1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 // TODO - Remove this option if soft fp128 has been fully supported . 125 static cl::opt<bool> 126 EnableSoftFP128("enable-soft-fp128", 127 cl::desc("temp option to enable soft fp128"), cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 // FIXME: Remove this once the bug has been fixed! 139 extern cl::opt<bool> ANDIGlueBug; 140 141 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 142 const PPCSubtarget &STI) 143 : TargetLowering(TM), Subtarget(STI) { 144 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 145 // arguments are at least 4/8 bytes aligned. 146 bool isPPC64 = Subtarget.isPPC64(); 147 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 148 149 // Set up the register classes. 150 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 151 if (!useSoftFloat()) { 152 if (hasSPE()) { 153 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 154 // EFPU2 APU only supports f32 155 if (!Subtarget.hasEFPU2()) 156 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 157 } else { 158 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 159 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 160 } 161 } 162 163 // Match BITREVERSE to customized fast code sequence in the td file. 164 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 165 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 166 167 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 168 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 169 170 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 171 for (MVT VT : MVT::integer_valuetypes()) { 172 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 173 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 174 } 175 176 if (Subtarget.isISA3_0()) { 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 179 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 180 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 181 } else { 182 // No extending loads from f16 or HW conversions back and forth. 183 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 184 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 185 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 186 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 187 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 188 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 189 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 190 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 191 } 192 193 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 194 195 // PowerPC has pre-inc load and store's. 196 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 197 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 198 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 199 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 200 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 201 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 202 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 205 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 206 if (!Subtarget.hasSPE()) { 207 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 209 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 210 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 211 } 212 213 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 214 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 215 for (MVT VT : ScalarIntVTs) { 216 setOperationAction(ISD::ADDC, VT, Legal); 217 setOperationAction(ISD::ADDE, VT, Legal); 218 setOperationAction(ISD::SUBC, VT, Legal); 219 setOperationAction(ISD::SUBE, VT, Legal); 220 } 221 222 if (Subtarget.useCRBits()) { 223 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 224 225 if (isPPC64 || Subtarget.hasFPCVT()) { 226 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 227 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 228 isPPC64 ? MVT::i64 : MVT::i32); 229 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 230 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 231 isPPC64 ? MVT::i64 : MVT::i32); 232 233 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 234 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 235 isPPC64 ? MVT::i64 : MVT::i32); 236 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 240 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 241 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 242 isPPC64 ? MVT::i64 : MVT::i32); 243 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 244 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 247 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 248 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 249 isPPC64 ? MVT::i64 : MVT::i32); 250 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 } else { 254 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 255 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 256 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 257 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 258 } 259 260 // PowerPC does not support direct load/store of condition registers. 261 setOperationAction(ISD::LOAD, MVT::i1, Custom); 262 setOperationAction(ISD::STORE, MVT::i1, Custom); 263 264 // FIXME: Remove this once the ANDI glue bug is fixed: 265 if (ANDIGlueBug) 266 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 267 268 for (MVT VT : MVT::integer_valuetypes()) { 269 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 270 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 271 setTruncStoreAction(VT, MVT::i1, Expand); 272 } 273 274 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 275 } 276 277 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 278 // PPC (the libcall is not available). 279 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 280 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 281 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 282 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 283 284 // We do not currently implement these libm ops for PowerPC. 285 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 286 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 287 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 288 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 289 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 290 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 291 292 // PowerPC has no SREM/UREM instructions unless we are on P9 293 // On P9 we may use a hardware instruction to compute the remainder. 294 // When the result of both the remainder and the division is required it is 295 // more efficient to compute the remainder from the result of the division 296 // rather than use the remainder instruction. The instructions are legalized 297 // directly because the DivRemPairsPass performs the transformation at the IR 298 // level. 299 if (Subtarget.isISA3_0()) { 300 setOperationAction(ISD::SREM, MVT::i32, Legal); 301 setOperationAction(ISD::UREM, MVT::i32, Legal); 302 setOperationAction(ISD::SREM, MVT::i64, Legal); 303 setOperationAction(ISD::UREM, MVT::i64, Legal); 304 } else { 305 setOperationAction(ISD::SREM, MVT::i32, Expand); 306 setOperationAction(ISD::UREM, MVT::i32, Expand); 307 setOperationAction(ISD::SREM, MVT::i64, Expand); 308 setOperationAction(ISD::UREM, MVT::i64, Expand); 309 } 310 311 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 312 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 313 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 314 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 315 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 316 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 317 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 318 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 319 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 320 321 // Handle constrained floating-point operations of scalar. 322 // TODO: Handle SPE specific operation. 323 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 324 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 325 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 326 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 327 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 328 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 329 330 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 331 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 332 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 333 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 334 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 335 if (Subtarget.hasVSX()) { 336 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 338 } 339 340 if (Subtarget.hasFSQRT()) { 341 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 343 } 344 345 if (Subtarget.hasFPRND()) { 346 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 347 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 348 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 349 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 350 351 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 352 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 353 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 354 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 355 } 356 357 // We don't support sin/cos/sqrt/fmod/pow 358 setOperationAction(ISD::FSIN , MVT::f64, Expand); 359 setOperationAction(ISD::FCOS , MVT::f64, Expand); 360 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 361 setOperationAction(ISD::FREM , MVT::f64, Expand); 362 setOperationAction(ISD::FPOW , MVT::f64, Expand); 363 setOperationAction(ISD::FSIN , MVT::f32, Expand); 364 setOperationAction(ISD::FCOS , MVT::f32, Expand); 365 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 366 setOperationAction(ISD::FREM , MVT::f32, Expand); 367 setOperationAction(ISD::FPOW , MVT::f32, Expand); 368 if (Subtarget.hasSPE()) { 369 setOperationAction(ISD::FMA , MVT::f64, Expand); 370 setOperationAction(ISD::FMA , MVT::f32, Expand); 371 } else { 372 setOperationAction(ISD::FMA , MVT::f64, Legal); 373 setOperationAction(ISD::FMA , MVT::f32, Legal); 374 } 375 376 if (Subtarget.hasSPE()) 377 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 378 379 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 380 381 // If we're enabling GP optimizations, use hardware square root 382 if (!Subtarget.hasFSQRT() && 383 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 384 Subtarget.hasFRE())) 385 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 386 387 if (!Subtarget.hasFSQRT() && 388 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 389 Subtarget.hasFRES())) 390 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 391 392 if (Subtarget.hasFCPSGN()) { 393 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 394 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 395 } else { 396 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 397 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 398 } 399 400 if (Subtarget.hasFPRND()) { 401 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 402 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 403 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 404 setOperationAction(ISD::FROUND, MVT::f64, Legal); 405 406 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 407 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 408 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 409 setOperationAction(ISD::FROUND, MVT::f32, Legal); 410 } 411 412 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 413 // to speed up scalar BSWAP64. 414 // CTPOP or CTTZ were introduced in P8/P9 respectively 415 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 416 if (Subtarget.hasP9Vector()) 417 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 418 else 419 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 420 if (Subtarget.isISA3_0()) { 421 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 422 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 423 } else { 424 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 425 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 426 } 427 428 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 429 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 430 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 431 } else { 432 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 433 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 434 } 435 436 // PowerPC does not have ROTR 437 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 438 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 439 440 if (!Subtarget.useCRBits()) { 441 // PowerPC does not have Select 442 setOperationAction(ISD::SELECT, MVT::i32, Expand); 443 setOperationAction(ISD::SELECT, MVT::i64, Expand); 444 setOperationAction(ISD::SELECT, MVT::f32, Expand); 445 setOperationAction(ISD::SELECT, MVT::f64, Expand); 446 } 447 448 // PowerPC wants to turn select_cc of FP into fsel when possible. 449 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 450 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 451 452 // PowerPC wants to optimize integer setcc a bit 453 if (!Subtarget.useCRBits()) 454 setOperationAction(ISD::SETCC, MVT::i32, Custom); 455 456 if (Subtarget.hasFPU()) { 457 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 458 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 459 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 460 461 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 462 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 463 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 464 } 465 466 // PowerPC does not have BRCOND which requires SetCC 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 469 470 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 471 472 if (Subtarget.hasSPE()) { 473 // SPE has built-in conversions 474 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 475 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 476 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 477 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 478 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 479 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 480 } else { 481 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 482 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 483 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 484 485 // PowerPC does not have [U|S]INT_TO_FP 486 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 487 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 488 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 489 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 490 } 491 492 if (Subtarget.hasDirectMove() && isPPC64) { 493 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 494 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 495 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 496 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 497 if (TM.Options.UnsafeFPMath) { 498 setOperationAction(ISD::LRINT, MVT::f64, Legal); 499 setOperationAction(ISD::LRINT, MVT::f32, Legal); 500 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 501 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 502 setOperationAction(ISD::LROUND, MVT::f64, Legal); 503 setOperationAction(ISD::LROUND, MVT::f32, Legal); 504 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 505 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 506 } 507 } else { 508 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 509 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 510 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 511 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 512 } 513 514 // We cannot sextinreg(i1). Expand to shifts. 515 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 516 517 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 518 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 519 // support continuation, user-level threading, and etc.. As a result, no 520 // other SjLj exception interfaces are implemented and please don't build 521 // your own exception handling based on them. 522 // LLVM/Clang supports zero-cost DWARF exception handling. 523 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 524 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 525 526 // We want to legalize GlobalAddress and ConstantPool nodes into the 527 // appropriate instructions to materialize the address. 528 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 529 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 530 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 531 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 532 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 533 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 534 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 535 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 536 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 537 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 538 539 // TRAP is legal. 540 setOperationAction(ISD::TRAP, MVT::Other, Legal); 541 542 // TRAMPOLINE is custom lowered. 543 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 544 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 545 546 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 547 setOperationAction(ISD::VASTART , MVT::Other, Custom); 548 549 if (Subtarget.is64BitELFABI()) { 550 // VAARG always uses double-word chunks, so promote anything smaller. 551 setOperationAction(ISD::VAARG, MVT::i1, Promote); 552 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 553 setOperationAction(ISD::VAARG, MVT::i8, Promote); 554 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 555 setOperationAction(ISD::VAARG, MVT::i16, Promote); 556 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 557 setOperationAction(ISD::VAARG, MVT::i32, Promote); 558 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 559 setOperationAction(ISD::VAARG, MVT::Other, Expand); 560 } else if (Subtarget.is32BitELFABI()) { 561 // VAARG is custom lowered with the 32-bit SVR4 ABI. 562 setOperationAction(ISD::VAARG, MVT::Other, Custom); 563 setOperationAction(ISD::VAARG, MVT::i64, Custom); 564 } else 565 setOperationAction(ISD::VAARG, MVT::Other, Expand); 566 567 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 568 if (Subtarget.is32BitELFABI()) 569 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 570 else 571 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 572 573 // Use the default implementation. 574 setOperationAction(ISD::VAEND , MVT::Other, Expand); 575 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 576 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 577 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 578 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 579 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 580 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 581 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 582 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 583 584 // We want to custom lower some of our intrinsics. 585 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 586 587 // To handle counter-based loop conditions. 588 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 589 590 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 591 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 592 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 593 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 594 595 // Comparisons that require checking two conditions. 596 if (Subtarget.hasSPE()) { 597 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 598 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 599 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 600 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 601 } 602 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 603 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 604 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 605 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 606 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 607 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 608 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 609 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 610 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 611 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 612 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 613 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 614 615 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 616 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 617 618 if (Subtarget.has64BitSupport()) { 619 // They also have instructions for converting between i64 and fp. 620 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 621 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 622 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 623 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 624 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 625 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 626 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 627 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 628 // This is just the low 32 bits of a (signed) fp->i64 conversion. 629 // We cannot do this with Promote because i64 is not a legal type. 630 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 631 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 632 633 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 634 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 635 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 636 } 637 } else { 638 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 639 if (Subtarget.hasSPE()) { 640 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 641 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 642 } else { 643 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 644 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 645 } 646 } 647 648 // With the instructions enabled under FPCVT, we can do everything. 649 if (Subtarget.hasFPCVT()) { 650 if (Subtarget.has64BitSupport()) { 651 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 652 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 654 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 655 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 656 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 657 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 658 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 659 } 660 661 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 662 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 663 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 664 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 665 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 666 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 667 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 668 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 669 } 670 671 if (Subtarget.use64BitRegs()) { 672 // 64-bit PowerPC implementations can support i64 types directly 673 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 674 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 675 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 676 // 64-bit PowerPC wants to expand i128 shifts itself. 677 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 678 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 679 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 680 } else { 681 // 32-bit PowerPC wants to expand i64 shifts itself. 682 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 683 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 684 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 685 } 686 687 // PowerPC has better expansions for funnel shifts than the generic 688 // TargetLowering::expandFunnelShift. 689 if (Subtarget.has64BitSupport()) { 690 setOperationAction(ISD::FSHL, MVT::i64, Custom); 691 setOperationAction(ISD::FSHR, MVT::i64, Custom); 692 } 693 setOperationAction(ISD::FSHL, MVT::i32, Custom); 694 setOperationAction(ISD::FSHR, MVT::i32, Custom); 695 696 if (Subtarget.hasVSX()) { 697 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 698 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 699 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 700 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 701 } 702 703 if (Subtarget.hasAltivec()) { 704 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 705 setOperationAction(ISD::SADDSAT, VT, Legal); 706 setOperationAction(ISD::SSUBSAT, VT, Legal); 707 setOperationAction(ISD::UADDSAT, VT, Legal); 708 setOperationAction(ISD::USUBSAT, VT, Legal); 709 } 710 // First set operation action for all vector types to expand. Then we 711 // will selectively turn on ones that can be effectively codegen'd. 712 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 713 // add/sub are legal for all supported vector VT's. 714 setOperationAction(ISD::ADD, VT, Legal); 715 setOperationAction(ISD::SUB, VT, Legal); 716 717 // For v2i64, these are only valid with P8Vector. This is corrected after 718 // the loop. 719 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 720 setOperationAction(ISD::SMAX, VT, Legal); 721 setOperationAction(ISD::SMIN, VT, Legal); 722 setOperationAction(ISD::UMAX, VT, Legal); 723 setOperationAction(ISD::UMIN, VT, Legal); 724 } 725 else { 726 setOperationAction(ISD::SMAX, VT, Expand); 727 setOperationAction(ISD::SMIN, VT, Expand); 728 setOperationAction(ISD::UMAX, VT, Expand); 729 setOperationAction(ISD::UMIN, VT, Expand); 730 } 731 732 if (Subtarget.hasVSX()) { 733 setOperationAction(ISD::FMAXNUM, VT, Legal); 734 setOperationAction(ISD::FMINNUM, VT, Legal); 735 } 736 737 // Vector instructions introduced in P8 738 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 739 setOperationAction(ISD::CTPOP, VT, Legal); 740 setOperationAction(ISD::CTLZ, VT, Legal); 741 } 742 else { 743 setOperationAction(ISD::CTPOP, VT, Expand); 744 setOperationAction(ISD::CTLZ, VT, Expand); 745 } 746 747 // Vector instructions introduced in P9 748 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 749 setOperationAction(ISD::CTTZ, VT, Legal); 750 else 751 setOperationAction(ISD::CTTZ, VT, Expand); 752 753 // We promote all shuffles to v16i8. 754 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 755 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 756 757 // We promote all non-typed operations to v4i32. 758 setOperationAction(ISD::AND , VT, Promote); 759 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 760 setOperationAction(ISD::OR , VT, Promote); 761 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 762 setOperationAction(ISD::XOR , VT, Promote); 763 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 764 setOperationAction(ISD::LOAD , VT, Promote); 765 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 766 setOperationAction(ISD::SELECT, VT, Promote); 767 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 768 setOperationAction(ISD::VSELECT, VT, Legal); 769 setOperationAction(ISD::SELECT_CC, VT, Promote); 770 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 771 setOperationAction(ISD::STORE, VT, Promote); 772 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 773 774 // No other operations are legal. 775 setOperationAction(ISD::MUL , VT, Expand); 776 setOperationAction(ISD::SDIV, VT, Expand); 777 setOperationAction(ISD::SREM, VT, Expand); 778 setOperationAction(ISD::UDIV, VT, Expand); 779 setOperationAction(ISD::UREM, VT, Expand); 780 setOperationAction(ISD::FDIV, VT, Expand); 781 setOperationAction(ISD::FREM, VT, Expand); 782 setOperationAction(ISD::FNEG, VT, Expand); 783 setOperationAction(ISD::FSQRT, VT, Expand); 784 setOperationAction(ISD::FLOG, VT, Expand); 785 setOperationAction(ISD::FLOG10, VT, Expand); 786 setOperationAction(ISD::FLOG2, VT, Expand); 787 setOperationAction(ISD::FEXP, VT, Expand); 788 setOperationAction(ISD::FEXP2, VT, Expand); 789 setOperationAction(ISD::FSIN, VT, Expand); 790 setOperationAction(ISD::FCOS, VT, Expand); 791 setOperationAction(ISD::FABS, VT, Expand); 792 setOperationAction(ISD::FFLOOR, VT, Expand); 793 setOperationAction(ISD::FCEIL, VT, Expand); 794 setOperationAction(ISD::FTRUNC, VT, Expand); 795 setOperationAction(ISD::FRINT, VT, Expand); 796 setOperationAction(ISD::FNEARBYINT, VT, Expand); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 798 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 799 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 800 setOperationAction(ISD::MULHU, VT, Expand); 801 setOperationAction(ISD::MULHS, VT, Expand); 802 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 803 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 804 setOperationAction(ISD::UDIVREM, VT, Expand); 805 setOperationAction(ISD::SDIVREM, VT, Expand); 806 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 807 setOperationAction(ISD::FPOW, VT, Expand); 808 setOperationAction(ISD::BSWAP, VT, Expand); 809 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 810 setOperationAction(ISD::ROTL, VT, Expand); 811 setOperationAction(ISD::ROTR, VT, Expand); 812 813 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 814 setTruncStoreAction(VT, InnerVT, Expand); 815 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 816 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 817 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 818 } 819 } 820 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 821 if (!Subtarget.hasP8Vector()) { 822 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 823 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 824 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 825 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 826 } 827 828 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 829 // with merges, splats, etc. 830 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 831 832 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 833 // are cheap, so handle them before they get expanded to scalar. 834 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 835 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 836 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 837 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 838 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 839 840 setOperationAction(ISD::AND , MVT::v4i32, Legal); 841 setOperationAction(ISD::OR , MVT::v4i32, Legal); 842 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 843 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 844 setOperationAction(ISD::SELECT, MVT::v4i32, 845 Subtarget.useCRBits() ? Legal : Expand); 846 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 847 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 848 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 849 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 850 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 851 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 852 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 853 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 854 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 855 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 856 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 857 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 858 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 859 860 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 861 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 862 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 863 if (Subtarget.hasAltivec()) 864 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 865 setOperationAction(ISD::ROTL, VT, Legal); 866 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 867 if (Subtarget.hasP8Altivec()) 868 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 869 870 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 871 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 872 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 873 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 874 875 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 876 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 877 878 if (Subtarget.hasVSX()) { 879 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 880 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 881 } 882 883 if (Subtarget.hasP8Altivec()) 884 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 885 else 886 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 887 888 if (Subtarget.isISA3_1()) { 889 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 890 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 891 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 892 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 893 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 894 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 895 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 896 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 897 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 898 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 899 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 900 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 901 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 902 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 903 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 904 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 905 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 906 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 907 } 908 909 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 910 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 911 912 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 913 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 914 915 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 916 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 917 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 918 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 919 920 // Altivec does not contain unordered floating-point compare instructions 921 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 922 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 923 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 924 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 925 926 if (Subtarget.hasVSX()) { 927 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 928 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 929 if (Subtarget.hasP8Vector()) { 930 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 931 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 932 } 933 if (Subtarget.hasDirectMove() && isPPC64) { 934 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 935 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 936 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 937 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 938 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 939 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 940 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 941 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 942 } 943 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 944 945 // The nearbyint variants are not allowed to raise the inexact exception 946 // so we can only code-gen them with unsafe math. 947 if (TM.Options.UnsafeFPMath) { 948 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 949 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 950 } 951 952 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 953 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 954 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 955 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 956 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 957 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 958 setOperationAction(ISD::FROUND, MVT::f64, Legal); 959 setOperationAction(ISD::FRINT, MVT::f64, Legal); 960 961 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 962 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 963 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 964 setOperationAction(ISD::FROUND, MVT::f32, Legal); 965 setOperationAction(ISD::FRINT, MVT::f32, Legal); 966 967 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 968 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 969 970 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 971 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 972 973 // Share the Altivec comparison restrictions. 974 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 975 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 976 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 977 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 978 979 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 980 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 981 982 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 983 984 if (Subtarget.hasP8Vector()) 985 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 986 987 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 988 989 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 990 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 991 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 992 993 if (Subtarget.hasP8Altivec()) { 994 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 995 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 996 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 997 998 // 128 bit shifts can be accomplished via 3 instructions for SHL and 999 // SRL, but not for SRA because of the instructions available: 1000 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1001 // doing 1002 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1003 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1004 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1005 1006 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1007 } 1008 else { 1009 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1010 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1011 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1012 1013 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1014 1015 // VSX v2i64 only supports non-arithmetic operations. 1016 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1017 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1018 } 1019 1020 if (Subtarget.isISA3_1()) 1021 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1022 else 1023 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1026 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1027 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1028 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1029 1030 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1031 1032 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1033 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1034 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1035 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1036 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1037 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1038 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1039 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1040 1041 // Custom handling for partial vectors of integers converted to 1042 // floating point. We already have optimal handling for v2i32 through 1043 // the DAG combine, so those aren't necessary. 1044 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1045 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1046 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1047 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1048 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1049 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1050 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1052 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1053 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1054 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1055 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1056 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1057 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1058 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1059 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1060 1061 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1062 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1063 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1064 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1065 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1066 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1067 1068 if (Subtarget.hasDirectMove()) 1069 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1070 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1071 1072 // Handle constrained floating-point operations of vector. 1073 // The predictor is `hasVSX` because altivec instruction has 1074 // no exception but VSX vector instruction has. 1075 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1076 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1077 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1078 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1079 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1080 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1081 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1082 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1083 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1084 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1085 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1086 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1087 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1088 1089 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1090 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1091 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1092 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1093 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1094 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1095 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1096 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1097 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1098 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1099 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1100 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1101 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1102 1103 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1104 } 1105 1106 if (Subtarget.hasP8Altivec()) { 1107 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1108 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1109 } 1110 1111 if (Subtarget.hasP9Vector()) { 1112 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1113 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1114 1115 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1116 // SRL, but not for SRA because of the instructions available: 1117 // VS{RL} and VS{RL}O. 1118 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1119 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1120 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1121 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 setOperationAction(ISD::FADD, MVT::f128, Legal); 1124 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1125 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1126 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1127 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1128 // No extending loads to f128 on PPC. 1129 for (MVT FPT : MVT::fp_valuetypes()) 1130 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1131 setOperationAction(ISD::FMA, MVT::f128, Legal); 1132 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1133 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1134 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1135 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1136 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1137 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1138 1139 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1140 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1141 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1142 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1143 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1144 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1145 1146 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1147 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1148 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1149 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1150 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1151 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1152 // No implementation for these ops for PowerPC. 1153 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1154 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1155 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1156 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1157 setOperationAction(ISD::FREM, MVT::f128, Expand); 1158 1159 // Handle constrained floating-point operations of fp128 1160 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1161 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1162 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1163 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1164 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1165 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1166 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1167 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1168 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1169 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1170 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1171 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1172 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1173 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1174 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1175 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1176 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1177 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1178 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1179 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1180 } else if (Subtarget.hasAltivec() && EnableSoftFP128) { 1181 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1182 1183 for (MVT FPT : MVT::fp_valuetypes()) 1184 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1185 1186 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1187 setOperationAction(ISD::STORE, MVT::f128, Promote); 1188 1189 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1190 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1191 1192 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1193 // fp_to_uint and int_to_fp. 1194 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1195 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1196 1197 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1198 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1199 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1200 setOperationAction(ISD::FABS, MVT::f128, Expand); 1201 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1202 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1203 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1204 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1205 setOperationAction(ISD::FREM, MVT::f128, Expand); 1206 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1207 setOperationAction(ISD::FMA, MVT::f128, Expand); 1208 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1209 1210 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1211 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1212 1213 // Expand the fp_extend if the target type is fp128. 1214 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1215 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1216 1217 // Expand the fp_round if the source type is fp128. 1218 for (MVT VT : {MVT::f32, MVT::f64}) { 1219 setOperationAction(ISD::FP_ROUND, VT, Custom); 1220 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1221 } 1222 } 1223 1224 if (Subtarget.hasP9Altivec()) { 1225 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1226 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1227 1228 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1229 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1230 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1231 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1232 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1234 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1235 } 1236 1237 if (Subtarget.isISA3_1()) { 1238 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1239 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 1240 } 1241 } 1242 1243 if (Subtarget.pairedVectorMemops()) { 1244 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1245 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1246 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1247 } 1248 if (Subtarget.hasMMA()) { 1249 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1250 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1251 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1252 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1253 } 1254 1255 if (Subtarget.has64BitSupport()) 1256 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1257 1258 if (Subtarget.isISA3_1()) 1259 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1260 1261 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1262 1263 if (!isPPC64) { 1264 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1265 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1266 } 1267 1268 setBooleanContents(ZeroOrOneBooleanContent); 1269 1270 if (Subtarget.hasAltivec()) { 1271 // Altivec instructions set fields to all zeros or all ones. 1272 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1273 } 1274 1275 if (!isPPC64) { 1276 // These libcalls are not available in 32-bit. 1277 setLibcallName(RTLIB::SHL_I128, nullptr); 1278 setLibcallName(RTLIB::SRL_I128, nullptr); 1279 setLibcallName(RTLIB::SRA_I128, nullptr); 1280 } 1281 1282 if (!isPPC64) 1283 setMaxAtomicSizeInBitsSupported(32); 1284 1285 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1286 1287 // We have target-specific dag combine patterns for the following nodes: 1288 setTargetDAGCombine(ISD::ADD); 1289 setTargetDAGCombine(ISD::SHL); 1290 setTargetDAGCombine(ISD::SRA); 1291 setTargetDAGCombine(ISD::SRL); 1292 setTargetDAGCombine(ISD::MUL); 1293 setTargetDAGCombine(ISD::FMA); 1294 setTargetDAGCombine(ISD::SINT_TO_FP); 1295 setTargetDAGCombine(ISD::BUILD_VECTOR); 1296 if (Subtarget.hasFPCVT()) 1297 setTargetDAGCombine(ISD::UINT_TO_FP); 1298 setTargetDAGCombine(ISD::LOAD); 1299 setTargetDAGCombine(ISD::STORE); 1300 setTargetDAGCombine(ISD::BR_CC); 1301 if (Subtarget.useCRBits()) 1302 setTargetDAGCombine(ISD::BRCOND); 1303 setTargetDAGCombine(ISD::BSWAP); 1304 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1305 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1306 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1307 1308 setTargetDAGCombine(ISD::SIGN_EXTEND); 1309 setTargetDAGCombine(ISD::ZERO_EXTEND); 1310 setTargetDAGCombine(ISD::ANY_EXTEND); 1311 1312 setTargetDAGCombine(ISD::TRUNCATE); 1313 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1314 1315 1316 if (Subtarget.useCRBits()) { 1317 setTargetDAGCombine(ISD::TRUNCATE); 1318 setTargetDAGCombine(ISD::SETCC); 1319 setTargetDAGCombine(ISD::SELECT_CC); 1320 } 1321 1322 if (Subtarget.hasP9Altivec()) { 1323 setTargetDAGCombine(ISD::ABS); 1324 setTargetDAGCombine(ISD::VSELECT); 1325 } 1326 1327 setLibcallName(RTLIB::LOG_F128, "logf128"); 1328 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1329 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1330 setLibcallName(RTLIB::EXP_F128, "expf128"); 1331 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1332 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1333 setLibcallName(RTLIB::COS_F128, "cosf128"); 1334 setLibcallName(RTLIB::POW_F128, "powf128"); 1335 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1336 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1337 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1338 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1339 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1340 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1341 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1342 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1343 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1344 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1345 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1346 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1347 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1348 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1349 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1350 1351 // With 32 condition bits, we don't need to sink (and duplicate) compares 1352 // aggressively in CodeGenPrep. 1353 if (Subtarget.useCRBits()) { 1354 setHasMultipleConditionRegisters(); 1355 setJumpIsExpensive(); 1356 } 1357 1358 setMinFunctionAlignment(Align(4)); 1359 1360 switch (Subtarget.getCPUDirective()) { 1361 default: break; 1362 case PPC::DIR_970: 1363 case PPC::DIR_A2: 1364 case PPC::DIR_E500: 1365 case PPC::DIR_E500mc: 1366 case PPC::DIR_E5500: 1367 case PPC::DIR_PWR4: 1368 case PPC::DIR_PWR5: 1369 case PPC::DIR_PWR5X: 1370 case PPC::DIR_PWR6: 1371 case PPC::DIR_PWR6X: 1372 case PPC::DIR_PWR7: 1373 case PPC::DIR_PWR8: 1374 case PPC::DIR_PWR9: 1375 case PPC::DIR_PWR10: 1376 case PPC::DIR_PWR_FUTURE: 1377 setPrefLoopAlignment(Align(16)); 1378 setPrefFunctionAlignment(Align(16)); 1379 break; 1380 } 1381 1382 if (Subtarget.enableMachineScheduler()) 1383 setSchedulingPreference(Sched::Source); 1384 else 1385 setSchedulingPreference(Sched::Hybrid); 1386 1387 computeRegisterProperties(STI.getRegisterInfo()); 1388 1389 // The Freescale cores do better with aggressive inlining of memcpy and 1390 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1391 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1392 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1393 MaxStoresPerMemset = 32; 1394 MaxStoresPerMemsetOptSize = 16; 1395 MaxStoresPerMemcpy = 32; 1396 MaxStoresPerMemcpyOptSize = 8; 1397 MaxStoresPerMemmove = 32; 1398 MaxStoresPerMemmoveOptSize = 8; 1399 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1400 // The A2 also benefits from (very) aggressive inlining of memcpy and 1401 // friends. The overhead of a the function call, even when warm, can be 1402 // over one hundred cycles. 1403 MaxStoresPerMemset = 128; 1404 MaxStoresPerMemcpy = 128; 1405 MaxStoresPerMemmove = 128; 1406 MaxLoadsPerMemcmp = 128; 1407 } else { 1408 MaxLoadsPerMemcmp = 8; 1409 MaxLoadsPerMemcmpOptSize = 4; 1410 } 1411 1412 IsStrictFPEnabled = true; 1413 1414 // Let the subtarget (CPU) decide if a predictable select is more expensive 1415 // than the corresponding branch. This information is used in CGP to decide 1416 // when to convert selects into branches. 1417 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1418 } 1419 1420 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1421 /// the desired ByVal argument alignment. 1422 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1423 if (MaxAlign == MaxMaxAlign) 1424 return; 1425 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1426 if (MaxMaxAlign >= 32 && 1427 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1428 MaxAlign = Align(32); 1429 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1430 MaxAlign < 16) 1431 MaxAlign = Align(16); 1432 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1433 Align EltAlign; 1434 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1435 if (EltAlign > MaxAlign) 1436 MaxAlign = EltAlign; 1437 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1438 for (auto *EltTy : STy->elements()) { 1439 Align EltAlign; 1440 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1441 if (EltAlign > MaxAlign) 1442 MaxAlign = EltAlign; 1443 if (MaxAlign == MaxMaxAlign) 1444 break; 1445 } 1446 } 1447 } 1448 1449 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1450 /// function arguments in the caller parameter area. 1451 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1452 const DataLayout &DL) const { 1453 // 16byte and wider vectors are passed on 16byte boundary. 1454 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1455 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1456 if (Subtarget.hasAltivec()) 1457 getMaxByValAlign(Ty, Alignment, Align(16)); 1458 return Alignment.value(); 1459 } 1460 1461 bool PPCTargetLowering::useSoftFloat() const { 1462 return Subtarget.useSoftFloat(); 1463 } 1464 1465 bool PPCTargetLowering::hasSPE() const { 1466 return Subtarget.hasSPE(); 1467 } 1468 1469 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1470 return VT.isScalarInteger(); 1471 } 1472 1473 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1474 switch ((PPCISD::NodeType)Opcode) { 1475 case PPCISD::FIRST_NUMBER: break; 1476 case PPCISD::FSEL: return "PPCISD::FSEL"; 1477 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1478 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1479 case PPCISD::FCFID: return "PPCISD::FCFID"; 1480 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1481 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1482 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1483 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1484 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1485 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1486 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1487 case PPCISD::FP_TO_UINT_IN_VSR: 1488 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1489 case PPCISD::FP_TO_SINT_IN_VSR: 1490 return "PPCISD::FP_TO_SINT_IN_VSR"; 1491 case PPCISD::FRE: return "PPCISD::FRE"; 1492 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1493 case PPCISD::FTSQRT: 1494 return "PPCISD::FTSQRT"; 1495 case PPCISD::FSQRT: 1496 return "PPCISD::FSQRT"; 1497 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1498 case PPCISD::VPERM: return "PPCISD::VPERM"; 1499 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1500 case PPCISD::XXSPLTI_SP_TO_DP: 1501 return "PPCISD::XXSPLTI_SP_TO_DP"; 1502 case PPCISD::XXSPLTI32DX: 1503 return "PPCISD::XXSPLTI32DX"; 1504 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1505 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1506 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1507 case PPCISD::CMPB: return "PPCISD::CMPB"; 1508 case PPCISD::Hi: return "PPCISD::Hi"; 1509 case PPCISD::Lo: return "PPCISD::Lo"; 1510 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1511 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1512 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1513 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1514 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1515 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1516 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1517 case PPCISD::SRL: return "PPCISD::SRL"; 1518 case PPCISD::SRA: return "PPCISD::SRA"; 1519 case PPCISD::SHL: return "PPCISD::SHL"; 1520 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1521 case PPCISD::CALL: return "PPCISD::CALL"; 1522 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1523 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1524 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1525 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1526 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1527 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1528 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1529 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1530 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1531 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1532 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1533 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1534 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1535 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1536 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1537 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1538 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1539 case PPCISD::ANDI_rec_1_EQ_BIT: 1540 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1541 case PPCISD::ANDI_rec_1_GT_BIT: 1542 return "PPCISD::ANDI_rec_1_GT_BIT"; 1543 case PPCISD::VCMP: return "PPCISD::VCMP"; 1544 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1545 case PPCISD::LBRX: return "PPCISD::LBRX"; 1546 case PPCISD::STBRX: return "PPCISD::STBRX"; 1547 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1548 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1549 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1550 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1551 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1552 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1553 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1554 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1555 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1556 case PPCISD::ST_VSR_SCAL_INT: 1557 return "PPCISD::ST_VSR_SCAL_INT"; 1558 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1559 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1560 case PPCISD::BDZ: return "PPCISD::BDZ"; 1561 case PPCISD::MFFS: return "PPCISD::MFFS"; 1562 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1563 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1564 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1565 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1566 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1567 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1568 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1569 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1570 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1571 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1572 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1573 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1574 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1575 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1576 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1577 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1578 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1579 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1580 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1581 case PPCISD::PADDI_DTPREL: 1582 return "PPCISD::PADDI_DTPREL"; 1583 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1584 case PPCISD::SC: return "PPCISD::SC"; 1585 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1586 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1587 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1588 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1589 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1590 case PPCISD::VABSD: return "PPCISD::VABSD"; 1591 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1592 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1593 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1594 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1595 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1596 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1597 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1598 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1599 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1600 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1601 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1602 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1603 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1604 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1605 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1606 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1607 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1608 case PPCISD::STRICT_FADDRTZ: 1609 return "PPCISD::STRICT_FADDRTZ"; 1610 case PPCISD::STRICT_FCTIDZ: 1611 return "PPCISD::STRICT_FCTIDZ"; 1612 case PPCISD::STRICT_FCTIWZ: 1613 return "PPCISD::STRICT_FCTIWZ"; 1614 case PPCISD::STRICT_FCTIDUZ: 1615 return "PPCISD::STRICT_FCTIDUZ"; 1616 case PPCISD::STRICT_FCTIWUZ: 1617 return "PPCISD::STRICT_FCTIWUZ"; 1618 case PPCISD::STRICT_FCFID: 1619 return "PPCISD::STRICT_FCFID"; 1620 case PPCISD::STRICT_FCFIDU: 1621 return "PPCISD::STRICT_FCFIDU"; 1622 case PPCISD::STRICT_FCFIDS: 1623 return "PPCISD::STRICT_FCFIDS"; 1624 case PPCISD::STRICT_FCFIDUS: 1625 return "PPCISD::STRICT_FCFIDUS"; 1626 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1627 } 1628 return nullptr; 1629 } 1630 1631 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1632 EVT VT) const { 1633 if (!VT.isVector()) 1634 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1635 1636 return VT.changeVectorElementTypeToInteger(); 1637 } 1638 1639 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1640 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1641 return true; 1642 } 1643 1644 //===----------------------------------------------------------------------===// 1645 // Node matching predicates, for use by the tblgen matching code. 1646 //===----------------------------------------------------------------------===// 1647 1648 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1649 static bool isFloatingPointZero(SDValue Op) { 1650 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1651 return CFP->getValueAPF().isZero(); 1652 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1653 // Maybe this has already been legalized into the constant pool? 1654 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1655 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1656 return CFP->getValueAPF().isZero(); 1657 } 1658 return false; 1659 } 1660 1661 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1662 /// true if Op is undef or if it matches the specified value. 1663 static bool isConstantOrUndef(int Op, int Val) { 1664 return Op < 0 || Op == Val; 1665 } 1666 1667 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1668 /// VPKUHUM instruction. 1669 /// The ShuffleKind distinguishes between big-endian operations with 1670 /// two different inputs (0), either-endian operations with two identical 1671 /// inputs (1), and little-endian operations with two different inputs (2). 1672 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1673 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1674 SelectionDAG &DAG) { 1675 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1676 if (ShuffleKind == 0) { 1677 if (IsLE) 1678 return false; 1679 for (unsigned i = 0; i != 16; ++i) 1680 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1681 return false; 1682 } else if (ShuffleKind == 2) { 1683 if (!IsLE) 1684 return false; 1685 for (unsigned i = 0; i != 16; ++i) 1686 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1687 return false; 1688 } else if (ShuffleKind == 1) { 1689 unsigned j = IsLE ? 0 : 1; 1690 for (unsigned i = 0; i != 8; ++i) 1691 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1692 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1693 return false; 1694 } 1695 return true; 1696 } 1697 1698 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1699 /// VPKUWUM instruction. 1700 /// The ShuffleKind distinguishes between big-endian operations with 1701 /// two different inputs (0), either-endian operations with two identical 1702 /// inputs (1), and little-endian operations with two different inputs (2). 1703 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1704 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1705 SelectionDAG &DAG) { 1706 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1707 if (ShuffleKind == 0) { 1708 if (IsLE) 1709 return false; 1710 for (unsigned i = 0; i != 16; i += 2) 1711 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1712 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1713 return false; 1714 } else if (ShuffleKind == 2) { 1715 if (!IsLE) 1716 return false; 1717 for (unsigned i = 0; i != 16; i += 2) 1718 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1719 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1720 return false; 1721 } else if (ShuffleKind == 1) { 1722 unsigned j = IsLE ? 0 : 2; 1723 for (unsigned i = 0; i != 8; i += 2) 1724 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1725 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1726 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1727 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1728 return false; 1729 } 1730 return true; 1731 } 1732 1733 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1734 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1735 /// current subtarget. 1736 /// 1737 /// The ShuffleKind distinguishes between big-endian operations with 1738 /// two different inputs (0), either-endian operations with two identical 1739 /// inputs (1), and little-endian operations with two different inputs (2). 1740 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1741 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1742 SelectionDAG &DAG) { 1743 const PPCSubtarget& Subtarget = 1744 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1745 if (!Subtarget.hasP8Vector()) 1746 return false; 1747 1748 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1749 if (ShuffleKind == 0) { 1750 if (IsLE) 1751 return false; 1752 for (unsigned i = 0; i != 16; i += 4) 1753 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1754 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1755 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1756 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1757 return false; 1758 } else if (ShuffleKind == 2) { 1759 if (!IsLE) 1760 return false; 1761 for (unsigned i = 0; i != 16; i += 4) 1762 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1763 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1764 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1765 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1766 return false; 1767 } else if (ShuffleKind == 1) { 1768 unsigned j = IsLE ? 0 : 4; 1769 for (unsigned i = 0; i != 8; i += 4) 1770 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1771 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1772 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1773 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1774 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1775 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1776 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1777 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1778 return false; 1779 } 1780 return true; 1781 } 1782 1783 /// isVMerge - Common function, used to match vmrg* shuffles. 1784 /// 1785 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1786 unsigned LHSStart, unsigned RHSStart) { 1787 if (N->getValueType(0) != MVT::v16i8) 1788 return false; 1789 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1790 "Unsupported merge size!"); 1791 1792 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1793 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1794 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1795 LHSStart+j+i*UnitSize) || 1796 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1797 RHSStart+j+i*UnitSize)) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1804 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1805 /// The ShuffleKind distinguishes between big-endian merges with two 1806 /// different inputs (0), either-endian merges with two identical inputs (1), 1807 /// and little-endian merges with two different inputs (2). For the latter, 1808 /// the input operands are swapped (see PPCInstrAltivec.td). 1809 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1810 unsigned ShuffleKind, SelectionDAG &DAG) { 1811 if (DAG.getDataLayout().isLittleEndian()) { 1812 if (ShuffleKind == 1) // unary 1813 return isVMerge(N, UnitSize, 0, 0); 1814 else if (ShuffleKind == 2) // swapped 1815 return isVMerge(N, UnitSize, 0, 16); 1816 else 1817 return false; 1818 } else { 1819 if (ShuffleKind == 1) // unary 1820 return isVMerge(N, UnitSize, 8, 8); 1821 else if (ShuffleKind == 0) // normal 1822 return isVMerge(N, UnitSize, 8, 24); 1823 else 1824 return false; 1825 } 1826 } 1827 1828 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1829 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1830 /// The ShuffleKind distinguishes between big-endian merges with two 1831 /// different inputs (0), either-endian merges with two identical inputs (1), 1832 /// and little-endian merges with two different inputs (2). For the latter, 1833 /// the input operands are swapped (see PPCInstrAltivec.td). 1834 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1835 unsigned ShuffleKind, SelectionDAG &DAG) { 1836 if (DAG.getDataLayout().isLittleEndian()) { 1837 if (ShuffleKind == 1) // unary 1838 return isVMerge(N, UnitSize, 8, 8); 1839 else if (ShuffleKind == 2) // swapped 1840 return isVMerge(N, UnitSize, 8, 24); 1841 else 1842 return false; 1843 } else { 1844 if (ShuffleKind == 1) // unary 1845 return isVMerge(N, UnitSize, 0, 0); 1846 else if (ShuffleKind == 0) // normal 1847 return isVMerge(N, UnitSize, 0, 16); 1848 else 1849 return false; 1850 } 1851 } 1852 1853 /** 1854 * Common function used to match vmrgew and vmrgow shuffles 1855 * 1856 * The indexOffset determines whether to look for even or odd words in 1857 * the shuffle mask. This is based on the of the endianness of the target 1858 * machine. 1859 * - Little Endian: 1860 * - Use offset of 0 to check for odd elements 1861 * - Use offset of 4 to check for even elements 1862 * - Big Endian: 1863 * - Use offset of 0 to check for even elements 1864 * - Use offset of 4 to check for odd elements 1865 * A detailed description of the vector element ordering for little endian and 1866 * big endian can be found at 1867 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1868 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1869 * compiler differences mean to you 1870 * 1871 * The mask to the shuffle vector instruction specifies the indices of the 1872 * elements from the two input vectors to place in the result. The elements are 1873 * numbered in array-access order, starting with the first vector. These vectors 1874 * are always of type v16i8, thus each vector will contain 16 elements of size 1875 * 8. More info on the shuffle vector can be found in the 1876 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1877 * Language Reference. 1878 * 1879 * The RHSStartValue indicates whether the same input vectors are used (unary) 1880 * or two different input vectors are used, based on the following: 1881 * - If the instruction uses the same vector for both inputs, the range of the 1882 * indices will be 0 to 15. In this case, the RHSStart value passed should 1883 * be 0. 1884 * - If the instruction has two different vectors then the range of the 1885 * indices will be 0 to 31. In this case, the RHSStart value passed should 1886 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1887 * to 31 specify elements in the second vector). 1888 * 1889 * \param[in] N The shuffle vector SD Node to analyze 1890 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1891 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1892 * vector to the shuffle_vector instruction 1893 * \return true iff this shuffle vector represents an even or odd word merge 1894 */ 1895 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1896 unsigned RHSStartValue) { 1897 if (N->getValueType(0) != MVT::v16i8) 1898 return false; 1899 1900 for (unsigned i = 0; i < 2; ++i) 1901 for (unsigned j = 0; j < 4; ++j) 1902 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1903 i*RHSStartValue+j+IndexOffset) || 1904 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1905 i*RHSStartValue+j+IndexOffset+8)) 1906 return false; 1907 return true; 1908 } 1909 1910 /** 1911 * Determine if the specified shuffle mask is suitable for the vmrgew or 1912 * vmrgow instructions. 1913 * 1914 * \param[in] N The shuffle vector SD Node to analyze 1915 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1916 * \param[in] ShuffleKind Identify the type of merge: 1917 * - 0 = big-endian merge with two different inputs; 1918 * - 1 = either-endian merge with two identical inputs; 1919 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1920 * little-endian merges). 1921 * \param[in] DAG The current SelectionDAG 1922 * \return true iff this shuffle mask 1923 */ 1924 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1925 unsigned ShuffleKind, SelectionDAG &DAG) { 1926 if (DAG.getDataLayout().isLittleEndian()) { 1927 unsigned indexOffset = CheckEven ? 4 : 0; 1928 if (ShuffleKind == 1) // Unary 1929 return isVMerge(N, indexOffset, 0); 1930 else if (ShuffleKind == 2) // swapped 1931 return isVMerge(N, indexOffset, 16); 1932 else 1933 return false; 1934 } 1935 else { 1936 unsigned indexOffset = CheckEven ? 0 : 4; 1937 if (ShuffleKind == 1) // Unary 1938 return isVMerge(N, indexOffset, 0); 1939 else if (ShuffleKind == 0) // Normal 1940 return isVMerge(N, indexOffset, 16); 1941 else 1942 return false; 1943 } 1944 return false; 1945 } 1946 1947 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1948 /// amount, otherwise return -1. 