1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 static cl::opt<bool> 130 DisablePerfectShuffle("ppc-disable-perfect-shuffle", 131 cl::desc("disable vector permute decomposition"), 132 cl::init(true), cl::Hidden); 133 134 STATISTIC(NumTailCalls, "Number of tail calls"); 135 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 136 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 137 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 138 139 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 140 141 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 142 143 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 144 145 // FIXME: Remove this once the bug has been fixed! 146 extern cl::opt<bool> ANDIGlueBug; 147 148 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 149 const PPCSubtarget &STI) 150 : TargetLowering(TM), Subtarget(STI) { 151 // Initialize map that relates the PPC addressing modes to the computed flags 152 // of a load/store instruction. The map is used to determine the optimal 153 // addressing mode when selecting load and stores. 154 initializeAddrModeMap(); 155 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 156 // arguments are at least 4/8 bytes aligned. 157 bool isPPC64 = Subtarget.isPPC64(); 158 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 159 160 // Set up the register classes. 161 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 162 if (!useSoftFloat()) { 163 if (hasSPE()) { 164 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 165 // EFPU2 APU only supports f32 166 if (!Subtarget.hasEFPU2()) 167 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 168 } else { 169 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 170 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 171 } 172 } 173 174 // Match BITREVERSE to customized fast code sequence in the td file. 175 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 176 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 177 178 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 179 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 180 181 // Custom lower inline assembly to check for special registers. 182 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 183 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 184 185 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 186 for (MVT VT : MVT::integer_valuetypes()) { 187 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 188 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 189 } 190 191 if (Subtarget.isISA3_0()) { 192 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 193 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 194 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 195 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 196 } else { 197 // No extending loads from f16 or HW conversions back and forth. 198 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 199 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 200 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 201 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 202 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 203 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 204 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 205 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 206 } 207 208 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 209 210 // PowerPC has pre-inc load and store's. 211 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 216 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 217 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 218 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 221 if (!Subtarget.hasSPE()) { 222 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 223 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 224 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 225 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 226 } 227 228 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 229 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 230 for (MVT VT : ScalarIntVTs) { 231 setOperationAction(ISD::ADDC, VT, Legal); 232 setOperationAction(ISD::ADDE, VT, Legal); 233 setOperationAction(ISD::SUBC, VT, Legal); 234 setOperationAction(ISD::SUBE, VT, Legal); 235 } 236 237 if (Subtarget.useCRBits()) { 238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 239 240 if (isPPC64 || Subtarget.hasFPCVT()) { 241 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 242 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 243 isPPC64 ? MVT::i64 : MVT::i32); 244 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 245 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 246 isPPC64 ? MVT::i64 : MVT::i32); 247 248 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 249 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 250 isPPC64 ? MVT::i64 : MVT::i32); 251 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 252 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 253 isPPC64 ? MVT::i64 : MVT::i32); 254 255 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 256 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 257 isPPC64 ? MVT::i64 : MVT::i32); 258 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 259 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 260 isPPC64 ? MVT::i64 : MVT::i32); 261 262 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 263 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 264 isPPC64 ? MVT::i64 : MVT::i32); 265 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 266 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 267 isPPC64 ? MVT::i64 : MVT::i32); 268 } else { 269 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 271 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 272 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 273 } 274 275 // PowerPC does not support direct load/store of condition registers. 276 setOperationAction(ISD::LOAD, MVT::i1, Custom); 277 setOperationAction(ISD::STORE, MVT::i1, Custom); 278 279 // FIXME: Remove this once the ANDI glue bug is fixed: 280 if (ANDIGlueBug) 281 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 282 283 for (MVT VT : MVT::integer_valuetypes()) { 284 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 285 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 286 setTruncStoreAction(VT, MVT::i1, Expand); 287 } 288 289 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 290 } 291 292 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 293 // PPC (the libcall is not available). 294 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 295 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 296 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 297 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 298 299 // We do not currently implement these libm ops for PowerPC. 