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
16602     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
16603     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
16604          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
16605         (SubOpcd1 == ISD::ZERO_EXTEND ||
16606          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
16607       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16608                          N->getOperand(0)->getOperand(0),
16609                          N->getOperand(0)->getOperand(1),
16610                          DAG.getTargetConstant(0, dl, MVT::i32));
16611     }
16612 
16613     // For type v4i32, it can be optimized with xvnegsp + vabsduw
16614     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
16615         N->getOperand(0).hasOneUse()) {
16616       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
16617                          N->getOperand(0)->getOperand(0),
16618                          N->getOperand(0)->getOperand(1),
16619                          DAG.getTargetConstant(1, dl, MVT::i32));
16620     }
16621   }
16622 
16623   return SDValue();
16624 }
16625 
16626 // For type v4i32/v8ii16/v16i8, transform
16627 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
16628 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
16629 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
16630 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
16631 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
16632                                           DAGCombinerInfo &DCI) const {
16633   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
16634   assert(Subtarget.hasP9Altivec() &&
16635          "Only combine this when P9 altivec supported!");
16636 
16637   SelectionDAG &DAG = DCI.DAG;
16638   SDLoc dl(N);
16639   SDValue Cond = N->getOperand(0);
16640   SDValue TrueOpnd = N->getOperand(1);
16641   SDValue FalseOpnd = N->getOperand(2);
16642   EVT VT = N->getOperand(1).getValueType();
16643 
16644   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
16645       FalseOpnd.getOpcode() != ISD::SUB)
16646     return SDValue();
16647 
16648   // ABSD only available for type v4i32/v8i16/v16i8
16649   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
16650     return SDValue();
16651 
16652   // At least to save one more dependent computation
16653   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
16654     return SDValue();
16655 
16656   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16657 
16658   // Can only handle unsigned comparison here
16659   switch (CC) {
16660   default:
16661     return SDValue();
16662   case ISD::SETUGT:
16663   case ISD::SETUGE:
16664     break;
16665   case ISD::SETULT:
16666   case ISD::SETULE:
16667     std::swap(TrueOpnd, FalseOpnd);
16668     break;
16669   }
16670 
16671   SDValue CmpOpnd1 = Cond.getOperand(0);
16672   SDValue CmpOpnd2 = Cond.getOperand(1);
16673 
16674   // SETCC CmpOpnd1 CmpOpnd2 cond
16675   // TrueOpnd = CmpOpnd1 - CmpOpnd2
16676   // FalseOpnd = CmpOpnd2 - CmpOpnd1
16677   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
16678       TrueOpnd.getOperand(1) == CmpOpnd2 &&
16679       FalseOpnd.getOperand(0) == CmpOpnd2 &&
16680       FalseOpnd.getOperand(1) == CmpOpnd1) {
16681     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
16682                        CmpOpnd1, CmpOpnd2,
16683                        DAG.getTargetConstant(0, dl, MVT::i32));
16684   }
16685 
16686   return SDValue();
16687 }
16688