1949 /// The ShuffleKind distinguishes between big-endian operations with two 1950 /// different inputs (0), either-endian operations with two identical inputs 1951 /// (1), and little-endian operations with two different inputs (2). For the 1952 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1953 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1954 SelectionDAG &DAG) { 1955 if (N->getValueType(0) != MVT::v16i8) 1956 return -1; 1957 1958 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1959 1960 // Find the first non-undef value in the shuffle mask. 1961 unsigned i; 1962 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1963 /*search*/; 1964 1965 if (i == 16) return -1; // all undef. 1966 1967 // Otherwise, check to see if the rest of the elements are consecutively 1968 // numbered from this value. 1969 unsigned ShiftAmt = SVOp->getMaskElt(i); 1970 if (ShiftAmt < i) return -1; 1971 1972 ShiftAmt -= i; 1973 bool isLE = DAG.getDataLayout().isLittleEndian(); 1974 1975 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1976 // Check the rest of the elements to see if they are consecutive. 1977 for (++i; i != 16; ++i) 1978 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1979 return -1; 1980 } else if (ShuffleKind == 1) { 1981 // Check the rest of the elements to see if they are consecutive. 1982 for (++i; i != 16; ++i) 1983 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1984 return -1; 1985 } else 1986 return -1; 1987 1988 if (isLE) 1989 ShiftAmt = 16 - ShiftAmt; 1990 1991 return ShiftAmt; 1992 } 1993 1994 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1995 /// specifies a splat of a single element that is suitable for input to 1996 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1997 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1998 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1999 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2000 2001 // The consecutive indices need to specify an element, not part of two 2002 // different elements. So abandon ship early if this isn't the case. 2003 if (N->getMaskElt(0) % EltSize != 0) 2004 return false; 2005 2006 // This is a splat operation if each element of the permute is the same, and 2007 // if the value doesn't reference the second vector. 2008 unsigned ElementBase = N->getMaskElt(0); 2009 2010 // FIXME: Handle UNDEF elements too! 2011 if (ElementBase >= 16) 2012 return false; 2013 2014 // Check that the indices are consecutive, in the case of a multi-byte element 2015 // splatted with a v16i8 mask. 2016 for (unsigned i = 1; i != EltSize; ++i) 2017 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2018 return false; 2019 2020 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2021 if (N->getMaskElt(i) < 0) continue; 2022 for (unsigned j = 0; j != EltSize; ++j) 2023 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2024 return false; 2025 } 2026 return true; 2027 } 2028 2029 /// Check that the mask is shuffling N byte elements. Within each N byte 2030 /// element of the mask, the indices could be either in increasing or 2031 /// decreasing order as long as they are consecutive. 2032 /// \param[in] N the shuffle vector SD Node to analyze 2033 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2034 /// Word/DoubleWord/QuadWord). 2035 /// \param[in] StepLen the delta indices number among the N byte element, if 2036 /// the mask is in increasing/decreasing order then it is 1/-1. 2037 /// \return true iff the mask is shuffling N byte elements. 2038 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2039 int StepLen) { 2040 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2041 "Unexpected element width."); 2042 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2043 2044 unsigned NumOfElem = 16 / Width; 2045 unsigned MaskVal[16]; // Width is never greater than 16 2046 for (unsigned i = 0; i < NumOfElem; ++i) { 2047 MaskVal[0] = N->getMaskElt(i * Width); 2048 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2049 return false; 2050 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2051 return false; 2052 } 2053 2054 for (unsigned int j = 1; j < Width; ++j) { 2055 MaskVal[j] = N->getMaskElt(i * Width + j); 2056 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2057 return false; 2058 } 2059 } 2060 } 2061 2062 return true; 2063 } 2064 2065 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2066 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2067 if (!isNByteElemShuffleMask(N, 4, 1)) 2068 return false; 2069 2070 // Now we look at mask elements 0,4,8,12 2071 unsigned M0 = N->getMaskElt(0) / 4; 2072 unsigned M1 = N->getMaskElt(4) / 4; 2073 unsigned M2 = N->getMaskElt(8) / 4; 2074 unsigned M3 = N->getMaskElt(12) / 4; 2075 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2076 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2077 2078 // Below, let H and L be arbitrary elements of the shuffle mask 2079 // where H is in the range [4,7] and L is in the range [0,3]. 2080 // H, 1, 2, 3 or L, 5, 6, 7 2081 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2082 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2083 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2084 InsertAtByte = IsLE ? 12 : 0; 2085 Swap = M0 < 4; 2086 return true; 2087 } 2088 // 0, H, 2, 3 or 4, L, 6, 7 2089 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2090 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2091 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2092 InsertAtByte = IsLE ? 8 : 4; 2093 Swap = M1 < 4; 2094 return true; 2095 } 2096 // 0, 1, H, 3 or 4, 5, L, 7 2097 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2098 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2099 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2100 InsertAtByte = IsLE ? 4 : 8; 2101 Swap = M2 < 4; 2102 return true; 2103 } 2104 // 0, 1, 2, H or 4, 5, 6, L 2105 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2106 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2107 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2108 InsertAtByte = IsLE ? 0 : 12; 2109 Swap = M3 < 4; 2110 return true; 2111 } 2112 2113 // If both vector operands for the shuffle are the same vector, the mask will 2114 // contain only elements from the first one and the second one will be undef. 2115 if (N->getOperand(1).isUndef()) { 2116 ShiftElts = 0; 2117 Swap = true; 2118 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2119 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2120 InsertAtByte = IsLE ? 12 : 0; 2121 return true; 2122 } 2123 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2124 InsertAtByte = IsLE ? 8 : 4; 2125 return true; 2126 } 2127 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2128 InsertAtByte = IsLE ? 4 : 8; 2129 return true; 2130 } 2131 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2132 InsertAtByte = IsLE ? 0 : 12; 2133 return true; 2134 } 2135 } 2136 2137 return false; 2138 } 2139 2140 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2141 bool &Swap, bool IsLE) { 2142 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2143 // Ensure each byte index of the word is consecutive. 2144 if (!isNByteElemShuffleMask(N, 4, 1)) 2145 return false; 2146 2147 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2148 unsigned M0 = N->getMaskElt(0) / 4; 2149 unsigned M1 = N->getMaskElt(4) / 4; 2150 unsigned M2 = N->getMaskElt(8) / 4; 2151 unsigned M3 = N->getMaskElt(12) / 4; 2152 2153 // If both vector operands for the shuffle are the same vector, the mask will 2154 // contain only elements from the first one and the second one will be undef. 2155 if (N->getOperand(1).isUndef()) { 2156 assert(M0 < 4 && "Indexing into an undef vector?"); 2157 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2158 return false; 2159 2160 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2161 Swap = false; 2162 return true; 2163 } 2164 2165 // Ensure each word index of the ShuffleVector Mask is consecutive. 2166 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2167 return false; 2168 2169 if (IsLE) { 2170 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2171 // Input vectors don't need to be swapped if the leading element 2172 // of the result is one of the 3 left elements of the second vector 2173 // (or if there is no shift to be done at all). 2174 Swap = false; 2175 ShiftElts = (8 - M0) % 8; 2176 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2177 // Input vectors need to be swapped if the leading element 2178 // of the result is one of the 3 left elements of the first vector 2179 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2180 Swap = true; 2181 ShiftElts = (4 - M0) % 4; 2182 } 2183 2184 return true; 2185 } else { // BE 2186 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2187 // Input vectors don't need to be swapped if the leading element 2188 // of the result is one of the 4 elements of the first vector. 2189 Swap = false; 2190 ShiftElts = M0; 2191 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2192 // Input vectors need to be swapped if the leading element 2193 // of the result is one of the 4 elements of the right vector. 2194 Swap = true; 2195 ShiftElts = M0 - 4; 2196 } 2197 2198 return true; 2199 } 2200 } 2201 2202 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2203 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2204 2205 if (!isNByteElemShuffleMask(N, Width, -1)) 2206 return false; 2207 2208 for (int i = 0; i < 16; i += Width) 2209 if (N->getMaskElt(i) != i + Width - 1) 2210 return false; 2211 2212 return true; 2213 } 2214 2215 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2216 return isXXBRShuffleMaskHelper(N, 2); 2217 } 2218 2219 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2220 return isXXBRShuffleMaskHelper(N, 4); 2221 } 2222 2223 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2224 return isXXBRShuffleMaskHelper(N, 8); 2225 } 2226 2227 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2228 return isXXBRShuffleMaskHelper(N, 16); 2229 } 2230 2231 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2232 /// if the inputs to the instruction should be swapped and set \p DM to the 2233 /// value for the immediate. 2234 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2235 /// AND element 0 of the result comes from the first input (LE) or second input 2236 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2237 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2238 /// mask. 2239 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2240 bool &Swap, bool IsLE) { 2241 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2242 2243 // Ensure each byte index of the double word is consecutive. 2244 if (!isNByteElemShuffleMask(N, 8, 1)) 2245 return false; 2246 2247 unsigned M0 = N->getMaskElt(0) / 8; 2248 unsigned M1 = N->getMaskElt(8) / 8; 2249 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2250 2251 // If both vector operands for the shuffle are the same vector, the mask will 2252 // contain only elements from the first one and the second one will be undef. 2253 if (N->getOperand(1).isUndef()) { 2254 if ((M0 | M1) < 2) { 2255 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2256 Swap = false; 2257 return true; 2258 } else 2259 return false; 2260 } 2261 2262 if (IsLE) { 2263 if (M0 > 1 && M1 < 2) { 2264 Swap = false; 2265 } else if (M0 < 2 && M1 > 1) { 2266 M0 = (M0 + 2) % 4; 2267 M1 = (M1 + 2) % 4; 2268 Swap = true; 2269 } else 2270 return false; 2271 2272 // Note: if control flow comes here that means Swap is already set above 2273 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2274 return true; 2275 } else { // BE 2276 if (M0 < 2 && M1 > 1) { 2277 Swap = false; 2278 } else if (M0 > 1 && M1 < 2) { 2279 M0 = (M0 + 2) % 4; 2280 M1 = (M1 + 2) % 4; 2281 Swap = true; 2282 } else 2283 return false; 2284 2285 // Note: if control flow comes here that means Swap is already set above 2286 DM = (M0 << 1) + (M1 & 1); 2287 return true; 2288 } 2289 } 2290 2291 2292 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2293 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2294 /// elements are counted from the left of the vector register). 2295 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2296 SelectionDAG &DAG) { 2297 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2298 assert(isSplatShuffleMask(SVOp, EltSize)); 2299 if (DAG.getDataLayout().isLittleEndian()) 2300 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2301 else 2302 return SVOp->getMaskElt(0) / EltSize; 2303 } 2304 2305 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2306 /// by using a vspltis[bhw] instruction of the specified element size, return 2307 /// the constant being splatted. The ByteSize field indicates the number of 2308 /// bytes of each element [124] -> [bhw]. 2309 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2310 SDValue OpVal(nullptr, 0); 2311 2312 // If ByteSize of the splat is bigger than the element size of the 2313 // build_vector, then we have a case where we are checking for a splat where 2314 // multiple elements of the buildvector are folded together into a single 2315 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2316 unsigned EltSize = 16/N->getNumOperands(); 2317 if (EltSize < ByteSize) { 2318 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2319 SDValue UniquedVals[4]; 2320 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2321 2322 // See if all of the elements in the buildvector agree across. 2323 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2324 if (N->getOperand(i).isUndef()) continue; 2325 // If the element isn't a constant, bail fully out. 2326 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2327 2328 if (!UniquedVals[i&(Multiple-1)].getNode()) 2329 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2330 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2331 return SDValue(); // no match. 2332 } 2333 2334 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2335 // either constant or undef values that are identical for each chunk. See 2336 // if these chunks can form into a larger vspltis*. 2337 2338 // Check to see if all of the leading entries are either 0 or -1. If 2339 // neither, then this won't fit into the immediate field. 2340 bool LeadingZero = true; 2341 bool LeadingOnes = true; 2342 for (unsigned i = 0; i != Multiple-1; ++i) { 2343 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2344 2345 LeadingZero &= isNullConstant(UniquedVals[i]); 2346 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2347 } 2348 // Finally, check the least significant entry. 2349 if (LeadingZero) { 2350 if (!UniquedVals[Multiple-1].getNode()) 2351 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2352 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2353 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2354 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2355 } 2356 if (LeadingOnes) { 2357 if (!UniquedVals[Multiple-1].getNode()) 2358 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2359 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2360 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2361 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2362 } 2363 2364 return SDValue(); 2365 } 2366 2367 // Check to see if this buildvec has a single non-undef value in its elements. 2368 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2369 if (N->getOperand(i).isUndef()) continue; 2370 if (!OpVal.getNode()) 2371 OpVal = N->getOperand(i); 2372 else if (OpVal != N->getOperand(i)) 2373 return SDValue(); 2374 } 2375 2376 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2377 2378 unsigned ValSizeInBytes = EltSize; 2379 uint64_t Value = 0; 2380 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2381 Value = CN->getZExtValue(); 2382 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2383 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2384 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2385 } 2386 2387 // If the splat value is larger than the element value, then we can never do 2388 // this splat. The only case that we could fit the replicated bits into our 2389 // immediate field for would be zero, and we prefer to use vxor for it. 2390 if (ValSizeInBytes < ByteSize) return SDValue(); 2391 2392 // If the element value is larger than the splat value, check if it consists 2393 // of a repeated bit pattern of size ByteSize. 2394 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2395 return SDValue(); 2396 2397 // Properly sign extend the value. 2398 int MaskVal = SignExtend32(Value, ByteSize * 8); 2399 2400 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2401 if (MaskVal == 0) return SDValue(); 2402 2403 // Finally, if this value fits in a 5 bit sext field, return it 2404 if (SignExtend32<5>(MaskVal) == MaskVal) 2405 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2406 return SDValue(); 2407 } 2408 2409 //===----------------------------------------------------------------------===// 2410 // Addressing Mode Selection 2411 //===----------------------------------------------------------------------===// 2412 2413 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2414 /// or 64-bit immediate, and if the value can be accurately represented as a 2415 /// sign extension from a 16-bit value. If so, this returns true and the 2416 /// immediate. 2417 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2418 if (!isa<ConstantSDNode>(N)) 2419 return false; 2420 2421 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2422 if (N->getValueType(0) == MVT::i32) 2423 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2424 else 2425 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2426 } 2427 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2428 return isIntS16Immediate(Op.getNode(), Imm); 2429 } 2430 2431 2432 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2433 /// be represented as an indexed [r+r] operation. 2434 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2435 SDValue &Index, 2436 SelectionDAG &DAG) const { 2437 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2438 UI != E; ++UI) { 2439 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2440 if (Memop->getMemoryVT() == MVT::f64) { 2441 Base = N.getOperand(0); 2442 Index = N.getOperand(1); 2443 return true; 2444 } 2445 } 2446 } 2447 return false; 2448 } 2449 2450 /// isIntS34Immediate - This method tests if value of node given can be 2451 /// accurately represented as a sign extension from a 34-bit value. If so, 2452 /// this returns true and the immediate. 2453 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2454 if (!isa<ConstantSDNode>(N)) 2455 return false; 2456 2457 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2458 return isInt<34>(Imm); 2459 } 2460 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2461 return isIntS34Immediate(Op.getNode(), Imm); 2462 } 2463 2464 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2465 /// can be represented as an indexed [r+r] operation. Returns false if it 2466 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2467 /// non-zero and N can be represented by a base register plus a signed 16-bit 2468 /// displacement, make a more precise judgement by checking (displacement % \p 2469 /// EncodingAlignment). 2470 bool PPCTargetLowering::SelectAddressRegReg( 2471 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2472 MaybeAlign EncodingAlignment) const { 2473 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2474 // a [pc+imm]. 2475 if (SelectAddressPCRel(N, Base)) 2476 return false; 2477 2478 int16_t Imm = 0; 2479 if (N.getOpcode() == ISD::ADD) { 2480 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2481 // SPE load/store can only handle 8-bit offsets. 2482 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2483 return true; 2484 if (isIntS16Immediate(N.getOperand(1), Imm) && 2485 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2486 return false; // r+i 2487 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2488 return false; // r+i 2489 2490 Base = N.getOperand(0); 2491 Index = N.getOperand(1); 2492 return true; 2493 } else if (N.getOpcode() == ISD::OR) { 2494 if (isIntS16Immediate(N.getOperand(1), Imm) && 2495 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2496 return false; // r+i can fold it if we can. 2497 2498 // If this is an or of disjoint bitfields, we can codegen this as an add 2499 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2500 // disjoint. 2501 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2502 2503 if (LHSKnown.Zero.getBoolValue()) { 2504 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2505 // If all of the bits are known zero on the LHS or RHS, the add won't 2506 // carry. 2507 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2508 Base = N.getOperand(0); 2509 Index = N.getOperand(1); 2510 return true; 2511 } 2512 } 2513 } 2514 2515 return false; 2516 } 2517 2518 // If we happen to be doing an i64 load or store into a stack slot that has 2519 // less than a 4-byte alignment, then the frame-index elimination may need to 2520 // use an indexed load or store instruction (because the offset may not be a 2521 // multiple of 4). The extra register needed to hold the offset comes from the 2522 // register scavenger, and it is possible that the scavenger will need to use 2523 // an emergency spill slot. As a result, we need to make sure that a spill slot 2524 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2525 // stack slot. 2526 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2527 // FIXME: This does not handle the LWA case. 2528 if (VT != MVT::i64) 2529 return; 2530 2531 // NOTE: We'll exclude negative FIs here, which come from argument 2532 // lowering, because there are no known test cases triggering this problem 2533 // using packed structures (or similar). We can remove this exclusion if 2534 // we find such a test case. The reason why this is so test-case driven is 2535 // because this entire 'fixup' is only to prevent crashes (from the 2536 // register scavenger) on not-really-valid inputs. For example, if we have: 2537 // %a = alloca i1 2538 // %b = bitcast i1* %a to i64* 2539 // store i64* a, i64 b 2540 // then the store should really be marked as 'align 1', but is not. If it 2541 // were marked as 'align 1' then the indexed form would have been 2542 // instruction-selected initially, and the problem this 'fixup' is preventing 2543 // won't happen regardless. 2544 if (FrameIdx < 0) 2545 return; 2546 2547 MachineFunction &MF = DAG.getMachineFunction(); 2548 MachineFrameInfo &MFI = MF.getFrameInfo(); 2549 2550 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2551 return; 2552 2553 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2554 FuncInfo->setHasNonRISpills(); 2555 } 2556 2557 /// Returns true if the address N can be represented by a base register plus 2558 /// a signed 16-bit displacement [r+imm], and if it is not better 2559 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2560 /// displacements that are multiples of that value. 2561 bool PPCTargetLowering::SelectAddressRegImm( 2562 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2563 MaybeAlign EncodingAlignment) const { 2564 // FIXME dl should come from parent load or store, not from address 2565 SDLoc dl(N); 2566 2567 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2568 // a [pc+imm]. 2569 if (SelectAddressPCRel(N, Base)) 2570 return false; 2571 2572 // If this can be more profitably realized as r+r, fail. 2573 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2574 return false; 2575 2576 if (N.getOpcode() == ISD::ADD) { 2577 int16_t imm = 0; 2578 if (isIntS16Immediate(N.getOperand(1), imm) && 2579 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2580 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2581 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2582 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2583 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2584 } else { 2585 Base = N.getOperand(0); 2586 } 2587 return true; // [r+i] 2588 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2589 // Match LOAD (ADD (X, Lo(G))). 2590 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2591 && "Cannot handle constant offsets yet!"); 2592 Disp = N.getOperand(1).getOperand(0); // The global address. 2593 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2594 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2595 Disp.getOpcode() == ISD::TargetConstantPool || 2596 Disp.getOpcode() == ISD::TargetJumpTable); 2597 Base = N.getOperand(0); 2598 return true; // [&g+r] 2599 } 2600 } else if (N.getOpcode() == ISD::OR) { 2601 int16_t imm = 0; 2602 if (isIntS16Immediate(N.getOperand(1), imm) && 2603 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2604 // If this is an or of disjoint bitfields, we can codegen this as an add 2605 // (for better address arithmetic) if the LHS and RHS of the OR are 2606 // provably disjoint. 2607 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2608 2609 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2610 // If all of the bits are known zero on the LHS or RHS, the add won't 2611 // carry. 2612 if (FrameIndexSDNode *FI = 2613 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2614 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2615 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2616 } else { 2617 Base = N.getOperand(0); 2618 } 2619 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2620 return true; 2621 } 2622 } 2623 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2624 // Loading from a constant address. 2625 2626 // If this address fits entirely in a 16-bit sext immediate field, codegen 2627 // this as "d, 0" 2628 int16_t Imm; 2629 if (isIntS16Immediate(CN, Imm) && 2630 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2631 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2632 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2633 CN->getValueType(0)); 2634 return true; 2635 } 2636 2637 // Handle 32-bit sext immediates with LIS + addr mode. 2638 if ((CN->getValueType(0) == MVT::i32 || 2639 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2640 (!EncodingAlignment || 2641 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2642 int Addr = (int)CN->getZExtValue(); 2643 2644 // Otherwise, break this down into an LIS + disp. 2645 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2646 2647 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2648 MVT::i32); 2649 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2650 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2651 return true; 2652 } 2653 } 2654 2655 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2656 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2657 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2658 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2659 } else 2660 Base = N; 2661 return true; // [r+0] 2662 } 2663 2664 /// Similar to the 16-bit case but for instructions that take a 34-bit 2665 /// displacement field (prefixed loads/stores). 2666 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2667 SDValue &Base, 2668 SelectionDAG &DAG) const { 2669 // Only on 64-bit targets. 2670 if (N.getValueType() != MVT::i64) 2671 return false; 2672 2673 SDLoc dl(N); 2674 int64_t Imm = 0; 2675 2676 if (N.getOpcode() == ISD::ADD) { 2677 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2678 return false; 2679 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2680 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2681 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2682 else 2683 Base = N.getOperand(0); 2684 return true; 2685 } 2686 2687 if (N.getOpcode() == ISD::OR) { 2688 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2689 return false; 2690 // If this is an or of disjoint bitfields, we can codegen this as an add 2691 // (for better address arithmetic) if the LHS and RHS of the OR are 2692 // provably disjoint. 2693 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2694 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2695 return false; 2696 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2697 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2698 else 2699 Base = N.getOperand(0); 2700 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2701 return true; 2702 } 2703 2704 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2705 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2706 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2707 return true; 2708 } 2709 2710 return false; 2711 } 2712 2713 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2714 /// represented as an indexed [r+r] operation. 2715 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2716 SDValue &Index, 2717 SelectionDAG &DAG) const { 2718 // Check to see if we can easily represent this as an [r+r] address. This 2719 // will fail if it thinks that the address is more profitably represented as 2720 // reg+imm, e.g. where imm = 0. 2721 if (SelectAddressRegReg(N, Base, Index, DAG)) 2722 return true; 2723 2724 // If the address is the result of an add, we will utilize the fact that the 2725 // address calculation includes an implicit add. However, we can reduce 2726 // register pressure if we do not materialize a constant just for use as the 2727 // index register. We only get rid of the add if it is not an add of a 2728 // value and a 16-bit signed constant and both have a single use. 2729 int16_t imm = 0; 2730 if (N.getOpcode() == ISD::ADD && 2731 (!isIntS16Immediate(N.getOperand(1), imm) || 2732 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2733 Base = N.getOperand(0); 2734 Index = N.getOperand(1); 2735 return true; 2736 } 2737 2738 // Otherwise, do it the hard way, using R0 as the base register. 2739 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2740 N.getValueType()); 2741 Index = N; 2742 return true; 2743 } 2744 2745 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2746 Ty *PCRelCand = dyn_cast<Ty>(N); 2747 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2748 } 2749 2750 /// Returns true if this address is a PC Relative address. 2751 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2752 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2753 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2754 // This is a materialize PC Relative node. Always select this as PC Relative. 2755 Base = N; 2756 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2757 return true; 2758 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2759 isValidPCRelNode<GlobalAddressSDNode>(N) || 2760 isValidPCRelNode<JumpTableSDNode>(N) || 2761 isValidPCRelNode<BlockAddressSDNode>(N)) 2762 return true; 2763 return false; 2764 } 2765 2766 /// Returns true if we should use a direct load into vector instruction 2767 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2768 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2769 2770 // If there are any other uses other than scalar to vector, then we should 2771 // keep it as a scalar load -> direct move pattern to prevent multiple 2772 // loads. 2773 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2774 if (!LD) 2775 return false; 2776 2777 EVT MemVT = LD->getMemoryVT(); 2778 if (!MemVT.isSimple()) 2779 return false; 2780 switch(MemVT.getSimpleVT().SimpleTy) { 2781 case MVT::i64: 2782 break; 2783 case MVT::i32: 2784 if (!ST.hasP8Vector()) 2785 return false; 2786 break; 2787 case MVT::i16: 2788 case MVT::i8: 2789 if (!ST.hasP9Vector()) 2790 return false; 2791 break; 2792 default: 2793 return false; 2794 } 2795 2796 SDValue LoadedVal(N, 0); 2797 if (!LoadedVal.hasOneUse()) 2798 return false; 2799 2800 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2801 UI != UE; ++UI) 2802 if (UI.getUse().get().getResNo() == 0 && 2803 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2804 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2805 return false; 2806 2807 return true; 2808 } 2809 2810 /// getPreIndexedAddressParts - returns true by value, base pointer and 2811 /// offset pointer and addressing mode by reference if the node's address 2812 /// can be legally represented as pre-indexed load / store address. 2813 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2814 SDValue &Offset, 2815 ISD::MemIndexedMode &AM, 2816 SelectionDAG &DAG) const { 2817 if (DisablePPCPreinc) return false; 2818 2819 bool isLoad = true; 2820 SDValue Ptr; 2821 EVT VT; 2822 unsigned Alignment; 2823 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2824 Ptr = LD->getBasePtr(); 2825 VT = LD->getMemoryVT(); 2826 Alignment = LD->getAlignment(); 2827 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2828 Ptr = ST->getBasePtr(); 2829 VT = ST->getMemoryVT(); 2830 Alignment = ST->getAlignment(); 2831 isLoad = false; 2832 } else 2833 return false; 2834 2835 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2836 // instructions because we can fold these into a more efficient instruction 2837 // instead, (such as LXSD). 2838 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2839 return false; 2840 } 2841 2842 // PowerPC doesn't have preinc load/store instructions for vectors 2843 if (VT.isVector()) 2844 return false; 2845 2846 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2847 // Common code will reject creating a pre-inc form if the base pointer 2848 // is a frame index, or if N is a store and the base pointer is either 2849 // the same as or a predecessor of the value being stored. Check for 2850 // those situations here, and try with swapped Base/Offset instead. 2851 bool Swap = false; 2852 2853 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2854 Swap = true; 2855 else if (!isLoad) { 2856 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2857 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2858 Swap = true; 2859 } 2860 2861 if (Swap) 2862 std::swap(Base, Offset); 2863 2864 AM = ISD::PRE_INC; 2865 return true; 2866 } 2867 2868 // LDU/STU can only handle immediates that are a multiple of 4. 2869 if (VT != MVT::i64) { 2870 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2871 return false; 2872 } else { 2873 // LDU/STU need an address with at least 4-byte alignment. 2874 if (Alignment < 4) 2875 return false; 2876 2877 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2878 return false; 2879 } 2880 2881 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2882 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2883 // sext i32 to i64 when addr mode is r+i. 2884 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2885 LD->getExtensionType() == ISD::SEXTLOAD && 2886 isa<ConstantSDNode>(Offset)) 2887 return false; 2888 } 2889 2890 AM = ISD::PRE_INC; 2891 return true; 2892 } 2893 2894 //===----------------------------------------------------------------------===// 2895 // LowerOperation implementation 2896 //===----------------------------------------------------------------------===// 2897 2898 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2899 /// and LoOpFlags to the target MO flags. 2900 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2901 unsigned &HiOpFlags, unsigned &LoOpFlags, 2902 const GlobalValue *GV = nullptr) { 2903 HiOpFlags = PPCII::MO_HA; 2904 LoOpFlags = PPCII::MO_LO; 2905 2906 // Don't use the pic base if not in PIC relocation model. 2907 if (IsPIC) { 2908 HiOpFlags |= PPCII::MO_PIC_FLAG; 2909 LoOpFlags |= PPCII::MO_PIC_FLAG; 2910 } 2911 } 2912 2913 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2914 SelectionDAG &DAG) { 2915 SDLoc DL(HiPart); 2916 EVT PtrVT = HiPart.getValueType(); 2917 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2918 2919 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2920 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2921 2922 // With PIC, the first instruction is actually "GR+hi(&G)". 2923 if (isPIC) 2924 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2925 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2926 2927 // Generate non-pic code that has direct accesses to the constant pool. 2928 // The address of the global is just (hi(&g)+lo(&g)). 2929 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2930 } 2931 2932 static void setUsesTOCBasePtr(MachineFunction &MF) { 2933 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2934 FuncInfo->setUsesTOCBasePtr(); 2935 } 2936 2937 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2938 setUsesTOCBasePtr(DAG.getMachineFunction()); 2939 } 2940 2941 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2942 SDValue GA) const { 2943 const bool Is64Bit = Subtarget.isPPC64(); 2944 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2945 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2946 : Subtarget.isAIXABI() 2947 ? DAG.getRegister(PPC::R2, VT) 2948 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2949 SDValue Ops[] = { GA, Reg }; 2950 return DAG.getMemIntrinsicNode( 2951 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2952 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 2953 MachineMemOperand::MOLoad); 2954 } 2955 2956 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2957 SelectionDAG &DAG) const { 2958 EVT PtrVT = Op.getValueType(); 2959 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2960 const Constant *C = CP->getConstVal(); 2961 2962 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2963 // The actual address of the GlobalValue is stored in the TOC. 2964 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2965 if (Subtarget.isUsingPCRelativeCalls()) { 2966 SDLoc DL(CP); 2967 EVT Ty = getPointerTy(DAG.getDataLayout()); 2968 SDValue ConstPool = DAG.getTargetConstantPool( 2969 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 2970 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 2971 } 2972 setUsesTOCBasePtr(DAG); 2973 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 2974 return getTOCEntry(DAG, SDLoc(CP), GA); 2975 } 2976 2977 unsigned MOHiFlag, MOLoFlag; 2978 bool IsPIC = isPositionIndependent(); 2979 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2980 2981 if (IsPIC && Subtarget.isSVR4ABI()) { 2982 SDValue GA = 2983 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 2984 return getTOCEntry(DAG, SDLoc(CP), GA); 2985 } 2986 2987 SDValue CPIHi = 2988 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 2989 SDValue CPILo = 2990 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 2991 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2992 } 2993 2994 // For 64-bit PowerPC, prefer the more compact relative encodings. 2995 // This trades 32 bits per jump table entry for one or two instructions 2996 // on the jump site. 2997 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2998 if (isJumpTableRelative()) 2999 return MachineJumpTableInfo::EK_LabelDifference32; 3000 3001 return TargetLowering::getJumpTableEncoding(); 3002 } 3003 3004 bool PPCTargetLowering::isJumpTableRelative() const { 3005 if (UseAbsoluteJumpTables) 3006 return false; 3007 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3008 return true; 3009 return TargetLowering::isJumpTableRelative(); 3010 } 3011 3012 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3013 SelectionDAG &DAG) const { 3014 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3015 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3016 3017 switch (getTargetMachine().getCodeModel()) { 3018 case CodeModel::Small: 3019 case CodeModel::Medium: 3020 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3021 default: 3022 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3023 getPointerTy(DAG.getDataLayout())); 3024 } 3025 } 3026 3027 const MCExpr * 3028 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3029 unsigned JTI, 3030 MCContext &Ctx) const { 3031 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3032 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3033 3034 switch (getTargetMachine().getCodeModel()) { 3035 case CodeModel::Small: 3036 case CodeModel::Medium: 3037 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3038 default: 3039 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3040 } 3041 } 3042 3043 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3044 EVT PtrVT = Op.getValueType(); 3045 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3046 3047 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3048 if (Subtarget.isUsingPCRelativeCalls()) { 3049 SDLoc DL(JT); 3050 EVT Ty = getPointerTy(DAG.getDataLayout()); 3051 SDValue GA = 3052 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3053 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3054 return MatAddr; 3055 } 3056 3057 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3058 // The actual address of the GlobalValue is stored in the TOC. 3059 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3060 setUsesTOCBasePtr(DAG); 3061 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3062 return getTOCEntry(DAG, SDLoc(JT), GA); 3063 } 3064 3065 unsigned MOHiFlag, MOLoFlag; 3066 bool IsPIC = isPositionIndependent(); 3067 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3068 3069 if (IsPIC && Subtarget.isSVR4ABI()) { 3070 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3071 PPCII::MO_PIC_FLAG); 3072 return getTOCEntry(DAG, SDLoc(GA), GA); 3073 } 3074 3075 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3076 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3077 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3078 } 3079 3080 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3081 SelectionDAG &DAG) const { 3082 EVT PtrVT = Op.getValueType(); 3083 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3084 const BlockAddress *BA = BASDN->getBlockAddress(); 3085 3086 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3087 if (Subtarget.isUsingPCRelativeCalls()) { 3088 SDLoc DL(BASDN); 3089 EVT Ty = getPointerTy(DAG.getDataLayout()); 3090 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3091 PPCII::MO_PCREL_FLAG); 3092 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3093 return MatAddr; 3094 } 3095 3096 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3097 // The actual BlockAddress is stored in the TOC. 3098 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3099 setUsesTOCBasePtr(DAG); 3100 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3101 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3102 } 3103 3104 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3105 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3106 return getTOCEntry( 3107 DAG, SDLoc(BASDN), 3108 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3109 3110 unsigned MOHiFlag, MOLoFlag; 3111 bool IsPIC = isPositionIndependent(); 3112 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3113 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3114 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3115 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3116 } 3117 3118 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3119 SelectionDAG &DAG) const { 3120 // FIXME: TLS addresses currently use medium model code sequences, 3121 // which is the most useful form. Eventually support for small and 3122 // large models could be added if users need it, at the cost of 3123 // additional complexity. 3124 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3125 if (DAG.getTarget().useEmulatedTLS()) 3126 return LowerToTLSEmulatedModel(GA, DAG); 3127 3128 SDLoc dl(GA); 3129 const GlobalValue *GV = GA->getGlobal(); 3130 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3131 bool is64bit = Subtarget.isPPC64(); 3132 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3133 PICLevel::Level picLevel = M->getPICLevel(); 3134 3135 const TargetMachine &TM = getTargetMachine(); 3136 TLSModel::Model Model = TM.getTLSModel(GV); 3137 3138 if (Model == TLSModel::LocalExec) { 3139 if (Subtarget.isUsingPCRelativeCalls()) { 3140 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3141 SDValue TGA = DAG.getTargetGlobalAddress( 3142 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3143 SDValue MatAddr = 3144 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3145 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3146 } 3147 3148 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3149 PPCII::MO_TPREL_HA); 3150 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3151 PPCII::MO_TPREL_LO); 3152 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3153 : DAG.getRegister(PPC::R2, MVT::i32); 3154 3155 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3156 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3157 } 3158 3159 if (Model == TLSModel::InitialExec) { 3160 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3161 SDValue TGA = DAG.getTargetGlobalAddress( 3162 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3163 SDValue TGATLS = DAG.getTargetGlobalAddress( 3164 GV, dl, PtrVT, 0, 3165 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3166 SDValue TPOffset; 3167 if (IsPCRel) { 3168 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3169 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3170 MachinePointerInfo()); 3171 } else { 3172 SDValue GOTPtr; 3173 if (is64bit) { 3174 setUsesTOCBasePtr(DAG); 3175 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3176 GOTPtr = 3177 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3178 } else { 3179 if (!TM.isPositionIndependent()) 3180 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3181 else if (picLevel == PICLevel::SmallPIC) 3182 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3183 else 3184 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3185 } 3186 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3187 } 3188 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3189 } 3190 3191 if (Model == TLSModel::GeneralDynamic) { 3192 if (Subtarget.isUsingPCRelativeCalls()) { 3193 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3194 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3195 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3196 } 3197 3198 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3199 SDValue GOTPtr; 3200 if (is64bit) { 3201 setUsesTOCBasePtr(DAG); 3202 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3203 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3204 GOTReg, TGA); 3205 } else { 3206 if (picLevel == PICLevel::SmallPIC) 3207 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3208 else 3209 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3210 } 3211 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3212 GOTPtr, TGA, TGA); 3213 } 3214 3215 if (Model == TLSModel::LocalDynamic) { 3216 if (Subtarget.isUsingPCRelativeCalls()) { 3217 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3218 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3219 SDValue MatPCRel = 3220 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3221 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3222 } 3223 3224 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3225 SDValue GOTPtr; 3226 if (is64bit) { 3227 setUsesTOCBasePtr(DAG); 3228 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3229 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3230 GOTReg, TGA); 3231 } else { 3232 if (picLevel == PICLevel::SmallPIC) 3233 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3234 else 3235 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3236 } 3237 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3238 PtrVT, GOTPtr, TGA, TGA); 3239 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3240 PtrVT, TLSAddr, TGA); 3241 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3242 } 3243 3244 llvm_unreachable("Unknown TLS model!"); 3245 } 3246 3247 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3248 SelectionDAG &DAG) const { 3249 EVT PtrVT = Op.getValueType(); 3250 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3251 SDLoc DL(GSDN); 3252 const GlobalValue *GV = GSDN->getGlobal(); 3253 3254 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3255 // The actual address of the GlobalValue is stored in the TOC. 3256 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3257 if (Subtarget.isUsingPCRelativeCalls()) { 3258 EVT Ty = getPointerTy(DAG.getDataLayout()); 3259 if (isAccessedAsGotIndirect(Op)) { 3260 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3261 PPCII::MO_PCREL_FLAG | 3262 PPCII::MO_GOT_FLAG); 3263 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3264 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3265 MachinePointerInfo()); 3266 return Load; 3267 } else { 3268 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3269 PPCII::MO_PCREL_FLAG); 3270 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3271 } 3272 } 3273 setUsesTOCBasePtr(DAG); 3274 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3275 return getTOCEntry(DAG, DL, GA); 3276 } 3277 3278 unsigned MOHiFlag, MOLoFlag; 3279 bool IsPIC = isPositionIndependent(); 3280 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3281 3282 if (IsPIC && Subtarget.isSVR4ABI()) { 3283 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3284 GSDN->getOffset(), 3285 PPCII::MO_PIC_FLAG); 3286 return getTOCEntry(DAG, DL, GA); 3287 } 3288 3289 SDValue GAHi = 3290 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3291 SDValue GALo = 3292 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3293 3294 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3295 } 3296 3297 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3298 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3299 SDLoc dl(Op); 3300 3301 if (Op.getValueType() == MVT::v2i64) { 3302 // When the operands themselves are v2i64 values, we need to do something 3303 // special because VSX has no underlying comparison operations for these. 3304 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3305 // Equality can be handled by casting to the legal type for Altivec 3306 // comparisons, everything else needs to be expanded. 3307 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3308 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3309 DAG.getSetCC(dl, MVT::v4i32, 3310 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3311 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3312 CC)); 3313 } 3314 3315 return SDValue(); 3316 } 3317 3318 // We handle most of these in the usual way. 3319 return Op; 3320 } 3321 3322 // If we're comparing for equality to zero, expose the fact that this is 3323 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3324 // fold the new nodes. 3325 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3326 return V; 3327 3328 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3329 // Leave comparisons against 0 and -1 alone for now, since they're usually 3330 // optimized. FIXME: revisit this when we can custom lower all setcc 3331 // optimizations. 3332 if (C->isAllOnesValue() || C->isNullValue()) 3333 return SDValue(); 3334 } 3335 3336 // If we have an integer seteq/setne, turn it into a compare against zero 3337 // by xor'ing the rhs with the lhs, which is faster than setting a 3338 // condition register, reading it back out, and masking the correct bit. The 3339 // normal approach here uses sub to do this instead of xor. Using xor exposes 3340 // the result to other bit-twiddling opportunities. 3341 EVT LHSVT = Op.getOperand(0).getValueType(); 3342 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3343 EVT VT = Op.getValueType(); 3344 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3345 Op.getOperand(1)); 3346 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3347 } 3348 return SDValue(); 3349 } 3350 3351 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3352 SDNode *Node = Op.getNode(); 3353 EVT VT = Node->getValueType(0); 3354 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3355 SDValue InChain = Node->getOperand(0); 3356 SDValue VAListPtr = Node->getOperand(1); 3357 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3358 SDLoc dl(Node); 3359 3360 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3361 3362 // gpr_index 3363 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3364 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3365 InChain = GprIndex.getValue(1); 3366 3367 if (VT == MVT::i64) { 3368 // Check if GprIndex is even 3369 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3370 DAG.getConstant(1, dl, MVT::i32)); 3371 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3372 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3373 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3374 DAG.getConstant(1, dl, MVT::i32)); 3375 // Align GprIndex to be even if it isn't 3376 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3377 GprIndex); 3378 } 3379 3380 // fpr index is 1 byte after gpr 3381 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3382 DAG.getConstant(1, dl, MVT::i32)); 3383 3384 // fpr 3385 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3386 FprPtr, MachinePointerInfo(SV), MVT::i8); 3387 InChain = FprIndex.getValue(1); 3388 3389 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3390 DAG.getConstant(8, dl, MVT::i32)); 3391 3392 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3393 DAG.getConstant(4, dl, MVT::i32)); 3394 3395 // areas 3396 SDValue OverflowArea = 3397 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3398 InChain = OverflowArea.getValue(1); 3399 3400 SDValue RegSaveArea = 3401 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3402 InChain = RegSaveArea.getValue(1); 3403 3404 // select overflow_area if index > 8 3405 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3406 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3407 3408 // adjustment constant gpr_index * 4/8 3409 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3410 VT.isInteger() ? GprIndex : FprIndex, 3411 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3412 MVT::i32)); 3413 3414 // OurReg = RegSaveArea + RegConstant 3415 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3416 RegConstant); 3417 3418 // Floating types are 32 bytes into RegSaveArea 3419 if (VT.isFloatingPoint()) 3420 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3421 DAG.getConstant(32, dl, MVT::i32)); 3422 3423 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3424 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3425 VT.isInteger() ? GprIndex : FprIndex, 3426 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3427 MVT::i32)); 3428 3429 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3430 VT.isInteger() ? VAListPtr : FprPtr, 3431 MachinePointerInfo(SV), MVT::i8); 3432 3433 // determine if we should load from reg_save_area or overflow_area 3434 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3435 3436 // increase overflow_area by 4/8 if gpr/fpr > 8 3437 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3438 DAG.getConstant(VT.isInteger() ? 4 : 8, 3439 dl, MVT::i32)); 3440 3441 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3442 OverflowAreaPlusN); 3443 3444 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3445 MachinePointerInfo(), MVT::i32); 3446 3447 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3448 } 3449 3450 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3451 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3452 3453 // We have to copy the entire va_list struct: 3454 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3455 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3456 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3457 false, true, false, MachinePointerInfo(), 3458 MachinePointerInfo()); 3459 } 3460 3461 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3462 SelectionDAG &DAG) const { 3463 if (Subtarget.isAIXABI()) 3464 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3465 3466 return Op.getOperand(0); 3467 } 3468 3469 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3470 SelectionDAG &DAG) const { 3471 if (Subtarget.isAIXABI()) 3472 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3473 3474 SDValue Chain = Op.getOperand(0); 3475 SDValue Trmp = Op.getOperand(1); // trampoline 3476 SDValue FPtr = Op.getOperand(2); // nested function 3477 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3478 SDLoc dl(Op); 3479 3480 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3481 bool isPPC64 = (PtrVT == MVT::i64); 3482 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3483 3484 TargetLowering::ArgListTy Args; 3485 TargetLowering::ArgListEntry Entry; 3486 3487 Entry.Ty = IntPtrTy; 3488 Entry.Node = Trmp; Args.push_back(Entry); 3489 3490 // TrampSize == (isPPC64 ? 48 : 40); 3491 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3492 isPPC64 ? MVT::i64 : MVT::i32); 3493 Args.push_back(Entry); 3494 3495 Entry.Node = FPtr; Args.push_back(Entry); 3496 Entry.Node = Nest; Args.push_back(Entry); 3497 3498 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3499 TargetLowering::CallLoweringInfo CLI(DAG); 3500 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3501 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3502 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3503 3504 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3505 return CallResult.second; 3506 } 3507 3508 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3509 MachineFunction &MF = DAG.getMachineFunction(); 3510 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3511 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3512 3513 SDLoc dl(Op); 3514 3515 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3516 // vastart just stores the address of the VarArgsFrameIndex slot into the 3517 // memory location argument. 3518 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3519 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3520 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3521 MachinePointerInfo(SV)); 3522 } 3523 3524 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3525 // We suppose the given va_list is already allocated. 3526 // 3527 // typedef struct { 3528 // char gpr; /* index into the array of 8 GPRs 3529 // * stored in the register save area 3530 // * gpr=0 corresponds to r3, 3531 // * gpr=1 to r4, etc. 3532 // */ 3533 // char fpr; /* index into the array of 8 FPRs 3534 // * stored in the register save area 3535 // * fpr=0 corresponds to f1, 3536 // * fpr=1 to f2, etc. 3537 // */ 3538 // char *overflow_arg_area; 3539 // /* location on stack that holds 3540 // * the next overflow argument 3541 // */ 3542 // char *reg_save_area; 3543 // /* where r3:r10 and f1:f8 (if saved) 3544 // * are stored 3545 // */ 3546 // } va_list[1]; 3547 3548 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3549 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3550 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3551 PtrVT); 3552 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3553 PtrVT); 3554 3555 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3556 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3557 3558 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3559 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3560 3561 uint64_t FPROffset = 1; 3562 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3563 3564 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3565 3566 // Store first byte : number of int regs 3567 SDValue firstStore = 3568 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3569 MachinePointerInfo(SV), MVT::i8); 3570 uint64_t nextOffset = FPROffset; 3571 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3572 ConstFPROffset); 3573 3574 // Store second byte : number of float regs 3575 SDValue secondStore = 3576 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3577 MachinePointerInfo(SV, nextOffset), MVT::i8); 3578 nextOffset += StackOffset; 3579 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3580 3581 // Store second word : arguments given on stack 3582 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3583 MachinePointerInfo(SV, nextOffset)); 3584 nextOffset += FrameOffset; 3585 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3586 3587 // Store third word : arguments given in registers 3588 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3589 MachinePointerInfo(SV, nextOffset)); 3590 } 3591 3592 /// FPR - The set of FP registers that should be allocated for arguments 3593 /// on Darwin and AIX. 3594 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3595 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3596 PPC::F11, PPC::F12, PPC::F13}; 3597 3598 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3599 /// the stack. 3600 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3601 unsigned PtrByteSize) { 3602 unsigned ArgSize = ArgVT.getStoreSize(); 3603 if (Flags.isByVal()) 3604 ArgSize = Flags.getByValSize(); 3605 3606 // Round up to multiples of the pointer size, except for array members, 3607 // which are always packed. 3608 if (!Flags.isInConsecutiveRegs()) 3609 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3610 3611 return ArgSize; 3612 } 3613 3614 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3615 /// on the stack. 3616 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3617 ISD::ArgFlagsTy Flags, 3618 unsigned PtrByteSize) { 3619 Align Alignment(PtrByteSize); 3620 3621 // Altivec parameters are padded to a 16 byte boundary. 3622 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3623 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3624 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3625 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3626 Alignment = Align(16); 3627 3628 // ByVal parameters are aligned as requested. 3629 if (Flags.isByVal()) { 3630 auto BVAlign = Flags.getNonZeroByValAlign(); 3631 if (BVAlign > PtrByteSize) { 3632 if (BVAlign.value() % PtrByteSize != 0) 3633 llvm_unreachable( 3634 "ByVal alignment is not a multiple of the pointer size"); 3635 3636 Alignment = BVAlign; 3637 } 3638 } 3639 3640 // Array members are always packed to their original alignment. 3641 if (Flags.isInConsecutiveRegs()) { 3642 // If the array member was split into multiple registers, the first 3643 // needs to be aligned to the size of the full type. (Except for 3644 // ppcf128, which is only aligned as its f64 components.) 3645 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3646 Alignment = Align(OrigVT.getStoreSize()); 3647 else 3648 Alignment = Align(ArgVT.getStoreSize()); 3649 } 3650 3651 return Alignment; 3652 } 3653 3654 /// CalculateStackSlotUsed - Return whether this argument will use its 3655 /// stack slot (instead of being passed in registers). ArgOffset, 3656 /// AvailableFPRs, and AvailableVRs must hold the current argument 3657 /// position, and will be updated to account for this argument. 3658 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3659 unsigned PtrByteSize, unsigned LinkageSize, 3660 unsigned ParamAreaSize, unsigned &ArgOffset, 3661 unsigned &AvailableFPRs, 3662 unsigned &AvailableVRs) { 3663 bool UseMemory = false; 3664 3665 // Respect alignment of argument on the stack. 3666 Align Alignment = 3667 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3668 ArgOffset = alignTo(ArgOffset, Alignment); 3669 // If there's no space left in the argument save area, we must 3670 // use memory (this check also catches zero-sized arguments). 3671 if (ArgOffset >= LinkageSize + ParamAreaSize) 3672 UseMemory = true; 3673 3674 // Allocate argument on the stack. 3675 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3676 if (Flags.isInConsecutiveRegsLast()) 3677 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3678 // If we overran the argument save area, we must use memory 3679 // (this check catches arguments passed partially in memory) 3680 if (ArgOffset > LinkageSize + ParamAreaSize) 3681 UseMemory = true; 3682 3683 // However, if the argument is actually passed in an FPR or a VR, 3684 // we don't use memory after all. 3685 if (!Flags.isByVal()) { 3686 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3687 if (AvailableFPRs > 0) { 3688 --AvailableFPRs; 3689 return false; 3690 } 3691 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3692 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3693 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3694 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3695 if (AvailableVRs > 0) { 3696 --AvailableVRs; 3697 return false; 3698 } 3699 } 3700 3701 return UseMemory; 3702 } 3703 3704 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3705 /// ensure minimum alignment required for target. 3706 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3707 unsigned NumBytes) { 3708 return alignTo(NumBytes, Lowering->getStackAlign()); 3709 } 3710 3711 SDValue PPCTargetLowering::LowerFormalArguments( 3712 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3713 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3714 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3715 if (Subtarget.isAIXABI()) 3716 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3717 InVals); 3718 if (Subtarget.is64BitELFABI()) 3719 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3720 InVals); 3721 assert(Subtarget.is32BitELFABI()); 3722 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3723 InVals); 3724 } 3725 3726 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3727 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3728 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3729 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3730 3731 // 32-bit SVR4 ABI Stack Frame Layout: 3732 // +-----------------------------------+ 3733 // +--> | Back chain | 3734 // | +-----------------------------------+ 3735 // | | Floating-point register save area | 3736 // | +-----------------------------------+ 3737 // | | General register save area | 3738 // | +-----------------------------------+ 3739 // | | CR save word | 3740 // | +-----------------------------------+ 3741 // | | VRSAVE save word | 3742 // | +-----------------------------------+ 3743 // | | Alignment padding | 3744 // | +-----------------------------------+ 3745 // | | Vector register save area | 3746 // | +-----------------------------------+ 3747 // | | Local variable space | 3748 // | +-----------------------------------+ 3749 // | | Parameter list area | 3750 // | +-----------------------------------+ 3751 // | | LR save word | 3752 // | +-----------------------------------+ 3753 // SP--> +--- | Back chain | 3754 // +-----------------------------------+ 3755 // 3756 // Specifications: 3757 // System V Application Binary Interface PowerPC Processor Supplement 3758 // AltiVec Technology Programming Interface Manual 3759 3760 MachineFunction &MF = DAG.getMachineFunction(); 3761 MachineFrameInfo &MFI = MF.getFrameInfo(); 3762 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3763 3764 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3765 // Potential tail calls could cause overwriting of argument stack slots. 3766 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3767 (CallConv == CallingConv::Fast)); 3768 const Align PtrAlign(4); 3769 3770 // Assign locations to all of the incoming arguments. 3771 SmallVector<CCValAssign, 16> ArgLocs; 3772 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3773 *DAG.getContext()); 3774 3775 // Reserve space for the linkage area on the stack. 3776 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3777 CCInfo.AllocateStack(LinkageSize, PtrAlign); 3778 if (useSoftFloat()) 3779 CCInfo.PreAnalyzeFormalArguments(Ins); 3780 3781 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3782 CCInfo.clearWasPPCF128(); 3783 3784 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3785 CCValAssign &VA = ArgLocs[i]; 3786 3787 // Arguments stored in registers. 3788 if (VA.isRegLoc()) { 3789 const TargetRegisterClass *RC; 3790 EVT ValVT = VA.getValVT(); 3791 3792 switch (ValVT.getSimpleVT().SimpleTy) { 3793 default: 3794 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3795 case MVT::i1: 3796 case MVT::i32: 3797 RC = &PPC::GPRCRegClass; 3798 break; 3799 case MVT::f32: 3800 if (Subtarget.hasP8Vector()) 3801 RC = &PPC::VSSRCRegClass; 3802 else if (Subtarget.hasSPE()) 3803 RC = &PPC::GPRCRegClass; 3804 else 3805 RC = &PPC::F4RCRegClass; 3806 break; 3807 case MVT::f64: 3808 if (Subtarget.hasVSX()) 3809 RC = &PPC::VSFRCRegClass; 3810 else if (Subtarget.hasSPE()) 3811 // SPE passes doubles in GPR pairs. 3812 RC = &PPC::GPRCRegClass; 3813 else 3814 RC = &PPC::F8RCRegClass; 3815 break; 3816 case MVT::v16i8: 3817 case MVT::v8i16: 3818 case MVT::v4i32: 3819 RC = &PPC::VRRCRegClass; 3820 break; 3821 case MVT::v4f32: 3822 RC = &PPC::VRRCRegClass; 3823 break; 3824 case MVT::v2f64: 3825 case MVT::v2i64: 3826 RC = &PPC::VRRCRegClass; 3827 break; 3828 } 3829 3830 SDValue ArgValue; 3831 // Transform the arguments stored in physical registers into 3832 // virtual ones. 3833 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3834 assert(i + 1 < e && "No second half of double precision argument"); 3835 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3836 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3837 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3838 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3839 if (!Subtarget.isLittleEndian()) 3840 std::swap (ArgValueLo, ArgValueHi); 3841 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3842 ArgValueHi); 3843 } else { 3844 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3845 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3846 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3847 if (ValVT == MVT::i1) 3848 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3849 } 3850 3851 InVals.push_back(ArgValue); 3852 } else { 3853 // Argument stored in memory. 3854 assert(VA.isMemLoc()); 3855 3856 // Get the extended size of the argument type in stack 3857 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3858 // Get the actual size of the argument type 3859 unsigned ObjSize = VA.getValVT().getStoreSize(); 3860 unsigned ArgOffset = VA.getLocMemOffset(); 3861 // Stack objects in PPC32 are right justified. 3862 ArgOffset += ArgSize - ObjSize; 3863 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3864 3865 // Create load nodes to retrieve arguments from the stack. 3866 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3867 InVals.push_back( 3868 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3869 } 3870 } 3871 3872 // Assign locations to all of the incoming aggregate by value arguments. 3873 // Aggregates passed by value are stored in the local variable space of the 3874 // caller's stack frame, right above the parameter list area. 3875 SmallVector<CCValAssign, 16> ByValArgLocs; 3876 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3877 ByValArgLocs, *DAG.getContext()); 3878 3879 // Reserve stack space for the allocations in CCInfo. 3880 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 3881 3882 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3883 3884 // Area that is at least reserved in the caller of this function. 3885 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3886 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3887 3888 // Set the size that is at least reserved in caller of this function. Tail 3889 // call optimized function's reserved stack space needs to be aligned so that 3890 // taking the difference between two stack areas will result in an aligned 3891 // stack. 3892 MinReservedArea = 3893 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3894 FuncInfo->setMinReservedArea(MinReservedArea); 3895 3896 SmallVector<SDValue, 8> MemOps; 3897 3898 // If the function takes variable number of arguments, make a frame index for 3899 // the start of the first vararg value... for expansion of llvm.va_start. 3900 if (isVarArg) { 3901 static const MCPhysReg GPArgRegs[] = { 3902 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3903 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3904 }; 3905 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3906 3907 static const MCPhysReg FPArgRegs[] = { 3908 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3909 PPC::F8 3910 }; 3911 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3912 3913 if (useSoftFloat() || hasSPE()) 3914 NumFPArgRegs = 0; 3915 3916 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3917 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3918 3919 // Make room for NumGPArgRegs and NumFPArgRegs. 3920 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3921 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3922 3923 FuncInfo->setVarArgsStackOffset( 3924 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3925 CCInfo.getNextStackOffset(), true)); 3926 3927 FuncInfo->setVarArgsFrameIndex( 3928 MFI.CreateStackObject(Depth, Align(8), false)); 3929 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3930 3931 // The fixed integer arguments of a variadic function are stored to the 3932 // VarArgsFrameIndex on the stack so that they may be loaded by 3933 // dereferencing the result of va_next. 3934 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3935 // Get an existing live-in vreg, or add a new one. 3936 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3937 if (!VReg) 3938 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3939 3940 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3941 SDValue Store = 3942 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3943 MemOps.push_back(Store); 3944 // Increment the address by four for the next argument to store 3945 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3946 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3947 } 3948 3949 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3950 // is set. 3951 // The double arguments are stored to the VarArgsFrameIndex 3952 // on the stack. 3953 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3954 // Get an existing live-in vreg, or add a new one. 3955 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3956 if (!VReg) 3957 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3958 3959 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3960 SDValue Store = 3961 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3962 MemOps.push_back(Store); 3963 // Increment the address by eight for the next argument to store 3964 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3965 PtrVT); 3966 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3967 } 3968 } 3969 3970 if (!MemOps.empty()) 3971 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3972 3973 return Chain; 3974 } 3975 3976 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3977 // value to MVT::i64 and then truncate to the correct register size. 3978 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3979 EVT ObjectVT, SelectionDAG &DAG, 3980 SDValue ArgVal, 3981 const SDLoc &dl) const { 3982 if (Flags.isSExt()) 3983 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3984 DAG.getValueType(ObjectVT)); 3985 else if (Flags.isZExt()) 3986 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3987 DAG.getValueType(ObjectVT)); 3988 3989 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3990 } 3991 3992 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3993 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3994 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3995 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3996 // TODO: add description of PPC stack frame format, or at least some docs. 3997 // 3998 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3999 bool isLittleEndian = Subtarget.isLittleEndian(); 4000 MachineFunction &MF = DAG.getMachineFunction(); 4001 MachineFrameInfo &MFI = MF.getFrameInfo(); 4002 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4003 4004 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4005 "fastcc not supported on varargs functions"); 4006 4007 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4008 // Potential tail calls could cause overwriting of argument stack slots. 4009 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4010 (CallConv == CallingConv::Fast)); 4011 unsigned PtrByteSize = 8; 4012 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4013 4014 static const MCPhysReg GPR[] = { 4015 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4016 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4017 }; 4018 static const MCPhysReg VR[] = { 4019 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4020 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4021 }; 4022 4023 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4024 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4025 const unsigned Num_VR_Regs = array_lengthof(VR); 4026 4027 // Do a first pass over the arguments to determine whether the ABI 4028 // guarantees that our caller has allocated the parameter save area 4029 // on its stack frame. In the ELFv1 ABI, this is always the case; 4030 // in the ELFv2 ABI, it is true if this is a vararg function or if 4031 // any parameter is located in a stack slot. 4032 4033 bool HasParameterArea = !isELFv2ABI || isVarArg; 4034 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4035 unsigned NumBytes = LinkageSize; 4036 unsigned AvailableFPRs = Num_FPR_Regs; 4037 unsigned AvailableVRs = Num_VR_Regs; 4038 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4039 if (Ins[i].Flags.isNest()) 4040 continue; 4041 4042 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4043 PtrByteSize, LinkageSize, ParamAreaSize, 4044 NumBytes, AvailableFPRs, AvailableVRs)) 4045 HasParameterArea = true; 4046 } 4047 4048 // Add DAG nodes to load the arguments or copy them out of registers. On 4049 // entry to a function on PPC, the arguments start after the linkage area, 4050 // although the first ones are often in registers. 