300 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 301 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 302 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 303 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 304 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 305 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 306 307 // PowerPC has no SREM/UREM instructions unless we are on P9 308 // On P9 we may use a hardware instruction to compute the remainder. 309 // When the result of both the remainder and the division is required it is 310 // more efficient to compute the remainder from the result of the division 311 // rather than use the remainder instruction. The instructions are legalized 312 // directly because the DivRemPairsPass performs the transformation at the IR 313 // level. 314 if (Subtarget.isISA3_0()) { 315 setOperationAction(ISD::SREM, MVT::i32, Legal); 316 setOperationAction(ISD::UREM, MVT::i32, Legal); 317 setOperationAction(ISD::SREM, MVT::i64, Legal); 318 setOperationAction(ISD::UREM, MVT::i64, Legal); 319 } else { 320 setOperationAction(ISD::SREM, MVT::i32, Expand); 321 setOperationAction(ISD::UREM, MVT::i32, Expand); 322 setOperationAction(ISD::SREM, MVT::i64, Expand); 323 setOperationAction(ISD::UREM, MVT::i64, Expand); 324 } 325 326 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 327 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 328 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 329 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 330 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 331 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 332 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 333 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 334 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 335 336 // Handle constrained floating-point operations of scalar. 337 // TODO: Handle SPE specific operation. 338 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 339 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 340 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 341 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 342 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 343 344 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 345 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 346 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 347 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 348 349 if (!Subtarget.hasSPE()) { 350 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasVSX()) { 355 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFSQRT()) { 360 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 362 } 363 364 if (Subtarget.hasFPRND()) { 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 369 370 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 371 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 372 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 373 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 374 } 375 376 // We don't support sin/cos/sqrt/fmod/pow 377 setOperationAction(ISD::FSIN , MVT::f64, Expand); 378 setOperationAction(ISD::FCOS , MVT::f64, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 380 setOperationAction(ISD::FREM , MVT::f64, Expand); 381 setOperationAction(ISD::FPOW , MVT::f64, Expand); 382 setOperationAction(ISD::FSIN , MVT::f32, Expand); 383 setOperationAction(ISD::FCOS , MVT::f32, Expand); 384 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 385 setOperationAction(ISD::FREM , MVT::f32, Expand); 386 setOperationAction(ISD::FPOW , MVT::f32, Expand); 387 388 // MASS transformation for LLVM intrinsics with replicating fast-math flag 389 // to be consistent to PPCGenScalarMASSEntries pass 390 if (TM.getOptLevel() == CodeGenOpt::Aggressive && 391 TM.Options.PPCGenScalarMASSEntries) { 392 setOperationAction(ISD::FSIN , MVT::f64, Custom); 393 setOperationAction(ISD::FCOS , MVT::f64, Custom); 394 setOperationAction(ISD::FPOW , MVT::f64, Custom); 395 setOperationAction(ISD::FLOG, MVT::f64, Custom); 396 setOperationAction(ISD::FLOG10, MVT::f64, Custom); 397 setOperationAction(ISD::FEXP, MVT::f64, Custom); 398 setOperationAction(ISD::FSIN , MVT::f32, Custom); 399 setOperationAction(ISD::FCOS , MVT::f32, Custom); 400 setOperationAction(ISD::FPOW , MVT::f32, Custom); 401 setOperationAction(ISD::FLOG, MVT::f32, Custom); 402 setOperationAction(ISD::FLOG10, MVT::f32, Custom); 403 setOperationAction(ISD::FEXP, MVT::f32, Custom); 404 } 405 406 if (Subtarget.hasSPE()) { 407 setOperationAction(ISD::FMA , MVT::f64, Expand); 408 setOperationAction(ISD::FMA , MVT::f32, Expand); 409 } else { 410 setOperationAction(ISD::FMA , MVT::f64, Legal); 411 setOperationAction(ISD::FMA , MVT::f32, Legal); 412 } 413 414 if (Subtarget.hasSPE()) 415 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 416 417 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 418 419 // If we're enabling GP optimizations, use hardware square root 420 if (!Subtarget.hasFSQRT() && 421 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 422 Subtarget.hasFRE())) 423 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 424 425 if (!Subtarget.hasFSQRT() && 426 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 427 Subtarget.hasFRES())) 428 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 429 430 if (Subtarget.hasFCPSGN()) { 431 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 432 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 433 } else { 434 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 435 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 436 } 437 438 if (Subtarget.hasFPRND()) { 439 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 440 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 441 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 442 setOperationAction(ISD::FROUND, MVT::f64, Legal); 443 444 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 445 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 446 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 447 setOperationAction(ISD::FROUND, MVT::f32, Legal); 448 } 449 450 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 451 // to speed up scalar BSWAP64. 452 // CTPOP or CTTZ were introduced in P8/P9 respectively 453 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 454 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 455 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 456 else 457 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 458 if (Subtarget.isISA3_0()) { 459 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 460 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 461 } else { 462 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 463 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 464 } 465 466 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 467 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 468 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 469 } else { 470 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 471 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 472 } 473 474 // PowerPC does not have ROTR 475 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 476 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 477 478 if (!Subtarget.useCRBits()) { 479 // PowerPC does not have Select 480 setOperationAction(ISD::SELECT, MVT::i32, Expand); 481 setOperationAction(ISD::SELECT, MVT::i64, Expand); 482 setOperationAction(ISD::SELECT, MVT::f32, Expand); 483 setOperationAction(ISD::SELECT, MVT::f64, Expand); 484 } 485 486 // PowerPC wants to turn select_cc of FP into fsel when possible. 