4051 4052 unsigned ArgOffset = LinkageSize; 4053 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4054 SmallVector<SDValue, 8> MemOps; 4055 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4056 unsigned CurArgIdx = 0; 4057 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4058 SDValue ArgVal; 4059 bool needsLoad = false; 4060 EVT ObjectVT = Ins[ArgNo].VT; 4061 EVT OrigVT = Ins[ArgNo].ArgVT; 4062 unsigned ObjSize = ObjectVT.getStoreSize(); 4063 unsigned ArgSize = ObjSize; 4064 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4065 if (Ins[ArgNo].isOrigArg()) { 4066 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4067 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4068 } 4069 // We re-align the argument offset for each argument, except when using the 4070 // fast calling convention, when we need to make sure we do that only when 4071 // we'll actually use a stack slot. 4072 unsigned CurArgOffset; 4073 Align Alignment; 4074 auto ComputeArgOffset = [&]() { 4075 /* Respect alignment of argument on the stack. */ 4076 Alignment = 4077 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4078 ArgOffset = alignTo(ArgOffset, Alignment); 4079 CurArgOffset = ArgOffset; 4080 }; 4081 4082 if (CallConv != CallingConv::Fast) { 4083 ComputeArgOffset(); 4084 4085 /* Compute GPR index associated with argument offset. */ 4086 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4087 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4088 } 4089 4090 // FIXME the codegen can be much improved in some cases. 4091 // We do not have to keep everything in memory. 4092 if (Flags.isByVal()) { 4093 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4094 4095 if (CallConv == CallingConv::Fast) 4096 ComputeArgOffset(); 4097 4098 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4099 ObjSize = Flags.getByValSize(); 4100 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4101 // Empty aggregate parameters do not take up registers. Examples: 4102 // struct { } a; 4103 // union { } b; 4104 // int c[0]; 4105 // etc. However, we have to provide a place-holder in InVals, so 4106 // pretend we have an 8-byte item at the current address for that 4107 // purpose. 4108 if (!ObjSize) { 4109 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4110 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4111 InVals.push_back(FIN); 4112 continue; 4113 } 4114 4115 // Create a stack object covering all stack doublewords occupied 4116 // by the argument. If the argument is (fully or partially) on 4117 // the stack, or if the argument is fully in registers but the 4118 // caller has allocated the parameter save anyway, we can refer 4119 // directly to the caller's stack frame. Otherwise, create a 4120 // local copy in our own frame. 4121 int FI; 4122 if (HasParameterArea || 4123 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4124 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4125 else 4126 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4127 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4128 4129 // Handle aggregates smaller than 8 bytes. 4130 if (ObjSize < PtrByteSize) { 4131 // The value of the object is its address, which differs from the 4132 // address of the enclosing doubleword on big-endian systems. 4133 SDValue Arg = FIN; 4134 if (!isLittleEndian) { 4135 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4136 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4137 } 4138 InVals.push_back(Arg); 4139 4140 if (GPR_idx != Num_GPR_Regs) { 4141 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4142 FuncInfo->addLiveInAttr(VReg, Flags); 4143 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4144 SDValue Store; 4145 4146 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4147 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4148 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4149 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4150 MachinePointerInfo(&*FuncArg), ObjType); 4151 } else { 4152 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4153 // store the whole register as-is to the parameter save area 4154 // slot. 4155 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4156 MachinePointerInfo(&*FuncArg)); 4157 } 4158 4159 MemOps.push_back(Store); 4160 } 4161 // Whether we copied from a register or not, advance the offset 4162 // into the parameter save area by a full doubleword. 4163 ArgOffset += PtrByteSize; 4164 continue; 4165 } 4166 4167 // The value of the object is its address, which is the address of 4168 // its first stack doubleword. 4169 InVals.push_back(FIN); 4170 4171 // Store whatever pieces of the object are in registers to memory. 4172 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4173 if (GPR_idx == Num_GPR_Regs) 4174 break; 4175 4176 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4177 FuncInfo->addLiveInAttr(VReg, Flags); 4178 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4179 SDValue Addr = FIN; 4180 if (j) { 4181 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4182 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4183 } 4184 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4185 MachinePointerInfo(&*FuncArg, j)); 4186 MemOps.push_back(Store); 4187 ++GPR_idx; 4188 } 4189 ArgOffset += ArgSize; 4190 continue; 4191 } 4192 4193 switch (ObjectVT.getSimpleVT().SimpleTy) { 4194 default: llvm_unreachable("Unhandled argument type!"); 4195 case MVT::i1: 4196 case MVT::i32: 4197 case MVT::i64: 4198 if (Flags.isNest()) { 4199 // The 'nest' parameter, if any, is passed in R11. 4200 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4201 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4202 4203 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4204 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4205 4206 break; 4207 } 4208 4209 // These can be scalar arguments or elements of an integer array type 4210 // passed directly. Clang may use those instead of "byval" aggregate 4211 // types to avoid forcing arguments to memory unnecessarily. 4212 if (GPR_idx != Num_GPR_Regs) { 4213 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4214 FuncInfo->addLiveInAttr(VReg, Flags); 4215 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4216 4217 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4218 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4219 // value to MVT::i64 and then truncate to the correct register size. 4220 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4221 } else { 4222 if (CallConv == CallingConv::Fast) 4223 ComputeArgOffset(); 4224 4225 needsLoad = true; 4226 ArgSize = PtrByteSize; 4227 } 4228 if (CallConv != CallingConv::Fast || needsLoad) 4229 ArgOffset += 8; 4230 break; 4231 4232 case MVT::f32: 4233 case MVT::f64: 4234 // These can be scalar arguments or elements of a float array type 4235 // passed directly. The latter are used to implement ELFv2 homogenous 4236 // float aggregates. 4237 if (FPR_idx != Num_FPR_Regs) { 4238 unsigned VReg; 4239 4240 if (ObjectVT == MVT::f32) 4241 VReg = MF.addLiveIn(FPR[FPR_idx], 4242 Subtarget.hasP8Vector() 4243 ? &PPC::VSSRCRegClass 4244 : &PPC::F4RCRegClass); 4245 else 4246 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4247 ? &PPC::VSFRCRegClass 4248 : &PPC::F8RCRegClass); 4249 4250 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4251 ++FPR_idx; 4252 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4253 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4254 // once we support fp <-> gpr moves. 4255 4256 // This can only ever happen in the presence of f32 array types, 4257 // since otherwise we never run out of FPRs before running out 4258 // of GPRs. 4259 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4260 FuncInfo->addLiveInAttr(VReg, Flags); 4261 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4262 4263 if (ObjectVT == MVT::f32) { 4264 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4265 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4266 DAG.getConstant(32, dl, MVT::i32)); 4267 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4268 } 4269 4270 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4271 } else { 4272 if (CallConv == CallingConv::Fast) 4273 ComputeArgOffset(); 4274 4275 needsLoad = true; 4276 } 4277 4278 // When passing an array of floats, the array occupies consecutive 4279 // space in the argument area; only round up to the next doubleword 4280 // at the end of the array. Otherwise, each float takes 8 bytes. 4281 if (CallConv != CallingConv::Fast || needsLoad) { 4282 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4283 ArgOffset += ArgSize; 4284 if (Flags.isInConsecutiveRegsLast()) 4285 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4286 } 4287 break; 4288 case MVT::v4f32: 4289 case MVT::v4i32: 4290 case MVT::v8i16: 4291 case MVT::v16i8: 4292 case MVT::v2f64: 4293 case MVT::v2i64: 4294 case MVT::v1i128: 4295 case MVT::f128: 4296 // These can be scalar arguments or elements of a vector array type 4297 // passed directly. The latter are used to implement ELFv2 homogenous 4298 // vector aggregates. 4299 if (VR_idx != Num_VR_Regs) { 4300 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4301 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4302 ++VR_idx; 4303 } else { 4304 if (CallConv == CallingConv::Fast) 4305 ComputeArgOffset(); 4306 needsLoad = true; 4307 } 4308 if (CallConv != CallingConv::Fast || needsLoad) 4309 ArgOffset += 16; 4310 break; 4311 } 4312 4313 // We need to load the argument to a virtual register if we determined 4314 // above that we ran out of physical registers of the appropriate type. 4315 if (needsLoad) { 4316 if (ObjSize < ArgSize && !isLittleEndian) 4317 CurArgOffset += ArgSize - ObjSize; 4318 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4319 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4320 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4321 } 4322 4323 InVals.push_back(ArgVal); 4324 } 4325 4326 // Area that is at least reserved in the caller of this function. 4327 unsigned MinReservedArea; 4328 if (HasParameterArea) 4329 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4330 else 4331 MinReservedArea = LinkageSize; 4332 4333 // Set the size that is at least reserved in caller of this function. Tail 4334 // call optimized functions' reserved stack space needs to be aligned so that 4335 // taking the difference between two stack areas will result in an aligned 4336 // stack. 4337 MinReservedArea = 4338 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4339 FuncInfo->setMinReservedArea(MinReservedArea); 4340 4341 // If the function takes variable number of arguments, make a frame index for 4342 // the start of the first vararg value... for expansion of llvm.va_start. 4343 // On ELFv2ABI spec, it writes: 4344 // C programs that are intended to be *portable* across different compilers 4345 // and architectures must use the header file <stdarg.h> to deal with variable 4346 // argument lists. 4347 if (isVarArg && MFI.hasVAStart()) { 4348 int Depth = ArgOffset; 4349 4350 FuncInfo->setVarArgsFrameIndex( 4351 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4352 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4353 4354 // If this function is vararg, store any remaining integer argument regs 4355 // to their spots on the stack so that they may be loaded by dereferencing 4356 // the result of va_next. 4357 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4358 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4359 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4360 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4361 SDValue Store = 4362 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4363 MemOps.push_back(Store); 4364 // Increment the address by four for the next argument to store 4365 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4366 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4367 } 4368 } 4369 4370 if (!MemOps.empty()) 4371 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4372 4373 return Chain; 4374 } 4375 4376 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4377 /// adjusted to accommodate the arguments for the tailcall. 4378 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4379 unsigned ParamSize) { 4380 4381 if (!isTailCall) return 0; 4382 4383 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4384 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4385 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4386 // Remember only if the new adjustment is bigger. 4387 if (SPDiff < FI->getTailCallSPDelta()) 4388 FI->setTailCallSPDelta(SPDiff); 4389 4390 return SPDiff; 4391 } 4392 4393 static bool isFunctionGlobalAddress(SDValue Callee); 4394 4395 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4396 const TargetMachine &TM) { 4397 // It does not make sense to call callsShareTOCBase() with a caller that 4398 // is PC Relative since PC Relative callers do not have a TOC. 4399 #ifndef NDEBUG 4400 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4401 assert(!STICaller->isUsingPCRelativeCalls() && 4402 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4403 #endif 4404 4405 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4406 // don't have enough information to determine if the caller and callee share 4407 // the same TOC base, so we have to pessimistically assume they don't for 4408 // correctness. 4409 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4410 if (!G) 4411 return false; 4412 4413 const GlobalValue *GV = G->getGlobal(); 4414 4415 // If the callee is preemptable, then the static linker will use a plt-stub 4416 // which saves the toc to the stack, and needs a nop after the call 4417 // instruction to convert to a toc-restore. 4418 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4419 return false; 4420 4421 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4422 // We may need a TOC restore in the situation where the caller requires a 4423 // valid TOC but the callee is PC Relative and does not. 4424 const Function *F = dyn_cast<Function>(GV); 4425 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4426 4427 // If we have an Alias we can try to get the function from there. 4428 if (Alias) { 4429 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4430 F = dyn_cast<Function>(GlobalObj); 4431 } 4432 4433 // If we still have no valid function pointer we do not have enough 4434 // information to determine if the callee uses PC Relative calls so we must 4435 // assume that it does. 4436 if (!F) 4437 return false; 4438 4439 // If the callee uses PC Relative we cannot guarantee that the callee won't 4440 // clobber the TOC of the caller and so we must assume that the two 4441 // functions do not share a TOC base. 4442 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4443 if (STICallee->isUsingPCRelativeCalls()) 4444 return false; 4445 4446 // If the GV is not a strong definition then we need to assume it can be 4447 // replaced by another function at link time. The function that replaces 4448 // it may not share the same TOC as the caller since the callee may be 4449 // replaced by a PC Relative version of the same function. 4450 if (!GV->isStrongDefinitionForLinker()) 4451 return false; 4452 4453 // The medium and large code models are expected to provide a sufficiently 4454 // large TOC to provide all data addressing needs of a module with a 4455 // single TOC. 4456 if (CodeModel::Medium == TM.getCodeModel() || 4457 CodeModel::Large == TM.getCodeModel()) 4458 return true; 4459 4460 // Any explicitly-specified sections and section prefixes must also match. 4461 // Also, if we're using -ffunction-sections, then each function is always in 4462 // a different section (the same is true for COMDAT functions). 4463 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4464 GV->getSection() != Caller->getSection()) 4465 return false; 4466 if (const auto *F = dyn_cast<Function>(GV)) { 4467 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4468 return false; 4469 } 4470 4471 return true; 4472 } 4473 4474 static bool 4475 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4476 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4477 assert(Subtarget.is64BitELFABI()); 4478 4479 const unsigned PtrByteSize = 8; 4480 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4481 4482 static const MCPhysReg GPR[] = { 4483 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4484 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4485 }; 4486 static const MCPhysReg VR[] = { 4487 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4488 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4489 }; 4490 4491 const unsigned NumGPRs = array_lengthof(GPR); 4492 const unsigned NumFPRs = 13; 4493 const unsigned NumVRs = array_lengthof(VR); 4494 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4495 4496 unsigned NumBytes = LinkageSize; 4497 unsigned AvailableFPRs = NumFPRs; 4498 unsigned AvailableVRs = NumVRs; 4499 4500 for (const ISD::OutputArg& Param : Outs) { 4501 if (Param.Flags.isNest()) continue; 4502 4503 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4504 LinkageSize, ParamAreaSize, NumBytes, 4505 AvailableFPRs, AvailableVRs)) 4506 return true; 4507 } 4508 return false; 4509 } 4510 4511 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4512 if (CB.arg_size() != CallerFn->arg_size()) 4513 return false; 4514 4515 auto CalleeArgIter = CB.arg_begin(); 4516 auto CalleeArgEnd = CB.arg_end(); 4517 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4518 4519 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4520 const Value* CalleeArg = *CalleeArgIter; 4521 const Value* CallerArg = &(*CallerArgIter); 4522 if (CalleeArg == CallerArg) 4523 continue; 4524 4525 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4526 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4527 // } 4528 // 1st argument of callee is undef and has the same type as caller. 4529 if (CalleeArg->getType() == CallerArg->getType() && 4530 isa<UndefValue>(CalleeArg)) 4531 continue; 4532 4533 return false; 4534 } 4535 4536 return true; 4537 } 4538 4539 // Returns true if TCO is possible between the callers and callees 4540 // calling conventions. 4541 static bool 4542 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4543 CallingConv::ID CalleeCC) { 4544 // Tail calls are possible with fastcc and ccc. 4545 auto isTailCallableCC = [] (CallingConv::ID CC){ 4546 return CC == CallingConv::C || CC == CallingConv::Fast; 4547 }; 4548 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4549 return false; 4550 4551 // We can safely tail call both fastcc and ccc callees from a c calling 4552 // convention caller. If the caller is fastcc, we may have less stack space 4553 // than a non-fastcc caller with the same signature so disable tail-calls in 4554 // that case. 4555 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4556 } 4557 4558 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4559 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4560 const SmallVectorImpl<ISD::OutputArg> &Outs, 4561 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4562 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4563 4564 if (DisableSCO && !TailCallOpt) return false; 4565 4566 // Variadic argument functions are not supported. 4567 if (isVarArg) return false; 4568 4569 auto &Caller = DAG.getMachineFunction().getFunction(); 4570 // Check that the calling conventions are compatible for tco. 4571 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4572 return false; 4573 4574 // Caller contains any byval parameter is not supported. 4575 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4576 return false; 4577 4578 // Callee contains any byval parameter is not supported, too. 4579 // Note: This is a quick work around, because in some cases, e.g. 4580 // caller's stack size > callee's stack size, we are still able to apply 4581 // sibling call optimization. For example, gcc is able to do SCO for caller1 4582 // in the following example, but not for caller2. 4583 // struct test { 4584 // long int a; 4585 // char ary[56]; 4586 // } gTest; 4587 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4588 // b->a = v.a; 4589 // return 0; 4590 // } 4591 // void caller1(struct test a, struct test c, struct test *b) { 4592 // callee(gTest, b); } 4593 // void caller2(struct test *b) { callee(gTest, b); } 4594 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4595 return false; 4596 4597 // If callee and caller use different calling conventions, we cannot pass 4598 // parameters on stack since offsets for the parameter area may be different. 4599 if (Caller.getCallingConv() != CalleeCC && 4600 needStackSlotPassParameters(Subtarget, Outs)) 4601 return false; 4602 4603 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4604 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4605 // callee potentially have different TOC bases then we cannot tail call since 4606 // we need to restore the TOC pointer after the call. 4607 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4608 // We cannot guarantee this for indirect calls or calls to external functions. 4609 // When PC-Relative addressing is used, the concept of the TOC is no longer 4610 // applicable so this check is not required. 4611 // Check first for indirect calls. 4612 if (!Subtarget.isUsingPCRelativeCalls() && 4613 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4614 return false; 4615 4616 // Check if we share the TOC base. 4617 if (!Subtarget.isUsingPCRelativeCalls() && 4618 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4619 return false; 4620 4621 // TCO allows altering callee ABI, so we don't have to check further. 4622 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4623 return true; 4624 4625 if (DisableSCO) return false; 4626 4627 // If callee use the same argument list that caller is using, then we can 4628 // apply SCO on this case. If it is not, then we need to check if callee needs 4629 // stack for passing arguments. 4630 // PC Relative tail calls may not have a CallBase. 4631 // If there is no CallBase we cannot verify if we have the same argument 4632 // list so assume that we don't have the same argument list. 4633 if (CB && !hasSameArgumentList(&Caller, *CB) && 4634 needStackSlotPassParameters(Subtarget, Outs)) 4635 return false; 4636 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4637 return false; 4638 4639 return true; 4640 } 4641 4642 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4643 /// for tail call optimization. Targets which want to do tail call 4644 /// optimization should implement this function. 4645 bool 4646 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4647 CallingConv::ID CalleeCC, 4648 bool isVarArg, 4649 const SmallVectorImpl<ISD::InputArg> &Ins, 4650 SelectionDAG& DAG) const { 4651 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4652 return false; 4653 4654 // Variable argument functions are not supported. 4655 if (isVarArg) 4656 return false; 4657 4658 MachineFunction &MF = DAG.getMachineFunction(); 4659 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4660 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4661 // Functions containing by val parameters are not supported. 4662 for (unsigned i = 0; i != Ins.size(); i++) { 4663 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4664 if (Flags.isByVal()) return false; 4665 } 4666 4667 // Non-PIC/GOT tail calls are supported. 4668 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4669 return true; 4670 4671 // At the moment we can only do local tail calls (in same module, hidden 4672 // or protected) if we are generating PIC. 4673 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4674 return G->getGlobal()->hasHiddenVisibility() 4675 || G->getGlobal()->hasProtectedVisibility(); 4676 } 4677 4678 return false; 4679 } 4680 4681 /// isCallCompatibleAddress - Return the immediate to use if the specified 4682 /// 32-bit value is representable in the immediate field of a BxA instruction. 4683 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4684 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4685 if (!C) return nullptr; 4686 4687 int Addr = C->getZExtValue(); 4688 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4689 SignExtend32<26>(Addr) != Addr) 4690 return nullptr; // Top 6 bits have to be sext of immediate. 4691 4692 return DAG 4693 .getConstant( 4694 (int)C->getZExtValue() >> 2, SDLoc(Op), 4695 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4696 .getNode(); 4697 } 4698 4699 namespace { 4700 4701 struct TailCallArgumentInfo { 4702 SDValue Arg; 4703 SDValue FrameIdxOp; 4704 int FrameIdx = 0; 4705 4706 TailCallArgumentInfo() = default; 4707 }; 4708 4709 } // end anonymous namespace 4710 4711 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4712 static void StoreTailCallArgumentsToStackSlot( 4713 SelectionDAG &DAG, SDValue Chain, 4714 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4715 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4716 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4717 SDValue Arg = TailCallArgs[i].Arg; 4718 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4719 int FI = TailCallArgs[i].FrameIdx; 4720 // Store relative to framepointer. 4721 MemOpChains.push_back(DAG.getStore( 4722 Chain, dl, Arg, FIN, 4723 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4724 } 4725 } 4726 4727 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4728 /// the appropriate stack slot for the tail call optimized function call. 4729 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4730 SDValue OldRetAddr, SDValue OldFP, 4731 int SPDiff, const SDLoc &dl) { 4732 if (SPDiff) { 4733 // Calculate the new stack slot for the return address. 4734 MachineFunction &MF = DAG.getMachineFunction(); 4735 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4736 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4737 bool isPPC64 = Subtarget.isPPC64(); 4738 int SlotSize = isPPC64 ? 8 : 4; 4739 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4740 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4741 NewRetAddrLoc, true); 4742 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4743 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4744 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4745 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4746 } 4747 return Chain; 4748 } 4749 4750 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4751 /// the position of the argument. 4752 static void 4753 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4754 SDValue Arg, int SPDiff, unsigned ArgOffset, 4755 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4756 int Offset = ArgOffset + SPDiff; 4757 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4758 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4759 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4760 SDValue FIN = DAG.getFrameIndex(FI, VT); 4761 TailCallArgumentInfo Info; 4762 Info.Arg = Arg; 4763 Info.FrameIdxOp = FIN; 4764 Info.FrameIdx = FI; 4765 TailCallArguments.push_back(Info); 4766 } 4767 4768 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4769 /// stack slot. Returns the chain as result and the loaded frame pointers in 4770 /// LROpOut/FPOpout. Used when tail calling. 4771 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4772 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4773 SDValue &FPOpOut, const SDLoc &dl) const { 4774 if (SPDiff) { 4775 // Load the LR and FP stack slot for later adjusting. 4776 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4777 LROpOut = getReturnAddrFrameIndex(DAG); 4778 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4779 Chain = SDValue(LROpOut.getNode(), 1); 4780 } 4781 return Chain; 4782 } 4783 4784 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4785 /// by "Src" to address "Dst" of size "Size". Alignment information is 4786 /// specified by the specific parameter attribute. The copy will be passed as 4787 /// a byval function parameter. 4788 /// Sometimes what we are copying is the end of a larger object, the part that 4789 /// does not fit in registers. 4790 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4791 SDValue Chain, ISD::ArgFlagsTy Flags, 4792 SelectionDAG &DAG, const SDLoc &dl) { 4793 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4794 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 4795 Flags.getNonZeroByValAlign(), false, false, false, 4796 MachinePointerInfo(), MachinePointerInfo()); 4797 } 4798 4799 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4800 /// tail calls. 4801 static void LowerMemOpCallTo( 4802 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4803 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4804 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4805 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4806 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4807 if (!isTailCall) { 4808 if (isVector) { 4809 SDValue StackPtr; 4810 if (isPPC64) 4811 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4812 else 4813 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4814 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4815 DAG.getConstant(ArgOffset, dl, PtrVT)); 4816 } 4817 MemOpChains.push_back( 4818 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4819 // Calculate and remember argument location. 4820 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4821 TailCallArguments); 4822 } 4823 4824 static void 4825 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4826 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4827 SDValue FPOp, 4828 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4829 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4830 // might overwrite each other in case of tail call optimization. 4831 SmallVector<SDValue, 8> MemOpChains2; 4832 // Do not flag preceding copytoreg stuff together with the following stuff. 4833 InFlag = SDValue(); 4834 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4835 MemOpChains2, dl); 4836 if (!MemOpChains2.empty()) 4837 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4838 4839 // Store the return address to the appropriate stack slot. 4840 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4841 4842 // Emit callseq_end just before tailcall node. 4843 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4844 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4845 InFlag = Chain.getValue(1); 4846 } 4847 4848 // Is this global address that of a function that can be called by name? (as 4849 // opposed to something that must hold a descriptor for an indirect call). 4850 static bool isFunctionGlobalAddress(SDValue Callee) { 4851 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4852 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4853 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4854 return false; 4855 4856 return G->getGlobal()->getValueType()->isFunctionTy(); 4857 } 4858 4859 return false; 4860 } 4861 4862 SDValue PPCTargetLowering::LowerCallResult( 4863 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4864 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4865 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4866 SmallVector<CCValAssign, 16> RVLocs; 4867 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4868 *DAG.getContext()); 4869 4870 CCRetInfo.AnalyzeCallResult( 4871 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 4872 ? RetCC_PPC_Cold 4873 : RetCC_PPC); 4874 4875 // Copy all of the result registers out of their specified physreg. 4876 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4877 CCValAssign &VA = RVLocs[i]; 4878 assert(VA.isRegLoc() && "Can only return in registers!"); 4879 4880 SDValue Val; 4881 4882 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 4883 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4884 InFlag); 4885 Chain = Lo.getValue(1); 4886 InFlag = Lo.getValue(2); 4887 VA = RVLocs[++i]; // skip ahead to next loc 4888 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 4889 InFlag); 4890 Chain = Hi.getValue(1); 4891 InFlag = Hi.getValue(2); 4892 if (!Subtarget.isLittleEndian()) 4893 std::swap (Lo, Hi); 4894 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 4895 } else { 4896 Val = DAG.getCopyFromReg(Chain, dl, 4897 VA.getLocReg(), VA.getLocVT(), InFlag); 4898 Chain = Val.getValue(1); 4899 InFlag = Val.getValue(2); 4900 } 4901 4902 switch (VA.getLocInfo()) { 4903 default: llvm_unreachable("Unknown loc info!"); 4904 case CCValAssign::Full: break; 4905 case CCValAssign::AExt: 4906 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4907 break; 4908 case CCValAssign::ZExt: 4909 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4910 DAG.getValueType(VA.getValVT())); 4911 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4912 break; 4913 case CCValAssign::SExt: 4914 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4915 DAG.getValueType(VA.getValVT())); 4916 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4917 break; 4918 } 4919 4920 InVals.push_back(Val); 4921 } 4922 4923 return Chain; 4924 } 4925 4926 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 4927 const PPCSubtarget &Subtarget, bool isPatchPoint) { 4928 // PatchPoint calls are not indirect. 4929 if (isPatchPoint) 4930 return false; 4931 4932 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 4933 return false; 4934 4935 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 4936 // becuase the immediate function pointer points to a descriptor instead of 4937 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 4938 // pointer immediate points to the global entry point, while the BLA would 4939 // need to jump to the local entry point (see rL211174). 4940 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 4941 isBLACompatibleAddress(Callee, DAG)) 4942 return false; 4943 4944 return true; 4945 } 4946 4947 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 4948 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 4949 return Subtarget.isAIXABI() || 4950 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 4951 } 4952 4953 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 4954 const Function &Caller, 4955 const SDValue &Callee, 4956 const PPCSubtarget &Subtarget, 4957 const TargetMachine &TM) { 4958 if (CFlags.IsTailCall) 4959 return PPCISD::TC_RETURN; 4960 4961 // This is a call through a function pointer. 4962 if (CFlags.IsIndirect) { 4963 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 4964 // indirect calls. The save of the caller's TOC pointer to the stack will be 4965 // inserted into the DAG as part of call lowering. The restore of the TOC 4966 // pointer is modeled by using a pseudo instruction for the call opcode that 4967 // represents the 2 instruction sequence of an indirect branch and link, 4968 // immediately followed by a load of the TOC pointer from the the stack save 4969 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 4970 // as it is not saved or used. 4971 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 4972 : PPCISD::BCTRL; 4973 } 4974 4975 if (Subtarget.isUsingPCRelativeCalls()) { 4976 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 4977 return PPCISD::CALL_NOTOC; 4978 } 4979 4980 // The ABIs that maintain a TOC pointer accross calls need to have a nop 4981 // immediately following the call instruction if the caller and callee may 4982 // have different TOC bases. At link time if the linker determines the calls 4983 // may not share a TOC base, the call is redirected to a trampoline inserted 4984 // by the linker. The trampoline will (among other things) save the callers 4985 // TOC pointer at an ABI designated offset in the linkage area and the linker 4986 // will rewrite the nop to be a load of the TOC pointer from the linkage area 4987 // into gpr2. 4988 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 4989 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 4990 : PPCISD::CALL_NOP; 4991 4992 return PPCISD::CALL; 4993 } 4994 4995 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 4996 const SDLoc &dl, const PPCSubtarget &Subtarget) { 4997 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 4998 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 4999 return SDValue(Dest, 0); 5000 5001 // Returns true if the callee is local, and false otherwise. 5002 auto isLocalCallee = [&]() { 5003 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5004 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5005 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5006 5007 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5008 !dyn_cast_or_null<GlobalIFunc>(GV); 5009 }; 5010 5011 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5012 // a static relocation model causes some versions of GNU LD (2.17.50, at 5013 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5014 // built with secure-PLT. 5015 bool UsePlt = 5016 Subtarget.is32BitELFABI() && !isLocalCallee() && 5017 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5018 5019 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5020 const TargetMachine &TM = Subtarget.getTargetMachine(); 5021 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5022 MCSymbolXCOFF *S = 5023 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5024 5025 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5026 return DAG.getMCSymbol(S, PtrVT); 5027 }; 5028 5029 if (isFunctionGlobalAddress(Callee)) { 5030 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5031 5032 if (Subtarget.isAIXABI()) { 5033 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5034 return getAIXFuncEntryPointSymbolSDNode(GV); 5035 } 5036 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5037 UsePlt ? PPCII::MO_PLT : 0); 5038 } 5039 5040 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5041 const char *SymName = S->getSymbol(); 5042 if (Subtarget.isAIXABI()) { 5043 // If there exists a user-declared function whose name is the same as the 5044 // ExternalSymbol's, then we pick up the user-declared version. 5045 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5046 if (const Function *F = 5047 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5048 return getAIXFuncEntryPointSymbolSDNode(F); 5049 5050 // On AIX, direct function calls reference the symbol for the function's 5051 // entry point, which is named by prepending a "." before the function's 5052 // C-linkage name. A Qualname is returned here because an external 5053 // function entry point is a csect with XTY_ER property. 5054 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5055 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5056 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5057 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5058 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5059 return Sec->getQualNameSymbol(); 5060 }; 5061 5062 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5063 } 5064 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5065 UsePlt ? PPCII::MO_PLT : 0); 5066 } 5067 5068 // No transformation needed. 5069 assert(Callee.getNode() && "What no callee?"); 5070 return Callee; 5071 } 5072 5073 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5074 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5075 "Expected a CALLSEQ_STARTSDNode."); 5076 5077 // The last operand is the chain, except when the node has glue. If the node 5078 // has glue, then the last operand is the glue, and the chain is the second 5079 // last operand. 5080 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5081 if (LastValue.getValueType() != MVT::Glue) 5082 return LastValue; 5083 5084 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5085 } 5086 5087 // Creates the node that moves a functions address into the count register 5088 // to prepare for an indirect call instruction. 5089 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5090 SDValue &Glue, SDValue &Chain, 5091 const SDLoc &dl) { 5092 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5093 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5094 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5095 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5096 // The glue is the second value produced. 5097 Glue = Chain.getValue(1); 5098 } 5099 5100 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5101 SDValue &Glue, SDValue &Chain, 5102 SDValue CallSeqStart, 5103 const CallBase *CB, const SDLoc &dl, 5104 bool hasNest, 5105 const PPCSubtarget &Subtarget) { 5106 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5107 // entry point, but to the function descriptor (the function entry point 5108 // address is part of the function descriptor though). 5109 // The function descriptor is a three doubleword structure with the 5110 // following fields: function entry point, TOC base address and 5111 // environment pointer. 5112 // Thus for a call through a function pointer, the following actions need 5113 // to be performed: 5114 // 1. Save the TOC of the caller in the TOC save area of its stack 5115 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5116 // 2. Load the address of the function entry point from the function 5117 // descriptor. 5118 // 3. Load the TOC of the callee from the function descriptor into r2. 5119 // 4. Load the environment pointer from the function descriptor into 5120 // r11. 5121 // 5. Branch to the function entry point address. 5122 // 6. On return of the callee, the TOC of the caller needs to be 5123 // restored (this is done in FinishCall()). 5124 // 5125 // The loads are scheduled at the beginning of the call sequence, and the 5126 // register copies are flagged together to ensure that no other 5127 // operations can be scheduled in between. E.g. without flagging the 5128 // copies together, a TOC access in the caller could be scheduled between 5129 // the assignment of the callee TOC and the branch to the callee, which leads 5130 // to incorrect code. 5131 5132 // Start by loading the function address from the descriptor. 5133 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5134 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5135 ? (MachineMemOperand::MODereferenceable | 5136 MachineMemOperand::MOInvariant) 5137 : MachineMemOperand::MONone; 5138 5139 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5140 5141 // Registers used in building the DAG. 5142 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5143 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5144 5145 // Offsets of descriptor members. 5146 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5147 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5148 5149 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5150 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5151 5152 // One load for the functions entry point address. 5153 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5154 Alignment, MMOFlags); 5155 5156 // One for loading the TOC anchor for the module that contains the called 5157 // function. 5158 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5159 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5160 SDValue TOCPtr = 5161 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5162 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5163 5164 // One for loading the environment pointer. 5165 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5166 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5167 SDValue LoadEnvPtr = 5168 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5169 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5170 5171 5172 // Then copy the newly loaded TOC anchor to the TOC pointer. 5173 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5174 Chain = TOCVal.getValue(0); 5175 Glue = TOCVal.getValue(1); 5176 5177 // If the function call has an explicit 'nest' parameter, it takes the 5178 // place of the environment pointer. 5179 assert((!hasNest || !Subtarget.isAIXABI()) && 5180 "Nest parameter is not supported on AIX."); 5181 if (!hasNest) { 5182 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5183 Chain = EnvVal.getValue(0); 5184 Glue = EnvVal.getValue(1); 5185 } 5186 5187 // The rest of the indirect call sequence is the same as the non-descriptor 5188 // DAG. 5189 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5190 } 5191 5192 static void 5193 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5194 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5195 SelectionDAG &DAG, 5196 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5197 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5198 const PPCSubtarget &Subtarget) { 5199 const bool IsPPC64 = Subtarget.isPPC64(); 5200 // MVT for a general purpose register. 5201 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5202 5203 // First operand is always the chain. 5204 Ops.push_back(Chain); 5205 5206 // If it's a direct call pass the callee as the second operand. 5207 if (!CFlags.IsIndirect) 5208 Ops.push_back(Callee); 5209 else { 5210 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5211 5212 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5213 // on the stack (this would have been done in `LowerCall_64SVR4` or 5214 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5215 // represents both the indirect branch and a load that restores the TOC 5216 // pointer from the linkage area. The operand for the TOC restore is an add 5217 // of the TOC save offset to the stack pointer. This must be the second 5218 // operand: after the chain input but before any other variadic arguments. 5219 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5220 // saved or used. 5221 if (isTOCSaveRestoreRequired(Subtarget)) { 5222 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5223 5224 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5225 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5226 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5227 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5228 Ops.push_back(AddTOC); 5229 } 5230 5231 // Add the register used for the environment pointer. 5232 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5233 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5234 RegVT)); 5235 5236 5237 // Add CTR register as callee so a bctr can be emitted later. 5238 if (CFlags.IsTailCall) 5239 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5240 } 5241 5242 // If this is a tail call add stack pointer delta. 5243 if (CFlags.IsTailCall) 5244 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5245 5246 // Add argument registers to the end of the list so that they are known live 5247 // into the call. 5248 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5249 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5250 RegsToPass[i].second.getValueType())); 5251 5252 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5253 // no way to mark dependencies as implicit here. 5254 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5255 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5256 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5257 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5258 5259 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5260 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5261 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5262 5263 // Add a register mask operand representing the call-preserved registers. 5264 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5265 const uint32_t *Mask = 5266 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5267 assert(Mask && "Missing call preserved mask for calling convention"); 5268 Ops.push_back(DAG.getRegisterMask(Mask)); 5269 5270 // If the glue is valid, it is the last operand. 5271 if (Glue.getNode()) 5272 Ops.push_back(Glue); 5273 } 5274 5275 SDValue PPCTargetLowering::FinishCall( 5276 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5277 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5278 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5279 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5280 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5281 5282 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5283 Subtarget.isAIXABI()) 5284 setUsesTOCBasePtr(DAG); 5285 5286 unsigned CallOpc = 5287 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5288 Subtarget, DAG.getTarget()); 5289 5290 if (!CFlags.IsIndirect) 5291 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5292 else if (Subtarget.usesFunctionDescriptors()) 5293 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5294 dl, CFlags.HasNest, Subtarget); 5295 else 5296 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5297 5298 // Build the operand list for the call instruction. 5299 SmallVector<SDValue, 8> Ops; 5300 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5301 SPDiff, Subtarget); 5302 5303 // Emit tail call. 5304 if (CFlags.IsTailCall) { 5305 // Indirect tail call when using PC Relative calls do not have the same 5306 // constraints. 5307 assert(((Callee.getOpcode() == ISD::Register && 5308 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5309 Callee.getOpcode() == ISD::TargetExternalSymbol || 5310 Callee.getOpcode() == ISD::TargetGlobalAddress || 5311 isa<ConstantSDNode>(Callee) || 5312 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5313 "Expecting a global address, external symbol, absolute value, " 5314 "register or an indirect tail call when PC Relative calls are " 5315 "used."); 5316 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5317 assert(CallOpc == PPCISD::TC_RETURN && 5318 "Unexpected call opcode for a tail call."); 5319 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5320 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5321 } 5322 5323 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5324 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5325 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5326 Glue = Chain.getValue(1); 5327 5328 // When performing tail call optimization the callee pops its arguments off 5329 // the stack. Account for this here so these bytes can be pushed back on in 5330 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5331 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5332 getTargetMachine().Options.GuaranteedTailCallOpt) 5333 ? NumBytes 5334 : 0; 5335 5336 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5337 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5338 Glue, dl); 5339 Glue = Chain.getValue(1); 5340 5341 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5342 DAG, InVals); 5343 } 5344 5345 SDValue 5346 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5347 SmallVectorImpl<SDValue> &InVals) const { 5348 SelectionDAG &DAG = CLI.DAG; 5349 SDLoc &dl = CLI.DL; 5350 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5351 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5352 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5353 SDValue Chain = CLI.Chain; 5354 SDValue Callee = CLI.Callee; 5355 bool &isTailCall = CLI.IsTailCall; 5356 CallingConv::ID CallConv = CLI.CallConv; 5357 bool isVarArg = CLI.IsVarArg; 5358 bool isPatchPoint = CLI.IsPatchPoint; 5359 const CallBase *CB = CLI.CB; 5360 5361 if (isTailCall) { 5362 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5363 isTailCall = false; 5364 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5365 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5366 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5367 else 5368 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5369 Ins, DAG); 5370 if (isTailCall) { 5371 ++NumTailCalls; 5372 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5373 ++NumSiblingCalls; 5374 5375 // PC Relative calls no longer guarantee that the callee is a Global 5376 // Address Node. The callee could be an indirect tail call in which 5377 // case the SDValue for the callee could be a load (to load the address 5378 // of a function pointer) or it may be a register copy (to move the 5379 // address of the callee from a function parameter into a virtual 5380 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5381 assert((Subtarget.isUsingPCRelativeCalls() || 5382 isa<GlobalAddressSDNode>(Callee)) && 5383 "Callee should be an llvm::Function object."); 5384 5385 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5386 << "\nTCO callee: "); 5387 LLVM_DEBUG(Callee.dump()); 5388 } 5389 } 5390 5391 if (!isTailCall && CB && CB->isMustTailCall()) 5392 report_fatal_error("failed to perform tail call elimination on a call " 5393 "site marked musttail"); 5394 5395 // When long calls (i.e. indirect calls) are always used, calls are always 5396 // made via function pointer. If we have a function name, first translate it 5397 // into a pointer. 5398 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5399 !isTailCall) 5400 Callee = LowerGlobalAddress(Callee, DAG); 5401 5402 CallFlags CFlags( 5403 CallConv, isTailCall, isVarArg, isPatchPoint, 5404 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5405 // hasNest 5406 Subtarget.is64BitELFABI() && 5407 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5408 CLI.NoMerge); 5409 5410 if (Subtarget.isAIXABI()) 5411 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5412 InVals, CB); 5413 5414 assert(Subtarget.isSVR4ABI()); 5415 if (Subtarget.isPPC64()) 5416 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5417 InVals, CB); 5418 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5419 InVals, CB); 5420 } 5421 5422 SDValue PPCTargetLowering::LowerCall_32SVR4( 5423 SDValue Chain, SDValue Callee, CallFlags CFlags, 5424 const SmallVectorImpl<ISD::OutputArg> &Outs, 5425 const SmallVectorImpl<SDValue> &OutVals, 5426 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5427 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5428 const CallBase *CB) const { 5429 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5430 // of the 32-bit SVR4 ABI stack frame layout. 5431 5432 const CallingConv::ID CallConv = CFlags.CallConv; 5433 const bool IsVarArg = CFlags.IsVarArg; 5434 const bool IsTailCall = CFlags.IsTailCall; 5435 5436 assert((CallConv == CallingConv::C || 5437 CallConv == CallingConv::Cold || 5438 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5439 5440 const Align PtrAlign(4); 5441 5442 MachineFunction &MF = DAG.getMachineFunction(); 5443 5444 // Mark this function as potentially containing a function that contains a 5445 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5446 // and restoring the callers stack pointer in this functions epilog. This is 5447 // done because by tail calling the called function might overwrite the value 5448 // in this function's (MF) stack pointer stack slot 0(SP). 5449 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5450 CallConv == CallingConv::Fast) 5451 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5452 5453 // Count how many bytes are to be pushed on the stack, including the linkage 5454 // area, parameter list area and the part of the local variable space which 5455 // contains copies of aggregates which are passed by value. 5456 5457 // Assign locations to all of the outgoing arguments. 5458 SmallVector<CCValAssign, 16> ArgLocs; 5459 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5460 5461 // Reserve space for the linkage area on the stack. 5462 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5463 PtrAlign); 5464 if (useSoftFloat()) 5465 CCInfo.PreAnalyzeCallOperands(Outs); 5466 5467 if (IsVarArg) { 5468 // Handle fixed and variable vector arguments differently. 5469 // Fixed vector arguments go into registers as long as registers are 5470 // available. Variable vector arguments always go into memory. 5471 unsigned NumArgs = Outs.size(); 5472 5473 for (unsigned i = 0; i != NumArgs; ++i) { 5474 MVT ArgVT = Outs[i].VT; 5475 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5476 bool Result; 5477 5478 if (Outs[i].IsFixed) { 5479 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5480 CCInfo); 5481 } else { 5482 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5483 ArgFlags, CCInfo); 5484 } 5485 5486 if (Result) { 5487 #ifndef NDEBUG 5488 errs() << "Call operand #" << i << " has unhandled type " 5489 << EVT(ArgVT).getEVTString() << "\n"; 5490 #endif 5491 llvm_unreachable(nullptr); 5492 } 5493 } 5494 } else { 5495 // All arguments are treated the same. 5496 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5497 } 5498 CCInfo.clearWasPPCF128(); 5499 5500 // Assign locations to all of the outgoing aggregate by value arguments. 5501 SmallVector<CCValAssign, 16> ByValArgLocs; 5502 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5503 5504 // Reserve stack space for the allocations in CCInfo. 5505 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5506 5507 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5508 5509 // Size of the linkage area, parameter list area and the part of the local 5510 // space variable where copies of aggregates which are passed by value are 5511 // stored. 5512 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5513 5514 // Calculate by how many bytes the stack has to be adjusted in case of tail 5515 // call optimization. 5516 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5517 5518 // Adjust the stack pointer for the new arguments... 5519 // These operations are automatically eliminated by the prolog/epilog pass 5520 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5521 SDValue CallSeqStart = Chain; 5522 5523 // Load the return address and frame pointer so it can be moved somewhere else 5524 // later. 5525 SDValue LROp, FPOp; 5526 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5527 5528 // Set up a copy of the stack pointer for use loading and storing any 5529 // arguments that may not fit in the registers available for argument 5530 // passing. 5531 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5532 5533 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5534 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5535 SmallVector<SDValue, 8> MemOpChains; 5536 5537 bool seenFloatArg = false; 5538 // Walk the register/memloc assignments, inserting copies/loads. 5539 // i - Tracks the index into the list of registers allocated for the call 5540 // RealArgIdx - Tracks the index into the list of actual function arguments 5541 // j - Tracks the index into the list of byval arguments 5542 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5543 i != e; 5544 ++i, ++RealArgIdx) { 5545 CCValAssign &VA = ArgLocs[i]; 5546 SDValue Arg = OutVals[RealArgIdx]; 5547 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5548 5549 if (Flags.isByVal()) { 5550 // Argument is an aggregate which is passed by value, thus we need to 5551 // create a copy of it in the local variable space of the current stack 5552 // frame (which is the stack frame of the caller) and pass the address of 5553 // this copy to the callee. 5554 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5555 CCValAssign &ByValVA = ByValArgLocs[j++]; 5556 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5557 5558 // Memory reserved in the local variable space of the callers stack frame. 5559 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5560 5561 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5562 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5563 StackPtr, PtrOff); 5564 5565 // Create a copy of the argument in the local area of the current 5566 // stack frame. 5567 SDValue MemcpyCall = 5568 CreateCopyOfByValArgument(Arg, PtrOff, 5569 CallSeqStart.getNode()->getOperand(0), 5570 Flags, DAG, dl); 5571 5572 // This must go outside the CALLSEQ_START..END. 5573 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5574 SDLoc(MemcpyCall)); 5575 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5576 NewCallSeqStart.getNode()); 5577 Chain = CallSeqStart = NewCallSeqStart; 5578 5579 // Pass the address of the aggregate copy on the stack either in a 5580 // physical register or in the parameter list area of the current stack 5581 // frame to the callee. 5582 Arg = PtrOff; 5583 } 5584 5585 // When useCRBits() is true, there can be i1 arguments. 5586 // It is because getRegisterType(MVT::i1) => MVT::i1, 5587 // and for other integer types getRegisterType() => MVT::i32. 5588 // Extend i1 and ensure callee will get i32. 5589 if (Arg.getValueType() == MVT::i1) 5590 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5591 dl, MVT::i32, Arg); 5592 5593 if (VA.isRegLoc()) { 5594 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5595 // Put argument in a physical register. 5596 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5597 bool IsLE = Subtarget.isLittleEndian(); 5598 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5599 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5600 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5601 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5602 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5603 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5604 SVal.getValue(0))); 5605 } else 5606 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5607 } else { 5608 // Put argument in the parameter list area of the current stack frame. 5609 assert(VA.isMemLoc()); 5610 unsigned LocMemOffset = VA.getLocMemOffset(); 5611 5612 if (!IsTailCall) { 5613 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5614 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5615 StackPtr, PtrOff); 5616 5617 MemOpChains.push_back( 5618 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5619 } else { 5620 // Calculate and remember argument location. 5621 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5622 TailCallArguments); 5623 } 5624 } 5625 } 5626 5627 if (!MemOpChains.empty()) 5628 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5629 5630 // Build a sequence of copy-to-reg nodes chained together with token chain 5631 // and flag operands which copy the outgoing args into the appropriate regs. 5632 SDValue InFlag; 5633 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5634 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5635 RegsToPass[i].second, InFlag); 5636 InFlag = Chain.getValue(1); 5637 } 5638 5639 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5640 // registers. 5641 if (IsVarArg) { 5642 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5643 SDValue Ops[] = { Chain, InFlag }; 5644 5645 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5646 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5647 5648 InFlag = Chain.getValue(1); 5649 } 5650 5651 if (IsTailCall) 5652 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5653 TailCallArguments); 5654 5655 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5656 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5657 } 5658 5659 // Copy an argument into memory, being careful to do this outside the 5660 // call sequence for the call to which the argument belongs. 5661 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5662 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5663 SelectionDAG &DAG, const SDLoc &dl) const { 5664 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5665 CallSeqStart.getNode()->getOperand(0), 5666 Flags, DAG, dl); 5667 // The MEMCPY must go outside the CALLSEQ_START..END. 5668 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5669 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5670 SDLoc(MemcpyCall)); 5671 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5672 NewCallSeqStart.getNode()); 5673 return NewCallSeqStart; 5674 } 5675 5676 SDValue PPCTargetLowering::LowerCall_64SVR4( 5677 SDValue Chain, SDValue Callee, CallFlags CFlags, 5678 const SmallVectorImpl<ISD::OutputArg> &Outs, 5679 const SmallVectorImpl<SDValue> &OutVals, 5680 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5681 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5682 const CallBase *CB) const { 5683 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5684 bool isLittleEndian = Subtarget.isLittleEndian(); 5685 unsigned NumOps = Outs.size(); 5686 bool IsSibCall = false; 5687 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5688 5689 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5690 unsigned PtrByteSize = 8; 5691 5692 MachineFunction &MF = DAG.getMachineFunction(); 5693 5694 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5695 IsSibCall = true; 5696 5697 // Mark this function as potentially containing a function that contains a 5698 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5699 // and restoring the callers stack pointer in this functions epilog. This is 5700 // done because by tail calling the called function might overwrite the value 5701 // in this function's (MF) stack pointer stack slot 0(SP). 5702 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5703 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5704 5705 assert(!(IsFastCall && CFlags.IsVarArg) && 5706 "fastcc not supported on varargs functions"); 5707 5708 // Count how many bytes are to be pushed on the stack, including the linkage 5709 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5710 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5711 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5712 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5713 unsigned NumBytes = LinkageSize; 5714 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5715 5716 static const MCPhysReg GPR[] = { 5717 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5718 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5719 }; 5720 static const MCPhysReg VR[] = { 5721 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5722 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5723 }; 5724 5725 const unsigned NumGPRs = array_lengthof(GPR); 5726 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5727 const unsigned NumVRs = array_lengthof(VR); 5728 5729 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5730 // can be passed to the callee in registers. 5731 // For the fast calling convention, there is another check below. 5732 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5733 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5734 if (!HasParameterArea) { 5735 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5736 unsigned AvailableFPRs = NumFPRs; 5737 unsigned AvailableVRs = NumVRs; 5738 unsigned NumBytesTmp = NumBytes; 5739 for (unsigned i = 0; i != NumOps; ++i) { 5740 if (Outs[i].Flags.isNest()) continue; 5741 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5742 PtrByteSize, LinkageSize, ParamAreaSize, 5743 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5744 HasParameterArea = true; 5745 } 5746 } 5747 5748 // When using the fast calling convention, we don't provide backing for 5749 // arguments that will be in registers. 5750 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5751 5752 // Avoid allocating parameter area for fastcc functions if all the arguments 5753 // can be passed in the registers. 5754 if (IsFastCall) 5755 HasParameterArea = false; 5756 5757 // Add up all the space actually used. 5758 for (unsigned i = 0; i != NumOps; ++i) { 5759 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5760 EVT ArgVT = Outs[i].VT; 5761 EVT OrigVT = Outs[i].ArgVT; 5762 5763 if (Flags.isNest()) 5764 continue; 5765 5766 if (IsFastCall) { 5767 if (Flags.isByVal()) { 5768 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5769 if (NumGPRsUsed > NumGPRs) 5770 HasParameterArea = true; 5771 } else { 5772 switch (ArgVT.getSimpleVT().SimpleTy) { 5773 default: llvm_unreachable("Unexpected ValueType for argument!"); 5774 case MVT::i1: 5775 case MVT::i32: 5776 case MVT::i64: 5777 if (++NumGPRsUsed <= NumGPRs) 5778 continue; 5779 break; 5780 case MVT::v4i32: 5781 case MVT::v8i16: 5782 case MVT::v16i8: 5783 case MVT::v2f64: 5784 case MVT::v2i64: 5785 case MVT::v1i128: 5786 case MVT::f128: 5787 if (++NumVRsUsed <= NumVRs) 5788 continue; 5789 break; 5790 case MVT::v4f32: 5791 if (++NumVRsUsed <= NumVRs) 5792 continue; 5793 break; 5794 case MVT::f32: 5795 case MVT::f64: 5796 if (++NumFPRsUsed <= NumFPRs) 5797 continue; 5798 break; 5799 } 5800 HasParameterArea = true; 5801 } 5802 } 5803 5804 /* Respect alignment of argument on the stack. */ 5805 auto Alignement = 5806 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5807 NumBytes = alignTo(NumBytes, Alignement); 5808 5809 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5810 if (Flags.isInConsecutiveRegsLast()) 5811 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5812 } 5813 5814 unsigned NumBytesActuallyUsed = NumBytes; 5815 5816 // In the old ELFv1 ABI, 5817 // the prolog code of the callee may store up to 8 GPR argument registers to 5818 // the stack, allowing va_start to index over them in memory if its varargs. 5819 // Because we cannot tell if this is needed on the caller side, we have to 5820 // conservatively assume that it is needed. As such, make sure we have at 5821 // least enough stack space for the caller to store the 8 GPRs. 5822 // In the ELFv2 ABI, we allocate the parameter area iff a callee 5823 // really requires memory operands, e.g. a vararg function. 5824 if (HasParameterArea) 5825 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5826 else 5827 NumBytes = LinkageSize; 5828 5829 // Tail call needs the stack to be aligned. 5830 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5831 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5832 5833 int SPDiff = 0; 5834 5835 // Calculate by how many bytes the stack has to be adjusted in case of tail 5836 // call optimization. 5837 if (!IsSibCall) 5838 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 5839 5840 // To protect arguments on the stack from being clobbered in a tail call, 5841 // force all the loads to happen before doing any other lowering. 5842 if (CFlags.IsTailCall) 5843 Chain = DAG.getStackArgumentTokenFactor(Chain); 5844 5845 // Adjust the stack pointer for the new arguments... 5846 // These operations are automatically eliminated by the prolog/epilog pass 5847 if (!IsSibCall) 5848 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5849 SDValue CallSeqStart = Chain; 5850 5851 // Load the return address and frame pointer so it can be move somewhere else 5852 // later. 5853 SDValue LROp, FPOp; 5854 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5855 5856 // Set up a copy of the stack pointer for use loading and storing any 5857 // arguments that may not fit in the registers available for argument 5858 // passing. 5859 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5860 5861 // Figure out which arguments are going to go in registers, and which in 5862 // memory. Also, if this is a vararg function, floating point operations 5863 // must be stored to our stack, and loaded into integer regs as well, if 5864 // any integer regs are available for argument passing. 5865 unsigned ArgOffset = LinkageSize; 5866 5867 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5868 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5869 5870 SmallVector<SDValue, 8> MemOpChains; 5871 for (unsigned i = 0; i != NumOps; ++i) { 5872 SDValue Arg = OutVals[i]; 5873 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5874 EVT ArgVT = Outs[i].VT; 5875 EVT OrigVT = Outs[i].ArgVT; 5876 5877 // PtrOff will be used to store the current argument to the stack if a 5878 // register cannot be found for it. 5879 SDValue PtrOff; 5880 5881 // We re-align the argument offset for each argument, except when using the 5882 // fast calling convention, when we need to make sure we do that only when 5883 // we'll actually use a stack slot. 5884 auto ComputePtrOff = [&]() { 5885 /* Respect alignment of argument on the stack. */ 5886 auto Alignment = 5887 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5888 ArgOffset = alignTo(ArgOffset, Alignment); 5889 5890 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5891 5892 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5893 }; 5894 5895 if (!IsFastCall) { 5896 ComputePtrOff(); 5897 5898 /* Compute GPR index associated with argument offset. */ 5899 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5900 GPR_idx = std::min(GPR_idx, NumGPRs); 5901 } 5902 5903 // Promote integers to 64-bit values. 5904 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5905 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5906 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5907 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5908 } 5909 5910 // FIXME memcpy is used way more than necessary. Correctness first. 5911 // Note: "by value" is code for passing a structure by value, not 5912 // basic types. 5913 if (Flags.isByVal()) { 5914 // Note: Size includes alignment padding, so 5915 // struct x { short a; char b; } 5916 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5917 // These are the proper values we need for right-justifying the 5918 // aggregate in a parameter register. 5919 unsigned Size = Flags.getByValSize(); 5920 5921 // An empty aggregate parameter takes up no storage and no 5922 // registers. 5923 if (Size == 0) 5924 continue; 5925 5926 if (IsFastCall) 5927 ComputePtrOff(); 5928 5929 // All aggregates smaller than 8 bytes must be passed right-justified. 5930 if (Size==1 || Size==2 || Size==4) { 5931 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5932 if (GPR_idx != NumGPRs) { 5933 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5934 MachinePointerInfo(), VT); 5935 MemOpChains.push_back(Load.getValue(1)); 5936 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5937 5938 ArgOffset += PtrByteSize; 5939 continue; 5940 } 5941 } 5942 5943 if (GPR_idx == NumGPRs && Size < 8) { 5944 SDValue AddPtr = PtrOff; 5945 if (!isLittleEndian) { 5946 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5947 PtrOff.getValueType()); 5948 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5949 } 5950 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5951 CallSeqStart, 5952 Flags, DAG, dl); 5953 ArgOffset += PtrByteSize; 5954 continue; 5955 } 5956 // Copy entire object into memory. There are cases where gcc-generated 5957 // code assumes it is there, even if it could be put entirely into 5958 // registers. (This is not what the doc says.) 5959 5960 // FIXME: The above statement is likely due to a misunderstanding of the 5961 // documents. All arguments must be copied into the parameter area BY 5962 // THE CALLEE in the event that the callee takes the address of any 5963 // formal argument. That has not yet been implemented. However, it is 5964 // reasonable to use the stack area as a staging area for the register 5965 // load. 5966 5967 // Skip this for small aggregates, as we will use the same slot for a 5968 // right-justified copy, below. 5969 if (Size >= 8) 5970 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5971 CallSeqStart, 5972 Flags, DAG, dl); 5973 5974 // When a register is available, pass a small aggregate right-justified. 5975 if (Size < 8 && GPR_idx != NumGPRs) { 5976 // The easiest way to get this right-justified in a register 5977 // is to copy the structure into the rightmost portion of a 5978 // local variable slot, then load the whole slot into the 5979 // register. 5980 // FIXME: The memcpy seems to produce pretty awful code for 5981 // small aggregates, particularly for packed ones. 5982 // FIXME: It would be preferable to use the slot in the 5983 // parameter save area instead of a new local variable. 5984 SDValue AddPtr = PtrOff; 5985 if (!isLittleEndian) { 5986 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5987 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5988 } 5989 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5990 CallSeqStart, 5991 Flags, DAG, dl); 5992 5993 // Load the slot into the register. 5994 SDValue Load = 5995 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 5996 MemOpChains.push_back(Load.getValue(1)); 5997 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5998 5999 // Done with this argument. 6000 ArgOffset += PtrByteSize; 6001 continue; 6002 } 6003 6004 // For aggregates larger than PtrByteSize, copy the pieces of the 6005 // object that fit into registers from the parameter save area. 6006 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6007 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6008 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6009 if (GPR_idx != NumGPRs) { 6010 SDValue Load = 6011 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6012 MemOpChains.push_back(Load.getValue(1)); 6013 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6014 ArgOffset += PtrByteSize; 6015 } else { 6016 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6017 break; 6018 } 6019 } 6020 continue; 6021 } 6022 6023 switch (Arg.getSimpleValueType().SimpleTy) { 6024 default: llvm_unreachable("Unexpected ValueType for argument!"); 6025 case MVT::i1: 6026 case MVT::i32: 6027 case MVT::i64: 6028 if (Flags.isNest()) { 6029 // The 'nest' parameter, if any, is passed in R11. 6030 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6031 break; 6032 } 6033 6034 // These can be scalar arguments or elements of an integer array type 6035 // passed directly. Clang may use those instead of "byval" aggregate 6036 // types to avoid forcing arguments to memory unnecessarily. 6037 if (GPR_idx != NumGPRs) { 6038 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6039 } else { 6040 if (IsFastCall) 6041 ComputePtrOff(); 6042 6043 assert(HasParameterArea && 6044 "Parameter area must exist to pass an argument in memory."); 6045 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6046 true, CFlags.IsTailCall, false, MemOpChains, 6047 TailCallArguments, dl); 6048 if (IsFastCall) 6049 ArgOffset += PtrByteSize; 6050 } 6051 if (!IsFastCall) 6052 ArgOffset += PtrByteSize; 6053 break; 6054 case MVT::f32: 6055 case MVT::f64: { 6056 // These can be scalar arguments or elements of a float array type 6057 // passed directly. The latter are used to implement ELFv2 homogenous 6058 // float aggregates. 6059 6060 // Named arguments go into FPRs first, and once they overflow, the 6061 // remaining arguments go into GPRs and then the parameter save area. 6062 // Unnamed arguments for vararg functions always go to GPRs and 6063 // then the parameter save area. For now, put all arguments to vararg 6064 // routines always in both locations (FPR *and* GPR or stack slot). 6065 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6066 bool NeededLoad = false; 6067 6068 // First load the argument into the next available FPR. 6069 if (FPR_idx != NumFPRs) 6070 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6071 6072 // Next, load the argument into GPR or stack slot if needed. 6073 if (!NeedGPROrStack) 6074 ; 6075 else if (GPR_idx != NumGPRs && !IsFastCall) { 6076 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6077 // once we support fp <-> gpr moves. 6078 6079 // In the non-vararg case, this can only ever happen in the 6080 // presence of f32 array types, since otherwise we never run 6081 // out of FPRs before running out of GPRs. 6082 SDValue ArgVal; 6083 6084 // Double values are always passed in a single GPR. 6085 if (Arg.getValueType() != MVT::f32) { 6086 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6087 6088 // Non-array float values are extended and passed in a GPR. 6089 } else if (!Flags.isInConsecutiveRegs()) { 6090 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6091 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6092 6093 // If we have an array of floats, we collect every odd element 6094 // together with its predecessor into one GPR. 6095 } else if (ArgOffset % PtrByteSize != 0) { 6096 SDValue Lo, Hi; 6097 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6098 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6099 if (!isLittleEndian) 6100 std::swap(Lo, Hi); 6101 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6102 6103 // The final element, if even, goes into the first half of a GPR. 6104 } else if (Flags.isInConsecutiveRegsLast()) { 6105 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6106 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6107 if (!isLittleEndian) 6108 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6109 DAG.getConstant(32, dl, MVT::i32)); 6110 6111 // Non-final even elements are skipped; they will be handled 6112 // together the with subsequent argument on the next go-around. 6113 } else 6114 ArgVal = SDValue(); 6115 6116 if (ArgVal.getNode()) 6117 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6118 } else { 6119 if (IsFastCall) 6120 ComputePtrOff(); 6121 6122 // Single-precision floating-point values are mapped to the 6123 // second (rightmost) word of the stack doubleword. 6124 if (Arg.getValueType() == MVT::f32 && 6125 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6126 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6127 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6128 } 6129 6130 assert(HasParameterArea && 6131 "Parameter area must exist to pass an argument in memory."); 6132 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6133 true, CFlags.IsTailCall, false, MemOpChains, 6134 TailCallArguments, dl); 6135 6136 NeededLoad = true; 6137 } 6138 // When passing an array of floats, the array occupies consecutive 6139 // space in the argument area; only round up to the next doubleword 6140 // at the end of the array. Otherwise, each float takes 8 bytes. 6141 if (!IsFastCall || NeededLoad) { 6142 ArgOffset += (Arg.getValueType() == MVT::f32 && 6143 Flags.isInConsecutiveRegs()) ? 4 : 8; 6144 if (Flags.isInConsecutiveRegsLast()) 6145 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6146 } 6147 break; 6148 } 6149 case MVT::v4f32: 6150 case MVT::v4i32: 6151 case MVT::v8i16: 6152 case MVT::v16i8: 6153 case MVT::v2f64: 6154 case MVT::v2i64: 6155 case MVT::v1i128: 6156 case MVT::f128: 6157 // These can be scalar arguments or elements of a vector array type 6158 // passed directly. The latter are used to implement ELFv2 homogenous 6159 // vector aggregates. 6160 6161 // For a varargs call, named arguments go into VRs or on the stack as 6162 // usual; unnamed arguments always go to the stack or the corresponding 6163 // GPRs when within range. For now, we always put the value in both 6164 // locations (or even all three). 6165 if (CFlags.IsVarArg) { 6166 assert(HasParameterArea && 6167 "Parameter area must exist if we have a varargs call."); 6168 // We could elide this store in the case where the object fits 6169 // entirely in R registers. Maybe later. 6170 SDValue Store = 6171 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6172 MemOpChains.push_back(Store); 6173 if (VR_idx != NumVRs) { 6174 SDValue Load = 6175 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6176 MemOpChains.push_back(Load.getValue(1)); 6177 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6178 } 6179 ArgOffset += 16; 6180 for (unsigned i=0; i<16; i+=PtrByteSize) { 6181 if (GPR_idx == NumGPRs) 6182 break; 6183 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6184 DAG.getConstant(i, dl, PtrVT)); 6185 SDValue Load = 6186 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6187 MemOpChains.push_back(Load.getValue(1)); 6188 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6189 } 6190 break; 6191 } 6192 6193 // Non-varargs Altivec params go into VRs or on the stack. 6194 if (VR_idx != NumVRs) { 6195 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6196 } else { 6197 if (IsFastCall) 6198 ComputePtrOff(); 6199 6200 assert(HasParameterArea && 6201 "Parameter area must exist to pass an argument in memory."); 6202 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6203 true, CFlags.IsTailCall, true, MemOpChains, 6204 TailCallArguments, dl); 6205 if (IsFastCall) 6206 ArgOffset += 16; 6207 } 6208 6209 if (!IsFastCall) 6210 ArgOffset += 16; 6211 break; 6212 } 6213 } 6214 6215 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6216 "mismatch in size of parameter area"); 6217 (void)NumBytesActuallyUsed; 6218 6219 if (!MemOpChains.empty()) 6220 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6221 6222 // Check if this is an indirect call (MTCTR/BCTRL). 6223 // See prepareDescriptorIndirectCall and buildCallOperands for more 6224 // information about calls through function pointers in the 64-bit SVR4 ABI. 6225 if (CFlags.IsIndirect) { 6226 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6227 // caller in the TOC save area. 6228 if (isTOCSaveRestoreRequired(Subtarget)) { 6229 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6230 // Load r2 into a virtual register and store it to the TOC save area. 6231 setUsesTOCBasePtr(DAG); 6232 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6233 // TOC save area offset. 6234 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6235 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6236 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6237 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6238 MachinePointerInfo::getStack( 6239 DAG.getMachineFunction(), TOCSaveOffset)); 6240 } 6241 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6242 // This does not mean the MTCTR instruction must use R12; it's easier 6243 // to model this as an extra parameter, so do that. 6244 if (isELFv2ABI && !CFlags.IsPatchPoint) 6245 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6246 } 6247 6248 // Build a sequence of copy-to-reg nodes chained together with token chain 6249 // and flag operands which copy the outgoing args into the appropriate regs. 6250 SDValue InFlag; 6251 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6252 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6253 RegsToPass[i].second, InFlag); 6254 InFlag = Chain.getValue(1); 6255 } 6256 6257 if (CFlags.IsTailCall && !IsSibCall) 6258 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6259 TailCallArguments); 6260 6261 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6262 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6263 } 6264 6265 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6266 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6267 CCState &State) { 6268 6269 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6270 State.getMachineFunction().getSubtarget()); 6271 const bool IsPPC64 = Subtarget.isPPC64(); 6272 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6273 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6274 6275 if (ValVT.isVector() && !State.getMachineFunction() 6276 .getTarget() 6277 .Options.EnableAIXExtendedAltivecABI) 6278 report_fatal_error("the default Altivec AIX ABI is not yet supported"); 6279 6280 if (ValVT == MVT::f128) 6281 report_fatal_error("f128 is unimplemented on AIX."); 6282 6283 if (ArgFlags.isNest()) 6284 report_fatal_error("Nest arguments are unimplemented."); 6285 6286 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6287 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6288 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6289 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6290 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6291 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6292 6293 static const MCPhysReg VR[] = {// Vector registers. 6294 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6295 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6296 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6297 6298 if (ArgFlags.isByVal()) { 6299 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6300 report_fatal_error("Pass-by-value arguments with alignment greater than " 6301 "register width are not supported."); 6302 6303 const unsigned ByValSize = ArgFlags.getByValSize(); 6304 6305 // An empty aggregate parameter takes up no storage and no registers, 6306 // but needs a MemLoc for a stack slot for the formal arguments side. 6307 if (ByValSize == 0) { 6308 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6309 State.getNextStackOffset(), RegVT, 6310 LocInfo)); 6311 return false; 6312 } 6313 6314 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6315 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6316 for (const unsigned E = Offset + StackSize; Offset < E; 6317 Offset += PtrAlign.value()) { 6318 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6319 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6320 else { 6321 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6322 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6323 LocInfo)); 6324 break; 6325 } 6326 } 6327 return false; 6328 } 6329 6330 // Arguments always reserve parameter save area. 6331 switch (ValVT.SimpleTy) { 6332 default: 6333 report_fatal_error("Unhandled value type for argument."); 6334 case MVT::i64: 6335 // i64 arguments should have been split to i32 for PPC32. 6336 assert(IsPPC64 && "PPC32 should have split i64 values."); 6337 LLVM_FALLTHROUGH; 6338 case MVT::i1: 6339 case MVT::i32: { 6340 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6341 // AIX integer arguments are always passed in register width. 6342 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6343 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6344 : CCValAssign::LocInfo::ZExt; 6345 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6346 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6347 else 6348 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6349 6350 return false; 6351 } 6352 case MVT::f32: 6353 case MVT::f64: { 6354 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6355 const unsigned StoreSize = LocVT.getStoreSize(); 6356 // Floats are always 4-byte aligned in the PSA on AIX. 6357 // This includes f64 in 64-bit mode for ABI compatibility. 6358 const unsigned Offset = 6359 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6360 unsigned FReg = State.AllocateReg(FPR); 6361 if (FReg) 6362 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6363 6364 // Reserve and initialize GPRs or initialize the PSA as required. 6365 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6366 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6367 assert(FReg && "An FPR should be available when a GPR is reserved."); 6368 if (State.isVarArg()) { 6369 // Successfully reserved GPRs are only initialized for vararg calls. 6370 // Custom handling is required for: 6371 // f64 in PPC32 needs to be split into 2 GPRs. 6372 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6373 State.addLoc( 6374 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6375 } 6376 } else { 6377 // If there are insufficient GPRs, the PSA needs to be initialized. 6378 // Initialization occurs even if an FPR was initialized for 6379 // compatibility with the AIX XL compiler. The full memory for the 6380 // argument will be initialized even if a prior word is saved in GPR. 6381 // A custom memLoc is used when the argument also passes in FPR so 6382 // that the callee handling can skip over it easily. 6383 State.addLoc( 6384 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6385 LocInfo) 6386 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6387 break; 6388 } 6389 } 6390 6391 return false; 6392 } 6393 case MVT::v4f32: 6394 case MVT::v4i32: 6395 case MVT::v8i16: 6396 case MVT::v16i8: 6397 case MVT::v2i64: 6398 case MVT::v2f64: 6399 case MVT::v1i128: { 6400 if (State.isVarArg()) 6401 report_fatal_error( 6402 "variadic arguments for vector types are unimplemented for AIX"); 6403 6404 if (unsigned VReg = State.AllocateReg(VR)) { 6405 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6406 return false; 6407 } 6408 6409 const unsigned VecSize = 16; 6410 const unsigned Offset = State.AllocateStack(VecSize, Align(VecSize)); 6411 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6412 return false; 6413 } 6414 } 6415 return true; 6416 } 6417 6418 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6419 bool IsPPC64) { 6420 assert((IsPPC64 || SVT != MVT::i64) && 6421 "i64 should have been split for 32-bit codegen."); 6422 6423 switch (SVT) { 6424 default: 6425 report_fatal_error("Unexpected value type for formal argument"); 6426 case MVT::i1: 6427 case MVT::i32: 6428 case MVT::i64: 6429 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6430 case MVT::f32: 6431 return &PPC::F4RCRegClass; 6432 case MVT::f64: 6433 return &PPC::F8RCRegClass; 6434 case MVT::v4f32: 6435 case MVT::v4i32: 6436 case MVT::v8i16: 6437 case MVT::v16i8: 6438 case MVT::v2i64: 6439 case MVT::v2f64: 6440 case MVT::v1i128: 6441 return &PPC::VRRCRegClass; 6442 } 6443 } 6444 6445 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6446 SelectionDAG &DAG, SDValue ArgValue, 6447 MVT LocVT, const SDLoc &dl) { 6448 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6449 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6450 6451 if (Flags.isSExt()) 6452 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6453 DAG.getValueType(ValVT)); 6454 else if (Flags.isZExt()) 6455 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6456 DAG.getValueType(ValVT)); 6457 6458 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6459 } 6460 6461 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6462 const unsigned LASize = FL->getLinkageSize(); 6463 6464 if (PPC::GPRCRegClass.contains(Reg)) { 6465 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6466 "Reg must be a valid argument register!"); 6467 return LASize + 4 * (Reg - PPC::R3); 6468 } 6469 6470 if (PPC::G8RCRegClass.contains(Reg)) { 6471 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6472 "Reg must be a valid argument register!"); 6473 return LASize + 8 * (Reg - PPC::X3); 6474 } 6475 6476 llvm_unreachable("Only general purpose registers expected."); 6477 } 6478 6479 // AIX ABI Stack Frame Layout: 6480 // 6481 // Low Memory +--------------------------------------------+ 6482 // SP +---> | Back chain | ---+ 6483 // | +--------------------------------------------+ | 6484 // | | Saved Condition Register | | 6485 // | +--------------------------------------------+ | 6486 // | | Saved Linkage Register | | 6487 // | +--------------------------------------------+ | Linkage Area 6488 // | | Reserved for compilers | | 6489 // | +--------------------------------------------+ | 6490 // | | Reserved for binders | | 6491 // | +--------------------------------------------+ | 6492 // | | Saved TOC pointer | ---+ 6493 // | +--------------------------------------------+ 6494 // | | Parameter save area | 6495 // | +--------------------------------------------+ 6496 // | | Alloca space | 6497 // | +--------------------------------------------+ 6498 // | | Local variable space | 6499 // | +--------------------------------------------+ 6500 // | | Float/int conversion temporary | 6501 // | +--------------------------------------------+ 6502 // | | Save area for AltiVec registers | 6503 // | +--------------------------------------------+ 6504 // | | AltiVec alignment padding | 6505 // | +--------------------------------------------+ 6506 // | | Save area for VRSAVE register | 6507 // | +--------------------------------------------+ 6508 // | | Save area for General Purpose registers | 6509 // | +--------------------------------------------+ 6510 // | | Save area for Floating Point registers | 6511 // | +--------------------------------------------+ 6512 // +---- | Back chain | 6513 // High Memory +--------------------------------------------+ 6514 // 6515 // Specifications: 6516 // AIX 7.2 Assembler Language Reference 6517 // Subroutine linkage convention 6518 6519 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6520 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6521 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6522 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6523 6524 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6525 CallConv == CallingConv::Fast) && 6526 "Unexpected calling convention!"); 6527 6528 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6529 report_fatal_error("Tail call support is unimplemented on AIX."); 6530 6531 if (useSoftFloat()) 6532 report_fatal_error("Soft float support is unimplemented on AIX."); 6533 6534 const PPCSubtarget &Subtarget = 6535 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6536 6537 const bool IsPPC64 = Subtarget.isPPC64(); 6538 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6539 6540 // Assign locations to all of the incoming arguments. 6541 SmallVector<CCValAssign, 16> ArgLocs; 6542 MachineFunction &MF = DAG.getMachineFunction(); 6543 MachineFrameInfo &MFI = MF.getFrameInfo(); 6544 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6545 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6546 6547 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6548 // Reserve space for the linkage area on the stack. 6549 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6550 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6551 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6552 6553 SmallVector<SDValue, 8> MemOps; 6554 6555 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6556 CCValAssign &VA = ArgLocs[I++]; 6557 MVT LocVT = VA.getLocVT(); 6558 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6559 // For compatibility with the AIX XL compiler, the float args in the 6560 // parameter save area are initialized even if the argument is available 6561 // in register. The caller is required to initialize both the register 6562 // and memory, however, the callee can choose to expect it in either. 6563 // The memloc is dismissed here because the argument is retrieved from 6564 // the register. 6565 if (VA.isMemLoc() && VA.needsCustom()) 6566 continue; 6567 6568 if (VA.isRegLoc()) { 6569 if (VA.getValVT().isScalarInteger()) 6570 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6571 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) 6572 FuncInfo->appendParameterType(VA.getValVT().SimpleTy == MVT::f32 6573 ? PPCFunctionInfo::ShortFloatPoint 6574 : PPCFunctionInfo::LongFloatPoint); 6575 } 6576 6577 if (Flags.isByVal() && VA.isMemLoc()) { 6578 const unsigned Size = 6579 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 6580 PtrByteSize); 6581 const int FI = MF.getFrameInfo().CreateFixedObject( 6582 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 6583 /* IsAliased */ true); 6584 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6585 InVals.push_back(FIN); 6586 6587 continue; 6588 } 6589 6590 if (Flags.isByVal()) { 6591 assert(VA.isRegLoc() && "MemLocs should already be handled."); 6592 6593 const MCPhysReg ArgReg = VA.getLocReg(); 6594 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 6595 6596 if (Flags.getNonZeroByValAlign() > PtrByteSize) 6597 report_fatal_error("Over aligned byvals not supported yet."); 6598 6599 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 6600 const int FI = MF.getFrameInfo().CreateFixedObject( 6601 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 6602 /* IsAliased */ true); 6603 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6604 InVals.push_back(FIN); 6605 6606 // Add live ins for all the RegLocs for the same ByVal. 6607 const TargetRegisterClass *RegClass = 6608 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6609 6610 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 6611 unsigned Offset) { 6612 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 6613 // Since the callers side has left justified the aggregate in the 6614 // register, we can simply store the entire register into the stack 6615 // slot. 6616 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6617 // The store to the fixedstack object is needed becuase accessing a 6618 // field of the ByVal will use a gep and load. Ideally we will optimize 6619 // to extracting the value from the register directly, and elide the 6620 // stores when the arguments address is not taken, but that will need to 6621 // be future work. 6622 SDValue Store = DAG.getStore( 6623 CopyFrom.getValue(1), dl, CopyFrom, 6624 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 6625 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 6626 6627 MemOps.push_back(Store); 6628 }; 6629 6630 unsigned Offset = 0; 6631 HandleRegLoc(VA.getLocReg(), Offset); 6632 Offset += PtrByteSize; 6633 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 6634 Offset += PtrByteSize) { 6635 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6636 "RegLocs should be for ByVal argument."); 6637 6638 const CCValAssign RL = ArgLocs[I++]; 6639 HandleRegLoc(RL.getLocReg(), Offset); 6640 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6641 } 6642 6643 if (Offset != StackSize) { 6644 assert(ArgLocs[I].getValNo() == VA.getValNo() && 6645 "Expected MemLoc for remaining bytes."); 6646 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 6647 // Consume the MemLoc.The InVal has already been emitted, so nothing 6648 // more needs to be done. 6649 ++I; 6650 } 6651 6652 continue; 6653 } 6654 6655 EVT ValVT = VA.getValVT(); 6656 if (VA.isRegLoc() && !VA.needsCustom()) { 6657 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 6658 unsigned VReg = 6659 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 6660 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 6661 if (ValVT.isScalarInteger() && 6662 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 6663 ArgValue = 6664 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 6665 } 6666 InVals.push_back(ArgValue); 6667 continue; 6668 } 6669 if (VA.isMemLoc()) { 6670 const unsigned LocSize = LocVT.getStoreSize(); 6671 const unsigned ValSize = ValVT.getStoreSize(); 6672 assert((ValSize <= LocSize) && 6673 "Object size is larger than size of MemLoc"); 6674 int CurArgOffset = VA.getLocMemOffset(); 6675 // Objects are right-justified because AIX is big-endian. 6676 if (LocSize > ValSize) 6677 CurArgOffset += LocSize - ValSize; 6678 // Potential tail calls could cause overwriting of argument stack slots. 6679 const bool IsImmutable = 6680 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6681 (CallConv == CallingConv::Fast)); 6682 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6683 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6684 SDValue ArgValue = 6685 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6686 InVals.push_back(ArgValue); 6687 continue; 6688 } 6689 } 6690 6691 // On AIX a minimum of 8 words is saved to the parameter save area. 6692 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 6693 // Area that is at least reserved in the caller of this function. 6694 unsigned CallerReservedArea = 6695 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 6696 6697 // Set the size that is at least reserved in caller of this function. Tail 6698 // call optimized function's reserved stack space needs to be aligned so 6699 // that taking the difference between two stack areas will result in an 6700 // aligned stack. 6701 CallerReservedArea = 6702 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 6703 FuncInfo->setMinReservedArea(CallerReservedArea); 6704 6705 if (isVarArg) { 6706 FuncInfo->setVarArgsFrameIndex( 6707 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 6708 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 6709 6710 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6711 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6712 6713 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6714 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6715 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 6716 6717 // The fixed integer arguments of a variadic function are stored to the 6718 // VarArgsFrameIndex on the stack so that they may be loaded by 6719 // dereferencing the result of va_next. 6720 for (unsigned GPRIndex = 6721 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 6722 GPRIndex < NumGPArgRegs; ++GPRIndex) { 6723 6724 const unsigned VReg = 6725 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 6726 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 6727 6728 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 6729 SDValue Store = 6730 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 6731 MemOps.push_back(Store); 6732 // Increment the address for the next argument to store. 6733 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 6734 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 6735 } 6736 } 6737 6738 if (!MemOps.empty()) 6739 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 6740 6741 return Chain; 6742 } 6743 6744 SDValue PPCTargetLowering::LowerCall_AIX( 6745 SDValue Chain, SDValue Callee, CallFlags CFlags, 6746 const SmallVectorImpl<ISD::OutputArg> &Outs, 6747 const SmallVectorImpl<SDValue> &OutVals, 6748 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6749 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6750 const CallBase *CB) const { 6751 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 6752 // AIX ABI stack frame layout. 6753 6754 assert((CFlags.CallConv == CallingConv::C || 6755 CFlags.CallConv == CallingConv::Cold || 6756 CFlags.CallConv == CallingConv::Fast) && 6757 "Unexpected calling convention!"); 6758 6759 if (CFlags.IsPatchPoint) 6760 report_fatal_error("This call type is unimplemented on AIX."); 6761 6762 const PPCSubtarget& Subtarget = 6763 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 6764 6765 MachineFunction &MF = DAG.getMachineFunction(); 6766 SmallVector<CCValAssign, 16> ArgLocs; 6767 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 6768 *DAG.getContext()); 6769 6770 // Reserve space for the linkage save area (LSA) on the stack. 6771 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 6772 // [SP][CR][LR][2 x reserved][TOC]. 6773 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 6774 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6775 const bool IsPPC64 = Subtarget.isPPC64(); 6776 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6777 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6778 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6779 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 6780 6781 // The prolog code of the callee may store up to 8 GPR argument registers to 6782 // the stack, allowing va_start to index over them in memory if the callee 6783 // is variadic. 6784 // Because we cannot tell if this is needed on the caller side, we have to 6785 // conservatively assume that it is needed. As such, make sure we have at 6786 // least enough stack space for the caller to store the 8 GPRs. 6787 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 6788 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 6789 CCInfo.getNextStackOffset()); 6790 6791 // Adjust the stack pointer for the new arguments... 6792 // These operations are automatically eliminated by the prolog/epilog pass. 6793 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6794 SDValue CallSeqStart = Chain; 6795 6796 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6797 SmallVector<SDValue, 8> MemOpChains; 6798 6799 // Set up a copy of the stack pointer for loading and storing any 6800 // arguments that may not fit in the registers available for argument 6801 // passing. 6802 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 6803 : DAG.getRegister(PPC::R1, MVT::i32); 6804 6805 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 6806 const unsigned ValNo = ArgLocs[I].getValNo(); 6807 SDValue Arg = OutVals[ValNo]; 6808 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 6809 6810 if (Flags.isByVal()) { 6811 const unsigned ByValSize = Flags.getByValSize(); 6812 6813 // Nothing to do for zero-sized ByVals on the caller side. 6814 if (!ByValSize) { 6815 ++I; 6816 continue; 6817 } 6818 6819 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 6820 return DAG.getExtLoad( 6821 ISD::ZEXTLOAD, dl, PtrVT, Chain, 6822 (LoadOffset != 0) 6823 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 6824 : Arg, 6825 MachinePointerInfo(), VT); 6826 }; 6827 6828 unsigned LoadOffset = 0; 6829 6830 // Initialize registers, which are fully occupied by the by-val argument. 6831 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 6832 SDValue Load = GetLoad(PtrVT, LoadOffset); 6833 MemOpChains.push_back(Load.getValue(1)); 6834 LoadOffset += PtrByteSize; 6835 const CCValAssign &ByValVA = ArgLocs[I++]; 6836 assert(ByValVA.getValNo() == ValNo && 6837 "Unexpected location for pass-by-value argument."); 6838 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 6839 } 6840 6841 if (LoadOffset == ByValSize) 6842 continue; 6843 6844 // There must be one more loc to handle the remainder. 6845 assert(ArgLocs[I].getValNo() == ValNo && 6846 "Expected additional location for by-value argument."); 6847 6848 if (ArgLocs[I].isMemLoc()) { 6849 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 6850 const CCValAssign &ByValVA = ArgLocs[I++]; 6851 ISD::ArgFlagsTy MemcpyFlags = Flags; 6852 // Only memcpy the bytes that don't pass in register. 6853 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 6854 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 6855 (LoadOffset != 0) 6856 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 6857 : Arg, 6858 DAG.getObjectPtrOffset(dl, StackPtr, 6859 TypeSize::Fixed(ByValVA.getLocMemOffset())), 6860 CallSeqStart, MemcpyFlags, DAG, dl); 6861 continue; 6862 } 6863 6864 // Initialize the final register residue. 6865 // Any residue that occupies the final by-val arg register must be 6866 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 6867 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 6868 // 2 and 1 byte loads. 6869 const unsigned ResidueBytes = ByValSize % PtrByteSize; 6870 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 6871 "Unexpected register residue for by-value argument."); 6872 SDValue ResidueVal; 6873 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 6874 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 6875 const MVT VT = 6876 N == 1 ? MVT::i8 6877 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 6878 SDValue Load = GetLoad(VT, LoadOffset); 6879 MemOpChains.push_back(Load.getValue(1)); 6880 LoadOffset += N; 6881 Bytes += N; 6882 6883 // By-val arguments are passed left-justfied in register. 6884 // Every load here needs to be shifted, otherwise a full register load 6885 // should have been used. 6886 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 6887 "Unexpected load emitted during handling of pass-by-value " 6888 "argument."); 6889 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 6890 EVT ShiftAmountTy = 6891 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 6892 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 6893 SDValue ShiftedLoad = 6894 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 6895 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 6896 ShiftedLoad) 6897 : ShiftedLoad; 6898 } 6899 6900 const CCValAssign &ByValVA = ArgLocs[I++]; 6901 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 6902 continue; 6903 } 6904 6905 CCValAssign &VA = ArgLocs[I++]; 6906 const MVT LocVT = VA.getLocVT(); 6907 const MVT ValVT = VA.getValVT(); 6908 6909 switch (VA.getLocInfo()) { 6910 default: 6911 report_fatal_error("Unexpected argument extension type."); 6912 case CCValAssign::Full: 6913 break; 6914 case CCValAssign::ZExt: 6915 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 6916 break; 6917 case CCValAssign::SExt: 6918 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 6919 break; 6920 } 6921 6922 if (VA.isRegLoc() && !VA.needsCustom()) { 6923 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 6924 continue; 6925 } 6926 6927 if (VA.isMemLoc()) { 6928 SDValue PtrOff = 6929 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 6930 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6931 MemOpChains.push_back( 6932 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 6933 6934 continue; 6935 } 6936 6937 // Custom handling is used for GPR initializations for vararg float 6938 // arguments. 6939 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 6940 ValVT.isFloatingPoint() && LocVT.isInteger() && 6941 "Unexpected register handling for calling convention."); 6942 6943 SDValue ArgAsInt = 6944 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 6945 6946 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 6947 // f32 in 32-bit GPR 6948 // f64 in 64-bit GPR 6949 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 6950 else if (Arg.getValueType().getFixedSizeInBits() < 6951 LocVT.getFixedSizeInBits()) 6952 // f32 in 64-bit GPR. 6953 RegsToPass.push_back(std::make_pair( 6954 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 6955 else { 6956 // f64 in two 32-bit GPRs 6957 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 6958 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 6959 "Unexpected custom register for argument!"); 6960 CCValAssign &GPR1 = VA; 6961 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 6962 DAG.getConstant(32, dl, MVT::i8)); 6963 RegsToPass.push_back(std::make_pair( 6964 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 6965 6966 if (I != E) { 6967 // If only 1 GPR was available, there will only be one custom GPR and 6968 // the argument will also pass in memory. 6969 CCValAssign &PeekArg = ArgLocs[I]; 6970 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 6971 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 6972 CCValAssign &GPR2 = ArgLocs[I++]; 6973 RegsToPass.push_back(std::make_pair( 6974 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 6975 } 6976 } 6977 } 6978 } 6979 6980 if (!MemOpChains.empty()) 6981 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6982 6983 // For indirect calls, we need to save the TOC base to the stack for 6984 // restoration after the call. 6985 if (CFlags.IsIndirect) { 6986 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 6987 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 6988 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 6989 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 6990 const unsigned TOCSaveOffset = 6991 Subtarget.getFrameLowering()->getTOCSaveOffset(); 6992 6993 setUsesTOCBasePtr(DAG); 6994 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 6995 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6996 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 6997 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6998 Chain = DAG.getStore( 6999 Val.getValue(1), dl, Val, AddPtr, 7000 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7001 } 7002 7003 // Build a sequence of copy-to-reg nodes chained together with token chain 7004 // and flag operands which copy the outgoing args into the appropriate regs. 7005 SDValue InFlag; 7006 for (auto Reg : RegsToPass) { 7007 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7008 InFlag = Chain.getValue(1); 7009 } 7010 7011 const int SPDiff = 0; 7012 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7013 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7014 } 7015 7016 bool 7017 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7018 MachineFunction &MF, bool isVarArg, 7019 const SmallVectorImpl<ISD::OutputArg> &Outs, 7020 LLVMContext &Context) const { 7021 SmallVector<CCValAssign, 16> RVLocs; 7022 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7023 return CCInfo.CheckReturn( 7024 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7025 ? RetCC_PPC_Cold 7026 : RetCC_PPC); 7027 } 7028 7029 SDValue 7030 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7031 bool isVarArg, 7032 const SmallVectorImpl<ISD::OutputArg> &Outs, 7033 const SmallVectorImpl<SDValue> &OutVals, 7034 const SDLoc &dl, SelectionDAG &DAG) const { 7035 SmallVector<CCValAssign, 16> RVLocs; 7036 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7037 *DAG.getContext()); 7038 CCInfo.AnalyzeReturn(Outs, 7039 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7040 ? RetCC_PPC_Cold 7041 : RetCC_PPC); 7042 7043 SDValue Flag; 7044 SmallVector<SDValue, 4> RetOps(1, Chain); 7045 7046 // Copy the result values into the output registers. 7047 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7048 CCValAssign &VA = RVLocs[i]; 7049 assert(VA.isRegLoc() && "Can only return in registers!"); 7050 7051 SDValue Arg = OutVals[RealResIdx]; 7052 7053 switch (VA.getLocInfo()) { 7054 default: llvm_unreachable("Unknown loc info!"); 7055 case CCValAssign::Full: break; 7056 case CCValAssign::AExt: 7057 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7058 break; 7059 case CCValAssign::ZExt: 7060 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7061 break; 7062 case CCValAssign::SExt: 7063 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7064 break; 7065 } 7066 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7067 bool isLittleEndian = Subtarget.isLittleEndian(); 7068 // Legalize ret f64 -> ret 2 x i32. 7069 SDValue SVal = 7070 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7071 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7072 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7073 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7074 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7075 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7076 Flag = Chain.getValue(1); 7077 VA = RVLocs[++i]; // skip ahead to next loc 7078 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7079 } else 7080 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7081 Flag = Chain.getValue(1); 7082 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7083 } 7084 7085 RetOps[0] = Chain; // Update chain. 7086 7087 // Add the flag if we have it. 7088 if (Flag.getNode()) 7089 RetOps.push_back(Flag); 7090 7091 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7092 } 7093 7094 SDValue 7095 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7096 SelectionDAG &DAG) const { 7097 SDLoc dl(Op); 7098 7099 // Get the correct type for integers. 7100 EVT IntVT = Op.getValueType(); 7101 7102 // Get the inputs. 7103 SDValue Chain = Op.getOperand(0); 7104 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7105 // Build a DYNAREAOFFSET node. 7106 SDValue Ops[2] = {Chain, FPSIdx}; 7107 SDVTList VTs = DAG.getVTList(IntVT); 7108 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7109 } 7110 7111 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7112 SelectionDAG &DAG) const { 7113 // When we pop the dynamic allocation we need to restore the SP link. 7114 SDLoc dl(Op); 7115 7116 // Get the correct type for pointers. 7117 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7118 7119 // Construct the stack pointer operand. 7120 bool isPPC64 = Subtarget.isPPC64(); 7121 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7122 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7123 7124 // Get the operands for the STACKRESTORE. 7125 SDValue Chain = Op.getOperand(0); 7126 SDValue SaveSP = Op.getOperand(1); 7127 7128 // Load the old link SP. 7129 SDValue LoadLinkSP = 7130 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7131 7132 // Restore the stack pointer. 7133 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7134 7135 // Store the old link SP. 7136 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7137 } 7138 7139 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7140 MachineFunction &MF = DAG.getMachineFunction(); 7141 bool isPPC64 = Subtarget.isPPC64(); 7142 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7143 7144 // Get current frame pointer save index. The users of this index will be 7145 // primarily DYNALLOC instructions. 7146 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7147 int RASI = FI->getReturnAddrSaveIndex(); 7148 7149 // If the frame pointer save index hasn't been defined yet. 7150 if (!RASI) { 7151 // Find out what the fix offset of the frame pointer save area. 7152 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7153 // Allocate the frame index for frame pointer save area. 7154 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7155 // Save the result. 7156 FI->setReturnAddrSaveIndex(RASI); 7157 } 7158 return DAG.getFrameIndex(RASI, PtrVT); 7159 } 7160 7161 SDValue 7162 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7163 MachineFunction &MF = DAG.getMachineFunction(); 7164 bool isPPC64 = Subtarget.isPPC64(); 7165 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7166 7167 // Get current frame pointer save index. The users of this index will be 7168 // primarily DYNALLOC instructions. 7169 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7170 int FPSI = FI->getFramePointerSaveIndex(); 7171 7172 // If the frame pointer save index hasn't been defined yet. 7173 if (!FPSI) { 7174 // Find out what the fix offset of the frame pointer save area. 7175 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7176 // Allocate the frame index for frame pointer save area. 7177 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7178 // Save the result. 7179 FI->setFramePointerSaveIndex(FPSI); 7180 } 7181 return DAG.getFrameIndex(FPSI, PtrVT); 7182 } 7183 7184 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7185 SelectionDAG &DAG) const { 7186 MachineFunction &MF = DAG.getMachineFunction(); 7187 // Get the inputs. 7188 SDValue Chain = Op.getOperand(0); 7189 SDValue Size = Op.getOperand(1); 7190 SDLoc dl(Op); 7191 7192 // Get the correct type for pointers. 7193 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7194 // Negate the size. 7195 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7196 DAG.getConstant(0, dl, PtrVT), Size); 7197 // Construct a node for the frame pointer save index. 7198 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7199 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7200 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7201 if (hasInlineStackProbe(MF)) 7202 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7203 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7204 } 7205 7206 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7207 SelectionDAG &DAG) const { 7208 MachineFunction &MF = DAG.getMachineFunction(); 7209 7210 bool isPPC64 = Subtarget.isPPC64(); 7211 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7212 7213 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7214 return DAG.getFrameIndex(FI, PtrVT); 7215 } 7216 7217 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7218 SelectionDAG &DAG) const { 7219 SDLoc DL(Op); 7220 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7221 DAG.getVTList(MVT::i32, MVT::Other), 7222 Op.getOperand(0), Op.getOperand(1)); 7223 } 7224 7225 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7226 SelectionDAG &DAG) const { 7227 SDLoc DL(Op); 7228 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7229 Op.getOperand(0), Op.getOperand(1)); 7230 } 7231 7232 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7233 if (Op.getValueType().isVector()) 7234 return LowerVectorLoad(Op, DAG); 7235 7236 assert(Op.getValueType() == MVT::i1 && 7237 "Custom lowering only for i1 loads"); 7238 7239 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7240 7241 SDLoc dl(Op); 7242 LoadSDNode *LD = cast<LoadSDNode>(Op); 7243 7244 SDValue Chain = LD->getChain(); 7245 SDValue BasePtr = LD->getBasePtr(); 7246 MachineMemOperand *MMO = LD->getMemOperand(); 7247 7248 SDValue NewLD = 7249 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7250 BasePtr, MVT::i8, MMO); 7251 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7252 7253 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7254 return DAG.getMergeValues(Ops, dl); 7255 } 7256 7257 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7258 if (Op.getOperand(1).getValueType().isVector()) 7259 return LowerVectorStore(Op, DAG); 7260 7261 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7262 "Custom lowering only for i1 stores"); 7263 7264 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7265 7266 SDLoc dl(Op); 7267 StoreSDNode *ST = cast<StoreSDNode>(Op); 7268 7269 SDValue Chain = ST->getChain(); 7270 SDValue BasePtr = ST->getBasePtr(); 7271 SDValue Value = ST->getValue(); 7272 MachineMemOperand *MMO = ST->getMemOperand(); 7273 7274 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7275 Value); 7276 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7277 } 7278 7279 // FIXME: Remove this once the ANDI glue bug is fixed: 7280 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7281 assert(Op.getValueType() == MVT::i1 && 7282 "Custom lowering only for i1 results"); 7283 7284 SDLoc DL(Op); 7285 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7286 } 7287 7288 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7289 SelectionDAG &DAG) const { 7290 7291 // Implements a vector truncate that fits in a vector register as a shuffle. 7292 // We want to legalize vector truncates down to where the source fits in 7293 // a vector register (and target is therefore smaller than vector register 7294 // size). At that point legalization will try to custom lower the sub-legal 7295 // result and get here - where we can contain the truncate as a single target 7296 // operation. 7297 7298 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7299 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7300 // 7301 // We will implement it for big-endian ordering as this (where x denotes 7302 // undefined): 7303 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7304 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7305 // 7306 // The same operation in little-endian ordering will be: 7307 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7308 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7309 7310 EVT TrgVT = Op.getValueType(); 7311 assert(TrgVT.isVector() && "Vector type expected."); 7312 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7313 EVT EltVT = TrgVT.getVectorElementType(); 7314 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7315 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7316 !isPowerOf2_32(EltVT.getSizeInBits())) 7317 return SDValue(); 7318 7319 SDValue N1 = Op.getOperand(0); 7320 EVT SrcVT = N1.getValueType(); 7321 unsigned SrcSize = SrcVT.getSizeInBits(); 7322 if (SrcSize > 256 || 7323 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7324 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7325 return SDValue(); 7326 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7327 return SDValue(); 7328 7329 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7330 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7331 7332 SDLoc DL(Op); 7333 SDValue Op1, Op2; 7334 if (SrcSize == 256) { 7335 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7336 EVT SplitVT = 7337 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7338 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7339 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7340 DAG.getConstant(0, DL, VecIdxTy)); 7341 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7342 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7343 } 7344 else { 7345 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7346 Op2 = DAG.getUNDEF(WideVT); 7347 } 7348 7349 // First list the elements we want to keep. 7350 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7351 SmallVector<int, 16> ShuffV; 7352 if (Subtarget.isLittleEndian()) 7353 for (unsigned i = 0; i < TrgNumElts; ++i) 7354 ShuffV.push_back(i * SizeMult); 7355 else 7356 for (unsigned i = 1; i <= TrgNumElts; ++i) 7357 ShuffV.push_back(i * SizeMult - 1); 7358 7359 // Populate the remaining elements with undefs. 7360 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7361 // ShuffV.push_back(i + WideNumElts); 7362 ShuffV.push_back(WideNumElts + 1); 7363 7364 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7365 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7366 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7367 } 7368 7369 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7370 /// possible. 7371 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7372 // Not FP, or using SPE? Not a fsel. 7373 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7374 !Op.getOperand(2).getValueType().isFloatingPoint() || Subtarget.hasSPE()) 7375 return Op; 7376 7377 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7378 7379 EVT ResVT = Op.getValueType(); 7380 EVT CmpVT = Op.getOperand(0).getValueType(); 7381 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7382 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7383 SDLoc dl(Op); 7384 SDNodeFlags Flags = Op.getNode()->getFlags(); 7385 7386 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7387 // presence of infinities. 7388 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7389 switch (CC) { 7390 default: 7391 break; 7392 case ISD::SETOGT: 7393 case ISD::SETGT: 7394 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7395 case ISD::SETOLT: 7396 case ISD::SETLT: 7397 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7398 } 7399 } 7400 7401 // We might be able to do better than this under some circumstances, but in 7402 // general, fsel-based lowering of select is a finite-math-only optimization. 7403 // For more information, see section F.3 of the 2.06 ISA specification. 7404 // With ISA 3.0 7405 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7406 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7407 return Op; 7408 7409 // If the RHS of the comparison is a 0.0, we don't need to do the 7410 // subtraction at all. 7411 SDValue Sel1; 7412 if (isFloatingPointZero(RHS)) 7413 switch (CC) { 7414 default: break; // SETUO etc aren't handled by fsel. 7415 case ISD::SETNE: 7416 std::swap(TV, FV); 7417 LLVM_FALLTHROUGH; 7418 case ISD::SETEQ: 7419 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7420 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7421 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7422 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7423 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7424 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7425 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7426 case ISD::SETULT: 7427 case ISD::SETLT: 7428 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7429 LLVM_FALLTHROUGH; 7430 case ISD::SETOGE: 7431 case ISD::SETGE: 7432 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7433 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7434 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7435 case ISD::SETUGT: 7436 case ISD::SETGT: 7437 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7438 LLVM_FALLTHROUGH; 7439 case ISD::SETOLE: 7440 case ISD::SETLE: 7441 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7442 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7443 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7444 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7445 } 7446 7447 SDValue Cmp; 7448 switch (CC) { 7449 default: break; // SETUO etc aren't handled by fsel. 7450 case ISD::SETNE: 7451 std::swap(TV, FV); 7452 LLVM_FALLTHROUGH; 7453 case ISD::SETEQ: 7454 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7455 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7456 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7457 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7458 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7459 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7460 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7461 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7462 case ISD::SETULT: 7463 case ISD::SETLT: 7464 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7465 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7466 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7467 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7468 case ISD::SETOGE: 7469 case ISD::SETGE: 7470 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7471 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7472 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7473 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7474 case ISD::SETUGT: 7475 case ISD::SETGT: 7476 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7477 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7478 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7479 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7480 case ISD::SETOLE: 7481 case ISD::SETLE: 7482 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7483 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7484 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7485 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7486 } 7487 return Op; 7488 } 7489 7490 static unsigned getPPCStrictOpcode(unsigned Opc) { 7491 switch (Opc) { 7492 default: 7493 llvm_unreachable("No strict version of this opcode!"); 7494 case PPCISD::FCTIDZ: 7495 return PPCISD::STRICT_FCTIDZ; 7496 case PPCISD::FCTIWZ: 7497 return PPCISD::STRICT_FCTIWZ; 7498 case PPCISD::FCTIDUZ: 7499 return PPCISD::STRICT_FCTIDUZ; 7500 case PPCISD::FCTIWUZ: 7501 return PPCISD::STRICT_FCTIWUZ; 7502 case PPCISD::FCFID: 7503 return PPCISD::STRICT_FCFID; 7504 case PPCISD::FCFIDU: 7505 return PPCISD::STRICT_FCFIDU; 7506 case PPCISD::FCFIDS: 7507 return PPCISD::STRICT_FCFIDS; 7508 case PPCISD::FCFIDUS: 7509 return PPCISD::STRICT_FCFIDUS; 7510 } 7511 } 7512 7513 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7514 const PPCSubtarget &Subtarget) { 7515 SDLoc dl(Op); 7516 bool IsStrict = Op->isStrictFPOpcode(); 7517 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7518 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7519 7520 // TODO: Any other flags to propagate? 7521 SDNodeFlags Flags; 7522 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7523 7524 // For strict nodes, source is the second operand. 7525 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7526 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7527 assert(Src.getValueType().isFloatingPoint()); 7528 if (Src.getValueType() == MVT::f32) { 7529 if (IsStrict) { 7530 Src = 7531 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 7532 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 7533 Chain = Src.getValue(1); 7534 } else 7535 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7536 } 7537 SDValue Conv; 7538 unsigned Opc = ISD::DELETED_NODE; 7539 switch (Op.getSimpleValueType().SimpleTy) { 7540 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7541 case MVT::i32: 7542 Opc = IsSigned ? PPCISD::FCTIWZ 7543 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 7544 break; 7545 case MVT::i64: 7546 assert((IsSigned || Subtarget.hasFPCVT()) && 7547 "i64 FP_TO_UINT is supported only with FPCVT"); 7548 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 7549 } 7550 if (IsStrict) { 7551 Opc = getPPCStrictOpcode(Opc); 7552 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 7553 {Chain, Src}, Flags); 7554 } else { 7555 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 7556 } 7557 return Conv; 7558 } 7559 7560 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7561 SelectionDAG &DAG, 7562 const SDLoc &dl) const { 7563 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 7564 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7565 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7566 bool IsStrict = Op->isStrictFPOpcode(); 7567 7568 // Convert the FP value to an int value through memory. 7569 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7570 (IsSigned || Subtarget.hasFPCVT()); 7571 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7572 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7573 MachinePointerInfo MPI = 7574 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7575 7576 // Emit a store to the stack slot. 7577 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 7578 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 7579 if (i32Stack) { 7580 MachineFunction &MF = DAG.getMachineFunction(); 7581 Alignment = Align(4); 7582 MachineMemOperand *MMO = 7583 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 7584 SDValue Ops[] = { Chain, Tmp, FIPtr }; 7585 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7586 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7587 } else 7588 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 7589 7590 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7591 // add in a bias on big endian. 7592 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7593 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7594 DAG.getConstant(4, dl, FIPtr.getValueType())); 7595 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7596 } 7597 7598 RLI.Chain = Chain; 7599 RLI.Ptr = FIPtr; 7600 RLI.MPI = MPI; 7601 RLI.Alignment = Alignment; 7602 } 7603 7604 /// Custom lowers floating point to integer conversions to use 7605 /// the direct move instructions available in ISA 2.07 to avoid the 7606 /// need for load/store combinations. 7607 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7608 SelectionDAG &DAG, 7609 const SDLoc &dl) const { 7610 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 7611 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 7612 if (Op->isStrictFPOpcode()) 7613 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 7614 else 7615 return Mov; 7616 } 7617 7618 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7619 const SDLoc &dl) const { 7620 bool IsStrict = Op->isStrictFPOpcode(); 7621 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7622 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7623 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7624 EVT SrcVT = Src.getValueType(); 7625 EVT DstVT = Op.getValueType(); 7626 7627 // FP to INT conversions are legal for f128. 7628 if (SrcVT == MVT::f128) 7629 return Subtarget.hasP9Vector() ? Op : SDValue(); 7630 7631 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7632 // PPC (the libcall is not available). 7633 if (SrcVT == MVT::ppcf128) { 7634 if (DstVT == MVT::i32) { 7635 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 7636 // set other fast-math flags to FP operations in both strict and 7637 // non-strict cases. (FP_TO_SINT, FSUB) 7638 SDNodeFlags Flags; 7639 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7640 7641 if (IsSigned) { 7642 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7643 DAG.getIntPtrConstant(0, dl)); 7644 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 7645 DAG.getIntPtrConstant(1, dl)); 7646 7647 // Add the two halves of the long double in round-to-zero mode, and use 7648 // a smaller FP_TO_SINT. 7649 if (IsStrict) { 7650 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 7651 DAG.getVTList(MVT::f64, MVT::Other), 7652 {Op.getOperand(0), Lo, Hi}, Flags); 7653 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7654 DAG.getVTList(MVT::i32, MVT::Other), 7655 {Res.getValue(1), Res}, Flags); 7656 } else { 7657 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7658 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7659 } 7660 } else { 7661 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7662 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7663 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7664 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 7665 if (IsStrict) { 7666 // Sel = Src < 0x80000000 7667 // FltOfs = select Sel, 0.0, 0x80000000 7668 // IntOfs = select Sel, 0, 0x80000000 7669 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7670 SDValue Chain = Op.getOperand(0); 7671 EVT SetCCVT = 7672 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7673 EVT DstSetCCVT = 7674 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7675 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7676 Chain, true); 7677 Chain = Sel.getValue(1); 7678 7679 SDValue FltOfs = DAG.getSelect( 7680 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7681 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7682 7683 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 7684 DAG.getVTList(SrcVT, MVT::Other), 7685 {Chain, Src, FltOfs}, Flags); 7686 Chain = Val.getValue(1); 7687 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 7688 DAG.getVTList(DstVT, MVT::Other), 7689 {Chain, Val}, Flags); 7690 Chain = SInt.getValue(1); 7691 SDValue IntOfs = DAG.getSelect( 7692 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 7693 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7694 return DAG.getMergeValues({Result, Chain}, dl); 7695 } else { 7696 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7697 // FIXME: generated code sucks. 7698 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 7699 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7700 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 7701 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 7702 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 7703 } 7704 } 7705 } 7706 7707 return SDValue(); 7708 } 7709 7710 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7711 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7712 7713 ReuseLoadInfo RLI; 7714 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7715 7716 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7717 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7718 } 7719 7720 // We're trying to insert a regular store, S, and then a load, L. If the 7721 // incoming value, O, is a load, we might just be able to have our load use the 7722 // address used by O. However, we don't know if anything else will store to 7723 // that address before we can load from it. To prevent this situation, we need 7724 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7725 // the same chain operand as O, we create a token factor from the chain results 7726 // of O and L, and we replace all uses of O's chain result with that token 7727 // factor (see spliceIntoChain below for this last part). 7728 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7729 ReuseLoadInfo &RLI, 7730 SelectionDAG &DAG, 7731 ISD::LoadExtType ET) const { 7732 // Conservatively skip reusing for constrained FP nodes. 7733 if (Op->isStrictFPOpcode()) 7734 return false; 7735 7736 SDLoc dl(Op); 7737 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 7738 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 7739 if (ET == ISD::NON_EXTLOAD && 7740 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 7741 isOperationLegalOrCustom(Op.getOpcode(), 7742 Op.getOperand(0).getValueType())) { 7743 7744 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7745 return true; 7746 } 7747 7748 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7749 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7750 LD->isNonTemporal()) 7751 return false; 7752 if (LD->getMemoryVT() != MemVT) 7753 return false; 7754 7755 // If the result of the load is an illegal type, then we can't build a 7756 // valid chain for reuse since the legalised loads and token factor node that 7757 // ties the legalised loads together uses a different output chain then the 7758 // illegal load. 7759 if (!isTypeLegal(LD->getValueType(0))) 7760 return false; 7761 7762 RLI.Ptr = LD->getBasePtr(); 7763 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7764 assert(LD->getAddressingMode() == ISD::PRE_INC && 7765 "Non-pre-inc AM on PPC?"); 7766 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7767 LD->getOffset()); 7768 } 7769 7770 RLI.Chain = LD->getChain(); 7771 RLI.MPI = LD->getPointerInfo(); 7772 RLI.IsDereferenceable = LD->isDereferenceable(); 7773 RLI.IsInvariant = LD->isInvariant(); 7774 RLI.Alignment = LD->getAlign(); 7775 RLI.AAInfo = LD->getAAInfo(); 7776 RLI.Ranges = LD->getRanges(); 7777 7778 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7779 return true; 7780 } 7781 7782 // Given the head of the old chain, ResChain, insert a token factor containing 7783 // it and NewResChain, and make users of ResChain now be users of that token 7784 // factor. 7785 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7786 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7787 SDValue NewResChain, 7788 SelectionDAG &DAG) const { 7789 if (!ResChain) 7790 return; 7791 7792 SDLoc dl(NewResChain); 7793 7794 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7795 NewResChain, DAG.getUNDEF(MVT::Other)); 7796 assert(TF.getNode() != NewResChain.getNode() && 7797 "A new TF really is required here"); 7798 7799 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7800 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7801 } 7802 7803 /// Analyze profitability of direct move 7804 /// prefer float load to int load plus direct move 7805 /// when there is no integer use of int load 7806 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7807 SDNode *Origin = Op.getOperand(0).getNode(); 7808 if (Origin->getOpcode() != ISD::LOAD) 7809 return true; 7810 7811 // If there is no LXSIBZX/LXSIHZX, like Power8, 7812 // prefer direct move if the memory size is 1 or 2 bytes. 7813 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7814 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7815 return true; 7816 7817 for (SDNode::use_iterator UI = Origin->use_begin(), 7818 UE = Origin->use_end(); 7819 UI != UE; ++UI) { 7820 7821 // Only look at the users of the loaded value. 7822 if (UI.getUse().get().getResNo() != 0) 7823 continue; 7824 7825 if (UI->getOpcode() != ISD::SINT_TO_FP && 7826 UI->getOpcode() != ISD::UINT_TO_FP && 7827 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 7828 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 7829 return true; 7830 } 7831 7832 return false; 7833 } 7834 7835 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 7836 const PPCSubtarget &Subtarget, 7837 SDValue Chain = SDValue()) { 7838 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 7839 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 7840 SDLoc dl(Op); 7841 7842 // TODO: Any other flags to propagate? 7843 SDNodeFlags Flags; 7844 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7845 7846 // If we have FCFIDS, then use it when converting to single-precision. 7847 // Otherwise, convert to double-precision and then round. 7848 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 7849 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 7850 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 7851 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 7852 if (Op->isStrictFPOpcode()) { 7853 if (!Chain) 7854 Chain = Op.getOperand(0); 7855 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 7856 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 7857 } else 7858 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 7859 } 7860 7861 /// Custom lowers integer to floating point conversions to use 7862 /// the direct move instructions available in ISA 2.07 to avoid the 7863 /// need for load/store combinations. 7864 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7865 SelectionDAG &DAG, 7866 const SDLoc &dl) const { 7867 assert((Op.getValueType() == MVT::f32 || 7868 Op.getValueType() == MVT::f64) && 7869 "Invalid floating point type as target of conversion"); 7870 assert(Subtarget.hasFPCVT() && 7871 "Int to FP conversions with direct moves require FPCVT"); 7872 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 7873 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7874 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 7875 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 7876 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 7877 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 7878 return convertIntToFP(Op, Mov, DAG, Subtarget); 7879 } 7880 7881 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7882 7883 EVT VecVT = Vec.getValueType(); 7884 assert(VecVT.isVector() && "Expected a vector type."); 7885 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 7886 7887 EVT EltVT = VecVT.getVectorElementType(); 7888 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7889 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7890 7891 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 7892 SmallVector<SDValue, 16> Ops(NumConcat); 7893 Ops[0] = Vec; 7894 SDValue UndefVec = DAG.getUNDEF(VecVT); 7895 for (unsigned i = 1; i < NumConcat; ++i) 7896 Ops[i] = UndefVec; 7897 7898 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 7899 } 7900 7901 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 7902 const SDLoc &dl) const { 7903 bool IsStrict = Op->isStrictFPOpcode(); 7904 unsigned Opc = Op.getOpcode(); 7905 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7906 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 7907 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 7908 "Unexpected conversion type"); 7909 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 7910 "Supports conversions to v2f64/v4f32 only."); 7911 7912 // TODO: Any other flags to propagate? 7913 SDNodeFlags Flags; 7914 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7915 7916 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 7917 bool FourEltRes = Op.getValueType() == MVT::v4f32; 7918 7919 SDValue Wide = widenVec(DAG, Src, dl); 7920 EVT WideVT = Wide.getValueType(); 7921 unsigned WideNumElts = WideVT.getVectorNumElements(); 7922 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 7923 7924 SmallVector<int, 16> ShuffV; 7925 for (unsigned i = 0; i < WideNumElts; ++i) 7926 ShuffV.push_back(i + WideNumElts); 7927 7928 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 7929 int SaveElts = FourEltRes ? 4 : 2; 7930 if (Subtarget.isLittleEndian()) 7931 for (int i = 0; i < SaveElts; i++) 7932 ShuffV[i * Stride] = i; 7933 else 7934 for (int i = 1; i <= SaveElts; i++) 7935 ShuffV[i * Stride - 1] = i - 1; 7936 7937 SDValue ShuffleSrc2 = 7938 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 7939 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 7940 7941 SDValue Extend; 7942 if (SignedConv) { 7943 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 7944 EVT ExtVT = Src.getValueType(); 7945 if (Subtarget.hasP9Altivec()) 7946 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 7947 IntermediateVT.getVectorNumElements()); 7948 7949 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 7950 DAG.getValueType(ExtVT)); 7951 } else 7952 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 7953 7954 if (IsStrict) 7955 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 7956 {Op.getOperand(0), Extend}, Flags); 7957 7958 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 7959 } 7960 7961 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 7962 SelectionDAG &DAG) const { 7963 SDLoc dl(Op); 7964 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 7965 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 7966 bool IsStrict = Op->isStrictFPOpcode(); 7967 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7968 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 7969 7970 // TODO: Any other flags to propagate? 7971 SDNodeFlags Flags; 7972 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7973 7974 EVT InVT = Src.getValueType(); 7975 EVT OutVT = Op.getValueType(); 7976 if (OutVT.isVector() && OutVT.isFloatingPoint() && 7977 isOperationCustom(Op.getOpcode(), InVT)) 7978 return LowerINT_TO_FPVector(Op, DAG, dl); 7979 7980 // Conversions to f128 are legal. 7981 if (Op.getValueType() == MVT::f128) 7982 return Subtarget.hasP9Vector() ? Op : SDValue(); 7983 7984 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 7985 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 7986 return SDValue(); 7987 7988 if (Src.getValueType() == MVT::i1) { 7989 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 7990 DAG.getConstantFP(1.0, dl, Op.getValueType()), 7991 DAG.getConstantFP(0.0, dl, Op.getValueType())); 7992 if (IsStrict) 7993 return DAG.getMergeValues({Sel, Chain}, dl); 7994 else 7995 return Sel; 7996 } 7997 7998 // If we have direct moves, we can do all the conversion, skip the store/load 7999 // however, without FPCVT we can't do most conversions. 8000 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8001 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8002 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8003 8004 assert((IsSigned || Subtarget.hasFPCVT()) && 8005 "UINT_TO_FP is supported only with FPCVT"); 8006 8007 if (Src.getValueType() == MVT::i64) { 8008 SDValue SINT = Src; 8009 // When converting to single-precision, we actually need to convert 8010 // to double-precision first and then round to single-precision. 8011 // To avoid double-rounding effects during that operation, we have 8012 // to prepare the input operand. Bits that might be truncated when 8013 // converting to double-precision are replaced by a bit that won't 8014 // be lost at this stage, but is below the single-precision rounding 8015 // position. 8016 // 8017 // However, if -enable-unsafe-fp-math is in effect, accept double 8018 // rounding to avoid the extra overhead. 8019 if (Op.getValueType() == MVT::f32 && 8020 !Subtarget.hasFPCVT() && 8021 !DAG.getTarget().Options.UnsafeFPMath) { 8022 8023 // Twiddle input to make sure the low 11 bits are zero. (If this 8024 // is the case, we are guaranteed the value will fit into the 53 bit 8025 // mantissa of an IEEE double-precision value without rounding.) 8026 // If any of those low 11 bits were not zero originally, make sure 8027 // bit 12 (value 2048) is set instead, so that the final rounding 8028 // to single-precision gets the correct result. 8029 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8030 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8031 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8032 Round, DAG.getConstant(2047, dl, MVT::i64)); 8033 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8034 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8035 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8036 8037 // However, we cannot use that value unconditionally: if the magnitude 8038 // of the input value is small, the bit-twiddling we did above might 8039 // end up visibly changing the output. Fortunately, in that case, we 8040 // don't need to twiddle bits since the original input will convert 8041 // exactly to double-precision floating-point already. Therefore, 8042 // construct a conditional to use the original value if the top 11 8043 // bits are all sign-bit copies, and use the rounded value computed 8044 // above otherwise. 