487 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 488 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 489 490 // PowerPC wants to optimize integer setcc a bit 491 if (!Subtarget.useCRBits()) 492 setOperationAction(ISD::SETCC, MVT::i32, Custom); 493 494 if (Subtarget.hasFPU()) { 495 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 496 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 497 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 498 499 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 500 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 501 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 502 } 503 504 // PowerPC does not have BRCOND which requires SetCC 505 if (!Subtarget.useCRBits()) 506 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 507 508 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 509 510 if (Subtarget.hasSPE()) { 511 // SPE has built-in conversions 512 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 513 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 514 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 516 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 517 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 518 519 // SPE supports signaling compare of f32/f64. 520 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 521 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 522 } else { 523 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 524 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 526 527 // PowerPC does not have [U|S]INT_TO_FP 528 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 529 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 532 } 533 534 if (Subtarget.hasDirectMove() && isPPC64) { 535 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 536 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 537 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 538 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 539 if (TM.Options.UnsafeFPMath) { 540 setOperationAction(ISD::LRINT, MVT::f64, Legal); 541 setOperationAction(ISD::LRINT, MVT::f32, Legal); 542 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 543 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 544 setOperationAction(ISD::LROUND, MVT::f64, Legal); 545 setOperationAction(ISD::LROUND, MVT::f32, Legal); 546 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 547 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 548 } 549 } else { 550 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 551 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 552 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 553 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 554 } 555 556 // We cannot sextinreg(i1). Expand to shifts. 557 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 558 559 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 560 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 561 // support continuation, user-level threading, and etc.. As a result, no 562 // other SjLj exception interfaces are implemented and please don't build 563 // your own exception handling based on them. 564 // LLVM/Clang supports zero-cost DWARF exception handling. 565 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 566 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 567 568 // We want to legalize GlobalAddress and ConstantPool nodes into the 569 // appropriate instructions to materialize the address. 570 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 571 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 572 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 573 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 574 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 575 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 576 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 577 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 578 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 579 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 580 581 // TRAP is legal. 582 setOperationAction(ISD::TRAP, MVT::Other, Legal); 583 584 // TRAMPOLINE is custom lowered. 585 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 586 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 587 588 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 589 setOperationAction(ISD::VASTART , MVT::Other, Custom); 590 591 if (Subtarget.is64BitELFABI()) { 592 // VAARG always uses double-word chunks, so promote anything smaller. 593 setOperationAction(ISD::VAARG, MVT::i1, Promote); 594 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 595 setOperationAction(ISD::VAARG, MVT::i8, Promote); 596 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 597 setOperationAction(ISD::VAARG, MVT::i16, Promote); 598 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 599 setOperationAction(ISD::VAARG, MVT::i32, Promote); 600 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 601 setOperationAction(ISD::VAARG, MVT::Other, Expand); 602 } else if (Subtarget.is32BitELFABI()) { 603 // VAARG is custom lowered with the 32-bit SVR4 ABI. 604 setOperationAction(ISD::VAARG, MVT::Other, Custom); 605 setOperationAction(ISD::VAARG, MVT::i64, Custom); 606 } else 607 setOperationAction(ISD::VAARG, MVT::Other, Expand); 608 609 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 610 if (Subtarget.is32BitELFABI()) 611 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 612 else 613 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 614 615 // Use the default implementation. 616 setOperationAction(ISD::VAEND , MVT::Other, Expand); 617 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 618 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 619 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 620 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 621 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 622 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 623 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 624 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 625 626 // We want to custom lower some of our intrinsics. 627 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 628 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); 629 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); 630 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); 631 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); 632 633 // To handle counter-based loop conditions. 