8045 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8046 SINT, DAG.getConstant(53, dl, MVT::i32)); 8047 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8048 Cond, DAG.getConstant(1, dl, MVT::i64)); 8049 Cond = DAG.getSetCC( 8050 dl, 8051 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8052 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8053 8054 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8055 } 8056 8057 ReuseLoadInfo RLI; 8058 SDValue Bits; 8059 8060 MachineFunction &MF = DAG.getMachineFunction(); 8061 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8062 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8063 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8064 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8065 } else if (Subtarget.hasLFIWAX() && 8066 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8067 MachineMemOperand *MMO = 8068 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8069 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8070 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8071 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8072 DAG.getVTList(MVT::f64, MVT::Other), 8073 Ops, MVT::i32, MMO); 8074 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8075 } else if (Subtarget.hasFPCVT() && 8076 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8077 MachineMemOperand *MMO = 8078 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8079 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8080 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8081 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8082 DAG.getVTList(MVT::f64, MVT::Other), 8083 Ops, MVT::i32, MMO); 8084 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8085 } else if (((Subtarget.hasLFIWAX() && 8086 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8087 (Subtarget.hasFPCVT() && 8088 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8089 SINT.getOperand(0).getValueType() == MVT::i32) { 8090 MachineFrameInfo &MFI = MF.getFrameInfo(); 8091 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8092 8093 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8094 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8095 8096 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8097 MachinePointerInfo::getFixedStack( 8098 DAG.getMachineFunction(), FrameIdx)); 8099 Chain = Store; 8100 8101 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8102 "Expected an i32 store"); 8103 8104 RLI.Ptr = FIdx; 8105 RLI.Chain = Chain; 8106 RLI.MPI = 8107 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8108 RLI.Alignment = Align(4); 8109 8110 MachineMemOperand *MMO = 8111 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8112 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8113 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8114 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8115 PPCISD::LFIWZX : PPCISD::LFIWAX, 8116 dl, DAG.getVTList(MVT::f64, MVT::Other), 8117 Ops, MVT::i32, MMO); 8118 Chain = Bits.getValue(1); 8119 } else 8120 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8121 8122 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8123 if (IsStrict) 8124 Chain = FP.getValue(1); 8125 8126 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8127 if (IsStrict) 8128 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8129 DAG.getVTList(MVT::f32, MVT::Other), 8130 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8131 else 8132 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8133 DAG.getIntPtrConstant(0, dl)); 8134 } 8135 return FP; 8136 } 8137 8138 assert(Src.getValueType() == MVT::i32 && 8139 "Unhandled INT_TO_FP type in custom expander!"); 8140 // Since we only generate this in 64-bit mode, we can take advantage of 8141 // 64-bit registers. In particular, sign extend the input value into the 8142 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8143 // then lfd it and fcfid it. 8144 MachineFunction &MF = DAG.getMachineFunction(); 8145 MachineFrameInfo &MFI = MF.getFrameInfo(); 8146 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8147 8148 SDValue Ld; 8149 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8150 ReuseLoadInfo RLI; 8151 bool ReusingLoad; 8152 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8153 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8154 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8155 8156 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8157 MachinePointerInfo::getFixedStack( 8158 DAG.getMachineFunction(), FrameIdx)); 8159 Chain = Store; 8160 8161 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8162 "Expected an i32 store"); 8163 8164 RLI.Ptr = FIdx; 8165 RLI.Chain = Chain; 8166 RLI.MPI = 8167 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8168 RLI.Alignment = Align(4); 8169 } 8170 8171 MachineMemOperand *MMO = 8172 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8173 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8174 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8175 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8176 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8177 MVT::i32, MMO); 8178 Chain = Ld.getValue(1); 8179 if (ReusingLoad) 8180 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8181 } else { 8182 assert(Subtarget.isPPC64() && 8183 "i32->FP without LFIWAX supported only on PPC64"); 8184 8185 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8186 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8187 8188 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8189 8190 // STD the extended value into the stack slot. 8191 SDValue Store = DAG.getStore( 8192 Chain, dl, Ext64, FIdx, 8193 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8194 Chain = Store; 8195 8196 // Load the value as a double. 8197 Ld = DAG.getLoad( 8198 MVT::f64, dl, Chain, FIdx, 8199 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8200 Chain = Ld.getValue(1); 8201 } 8202 8203 // FCFID it and return it. 8204 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8205 if (IsStrict) 8206 Chain = FP.getValue(1); 8207 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8208 if (IsStrict) 8209 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8210 DAG.getVTList(MVT::f32, MVT::Other), 8211 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8212 else 8213 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8214 DAG.getIntPtrConstant(0, dl)); 8215 } 8216 return FP; 8217 } 8218 8219 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8220 SelectionDAG &DAG) const { 8221 SDLoc dl(Op); 8222 /* 8223 The rounding mode is in bits 30:31 of FPSR, and has the following 8224 settings: 8225 00 Round to nearest 8226 01 Round to 0 8227 10 Round to +inf 8228 11 Round to -inf 8229 8230 FLT_ROUNDS, on the other hand, expects the following: 8231 -1 Undefined 8232 0 Round to 0 8233 1 Round to nearest 8234 2 Round to +inf 8235 3 Round to -inf 8236 8237 To perform the conversion, we do: 8238 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8239 */ 8240 8241 MachineFunction &MF = DAG.getMachineFunction(); 8242 EVT VT = Op.getValueType(); 8243 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8244 8245 // Save FP Control Word to register 8246 SDValue Chain = Op.getOperand(0); 8247 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8248 Chain = MFFS.getValue(1); 8249 8250 SDValue CWD; 8251 if (isTypeLegal(MVT::i64)) { 8252 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8253 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8254 } else { 8255 // Save FP register to stack slot 8256 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8257 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8258 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8259 8260 // Load FP Control Word from low 32 bits of stack slot. 8261 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8262 "Stack slot adjustment is valid only on big endian subtargets!"); 8263 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8264 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8265 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8266 Chain = CWD.getValue(1); 8267 } 8268 8269 // Transform as necessary 8270 SDValue CWD1 = 8271 DAG.getNode(ISD::AND, dl, MVT::i32, 8272 CWD, DAG.getConstant(3, dl, MVT::i32)); 8273 SDValue CWD2 = 8274 DAG.getNode(ISD::SRL, dl, MVT::i32, 8275 DAG.getNode(ISD::AND, dl, MVT::i32, 8276 DAG.getNode(ISD::XOR, dl, MVT::i32, 8277 CWD, DAG.getConstant(3, dl, MVT::i32)), 8278 DAG.getConstant(3, dl, MVT::i32)), 8279 DAG.getConstant(1, dl, MVT::i32)); 8280 8281 SDValue RetVal = 8282 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8283 8284 RetVal = 8285 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8286 dl, VT, RetVal); 8287 8288 return DAG.getMergeValues({RetVal, Chain}, dl); 8289 } 8290 8291 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8292 EVT VT = Op.getValueType(); 8293 unsigned BitWidth = VT.getSizeInBits(); 8294 SDLoc dl(Op); 8295 assert(Op.getNumOperands() == 3 && 8296 VT == Op.getOperand(1).getValueType() && 8297 "Unexpected SHL!"); 8298 8299 // Expand into a bunch of logical ops. Note that these ops 8300 // depend on the PPC behavior for oversized shift amounts. 8301 SDValue Lo = Op.getOperand(0); 8302 SDValue Hi = Op.getOperand(1); 8303 SDValue Amt = Op.getOperand(2); 8304 EVT AmtVT = Amt.getValueType(); 8305 8306 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8307 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8308 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8309 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8310 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8311 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8312 DAG.getConstant(-BitWidth, dl, AmtVT)); 8313 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8314 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8315 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8316 SDValue OutOps[] = { OutLo, OutHi }; 8317 return DAG.getMergeValues(OutOps, dl); 8318 } 8319 8320 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8321 EVT VT = Op.getValueType(); 8322 SDLoc dl(Op); 8323 unsigned BitWidth = VT.getSizeInBits(); 8324 assert(Op.getNumOperands() == 3 && 8325 VT == Op.getOperand(1).getValueType() && 8326 "Unexpected SRL!"); 8327 8328 // Expand into a bunch of logical ops. Note that these ops 8329 // depend on the PPC behavior for oversized shift amounts. 8330 SDValue Lo = Op.getOperand(0); 8331 SDValue Hi = Op.getOperand(1); 8332 SDValue Amt = Op.getOperand(2); 8333 EVT AmtVT = Amt.getValueType(); 8334 8335 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8336 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8337 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8338 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8339 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8340 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8341 DAG.getConstant(-BitWidth, dl, AmtVT)); 8342 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8343 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8344 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8345 SDValue OutOps[] = { OutLo, OutHi }; 8346 return DAG.getMergeValues(OutOps, dl); 8347 } 8348 8349 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8350 SDLoc dl(Op); 8351 EVT VT = Op.getValueType(); 8352 unsigned BitWidth = VT.getSizeInBits(); 8353 assert(Op.getNumOperands() == 3 && 8354 VT == Op.getOperand(1).getValueType() && 8355 "Unexpected SRA!"); 8356 8357 // Expand into a bunch of logical ops, followed by a select_cc. 8358 SDValue Lo = Op.getOperand(0); 8359 SDValue Hi = Op.getOperand(1); 8360 SDValue Amt = Op.getOperand(2); 8361 EVT AmtVT = Amt.getValueType(); 8362 8363 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8364 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8365 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8366 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8367 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8368 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8369 DAG.getConstant(-BitWidth, dl, AmtVT)); 8370 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8371 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8372 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8373 Tmp4, Tmp6, ISD::SETLE); 8374 SDValue OutOps[] = { OutLo, OutHi }; 8375 return DAG.getMergeValues(OutOps, dl); 8376 } 8377 8378 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8379 SelectionDAG &DAG) const { 8380 SDLoc dl(Op); 8381 EVT VT = Op.getValueType(); 8382 unsigned BitWidth = VT.getSizeInBits(); 8383 8384 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8385 SDValue X = Op.getOperand(0); 8386 SDValue Y = Op.getOperand(1); 8387 SDValue Z = Op.getOperand(2); 8388 EVT AmtVT = Z.getValueType(); 8389 8390 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8391 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8392 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8393 // on PowerPC shift by BW being well defined. 8394 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8395 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8396 SDValue SubZ = 8397 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8398 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8399 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8400 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8401 } 8402 8403 //===----------------------------------------------------------------------===// 8404 // Vector related lowering. 8405 // 8406 8407 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8408 /// element size of SplatSize. Cast the result to VT. 8409 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8410 SelectionDAG &DAG, const SDLoc &dl) { 8411 static const MVT VTys[] = { // canonical VT to use for each size. 8412 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8413 }; 8414 8415 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8416 8417 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8418 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8419 SplatSize = 1; 8420 Val = 0xFF; 8421 } 8422 8423 EVT CanonicalVT = VTys[SplatSize-1]; 8424 8425 // Build a canonical splat for this value. 8426 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8427 } 8428 8429 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8430 /// specified intrinsic ID. 8431 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8432 const SDLoc &dl, EVT DestVT = MVT::Other) { 8433 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8434 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8435 DAG.getConstant(IID, dl, MVT::i32), Op); 8436 } 8437 8438 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8439 /// specified intrinsic ID. 8440 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8441 SelectionDAG &DAG, const SDLoc &dl, 8442 EVT DestVT = MVT::Other) { 8443 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8444 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8445 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8446 } 8447 8448 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8449 /// specified intrinsic ID. 8450 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8451 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8452 EVT DestVT = MVT::Other) { 8453 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8454 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8455 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8456 } 8457 8458 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8459 /// amount. The result has the specified value type. 8460 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8461 SelectionDAG &DAG, const SDLoc &dl) { 8462 // Force LHS/RHS to be the right type. 8463 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8464 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8465 8466 int Ops[16]; 8467 for (unsigned i = 0; i != 16; ++i) 8468 Ops[i] = i + Amt; 8469 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8470 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8471 } 8472 8473 /// Do we have an efficient pattern in a .td file for this node? 8474 /// 8475 /// \param V - pointer to the BuildVectorSDNode being matched 8476 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8477 /// 8478 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8479 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8480 /// the opposite is true (expansion is beneficial) are: 8481 /// - The node builds a vector out of integers that are not 32 or 64-bits 8482 /// - The node builds a vector out of constants 8483 /// - The node is a "load-and-splat" 8484 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8485 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8486 bool HasDirectMove, 8487 bool HasP8Vector) { 8488 EVT VecVT = V->getValueType(0); 8489 bool RightType = VecVT == MVT::v2f64 || 8490 (HasP8Vector && VecVT == MVT::v4f32) || 8491 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8492 if (!RightType) 8493 return false; 8494 8495 bool IsSplat = true; 8496 bool IsLoad = false; 8497 SDValue Op0 = V->getOperand(0); 8498 8499 // This function is called in a block that confirms the node is not a constant 8500 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8501 // different constants. 8502 if (V->isConstant()) 8503 return false; 8504 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8505 if (V->getOperand(i).isUndef()) 8506 return false; 8507 // We want to expand nodes that represent load-and-splat even if the 8508 // loaded value is a floating point truncation or conversion to int. 8509 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8510 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8511 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8512 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8513 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8514 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8515 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8516 IsLoad = true; 8517 // If the operands are different or the input is not a load and has more 8518 // uses than just this BV node, then it isn't a splat. 8519 if (V->getOperand(i) != Op0 || 8520 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8521 IsSplat = false; 8522 } 8523 return !(IsSplat && IsLoad); 8524 } 8525 8526 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8527 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8528 8529 SDLoc dl(Op); 8530 SDValue Op0 = Op->getOperand(0); 8531 8532 if ((Op.getValueType() != MVT::f128) || 8533 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8534 (Op0.getOperand(0).getValueType() != MVT::i64) || 8535 (Op0.getOperand(1).getValueType() != MVT::i64)) 8536 return SDValue(); 8537 8538 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8539 Op0.getOperand(1)); 8540 } 8541 8542 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 8543 const SDValue *InputLoad = &Op; 8544 if (InputLoad->getOpcode() == ISD::BITCAST) 8545 InputLoad = &InputLoad->getOperand(0); 8546 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 8547 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 8548 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 8549 InputLoad = &InputLoad->getOperand(0); 8550 } 8551 if (InputLoad->getOpcode() != ISD::LOAD) 8552 return nullptr; 8553 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8554 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8555 } 8556 8557 // Convert the argument APFloat to a single precision APFloat if there is no 8558 // loss in information during the conversion to single precision APFloat and the 8559 // resulting number is not a denormal number. Return true if successful. 8560 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 8561 APFloat APFloatToConvert = ArgAPFloat; 8562 bool LosesInfo = true; 8563 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 8564 &LosesInfo); 8565 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 8566 if (Success) 8567 ArgAPFloat = APFloatToConvert; 8568 return Success; 8569 } 8570 8571 // Bitcast the argument APInt to a double and convert it to a single precision 8572 // APFloat, bitcast the APFloat to an APInt and assign it to the original 8573 // argument if there is no loss in information during the conversion from 8574 // double to single precision APFloat and the resulting number is not a denormal 8575 // number. Return true if successful. 8576 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 8577 double DpValue = ArgAPInt.bitsToDouble(); 8578 APFloat APFloatDp(DpValue); 8579 bool Success = convertToNonDenormSingle(APFloatDp); 8580 if (Success) 8581 ArgAPInt = APFloatDp.bitcastToAPInt(); 8582 return Success; 8583 } 8584 8585 // If this is a case we can't handle, return null and let the default 8586 // expansion code take care of it. If we CAN select this case, and if it 8587 // selects to a single instruction, return Op. Otherwise, if we can codegen 8588 // this case more efficiently than a constant pool load, lower it to the 8589 // sequence of ops that should be used. 8590 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8591 SelectionDAG &DAG) const { 8592 SDLoc dl(Op); 8593 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8594 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8595 8596 // Check if this is a splat of a constant value. 8597 APInt APSplatBits, APSplatUndef; 8598 unsigned SplatBitSize; 8599 bool HasAnyUndefs; 8600 bool BVNIsConstantSplat = 8601 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8602 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 8603 8604 // If it is a splat of a double, check if we can shrink it to a 32 bit 8605 // non-denormal float which when converted back to double gives us the same 8606 // double. This is to exploit the XXSPLTIDP instruction. 8607 // If we lose precision, we use XXSPLTI32DX. 8608 if (BVNIsConstantSplat && (SplatBitSize == 64) && 8609 Subtarget.hasPrefixInstrs()) { 8610 // Check the type first to short-circuit so we don't modify APSplatBits if 8611 // this block isn't executed. 8612 if ((Op->getValueType(0) == MVT::v2f64) && 8613 convertToNonDenormSingle(APSplatBits)) { 8614 SDValue SplatNode = DAG.getNode( 8615 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 8616 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 8617 return DAG.getBitcast(Op.getValueType(), SplatNode); 8618 } else { 8619 // We may lose precision, so we have to use XXSPLTI32DX. 8620 8621 uint32_t Hi = 8622 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 8623 uint32_t Lo = 8624 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 8625 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 8626 8627 if (!Hi || !Lo) 8628 // If either load is 0, then we should generate XXLXOR to set to 0. 8629 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 8630 8631 if (Hi) 8632 SplatNode = DAG.getNode( 8633 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8634 DAG.getTargetConstant(0, dl, MVT::i32), 8635 DAG.getTargetConstant(Hi, dl, MVT::i32)); 8636 8637 if (Lo) 8638 SplatNode = 8639 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 8640 DAG.getTargetConstant(1, dl, MVT::i32), 8641 DAG.getTargetConstant(Lo, dl, MVT::i32)); 8642 8643 return DAG.getBitcast(Op.getValueType(), SplatNode); 8644 } 8645 } 8646 8647 if (!BVNIsConstantSplat || SplatBitSize > 32) { 8648 8649 bool IsPermutedLoad = false; 8650 const SDValue *InputLoad = 8651 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 8652 // Handle load-and-splat patterns as we have instructions that will do this 8653 // in one go. 8654 if (InputLoad && DAG.isSplatValue(Op, true)) { 8655 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8656 8657 // We have handling for 4 and 8 byte elements. 8658 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8659 8660 // Checking for a single use of this load, we have to check for vector 8661 // width (128 bits) / ElementSize uses (since each operand of the 8662 // BUILD_VECTOR is a separate use of the value. 8663 unsigned NumUsesOfInputLD = 128 / ElementSize; 8664 for (SDValue BVInOp : Op->ops()) 8665 if (BVInOp.isUndef()) 8666 NumUsesOfInputLD--; 8667 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 8668 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 8669 ((Subtarget.hasVSX() && ElementSize == 64) || 8670 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8671 SDValue Ops[] = { 8672 LD->getChain(), // Chain 8673 LD->getBasePtr(), // Ptr 8674 DAG.getValueType(Op.getValueType()) // VT 8675 }; 8676 SDValue LdSplt = DAG.getMemIntrinsicNode( 8677 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8678 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8679 // Replace all uses of the output chain of the original load with the 8680 // output chain of the new load. 8681 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 8682 LdSplt.getValue(1)); 8683 return LdSplt; 8684 } 8685 } 8686 8687 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 8688 // 32-bits can be lowered to VSX instructions under certain conditions. 8689 // Without VSX, there is no pattern more efficient than expanding the node. 8690 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 8691 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8692 Subtarget.hasP8Vector())) 8693 return Op; 8694 return SDValue(); 8695 } 8696 8697 uint64_t SplatBits = APSplatBits.getZExtValue(); 8698 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 8699 unsigned SplatSize = SplatBitSize / 8; 8700 8701 // First, handle single instruction cases. 8702 8703 // All zeros? 8704 if (SplatBits == 0) { 8705 // Canonicalize all zero vectors to be v4i32. 8706 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8707 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8708 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8709 } 8710 return Op; 8711 } 8712 8713 // We have XXSPLTIW for constant splats four bytes wide. 8714 // Given vector length is a multiple of 4, 2-byte splats can be replaced 8715 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 8716 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 8717 // turned into a 4-byte splat of 0xABABABAB. 8718 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 8719 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 8720 Op.getValueType(), DAG, dl); 8721 8722 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 8723 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8724 dl); 8725 8726 // We have XXSPLTIB for constant splats one byte wide. 8727 if (Subtarget.hasP9Vector() && SplatSize == 1) 8728 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 8729 dl); 8730 8731 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8732 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8733 (32-SplatBitSize)); 8734 if (SextVal >= -16 && SextVal <= 15) 8735 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 8736 dl); 8737 8738 // Two instruction sequences. 8739 8740 // If this value is in the range [-32,30] and is even, use: 8741 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8742 // If this value is in the range [17,31] and is odd, use: 8743 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8744 // If this value is in the range [-31,-17] and is odd, use: 8745 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8746 // Note the last two are three-instruction sequences. 8747 if (SextVal >= -32 && SextVal <= 31) { 8748 // To avoid having these optimizations undone by constant folding, 8749 // we convert to a pseudo that will be expanded later into one of 8750 // the above forms. 8751 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8752 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8753 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8754 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8755 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8756 if (VT == Op.getValueType()) 8757 return RetVal; 8758 else 8759 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8760 } 8761 8762 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8763 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8764 // for fneg/fabs. 8765 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8766 // Make -1 and vspltisw -1: 8767 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 8768 8769 // Make the VSLW intrinsic, computing 0x8000_0000. 8770 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8771 OnesV, DAG, dl); 8772 8773 // xor by OnesV to invert it. 8774 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8775 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8776 } 8777 8778 // Check to see if this is a wide variety of vsplti*, binop self cases. 8779 static const signed char SplatCsts[] = { 8780 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8781 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8782 }; 8783 8784 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8785 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8786 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8787 int i = SplatCsts[idx]; 8788 8789 // Figure out what shift amount will be used by altivec if shifted by i in 8790 // this splat size. 8791 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8792 8793 // vsplti + shl self. 8794 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8795 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 8796 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8797 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8798 Intrinsic::ppc_altivec_vslw 8799 }; 8800 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8801 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8802 } 8803 8804 // vsplti + srl self. 8805 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8806 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 8807 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8808 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8809 Intrinsic::ppc_altivec_vsrw 8810 }; 8811 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8812 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8813 } 8814 8815 // vsplti + rol self. 8816 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8817 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8818 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 8819 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8820 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8821 Intrinsic::ppc_altivec_vrlw 8822 }; 8823 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8824 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8825 } 8826 8827 // t = vsplti c, result = vsldoi t, t, 1 8828 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8829 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 8830 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8831 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8832 } 8833 // t = vsplti c, result = vsldoi t, t, 2 8834 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8835 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 8836 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8837 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8838 } 8839 // t = vsplti c, result = vsldoi t, t, 3 8840 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8841 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 8842 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8843 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8844 } 8845 } 8846 8847 return SDValue(); 8848 } 8849 8850 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8851 /// the specified operations to build the shuffle. 8852 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8853 SDValue RHS, SelectionDAG &DAG, 8854 const SDLoc &dl) { 8855 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8856 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8857 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8858 8859 enum { 8860 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8861 OP_VMRGHW, 8862 OP_VMRGLW, 8863 OP_VSPLTISW0, 8864 OP_VSPLTISW1, 8865 OP_VSPLTISW2, 8866 OP_VSPLTISW3, 8867 OP_VSLDOI4, 8868 OP_VSLDOI8, 8869 OP_VSLDOI12 8870 }; 8871 8872 if (OpNum == OP_COPY) { 8873 if (LHSID == (1*9+2)*9+3) return LHS; 8874 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8875 return RHS; 8876 } 8877 8878 SDValue OpLHS, OpRHS; 8879 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8880 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8881 8882 int ShufIdxs[16]; 8883 switch (OpNum) { 8884 default: llvm_unreachable("Unknown i32 permute!"); 8885 case OP_VMRGHW: 8886 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8887 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8888 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8889 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8890 break; 8891 case OP_VMRGLW: 8892 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8893 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8894 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8895 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8896 break; 8897 case OP_VSPLTISW0: 8898 for (unsigned i = 0; i != 16; ++i) 8899 ShufIdxs[i] = (i&3)+0; 8900 break; 8901 case OP_VSPLTISW1: 8902 for (unsigned i = 0; i != 16; ++i) 8903 ShufIdxs[i] = (i&3)+4; 8904 break; 8905 case OP_VSPLTISW2: 8906 for (unsigned i = 0; i != 16; ++i) 8907 ShufIdxs[i] = (i&3)+8; 8908 break; 8909 case OP_VSPLTISW3: 8910 for (unsigned i = 0; i != 16; ++i) 8911 ShufIdxs[i] = (i&3)+12; 8912 break; 8913 case OP_VSLDOI4: 8914 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8915 case OP_VSLDOI8: 8916 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8917 case OP_VSLDOI12: 8918 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 8919 } 8920 EVT VT = OpLHS.getValueType(); 8921 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 8922 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 8923 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 8924 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8925 } 8926 8927 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 8928 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 8929 /// SDValue. 8930 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 8931 SelectionDAG &DAG) const { 8932 const unsigned BytesInVector = 16; 8933 bool IsLE = Subtarget.isLittleEndian(); 8934 SDLoc dl(N); 8935 SDValue V1 = N->getOperand(0); 8936 SDValue V2 = N->getOperand(1); 8937 unsigned ShiftElts = 0, InsertAtByte = 0; 8938 bool Swap = false; 8939 8940 // Shifts required to get the byte we want at element 7. 8941 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 8942 0, 15, 14, 13, 12, 11, 10, 9}; 8943 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 8944 1, 2, 3, 4, 5, 6, 7, 8}; 8945 8946 ArrayRef<int> Mask = N->getMask(); 8947 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 8948 8949 // For each mask element, find out if we're just inserting something 8950 // from V2 into V1 or vice versa. 8951 // Possible permutations inserting an element from V2 into V1: 8952 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8953 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8954 // ... 8955 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 8956 // Inserting from V1 into V2 will be similar, except mask range will be 8957 // [16,31]. 8958 8959 bool FoundCandidate = false; 8960 // If both vector operands for the shuffle are the same vector, the mask 8961 // will contain only elements from the first one and the second one will be 8962 // undef. 8963 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 8964 // Go through the mask of half-words to find an element that's being moved 8965 // from one vector to the other. 8966 for (unsigned i = 0; i < BytesInVector; ++i) { 8967 unsigned CurrentElement = Mask[i]; 8968 // If 2nd operand is undefined, we should only look for element 7 in the 8969 // Mask. 8970 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 8971 continue; 8972 8973 bool OtherElementsInOrder = true; 8974 // Examine the other elements in the Mask to see if they're in original 8975 // order. 8976 for (unsigned j = 0; j < BytesInVector; ++j) { 8977 if (j == i) 8978 continue; 8979 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 8980 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 8981 // in which we always assume we're always picking from the 1st operand. 8982 int MaskOffset = 8983 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 8984 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 8985 OtherElementsInOrder = false; 8986 break; 8987 } 8988 } 8989 // If other elements are in original order, we record the number of shifts 8990 // we need to get the element we want into element 7. Also record which byte 8991 // in the vector we should insert into. 8992 if (OtherElementsInOrder) { 8993 // If 2nd operand is undefined, we assume no shifts and no swapping. 8994 if (V2.isUndef()) { 8995 ShiftElts = 0; 8996 Swap = false; 8997 } else { 8998 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 8999 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9000 : BigEndianShifts[CurrentElement & 0xF]; 9001 Swap = CurrentElement < BytesInVector; 9002 } 9003 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9004 FoundCandidate = true; 9005 break; 9006 } 9007 } 9008 9009 if (!FoundCandidate) 9010 return SDValue(); 9011 9012 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9013 // optionally with VECSHL if shift is required. 9014 if (Swap) 9015 std::swap(V1, V2); 9016 if (V2.isUndef()) 9017 V2 = V1; 9018 if (ShiftElts) { 9019 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9020 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9021 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9022 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9023 } 9024 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9025 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9026 } 9027 9028 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9029 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9030 /// SDValue. 9031 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9032 SelectionDAG &DAG) const { 9033 const unsigned NumHalfWords = 8; 9034 const unsigned BytesInVector = NumHalfWords * 2; 9035 // Check that the shuffle is on half-words. 9036 if (!isNByteElemShuffleMask(N, 2, 1)) 9037 return SDValue(); 9038 9039 bool IsLE = Subtarget.isLittleEndian(); 9040 SDLoc dl(N); 9041 SDValue V1 = N->getOperand(0); 9042 SDValue V2 = N->getOperand(1); 9043 unsigned ShiftElts = 0, InsertAtByte = 0; 9044 bool Swap = false; 9045 9046 // Shifts required to get the half-word we want at element 3. 9047 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9048 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9049 9050 uint32_t Mask = 0; 9051 uint32_t OriginalOrderLow = 0x1234567; 9052 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9053 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9054 // 32-bit space, only need 4-bit nibbles per element. 9055 for (unsigned i = 0; i < NumHalfWords; ++i) { 9056 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9057 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9058 } 9059 9060 // For each mask element, find out if we're just inserting something 9061 // from V2 into V1 or vice versa. Possible permutations inserting an element 9062 // from V2 into V1: 9063 // X, 1, 2, 3, 4, 5, 6, 7 9064 // 0, X, 2, 3, 4, 5, 6, 7 9065 // 0, 1, X, 3, 4, 5, 6, 7 9066 // 0, 1, 2, X, 4, 5, 6, 7 9067 // 0, 1, 2, 3, X, 5, 6, 7 9068 // 0, 1, 2, 3, 4, X, 6, 7 9069 // 0, 1, 2, 3, 4, 5, X, 7 9070 // 0, 1, 2, 3, 4, 5, 6, X 9071 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9072 9073 bool FoundCandidate = false; 9074 // Go through the mask of half-words to find an element that's being moved 9075 // from one vector to the other. 9076 for (unsigned i = 0; i < NumHalfWords; ++i) { 9077 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9078 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9079 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9080 uint32_t TargetOrder = 0x0; 9081 9082 // If both vector operands for the shuffle are the same vector, the mask 9083 // will contain only elements from the first one and the second one will be 9084 // undef. 9085 if (V2.isUndef()) { 9086 ShiftElts = 0; 9087 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9088 TargetOrder = OriginalOrderLow; 9089 Swap = false; 9090 // Skip if not the correct element or mask of other elements don't equal 9091 // to our expected order. 9092 if (MaskOneElt == VINSERTHSrcElem && 9093 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9094 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9095 FoundCandidate = true; 9096 break; 9097 } 9098 } else { // If both operands are defined. 9099 // Target order is [8,15] if the current mask is between [0,7]. 9100 TargetOrder = 9101 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9102 // Skip if mask of other elements don't equal our expected order. 9103 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9104 // We only need the last 3 bits for the number of shifts. 9105 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9106 : BigEndianShifts[MaskOneElt & 0x7]; 9107 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9108 Swap = MaskOneElt < NumHalfWords; 9109 FoundCandidate = true; 9110 break; 9111 } 9112 } 9113 } 9114 9115 if (!FoundCandidate) 9116 return SDValue(); 9117 9118 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9119 // optionally with VECSHL if shift is required. 9120 if (Swap) 9121 std::swap(V1, V2); 9122 if (V2.isUndef()) 9123 V2 = V1; 9124 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9125 if (ShiftElts) { 9126 // Double ShiftElts because we're left shifting on v16i8 type. 9127 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9128 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9129 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9130 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9131 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9132 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9133 } 9134 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9135 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9136 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9137 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9138 } 9139 9140 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9141 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9142 /// return the default SDValue. 9143 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9144 SelectionDAG &DAG) const { 9145 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9146 // to v16i8. Peek through the bitcasts to get the actual operands. 9147 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9148 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9149 9150 auto ShuffleMask = SVN->getMask(); 9151 SDValue VecShuffle(SVN, 0); 9152 SDLoc DL(SVN); 9153 9154 // Check that we have a four byte shuffle. 9155 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9156 return SDValue(); 9157 9158 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9159 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9160 std::swap(LHS, RHS); 9161 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9162 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9163 } 9164 9165 // Ensure that the RHS is a vector of constants. 9166 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9167 if (!BVN) 9168 return SDValue(); 9169 9170 // Check if RHS is a splat of 4-bytes (or smaller). 9171 APInt APSplatValue, APSplatUndef; 9172 unsigned SplatBitSize; 9173 bool HasAnyUndefs; 9174 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9175 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9176 SplatBitSize > 32) 9177 return SDValue(); 9178 9179 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9180 // The instruction splats a constant C into two words of the source vector 9181 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9182 // Thus we check that the shuffle mask is the equivalent of 9183 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9184 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9185 // within each word are consecutive, so we only need to check the first byte. 9186 SDValue Index; 9187 bool IsLE = Subtarget.isLittleEndian(); 9188 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9189 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9190 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9191 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9192 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9193 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9194 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9195 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9196 else 9197 return SDValue(); 9198 9199 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9200 // for XXSPLTI32DX. 9201 unsigned SplatVal = APSplatValue.getZExtValue(); 9202 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9203 SplatVal |= (SplatVal << SplatBitSize); 9204 9205 SDValue SplatNode = DAG.getNode( 9206 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9207 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9208 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9209 } 9210 9211 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9212 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9213 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9214 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9215 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9216 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9217 assert(Op.getValueType() == MVT::v1i128 && 9218 "Only set v1i128 as custom, other type shouldn't reach here!"); 9219 SDLoc dl(Op); 9220 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9221 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9222 unsigned SHLAmt = N1.getConstantOperandVal(0); 9223 if (SHLAmt % 8 == 0) { 9224 SmallVector<int, 16> Mask(16, 0); 9225 std::iota(Mask.begin(), Mask.end(), 0); 9226 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9227 if (SDValue Shuffle = 9228 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9229 DAG.getUNDEF(MVT::v16i8), Mask)) 9230 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9231 } 9232 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9233 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9234 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9235 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9236 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9237 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9238 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9239 } 9240 9241 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9242 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9243 /// return the code it can be lowered into. Worst case, it can always be 9244 /// lowered into a vperm. 9245 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9246 SelectionDAG &DAG) const { 9247 SDLoc dl(Op); 9248 SDValue V1 = Op.getOperand(0); 9249 SDValue V2 = Op.getOperand(1); 9250 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9251 9252 // Any nodes that were combined in the target-independent combiner prior 9253 // to vector legalization will not be sent to the target combine. Try to 9254 // combine it here. 9255 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9256 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9257 return NewShuffle; 9258 Op = NewShuffle; 9259 SVOp = cast<ShuffleVectorSDNode>(Op); 9260 V1 = Op.getOperand(0); 9261 V2 = Op.getOperand(1); 9262 } 9263 EVT VT = Op.getValueType(); 9264 bool isLittleEndian = Subtarget.isLittleEndian(); 9265 9266 unsigned ShiftElts, InsertAtByte; 9267 bool Swap = false; 9268 9269 // If this is a load-and-splat, we can do that with a single instruction 9270 // in some cases. However if the load has multiple uses, we don't want to 9271 // combine it because that will just produce multiple loads. 9272 bool IsPermutedLoad = false; 9273 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9274 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9275 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9276 InputLoad->hasOneUse()) { 9277 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9278 int SplatIdx = 9279 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9280 9281 // The splat index for permuted loads will be in the left half of the vector 9282 // which is strictly wider than the loaded value by 8 bytes. So we need to 9283 // adjust the splat index to point to the correct address in memory. 9284 if (IsPermutedLoad) { 9285 assert(isLittleEndian && "Unexpected permuted load on big endian target"); 9286 SplatIdx += IsFourByte ? 2 : 1; 9287 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9288 "Splat of a value outside of the loaded memory"); 9289 } 9290 9291 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9292 // For 4-byte load-and-splat, we need Power9. 9293 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9294 uint64_t Offset = 0; 9295 if (IsFourByte) 9296 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9297 else 9298 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9299 9300 SDValue BasePtr = LD->getBasePtr(); 9301 if (Offset != 0) 9302 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9303 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9304 SDValue Ops[] = { 9305 LD->getChain(), // Chain 9306 BasePtr, // BasePtr 9307 DAG.getValueType(Op.getValueType()) // VT 9308 }; 9309 SDVTList VTL = 9310 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9311 SDValue LdSplt = 9312 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9313 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9314 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9315 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9316 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9317 return LdSplt; 9318 } 9319 } 9320 if (Subtarget.hasP9Vector() && 9321 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9322 isLittleEndian)) { 9323 if (Swap) 9324 std::swap(V1, V2); 9325 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9326 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9327 if (ShiftElts) { 9328 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9329 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9330 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9331 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9332 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9333 } 9334 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9335 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9336 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9337 } 9338 9339 if (Subtarget.hasPrefixInstrs()) { 9340 SDValue SplatInsertNode; 9341 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9342 return SplatInsertNode; 9343 } 9344 9345 if (Subtarget.hasP9Altivec()) { 9346 SDValue NewISDNode; 9347 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9348 return NewISDNode; 9349 9350 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9351 return NewISDNode; 9352 } 9353 9354 if (Subtarget.hasVSX() && 9355 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9356 if (Swap) 9357 std::swap(V1, V2); 9358 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9359 SDValue Conv2 = 9360 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9361 9362 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9363 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9364 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9365 } 9366 9367 if (Subtarget.hasVSX() && 9368 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9369 if (Swap) 9370 std::swap(V1, V2); 9371 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9372 SDValue Conv2 = 9373 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9374 9375 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9376 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9377 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9378 } 9379 9380 if (Subtarget.hasP9Vector()) { 9381 if (PPC::isXXBRHShuffleMask(SVOp)) { 9382 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9383 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9384 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9385 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9386 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9387 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9388 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9389 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9390 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9391 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9392 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9393 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9394 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9395 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9396 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9397 } 9398 } 9399 9400 if (Subtarget.hasVSX()) { 9401 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9402 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9403 9404 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9405 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9406 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9407 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9408 } 9409 9410 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9411 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9412 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9413 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9414 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9415 } 9416 } 9417 9418 // Cases that are handled by instructions that take permute immediates 9419 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9420 // selected by the instruction selector. 9421 if (V2.isUndef()) { 9422 if (PPC::isSplatShuffleMask(SVOp, 1) || 9423 PPC::isSplatShuffleMask(SVOp, 2) || 9424 PPC::isSplatShuffleMask(SVOp, 4) || 9425 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9426 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9427 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9428 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9429 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9430 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9431 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9432 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9433 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9434 (Subtarget.hasP8Altivec() && ( 9435 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9436 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9437 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9438 return Op; 9439 } 9440 } 9441 9442 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9443 // and produce a fixed permutation. If any of these match, do not lower to 9444 // VPERM. 9445 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9446 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9447 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9448 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9449 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9450 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9451 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9452 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9453 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9454 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9455 (Subtarget.hasP8Altivec() && ( 9456 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9457 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9458 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9459 return Op; 9460 9461 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9462 // perfect shuffle table to emit an optimal matching sequence. 9463 ArrayRef<int> PermMask = SVOp->getMask(); 9464 9465 unsigned PFIndexes[4]; 9466 bool isFourElementShuffle = true; 9467 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9468 unsigned EltNo = 8; // Start out undef. 9469 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9470 if (PermMask[i*4+j] < 0) 9471 continue; // Undef, ignore it. 9472 9473 unsigned ByteSource = PermMask[i*4+j]; 9474 if ((ByteSource & 3) != j) { 9475 isFourElementShuffle = false; 9476 break; 9477 } 9478 9479 if (EltNo == 8) { 9480 EltNo = ByteSource/4; 9481 } else if (EltNo != ByteSource/4) { 9482 isFourElementShuffle = false; 9483 break; 9484 } 9485 } 9486 PFIndexes[i] = EltNo; 9487 } 9488 9489 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9490 // perfect shuffle vector to determine if it is cost effective to do this as 9491 // discrete instructions, or whether we should use a vperm. 9492 // For now, we skip this for little endian until such time as we have a 9493 // little-endian perfect shuffle table. 9494 if (isFourElementShuffle && !isLittleEndian) { 9495 // Compute the index in the perfect shuffle table. 9496 unsigned PFTableIndex = 9497 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9498 9499 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9500 unsigned Cost = (PFEntry >> 30); 9501 9502 // Determining when to avoid vperm is tricky. Many things affect the cost 9503 // of vperm, particularly how many times the perm mask needs to be computed. 9504 // For example, if the perm mask can be hoisted out of a loop or is already 9505 // used (perhaps because there are multiple permutes with the same shuffle 9506 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9507 // the loop requires an extra register. 9508 // 9509 // As a compromise, we only emit discrete instructions if the shuffle can be 9510 // generated in 3 or fewer operations. When we have loop information 9511 // available, if this block is within a loop, we should avoid using vperm 9512 // for 3-operation perms and use a constant pool load instead. 9513 if (Cost < 3) 9514 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9515 } 9516 9517 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9518 // vector that will get spilled to the constant pool. 9519 if (V2.isUndef()) V2 = V1; 9520 9521 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9522 // that it is in input element units, not in bytes. Convert now. 9523 9524 // For little endian, the order of the input vectors is reversed, and 9525 // the permutation mask is complemented with respect to 31. This is 9526 // necessary to produce proper semantics with the big-endian-biased vperm 9527 // instruction. 9528 EVT EltVT = V1.getValueType().getVectorElementType(); 9529 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9530 9531 SmallVector<SDValue, 16> ResultMask; 9532 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9533 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9534 9535 for (unsigned j = 0; j != BytesPerElement; ++j) 9536 if (isLittleEndian) 9537 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9538 dl, MVT::i32)); 9539 else 9540 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9541 MVT::i32)); 9542 } 9543 9544 ShufflesHandledWithVPERM++; 9545 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9546 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 9547 LLVM_DEBUG(SVOp->dump()); 9548 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 9549 LLVM_DEBUG(VPermMask.dump()); 9550 9551 if (isLittleEndian) 9552 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9553 V2, V1, VPermMask); 9554 else 9555 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9556 V1, V2, VPermMask); 9557 } 9558 9559 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9560 /// vector comparison. If it is, return true and fill in Opc/isDot with 9561 /// information about the intrinsic. 9562 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9563 bool &isDot, const PPCSubtarget &Subtarget) { 9564 unsigned IntrinsicID = 9565 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9566 CompareOpc = -1; 9567 isDot = false; 9568 switch (IntrinsicID) { 9569 default: 9570 return false; 9571 // Comparison predicates. 9572 case Intrinsic::ppc_altivec_vcmpbfp_p: 9573 CompareOpc = 966; 9574 isDot = true; 9575 break; 9576 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9577 CompareOpc = 198; 9578 isDot = true; 9579 break; 9580 case Intrinsic::ppc_altivec_vcmpequb_p: 9581 CompareOpc = 6; 9582 isDot = true; 9583 break; 9584 case Intrinsic::ppc_altivec_vcmpequh_p: 9585 CompareOpc = 70; 9586 isDot = true; 9587 break; 9588 case Intrinsic::ppc_altivec_vcmpequw_p: 9589 CompareOpc = 134; 9590 isDot = true; 9591 break; 9592 case Intrinsic::ppc_altivec_vcmpequd_p: 9593 if (Subtarget.hasP8Altivec()) { 9594 CompareOpc = 199; 9595 isDot = true; 9596 } else 9597 return false; 9598 break; 9599 case Intrinsic::ppc_altivec_vcmpneb_p: 9600 case Intrinsic::ppc_altivec_vcmpneh_p: 9601 case Intrinsic::ppc_altivec_vcmpnew_p: 9602 case Intrinsic::ppc_altivec_vcmpnezb_p: 9603 case Intrinsic::ppc_altivec_vcmpnezh_p: 9604 case Intrinsic::ppc_altivec_vcmpnezw_p: 9605 if (Subtarget.hasP9Altivec()) { 9606 switch (IntrinsicID) { 9607 default: 9608 llvm_unreachable("Unknown comparison intrinsic."); 9609 case Intrinsic::ppc_altivec_vcmpneb_p: 9610 CompareOpc = 7; 9611 break; 9612 case Intrinsic::ppc_altivec_vcmpneh_p: 9613 CompareOpc = 71; 9614 break; 9615 case Intrinsic::ppc_altivec_vcmpnew_p: 9616 CompareOpc = 135; 9617 break; 9618 case Intrinsic::ppc_altivec_vcmpnezb_p: 9619 CompareOpc = 263; 9620 break; 9621 case Intrinsic::ppc_altivec_vcmpnezh_p: 9622 CompareOpc = 327; 9623 break; 9624 case Intrinsic::ppc_altivec_vcmpnezw_p: 9625 CompareOpc = 391; 9626 break; 9627 } 9628 isDot = true; 9629 } else 9630 return false; 9631 break; 9632 case Intrinsic::ppc_altivec_vcmpgefp_p: 9633 CompareOpc = 454; 9634 isDot = true; 9635 break; 9636 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9637 CompareOpc = 710; 9638 isDot = true; 9639 break; 9640 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9641 CompareOpc = 774; 9642 isDot = true; 9643 break; 9644 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9645 CompareOpc = 838; 9646 isDot = true; 9647 break; 9648 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9649 CompareOpc = 902; 9650 isDot = true; 9651 break; 9652 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9653 if (Subtarget.hasP8Altivec()) { 9654 CompareOpc = 967; 9655 isDot = true; 9656 } else 9657 return false; 9658 break; 9659 case Intrinsic::ppc_altivec_vcmpgtub_p: 9660 CompareOpc = 518; 9661 isDot = true; 9662 break; 9663 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9664 CompareOpc = 582; 9665 isDot = true; 9666 break; 9667 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9668 CompareOpc = 646; 9669 isDot = true; 9670 break; 9671 case Intrinsic::ppc_altivec_vcmpgtud_p: 9672 if (Subtarget.hasP8Altivec()) { 9673 CompareOpc = 711; 9674 isDot = true; 9675 } else 9676 return false; 9677 break; 9678 9679 case Intrinsic::ppc_altivec_vcmpequq: 9680 case Intrinsic::ppc_altivec_vcmpgtsq: 9681 case Intrinsic::ppc_altivec_vcmpgtuq: 9682 if (!Subtarget.isISA3_1()) 9683 return false; 9684 switch (IntrinsicID) { 9685 default: 9686 llvm_unreachable("Unknown comparison intrinsic."); 9687 case Intrinsic::ppc_altivec_vcmpequq: 9688 CompareOpc = 455; 9689 break; 9690 case Intrinsic::ppc_altivec_vcmpgtsq: 9691 CompareOpc = 903; 9692 break; 9693 case Intrinsic::ppc_altivec_vcmpgtuq: 9694 CompareOpc = 647; 9695 break; 9696 } 9697 break; 9698 9699 // VSX predicate comparisons use the same infrastructure 9700 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9701 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9702 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9703 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9704 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9705 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9706 if (Subtarget.hasVSX()) { 9707 switch (IntrinsicID) { 9708 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9709 CompareOpc = 99; 9710 break; 9711 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9712 CompareOpc = 115; 9713 break; 9714 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9715 CompareOpc = 107; 9716 break; 9717 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9718 CompareOpc = 67; 9719 break; 9720 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9721 CompareOpc = 83; 9722 break; 9723 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9724 CompareOpc = 75; 9725 break; 9726 } 9727 isDot = true; 9728 } else 9729 return false; 9730 break; 9731 9732 // Normal Comparisons. 9733 case Intrinsic::ppc_altivec_vcmpbfp: 9734 CompareOpc = 966; 9735 break; 9736 case Intrinsic::ppc_altivec_vcmpeqfp: 9737 CompareOpc = 198; 9738 break; 9739 case Intrinsic::ppc_altivec_vcmpequb: 9740 CompareOpc = 6; 9741 break; 9742 case Intrinsic::ppc_altivec_vcmpequh: 9743 CompareOpc = 70; 9744 break; 9745 case Intrinsic::ppc_altivec_vcmpequw: 9746 CompareOpc = 134; 9747 break; 9748 case Intrinsic::ppc_altivec_vcmpequd: 9749 if (Subtarget.hasP8Altivec()) 9750 CompareOpc = 199; 9751 else 9752 return false; 9753 break; 9754 case Intrinsic::ppc_altivec_vcmpneb: 9755 case Intrinsic::ppc_altivec_vcmpneh: 9756 case Intrinsic::ppc_altivec_vcmpnew: 9757 case Intrinsic::ppc_altivec_vcmpnezb: 9758 case Intrinsic::ppc_altivec_vcmpnezh: 9759 case Intrinsic::ppc_altivec_vcmpnezw: 9760 if (Subtarget.hasP9Altivec()) 9761 switch (IntrinsicID) { 9762 default: 9763 llvm_unreachable("Unknown comparison intrinsic."); 9764 case Intrinsic::ppc_altivec_vcmpneb: 9765 CompareOpc = 7; 9766 break; 9767 case Intrinsic::ppc_altivec_vcmpneh: 9768 CompareOpc = 71; 9769 break; 9770 case Intrinsic::ppc_altivec_vcmpnew: 9771 CompareOpc = 135; 9772 break; 9773 case Intrinsic::ppc_altivec_vcmpnezb: 9774 CompareOpc = 263; 9775 break; 9776 case Intrinsic::ppc_altivec_vcmpnezh: 9777 CompareOpc = 327; 9778 break; 9779 case Intrinsic::ppc_altivec_vcmpnezw: 9780 CompareOpc = 391; 9781 break; 9782 } 9783 else 9784 return false; 9785 break; 9786 case Intrinsic::ppc_altivec_vcmpgefp: 9787 CompareOpc = 454; 9788 break; 9789 case Intrinsic::ppc_altivec_vcmpgtfp: 9790 CompareOpc = 710; 9791 break; 9792 case Intrinsic::ppc_altivec_vcmpgtsb: 9793 CompareOpc = 774; 9794 break; 9795 case Intrinsic::ppc_altivec_vcmpgtsh: 9796 CompareOpc = 838; 9797 break; 9798 case Intrinsic::ppc_altivec_vcmpgtsw: 9799 CompareOpc = 902; 9800 break; 9801 case Intrinsic::ppc_altivec_vcmpgtsd: 9802 if (Subtarget.hasP8Altivec()) 9803 CompareOpc = 967; 9804 else 9805 return false; 9806 break; 9807 case Intrinsic::ppc_altivec_vcmpgtub: 9808 CompareOpc = 518; 9809 break; 9810 case Intrinsic::ppc_altivec_vcmpgtuh: 9811 CompareOpc = 582; 9812 break; 9813 case Intrinsic::ppc_altivec_vcmpgtuw: 9814 CompareOpc = 646; 9815 break; 9816 case Intrinsic::ppc_altivec_vcmpgtud: 9817 if (Subtarget.hasP8Altivec()) 9818 CompareOpc = 711; 9819 else 9820 return false; 9821 break; 9822 case Intrinsic::ppc_altivec_vcmpequq_p: 9823 case Intrinsic::ppc_altivec_vcmpgtsq_p: 9824 case Intrinsic::ppc_altivec_vcmpgtuq_p: 9825 if (!Subtarget.isISA3_1()) 9826 return false; 9827 switch (IntrinsicID) { 9828 default: 9829 llvm_unreachable("Unknown comparison intrinsic."); 9830 case Intrinsic::ppc_altivec_vcmpequq_p: 9831 CompareOpc = 455; 9832 break; 9833 case Intrinsic::ppc_altivec_vcmpgtsq_p: 9834 CompareOpc = 903; 9835 break; 9836 case Intrinsic::ppc_altivec_vcmpgtuq_p: 9837 CompareOpc = 647; 9838 break; 9839 } 9840 isDot = true; 9841 break; 9842 } 9843 return true; 9844 } 9845 9846 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9847 /// lower, do it, otherwise return null. 9848 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9849 SelectionDAG &DAG) const { 9850 unsigned IntrinsicID = 9851 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9852 9853 SDLoc dl(Op); 9854 9855 switch (IntrinsicID) { 9856 case Intrinsic::thread_pointer: 9857 // Reads the thread pointer register, used for __builtin_thread_pointer. 9858 if (Subtarget.isPPC64()) 9859 return DAG.getRegister(PPC::X13, MVT::i64); 9860 return DAG.getRegister(PPC::R2, MVT::i32); 9861 9862 case Intrinsic::ppc_mma_disassemble_acc: 9863 case Intrinsic::ppc_vsx_disassemble_pair: { 9864 int NumVecs = 2; 9865 SDValue WideVec = Op.getOperand(1); 9866 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 9867 NumVecs = 4; 9868 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 9869 } 9870 SmallVector<SDValue, 4> RetOps; 9871 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 9872 SDValue Extract = DAG.getNode( 9873 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 9874 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 9875 : VecNo, 9876 dl, MVT::i64)); 9877 RetOps.push_back(Extract); 9878 } 9879 return DAG.getMergeValues(RetOps, dl); 9880 } 9881 } 9882 9883 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9884 // opcode number of the comparison. 9885 int CompareOpc; 9886 bool isDot; 9887 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9888 return SDValue(); // Don't custom lower most intrinsics. 9889 9890 // If this is a non-dot comparison, make the VCMP node and we are done. 9891 if (!isDot) { 9892 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9893 Op.getOperand(1), Op.getOperand(2), 9894 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9895 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9896 } 9897 9898 // Create the PPCISD altivec 'dot' comparison node. 9899 SDValue Ops[] = { 9900 Op.getOperand(2), // LHS 9901 Op.getOperand(3), // RHS 9902 DAG.getConstant(CompareOpc, dl, MVT::i32) 9903 }; 9904 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9905 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 9906 9907 // Now that we have the comparison, emit a copy from the CR to a GPR. 9908 // This is flagged to the above dot comparison. 9909 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9910 DAG.getRegister(PPC::CR6, MVT::i32), 9911 CompNode.getValue(1)); 9912 9913 // Unpack the result based on how the target uses it. 9914 unsigned BitNo; // Bit # of CR6. 9915 bool InvertBit; // Invert result? 9916 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9917 default: // Can't happen, don't crash on invalid number though. 9918 case 0: // Return the value of the EQ bit of CR6. 9919 BitNo = 0; InvertBit = false; 9920 break; 9921 case 1: // Return the inverted value of the EQ bit of CR6. 9922 BitNo = 0; InvertBit = true; 9923 break; 9924 case 2: // Return the value of the LT bit of CR6. 9925 BitNo = 2; InvertBit = false; 9926 break; 9927 case 3: // Return the inverted value of the LT bit of CR6. 9928 BitNo = 2; InvertBit = true; 9929 break; 9930 } 9931 9932 // Shift the bit into the low position. 9933 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9934 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9935 // Isolate the bit. 9936 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9937 DAG.getConstant(1, dl, MVT::i32)); 9938 9939 // If we are supposed to, toggle the bit. 9940 if (InvertBit) 9941 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9942 DAG.getConstant(1, dl, MVT::i32)); 9943 return Flags; 9944 } 9945 9946 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9947 SelectionDAG &DAG) const { 9948 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9949 // the beginning of the argument list. 9950 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9951 SDLoc DL(Op); 9952 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9953 case Intrinsic::ppc_cfence: { 9954 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9955 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9956 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9957 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9958 Op.getOperand(ArgStart + 1)), 9959 Op.getOperand(0)), 9960 0); 9961 } 9962 default: 9963 break; 9964 } 9965 return SDValue(); 9966 } 9967 9968 // Lower scalar BSWAP64 to xxbrd. 9969 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9970 SDLoc dl(Op); 9971 // MTVSRDD 9972 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9973 Op.getOperand(0)); 9974 // XXBRD 9975 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 9976 // MFVSRD 9977 int VectorIndex = 0; 9978 if (Subtarget.isLittleEndian()) 9979 VectorIndex = 1; 9980 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9981 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9982 return Op; 9983 } 9984 9985 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9986 // compared to a value that is atomically loaded (atomic loads zero-extend). 9987 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9988 SelectionDAG &DAG) const { 9989 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9990 "Expecting an atomic compare-and-swap here."); 9991 SDLoc dl(Op); 9992 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9993 EVT MemVT = AtomicNode->getMemoryVT(); 9994 if (MemVT.getSizeInBits() >= 32) 9995 return Op; 9996 9997 SDValue CmpOp = Op.getOperand(2); 9998 // If this is already correctly zero-extended, leave it alone. 9999 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10000 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10001 return Op; 10002 10003 // Clear the high bits of the compare operand. 10004 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10005 SDValue NewCmpOp = 10006 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10007 DAG.getConstant(MaskVal, dl, MVT::i32)); 10008 10009 // Replace the existing compare operand with the properly zero-extended one. 10010 SmallVector<SDValue, 4> Ops; 10011 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10012 Ops.push_back(AtomicNode->getOperand(i)); 10013 Ops[2] = NewCmpOp; 10014 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10015 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10016 auto NodeTy = 10017 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10018 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10019 } 10020 10021 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10022 SelectionDAG &DAG) const { 10023 SDLoc dl(Op); 10024 // Create a stack slot that is 16-byte aligned. 10025 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10026 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10027 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10028 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10029 10030 // Store the input value into Value#0 of the stack slot. 10031 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10032 MachinePointerInfo()); 10033 // Load it out. 10034 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10035 } 10036 10037 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10038 SelectionDAG &DAG) const { 10039 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10040 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10041 10042 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10043 10044 EVT VT = Op.getValueType(); 10045 SDLoc dl(Op); 10046 SDValue V1 = Op.getOperand(0); 10047 SDValue V2 = Op.getOperand(1); 10048 SDValue V3 = Op.getOperand(2); 10049 10050 if (Subtarget.isISA3_1()) { 10051 // On P10, we have legal lowering for constant and variable indices for 10052 // integer vectors. 10053 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10054 VT == MVT::v2i64) 10055 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10056 // For f32 and f64 vectors, we have legal lowering for variable indices. 10057 // For f32 we also have legal lowering when the element is loaded from 10058 // memory. 10059 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10060 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10061 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10062 return SDValue(); 10063 } 10064 } 10065 10066 // Before P10, we have legal lowering for constant indices but not for 10067 // variable ones. 10068 if (!C) 10069 return SDValue(); 10070 10071 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10072 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10073 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10074 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10075 unsigned InsertAtElement = C->getZExtValue(); 10076 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10077 if (Subtarget.isLittleEndian()) { 10078 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10079 } 10080 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10081 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10082 } 10083 return Op; 10084 } 10085 10086 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10087 SelectionDAG &DAG) const { 10088 SDLoc dl(Op); 10089 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10090 SDValue LoadChain = LN->getChain(); 10091 SDValue BasePtr = LN->getBasePtr(); 10092 EVT VT = Op.getValueType(); 10093 10094 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10095 return Op; 10096 10097 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10098 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10099 // 2 or 4 vsx registers. 10100 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10101 "Type unsupported without MMA"); 10102 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10103 "Type unsupported without paired vector support"); 10104 Align Alignment = LN->getAlign(); 10105 SmallVector<SDValue, 4> Loads; 10106 SmallVector<SDValue, 4> LoadChains; 10107 unsigned NumVecs = VT.getSizeInBits() / 128; 10108 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10109 SDValue Load = 10110 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10111 LN->getPointerInfo().getWithOffset(Idx * 16), 10112 commonAlignment(Alignment, Idx * 16), 10113 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10114 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10115 DAG.getConstant(16, dl, BasePtr.getValueType())); 10116 Loads.push_back(Load); 10117 LoadChains.push_back(Load.getValue(1)); 10118 } 10119 if (Subtarget.isLittleEndian()) { 10120 std::reverse(Loads.begin(), Loads.end()); 10121 std::reverse(LoadChains.begin(), LoadChains.end()); 10122 } 10123 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10124 SDValue Value = 10125 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10126 dl, VT, Loads); 10127 SDValue RetOps[] = {Value, TF}; 10128 return DAG.getMergeValues(RetOps, dl); 10129 } 10130 10131 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10132 SelectionDAG &DAG) const { 10133 SDLoc dl(Op); 10134 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10135 SDValue StoreChain = SN->getChain(); 10136 SDValue BasePtr = SN->getBasePtr(); 10137 SDValue Value = SN->getValue(); 10138 EVT StoreVT = Value.getValueType(); 10139 10140 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10141 return Op; 10142 10143 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10144 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10145 // underlying registers individually. 10146 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10147 "Type unsupported without MMA"); 10148 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10149 "Type unsupported without paired vector support"); 10150 Align Alignment = SN->getAlign(); 10151 SmallVector<SDValue, 4> Stores; 10152 unsigned NumVecs = 2; 10153 if (StoreVT == MVT::v512i1) { 10154 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10155 NumVecs = 4; 10156 } 10157 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10158 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10159 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10160 DAG.getConstant(VecNum, dl, MVT::i64)); 10161 SDValue Store = 10162 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10163 SN->getPointerInfo().getWithOffset(Idx * 16), 10164 commonAlignment(Alignment, Idx * 16), 10165 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10166 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10167 DAG.getConstant(16, dl, BasePtr.getValueType())); 10168 Stores.push_back(Store); 10169 } 10170 SDValue TF = DAG.getTokenFactor(dl, Stores); 10171 return TF; 10172 } 10173 10174 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10175 SDLoc dl(Op); 10176 if (Op.getValueType() == MVT::v4i32) { 10177 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10178 10179 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10180 // +16 as shift amt. 10181 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10182 SDValue RHSSwap = // = vrlw RHS, 16 10183 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10184 10185 // Shrinkify inputs to v8i16. 10186 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10187 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10188 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10189 10190 // Low parts multiplied together, generating 32-bit results (we ignore the 10191 // top parts). 10192 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10193 LHS, RHS, DAG, dl, MVT::v4i32); 10194 10195 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10196 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10197 // Shift the high parts up 16 bits. 10198 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10199 Neg16, DAG, dl); 10200 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10201 } else if (Op.getValueType() == MVT::v16i8) { 10202 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10203 bool isLittleEndian = Subtarget.isLittleEndian(); 10204 10205 // Multiply the even 8-bit parts, producing 16-bit sums. 10206 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10207 LHS, RHS, DAG, dl, MVT::v8i16); 10208 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10209 10210 // Multiply the odd 8-bit parts, producing 16-bit sums. 10211 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10212 LHS, RHS, DAG, dl, MVT::v8i16); 10213 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10214 10215 // Merge the results together. Because vmuleub and vmuloub are 10216 // instructions with a big-endian bias, we must reverse the 10217 // element numbering and reverse the meaning of "odd" and "even" 10218 // when generating little endian code. 10219 int Ops[16]; 10220 for (unsigned i = 0; i != 8; ++i) { 10221 if (isLittleEndian) { 10222 Ops[i*2 ] = 2*i; 10223 Ops[i*2+1] = 2*i+16; 10224 } else { 10225 Ops[i*2 ] = 2*i+1; 10226 Ops[i*2+1] = 2*i+1+16; 10227 } 10228 } 10229 if (isLittleEndian) 10230 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10231 else 10232 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10233 } else { 10234 llvm_unreachable("Unknown mul to lower!"); 10235 } 10236 } 10237 10238 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10239 bool IsStrict = Op->isStrictFPOpcode(); 10240 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10241 !Subtarget.hasP9Vector()) 10242 return SDValue(); 10243 10244 return Op; 10245 } 10246 10247 // Custom lowering for fpext vf32 to v2f64 10248 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10249 10250 assert(Op.getOpcode() == ISD::FP_EXTEND && 10251 "Should only be called for ISD::FP_EXTEND"); 10252 10253 // FIXME: handle extends from half precision float vectors on P9. 10254 // We only want to custom lower an extend from v2f32 to v2f64. 10255 if (Op.getValueType() != MVT::v2f64 || 10256 Op.getOperand(0).getValueType() != MVT::v2f32) 10257 return SDValue(); 10258 10259 SDLoc dl(Op); 10260 SDValue Op0 = Op.getOperand(0); 10261 10262 switch (Op0.getOpcode()) { 10263 default: 10264 return SDValue(); 10265 case ISD::EXTRACT_SUBVECTOR: { 10266 assert(Op0.getNumOperands() == 2 && 10267 isa<ConstantSDNode>(Op0->getOperand(1)) && 10268 "Node should have 2 operands with second one being a constant!"); 10269 10270 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10271 return SDValue(); 10272 10273 // Custom lower is only done for high or low doubleword. 10274 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10275 if (Idx % 2 != 0) 10276 return SDValue(); 10277 10278 // Since input is v4f32, at this point Idx is either 0 or 2. 10279 // Shift to get the doubleword position we want. 10280 int DWord = Idx >> 1; 10281 10282 // High and low word positions are different on little endian. 10283 if (Subtarget.isLittleEndian()) 10284 DWord ^= 0x1; 10285 10286 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10287 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10288 } 10289 case ISD::FADD: 10290 case ISD::FMUL: 10291 case ISD::FSUB: { 10292 SDValue NewLoad[2]; 10293 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10294 // Ensure both input are loads. 10295 SDValue LdOp = Op0.getOperand(i); 10296 if (LdOp.getOpcode() != ISD::LOAD) 10297 return SDValue(); 10298 // Generate new load node. 10299 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10300 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10301 NewLoad[i] = DAG.getMemIntrinsicNode( 10302 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10303 LD->getMemoryVT(), LD->getMemOperand()); 10304 } 10305 SDValue NewOp = 10306 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10307 NewLoad[1], Op0.getNode()->getFlags()); 10308 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10309 DAG.getConstant(0, dl, MVT::i32)); 10310 } 10311 case ISD::LOAD: { 10312 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10313 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10314 SDValue NewLd = DAG.getMemIntrinsicNode( 10315 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10316 LD->getMemoryVT(), LD->getMemOperand()); 10317 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10318 DAG.getConstant(0, dl, MVT::i32)); 10319 } 10320 } 10321 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10322 } 10323 10324 /// LowerOperation - Provide custom lowering hooks for some operations. 10325 /// 10326 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10327 switch (Op.getOpcode()) { 10328 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10329 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10330 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10331 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10332 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10333 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10334 case ISD::SETCC: return LowerSETCC(Op, DAG); 10335 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10336 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10337 10338 // Variable argument lowering. 10339 case ISD::VASTART: return LowerVASTART(Op, DAG); 10340 case ISD::VAARG: return LowerVAARG(Op, DAG); 10341 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10342 10343 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10344 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10345 case ISD::GET_DYNAMIC_AREA_OFFSET: 10346 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10347 10348 // Exception handling lowering. 10349 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10350 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10351 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10352 10353 case ISD::LOAD: return LowerLOAD(Op, DAG); 10354 case ISD::STORE: return LowerSTORE(Op, DAG); 10355 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10356 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10357 case ISD::STRICT_FP_TO_UINT: 10358 case ISD::STRICT_FP_TO_SINT: 10359 case ISD::FP_TO_UINT: 10360 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10361 case ISD::STRICT_UINT_TO_FP: 10362 case ISD::STRICT_SINT_TO_FP: 10363 case ISD::UINT_TO_FP: 10364 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10365 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10366 10367 // Lower 64-bit shifts. 10368 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10369 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10370 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10371 10372 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10373 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10374 10375 // Vector-related lowering. 10376 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10377 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10378 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10379 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10380 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10381 case ISD::MUL: return LowerMUL(Op, DAG); 10382 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10383 case ISD::STRICT_FP_ROUND: 10384 case ISD::FP_ROUND: 10385 return LowerFP_ROUND(Op, DAG); 10386 case ISD::ROTL: return LowerROTL(Op, DAG); 10387 10388 // For counter-based loop handling. 10389 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10390 10391 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10392 10393 // Frame & Return address. 10394 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10395 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10396 10397 case ISD::INTRINSIC_VOID: 10398 return LowerINTRINSIC_VOID(Op, DAG); 10399 case ISD::BSWAP: 10400 return LowerBSWAP(Op, DAG); 10401 case ISD::ATOMIC_CMP_SWAP: 10402 return LowerATOMIC_CMP_SWAP(Op, DAG); 10403 } 10404 } 10405 10406 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10407 SmallVectorImpl<SDValue>&Results, 10408 SelectionDAG &DAG) const { 10409 SDLoc dl(N); 10410 switch (N->getOpcode()) { 10411 default: 10412 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10413 case ISD::READCYCLECOUNTER: { 10414 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10415 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10416 10417 Results.push_back( 10418 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10419 Results.push_back(RTB.getValue(2)); 10420 break; 10421 } 10422 case ISD::INTRINSIC_W_CHAIN: { 10423 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10424 Intrinsic::loop_decrement) 10425 break; 10426 10427 assert(N->getValueType(0) == MVT::i1 && 10428 "Unexpected result type for CTR decrement intrinsic"); 10429 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10430 N->getValueType(0)); 10431 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10432 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10433 N->getOperand(1)); 10434 10435 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10436 Results.push_back(NewInt.getValue(1)); 10437 break; 10438 } 10439 case ISD::VAARG: { 10440 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10441 return; 10442 10443 EVT VT = N->getValueType(0); 10444 10445 if (VT == MVT::i64) { 10446 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10447 10448 Results.push_back(NewNode); 10449 Results.push_back(NewNode.getValue(1)); 10450 } 10451 return; 10452 } 10453 case ISD::STRICT_FP_TO_SINT: 10454 case ISD::STRICT_FP_TO_UINT: 10455 case ISD::FP_TO_SINT: 10456 case ISD::FP_TO_UINT: 10457 // LowerFP_TO_INT() can only handle f32 and f64. 10458 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10459 MVT::ppcf128) 10460 return; 10461 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10462 return; 10463 case ISD::TRUNCATE: { 10464 if (!N->getValueType(0).isVector()) 10465 return; 10466 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10467 if (Lowered) 10468 Results.push_back(Lowered); 10469 return; 10470 } 10471 case ISD::FSHL: 10472 case ISD::FSHR: 10473 // Don't handle funnel shifts here. 10474 return; 10475 case ISD::BITCAST: 10476 // Don't handle bitcast here. 10477 return; 10478 case ISD::FP_EXTEND: 10479 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10480 if (Lowered) 10481 Results.push_back(Lowered); 10482 return; 10483 } 10484 } 10485 10486 //===----------------------------------------------------------------------===// 10487 // Other Lowering Code 10488 //===----------------------------------------------------------------------===// 10489 10490 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10491 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10492 Function *Func = Intrinsic::getDeclaration(M, Id); 10493 return Builder.CreateCall(Func, {}); 10494 } 10495 10496 // The mappings for emitLeading/TrailingFence is taken from 10497 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10498 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10499 Instruction *Inst, 10500 AtomicOrdering Ord) const { 10501 if (Ord == AtomicOrdering::SequentiallyConsistent) 10502 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10503 if (isReleaseOrStronger(Ord)) 10504 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10505 return nullptr; 10506 } 10507 10508 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10509 Instruction *Inst, 10510 AtomicOrdering Ord) const { 10511 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10512 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10513 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10514 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10515 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10516 return Builder.CreateCall( 10517 Intrinsic::getDeclaration( 10518 Builder.GetInsertBlock()->getParent()->getParent(), 10519 Intrinsic::ppc_cfence, {Inst->getType()}), 10520 {Inst}); 10521 // FIXME: Can use isync for rmw operation. 10522 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10523 } 10524 return nullptr; 10525 } 10526 10527 MachineBasicBlock * 10528 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10529 unsigned AtomicSize, 10530 unsigned BinOpcode, 10531 unsigned CmpOpcode, 10532 unsigned CmpPred) const { 10533 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10534 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10535 10536 auto LoadMnemonic = PPC::LDARX; 10537 auto StoreMnemonic = PPC::STDCX; 10538 switch (AtomicSize) { 10539 default: 10540 llvm_unreachable("Unexpected size of atomic entity"); 10541 case 1: 10542 LoadMnemonic = PPC::LBARX; 10543 StoreMnemonic = PPC::STBCX; 10544 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10545 break; 10546 case 2: 10547 LoadMnemonic = PPC::LHARX; 10548 StoreMnemonic = PPC::STHCX; 10549 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10550 break; 10551 case 4: 10552 LoadMnemonic = PPC::LWARX; 10553 StoreMnemonic = PPC::STWCX; 10554 break; 10555 case 8: 10556 LoadMnemonic = PPC::LDARX; 10557 StoreMnemonic = PPC::STDCX; 10558 break; 10559 } 10560 10561 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10562 MachineFunction *F = BB->getParent(); 10563 MachineFunction::iterator It = ++BB->getIterator(); 10564 10565 Register dest = MI.getOperand(0).getReg(); 10566 Register ptrA = MI.getOperand(1).getReg(); 10567 Register ptrB = MI.getOperand(2).getReg(); 10568 Register incr = MI.getOperand(3).getReg(); 10569 DebugLoc dl = MI.getDebugLoc(); 10570 10571 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10572 MachineBasicBlock *loop2MBB = 10573 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10574 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10575 F->insert(It, loopMBB); 10576 if (CmpOpcode) 10577 F->insert(It, loop2MBB); 10578 F->insert(It, exitMBB); 10579 exitMBB->splice(exitMBB->begin(), BB, 10580 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10581 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10582 10583 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10584 Register TmpReg = (!BinOpcode) ? incr : 10585 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10586 : &PPC::GPRCRegClass); 10587 10588 // thisMBB: 10589 // ... 10590 // fallthrough --> loopMBB 10591 BB->addSuccessor(loopMBB); 10592 10593 // loopMBB: 10594 // l[wd]arx dest, ptr 10595 // add r0, dest, incr 10596 // st[wd]cx. r0, ptr 10597 // bne- loopMBB 10598 // fallthrough --> exitMBB 10599 10600 // For max/min... 10601 // loopMBB: 10602 // l[wd]arx dest, ptr 10603 // cmpl?[wd] incr, dest 10604 // bgt exitMBB 10605 // loop2MBB: 10606 // st[wd]cx. dest, ptr 10607 // bne- loopMBB 10608 // fallthrough --> exitMBB 10609 10610 BB = loopMBB; 10611 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10612 .addReg(ptrA).addReg(ptrB); 10613 if (BinOpcode) 10614 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10615 if (CmpOpcode) { 10616 // Signed comparisons of byte or halfword values must be sign-extended. 10617 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10618 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10619 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10620 ExtReg).addReg(dest); 10621 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10622 .addReg(incr).addReg(ExtReg); 10623 } else 10624 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10625 .addReg(incr).addReg(dest); 10626 10627 BuildMI(BB, dl, TII->get(PPC::BCC)) 10628 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10629 BB->addSuccessor(loop2MBB); 10630 BB->addSuccessor(exitMBB); 10631 BB = loop2MBB; 10632 } 10633 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10634 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10635 BuildMI(BB, dl, TII->get(PPC::BCC)) 10636 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10637 BB->addSuccessor(loopMBB); 10638 BB->addSuccessor(exitMBB); 10639 10640 // exitMBB: 10641 // ... 10642 BB = exitMBB; 10643 return BB; 10644 } 10645 10646 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 10647 switch(MI.getOpcode()) { 10648 default: 10649 return false; 10650 case PPC::COPY: 10651 return TII->isSignExtended(MI); 10652 case PPC::LHA: 10653 case PPC::LHA8: 10654 case PPC::LHAU: 10655 case PPC::LHAU8: 10656 case PPC::LHAUX: 10657 case PPC::LHAUX8: 10658 case PPC::LHAX: 10659 case PPC::LHAX8: 10660 case PPC::LWA: 10661 case PPC::LWAUX: 10662 case PPC::LWAX: 10663 case PPC::LWAX_32: 10664 case PPC::LWA_32: 10665 case PPC::PLHA: 10666 case PPC::PLHA8: 10667 case PPC::PLHA8pc: 10668 case PPC::PLHApc: 10669 case PPC::PLWA: 10670 case PPC::PLWA8: 10671 case PPC::PLWA8pc: 10672 case PPC::PLWApc: 10673 case PPC::EXTSB: 10674 case PPC::EXTSB8: 10675 case PPC::EXTSB8_32_64: 10676 case PPC::EXTSB8_rec: 10677 case PPC::EXTSB_rec: 10678 case PPC::EXTSH: 10679 case PPC::EXTSH8: 10680 case PPC::EXTSH8_32_64: 10681 case PPC::EXTSH8_rec: 10682 case PPC::EXTSH_rec: 10683 case PPC::EXTSW: 10684 case PPC::EXTSWSLI: 10685 case PPC::EXTSWSLI_32_64: 10686 case PPC::EXTSWSLI_32_64_rec: 10687 case PPC::EXTSWSLI_rec: 10688 case PPC::EXTSW_32: 10689 case PPC::EXTSW_32_64: 10690 case PPC::EXTSW_32_64_rec: 10691 case PPC::EXTSW_rec: 10692 case PPC::SRAW: 10693 case PPC::SRAWI: 10694 case PPC::SRAWI_rec: 10695 case PPC::SRAW_rec: 10696 return true; 10697 } 10698 return false; 10699 } 10700 10701 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10702 MachineInstr &MI, MachineBasicBlock *BB, 10703 bool is8bit, // operation 10704 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10705 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10706 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 10707 10708 // If this is a signed comparison and the value being compared is not known 10709 // to be sign extended, sign extend it here. 10710 DebugLoc dl = MI.getDebugLoc(); 10711 MachineFunction *F = BB->getParent(); 10712 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10713 Register incr = MI.getOperand(3).getReg(); 10714 bool IsSignExtended = Register::isVirtualRegister(incr) && 10715 isSignExtended(*RegInfo.getVRegDef(incr), TII); 10716 10717 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 10718 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10719 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 10720 .addReg(MI.getOperand(3).getReg()); 10721 MI.getOperand(3).setReg(ValueReg); 10722 } 10723 // If we support part-word atomic mnemonics, just use them 10724 if (Subtarget.hasPartwordAtomics()) 10725 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10726 CmpPred); 10727 10728 // In 64 bit mode we have to use 64 bits for addresses, even though the 10729 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10730 // registers without caring whether they're 32 or 64, but here we're 10731 // doing actual arithmetic on the addresses. 10732 bool is64bit = Subtarget.isPPC64(); 10733 bool isLittleEndian = Subtarget.isLittleEndian(); 10734 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10735 10736 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10737 MachineFunction::iterator It = ++BB->getIterator(); 10738 10739 Register dest = MI.getOperand(0).getReg(); 10740 Register ptrA = MI.getOperand(1).getReg(); 10741 Register ptrB = MI.getOperand(2).getReg(); 10742 10743 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10744 MachineBasicBlock *loop2MBB = 10745 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10746 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10747 F->insert(It, loopMBB); 10748 if (CmpOpcode) 10749 F->insert(It, loop2MBB); 10750 F->insert(It, exitMBB); 10751 exitMBB->splice(exitMBB->begin(), BB, 10752 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10753 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10754 10755 const TargetRegisterClass *RC = 10756 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10757 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10758 10759 Register PtrReg = RegInfo.createVirtualRegister(RC); 10760 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10761 Register ShiftReg = 10762 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10763 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10764 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10765 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10766 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10767 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10768 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10769 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10770 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10771 Register Ptr1Reg; 10772 Register TmpReg = 10773 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10774 10775 // thisMBB: 10776 // ... 10777 // fallthrough --> loopMBB 10778 BB->addSuccessor(loopMBB); 10779 10780 // The 4-byte load must be aligned, while a char or short may be 10781 // anywhere in the word. Hence all this nasty bookkeeping code. 10782 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10783 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10784 // xori shift, shift1, 24 [16] 10785 // rlwinm ptr, ptr1, 0, 0, 29 10786 // slw incr2, incr, shift 10787 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10788 // slw mask, mask2, shift 10789 // loopMBB: 10790 // lwarx tmpDest, ptr 10791 // add tmp, tmpDest, incr2 10792 // andc tmp2, tmpDest, mask 10793 // and tmp3, tmp, mask 10794 // or tmp4, tmp3, tmp2 10795 // stwcx. tmp4, ptr 10796 // bne- loopMBB 10797 // fallthrough --> exitMBB 10798 // srw dest, tmpDest, shift 10799 if (ptrA != ZeroReg) { 10800 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10801 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10802 .addReg(ptrA) 10803 .addReg(ptrB); 10804 } else { 10805 Ptr1Reg = ptrB; 10806 } 10807 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10808 // mode. 10809 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10810 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10811 .addImm(3) 10812 .addImm(27) 10813 .addImm(is8bit ? 28 : 27); 10814 if (!isLittleEndian) 10815 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10816 .addReg(Shift1Reg) 10817 .addImm(is8bit ? 24 : 16); 10818 if (is64bit) 10819 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10820 .addReg(Ptr1Reg) 10821 .addImm(0) 10822 .addImm(61); 10823 else 10824 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10825 .addReg(Ptr1Reg) 10826 .addImm(0) 10827 .addImm(0) 10828 .addImm(29); 10829 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10830 if (is8bit) 10831 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10832 else { 10833 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10834 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10835 .addReg(Mask3Reg) 10836 .addImm(65535); 10837 } 10838 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10839 .addReg(Mask2Reg) 10840 .addReg(ShiftReg); 10841 10842 BB = loopMBB; 10843 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10844 .addReg(ZeroReg) 10845 .addReg(PtrReg); 10846 if (BinOpcode) 10847 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10848 .addReg(Incr2Reg) 10849 .addReg(TmpDestReg); 10850 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10851 .addReg(TmpDestReg) 10852 .addReg(MaskReg); 10853 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10854 if (CmpOpcode) { 10855 // For unsigned comparisons, we can directly compare the shifted values. 10856 // For signed comparisons we shift and sign extend. 10857 Register SReg = RegInfo.createVirtualRegister(GPRC); 10858 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10859 .addReg(TmpDestReg) 10860 .addReg(MaskReg); 10861 unsigned ValueReg = SReg; 10862 unsigned CmpReg = Incr2Reg; 10863 if (CmpOpcode == PPC::CMPW) { 10864 ValueReg = RegInfo.createVirtualRegister(GPRC); 10865 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10866 .addReg(SReg) 10867 .addReg(ShiftReg); 10868 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10869 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10870 .addReg(ValueReg); 10871 ValueReg = ValueSReg; 10872 CmpReg = incr; 10873 } 10874 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10875 .addReg(CmpReg) 10876 .addReg(ValueReg); 10877 BuildMI(BB, dl, TII->get(PPC::BCC)) 10878 .addImm(CmpPred) 10879 .addReg(PPC::CR0) 10880 .addMBB(exitMBB); 10881 BB->addSuccessor(loop2MBB); 10882 BB->addSuccessor(exitMBB); 10883 BB = loop2MBB; 10884 } 10885 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10886 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10887 .addReg(Tmp4Reg) 10888 .addReg(ZeroReg) 10889 .addReg(PtrReg); 10890 BuildMI(BB, dl, TII->get(PPC::BCC)) 10891 .addImm(PPC::PRED_NE) 10892 .addReg(PPC::CR0) 10893 .addMBB(loopMBB); 10894 BB->addSuccessor(loopMBB); 10895 BB->addSuccessor(exitMBB); 10896 10897 // exitMBB: 10898 // ... 10899 BB = exitMBB; 10900 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10901 .addReg(TmpDestReg) 10902 .addReg(ShiftReg); 10903 return BB; 10904 } 10905 10906 llvm::MachineBasicBlock * 10907 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10908 MachineBasicBlock *MBB) const { 10909 DebugLoc DL = MI.getDebugLoc(); 10910 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10911 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10912 10913 MachineFunction *MF = MBB->getParent(); 10914 MachineRegisterInfo &MRI = MF->getRegInfo(); 10915 10916 const BasicBlock *BB = MBB->getBasicBlock(); 10917 MachineFunction::iterator I = ++MBB->getIterator(); 10918 10919 Register DstReg = MI.getOperand(0).getReg(); 10920 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10921 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10922 Register mainDstReg = MRI.createVirtualRegister(RC); 10923 Register restoreDstReg = MRI.createVirtualRegister(RC); 10924 10925 MVT PVT = getPointerTy(MF->getDataLayout()); 10926 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10927 "Invalid Pointer Size!"); 10928 // For v = setjmp(buf), we generate 10929 // 10930 // thisMBB: 10931 // SjLjSetup mainMBB 10932 // bl mainMBB 10933 // v_restore = 1 10934 // b sinkMBB 10935 // 10936 // mainMBB: 10937 // buf[LabelOffset] = LR 10938 // v_main = 0 10939 // 10940 // sinkMBB: 10941 // v = phi(main, restore) 10942 // 10943 10944 MachineBasicBlock *thisMBB = MBB; 10945 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 10946 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 10947 MF->insert(I, mainMBB); 10948 MF->insert(I, sinkMBB); 10949 10950 MachineInstrBuilder MIB; 10951 10952 // Transfer the remainder of BB and its successor edges to sinkMBB. 10953 sinkMBB->splice(sinkMBB->begin(), MBB, 10954 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 10955 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 10956 10957 // Note that the structure of the jmp_buf used here is not compatible 10958 // with that used by libc, and is not designed to be. Specifically, it 10959 // stores only those 'reserved' registers that LLVM does not otherwise 10960 // understand how to spill. Also, by convention, by the time this 10961 // intrinsic is called, Clang has already stored the frame address in the 10962 // first slot of the buffer and stack address in the third. Following the 10963 // X86 target code, we'll store the jump address in the second slot. We also 10964 // need to save the TOC pointer (R2) to handle jumps between shared 10965 // libraries, and that will be stored in the fourth slot. The thread 10966 // identifier (R13) is not affected. 10967 10968 // thisMBB: 10969 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 10970 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 10971 const int64_t BPOffset = 4 * PVT.getStoreSize(); 10972 10973 // Prepare IP either in reg. 10974 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 10975 Register LabelReg = MRI.createVirtualRegister(PtrRC); 10976 Register BufReg = MI.getOperand(1).getReg(); 10977 10978 if (Subtarget.is64BitELFABI()) { 10979 setUsesTOCBasePtr(*MBB->getParent()); 10980 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 10981 .addReg(PPC::X2) 10982 .addImm(TOCOffset) 10983 .addReg(BufReg) 10984 .cloneMemRefs(MI); 10985 } 10986 10987 // Naked functions never have a base pointer, and so we use r1. For all 10988 // other functions, this decision must be delayed until during PEI. 10989 unsigned BaseReg; 10990 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 10991 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 10992 else 10993 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 10994 10995 MIB = BuildMI(*thisMBB, MI, DL, 10996 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 10997 .addReg(BaseReg) 10998 .addImm(BPOffset) 10999 .addReg(BufReg) 11000 .cloneMemRefs(MI); 11001 11002 // Setup 11003 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11004 MIB.addRegMask(TRI->getNoPreservedMask()); 11005 11006 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11007 11008 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11009 .addMBB(mainMBB); 11010 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11011 11012 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11013 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11014 11015 // mainMBB: 11016 // mainDstReg = 0 11017 MIB = 11018 BuildMI(mainMBB, DL, 11019 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11020 11021 // Store IP 11022 if (Subtarget.isPPC64()) { 11023 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11024 .addReg(LabelReg) 11025 .addImm(LabelOffset) 11026 .addReg(BufReg); 11027 } else { 11028 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11029 .addReg(LabelReg) 11030 .addImm(LabelOffset) 11031 .addReg(BufReg); 11032 } 11033 MIB.cloneMemRefs(MI); 11034 11035 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11036 mainMBB->addSuccessor(sinkMBB); 11037 11038 // sinkMBB: 11039 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11040 TII->get(PPC::PHI), DstReg) 11041 .addReg(mainDstReg).addMBB(mainMBB) 11042 .addReg(restoreDstReg).addMBB(thisMBB); 11043 11044 MI.eraseFromParent(); 11045 return sinkMBB; 11046 } 11047 11048 MachineBasicBlock * 11049 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11050 MachineBasicBlock *MBB) const { 11051 DebugLoc DL = MI.getDebugLoc(); 11052 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11053 11054 MachineFunction *MF = MBB->getParent(); 11055 MachineRegisterInfo &MRI = MF->getRegInfo(); 11056 11057 MVT PVT = getPointerTy(MF->getDataLayout()); 11058 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11059 "Invalid Pointer Size!"); 11060 11061 const TargetRegisterClass *RC = 11062 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11063 Register Tmp = MRI.createVirtualRegister(RC); 11064 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11065 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11066 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11067 unsigned BP = 11068 (PVT == MVT::i64) 11069 ? PPC::X30 11070 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11071 : PPC::R30); 11072 11073 MachineInstrBuilder MIB; 11074 11075 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11076 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11077 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11078 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11079 11080 Register BufReg = MI.getOperand(0).getReg(); 11081 11082 // Reload FP (the jumped-to function may not have had a 11083 // frame pointer, and if so, then its r31 will be restored 11084 // as necessary). 11085 if (PVT == MVT::i64) { 11086 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11087 .addImm(0) 11088 .addReg(BufReg); 11089 } else { 11090 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11091 .addImm(0) 11092 .addReg(BufReg); 11093 } 11094 MIB.cloneMemRefs(MI); 11095 11096 // Reload IP 11097 if (PVT == MVT::i64) { 11098 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11099 .addImm(LabelOffset) 11100 .addReg(BufReg); 11101 } else { 11102 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11103 .addImm(LabelOffset) 11104 .addReg(BufReg); 11105 } 11106 MIB.cloneMemRefs(MI); 11107 11108 // Reload SP 11109 if (PVT == MVT::i64) { 11110 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11111 .addImm(SPOffset) 11112 .addReg(BufReg); 11113 } else { 11114 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11115 .addImm(SPOffset) 11116 .addReg(BufReg); 11117 } 11118 MIB.cloneMemRefs(MI); 11119 11120 // Reload BP 11121 if (PVT == MVT::i64) { 11122 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11123 .addImm(BPOffset) 11124 .addReg(BufReg); 11125 } else { 11126 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11127 .addImm(BPOffset) 11128 .addReg(BufReg); 11129 } 11130 MIB.cloneMemRefs(MI); 11131 11132 // Reload TOC 11133 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11134 setUsesTOCBasePtr(*MBB->getParent()); 11135 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11136 .addImm(TOCOffset) 11137 .addReg(BufReg) 11138 .cloneMemRefs(MI); 11139 } 11140 11141 // Jump 11142 BuildMI(*MBB, MI, DL, 11143 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11144 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11145 11146 MI.eraseFromParent(); 11147 return MBB; 11148 } 11149 11150 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11151 // If the function specifically requests inline stack probes, emit them. 11152 if (MF.getFunction().hasFnAttribute("probe-stack")) 11153 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11154 "inline-asm"; 11155 return false; 11156 } 11157 11158 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11159 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11160 unsigned StackAlign = TFI->getStackAlignment(); 11161 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11162 "Unexpected stack alignment"); 11163 // The default stack probe size is 4096 if the function has no 11164 // stack-probe-size attribute. 11165 unsigned StackProbeSize = 4096; 11166 const Function &Fn = MF.getFunction(); 11167 if (Fn.hasFnAttribute("stack-probe-size")) 11168 Fn.getFnAttribute("stack-probe-size") 11169 .getValueAsString() 11170 .getAsInteger(0, StackProbeSize); 11171 // Round down to the stack alignment. 11172 StackProbeSize &= ~(StackAlign - 1); 11173 return StackProbeSize ? StackProbeSize : StackAlign; 11174 } 11175 11176 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11177 // into three phases. In the first phase, it uses pseudo instruction 11178 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11179 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11180 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11181 // MaxCallFrameSize so that it can calculate correct data area pointer. 11182 MachineBasicBlock * 11183 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11184 MachineBasicBlock *MBB) const { 11185 const bool isPPC64 = Subtarget.isPPC64(); 11186 MachineFunction *MF = MBB->getParent(); 11187 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11188 DebugLoc DL = MI.getDebugLoc(); 11189 const unsigned ProbeSize = getStackProbeSize(*MF); 11190 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11191 MachineRegisterInfo &MRI = MF->getRegInfo(); 11192 // The CFG of probing stack looks as 11193 // +-----+ 11194 // | MBB | 11195 // +--+--+ 11196 // | 11197 // +----v----+ 11198 // +--->+ TestMBB +---+ 11199 // | +----+----+ | 11200 // | | | 11201 // | +-----v----+ | 11202 // +---+ BlockMBB | | 11203 // +----------+ | 11204 // | 11205 // +---------+ | 11206 // | TailMBB +<--+ 11207 // +---------+ 11208 // In MBB, calculate previous frame pointer and final stack pointer. 11209 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11210 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11211 // TailMBB is spliced via \p MI. 11212 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11213 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11214 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11215 11216 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11217 MF->insert(MBBIter, TestMBB); 11218 MF->insert(MBBIter, BlockMBB); 11219 MF->insert(MBBIter, TailMBB); 11220 11221 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11222 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11223 11224 Register DstReg = MI.getOperand(0).getReg(); 11225 Register NegSizeReg = MI.getOperand(1).getReg(); 11226 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11227 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11228 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11229 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11230 11231 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11232 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11233 // NegSize. 11234 unsigned ProbeOpc; 11235 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11236 ProbeOpc = 11237 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11238 else 11239 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11240 // and NegSizeReg will be allocated in the same phyreg to avoid 11241 // redundant copy when NegSizeReg has only one use which is current MI and 11242 // will be replaced by PREPARE_PROBED_ALLOCA then. 11243 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11244 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11245 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11246 .addDef(ActualNegSizeReg) 11247 .addReg(NegSizeReg) 11248 .add(MI.getOperand(2)) 11249 .add(MI.getOperand(3)); 11250 11251 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11252 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11253 FinalStackPtr) 11254 .addReg(SPReg) 11255 .addReg(ActualNegSizeReg); 11256 11257 // Materialize a scratch register for update. 11258 int64_t NegProbeSize = -(int64_t)ProbeSize; 11259 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11260 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11261 if (!isInt<16>(NegProbeSize)) { 11262 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11263 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11264 .addImm(NegProbeSize >> 16); 11265 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11266 ScratchReg) 11267 .addReg(TempReg) 11268 .addImm(NegProbeSize & 0xFFFF); 11269 } else 11270 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11271 .addImm(NegProbeSize); 11272 11273 { 11274 // Probing leading residual part. 11275 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11276 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11277 .addReg(ActualNegSizeReg) 11278 .addReg(ScratchReg); 11279 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11280 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11281 .addReg(Div) 11282 .addReg(ScratchReg); 11283 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11284 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11285 .addReg(Mul) 11286 .addReg(ActualNegSizeReg); 11287 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11288 .addReg(FramePointer) 11289 .addReg(SPReg) 11290 .addReg(NegMod); 11291 } 11292 11293 { 11294 // Remaining part should be multiple of ProbeSize. 11295 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11296 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11297 .addReg(SPReg) 11298 .addReg(FinalStackPtr); 11299 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11300 .addImm(PPC::PRED_EQ) 11301 .addReg(CmpResult) 11302 .addMBB(TailMBB); 11303 TestMBB->addSuccessor(BlockMBB); 11304 TestMBB->addSuccessor(TailMBB); 11305 } 11306 11307 { 11308 // Touch the block. 11309 // |P...|P...|P... 11310 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11311 .addReg(FramePointer) 11312 .addReg(SPReg) 11313 .addReg(ScratchReg); 11314 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11315 BlockMBB->addSuccessor(TestMBB); 11316 } 11317 11318 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11319 // DYNAREAOFFSET pseudo instruction to get the future result. 11320 Register MaxCallFrameSizeReg = 11321 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11322 BuildMI(TailMBB, DL, 11323 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11324 MaxCallFrameSizeReg) 11325 .add(MI.getOperand(2)) 11326 .add(MI.getOperand(3)); 11327 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11328 .addReg(SPReg) 11329 .addReg(MaxCallFrameSizeReg); 11330 11331 // Splice instructions after MI to TailMBB. 11332 TailMBB->splice(TailMBB->end(), MBB, 11333 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11334 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11335 MBB->addSuccessor(TestMBB); 11336 11337 // Delete the pseudo instruction. 11338 MI.eraseFromParent(); 11339 11340 ++NumDynamicAllocaProbed; 11341 return TailMBB; 11342 } 11343 11344 MachineBasicBlock * 11345 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11346 MachineBasicBlock *BB) const { 11347 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11348 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11349 if (Subtarget.is64BitELFABI() && 11350 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11351 !Subtarget.isUsingPCRelativeCalls()) { 11352 // Call lowering should have added an r2 operand to indicate a dependence 11353 // on the TOC base pointer value. It can't however, because there is no 11354 // way to mark the dependence as implicit there, and so the stackmap code 11355 // will confuse it with a regular operand. Instead, add the dependence 11356 // here. 11357 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11358 } 11359 11360 return emitPatchPoint(MI, BB); 11361 } 11362 11363 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11364 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11365 return emitEHSjLjSetJmp(MI, BB); 11366 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11367 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11368 return emitEHSjLjLongJmp(MI, BB); 11369 } 11370 11371 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11372 11373 // To "insert" these instructions we actually have to insert their 11374 // control-flow patterns. 11375 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11376 MachineFunction::iterator It = ++BB->getIterator(); 11377 11378 MachineFunction *F = BB->getParent(); 11379 11380 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11381 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11382 MI.getOpcode() == PPC::SELECT_I8) { 11383 SmallVector<MachineOperand, 2> Cond; 11384 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11385 MI.getOpcode() == PPC::SELECT_CC_I8) 11386 Cond.push_back(MI.getOperand(4)); 11387 else 11388 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11389 Cond.push_back(MI.getOperand(1)); 11390 11391 DebugLoc dl = MI.getDebugLoc(); 11392 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11393 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11394 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11395 MI.getOpcode() == PPC::SELECT_CC_F8 || 11396 MI.getOpcode() == PPC::SELECT_CC_F16 || 11397 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11398 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11399 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11400 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11401 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11402 MI.getOpcode() == PPC::SELECT_CC_SPE || 11403 MI.getOpcode() == PPC::SELECT_F4 || 11404 MI.getOpcode() == PPC::SELECT_F8 || 11405 MI.getOpcode() == PPC::SELECT_F16 || 11406 MI.getOpcode() == PPC::SELECT_SPE || 11407 MI.getOpcode() == PPC::SELECT_SPE4 || 11408 MI.getOpcode() == PPC::SELECT_VRRC || 11409 MI.getOpcode() == PPC::SELECT_VSFRC || 11410 MI.getOpcode() == PPC::SELECT_VSSRC || 11411 MI.getOpcode() == PPC::SELECT_VSRC) { 11412 // The incoming instruction knows the destination vreg to set, the 11413 // condition code register to branch on, the true/false values to 11414 // select between, and a branch opcode to use. 11415 11416 // thisMBB: 11417 // ... 11418 // TrueVal = ... 11419 // cmpTY ccX, r1, r2 11420 // bCC copy1MBB 11421 // fallthrough --> copy0MBB 11422 MachineBasicBlock *thisMBB = BB; 11423 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11424 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11425 DebugLoc dl = MI.getDebugLoc(); 11426 F->insert(It, copy0MBB); 11427 F->insert(It, sinkMBB); 11428 11429 // Transfer the remainder of BB and its successor edges to sinkMBB. 11430 sinkMBB->splice(sinkMBB->begin(), BB, 11431 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11432 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11433 11434 // Next, add the true and fallthrough blocks as its successors. 11435 BB->addSuccessor(copy0MBB); 11436 BB->addSuccessor(sinkMBB); 11437 11438 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11439 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11440 MI.getOpcode() == PPC::SELECT_F16 || 11441 MI.getOpcode() == PPC::SELECT_SPE4 || 11442 MI.getOpcode() == PPC::SELECT_SPE || 11443 MI.getOpcode() == PPC::SELECT_VRRC || 11444 MI.getOpcode() == PPC::SELECT_VSFRC || 11445 MI.getOpcode() == PPC::SELECT_VSSRC || 11446 MI.getOpcode() == PPC::SELECT_VSRC) { 11447 BuildMI(BB, dl, TII->get(PPC::BC)) 11448 .addReg(MI.getOperand(1).getReg()) 11449 .addMBB(sinkMBB); 11450 } else { 11451 unsigned SelectPred = MI.getOperand(4).getImm(); 11452 BuildMI(BB, dl, TII->get(PPC::BCC)) 11453 .addImm(SelectPred) 11454 .addReg(MI.getOperand(1).getReg()) 11455 .addMBB(sinkMBB); 11456 } 11457 11458 // copy0MBB: 11459 // %FalseValue = ... 11460 // # fallthrough to sinkMBB 11461 BB = copy0MBB; 11462 11463 // Update machine-CFG edges 11464 BB->addSuccessor(sinkMBB); 11465 11466 // sinkMBB: 11467 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11468 // ... 11469 BB = sinkMBB; 11470 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11471 .addReg(MI.getOperand(3).getReg()) 11472 .addMBB(copy0MBB) 11473 .addReg(MI.getOperand(2).getReg()) 11474 .addMBB(thisMBB); 11475 } else if (MI.getOpcode() == PPC::ReadTB) { 11476 // To read the 64-bit time-base register on a 32-bit target, we read the 11477 // two halves. Should the counter have wrapped while it was being read, we 11478 // need to try again. 11479 // ... 11480 // readLoop: 11481 // mfspr Rx,TBU # load from TBU 11482 // mfspr Ry,TB # load from TB 11483 // mfspr Rz,TBU # load from TBU 11484 // cmpw crX,Rx,Rz # check if 'old'='new' 11485 // bne readLoop # branch if they're not equal 11486 // ... 11487 11488 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11489 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11490 DebugLoc dl = MI.getDebugLoc(); 11491 F->insert(It, readMBB); 11492 F->insert(It, sinkMBB); 11493 11494 // Transfer the remainder of BB and its successor edges to sinkMBB. 11495 sinkMBB->splice(sinkMBB->begin(), BB, 11496 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11497 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11498 11499 BB->addSuccessor(readMBB); 11500 BB = readMBB; 11501 11502 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11503 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11504 Register LoReg = MI.getOperand(0).getReg(); 11505 Register HiReg = MI.getOperand(1).getReg(); 11506 11507 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11508 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11509 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11510 11511 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11512 11513 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11514 .addReg(HiReg) 11515 .addReg(ReadAgainReg); 11516 BuildMI(BB, dl, TII->get(PPC::BCC)) 11517 .addImm(PPC::PRED_NE) 11518 .addReg(CmpReg) 11519 .addMBB(readMBB); 11520 11521 BB->addSuccessor(readMBB); 11522 BB->addSuccessor(sinkMBB); 11523 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11524 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11525 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11526 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11527 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11528 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11529 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11530 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11531 11532 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11533 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11534 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11535 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11536 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11537 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11538 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11539 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11540 11541 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11542 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11543 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11544 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11545 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11546 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11547 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11548 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11549 11550 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11551 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11552 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11553 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11554 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11555 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11556 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11557 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11558 11559 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11560 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11561 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11562 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11563 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11564 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11565 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11566 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11567 11568 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11569 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11570 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11571 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11572 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11573 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11574 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11575 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11576 11577 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11578 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11579 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11580 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11581 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11582 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11583 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11584 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11585 11586 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11587 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11588 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11589 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11590 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11591 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11592 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11593 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11594 11595 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11596 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11597 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11598 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11599 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11600 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11601 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11602 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11603 11604 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11605 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11606 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11607 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11608 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11609 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11610 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11611 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11612 11613 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11614 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11615 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11616 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11617 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11618 BB = EmitAtomicBinary(MI, BB, 4, 0); 11619 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11620 BB = EmitAtomicBinary(MI, BB, 8, 0); 11621 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11622 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11623 (Subtarget.hasPartwordAtomics() && 11624 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11625 (Subtarget.hasPartwordAtomics() && 11626 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11627 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11628 11629 auto LoadMnemonic = PPC::LDARX; 11630 auto StoreMnemonic = PPC::STDCX; 11631 switch (MI.getOpcode()) { 11632 default: 11633 llvm_unreachable("Compare and swap of unknown size"); 11634 case PPC::ATOMIC_CMP_SWAP_I8: 11635 LoadMnemonic = PPC::LBARX; 11636 StoreMnemonic = PPC::STBCX; 11637 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11638 break; 11639 case PPC::ATOMIC_CMP_SWAP_I16: 11640 LoadMnemonic = PPC::LHARX; 11641 StoreMnemonic = PPC::STHCX; 11642 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11643 break; 11644 case PPC::ATOMIC_CMP_SWAP_I32: 11645 LoadMnemonic = PPC::LWARX; 11646 StoreMnemonic = PPC::STWCX; 11647 break; 11648 case PPC::ATOMIC_CMP_SWAP_I64: 11649 LoadMnemonic = PPC::LDARX; 11650 StoreMnemonic = PPC::STDCX; 11651 break; 11652 } 11653 Register dest = MI.getOperand(0).getReg(); 11654 Register ptrA = MI.getOperand(1).getReg(); 11655 Register ptrB = MI.getOperand(2).getReg(); 11656 Register oldval = MI.getOperand(3).getReg(); 11657 Register newval = MI.getOperand(4).getReg(); 11658 DebugLoc dl = MI.getDebugLoc(); 11659 11660 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11661 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11662 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11663 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11664 F->insert(It, loop1MBB); 11665 F->insert(It, loop2MBB); 11666 F->insert(It, midMBB); 11667 F->insert(It, exitMBB); 11668 exitMBB->splice(exitMBB->begin(), BB, 11669 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11670 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11671 11672 // thisMBB: 11673 // ... 11674 // fallthrough --> loopMBB 11675 BB->addSuccessor(loop1MBB); 11676 11677 // loop1MBB: 11678 // l[bhwd]arx dest, ptr 11679 // cmp[wd] dest, oldval 11680 // bne- midMBB 11681 // loop2MBB: 11682 // st[bhwd]cx. newval, ptr 11683 // bne- loopMBB 11684 // b exitBB 11685 // midMBB: 11686 // st[bhwd]cx. dest, ptr 11687 // exitBB: 11688 BB = loop1MBB; 11689 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11690 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11691 .addReg(oldval) 11692 .addReg(dest); 11693 BuildMI(BB, dl, TII->get(PPC::BCC)) 11694 .addImm(PPC::PRED_NE) 11695 .addReg(PPC::CR0) 11696 .addMBB(midMBB); 11697 BB->addSuccessor(loop2MBB); 11698 BB->addSuccessor(midMBB); 11699 11700 BB = loop2MBB; 11701 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11702 .addReg(newval) 11703 .addReg(ptrA) 11704 .addReg(ptrB); 11705 BuildMI(BB, dl, TII->get(PPC::BCC)) 11706 .addImm(PPC::PRED_NE) 11707 .addReg(PPC::CR0) 11708 .addMBB(loop1MBB); 11709 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11710 BB->addSuccessor(loop1MBB); 11711 BB->addSuccessor(exitMBB); 11712 11713 BB = midMBB; 11714 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11715 .addReg(dest) 11716 .addReg(ptrA) 11717 .addReg(ptrB); 11718 BB->addSuccessor(exitMBB); 11719 11720 // exitMBB: 11721 // ... 11722 BB = exitMBB; 11723 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11724 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11725 // We must use 64-bit registers for addresses when targeting 64-bit, 11726 // since we're actually doing arithmetic on them. Other registers 11727 // can be 32-bit. 11728 bool is64bit = Subtarget.isPPC64(); 11729 bool isLittleEndian = Subtarget.isLittleEndian(); 11730 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11731 11732 Register dest = MI.getOperand(0).getReg(); 11733 Register ptrA = MI.getOperand(1).getReg(); 11734 Register ptrB = MI.getOperand(2).getReg(); 11735 Register oldval = MI.getOperand(3).getReg(); 11736 Register newval = MI.getOperand(4).getReg(); 11737 DebugLoc dl = MI.getDebugLoc(); 11738 11739 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11740 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11741 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11742 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11743 F->insert(It, loop1MBB); 11744 F->insert(It, loop2MBB); 11745 F->insert(It, midMBB); 11746 F->insert(It, exitMBB); 11747 exitMBB->splice(exitMBB->begin(), BB, 11748 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11749 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11750 11751 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11752 const TargetRegisterClass *RC = 11753 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11754 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11755 11756 Register PtrReg = RegInfo.createVirtualRegister(RC); 11757 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11758 Register ShiftReg = 11759 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11760 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11761 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11762 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11763 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11764 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11765 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11766 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11767 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11768 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11769 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11770 Register Ptr1Reg; 11771 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11772 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11773 // thisMBB: 11774 // ... 11775 // fallthrough --> loopMBB 11776 BB->addSuccessor(loop1MBB); 11777 11778 // The 4-byte load must be aligned, while a char or short may be 11779 // anywhere in the word. Hence all this nasty bookkeeping code. 11780 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11781 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11782 // xori shift, shift1, 24 [16] 11783 // rlwinm ptr, ptr1, 0, 0, 29 11784 // slw newval2, newval, shift 11785 // slw oldval2, oldval,shift 11786 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11787 // slw mask, mask2, shift 11788 // and newval3, newval2, mask 11789 // and oldval3, oldval2, mask 11790 // loop1MBB: 11791 // lwarx tmpDest, ptr 11792 // and tmp, tmpDest, mask 11793 // cmpw tmp, oldval3 11794 // bne- midMBB 11795 // loop2MBB: 11796 // andc tmp2, tmpDest, mask 11797 // or tmp4, tmp2, newval3 11798 // stwcx. tmp4, ptr 11799 // bne- loop1MBB 11800 // b exitBB 11801 // midMBB: 11802 // stwcx. tmpDest, ptr 11803 // exitBB: 11804 // srw dest, tmpDest, shift 11805 if (ptrA != ZeroReg) { 11806 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11807 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11808 .addReg(ptrA) 11809 .addReg(ptrB); 11810 } else { 11811 Ptr1Reg = ptrB; 11812 } 11813 11814 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11815 // mode. 11816 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11817 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11818 .addImm(3) 11819 .addImm(27) 11820 .addImm(is8bit ? 28 : 27); 11821 if (!isLittleEndian) 11822 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11823 .addReg(Shift1Reg) 11824 .addImm(is8bit ? 24 : 16); 11825 if (is64bit) 11826 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11827 .addReg(Ptr1Reg) 11828 .addImm(0) 11829 .addImm(61); 11830 else 11831 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11832 .addReg(Ptr1Reg) 11833 .addImm(0) 11834 .addImm(0) 11835 .addImm(29); 11836 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11837 .addReg(newval) 11838 .addReg(ShiftReg); 11839 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11840 .addReg(oldval) 11841 .addReg(ShiftReg); 11842 if (is8bit) 11843 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11844 else { 11845 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11846 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11847 .addReg(Mask3Reg) 11848 .addImm(65535); 11849 } 11850 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11851 .addReg(Mask2Reg) 11852 .addReg(ShiftReg); 11853 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11854 .addReg(NewVal2Reg) 11855 .addReg(MaskReg); 11856 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11857 .addReg(OldVal2Reg) 11858 .addReg(MaskReg); 11859 11860 BB = loop1MBB; 11861 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11862 .addReg(ZeroReg) 11863 .addReg(PtrReg); 11864 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11865 .addReg(TmpDestReg) 11866 .addReg(MaskReg); 11867 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11868 .addReg(TmpReg) 11869 .addReg(OldVal3Reg); 11870 BuildMI(BB, dl, TII->get(PPC::BCC)) 11871 .addImm(PPC::PRED_NE) 11872 .addReg(PPC::CR0) 11873 .addMBB(midMBB); 11874 BB->addSuccessor(loop2MBB); 11875 BB->addSuccessor(midMBB); 11876 11877 BB = loop2MBB; 11878 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11879 .addReg(TmpDestReg) 11880 .addReg(MaskReg); 11881 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11882 .addReg(Tmp2Reg) 11883 .addReg(NewVal3Reg); 11884 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11885 .addReg(Tmp4Reg) 11886 .addReg(ZeroReg) 11887 .addReg(PtrReg); 11888 BuildMI(BB, dl, TII->get(PPC::BCC)) 11889 .addImm(PPC::PRED_NE) 11890 .addReg(PPC::CR0) 11891 .addMBB(loop1MBB); 11892 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11893 BB->addSuccessor(loop1MBB); 11894 BB->addSuccessor(exitMBB); 11895 11896 BB = midMBB; 11897 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11898 .addReg(TmpDestReg) 11899 .addReg(ZeroReg) 11900 .addReg(PtrReg); 11901 BB->addSuccessor(exitMBB); 11902 11903 // exitMBB: 11904 // ... 11905 BB = exitMBB; 11906 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11907 .addReg(TmpReg) 11908 .addReg(ShiftReg); 11909 } else if (MI.getOpcode() == PPC::FADDrtz) { 11910 // This pseudo performs an FADD with rounding mode temporarily forced 11911 // to round-to-zero. We emit this via custom inserter since the FPSCR 11912 // is not modeled at the SelectionDAG level. 11913 Register Dest = MI.getOperand(0).getReg(); 11914 Register Src1 = MI.getOperand(1).getReg(); 11915 Register Src2 = MI.getOperand(2).getReg(); 11916 DebugLoc dl = MI.getDebugLoc(); 11917 11918 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11919 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11920 11921 // Save FPSCR value. 11922 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11923 11924 // Set rounding mode to round-to-zero. 11925 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 11926 .addImm(31) 11927 .addReg(PPC::RM, RegState::ImplicitDefine); 11928 11929 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 11930 .addImm(30) 11931 .addReg(PPC::RM, RegState::ImplicitDefine); 11932 11933 // Perform addition. 11934 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 11935 .addReg(Src1) 11936 .addReg(Src2); 11937 if (MI.getFlag(MachineInstr::NoFPExcept)) 11938 MIB.setMIFlag(MachineInstr::NoFPExcept); 11939 11940 // Restore FPSCR value. 11941 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11942 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11943 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11944 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11945 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11946 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11947 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11948 ? PPC::ANDI8_rec 11949 : PPC::ANDI_rec; 11950 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11951 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11952 11953 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11954 Register Dest = RegInfo.createVirtualRegister( 11955 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11956 11957 DebugLoc Dl = MI.getDebugLoc(); 11958 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11959 .addReg(MI.getOperand(1).getReg()) 11960 .addImm(1); 11961 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11962 MI.getOperand(0).getReg()) 11963 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11964 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11965 DebugLoc Dl = MI.getDebugLoc(); 11966 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11967 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11968 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11969 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11970 MI.getOperand(0).getReg()) 11971 .addReg(CRReg); 11972 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11973 DebugLoc Dl = MI.getDebugLoc(); 11974 unsigned Imm = MI.getOperand(1).getImm(); 11975 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11976 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11977 MI.getOperand(0).getReg()) 11978 .addReg(PPC::CR0EQ); 11979 } else if (MI.getOpcode() == PPC::SETRNDi) { 11980 DebugLoc dl = MI.getDebugLoc(); 11981 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11982 11983 // Save FPSCR value. 11984 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11985 11986 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11987 // the following settings: 11988 // 00 Round to nearest 11989 // 01 Round to 0 11990 // 10 Round to +inf 11991 // 11 Round to -inf 11992 11993 // When the operand is immediate, using the two least significant bits of 11994 // the immediate to set the bits 62:63 of FPSCR. 11995 unsigned Mode = MI.getOperand(1).getImm(); 11996 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11997 .addImm(31) 11998 .addReg(PPC::RM, RegState::ImplicitDefine); 11999 12000 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12001 .addImm(30) 12002 .addReg(PPC::RM, RegState::ImplicitDefine); 12003 } else if (MI.getOpcode() == PPC::SETRND) { 12004 DebugLoc dl = MI.getDebugLoc(); 12005 12006 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12007 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12008 // If the target doesn't have DirectMove, we should use stack to do the 12009 // conversion, because the target doesn't have the instructions like mtvsrd 12010 // or mfvsrd to do this conversion directly. 12011 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12012 if (Subtarget.hasDirectMove()) { 12013 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12014 .addReg(SrcReg); 12015 } else { 12016 // Use stack to do the register copy. 12017 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12018 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12019 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12020 if (RC == &PPC::F8RCRegClass) { 12021 // Copy register from F8RCRegClass to G8RCRegclass. 12022 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12023 "Unsupported RegClass."); 12024 12025 StoreOp = PPC::STFD; 12026 LoadOp = PPC::LD; 12027 } else { 12028 // Copy register from G8RCRegClass to F8RCRegclass. 12029 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12030 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12031 "Unsupported RegClass."); 12032 } 12033 12034 MachineFrameInfo &MFI = F->getFrameInfo(); 12035 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12036 12037 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12038 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12039 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12040 MFI.getObjectAlign(FrameIdx)); 12041 12042 // Store the SrcReg into the stack. 12043 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12044 .addReg(SrcReg) 12045 .addImm(0) 12046 .addFrameIndex(FrameIdx) 12047 .addMemOperand(MMOStore); 12048 12049 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12050 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12051 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12052 MFI.getObjectAlign(FrameIdx)); 12053 12054 // Load from the stack where SrcReg is stored, and save to DestReg, 12055 // so we have done the RegClass conversion from RegClass::SrcReg to 12056 // RegClass::DestReg. 12057 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12058 .addImm(0) 12059 .addFrameIndex(FrameIdx) 12060 .addMemOperand(MMOLoad); 12061 } 12062 }; 12063 12064 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12065 12066 // Save FPSCR value. 12067 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12068 12069 // When the operand is gprc register, use two least significant bits of the 12070 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12071 // 12072 // copy OldFPSCRTmpReg, OldFPSCRReg 12073 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12074 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12075 // copy NewFPSCRReg, NewFPSCRTmpReg 12076 // mtfsf 255, NewFPSCRReg 12077 MachineOperand SrcOp = MI.getOperand(1); 12078 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12079 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12080 12081 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12082 12083 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12084 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12085 12086 // The first operand of INSERT_SUBREG should be a register which has 12087 // subregisters, we only care about its RegClass, so we should use an 12088 // IMPLICIT_DEF register. 12089 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12090 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12091 .addReg(ImDefReg) 12092 .add(SrcOp) 12093 .addImm(1); 12094 12095 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12096 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12097 .addReg(OldFPSCRTmpReg) 12098 .addReg(ExtSrcReg) 12099 .addImm(0) 12100 .addImm(62); 12101 12102 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12103 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12104 12105 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12106 // bits of FPSCR. 12107 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12108 .addImm(255) 12109 .addReg(NewFPSCRReg) 12110 .addImm(0) 12111 .addImm(0); 12112 } else if (MI.getOpcode() == PPC::SETFLM) { 12113 DebugLoc Dl = MI.getDebugLoc(); 12114 12115 // Result of setflm is previous FPSCR content, so we need to save it first. 12116 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12117 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12118 12119 // Put bits in 32:63 to FPSCR. 12120 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12121 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12122 .addImm(255) 12123 .addReg(NewFPSCRReg) 12124 .addImm(0) 12125 .addImm(0); 12126 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12127 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12128 return emitProbedAlloca(MI, BB); 12129 } else { 12130 llvm_unreachable("Unexpected instr type to insert"); 12131 } 12132 12133 MI.eraseFromParent(); // The pseudo instruction is gone now. 12134 return BB; 12135 } 12136 12137 //===----------------------------------------------------------------------===// 12138 // Target Optimization Hooks 12139 //===----------------------------------------------------------------------===// 12140 12141 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12142 // For the estimates, convergence is quadratic, so we essentially double the 12143 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12144 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12145 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12146 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12147 if (VT.getScalarType() == MVT::f64) 12148 RefinementSteps++; 12149 return RefinementSteps; 12150 } 12151 12152 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12153 const DenormalMode &Mode) const { 12154 // We only have VSX Vector Test for software Square Root. 12155 EVT VT = Op.getValueType(); 12156 if (!isTypeLegal(MVT::i1) || 12157 (VT != MVT::f64 && 12158 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12159 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12160 12161 SDLoc DL(Op); 12162 // The output register of FTSQRT is CR field. 12163 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12164 // ftsqrt BF,FRB 12165 // Let e_b be the unbiased exponent of the double-precision 12166 // floating-point operand in register FRB. 12167 // fe_flag is set to 1 if either of the following conditions occurs. 12168 // - The double-precision floating-point operand in register FRB is a zero, 12169 // a NaN, or an infinity, or a negative value. 12170 // - e_b is less than or equal to -970. 12171 // Otherwise fe_flag is set to 0. 12172 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12173 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12174 // exponent is less than -970) 12175 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12176 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12177 FTSQRT, SRIdxVal), 12178 0); 12179 } 12180 12181 SDValue 12182 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12183 SelectionDAG &DAG) const { 12184 // We only have VSX Vector Square Root. 12185 EVT VT = Op.getValueType(); 12186 if (VT != MVT::f64 && 12187 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12188 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12189 12190 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12191 } 12192 12193 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12194 int Enabled, int &RefinementSteps, 12195 bool &UseOneConstNR, 12196 bool Reciprocal) const { 12197 EVT VT = Operand.getValueType(); 12198 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12199 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12200 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12201 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12202 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12203 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12204 12205 // The Newton-Raphson computation with a single constant does not provide 12206 // enough accuracy on some CPUs. 12207 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12208 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12209 } 12210 return SDValue(); 12211 } 12212 12213 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12214 int Enabled, 12215 int &RefinementSteps) const { 12216 EVT VT = Operand.getValueType(); 12217 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12218 (VT == MVT::f64 && Subtarget.hasFRE()) || 12219 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12220 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12221 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12222 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12223 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12224 } 12225 return SDValue(); 12226 } 12227 12228 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12229 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12230 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12231 // enabled for division), this functionality is redundant with the default 12232 // combiner logic (once the division -> reciprocal/multiply transformation 12233 // has taken place). As a result, this matters more for older cores than for 12234 // newer ones. 12235 12236 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12237 // reciprocal if there are two or more FDIVs (for embedded cores with only 12238 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12239 switch (Subtarget.getCPUDirective()) { 12240 default: 12241 return 3; 12242 case PPC::DIR_440: 12243 case PPC::DIR_A2: 12244 case PPC::DIR_E500: 12245 case PPC::DIR_E500mc: 12246 case PPC::DIR_E5500: 12247 return 2; 12248 } 12249 } 12250 12251 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12252 // collapsed, and so we need to look through chains of them. 12253 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12254 int64_t& Offset, SelectionDAG &DAG) { 12255 if (DAG.isBaseWithConstantOffset(Loc)) { 12256 Base = Loc.getOperand(0); 12257 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12258 12259 // The base might itself be a base plus an offset, and if so, accumulate 12260 // that as well. 12261 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12262 } 12263 } 12264 12265 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12266 unsigned Bytes, int Dist, 12267 SelectionDAG &DAG) { 12268 if (VT.getSizeInBits() / 8 != Bytes) 12269 return false; 12270 12271 SDValue BaseLoc = Base->getBasePtr(); 12272 if (Loc.getOpcode() == ISD::FrameIndex) { 12273 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12274 return false; 12275 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12276 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12277 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12278 int FS = MFI.getObjectSize(FI); 12279 int BFS = MFI.getObjectSize(BFI); 12280 if (FS != BFS || FS != (int)Bytes) return false; 12281 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12282 } 12283 12284 SDValue Base1 = Loc, Base2 = BaseLoc; 12285 int64_t Offset1 = 0, Offset2 = 0; 12286 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12287 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12288 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12289 return true; 12290 12291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12292 const GlobalValue *GV1 = nullptr; 12293 const GlobalValue *GV2 = nullptr; 12294 Offset1 = 0; 12295 Offset2 = 0; 12296 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12297 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12298 if (isGA1 && isGA2 && GV1 == GV2) 12299 return Offset1 == (Offset2 + Dist*Bytes); 12300 return false; 12301 } 12302 12303 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12304 // not enforce equality of the chain operands. 12305 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12306 unsigned Bytes, int Dist, 12307 SelectionDAG &DAG) { 12308 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12309 EVT VT = LS->getMemoryVT(); 12310 SDValue Loc = LS->getBasePtr(); 12311 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12312 } 12313 12314 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12315 EVT VT; 12316 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12317 default: return false; 12318 case Intrinsic::ppc_altivec_lvx: 12319 case Intrinsic::ppc_altivec_lvxl: 12320 case Intrinsic::ppc_vsx_lxvw4x: 12321 case Intrinsic::ppc_vsx_lxvw4x_be: 12322 VT = MVT::v4i32; 12323 break; 12324 case Intrinsic::ppc_vsx_lxvd2x: 12325 case Intrinsic::ppc_vsx_lxvd2x_be: 12326 VT = MVT::v2f64; 12327 break; 12328 case Intrinsic::ppc_altivec_lvebx: 12329 VT = MVT::i8; 12330 break; 12331 case Intrinsic::ppc_altivec_lvehx: 12332 VT = MVT::i16; 12333 break; 12334 case Intrinsic::ppc_altivec_lvewx: 12335 VT = MVT::i32; 12336 break; 12337 } 12338 12339 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12340 } 12341 12342 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12343 EVT VT; 12344 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12345 default: return false; 12346 case Intrinsic::ppc_altivec_stvx: 12347 case Intrinsic::ppc_altivec_stvxl: 12348 case Intrinsic::ppc_vsx_stxvw4x: 12349 VT = MVT::v4i32; 12350 break; 12351 case Intrinsic::ppc_vsx_stxvd2x: 12352 VT = MVT::v2f64; 12353 break; 12354 case Intrinsic::ppc_vsx_stxvw4x_be: 12355 VT = MVT::v4i32; 12356 break; 12357 case Intrinsic::ppc_vsx_stxvd2x_be: 12358 VT = MVT::v2f64; 12359 break; 12360 case Intrinsic::ppc_altivec_stvebx: 12361 VT = MVT::i8; 12362 break; 12363 case Intrinsic::ppc_altivec_stvehx: 12364 VT = MVT::i16; 12365 break; 12366 case Intrinsic::ppc_altivec_stvewx: 12367 VT = MVT::i32; 12368 break; 12369 } 12370 12371 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12372 } 12373 12374 return false; 12375 } 12376 12377 // Return true is there is a nearyby consecutive load to the one provided 12378 // (regardless of alignment). We search up and down the chain, looking though 12379 // token factors and other loads (but nothing else). As a result, a true result 12380 // indicates that it is safe to create a new consecutive load adjacent to the 12381 // load provided. 12382 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12383 SDValue Chain = LD->getChain(); 12384 EVT VT = LD->getMemoryVT(); 12385 12386 SmallSet<SDNode *, 16> LoadRoots; 12387 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12388 SmallSet<SDNode *, 16> Visited; 12389 12390 // First, search up the chain, branching to follow all token-factor operands. 12391 // If we find a consecutive load, then we're done, otherwise, record all 12392 // nodes just above the top-level loads and token factors. 12393 while (!Queue.empty()) { 12394 SDNode *ChainNext = Queue.pop_back_val(); 12395 if (!Visited.insert(ChainNext).second) 12396 continue; 12397 12398 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12399 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12400 return true; 12401 12402 if (!Visited.count(ChainLD->getChain().getNode())) 12403 Queue.push_back(ChainLD->getChain().getNode()); 12404 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12405 for (const SDUse &O : ChainNext->ops()) 12406 if (!Visited.count(O.getNode())) 12407 Queue.push_back(O.getNode()); 12408 } else 12409 LoadRoots.insert(ChainNext); 12410 } 12411 12412 // Second, search down the chain, starting from the top-level nodes recorded 12413 // in the first phase. These top-level nodes are the nodes just above all 12414 // loads and token factors. Starting with their uses, recursively look though 12415 // all loads (just the chain uses) and token factors to find a consecutive 12416 // load. 12417 Visited.clear(); 12418 Queue.clear(); 12419 12420 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12421 IE = LoadRoots.end(); I != IE; ++I) { 12422 Queue.push_back(*I); 12423 12424 while (!Queue.empty()) { 12425 SDNode *LoadRoot = Queue.pop_back_val(); 12426 if (!Visited.insert(LoadRoot).second) 12427 continue; 12428 12429 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12430 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12431 return true; 12432 12433 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12434 UE = LoadRoot->use_end(); UI != UE; ++UI) 12435 if (((isa<MemSDNode>(*UI) && 12436 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12437 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12438 Queue.push_back(*UI); 12439 } 12440 } 12441 12442 return false; 12443 } 12444 12445 /// This function is called when we have proved that a SETCC node can be replaced 12446 /// by subtraction (and other supporting instructions) so that the result of 12447 /// comparison is kept in a GPR instead of CR. This function is purely for 12448 /// codegen purposes and has some flags to guide the codegen process. 12449 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12450 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12451 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12452 12453 // Zero extend the operands to the largest legal integer. Originally, they 12454 // must be of a strictly smaller size. 12455 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12456 DAG.getConstant(Size, DL, MVT::i32)); 12457 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12458 DAG.getConstant(Size, DL, MVT::i32)); 12459 12460 // Swap if needed. Depends on the condition code. 12461 if (Swap) 12462 std::swap(Op0, Op1); 12463 12464 // Subtract extended integers. 12465 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12466 12467 // Move the sign bit to the least significant position and zero out the rest. 12468 // Now the least significant bit carries the result of original comparison. 12469 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12470 DAG.getConstant(Size - 1, DL, MVT::i32)); 12471 auto Final = Shifted; 12472 12473 // Complement the result if needed. Based on the condition code. 12474 if (Complement) 12475 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12476 DAG.getConstant(1, DL, MVT::i64)); 12477 12478 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12479 } 12480 12481 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12482 DAGCombinerInfo &DCI) const { 12483 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12484 12485 SelectionDAG &DAG = DCI.DAG; 12486 SDLoc DL(N); 12487 12488 // Size of integers being compared has a critical role in the following 12489 // analysis, so we prefer to do this when all types are legal. 12490 if (!DCI.isAfterLegalizeDAG()) 12491 return SDValue(); 12492 12493 // If all users of SETCC extend its value to a legal integer type 12494 // then we replace SETCC with a subtraction 12495 for (SDNode::use_iterator UI = N->use_begin(), 12496 UE = N->use_end(); UI != UE; ++UI) { 12497 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12498 return SDValue(); 12499 } 12500 12501 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12502 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12503 12504 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12505 12506 if (OpSize < Size) { 12507 switch (CC) { 12508 default: break; 12509 case ISD::SETULT: 12510 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12511 case ISD::SETULE: 12512 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12513 case ISD::SETUGT: 12514 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12515 case ISD::SETUGE: 12516 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12517 } 12518 } 12519 12520 return SDValue(); 12521 } 12522 12523 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12524 DAGCombinerInfo &DCI) const { 12525 SelectionDAG &DAG = DCI.DAG; 12526 SDLoc dl(N); 12527 12528 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12529 // If we're tracking CR bits, we need to be careful that we don't have: 12530 // trunc(binary-ops(zext(x), zext(y))) 12531 // or 12532 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12533 // such that we're unnecessarily moving things into GPRs when it would be 12534 // better to keep them in CR bits. 12535 12536 // Note that trunc here can be an actual i1 trunc, or can be the effective 12537 // truncation that comes from a setcc or select_cc. 12538 if (N->getOpcode() == ISD::TRUNCATE && 12539 N->getValueType(0) != MVT::i1) 12540 return SDValue(); 12541 12542 if (N->getOperand(0).getValueType() != MVT::i32 && 12543 N->getOperand(0).getValueType() != MVT::i64) 12544 return SDValue(); 12545 12546 if (N->getOpcode() == ISD::SETCC || 12547 N->getOpcode() == ISD::SELECT_CC) { 12548 // If we're looking at a comparison, then we need to make sure that the 12549 // high bits (all except for the first) don't matter the result. 12550 ISD::CondCode CC = 12551 cast<CondCodeSDNode>(N->getOperand( 12552 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12553 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12554 12555 if (ISD::isSignedIntSetCC(CC)) { 12556 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12557 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12558 return SDValue(); 12559 } else if (ISD::isUnsignedIntSetCC(CC)) { 12560 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12561 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12562 !DAG.MaskedValueIsZero(N->getOperand(1), 12563 APInt::getHighBitsSet(OpBits, OpBits-1))) 12564 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12565 : SDValue()); 12566 } else { 12567 // This is neither a signed nor an unsigned comparison, just make sure 12568 // that the high bits are equal. 12569 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12570 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12571 12572 // We don't really care about what is known about the first bit (if 12573 // anything), so pretend that it is known zero for both to ensure they can 12574 // be compared as constants. 12575 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 12576 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 12577 12578 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 12579 Op1Known.getConstant() != Op2Known.getConstant()) 12580 return SDValue(); 12581 } 12582 } 12583 12584 // We now know that the higher-order bits are irrelevant, we just need to 12585 // make sure that all of the intermediate operations are bit operations, and 12586 // all inputs are extensions. 12587 if (N->getOperand(0).getOpcode() != ISD::AND && 12588 N->getOperand(0).getOpcode() != ISD::OR && 12589 N->getOperand(0).getOpcode() != ISD::XOR && 12590 N->getOperand(0).getOpcode() != ISD::SELECT && 12591 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12592 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12593 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12594 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12595 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12596 return SDValue(); 12597 12598 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12599 N->getOperand(1).getOpcode() != ISD::AND && 12600 N->getOperand(1).getOpcode() != ISD::OR && 12601 N->getOperand(1).getOpcode() != ISD::XOR && 12602 N->getOperand(1).getOpcode() != ISD::SELECT && 12603 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12604 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12605 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12606 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12607 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12608 return SDValue(); 12609 12610 SmallVector<SDValue, 4> Inputs; 12611 SmallVector<SDValue, 8> BinOps, PromOps; 12612 SmallPtrSet<SDNode *, 16> Visited; 12613 12614 for (unsigned i = 0; i < 2; ++i) { 12615 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12616 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12617 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12618 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12619 isa<ConstantSDNode>(N->getOperand(i))) 12620 Inputs.push_back(N->getOperand(i)); 12621 else 12622 BinOps.push_back(N->getOperand(i)); 12623 12624 if (N->getOpcode() == ISD::TRUNCATE) 12625 break; 12626 } 12627 12628 // Visit all inputs, collect all binary operations (and, or, xor and 12629 // select) that are all fed by extensions. 12630 while (!BinOps.empty()) { 12631 SDValue BinOp = BinOps.pop_back_val(); 12632 12633 if (!Visited.insert(BinOp.getNode()).second) 12634 continue; 12635 12636 PromOps.push_back(BinOp); 12637 12638 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12639 // The condition of the select is not promoted. 12640 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12641 continue; 12642 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12643 continue; 12644 12645 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12646 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12647 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12648 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12649 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12650 Inputs.push_back(BinOp.getOperand(i)); 12651 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12652 BinOp.getOperand(i).getOpcode() == ISD::OR || 12653 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12654 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12655 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12656 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12657 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12658 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12659 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12660 BinOps.push_back(BinOp.getOperand(i)); 12661 } else { 12662 // We have an input that is not an extension or another binary 12663 // operation; we'll abort this transformation. 12664 return SDValue(); 12665 } 12666 } 12667 } 12668 12669 // Make sure that this is a self-contained cluster of operations (which 12670 // is not quite the same thing as saying that everything has only one 12671 // use). 12672 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12673 if (isa<ConstantSDNode>(Inputs[i])) 12674 continue; 12675 12676 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12677 UE = Inputs[i].getNode()->use_end(); 12678 UI != UE; ++UI) { 12679 SDNode *User = *UI; 12680 if (User != N && !Visited.count(User)) 12681 return SDValue(); 12682 12683 // Make sure that we're not going to promote the non-output-value 12684 // operand(s) or SELECT or SELECT_CC. 12685 // FIXME: Although we could sometimes handle this, and it does occur in 12686 // practice that one of the condition inputs to the select is also one of 12687 // the outputs, we currently can't deal with this. 12688 if (User->getOpcode() == ISD::SELECT) { 12689 if (User->getOperand(0) == Inputs[i]) 12690 return SDValue(); 12691 } else if (User->getOpcode() == ISD::SELECT_CC) { 12692 if (User->getOperand(0) == Inputs[i] || 12693 User->getOperand(1) == Inputs[i]) 12694 return SDValue(); 12695 } 12696 } 12697 } 12698 12699 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12700 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12701 UE = PromOps[i].getNode()->use_end(); 12702 UI != UE; ++UI) { 12703 SDNode *User = *UI; 12704 if (User != N && !Visited.count(User)) 12705 return SDValue(); 12706 12707 // Make sure that we're not going to promote the non-output-value 12708 // operand(s) or SELECT or SELECT_CC. 12709 // FIXME: Although we could sometimes handle this, and it does occur in 12710 // practice that one of the condition inputs to the select is also one of 12711 // the outputs, we currently can't deal with this. 12712 if (User->getOpcode() == ISD::SELECT) { 12713 if (User->getOperand(0) == PromOps[i]) 12714 return SDValue(); 12715 } else if (User->getOpcode() == ISD::SELECT_CC) { 12716 if (User->getOperand(0) == PromOps[i] || 12717 User->getOperand(1) == PromOps[i]) 12718 return SDValue(); 12719 } 12720 } 12721 } 12722 12723 // Replace all inputs with the extension operand. 12724 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12725 // Constants may have users outside the cluster of to-be-promoted nodes, 12726 // and so we need to replace those as we do the promotions. 12727 if (isa<ConstantSDNode>(Inputs[i])) 12728 continue; 12729 else 12730 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12731 } 12732 12733 std::list<HandleSDNode> PromOpHandles; 12734 for (auto &PromOp : PromOps) 12735 PromOpHandles.emplace_back(PromOp); 12736 12737 // Replace all operations (these are all the same, but have a different 12738 // (i1) return type). DAG.getNode will validate that the types of 12739 // a binary operator match, so go through the list in reverse so that 12740 // we've likely promoted both operands first. Any intermediate truncations or 12741 // extensions disappear. 12742 while (!PromOpHandles.empty()) { 12743 SDValue PromOp = PromOpHandles.back().getValue(); 12744 PromOpHandles.pop_back(); 12745 12746 if (PromOp.getOpcode() == ISD::TRUNCATE || 12747 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12748 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12749 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12750 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12751 PromOp.getOperand(0).getValueType() != MVT::i1) { 12752 // The operand is not yet ready (see comment below). 12753 PromOpHandles.emplace_front(PromOp); 12754 continue; 12755 } 12756 12757 SDValue RepValue = PromOp.getOperand(0); 12758 if (isa<ConstantSDNode>(RepValue)) 12759 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12760 12761 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12762 continue; 12763 } 12764 12765 unsigned C; 12766 switch (PromOp.getOpcode()) { 12767 default: C = 0; break; 12768 case ISD::SELECT: C = 1; break; 12769 case ISD::SELECT_CC: C = 2; break; 12770 } 12771 12772 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12773 PromOp.getOperand(C).getValueType() != MVT::i1) || 12774 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12775 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12776 // The to-be-promoted operands of this node have not yet been 12777 // promoted (this should be rare because we're going through the 12778 // list backward, but if one of the operands has several users in 12779 // this cluster of to-be-promoted nodes, it is possible). 12780 PromOpHandles.emplace_front(PromOp); 12781 continue; 12782 } 12783 12784 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12785 PromOp.getNode()->op_end()); 12786 12787 // If there are any constant inputs, make sure they're replaced now. 12788 for (unsigned i = 0; i < 2; ++i) 12789 if (isa<ConstantSDNode>(Ops[C+i])) 12790 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12791 12792 DAG.ReplaceAllUsesOfValueWith(PromOp, 12793 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12794 } 12795 12796 // Now we're left with the initial truncation itself. 12797 if (N->getOpcode() == ISD::TRUNCATE) 12798 return N->getOperand(0); 12799 12800 // Otherwise, this is a comparison. The operands to be compared have just 12801 // changed type (to i1), but everything else is the same. 12802 return SDValue(N, 0); 12803 } 12804 12805 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12806 DAGCombinerInfo &DCI) const { 12807 SelectionDAG &DAG = DCI.DAG; 12808 SDLoc dl(N); 12809 12810 // If we're tracking CR bits, we need to be careful that we don't have: 12811 // zext(binary-ops(trunc(x), trunc(y))) 12812 // or 12813 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12814 // such that we're unnecessarily moving things into CR bits that can more 12815 // efficiently stay in GPRs. Note that if we're not certain that the high 12816 // bits are set as required by the final extension, we still may need to do 12817 // some masking to get the proper behavior. 12818 12819 // This same functionality is important on PPC64 when dealing with 12820 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12821 // the return values of functions. Because it is so similar, it is handled 12822 // here as well. 12823 12824 if (N->getValueType(0) != MVT::i32 && 12825 N->getValueType(0) != MVT::i64) 12826 return SDValue(); 12827 12828 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12829 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12830 return SDValue(); 12831 12832 if (N->getOperand(0).getOpcode() != ISD::AND && 12833 N->getOperand(0).getOpcode() != ISD::OR && 12834 N->getOperand(0).getOpcode() != ISD::XOR && 12835 N->getOperand(0).getOpcode() != ISD::SELECT && 12836 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12837 return SDValue(); 12838 12839 SmallVector<SDValue, 4> Inputs; 12840 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12841 SmallPtrSet<SDNode *, 16> Visited; 12842 12843 // Visit all inputs, collect all binary operations (and, or, xor and 12844 // select) that are all fed by truncations. 12845 while (!BinOps.empty()) { 12846 SDValue BinOp = BinOps.pop_back_val(); 12847 12848 if (!Visited.insert(BinOp.getNode()).second) 12849 continue; 12850 12851 PromOps.push_back(BinOp); 12852 12853 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12854 // The condition of the select is not promoted. 12855 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12856 continue; 12857 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12858 continue; 12859 12860 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12861 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12862 Inputs.push_back(BinOp.getOperand(i)); 12863 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12864 BinOp.getOperand(i).getOpcode() == ISD::OR || 12865 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12866 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12867 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12868 BinOps.push_back(BinOp.getOperand(i)); 12869 } else { 12870 // We have an input that is not a truncation or another binary 12871 // operation; we'll abort this transformation. 12872 return SDValue(); 12873 } 12874 } 12875 } 12876 12877 // The operands of a select that must be truncated when the select is 12878 // promoted because the operand is actually part of the to-be-promoted set. 12879 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12880 12881 // Make sure that this is a self-contained cluster of operations (which 12882 // is not quite the same thing as saying that everything has only one 12883 // use). 12884 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12885 if (isa<ConstantSDNode>(Inputs[i])) 12886 continue; 12887 12888 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12889 UE = Inputs[i].getNode()->use_end(); 12890 UI != UE; ++UI) { 12891 SDNode *User = *UI; 12892 if (User != N && !Visited.count(User)) 12893 return SDValue(); 12894 12895 // If we're going to promote the non-output-value operand(s) or SELECT or 12896 // SELECT_CC, record them for truncation. 12897 if (User->getOpcode() == ISD::SELECT) { 12898 if (User->getOperand(0) == Inputs[i]) 12899 SelectTruncOp[0].insert(std::make_pair(User, 12900 User->getOperand(0).getValueType())); 12901 } else if (User->getOpcode() == ISD::SELECT_CC) { 12902 if (User->getOperand(0) == Inputs[i]) 12903 SelectTruncOp[0].insert(std::make_pair(User, 12904 User->getOperand(0).getValueType())); 12905 if (User->getOperand(1) == Inputs[i]) 12906 SelectTruncOp[1].insert(std::make_pair(User, 12907 User->getOperand(1).getValueType())); 12908 } 12909 } 12910 } 12911 12912 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12913 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12914 UE = PromOps[i].getNode()->use_end(); 12915 UI != UE; ++UI) { 12916 SDNode *User = *UI; 12917 if (User != N && !Visited.count(User)) 12918 return SDValue(); 12919 12920 // If we're going to promote the non-output-value operand(s) or SELECT or 12921 // SELECT_CC, record them for truncation. 12922 if (User->getOpcode() == ISD::SELECT) { 12923 if (User->getOperand(0) == PromOps[i]) 12924 SelectTruncOp[0].insert(std::make_pair(User, 12925 User->getOperand(0).getValueType())); 12926 } else if (User->getOpcode() == ISD::SELECT_CC) { 12927 if (User->getOperand(0) == PromOps[i]) 12928 SelectTruncOp[0].insert(std::make_pair(User, 12929 User->getOperand(0).getValueType())); 12930 if (User->getOperand(1) == PromOps[i]) 12931 SelectTruncOp[1].insert(std::make_pair(User, 12932 User->getOperand(1).getValueType())); 12933 } 12934 } 12935 } 12936 12937 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12938 bool ReallyNeedsExt = false; 12939 if (N->getOpcode() != ISD::ANY_EXTEND) { 12940 // If all of the inputs are not already sign/zero extended, then 12941 // we'll still need to do that at the end. 12942 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12943 if (isa<ConstantSDNode>(Inputs[i])) 12944 continue; 12945 12946 unsigned OpBits = 12947 Inputs[i].getOperand(0).getValueSizeInBits(); 12948 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12949 12950 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12951 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12952 APInt::getHighBitsSet(OpBits, 12953 OpBits-PromBits))) || 12954 (N->getOpcode() == ISD::SIGN_EXTEND && 12955 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12956 (OpBits-(PromBits-1)))) { 12957 ReallyNeedsExt = true; 12958 break; 12959 } 12960 } 12961 } 12962 12963 // Replace all inputs, either with the truncation operand, or a 12964 // truncation or extension to the final output type. 12965 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12966 // Constant inputs need to be replaced with the to-be-promoted nodes that 12967 // use them because they might have users outside of the cluster of 12968 // promoted nodes. 12969 if (isa<ConstantSDNode>(Inputs[i])) 12970 continue; 12971 12972 SDValue InSrc = Inputs[i].getOperand(0); 12973 if (Inputs[i].getValueType() == N->getValueType(0)) 12974 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12975 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12976 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12977 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12978 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12979 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12980 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12981 else 12982 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12983 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12984 } 12985 12986 std::list<HandleSDNode> PromOpHandles; 12987 for (auto &PromOp : PromOps) 12988 PromOpHandles.emplace_back(PromOp); 12989 12990 // Replace all operations (these are all the same, but have a different 12991 // (promoted) return type). DAG.getNode will validate that the types of 12992 // a binary operator match, so go through the list in reverse so that 12993 // we've likely promoted both operands first. 12994 while (!PromOpHandles.empty()) { 12995 SDValue PromOp = PromOpHandles.back().getValue(); 12996 PromOpHandles.pop_back(); 12997 12998 unsigned C; 12999 switch (PromOp.getOpcode()) { 13000 default: C = 0; break; 13001 case ISD::SELECT: C = 1; break; 13002 case ISD::SELECT_CC: C = 2; break; 13003 } 13004 13005 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13006 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13007 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13008 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13009 // The to-be-promoted operands of this node have not yet been 13010 // promoted (this should be rare because we're going through the 13011 // list backward, but if one of the operands has several users in 13012 // this cluster of to-be-promoted nodes, it is possible). 13013 PromOpHandles.emplace_front(PromOp); 13014 continue; 13015 } 13016 13017 // For SELECT and SELECT_CC nodes, we do a similar check for any 13018 // to-be-promoted comparison inputs. 13019 if (PromOp.getOpcode() == ISD::SELECT || 13020 PromOp.getOpcode() == ISD::SELECT_CC) { 13021 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13022 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13023 (SelectTruncOp[1].count(PromOp.getNode()) && 13024 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13025 PromOpHandles.emplace_front(PromOp); 13026 continue; 13027 } 13028 } 13029 13030 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13031 PromOp.getNode()->op_end()); 13032 13033 // If this node has constant inputs, then they'll need to be promoted here. 13034 for (unsigned i = 0; i < 2; ++i) { 13035 if (!isa<ConstantSDNode>(Ops[C+i])) 13036 continue; 13037 if (Ops[C+i].getValueType() == N->getValueType(0)) 13038 continue; 13039 13040 if (N->getOpcode() == ISD::SIGN_EXTEND) 13041 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13042 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13043 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13044 else 13045 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13046 } 13047 13048 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13049 // truncate them again to the original value type. 13050 if (PromOp.getOpcode() == ISD::SELECT || 13051 PromOp.getOpcode() == ISD::SELECT_CC) { 13052 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13053 if (SI0 != SelectTruncOp[0].end()) 13054 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13055 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13056 if (SI1 != SelectTruncOp[1].end()) 13057 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13058 } 13059 13060 DAG.ReplaceAllUsesOfValueWith(PromOp, 13061 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13062 } 13063 13064 // Now we're left with the initial extension itself. 13065 if (!ReallyNeedsExt) 13066 return N->getOperand(0); 13067 13068 // To zero extend, just mask off everything except for the first bit (in the 13069 // i1 case). 13070 if (N->getOpcode() == ISD::ZERO_EXTEND) 13071 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13072 DAG.getConstant(APInt::getLowBitsSet( 13073 N->getValueSizeInBits(0), PromBits), 13074 dl, N->getValueType(0))); 13075 13076 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13077 "Invalid extension type"); 13078 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13079 SDValue ShiftCst = 13080 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13081 return DAG.getNode( 13082 ISD::SRA, dl, N->getValueType(0), 13083 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13084 ShiftCst); 13085 } 13086 13087 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13088 DAGCombinerInfo &DCI) const { 13089 assert(N->getOpcode() == ISD::SETCC && 13090 "Should be called with a SETCC node"); 13091 13092 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13093 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13094 SDValue LHS = N->getOperand(0); 13095 SDValue RHS = N->getOperand(1); 13096 13097 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13098 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13099 LHS.hasOneUse()) 13100 std::swap(LHS, RHS); 13101 13102 // x == 0-y --> x+y == 0 13103 // x != 0-y --> x+y != 0 13104 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13105 RHS.hasOneUse()) { 13106 SDLoc DL(N); 13107 SelectionDAG &DAG = DCI.DAG; 13108 EVT VT = N->getValueType(0); 13109 EVT OpVT = LHS.getValueType(); 13110 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13111 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13112 } 13113 } 13114 13115 return DAGCombineTruncBoolExt(N, DCI); 13116 } 13117 13118 // Is this an extending load from an f32 to an f64? 13119 static bool isFPExtLoad(SDValue Op) { 13120 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13121 return LD->getExtensionType() == ISD::EXTLOAD && 13122 Op.getValueType() == MVT::f64; 13123 return false; 13124 } 13125 13126 /// Reduces the number of fp-to-int conversion when building a vector. 13127 /// 13128 /// If this vector is built out of floating to integer conversions, 13129 /// transform it to a vector built out of floating point values followed by a 13130 /// single floating to integer conversion of the vector. 13131 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13132 /// becomes (fptosi (build_vector ($A, $B, ...))) 13133 SDValue PPCTargetLowering:: 13134 combineElementTruncationToVectorTruncation(SDNode *N, 13135 DAGCombinerInfo &DCI) const { 13136 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13137 "Should be called with a BUILD_VECTOR node"); 13138 13139 SelectionDAG &DAG = DCI.DAG; 13140 SDLoc dl(N); 13141 13142 SDValue FirstInput = N->getOperand(0); 13143 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13144 "The input operand must be an fp-to-int conversion."); 13145 13146 // This combine happens after legalization so the fp_to_[su]i nodes are 13147 // already converted to PPCSISD nodes. 13148 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13149 if (FirstConversion == PPCISD::FCTIDZ || 13150 FirstConversion == PPCISD::FCTIDUZ || 13151 FirstConversion == PPCISD::FCTIWZ || 13152 FirstConversion == PPCISD::FCTIWUZ) { 13153 bool IsSplat = true; 13154 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13155 FirstConversion == PPCISD::FCTIWUZ; 13156 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13157 SmallVector<SDValue, 4> Ops; 13158 EVT TargetVT = N->getValueType(0); 13159 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13160 SDValue NextOp = N->getOperand(i); 13161 if (NextOp.getOpcode() != PPCISD::MFVSR) 13162 return SDValue(); 13163 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13164 if (NextConversion != FirstConversion) 13165 return SDValue(); 13166 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13167 // This is not valid if the input was originally double precision. It is 13168 // also not profitable to do unless this is an extending load in which 13169 // case doing this combine will allow us to combine consecutive loads. 13170 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13171 return SDValue(); 13172 if (N->getOperand(i) != FirstInput) 13173 IsSplat = false; 13174 } 13175 13176 // If this is a splat, we leave it as-is since there will be only a single 13177 // fp-to-int conversion followed by a splat of the integer. This is better 13178 // for 32-bit and smaller ints and neutral for 64-bit ints. 13179 if (IsSplat) 13180 return SDValue(); 13181 13182 // Now that we know we have the right type of node, get its operands 13183 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13184 SDValue In = N->getOperand(i).getOperand(0); 13185 if (Is32Bit) { 13186 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13187 // here, we know that all inputs are extending loads so this is safe). 13188 if (In.isUndef()) 13189 Ops.push_back(DAG.getUNDEF(SrcVT)); 13190 else { 13191 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13192 MVT::f32, In.getOperand(0), 13193 DAG.getIntPtrConstant(1, dl)); 13194 Ops.push_back(Trunc); 13195 } 13196 } else 13197 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13198 } 13199 13200 unsigned Opcode; 13201 if (FirstConversion == PPCISD::FCTIDZ || 13202 FirstConversion == PPCISD::FCTIWZ) 13203 Opcode = ISD::FP_TO_SINT; 13204 else 13205 Opcode = ISD::FP_TO_UINT; 13206 13207 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13208 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13209 return DAG.getNode(Opcode, dl, TargetVT, BV); 13210 } 13211 return SDValue(); 13212 } 13213 13214 /// Reduce the number of loads when building a vector. 13215 /// 13216 /// Building a vector out of multiple loads can be converted to a load 13217 /// of the vector type if the loads are consecutive. If the loads are 13218 /// consecutive but in descending order, a shuffle is added at the end 13219 /// to reorder the vector. 13220 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13221 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13222 "Should be called with a BUILD_VECTOR node"); 13223 13224 SDLoc dl(N); 13225 13226 // Return early for non byte-sized type, as they can't be consecutive. 13227 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13228 return SDValue(); 13229 13230 bool InputsAreConsecutiveLoads = true; 13231 bool InputsAreReverseConsecutive = true; 13232 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13233 SDValue FirstInput = N->getOperand(0); 13234 bool IsRoundOfExtLoad = false; 13235 13236 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13237 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13238 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13239 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13240 } 13241 // Not a build vector of (possibly fp_rounded) loads. 13242 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13243 N->getNumOperands() == 1) 13244 return SDValue(); 13245 13246 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13247 // If any inputs are fp_round(extload), they all must be. 13248 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13249 return SDValue(); 13250 13251 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13252 N->getOperand(i); 13253 if (NextInput.getOpcode() != ISD::LOAD) 13254 return SDValue(); 13255 13256 SDValue PreviousInput = 13257 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13258 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13259 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13260 13261 // If any inputs are fp_round(extload), they all must be. 13262 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13263 return SDValue(); 13264 13265 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13266 InputsAreConsecutiveLoads = false; 13267 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13268 InputsAreReverseConsecutive = false; 13269 13270 // Exit early if the loads are neither consecutive nor reverse consecutive. 13271 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13272 return SDValue(); 13273 } 13274 13275 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13276 "The loads cannot be both consecutive and reverse consecutive."); 13277 13278 SDValue FirstLoadOp = 13279 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13280 SDValue LastLoadOp = 13281 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13282 N->getOperand(N->getNumOperands()-1); 13283 13284 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13285 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13286 if (InputsAreConsecutiveLoads) { 13287 assert(LD1 && "Input needs to be a LoadSDNode."); 13288 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13289 LD1->getBasePtr(), LD1->getPointerInfo(), 13290 LD1->getAlignment()); 13291 } 13292 if (InputsAreReverseConsecutive) { 13293 assert(LDL && "Input needs to be a LoadSDNode."); 13294 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13295 LDL->getBasePtr(), LDL->getPointerInfo(), 13296 LDL->getAlignment()); 13297 SmallVector<int, 16> Ops; 13298 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13299 Ops.push_back(i); 13300 13301 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13302 DAG.getUNDEF(N->getValueType(0)), Ops); 13303 } 13304 return SDValue(); 13305 } 13306 13307 // This function adds the required vector_shuffle needed to get 13308 // the elements of the vector extract in the correct position 13309 // as specified by the CorrectElems encoding. 13310 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13311 SDValue Input, uint64_t Elems, 13312 uint64_t CorrectElems) { 13313 SDLoc dl(N); 13314 13315 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13316 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13317 13318 // Knowing the element indices being extracted from the original 13319 // vector and the order in which they're being inserted, just put 13320 // them at element indices required for the instruction. 13321 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13322 if (DAG.getDataLayout().isLittleEndian()) 13323 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13324 else 13325 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13326 CorrectElems = CorrectElems >> 8; 13327 Elems = Elems >> 8; 13328 } 13329 13330 SDValue Shuffle = 13331 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13332 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13333 13334 EVT VT = N->getValueType(0); 13335 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13336 13337 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13338 Input.getValueType().getVectorElementType(), 13339 VT.getVectorNumElements()); 13340 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13341 DAG.getValueType(ExtVT)); 13342 } 13343 13344 // Look for build vector patterns where input operands come from sign 13345 // extended vector_extract elements of specific indices. If the correct indices 13346 // aren't used, add a vector shuffle to fix up the indices and create 13347 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13348 // during instruction selection. 13349 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13350 // This array encodes the indices that the vector sign extend instructions 13351 // extract from when extending from one type to another for both BE and LE. 13352 // The right nibble of each byte corresponds to the LE incides. 13353 // and the left nibble of each byte corresponds to the BE incides. 13354 // For example: 0x3074B8FC byte->word 13355 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13356 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13357 // For example: 0x000070F8 byte->double word 13358 // For LE: the allowed indices are: 0x0,0x8 13359 // For BE: the allowed indices are: 0x7,0xF 13360 uint64_t TargetElems[] = { 13361 0x3074B8FC, // b->w 13362 0x000070F8, // b->d 13363 0x10325476, // h->w 13364 0x00003074, // h->d 13365 0x00001032, // w->d 13366 }; 13367 13368 uint64_t Elems = 0; 13369 int Index; 13370 SDValue Input; 13371 13372 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13373 if (!Op) 13374 return false; 13375 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13376 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13377 return false; 13378 13379 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13380 // of the right width. 13381 SDValue Extract = Op.getOperand(0); 13382 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13383 Extract = Extract.getOperand(0); 13384 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13385 return false; 13386 13387 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13388 if (!ExtOp) 13389 return false; 13390 13391 Index = ExtOp->getZExtValue(); 13392 if (Input && Input != Extract.getOperand(0)) 13393 return false; 13394 13395 if (!Input) 13396 Input = Extract.getOperand(0); 13397 13398 Elems = Elems << 8; 13399 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13400 Elems |= Index; 13401 13402 return true; 13403 }; 13404 13405 // If the build vector operands aren't sign extended vector extracts, 13406 // of the same input vector, then return. 13407 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13408 if (!isSExtOfVecExtract(N->getOperand(i))) { 13409 return SDValue(); 13410 } 13411 } 13412 13413 // If the vector extract indicies are not correct, add the appropriate 13414 // vector_shuffle. 13415 int TgtElemArrayIdx; 13416 int InputSize = Input.getValueType().getScalarSizeInBits(); 13417 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13418 if (InputSize + OutputSize == 40) 13419 TgtElemArrayIdx = 0; 13420 else if (InputSize + OutputSize == 72) 13421 TgtElemArrayIdx = 1; 13422 else if (InputSize + OutputSize == 48) 13423 TgtElemArrayIdx = 2; 13424 else if (InputSize + OutputSize == 80) 13425 TgtElemArrayIdx = 3; 13426 else if (InputSize + OutputSize == 96) 13427 TgtElemArrayIdx = 4; 13428 else 13429 return SDValue(); 13430 13431 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13432 CorrectElems = DAG.getDataLayout().isLittleEndian() 13433 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13434 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13435 if (Elems != CorrectElems) { 13436 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13437 } 13438 13439 // Regular lowering will catch cases where a shuffle is not needed. 13440 return SDValue(); 13441 } 13442 13443 // Look for the pattern of a load from a narrow width to i128, feeding 13444 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13445 // (LXVRZX). This node represents a zero extending load that will be matched 13446 // to the Load VSX Vector Rightmost instructions. 13447 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13448 SDLoc DL(N); 13449 13450 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13451 if (N->getValueType(0) != MVT::v1i128) 13452 return SDValue(); 13453 13454 SDValue Operand = N->getOperand(0); 13455 // Proceed with the transformation if the operand to the BUILD_VECTOR 13456 // is a load instruction. 13457 if (Operand.getOpcode() != ISD::LOAD) 13458 return SDValue(); 13459 13460 LoadSDNode *LD = dyn_cast<LoadSDNode>(Operand); 13461 EVT MemoryType = LD->getMemoryVT(); 13462 13463 // This transformation is only valid if the we are loading either a byte, 13464 // halfword, word, or doubleword. 13465 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13466 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13467 13468 // Ensure that the load from the narrow width is being zero extended to i128. 13469 if (!ValidLDType || 13470 (LD->getExtensionType() != ISD::ZEXTLOAD && 13471 LD->getExtensionType() != ISD::EXTLOAD)) 13472 return SDValue(); 13473 13474 SDValue LoadOps[] = { 13475 LD->getChain(), LD->getBasePtr(), 13476 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13477 13478 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 13479 DAG.getVTList(MVT::v1i128, MVT::Other), 13480 LoadOps, MemoryType, LD->getMemOperand()); 13481 } 13482 13483 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13484 DAGCombinerInfo &DCI) const { 13485 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13486 "Should be called with a BUILD_VECTOR node"); 13487 13488 SelectionDAG &DAG = DCI.DAG; 13489 SDLoc dl(N); 13490 13491 if (!Subtarget.hasVSX()) 13492 return SDValue(); 13493 13494 // The target independent DAG combiner will leave a build_vector of 13495 // float-to-int conversions intact. We can generate MUCH better code for 13496 // a float-to-int conversion of a vector of floats. 13497 SDValue FirstInput = N->getOperand(0); 13498 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13499 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13500 if (Reduced) 13501 return Reduced; 13502 } 13503 13504 // If we're building a vector out of consecutive loads, just load that 13505 // vector type. 13506 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13507 if (Reduced) 13508 return Reduced; 13509 13510 // If we're building a vector out of extended elements from another vector 13511 // we have P9 vector integer extend instructions. The code assumes legal 13512 // input types (i.e. it can't handle things like v4i16) so do not run before 13513 // legalization. 13514 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13515 Reduced = combineBVOfVecSExt(N, DAG); 13516 if (Reduced) 13517 return Reduced; 13518 } 13519 13520 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 13521 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 13522 // is a load from <valid narrow width> to i128. 13523 if (Subtarget.isISA3_1()) { 13524 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 13525 if (BVOfZLoad) 13526 return BVOfZLoad; 13527 } 13528 13529 if (N->getValueType(0) != MVT::v2f64) 13530 return SDValue(); 13531 13532 // Looking for: 13533 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13534 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13535 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13536 return SDValue(); 13537 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13538 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13539 return SDValue(); 13540 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13541 return SDValue(); 13542 13543 SDValue Ext1 = FirstInput.getOperand(0); 13544 SDValue Ext2 = N->getOperand(1).getOperand(0); 13545 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13546 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13547 return SDValue(); 13548 13549 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13550 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13551 if (!Ext1Op || !Ext2Op) 13552 return SDValue(); 13553 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13554 Ext1.getOperand(0) != Ext2.getOperand(0)) 13555 return SDValue(); 13556 13557 int FirstElem = Ext1Op->getZExtValue(); 13558 int SecondElem = Ext2Op->getZExtValue(); 13559 int SubvecIdx; 13560 if (FirstElem == 0 && SecondElem == 1) 13561 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13562 else if (FirstElem == 2 && SecondElem == 3) 13563 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13564 else 13565 return SDValue(); 13566 13567 SDValue SrcVec = Ext1.getOperand(0); 13568 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13569 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13570 return DAG.getNode(NodeType, dl, MVT::v2f64, 13571 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13572 } 13573 13574 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13575 DAGCombinerInfo &DCI) const { 13576 assert((N->getOpcode() == ISD::SINT_TO_FP || 13577 N->getOpcode() == ISD::UINT_TO_FP) && 13578 "Need an int -> FP conversion node here"); 13579 13580 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13581 return SDValue(); 13582 13583 SelectionDAG &DAG = DCI.DAG; 13584 SDLoc dl(N); 13585 SDValue Op(N, 0); 13586 13587 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13588 // from the hardware. 13589 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13590 return SDValue(); 13591 if (!Op.getOperand(0).getValueType().isSimple()) 13592 return SDValue(); 13593 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13594 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13595 return SDValue(); 13596 13597 SDValue FirstOperand(Op.getOperand(0)); 13598 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13599 (FirstOperand.getValueType() == MVT::i8 || 13600 FirstOperand.getValueType() == MVT::i16); 13601 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13602 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13603 bool DstDouble = Op.getValueType() == MVT::f64; 13604 unsigned ConvOp = Signed ? 13605 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13606 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13607 SDValue WidthConst = 13608 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13609 dl, false); 13610 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13611 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13612 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13613 DAG.getVTList(MVT::f64, MVT::Other), 13614 Ops, MVT::i8, LDN->getMemOperand()); 13615 13616 // For signed conversion, we need to sign-extend the value in the VSR 13617 if (Signed) { 13618 SDValue ExtOps[] = { Ld, WidthConst }; 13619 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13620 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13621 } else 13622 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13623 } 13624 13625 13626 // For i32 intermediate values, unfortunately, the conversion functions 13627 // leave the upper 32 bits of the value are undefined. Within the set of 13628 // scalar instructions, we have no method for zero- or sign-extending the 13629 // value. Thus, we cannot handle i32 intermediate values here. 13630 if (Op.getOperand(0).getValueType() == MVT::i32) 13631 return SDValue(); 13632 13633 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13634 "UINT_TO_FP is supported only with FPCVT"); 13635 13636 // If we have FCFIDS, then use it when converting to single-precision. 13637 // Otherwise, convert to double-precision and then round. 13638 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13639 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13640 : PPCISD::FCFIDS) 13641 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13642 : PPCISD::FCFID); 13643 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13644 ? MVT::f32 13645 : MVT::f64; 13646 13647 // If we're converting from a float, to an int, and back to a float again, 13648 // then we don't need the store/load pair at all. 13649 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13650 Subtarget.hasFPCVT()) || 13651 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13652 SDValue Src = Op.getOperand(0).getOperand(0); 13653 if (Src.getValueType() == MVT::f32) { 13654 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13655 DCI.AddToWorklist(Src.getNode()); 13656 } else if (Src.getValueType() != MVT::f64) { 13657 // Make sure that we don't pick up a ppc_fp128 source value. 13658 return SDValue(); 13659 } 13660 13661 unsigned FCTOp = 13662 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13663 PPCISD::FCTIDUZ; 13664 13665 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13666 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13667 13668 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13669 FP = DAG.getNode(ISD::FP_ROUND, dl, 13670 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13671 DCI.AddToWorklist(FP.getNode()); 13672 } 13673 13674 return FP; 13675 } 13676 13677 return SDValue(); 13678 } 13679 13680 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13681 // builtins) into loads with swaps. 13682 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13683 DAGCombinerInfo &DCI) const { 13684 SelectionDAG &DAG = DCI.DAG; 13685 SDLoc dl(N); 13686 SDValue Chain; 13687 SDValue Base; 13688 MachineMemOperand *MMO; 13689 13690 switch (N->getOpcode()) { 13691 default: 13692 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13693 case ISD::LOAD: { 13694 LoadSDNode *LD = cast<LoadSDNode>(N); 13695 Chain = LD->getChain(); 13696 Base = LD->getBasePtr(); 13697 MMO = LD->getMemOperand(); 13698 // If the MMO suggests this isn't a load of a full vector, leave 13699 // things alone. For a built-in, we have to make the change for 13700 // correctness, so if there is a size problem that will be a bug. 13701 if (MMO->getSize() < 16) 13702 return SDValue(); 13703 break; 13704 } 13705 case ISD::INTRINSIC_W_CHAIN: { 13706 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13707 Chain = Intrin->getChain(); 13708 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13709 // us what we want. Get operand 2 instead. 13710 Base = Intrin->getOperand(2); 13711 MMO = Intrin->getMemOperand(); 13712 break; 13713 } 13714 } 13715 13716 MVT VecTy = N->getValueType(0).getSimpleVT(); 13717 13718 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13719 // aligned and the type is a vector with elements up to 4 bytes 13720 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13721 VecTy.getScalarSizeInBits() <= 32) { 13722 return SDValue(); 13723 } 13724 13725 SDValue LoadOps[] = { Chain, Base }; 13726 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13727 DAG.getVTList(MVT::v2f64, MVT::Other), 13728 LoadOps, MVT::v2f64, MMO); 13729 13730 DCI.AddToWorklist(Load.getNode()); 13731 Chain = Load.getValue(1); 13732 SDValue Swap = DAG.getNode( 13733 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13734 DCI.AddToWorklist(Swap.getNode()); 13735 13736 // Add a bitcast if the resulting load type doesn't match v2f64. 13737 if (VecTy != MVT::v2f64) { 13738 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13739 DCI.AddToWorklist(N.getNode()); 13740 // Package {bitcast value, swap's chain} to match Load's shape. 13741 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13742 N, Swap.getValue(1)); 13743 } 13744 13745 return Swap; 13746 } 13747 13748 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13749 // builtins) into stores with swaps. 13750 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13751 DAGCombinerInfo &DCI) const { 13752 SelectionDAG &DAG = DCI.DAG; 13753 SDLoc dl(N); 13754 SDValue Chain; 13755 SDValue Base; 13756 unsigned SrcOpnd; 13757 MachineMemOperand *MMO; 13758 13759 switch (N->getOpcode()) { 13760 default: 13761 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13762 case ISD::STORE: { 13763 StoreSDNode *ST = cast<StoreSDNode>(N); 13764 Chain = ST->getChain(); 13765 Base = ST->getBasePtr(); 13766 MMO = ST->getMemOperand(); 13767 SrcOpnd = 1; 13768 // If the MMO suggests this isn't a store of a full vector, leave 13769 // things alone. For a built-in, we have to make the change for 13770 // correctness, so if there is a size problem that will be a bug. 13771 if (MMO->getSize() < 16) 13772 return SDValue(); 13773 break; 13774 } 13775 case ISD::INTRINSIC_VOID: { 13776 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13777 Chain = Intrin->getChain(); 13778 // Intrin->getBasePtr() oddly does not get what we want. 13779 Base = Intrin->getOperand(3); 13780 MMO = Intrin->getMemOperand(); 13781 SrcOpnd = 2; 13782 break; 13783 } 13784 } 13785 13786 SDValue Src = N->getOperand(SrcOpnd); 13787 MVT VecTy = Src.getValueType().getSimpleVT(); 13788 13789 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13790 // aligned and the type is a vector with elements up to 4 bytes 13791 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 13792 VecTy.getScalarSizeInBits() <= 32) { 13793 return SDValue(); 13794 } 13795 13796 // All stores are done as v2f64 and possible bit cast. 13797 if (VecTy != MVT::v2f64) { 13798 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13799 DCI.AddToWorklist(Src.getNode()); 13800 } 13801 13802 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13803 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13804 DCI.AddToWorklist(Swap.getNode()); 13805 Chain = Swap.getValue(1); 13806 SDValue StoreOps[] = { Chain, Swap, Base }; 13807 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13808 DAG.getVTList(MVT::Other), 13809 StoreOps, VecTy, MMO); 13810 DCI.AddToWorklist(Store.getNode()); 13811 return Store; 13812 } 13813 13814 // Handle DAG combine for STORE (FP_TO_INT F). 13815 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13816 DAGCombinerInfo &DCI) const { 13817 13818 SelectionDAG &DAG = DCI.DAG; 13819 SDLoc dl(N); 13820 unsigned Opcode = N->getOperand(1).getOpcode(); 13821 13822 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13823 && "Not a FP_TO_INT Instruction!"); 13824 13825 SDValue Val = N->getOperand(1).getOperand(0); 13826 EVT Op1VT = N->getOperand(1).getValueType(); 13827 EVT ResVT = Val.getValueType(); 13828 13829 if (!isTypeLegal(ResVT)) 13830 return SDValue(); 13831 13832 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13833 bool ValidTypeForStoreFltAsInt = 13834 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13835 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13836 13837 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13838 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13839 return SDValue(); 13840 13841 // Extend f32 values to f64 13842 if (ResVT.getScalarSizeInBits() == 32) { 13843 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13844 DCI.AddToWorklist(Val.getNode()); 13845 } 13846 13847 // Set signed or unsigned conversion opcode. 13848 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13849 PPCISD::FP_TO_SINT_IN_VSR : 13850 PPCISD::FP_TO_UINT_IN_VSR; 13851 13852 Val = DAG.getNode(ConvOpcode, 13853 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13854 DCI.AddToWorklist(Val.getNode()); 13855 13856 // Set number of bytes being converted. 13857 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13858 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13859 DAG.getIntPtrConstant(ByteSize, dl, false), 13860 DAG.getValueType(Op1VT) }; 13861 13862 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13863 DAG.getVTList(MVT::Other), Ops, 13864 cast<StoreSDNode>(N)->getMemoryVT(), 13865 cast<StoreSDNode>(N)->getMemOperand()); 13866 13867 DCI.AddToWorklist(Val.getNode()); 13868 return Val; 13869 } 13870 13871 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 13872 // Check that the source of the element keeps flipping 13873 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 13874 bool PrevElemFromFirstVec = Mask[0] < NumElts; 13875 for (int i = 1, e = Mask.size(); i < e; i++) { 13876 if (PrevElemFromFirstVec && Mask[i] < NumElts) 13877 return false; 13878 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 13879 return false; 13880 PrevElemFromFirstVec = !PrevElemFromFirstVec; 13881 } 13882 return true; 13883 } 13884 13885 static bool isSplatBV(SDValue Op) { 13886 if (Op.getOpcode() != ISD::BUILD_VECTOR) 13887 return false; 13888 SDValue FirstOp; 13889 13890 // Find first non-undef input. 13891 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 13892 FirstOp = Op.getOperand(i); 13893 if (!FirstOp.isUndef()) 13894 break; 13895 } 13896 13897 // All inputs are undef or the same as the first non-undef input. 13898 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 13899 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 13900 return false; 13901 return true; 13902 } 13903 13904 static SDValue isScalarToVec(SDValue Op) { 13905 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13906 return Op; 13907 if (Op.getOpcode() != ISD::BITCAST) 13908 return SDValue(); 13909 Op = Op.getOperand(0); 13910 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 13911 return Op; 13912 return SDValue(); 13913 } 13914 13915 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 13916 int LHSMaxIdx, int RHSMinIdx, 13917 int RHSMaxIdx, int HalfVec) { 13918 for (int i = 0, e = ShuffV.size(); i < e; i++) { 13919 int Idx = ShuffV[i]; 13920 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 13921 ShuffV[i] += HalfVec; 13922 } 13923 } 13924 13925 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 13926 // the original is: 13927 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 13928 // In such a case, just change the shuffle mask to extract the element 13929 // from the permuted index. 13930 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG) { 13931 SDLoc dl(OrigSToV); 13932 EVT VT = OrigSToV.getValueType(); 13933 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 13934 "Expecting a SCALAR_TO_VECTOR here"); 13935 SDValue Input = OrigSToV.getOperand(0); 13936 13937 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13938 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 13939 SDValue OrigVector = Input.getOperand(0); 13940 13941 // Can't handle non-const element indices or different vector types 13942 // for the input to the extract and the output of the scalar_to_vector. 13943 if (Idx && VT == OrigVector.getValueType()) { 13944 SmallVector<int, 16> NewMask(VT.getVectorNumElements(), -1); 13945 NewMask[VT.getVectorNumElements() / 2] = Idx->getZExtValue(); 13946 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 13947 } 13948 } 13949 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 13950 OrigSToV.getOperand(0)); 13951 } 13952 13953 // On little endian subtargets, combine shuffles such as: 13954 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 13955 // into: 13956 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 13957 // because the latter can be matched to a single instruction merge. 13958 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 13959 // to put the value into element zero. Adjust the shuffle mask so that the 13960 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 13961 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 13962 SelectionDAG &DAG) const { 13963 SDValue LHS = SVN->getOperand(0); 13964 SDValue RHS = SVN->getOperand(1); 13965 auto Mask = SVN->getMask(); 13966 int NumElts = LHS.getValueType().getVectorNumElements(); 13967 SDValue Res(SVN, 0); 13968 SDLoc dl(SVN); 13969 13970 // None of these combines are useful on big endian systems since the ISA 13971 // already has a big endian bias. 13972 if (!Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13973 return Res; 13974 13975 // If this is not a shuffle of a shuffle and the first element comes from 13976 // the second vector, canonicalize to the commuted form. This will make it 13977 // more likely to match one of the single instruction patterns. 13978 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 13979 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 13980 std::swap(LHS, RHS); 13981 Res = DAG.getCommutedVectorShuffle(*SVN); 13982 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 13983 } 13984 13985 // Adjust the shuffle mask if either input vector comes from a 13986 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 13987 // form (to prevent the need for a swap). 13988 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 13989 SDValue SToVLHS = isScalarToVec(LHS); 13990 SDValue SToVRHS = isScalarToVec(RHS); 13991 if (SToVLHS || SToVRHS) { 13992 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 13993 : SToVRHS.getValueType().getVectorNumElements(); 13994 int NumEltsOut = ShuffV.size(); 13995 13996 // Initially assume that neither input is permuted. These will be adjusted 13997 // accordingly if either input is. 13998 int LHSMaxIdx = -1; 13999 int RHSMinIdx = -1; 14000 int RHSMaxIdx = -1; 14001 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14002 14003 // Get the permuted scalar to vector nodes for the source(s) that come from 14004 // ISD::SCALAR_TO_VECTOR. 14005 if (SToVLHS) { 14006 // Set up the values for the shuffle vector fixup. 14007 LHSMaxIdx = NumEltsOut / NumEltsIn; 14008 SToVLHS = getSToVPermuted(SToVLHS, DAG); 14009 if (SToVLHS.getValueType() != LHS.getValueType()) 14010 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14011 LHS = SToVLHS; 14012 } 14013 if (SToVRHS) { 14014 RHSMinIdx = NumEltsOut; 14015 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14016 SToVRHS = getSToVPermuted(SToVRHS, DAG); 14017 if (SToVRHS.getValueType() != RHS.getValueType()) 14018 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14019 RHS = SToVRHS; 14020 } 14021 14022 // Fix up the shuffle mask to reflect where the desired element actually is. 14023 // The minimum and maximum indices that correspond to element zero for both 14024 // the LHS and RHS are computed and will control which shuffle mask entries 14025 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14026 // entries in the range [RHSMinIdx,RHSMaxIdx) will be incremented by 14027 // HalfVec to refer to the corresponding element in the permuted vector. 14028 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14029 HalfVec); 14030 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14031 14032 // We may have simplified away the shuffle. We won't be able to do anything 14033 // further with it here. 14034 if (!isa<ShuffleVectorSDNode>(Res)) 14035 return Res; 14036 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14037 } 14038 14039 // The common case after we commuted the shuffle is that the RHS is a splat 14040 // and we have elements coming in from the splat at indices that are not 14041 // conducive to using a merge. 14042 // Example: 14043 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14044 if (!isSplatBV(RHS)) 14045 return Res; 14046 14047 // We are looking for a mask such that all even elements are from 14048 // one vector and all odd elements from the other. 14049 if (!isAlternatingShuffMask(Mask, NumElts)) 14050 return Res; 14051 14052 // Adjust the mask so we are pulling in the same index from the splat 14053 // as the index from the interesting vector in consecutive elements. 14054 // Example (even elements from first vector): 14055 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14056 if (Mask[0] < NumElts) 14057 for (int i = 1, e = Mask.size(); i < e; i += 2) 14058 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14059 // Example (odd elements from first vector): 14060 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14061 else 14062 for (int i = 0, e = Mask.size(); i < e; i += 2) 14063 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14064 14065 // If the RHS has undefs, we need to remove them since we may have created 14066 // a shuffle that adds those instead of the splat value. 14067 SDValue SplatVal = cast<BuildVectorSDNode>(RHS.getNode())->getSplatValue(); 14068 RHS = DAG.getSplatBuildVector(RHS.getValueType(), dl, SplatVal); 14069 14070 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14071 return Res; 14072 } 14073 14074 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14075 LSBaseSDNode *LSBase, 14076 DAGCombinerInfo &DCI) const { 14077 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14078 "Not a reverse memop pattern!"); 14079 14080 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14081 auto Mask = SVN->getMask(); 14082 int i = 0; 14083 auto I = Mask.rbegin(); 14084 auto E = Mask.rend(); 14085 14086 for (; I != E; ++I) { 14087 if (*I != i) 14088 return false; 14089 i++; 14090 } 14091 return true; 14092 }; 14093 14094 SelectionDAG &DAG = DCI.DAG; 14095 EVT VT = SVN->getValueType(0); 14096 14097 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14098 return SDValue(); 14099 14100 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14101 // See comment in PPCVSXSwapRemoval.cpp. 14102 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14103 if (!Subtarget.hasP9Vector()) 14104 return SDValue(); 14105 14106 if(!IsElementReverse(SVN)) 14107 return SDValue(); 14108 14109 if (LSBase->getOpcode() == ISD::LOAD) { 14110 SDLoc dl(SVN); 14111 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14112 return DAG.getMemIntrinsicNode( 14113 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14114 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14115 } 14116 14117 if (LSBase->getOpcode() == ISD::STORE) { 14118 SDLoc dl(LSBase); 14119 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14120 LSBase->getBasePtr()}; 14121 return DAG.getMemIntrinsicNode( 14122 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14123 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14124 } 14125 14126 llvm_unreachable("Expected a load or store node here"); 14127 } 14128 14129 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14130 DAGCombinerInfo &DCI) const { 14131 SelectionDAG &DAG = DCI.DAG; 14132 SDLoc dl(N); 14133 switch (N->getOpcode()) { 14134 default: break; 14135 case ISD::ADD: 14136 return combineADD(N, DCI); 14137 case ISD::SHL: 14138 return combineSHL(N, DCI); 14139 case ISD::SRA: 14140 return combineSRA(N, DCI); 14141 case ISD::SRL: 14142 return combineSRL(N, DCI); 14143 case ISD::MUL: 14144 return combineMUL(N, DCI); 14145 case ISD::FMA: 14146 case PPCISD::FNMSUB: 14147 return combineFMALike(N, DCI); 14148 case PPCISD::SHL: 14149 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14150 return N->getOperand(0); 14151 break; 14152 case PPCISD::SRL: 14153 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14154 return N->getOperand(0); 14155 break; 14156 case PPCISD::SRA: 14157 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14158 if (C->isNullValue() || // 0 >>s V -> 0. 14159 C->isAllOnesValue()) // -1 >>s V -> -1. 14160 return N->getOperand(0); 14161 } 14162 break; 14163 case ISD::SIGN_EXTEND: 14164 case ISD::ZERO_EXTEND: 14165 case ISD::ANY_EXTEND: 14166 return DAGCombineExtBoolTrunc(N, DCI); 14167 case ISD::TRUNCATE: 14168 return combineTRUNCATE(N, DCI); 14169 case ISD::SETCC: 14170 if (SDValue CSCC = combineSetCC(N, DCI)) 14171 return CSCC; 14172 LLVM_FALLTHROUGH; 14173 case ISD::SELECT_CC: 14174 return DAGCombineTruncBoolExt(N, DCI); 14175 case ISD::SINT_TO_FP: 14176 case ISD::UINT_TO_FP: 14177 return combineFPToIntToFP(N, DCI); 14178 case ISD::VECTOR_SHUFFLE: 14179 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14180 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14181 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14182 } 14183 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14184 case ISD::STORE: { 14185 14186 EVT Op1VT = N->getOperand(1).getValueType(); 14187 unsigned Opcode = N->getOperand(1).getOpcode(); 14188 14189 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14190 SDValue Val= combineStoreFPToInt(N, DCI); 14191 if (Val) 14192 return Val; 14193 } 14194 14195 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14196 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14197 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14198 if (Val) 14199 return Val; 14200 } 14201 14202 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14203 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14204 N->getOperand(1).getNode()->hasOneUse() && 14205 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14206 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14207 14208 // STBRX can only handle simple types and it makes no sense to store less 14209 // two bytes in byte-reversed order. 14210 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14211 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14212 break; 14213 14214 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14215 // Do an any-extend to 32-bits if this is a half-word input. 14216 if (BSwapOp.getValueType() == MVT::i16) 14217 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14218 14219 // If the type of BSWAP operand is wider than stored memory width 14220 // it need to be shifted to the right side before STBRX. 14221 if (Op1VT.bitsGT(mVT)) { 14222 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14223 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14224 DAG.getConstant(Shift, dl, MVT::i32)); 14225 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14226 if (Op1VT == MVT::i64) 14227 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14228 } 14229 14230 SDValue Ops[] = { 14231 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14232 }; 14233 return 14234 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14235 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14236 cast<StoreSDNode>(N)->getMemOperand()); 14237 } 14238 14239 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14240 // So it can increase the chance of CSE constant construction. 14241 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14242 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14243 // Need to sign-extended to 64-bits to handle negative values. 14244 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14245 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14246 MemVT.getSizeInBits()); 14247 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14248 14249 // DAG.getTruncStore() can't be used here because it doesn't accept 14250 // the general (base + offset) addressing mode. 14251 // So we use UpdateNodeOperands and setTruncatingStore instead. 14252 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14253 N->getOperand(3)); 14254 cast<StoreSDNode>(N)->setTruncatingStore(true); 14255 return SDValue(N, 0); 14256 } 14257 14258 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14259 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14260 if (Op1VT.isSimple()) { 14261 MVT StoreVT = Op1VT.getSimpleVT(); 14262 if (Subtarget.needsSwapsForVSXMemOps() && 14263 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14264 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14265 return expandVSXStoreForLE(N, DCI); 14266 } 14267 break; 14268 } 14269 case ISD::LOAD: { 14270 LoadSDNode *LD = cast<LoadSDNode>(N); 14271 EVT VT = LD->getValueType(0); 14272 14273 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14274 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14275 if (VT.isSimple()) { 14276 MVT LoadVT = VT.getSimpleVT(); 14277 if (Subtarget.needsSwapsForVSXMemOps() && 14278 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14279 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14280 return expandVSXLoadForLE(N, DCI); 14281 } 14282 14283 // We sometimes end up with a 64-bit integer load, from which we extract 14284 // two single-precision floating-point numbers. This happens with 14285 // std::complex<float>, and other similar structures, because of the way we 14286 // canonicalize structure copies. However, if we lack direct moves, 14287 // then the final bitcasts from the extracted integer values to the 14288 // floating-point numbers turn into store/load pairs. Even with direct moves, 14289 // just loading the two floating-point numbers is likely better. 14290 auto ReplaceTwoFloatLoad = [&]() { 14291 if (VT != MVT::i64) 14292 return false; 14293 14294 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14295 LD->isVolatile()) 14296 return false; 14297 14298 // We're looking for a sequence like this: 14299 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14300 // t16: i64 = srl t13, Constant:i32<32> 14301 // t17: i32 = truncate t16 14302 // t18: f32 = bitcast t17 14303 // t19: i32 = truncate t13 14304 // t20: f32 = bitcast t19 14305 14306 if (!LD->hasNUsesOfValue(2, 0)) 14307 return false; 14308 14309 auto UI = LD->use_begin(); 14310 while (UI.getUse().getResNo() != 0) ++UI; 14311 SDNode *Trunc = *UI++; 14312 while (UI.getUse().getResNo() != 0) ++UI; 14313 SDNode *RightShift = *UI; 14314 if (Trunc->getOpcode() != ISD::TRUNCATE) 14315 std::swap(Trunc, RightShift); 14316 14317 if (Trunc->getOpcode() != ISD::TRUNCATE || 14318 Trunc->getValueType(0) != MVT::i32 || 14319 !Trunc->hasOneUse()) 14320 return false; 14321 if (RightShift->getOpcode() != ISD::SRL || 14322 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14323 RightShift->getConstantOperandVal(1) != 32 || 14324 !RightShift->hasOneUse()) 14325 return false; 14326 14327 SDNode *Trunc2 = *RightShift->use_begin(); 14328 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14329 Trunc2->getValueType(0) != MVT::i32 || 14330 !Trunc2->hasOneUse()) 14331 return false; 14332 14333 SDNode *Bitcast = *Trunc->use_begin(); 14334 SDNode *Bitcast2 = *Trunc2->use_begin(); 14335 14336 if (Bitcast->getOpcode() != ISD::BITCAST || 14337 Bitcast->getValueType(0) != MVT::f32) 14338 return false; 14339 if (Bitcast2->getOpcode() != ISD::BITCAST || 14340 Bitcast2->getValueType(0) != MVT::f32) 14341 return false; 14342 14343 if (Subtarget.isLittleEndian()) 14344 std::swap(Bitcast, Bitcast2); 14345 14346 // Bitcast has the second float (in memory-layout order) and Bitcast2 14347 // has the first one. 14348 14349 SDValue BasePtr = LD->getBasePtr(); 14350 if (LD->isIndexed()) { 14351 assert(LD->getAddressingMode() == ISD::PRE_INC && 14352 "Non-pre-inc AM on PPC?"); 14353 BasePtr = 14354 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14355 LD->getOffset()); 14356 } 14357 14358 auto MMOFlags = 14359 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14360 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14361 LD->getPointerInfo(), LD->getAlignment(), 14362 MMOFlags, LD->getAAInfo()); 14363 SDValue AddPtr = 14364 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14365 BasePtr, DAG.getIntPtrConstant(4, dl)); 14366 SDValue FloatLoad2 = DAG.getLoad( 14367 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14368 LD->getPointerInfo().getWithOffset(4), 14369 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14370 14371 if (LD->isIndexed()) { 14372 // Note that DAGCombine should re-form any pre-increment load(s) from 14373 // what is produced here if that makes sense. 14374 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14375 } 14376 14377 DCI.CombineTo(Bitcast2, FloatLoad); 14378 DCI.CombineTo(Bitcast, FloatLoad2); 14379 14380 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14381 SDValue(FloatLoad2.getNode(), 1)); 14382 return true; 14383 }; 14384 14385 if (ReplaceTwoFloatLoad()) 14386 return SDValue(N, 0); 14387 14388 EVT MemVT = LD->getMemoryVT(); 14389 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14390 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14391 if (LD->isUnindexed() && VT.isVector() && 14392 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14393 // P8 and later hardware should just use LOAD. 14394 !Subtarget.hasP8Vector() && 14395 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14396 VT == MVT::v4f32))) && 14397 LD->getAlign() < ABIAlignment) { 14398 // This is a type-legal unaligned Altivec load. 14399 SDValue Chain = LD->getChain(); 14400 SDValue Ptr = LD->getBasePtr(); 14401 bool isLittleEndian = Subtarget.isLittleEndian(); 14402 14403 // This implements the loading of unaligned vectors as described in 14404 // the venerable Apple Velocity Engine overview. Specifically: 14405 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 14406 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 14407 // 14408 // The general idea is to expand a sequence of one or more unaligned 14409 // loads into an alignment-based permutation-control instruction (lvsl 14410 // or lvsr), a series of regular vector loads (which always truncate 14411 // their input address to an aligned address), and a series of 14412 // permutations. The results of these permutations are the requested 14413 // loaded values. The trick is that the last "extra" load is not taken 14414 // from the address you might suspect (sizeof(vector) bytes after the 14415 // last requested load), but rather sizeof(vector) - 1 bytes after the 14416 // last requested vector. The point of this is to avoid a page fault if 14417 // the base address happened to be aligned. This works because if the 14418 // base address is aligned, then adding less than a full vector length 14419 // will cause the last vector in the sequence to be (re)loaded. 14420 // Otherwise, the next vector will be fetched as you might suspect was 14421 // necessary. 14422 14423 // We might be able to reuse the permutation generation from 14424 // a different base address offset from this one by an aligned amount. 14425 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14426 // optimization later. 14427 Intrinsic::ID Intr, IntrLD, IntrPerm; 14428 MVT PermCntlTy, PermTy, LDTy; 14429 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14430 : Intrinsic::ppc_altivec_lvsl; 14431 IntrLD = Intrinsic::ppc_altivec_lvx; 14432 IntrPerm = Intrinsic::ppc_altivec_vperm; 14433 PermCntlTy = MVT::v16i8; 14434 PermTy = MVT::v4i32; 14435 LDTy = MVT::v4i32; 14436 14437 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14438 14439 // Create the new MMO for the new base load. It is like the original MMO, 14440 // but represents an area in memory almost twice the vector size centered 14441 // on the original address. If the address is unaligned, we might start 14442 // reading up to (sizeof(vector)-1) bytes below the address of the 14443 // original unaligned load. 14444 MachineFunction &MF = DAG.getMachineFunction(); 14445 MachineMemOperand *BaseMMO = 14446 MF.getMachineMemOperand(LD->getMemOperand(), 14447 -(long)MemVT.getStoreSize()+1, 14448 2*MemVT.getStoreSize()-1); 14449 14450 // Create the new base load. 14451 SDValue LDXIntID = 14452 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14453 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14454 SDValue BaseLoad = 14455 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14456 DAG.getVTList(PermTy, MVT::Other), 14457 BaseLoadOps, LDTy, BaseMMO); 14458 14459 // Note that the value of IncOffset (which is provided to the next 14460 // load's pointer info offset value, and thus used to calculate the 14461 // alignment), and the value of IncValue (which is actually used to 14462 // increment the pointer value) are different! This is because we 14463 // require the next load to appear to be aligned, even though it 14464 // is actually offset from the base pointer by a lesser amount. 14465 int IncOffset = VT.getSizeInBits() / 8; 14466 int IncValue = IncOffset; 14467 14468 // Walk (both up and down) the chain looking for another load at the real 14469 // (aligned) offset (the alignment of the other load does not matter in 14470 // this case). If found, then do not use the offset reduction trick, as 14471 // that will prevent the loads from being later combined (as they would 14472 // otherwise be duplicates). 14473 if (!findConsecutiveLoad(LD, DAG)) 14474 --IncValue; 14475 14476 SDValue Increment = 14477 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14478 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14479 14480 MachineMemOperand *ExtraMMO = 14481 MF.getMachineMemOperand(LD->getMemOperand(), 14482 1, 2*MemVT.getStoreSize()-1); 14483 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14484 SDValue ExtraLoad = 14485 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14486 DAG.getVTList(PermTy, MVT::Other), 14487 ExtraLoadOps, LDTy, ExtraMMO); 14488 14489 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14490 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14491 14492 // Because vperm has a big-endian bias, we must reverse the order 14493 // of the input vectors and complement the permute control vector 14494 // when generating little endian code. We have already handled the 14495 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14496 // and ExtraLoad here. 14497 SDValue Perm; 14498 if (isLittleEndian) 14499 Perm = BuildIntrinsicOp(IntrPerm, 14500 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14501 else 14502 Perm = BuildIntrinsicOp(IntrPerm, 14503 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14504 14505 if (VT != PermTy) 14506 Perm = Subtarget.hasAltivec() 14507 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 14508 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 14509 DAG.getTargetConstant(1, dl, MVT::i64)); 14510 // second argument is 1 because this rounding 14511 // is always exact. 14512 14513 // The output of the permutation is our loaded result, the TokenFactor is 14514 // our new chain. 14515 DCI.CombineTo(N, Perm, TF); 14516 return SDValue(N, 0); 14517 } 14518 } 14519 break; 14520 case ISD::INTRINSIC_WO_CHAIN: { 14521 bool isLittleEndian = Subtarget.isLittleEndian(); 14522 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14523 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14524 : Intrinsic::ppc_altivec_lvsl); 14525 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 14526 SDValue Add = N->getOperand(1); 14527 14528 int Bits = 4 /* 16 byte alignment */; 14529 14530 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14531 APInt::getAllOnesValue(Bits /* alignment */) 14532 .zext(Add.getScalarValueSizeInBits()))) { 14533 SDNode *BasePtr = Add->getOperand(0).getNode(); 14534 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14535 UE = BasePtr->use_end(); 14536 UI != UE; ++UI) { 14537 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14538 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 14539 IID) { 14540 // We've found another LVSL/LVSR, and this address is an aligned 14541 // multiple of that one. The results will be the same, so use the 14542 // one we've just found instead. 14543 14544 return SDValue(*UI, 0); 14545 } 14546 } 14547 } 14548 14549 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14550 SDNode *BasePtr = Add->getOperand(0).getNode(); 14551 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14552 UE = BasePtr->use_end(); UI != UE; ++UI) { 14553 if (UI->getOpcode() == ISD::ADD && 14554 isa<ConstantSDNode>(UI->getOperand(1)) && 14555 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14556 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14557 (1ULL << Bits) == 0) { 14558 SDNode *OtherAdd = *UI; 14559 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14560 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14561 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14562 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14563 return SDValue(*VI, 0); 14564 } 14565 } 14566 } 14567 } 14568 } 14569 } 14570 14571 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14572 // Expose the vabsduw/h/b opportunity for down stream 14573 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14574 (IID == Intrinsic::ppc_altivec_vmaxsw || 14575 IID == Intrinsic::ppc_altivec_vmaxsh || 14576 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14577 SDValue V1 = N->getOperand(1); 14578 SDValue V2 = N->getOperand(2); 14579 if ((V1.getSimpleValueType() == MVT::v4i32 || 14580 V1.getSimpleValueType() == MVT::v8i16 || 14581 V1.getSimpleValueType() == MVT::v16i8) && 14582 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14583 // (0-a, a) 14584 if (V1.getOpcode() == ISD::SUB && 14585 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14586 V1.getOperand(1) == V2) { 14587 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14588 } 14589 // (a, 0-a) 14590 if (V2.getOpcode() == ISD::SUB && 14591 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14592 V2.getOperand(1) == V1) { 14593 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14594 } 14595 // (x-y, y-x) 14596 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14597 V1.getOperand(0) == V2.getOperand(1) && 14598 V1.getOperand(1) == V2.getOperand(0)) { 14599 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14600 } 14601 } 14602 } 14603 } 14604 14605 break; 14606 case ISD::INTRINSIC_W_CHAIN: 14607 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14608 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14609 if (Subtarget.needsSwapsForVSXMemOps()) { 14610 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14611 default: 14612 break; 14613 case Intrinsic::ppc_vsx_lxvw4x: 14614 case Intrinsic::ppc_vsx_lxvd2x: 14615 return expandVSXLoadForLE(N, DCI); 14616 } 14617 } 14618 break; 14619 case ISD::INTRINSIC_VOID: 14620 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14621 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14622 if (Subtarget.needsSwapsForVSXMemOps()) { 14623 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14624 default: 14625 break; 14626 case Intrinsic::ppc_vsx_stxvw4x: 14627 case Intrinsic::ppc_vsx_stxvd2x: 14628 return expandVSXStoreForLE(N, DCI); 14629 } 14630 } 14631 break; 14632 case ISD::BSWAP: 14633 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14634 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14635 N->getOperand(0).hasOneUse() && 14636 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14637 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14638 N->getValueType(0) == MVT::i64))) { 14639 SDValue Load = N->getOperand(0); 14640 LoadSDNode *LD = cast<LoadSDNode>(Load); 14641 // Create the byte-swapping load. 14642 SDValue Ops[] = { 14643 LD->getChain(), // Chain 14644 LD->getBasePtr(), // Ptr 14645 DAG.getValueType(N->getValueType(0)) // VT 14646 }; 14647 SDValue BSLoad = 14648 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14649 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14650 MVT::i64 : MVT::i32, MVT::Other), 14651 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14652 14653 // If this is an i16 load, insert the truncate. 14654 SDValue ResVal = BSLoad; 14655 if (N->getValueType(0) == MVT::i16) 14656 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14657 14658 // First, combine the bswap away. This makes the value produced by the 14659 // load dead. 14660 DCI.CombineTo(N, ResVal); 14661 14662 // Next, combine the load away, we give it a bogus result value but a real 14663 // chain result. The result value is dead because the bswap is dead. 14664 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14665 14666 // Return N so it doesn't get rechecked! 14667 return SDValue(N, 0); 14668 } 14669 break; 14670 case PPCISD::VCMP: 14671 // If a VCMP_rec node already exists with exactly the same operands as this 14672 // node, use its result instead of this node (VCMP_rec computes both a CR6 14673 // and a normal output). 14674 // 14675 if (!N->getOperand(0).hasOneUse() && 14676 !N->getOperand(1).hasOneUse() && 14677 !N->getOperand(2).hasOneUse()) { 14678 14679 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 14680 SDNode *VCMPrecNode = nullptr; 14681 14682 SDNode *LHSN = N->getOperand(0).getNode(); 14683 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14684 UI != E; ++UI) 14685 if (UI->getOpcode() == PPCISD::VCMP_rec && 14686 UI->getOperand(1) == N->getOperand(1) && 14687 UI->getOperand(2) == N->getOperand(2) && 14688 UI->getOperand(0) == N->getOperand(0)) { 14689 VCMPrecNode = *UI; 14690 break; 14691 } 14692 14693 // If there is no VCMP_rec node, or if the flag value has a single use, 14694 // don't transform this. 14695 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 14696 break; 14697 14698 // Look at the (necessarily single) use of the flag value. If it has a 14699 // chain, this transformation is more complex. Note that multiple things 14700 // could use the value result, which we should ignore. 14701 SDNode *FlagUser = nullptr; 14702 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 14703 FlagUser == nullptr; ++UI) { 14704 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 14705 SDNode *User = *UI; 14706 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14707 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 14708 FlagUser = User; 14709 break; 14710 } 14711 } 14712 } 14713 14714 // If the user is a MFOCRF instruction, we know this is safe. 14715 // Otherwise we give up for right now. 14716 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14717 return SDValue(VCMPrecNode, 0); 14718 } 14719 break; 14720 case ISD::BRCOND: { 14721 SDValue Cond = N->getOperand(1); 14722 SDValue Target = N->getOperand(2); 14723 14724 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14725 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14726 Intrinsic::loop_decrement) { 14727 14728 // We now need to make the intrinsic dead (it cannot be instruction 14729 // selected). 14730 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14731 assert(Cond.getNode()->hasOneUse() && 14732 "Counter decrement has more than one use"); 14733 14734 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14735 N->getOperand(0), Target); 14736 } 14737 } 14738 break; 14739 case ISD::BR_CC: { 14740 // If this is a branch on an altivec predicate comparison, lower this so 14741 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14742 // lowering is done pre-legalize, because the legalizer lowers the predicate 14743 // compare down to code that is difficult to reassemble. 14744 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14745 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14746 14747 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14748 // value. If so, pass-through the AND to get to the intrinsic. 14749 if (LHS.getOpcode() == ISD::AND && 14750 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14751 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14752 Intrinsic::loop_decrement && 14753 isa<ConstantSDNode>(LHS.getOperand(1)) && 14754 !isNullConstant(LHS.getOperand(1))) 14755 LHS = LHS.getOperand(0); 14756 14757 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14758 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14759 Intrinsic::loop_decrement && 14760 isa<ConstantSDNode>(RHS)) { 14761 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14762 "Counter decrement comparison is not EQ or NE"); 14763 14764 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14765 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14766 (CC == ISD::SETNE && !Val); 14767 14768 // We now need to make the intrinsic dead (it cannot be instruction 14769 // selected). 14770 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14771 assert(LHS.getNode()->hasOneUse() && 14772 "Counter decrement has more than one use"); 14773 14774 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14775 N->getOperand(0), N->getOperand(4)); 14776 } 14777 14778 int CompareOpc; 14779 bool isDot; 14780 14781 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14782 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14783 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14784 assert(isDot && "Can't compare against a vector result!"); 14785 14786 // If this is a comparison against something other than 0/1, then we know 14787 // that the condition is never/always true. 14788 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14789 if (Val != 0 && Val != 1) { 14790 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14791 return N->getOperand(0); 14792 // Always !=, turn it into an unconditional branch. 14793 return DAG.getNode(ISD::BR, dl, MVT::Other, 14794 N->getOperand(0), N->getOperand(4)); 14795 } 14796 14797 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14798 14799 // Create the PPCISD altivec 'dot' comparison node. 14800 SDValue Ops[] = { 14801 LHS.getOperand(2), // LHS of compare 14802 LHS.getOperand(3), // RHS of compare 14803 DAG.getConstant(CompareOpc, dl, MVT::i32) 14804 }; 14805 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14806 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 14807 14808 // Unpack the result based on how the target uses it. 14809 PPC::Predicate CompOpc; 14810 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14811 default: // Can't happen, don't crash on invalid number though. 14812 case 0: // Branch on the value of the EQ bit of CR6. 14813 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14814 break; 14815 case 1: // Branch on the inverted value of the EQ bit of CR6. 14816 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14817 break; 14818 case 2: // Branch on the value of the LT bit of CR6. 14819 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14820 break; 14821 case 3: // Branch on the inverted value of the LT bit of CR6. 14822 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14823 break; 14824 } 14825 14826 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14827 DAG.getConstant(CompOpc, dl, MVT::i32), 14828 DAG.getRegister(PPC::CR6, MVT::i32), 14829 N->getOperand(4), CompNode.getValue(1)); 14830 } 14831 break; 14832 } 14833 case ISD::BUILD_VECTOR: 14834 return DAGCombineBuildVector(N, DCI); 14835 case ISD::ABS: 14836 return combineABS(N, DCI); 14837 case ISD::VSELECT: 14838 return combineVSelect(N, DCI); 14839 } 14840 14841 return SDValue(); 14842 } 14843 14844 SDValue 14845 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14846 SelectionDAG &DAG, 14847 SmallVectorImpl<SDNode *> &Created) const { 14848 // fold (sdiv X, pow2) 14849 EVT VT = N->getValueType(0); 14850 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14851 return SDValue(); 14852 if ((VT != MVT::i32 && VT != MVT::i64) || 14853 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14854 return SDValue(); 14855 14856 SDLoc DL(N); 14857 SDValue N0 = N->getOperand(0); 14858 14859 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14860 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14861 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14862 14863 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14864 Created.push_back(Op.getNode()); 14865 14866 if (IsNegPow2) { 14867 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14868 Created.push_back(Op.getNode()); 14869 } 14870 14871 return Op; 14872 } 14873 14874 //===----------------------------------------------------------------------===// 14875 // Inline Assembly Support 14876 //===----------------------------------------------------------------------===// 14877 14878 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14879 KnownBits &Known, 14880 const APInt &DemandedElts, 14881 const SelectionDAG &DAG, 14882 unsigned Depth) const { 14883 Known.resetAll(); 14884 switch (Op.getOpcode()) { 14885 default: break; 14886 case PPCISD::LBRX: { 14887 // lhbrx is known to have the top bits cleared out. 14888 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14889 Known.Zero = 0xFFFF0000; 14890 break; 14891 } 14892 case ISD::INTRINSIC_WO_CHAIN: { 14893 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14894 default: break; 14895 case Intrinsic::ppc_altivec_vcmpbfp_p: 14896 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14897 case Intrinsic::ppc_altivec_vcmpequb_p: 14898 case Intrinsic::ppc_altivec_vcmpequh_p: 14899 case Intrinsic::ppc_altivec_vcmpequw_p: 14900 case Intrinsic::ppc_altivec_vcmpequd_p: 14901 case Intrinsic::ppc_altivec_vcmpequq_p: 14902 case Intrinsic::ppc_altivec_vcmpgefp_p: 14903 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14904 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14905 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14906 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14907 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14908 case Intrinsic::ppc_altivec_vcmpgtsq_p: 14909 case Intrinsic::ppc_altivec_vcmpgtub_p: 14910 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14911 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14912 case Intrinsic::ppc_altivec_vcmpgtud_p: 14913 case Intrinsic::ppc_altivec_vcmpgtuq_p: 14914 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14915 break; 14916 } 14917 } 14918 } 14919 } 14920 14921 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14922 switch (Subtarget.getCPUDirective()) { 14923 default: break; 14924 case PPC::DIR_970: 14925 case PPC::DIR_PWR4: 14926 case PPC::DIR_PWR5: 14927 case PPC::DIR_PWR5X: 14928 case PPC::DIR_PWR6: 14929 case PPC::DIR_PWR6X: 14930 case PPC::DIR_PWR7: 14931 case PPC::DIR_PWR8: 14932 case PPC::DIR_PWR9: 14933 case PPC::DIR_PWR10: 14934 case PPC::DIR_PWR_FUTURE: { 14935 if (!ML) 14936 break; 14937 14938 if (!DisableInnermostLoopAlign32) { 14939 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14940 // so that we can decrease cache misses and branch-prediction misses. 14941 // Actual alignment of the loop will depend on the hotness check and other 14942 // logic in alignBlocks. 14943 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14944 return Align(32); 14945 } 14946 14947 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14948 14949 // For small loops (between 5 and 8 instructions), align to a 32-byte 14950 // boundary so that the entire loop fits in one instruction-cache line. 14951 uint64_t LoopSize = 0; 14952 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14953 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14954 LoopSize += TII->getInstSizeInBytes(*J); 14955 if (LoopSize > 32) 14956 break; 14957 } 14958 14959 if (LoopSize > 16 && LoopSize <= 32) 14960 return Align(32); 14961 14962 break; 14963 } 14964 } 14965 14966 return TargetLowering::getPrefLoopAlignment(ML); 14967 } 14968 14969 /// getConstraintType - Given a constraint, return the type of 14970 /// constraint it is for this target. 14971 PPCTargetLowering::ConstraintType 14972 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14973 if (Constraint.size() == 1) { 14974 switch (Constraint[0]) { 14975 default: break; 14976 case 'b': 14977 case 'r': 14978 case 'f': 14979 case 'd': 14980 case 'v': 14981 case 'y': 14982 return C_RegisterClass; 14983 case 'Z': 14984 // FIXME: While Z does indicate a memory constraint, it specifically 14985 // indicates an r+r address (used in conjunction with the 'y' modifier 14986 // in the replacement string). Currently, we're forcing the base 14987 // register to be r0 in the asm printer (which is interpreted as zero) 14988 // and forming the complete address in the second register. This is 14989 // suboptimal. 14990 return C_Memory; 14991 } 14992 } else if (Constraint == "wc") { // individual CR bits. 14993 return C_RegisterClass; 14994 } else if (Constraint == "wa" || Constraint == "wd" || 14995 Constraint == "wf" || Constraint == "ws" || 14996 Constraint == "wi" || Constraint == "ww") { 14997 return C_RegisterClass; // VSX registers. 14998 } 14999 return TargetLowering::getConstraintType(Constraint); 15000 } 15001 15002 /// Examine constraint type and operand type and determine a weight value. 15003 /// This object must already have been set up with the operand type 15004 /// and the current alternative constraint selected. 15005 TargetLowering::ConstraintWeight 15006 PPCTargetLowering::getSingleConstraintMatchWeight( 15007 AsmOperandInfo &info, const char *constraint) const { 15008 ConstraintWeight weight = CW_Invalid; 15009 Value *CallOperandVal = info.CallOperandVal; 15010 // If we don't have a value, we can't do a match, 15011 // but allow it at the lowest weight. 15012 if (!CallOperandVal) 15013 return CW_Default; 15014 Type *type = CallOperandVal->getType(); 15015 15016 // Look at the constraint type. 15017 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15018 return CW_Register; // an individual CR bit. 15019 else if ((StringRef(constraint) == "wa" || 15020 StringRef(constraint) == "wd" || 15021 StringRef(constraint) == "wf") && 15022 type->isVectorTy()) 15023 return CW_Register; 15024 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15025 return CW_Register; // just hold 64-bit integers data. 15026 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15027 return CW_Register; 15028 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15029 return CW_Register; 15030 15031 switch (*constraint) { 15032 default: 15033 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15034 break; 15035 case 'b': 15036 if (type->isIntegerTy()) 15037 weight = CW_Register; 15038 break; 15039 case 'f': 15040 if (type->isFloatTy()) 15041 weight = CW_Register; 15042 break; 15043 case 'd': 15044 if (type->isDoubleTy()) 15045 weight = CW_Register; 15046 break; 15047 case 'v': 15048 if (type->isVectorTy()) 15049 weight = CW_Register; 15050 break; 15051 case 'y': 15052 weight = CW_Register; 15053 break; 15054 case 'Z': 15055 weight = CW_Memory; 15056 break; 15057 } 15058 return weight; 15059 } 15060 15061 std::pair<unsigned, const TargetRegisterClass *> 15062 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15063 StringRef Constraint, 15064 MVT VT) const { 15065 if (Constraint.size() == 1) { 15066 // GCC RS6000 Constraint Letters 15067 switch (Constraint[0]) { 15068 case 'b': // R1-R31 15069 if (VT == MVT::i64 && Subtarget.isPPC64()) 15070 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15071 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15072 case 'r': // R0-R31 15073 if (VT == MVT::i64 && Subtarget.isPPC64()) 15074 return std::make_pair(0U, &PPC::G8RCRegClass); 15075 return std::make_pair(0U, &PPC::GPRCRegClass); 15076 // 'd' and 'f' constraints are both defined to be "the floating point 15077 // registers", where one is for 32-bit and the other for 64-bit. We don't 15078 // really care overly much here so just give them all the same reg classes. 15079 case 'd': 15080 case 'f': 15081 if (Subtarget.hasSPE()) { 15082 if (VT == MVT::f32 || VT == MVT::i32) 15083 return std::make_pair(0U, &PPC::GPRCRegClass); 15084 if (VT == MVT::f64 || VT == MVT::i64) 15085 return std::make_pair(0U, &PPC::SPERCRegClass); 15086 } else { 15087 if (VT == MVT::f32 || VT == MVT::i32) 15088 return std::make_pair(0U, &PPC::F4RCRegClass); 15089 if (VT == MVT::f64 || VT == MVT::i64) 15090 return std::make_pair(0U, &PPC::F8RCRegClass); 15091 } 15092 break; 15093 case 'v': 15094 if (Subtarget.hasAltivec()) 15095 return std::make_pair(0U, &PPC::VRRCRegClass); 15096 break; 15097 case 'y': // crrc 15098 return std::make_pair(0U, &PPC::CRRCRegClass); 15099 } 15100 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15101 // An individual CR bit. 15102 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15103 } else if ((Constraint == "wa" || Constraint == "wd" || 15104 Constraint == "wf" || Constraint == "wi") && 15105 Subtarget.hasVSX()) { 15106 return std::make_pair(0U, &PPC::VSRCRegClass); 15107 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15108 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15109 return std::make_pair(0U, &PPC::VSSRCRegClass); 15110 else 15111 return std::make_pair(0U, &PPC::VSFRCRegClass); 15112 } 15113 15114 // Handle special cases of physical registers that are not properly handled 15115 // by the base class. 15116 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15117 // If we name a VSX register, we can't defer to the base class because it 15118 // will not recognize the correct register (their names will be VSL{0-31} 15119 // and V{0-31} so they won't match). So we match them here. 15120 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15121 int VSNum = atoi(Constraint.data() + 3); 15122 assert(VSNum >= 0 && VSNum <= 63 && 15123 "Attempted to access a vsr out of range"); 15124 if (VSNum < 32) 15125 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15126 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15127 } 15128 15129 // For float registers, we can't defer to the base class as it will match 15130 // the SPILLTOVSRRC class. 15131 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15132 int RegNum = atoi(Constraint.data() + 2); 15133 if (RegNum > 31 || RegNum < 0) 15134 report_fatal_error("Invalid floating point register number"); 15135 if (VT == MVT::f32 || VT == MVT::i32) 15136 return Subtarget.hasSPE() 15137 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15138 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15139 if (VT == MVT::f64 || VT == MVT::i64) 15140 return Subtarget.hasSPE() 15141 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15142 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15143 } 15144 } 15145 15146 std::pair<unsigned, const TargetRegisterClass *> R = 15147 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15148 15149 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15150 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15151 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15152 // register. 15153 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15154 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15155 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15156 PPC::GPRCRegClass.contains(R.first)) 15157 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15158 PPC::sub_32, &PPC::G8RCRegClass), 15159 &PPC::G8RCRegClass); 15160 15161 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15162 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 15163 R.first = PPC::CR0; 15164 R.second = &PPC::CRRCRegClass; 15165 } 15166 15167 return R; 15168 } 15169 15170 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15171 /// vector. If it is invalid, don't add anything to Ops. 15172 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15173 std::string &Constraint, 15174 std::vector<SDValue>&Ops, 15175 SelectionDAG &DAG) const { 15176 SDValue Result; 15177 15178 // Only support length 1 constraints. 15179 if (Constraint.length() > 1) return; 15180 15181 char Letter = Constraint[0]; 15182 switch (Letter) { 15183 default: break; 15184 case 'I': 15185 case 'J': 15186 case 'K': 15187 case 'L': 15188 case 'M': 15189 case 'N': 15190 case 'O': 15191 case 'P': { 15192 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15193 if (!CST) return; // Must be an immediate to match. 15194 SDLoc dl(Op); 15195 int64_t Value = CST->getSExtValue(); 15196 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15197 // numbers are printed as such. 15198 switch (Letter) { 15199 default: llvm_unreachable("Unknown constraint letter!"); 15200 case 'I': // "I" is a signed 16-bit constant. 15201 if (isInt<16>(Value)) 15202 Result = DAG.getTargetConstant(Value, dl, TCVT); 15203 break; 15204 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15205 if (isShiftedUInt<16, 16>(Value)) 15206 Result = DAG.getTargetConstant(Value, dl, TCVT); 15207 break; 15208 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15209 if (isShiftedInt<16, 16>(Value)) 15210 Result = DAG.getTargetConstant(Value, dl, TCVT); 15211 break; 15212 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15213 if (isUInt<16>(Value)) 15214 Result = DAG.getTargetConstant(Value, dl, TCVT); 15215 break; 15216 case 'M': // "M" is a constant that is greater than 31. 15217 if (Value > 31) 15218 Result = DAG.getTargetConstant(Value, dl, TCVT); 15219 break; 15220 case 'N': // "N" is a positive constant that is an exact power of two. 15221 if (Value > 0 && isPowerOf2_64(Value)) 15222 Result = DAG.getTargetConstant(Value, dl, TCVT); 15223 break; 15224 case 'O': // "O" is the constant zero. 15225 if (Value == 0) 15226 Result = DAG.getTargetConstant(Value, dl, TCVT); 15227 break; 15228 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15229 if (isInt<16>(-Value)) 15230 Result = DAG.getTargetConstant(Value, dl, TCVT); 15231 break; 15232 } 15233 break; 15234 } 15235 } 15236 15237 if (Result.getNode()) { 15238 Ops.push_back(Result); 15239 return; 15240 } 15241 15242 // Handle standard constraint letters. 15243 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15244 } 15245 15246 // isLegalAddressingMode - Return true if the addressing mode represented 15247 // by AM is legal for this target, for a load/store of the specified type. 15248 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15249 const AddrMode &AM, Type *Ty, 15250 unsigned AS, 15251 Instruction *I) const { 15252 // Vector type r+i form is supported since power9 as DQ form. We don't check 15253 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15254 // imm form is preferred and the offset can be adjusted to use imm form later 15255 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15256 // max offset to check legal addressing mode, we should be a little aggressive 15257 // to contain other offsets for that LSRUse. 15258 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15259 return false; 15260 15261 // PPC allows a sign-extended 16-bit immediate field. 15262 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15263 return false; 15264 15265 // No global is ever allowed as a base. 15266 if (AM.BaseGV) 15267 return false; 15268 15269 // PPC only support r+r, 15270 switch (AM.Scale) { 15271 case 0: // "r+i" or just "i", depending on HasBaseReg. 15272 break; 15273 case 1: 15274 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15275 return false; 15276 // Otherwise we have r+r or r+i. 15277 break; 15278 case 2: 15279 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15280 return false; 15281 // Allow 2*r as r+r. 15282 break; 15283 default: 15284 // No other scales are supported. 15285 return false; 15286 } 15287 15288 return true; 15289 } 15290 15291 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15292 SelectionDAG &DAG) const { 15293 MachineFunction &MF = DAG.getMachineFunction(); 15294 MachineFrameInfo &MFI = MF.getFrameInfo(); 15295 MFI.setReturnAddressIsTaken(true); 15296 15297 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15298 return SDValue(); 15299 15300 SDLoc dl(Op); 15301 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15302 15303 // Make sure the function does not optimize away the store of the RA to 15304 // the stack. 15305 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15306 FuncInfo->setLRStoreRequired(); 15307 bool isPPC64 = Subtarget.isPPC64(); 15308 auto PtrVT = getPointerTy(MF.getDataLayout()); 15309 15310 if (Depth > 0) { 15311 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15312 SDValue Offset = 15313 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15314 isPPC64 ? MVT::i64 : MVT::i32); 15315 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15316 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15317 MachinePointerInfo()); 15318 } 15319 15320 // Just load the return address off the stack. 15321 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15322 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15323 MachinePointerInfo()); 15324 } 15325 15326 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15327 SelectionDAG &DAG) const { 15328 SDLoc dl(Op); 15329 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15330 15331 MachineFunction &MF = DAG.getMachineFunction(); 15332 MachineFrameInfo &MFI = MF.getFrameInfo(); 15333 MFI.setFrameAddressIsTaken(true); 15334 15335 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15336 bool isPPC64 = PtrVT == MVT::i64; 15337 15338 // Naked functions never have a frame pointer, and so we use r1. For all 15339 // other functions, this decision must be delayed until during PEI. 15340 unsigned FrameReg; 15341 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15342 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15343 else 15344 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15345 15346 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15347 PtrVT); 15348 while (Depth--) 15349 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 15350 FrameAddr, MachinePointerInfo()); 15351 return FrameAddr; 15352 } 15353 15354 // FIXME? Maybe this could be a TableGen attribute on some registers and 15355 // this table could be generated automatically from RegInfo. 15356 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 15357 const MachineFunction &MF) const { 15358 bool isPPC64 = Subtarget.isPPC64(); 15359 15360 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 15361 if (!is64Bit && VT != LLT::scalar(32)) 15362 report_fatal_error("Invalid register global variable type"); 15363 15364 Register Reg = StringSwitch<Register>(RegName) 15365 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 15366 .Case("r2", isPPC64 ? Register() : PPC::R2) 15367 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 15368 .Default(Register()); 15369 15370 if (Reg) 15371 return Reg; 15372 report_fatal_error("Invalid register name global variable"); 15373 } 15374 15375 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 15376 // 32-bit SVR4 ABI access everything as got-indirect. 15377 if (Subtarget.is32BitELFABI()) 15378 return true; 15379 15380 // AIX accesses everything indirectly through the TOC, which is similar to 15381 // the GOT. 15382 if (Subtarget.isAIXABI()) 15383 return true; 15384 15385 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 15386 // If it is small or large code model, module locals are accessed 15387 // indirectly by loading their address from .toc/.got. 15388 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 15389 return true; 15390 15391 // JumpTable and BlockAddress are accessed as got-indirect. 15392 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 15393 return true; 15394 15395 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 15396 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 15397 15398 return false; 15399 } 15400 15401 bool 15402 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 15403 // The PowerPC target isn't yet aware of offsets. 15404 return false; 15405 } 15406 15407 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 15408 const CallInst &I, 15409 MachineFunction &MF, 15410 unsigned Intrinsic) const { 15411 switch (Intrinsic) { 15412 case Intrinsic::ppc_altivec_lvx: 15413 case Intrinsic::ppc_altivec_lvxl: 15414 case Intrinsic::ppc_altivec_lvebx: 15415 case Intrinsic::ppc_altivec_lvehx: 15416 case Intrinsic::ppc_altivec_lvewx: 15417 case Intrinsic::ppc_vsx_lxvd2x: 15418 case Intrinsic::ppc_vsx_lxvw4x: 15419 case Intrinsic::ppc_vsx_lxvd2x_be: 15420 case Intrinsic::ppc_vsx_lxvw4x_be: 15421 case Intrinsic::ppc_vsx_lxvl: 15422 case Intrinsic::ppc_vsx_lxvll: { 15423 EVT VT; 15424 switch (Intrinsic) { 15425 case Intrinsic::ppc_altivec_lvebx: 15426 VT = MVT::i8; 15427 break; 15428 case Intrinsic::ppc_altivec_lvehx: 15429 VT = MVT::i16; 15430 break; 15431 case Intrinsic::ppc_altivec_lvewx: 15432 VT = MVT::i32; 15433 break; 15434 case Intrinsic::ppc_vsx_lxvd2x: 15435 case Intrinsic::ppc_vsx_lxvd2x_be: 15436 VT = MVT::v2f64; 15437 break; 15438 default: 15439 VT = MVT::v4i32; 15440 break; 15441 } 15442 15443 Info.opc = ISD::INTRINSIC_W_CHAIN; 15444 Info.memVT = VT; 15445 Info.ptrVal = I.getArgOperand(0); 15446 Info.offset = -VT.getStoreSize()+1; 15447 Info.size = 2*VT.getStoreSize()-1; 15448 Info.align = Align(1); 15449 Info.flags = MachineMemOperand::MOLoad; 15450 return true; 15451 } 15452 case Intrinsic::ppc_altivec_stvx: 15453 case Intrinsic::ppc_altivec_stvxl: 15454 case Intrinsic::ppc_altivec_stvebx: 15455 case Intrinsic::ppc_altivec_stvehx: 15456 case Intrinsic::ppc_altivec_stvewx: 15457 case Intrinsic::ppc_vsx_stxvd2x: 15458 case Intrinsic::ppc_vsx_stxvw4x: 15459 case Intrinsic::ppc_vsx_stxvd2x_be: 15460 case Intrinsic::ppc_vsx_stxvw4x_be: 15461 case Intrinsic::ppc_vsx_stxvl: 15462 case Intrinsic::ppc_vsx_stxvll: { 15463 EVT VT; 15464 switch (Intrinsic) { 15465 case Intrinsic::ppc_altivec_stvebx: 15466 VT = MVT::i8; 15467 break; 15468 case Intrinsic::ppc_altivec_stvehx: 15469 VT = MVT::i16; 15470 break; 15471 case Intrinsic::ppc_altivec_stvewx: 15472 VT = MVT::i32; 15473 break; 15474 case Intrinsic::ppc_vsx_stxvd2x: 15475 case Intrinsic::ppc_vsx_stxvd2x_be: 15476 VT = MVT::v2f64; 15477 break; 15478 default: 15479 VT = MVT::v4i32; 15480 break; 15481 } 15482 15483 Info.opc = ISD::INTRINSIC_VOID; 15484 Info.memVT = VT; 15485 Info.ptrVal = I.getArgOperand(1); 15486 Info.offset = -VT.getStoreSize()+1; 15487 Info.size = 2*VT.getStoreSize()-1; 15488 Info.align = Align(1); 15489 Info.flags = MachineMemOperand::MOStore; 15490 return true; 15491 } 15492 default: 15493 break; 15494 } 15495 15496 return false; 15497 } 15498 15499 /// It returns EVT::Other if the type should be determined using generic 15500 /// target-independent logic. 15501 EVT PPCTargetLowering::getOptimalMemOpType( 15502 const MemOp &Op, const AttributeList &FuncAttributes) const { 15503 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15504 // We should use Altivec/VSX loads and stores when available. For unaligned 15505 // addresses, unaligned VSX loads are only fast starting with the P8. 15506 if (Subtarget.hasAltivec() && Op.size() >= 16 && 15507 (Op.isAligned(Align(16)) || 15508 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15509 return MVT::v4i32; 15510 } 15511 15512 if (Subtarget.isPPC64()) { 15513 return MVT::i64; 15514 } 15515 15516 return MVT::i32; 15517 } 15518 15519 /// Returns true if it is beneficial to convert a load of a constant 15520 /// to just the constant itself. 15521 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15522 Type *Ty) const { 15523 assert(Ty->isIntegerTy()); 15524 15525 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15526 return !(BitSize == 0 || BitSize > 64); 15527 } 15528 15529 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15530 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15531 return false; 15532 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15533 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15534 return NumBits1 == 64 && NumBits2 == 32; 15535 } 15536 15537 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15538 if (!VT1.isInteger() || !VT2.isInteger()) 15539 return false; 15540 unsigned NumBits1 = VT1.getSizeInBits(); 15541 unsigned NumBits2 = VT2.getSizeInBits(); 15542 return NumBits1 == 64 && NumBits2 == 32; 15543 } 15544 15545 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15546 // Generally speaking, zexts are not free, but they are free when they can be 15547 // folded with other operations. 15548 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15549 EVT MemVT = LD->getMemoryVT(); 15550 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15551 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15552 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15553 LD->getExtensionType() == ISD::ZEXTLOAD)) 15554 return true; 15555 } 15556 15557 // FIXME: Add other cases... 15558 // - 32-bit shifts with a zext to i64 15559 // - zext after ctlz, bswap, etc. 15560 // - zext after and by a constant mask 15561 15562 return TargetLowering::isZExtFree(Val, VT2); 15563 } 15564 15565 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15566 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15567 "invalid fpext types"); 15568 // Extending to float128 is not free. 15569 if (DestVT == MVT::f128) 15570 return false; 15571 return true; 15572 } 15573 15574 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15575 return isInt<16>(Imm) || isUInt<16>(Imm); 15576 } 15577 15578 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15579 return isInt<16>(Imm) || isUInt<16>(Imm); 15580 } 15581 15582 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 15583 MachineMemOperand::Flags, 15584 bool *Fast) const { 15585 if (DisablePPCUnaligned) 15586 return false; 15587 15588 // PowerPC supports unaligned memory access for simple non-vector types. 15589 // Although accessing unaligned addresses is not as efficient as accessing 15590 // aligned addresses, it is generally more efficient than manual expansion, 15591 // and generally only traps for software emulation when crossing page 15592 // boundaries. 15593 15594 if (!VT.isSimple()) 15595 return false; 15596 15597 if (VT.isFloatingPoint() && !VT.isVector() && 15598 !Subtarget.allowsUnalignedFPAccess()) 15599 return false; 15600 15601 if (VT.getSimpleVT().isVector()) { 15602 if (Subtarget.hasVSX()) { 15603 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15604 VT != MVT::v4f32 && VT != MVT::v4i32) 15605 return false; 15606 } else { 15607 return false; 15608 } 15609 } 15610 15611 if (VT == MVT::ppcf128) 15612 return false; 15613 15614 if (Fast) 15615 *Fast = true; 15616 15617 return true; 15618 } 15619 15620 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 15621 SDValue C) const { 15622 // Check integral scalar types. 15623 if (!VT.isScalarInteger()) 15624 return false; 15625 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 15626 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 15627 return false; 15628 // This transformation will generate >= 2 operations. But the following 15629 // cases will generate <= 2 instructions during ISEL. So exclude them. 15630 // 1. If the constant multiplier fits 16 bits, it can be handled by one 15631 // HW instruction, ie. MULLI 15632 // 2. If the multiplier after shifted fits 16 bits, an extra shift 15633 // instruction is needed than case 1, ie. MULLI and RLDICR 15634 int64_t Imm = ConstNode->getSExtValue(); 15635 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 15636 Imm >>= Shift; 15637 if (isInt<16>(Imm)) 15638 return false; 15639 uint64_t UImm = static_cast<uint64_t>(Imm); 15640 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 15641 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 15642 return true; 15643 } 15644 return false; 15645 } 15646 15647 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15648 EVT VT) const { 15649 return isFMAFasterThanFMulAndFAdd( 15650 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 15651 } 15652 15653 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 15654 Type *Ty) const { 15655 switch (Ty->getScalarType()->getTypeID()) { 15656 case Type::FloatTyID: 15657 case Type::DoubleTyID: 15658 return true; 15659 case Type::FP128TyID: 15660 return Subtarget.hasP9Vector(); 15661 default: 15662 return false; 15663 } 15664 } 15665 15666 // FIXME: add more patterns which are not profitable to hoist. 15667 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 15668 if (!I->hasOneUse()) 15669 return true; 15670 15671 Instruction *User = I->user_back(); 15672 assert(User && "A single use instruction with no uses."); 15673 15674 switch (I->getOpcode()) { 15675 case Instruction::FMul: { 15676 // Don't break FMA, PowerPC prefers FMA. 15677 if (User->getOpcode() != Instruction::FSub && 15678 User->getOpcode() != Instruction::FAdd) 15679 return true; 15680 15681 const TargetOptions &Options = getTargetMachine().Options; 15682 const Function *F = I->getFunction(); 15683 const DataLayout &DL = F->getParent()->getDataLayout(); 15684 Type *Ty = User->getOperand(0)->getType(); 15685 15686 return !( 15687 isFMAFasterThanFMulAndFAdd(*F, Ty) && 15688 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 15689 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 15690 } 15691 case Instruction::Load: { 15692 // Don't break "store (load float*)" pattern, this pattern will be combined 15693 // to "store (load int32)" in later InstCombine pass. See function 15694 // combineLoadToOperationType. On PowerPC, loading a float point takes more 15695 // cycles than loading a 32 bit integer. 15696 LoadInst *LI = cast<LoadInst>(I); 15697 // For the loads that combineLoadToOperationType does nothing, like 15698 // ordered load, it should be profitable to hoist them. 15699 // For swifterror load, it can only be used for pointer to pointer type, so 15700 // later type check should get rid of this case. 15701 if (!LI->isUnordered()) 15702 return true; 15703 15704 if (User->getOpcode() != Instruction::Store) 15705 return true; 15706 15707 if (I->getType()->getTypeID() != Type::FloatTyID) 15708 return true; 15709 15710 return false; 15711 } 15712 default: 15713 return true; 15714 } 15715 return true; 15716 } 15717 15718 const MCPhysReg * 15719 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15720 // LR is a callee-save register, but we must treat it as clobbered by any call 15721 // site. Hence we include LR in the scratch registers, which are in turn added 15722 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15723 // to CTR, which is used by any indirect call. 15724 static const MCPhysReg ScratchRegs[] = { 15725 PPC::X12, PPC::LR8, PPC::CTR8, 0 15726 }; 15727 15728 return ScratchRegs; 15729 } 15730 15731 Register PPCTargetLowering::getExceptionPointerRegister( 15732 const Constant *PersonalityFn) const { 15733 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15734 } 15735 15736 Register PPCTargetLowering::getExceptionSelectorRegister( 15737 const Constant *PersonalityFn) const { 15738 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15739 } 15740 15741 bool 15742 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15743 EVT VT , unsigned DefinedValues) const { 15744 if (VT == MVT::v2i64) 15745 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15746 15747 if (Subtarget.hasVSX()) 15748 return true; 15749 15750 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15751 } 15752 15753 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15754 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15755 return TargetLowering::getSchedulingPreference(N); 15756 15757 return Sched::ILP; 15758 } 15759 15760 // Create a fast isel object. 15761 FastISel * 15762 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15763 const TargetLibraryInfo *LibInfo) const { 15764 return PPC::createFastISel(FuncInfo, LibInfo); 15765 } 15766 15767 // 'Inverted' means the FMA opcode after negating one multiplicand. 15768 // For example, (fma -a b c) = (fnmsub a b c) 15769 static unsigned invertFMAOpcode(unsigned Opc) { 15770 switch (Opc) { 15771 default: 15772 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 15773 case ISD::FMA: 15774 return PPCISD::FNMSUB; 15775 case PPCISD::FNMSUB: 15776 return ISD::FMA; 15777 } 15778 } 15779 15780 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 15781 bool LegalOps, bool OptForSize, 15782 NegatibleCost &Cost, 15783 unsigned Depth) const { 15784 if (Depth > SelectionDAG::MaxRecursionDepth) 15785 return SDValue(); 15786 15787 unsigned Opc = Op.getOpcode(); 15788 EVT VT = Op.getValueType(); 15789 SDNodeFlags Flags = Op.getNode()->getFlags(); 15790 15791 switch (Opc) { 15792 case PPCISD::FNMSUB: 15793 if (!Op.hasOneUse() || !isTypeLegal(VT)) 15794 break; 15795 15796 const TargetOptions &Options = getTargetMachine().Options; 15797 SDValue N0 = Op.getOperand(0); 15798 SDValue N1 = Op.getOperand(1); 15799 SDValue N2 = Op.getOperand(2); 15800 SDLoc Loc(Op); 15801 15802 NegatibleCost N2Cost = NegatibleCost::Expensive; 15803 SDValue NegN2 = 15804 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 15805 15806 if (!NegN2) 15807 return SDValue(); 15808 15809 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 15810 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 15811 // These transformations may change sign of zeroes. For example, 15812 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 15813 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 15814 // Try and choose the cheaper one to negate. 15815 NegatibleCost N0Cost = NegatibleCost::Expensive; 15816 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 15817 N0Cost, Depth + 1); 15818 15819 NegatibleCost N1Cost = NegatibleCost::Expensive; 15820 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 15821 N1Cost, Depth + 1); 15822 15823 if (NegN0 && N0Cost <= N1Cost) { 15824 Cost = std::min(N0Cost, N2Cost); 15825 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 15826 } else if (NegN1) { 15827 Cost = std::min(N1Cost, N2Cost); 15828 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 15829 } 15830 } 15831 15832 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 15833 if (isOperationLegal(ISD::FMA, VT)) { 15834 Cost = N2Cost; 15835 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 15836 } 15837 15838 break; 15839 } 15840 15841 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 15842 Cost, Depth); 15843 } 15844 15845 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15846 bool PPCTargetLowering::useLoadStackGuardNode() const { 15847 if (!Subtarget.isTargetLinux()) 15848 return TargetLowering::useLoadStackGuardNode(); 15849 return true; 15850 } 15851 15852 // Override to disable global variable loading on Linux. 15853 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15854 if (!Subtarget.isTargetLinux()) 15855 return TargetLowering::insertSSPDeclarations(M); 15856 } 15857 15858 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15859 bool ForCodeSize) const { 15860 if (!VT.isSimple() || !Subtarget.hasVSX()) 15861 return false; 15862 15863 switch(VT.getSimpleVT().SimpleTy) { 15864 default: 15865 // For FP types that are currently not supported by PPC backend, return 15866 // false. Examples: f16, f80. 15867 return false; 15868 case MVT::f32: 15869 case MVT::f64: 15870 if (Subtarget.hasPrefixInstrs()) { 15871 // With prefixed instructions, we can materialize anything that can be 15872 // represented with a 32-bit immediate, not just positive zero. 15873 APFloat APFloatOfImm = Imm; 15874 return convertToNonDenormSingle(APFloatOfImm); 15875 } 15876 LLVM_FALLTHROUGH; 15877 case MVT::ppcf128: 15878 return Imm.isPosZero(); 15879 } 15880 } 15881 15882 // For vector shift operation op, fold 15883 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15884 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15885 SelectionDAG &DAG) { 15886 SDValue N0 = N->getOperand(0); 15887 SDValue N1 = N->getOperand(1); 15888 EVT VT = N0.getValueType(); 15889 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15890 unsigned Opcode = N->getOpcode(); 15891 unsigned TargetOpcode; 15892 15893 switch (Opcode) { 15894 default: 15895 llvm_unreachable("Unexpected shift operation"); 15896 case ISD::SHL: 15897 TargetOpcode = PPCISD::SHL; 15898 break; 15899 case ISD::SRL: 15900 TargetOpcode = PPCISD::SRL; 15901 break; 15902 case ISD::SRA: 15903 TargetOpcode = PPCISD::SRA; 15904 break; 15905 } 15906 15907 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15908 N1->getOpcode() == ISD::AND) 15909 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15910 if (Mask->getZExtValue() == OpSizeInBits - 1) 15911 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15912 15913 return SDValue(); 15914 } 15915 15916 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15917 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15918 return Value; 15919 15920 SDValue N0 = N->getOperand(0); 15921 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15922 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 15923 N0.getOpcode() != ISD::SIGN_EXTEND || 15924 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 15925 N->getValueType(0) != MVT::i64) 15926 return SDValue(); 15927 15928 // We can't save an operation here if the value is already extended, and 15929 // the existing shift is easier to combine. 15930 SDValue ExtsSrc = N0.getOperand(0); 15931 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15932 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15933 return SDValue(); 15934 15935 SDLoc DL(N0); 15936 SDValue ShiftBy = SDValue(CN1, 0); 15937 // We want the shift amount to be i32 on the extswli, but the shift could 15938 // have an i64. 15939 if (ShiftBy.getValueType() == MVT::i64) 15940 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15941 15942 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15943 ShiftBy); 15944 } 15945 15946 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15947 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15948 return Value; 15949 15950 return SDValue(); 15951 } 15952 15953 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15954 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15955 return Value; 15956 15957 return SDValue(); 15958 } 15959 15960 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15961 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15962 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15963 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15964 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15965 const PPCSubtarget &Subtarget) { 15966 if (!Subtarget.isPPC64()) 15967 return SDValue(); 15968 15969 SDValue LHS = N->getOperand(0); 15970 SDValue RHS = N->getOperand(1); 15971 15972 auto isZextOfCompareWithConstant = [](SDValue Op) { 15973 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15974 Op.getValueType() != MVT::i64) 15975 return false; 15976 15977 SDValue Cmp = Op.getOperand(0); 15978 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15979 Cmp.getOperand(0).getValueType() != MVT::i64) 15980 return false; 15981 15982 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15983 int64_t NegConstant = 0 - Constant->getSExtValue(); 15984 // Due to the limitations of the addi instruction, 15985 // -C is required to be [-32768, 32767]. 15986 return isInt<16>(NegConstant); 15987 } 15988 15989 return false; 15990 }; 15991 15992 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15993 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15994 15995 // If there is a pattern, canonicalize a zext operand to the RHS. 15996 if (LHSHasPattern && !RHSHasPattern) 15997 std::swap(LHS, RHS); 15998 else if (!LHSHasPattern && !RHSHasPattern) 15999 return SDValue(); 16000 16001 SDLoc DL(N); 16002 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16003 SDValue Cmp = RHS.getOperand(0); 16004 SDValue Z = Cmp.getOperand(0); 16005 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 16006 16007 assert(Constant && "Constant Should not be a null pointer."); 16008 int64_t NegConstant = 0 - Constant->getSExtValue(); 16009 16010 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16011 default: break; 16012 case ISD::SETNE: { 16013 // when C == 0 16014 // --> addze X, (addic Z, -1).carry 16015 // / 16016 // add X, (zext(setne Z, C))-- 16017 // \ when -32768 <= -C <= 32767 && C != 0 16018 // --> addze X, (addic (addi Z, -C), -1).carry 16019 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16020 DAG.getConstant(NegConstant, DL, MVT::i64)); 16021 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16022 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16023 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16024 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16025 SDValue(Addc.getNode(), 1)); 16026 } 16027 case ISD::SETEQ: { 16028 // when C == 0 16029 // --> addze X, (subfic Z, 0).carry 16030 // / 16031 // add X, (zext(sete Z, C))-- 16032 // \ when -32768 <= -C <= 32767 && C != 0 16033 // --> addze X, (subfic (addi Z, -C), 0).carry 16034 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16035 DAG.getConstant(NegConstant, DL, MVT::i64)); 16036 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16037 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16038 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16039 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16040 SDValue(Subc.getNode(), 1)); 16041 } 16042 } 16043 16044 return SDValue(); 16045 } 16046 16047 // Transform 16048 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16049 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16050 // In this case both C1 and C2 must be known constants. 16051 // C1+C2 must fit into a 34 bit signed integer. 16052 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16053 const PPCSubtarget &Subtarget) { 16054 if (!Subtarget.isUsingPCRelativeCalls()) 16055 return SDValue(); 16056 16057 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16058 // If we find that node try to cast the Global Address and the Constant. 16059 SDValue LHS = N->getOperand(0); 16060 SDValue RHS = N->getOperand(1); 16061 16062 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16063 std::swap(LHS, RHS); 16064 16065 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16066 return SDValue(); 16067 16068 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16069 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16070 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16071 16072 // Check that both casts succeeded. 16073 if (!GSDN || !ConstNode) 16074 return SDValue(); 16075 16076 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16077 SDLoc DL(GSDN); 16078 16079 // The signed int offset needs to fit in 34 bits. 16080 if (!isInt<34>(NewOffset)) 16081 return SDValue(); 16082 16083 // The new global address is a copy of the old global address except 16084 // that it has the updated Offset. 16085 SDValue GA = 16086 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16087 NewOffset, GSDN->getTargetFlags()); 16088 SDValue MatPCRel = 16089 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16090 return MatPCRel; 16091 } 16092 16093 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16094 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16095 return Value; 16096 16097 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16098 return Value; 16099 16100 return SDValue(); 16101 } 16102 16103 // Detect TRUNCATE operations on bitcasts of float128 values. 16104 // What we are looking for here is the situtation where we extract a subset 16105 // of bits from a 128 bit float. 16106 // This can be of two forms: 16107 // 1) BITCAST of f128 feeding TRUNCATE 16108 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16109 // The reason this is required is because we do not have a legal i128 type 16110 // and so we want to prevent having to store the f128 and then reload part 16111 // of it. 16112 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16113 DAGCombinerInfo &DCI) const { 16114 // If we are using CRBits then try that first. 16115 if (Subtarget.useCRBits()) { 16116 // Check if CRBits did anything and return that if it did. 16117 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16118 return CRTruncValue; 16119 } 16120 16121 SDLoc dl(N); 16122 SDValue Op0 = N->getOperand(0); 16123 16124 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16125 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16126 EVT VT = N->getValueType(0); 16127 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16128 return SDValue(); 16129 SDValue Sub = Op0.getOperand(0); 16130 if (Sub.getOpcode() == ISD::SUB) { 16131 SDValue SubOp0 = Sub.getOperand(0); 16132 SDValue SubOp1 = Sub.getOperand(1); 16133 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16134 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16135 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16136 SubOp1.getOperand(0), 16137 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16138 } 16139 } 16140 } 16141 16142 // Looking for a truncate of i128 to i64. 16143 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16144 return SDValue(); 16145 16146 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16147 16148 // SRL feeding TRUNCATE. 16149 if (Op0.getOpcode() == ISD::SRL) { 16150 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16151 // The right shift has to be by 64 bits. 16152 if (!ConstNode || ConstNode->getZExtValue() != 64) 16153 return SDValue(); 16154 16155 // Switch the element number to extract. 16156 EltToExtract = EltToExtract ? 0 : 1; 16157 // Update Op0 past the SRL. 16158 Op0 = Op0.getOperand(0); 16159 } 16160 16161 // BITCAST feeding a TRUNCATE possibly via SRL. 16162 if (Op0.getOpcode() == ISD::BITCAST && 16163 Op0.getValueType() == MVT::i128 && 16164 Op0.getOperand(0).getValueType() == MVT::f128) { 16165 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16166 return DCI.DAG.getNode( 16167 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16168 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16169 } 16170 return SDValue(); 16171 } 16172 16173 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16174 SelectionDAG &DAG = DCI.DAG; 16175 16176 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16177 if (!ConstOpOrElement) 16178 return SDValue(); 16179 16180 // An imul is usually smaller than the alternative sequence for legal type. 16181 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16182 isOperationLegal(ISD::MUL, N->getValueType(0))) 16183 return SDValue(); 16184 16185 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16186 switch (this->Subtarget.getCPUDirective()) { 16187 default: 16188 // TODO: enhance the condition for subtarget before pwr8 16189 return false; 16190 case PPC::DIR_PWR8: 16191 // type mul add shl 16192 // scalar 4 1 1 16193 // vector 7 2 2 16194 return true; 16195 case PPC::DIR_PWR9: 16196 case PPC::DIR_PWR10: 16197 case PPC::DIR_PWR_FUTURE: 16198 // type mul add shl 16199 // scalar 5 2 2 16200 // vector 7 2 2 16201 16202 // The cycle RATIO of related operations are showed as a table above. 16203 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16204 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16205 // are 4, it is always profitable; but for 3 instrs patterns 16206 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16207 // So we should only do it for vector type. 16208 return IsAddOne && IsNeg ? VT.isVector() : true; 16209 } 16210 }; 16211 16212 EVT VT = N->getValueType(0); 16213 SDLoc DL(N); 16214 16215 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16216 bool IsNeg = MulAmt.isNegative(); 16217 APInt MulAmtAbs = MulAmt.abs(); 16218 16219 if ((MulAmtAbs - 1).isPowerOf2()) { 16220 // (mul x, 2^N + 1) => (add (shl x, N), x) 16221 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16222 16223 if (!IsProfitable(IsNeg, true, VT)) 16224 return SDValue(); 16225 16226 SDValue Op0 = N->getOperand(0); 16227 SDValue Op1 = 16228 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16229 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16230 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16231 16232 if (!IsNeg) 16233 return Res; 16234 16235 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16236 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16237 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16238 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16239 16240 if (!IsProfitable(IsNeg, false, VT)) 16241 return SDValue(); 16242 16243 SDValue Op0 = N->getOperand(0); 16244 SDValue Op1 = 16245 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16246 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16247 16248 if (!IsNeg) 16249 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16250 else 16251 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16252 16253 } else { 16254 return SDValue(); 16255 } 16256 } 16257 16258 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16259 // in combiner since we need to check SD flags and other subtarget features. 16260 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16261 DAGCombinerInfo &DCI) const { 16262 SDValue N0 = N->getOperand(0); 16263 SDValue N1 = N->getOperand(1); 16264 SDValue N2 = N->getOperand(2); 16265 SDNodeFlags Flags = N->getFlags(); 16266 EVT VT = N->getValueType(0); 16267 SelectionDAG &DAG = DCI.DAG; 16268 const TargetOptions &Options = getTargetMachine().Options; 16269 unsigned Opc = N->getOpcode(); 16270 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16271 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16272 SDLoc Loc(N); 16273 16274 if (!isOperationLegal(ISD::FMA, VT)) 16275 return SDValue(); 16276 16277 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16278 // since (fnmsub a b c)=-0 while c-ab=+0. 16279 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16280 return SDValue(); 16281 16282 // (fma (fneg a) b c) => (fnmsub a b c) 16283 // (fnmsub (fneg a) b c) => (fma a b c) 16284 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16285 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16286 16287 // (fma a (fneg b) c) => (fnmsub a b c) 16288 // (fnmsub a (fneg b) c) => (fma a b c) 16289 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16290 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16291 16292 return SDValue(); 16293 } 16294 16295 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16296 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16297 if (!Subtarget.is64BitELFABI()) 16298 return false; 16299 16300 // If not a tail call then no need to proceed. 16301 if (!CI->isTailCall()) 16302 return false; 16303 16304 // If sibling calls have been disabled and tail-calls aren't guaranteed 16305 // there is no reason to duplicate. 16306 auto &TM = getTargetMachine(); 16307 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16308 return false; 16309 16310 // Can't tail call a function called indirectly, or if it has variadic args. 16311 const Function *Callee = CI->getCalledFunction(); 16312 if (!Callee || Callee->isVarArg()) 16313 return false; 16314 16315 // Make sure the callee and caller calling conventions are eligible for tco. 16316 const Function *Caller = CI->getParent()->getParent(); 16317 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16318 CI->getCallingConv())) 16319 return false; 16320 16321 // If the function is local then we have a good chance at tail-calling it 16322 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16323 } 16324 16325 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 16326 if (!Subtarget.hasVSX()) 16327 return false; 16328 if (Subtarget.hasP9Vector() && VT == MVT::f128) 16329 return true; 16330 return VT == MVT::f32 || VT == MVT::f64 || 16331 VT == MVT::v4f32 || VT == MVT::v2f64; 16332 } 16333 16334 bool PPCTargetLowering:: 16335 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 16336 const Value *Mask = AndI.getOperand(1); 16337 // If the mask is suitable for andi. or andis. we should sink the and. 16338 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 16339 // Can't handle constants wider than 64-bits. 16340 if (CI->getBitWidth() > 64) 16341 return false; 16342 int64_t ConstVal = CI->getZExtValue(); 16343 return isUInt<16>(ConstVal) || 16344 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 16345 } 16346 16347 // For non-constant masks, we can always use the record-form and. 16348 return true; 16349 } 16350 16351 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 16352 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 16353 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 16354 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 16355 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 16356 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 16357 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 16358 assert(Subtarget.hasP9Altivec() && 16359 "Only combine this when P9 altivec supported!"); 16360 EVT VT = N->getValueType(0); 16361 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16362 return SDValue(); 16363 16364 SelectionDAG &DAG = DCI.DAG; 16365 SDLoc dl(N); 16366 if (N->getOperand(0).getOpcode() == ISD::SUB) { 16367 // Even for signed integers, if it's known to be positive (as signed 16368 // integer) due to zero-extended inputs. 16369 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 16370 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 16371 if ((SubOpcd0 == ISD::ZERO_EXTEND || 16372 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 16373 (SubOpcd1 == ISD::ZERO_EXTEND || 16374 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 16375 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16376 N->getOperand(0)->getOperand(0), 16377 N->getOperand(0)->getOperand(1), 16378 DAG.getTargetConstant(0, dl, MVT::i32)); 16379 } 16380 16381 // For type v4i32, it can be optimized with xvnegsp + vabsduw 16382 if (N->getOperand(0).getValueType() == MVT::v4i32 && 16383 N->getOperand(0).hasOneUse()) { 16384 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 16385 N->getOperand(0)->getOperand(0), 16386 N->getOperand(0)->getOperand(1), 16387 DAG.getTargetConstant(1, dl, MVT::i32)); 16388 } 16389 } 16390 16391 return SDValue(); 16392 } 16393 16394 // For type v4i32/v8ii16/v16i8, transform 16395 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 16396 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 16397 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 16398 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 16399 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 16400 DAGCombinerInfo &DCI) const { 16401 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 16402 assert(Subtarget.hasP9Altivec() && 16403 "Only combine this when P9 altivec supported!"); 16404 16405 SelectionDAG &DAG = DCI.DAG; 16406 SDLoc dl(N); 16407 SDValue Cond = N->getOperand(0); 16408 SDValue TrueOpnd = N->getOperand(1); 16409 SDValue FalseOpnd = N->getOperand(2); 16410 EVT VT = N->getOperand(1).getValueType(); 16411 16412 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 16413 FalseOpnd.getOpcode() != ISD::SUB) 16414 return SDValue(); 16415 16416 // ABSD only available for type v4i32/v8i16/v16i8 16417 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16418 return SDValue(); 16419 16420 // At least to save one more dependent computation 16421 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 16422 return SDValue(); 16423 16424 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 16425 16426 // Can only handle unsigned comparison here 16427 switch (CC) { 16428 default: 16429 return SDValue(); 16430 case ISD::SETUGT: 16431 case ISD::SETUGE: 16432 break; 16433 case ISD::SETULT: 16434 case ISD::SETULE: 16435 std::swap(TrueOpnd, FalseOpnd); 16436 break; 16437 } 16438 16439 SDValue CmpOpnd1 = Cond.getOperand(0); 16440 SDValue CmpOpnd2 = Cond.getOperand(1); 16441 16442 // SETCC CmpOpnd1 CmpOpnd2 cond 16443 // TrueOpnd = CmpOpnd1 - CmpOpnd2 16444 // FalseOpnd = CmpOpnd2 - CmpOpnd1 16445 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 16446 TrueOpnd.getOperand(1) == CmpOpnd2 && 16447 FalseOpnd.getOperand(0) == CmpOpnd2 && 16448 FalseOpnd.getOperand(1) == CmpOpnd1) { 16449 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 16450 CmpOpnd1, CmpOpnd2, 16451 DAG.getTargetConstant(0, dl, MVT::i32)); 16452 } 16453 16454 return SDValue(); 16455 } 16456