634 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 635 636 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 637 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 638 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 639 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 640 641 // Comparisons that require checking two conditions. 642 if (Subtarget.hasSPE()) { 643 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 644 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 645 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 646 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 647 } 648 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 649 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 650 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 651 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 652 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 653 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 654 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 655 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 656 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 657 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 658 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 659 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 660 661 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 662 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 663 664 if (Subtarget.has64BitSupport()) { 665 // They also have instructions for converting between i64 and fp. 666 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 667 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 668 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 669 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 670 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 671 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 672 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 674 // This is just the low 32 bits of a (signed) fp->i64 conversion. 675 // We cannot do this with Promote because i64 is not a legal type. 676 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 677 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 678 679 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 680 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 } 683 } else { 684 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 685 if (Subtarget.hasSPE()) { 686 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 687 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 688 } else { 689 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 690 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 691 } 692 } 693 694 // With the instructions enabled under FPCVT, we can do everything. 695 if (Subtarget.hasFPCVT()) { 696 if (Subtarget.has64BitSupport()) { 697 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 698 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 699 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 700 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 701 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 702 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 703 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 704 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 705 } 706 707 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 708 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 709 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 710 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 711 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 712 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 713 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 714 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 715 } 716 717 if (Subtarget.use64BitRegs()) { 718 // 64-bit PowerPC implementations can support i64 types directly 719 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 720 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 721 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 722 // 64-bit PowerPC wants to expand i128 shifts itself. 723 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 724 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 725 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 726 } else { 727 // 32-bit PowerPC wants to expand i64 shifts itself. 728 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 729 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 730 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 731 } 732 733 // PowerPC has better expansions for funnel shifts than the generic 734 // TargetLowering::expandFunnelShift. 735 if (Subtarget.has64BitSupport()) { 736 setOperationAction(ISD::FSHL, MVT::i64, Custom); 737 setOperationAction(ISD::FSHR, MVT::i64, Custom); 738 } 739 setOperationAction(ISD::FSHL, MVT::i32, Custom); 740 setOperationAction(ISD::FSHR, MVT::i32, Custom); 741 742 if (Subtarget.hasVSX()) { 743 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 744 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 745 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 746 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 747 } 748 749 if (Subtarget.hasAltivec()) { 750 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 751 setOperationAction(ISD::SADDSAT, VT, Legal); 752 setOperationAction(ISD::SSUBSAT, VT, Legal); 753 setOperationAction(ISD::UADDSAT, VT, Legal); 754 setOperationAction(ISD::USUBSAT, VT, Legal); 755 } 756 // First set operation action for all vector types to expand. Then we 757 // will selectively turn on ones that can be effectively codegen'd. 758 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 759 // add/sub are legal for all supported vector VT's. 760 setOperationAction(ISD::ADD, VT, Legal); 761 setOperationAction(ISD::SUB, VT, Legal); 762 763 // For v2i64, these are only valid with P8Vector. This is corrected after 764 // the loop. 765 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 766 setOperationAction(ISD::SMAX, VT, Legal); 767 setOperationAction(ISD::SMIN, VT, Legal); 768 setOperationAction(ISD::UMAX, VT, Legal); 769 setOperationAction(ISD::UMIN, VT, Legal); 770 } 771 else { 772 setOperationAction(ISD::SMAX, VT, Expand); 773 setOperationAction(ISD::SMIN, VT, Expand); 774 setOperationAction(ISD::UMAX, VT, Expand); 775 setOperationAction(ISD::UMIN, VT, Expand); 776 } 777 778 if (Subtarget.hasVSX()) { 779 setOperationAction(ISD::FMAXNUM, VT, Legal); 780 setOperationAction(ISD::FMINNUM, VT, Legal); 781 } 782 783 // Vector instructions introduced in P8 784 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 785 setOperationAction(ISD::CTPOP, VT, Legal); 786 setOperationAction(ISD::CTLZ, VT, Legal); 787 } 788 else { 789 setOperationAction(ISD::CTPOP, VT, Expand); 790 setOperationAction(ISD::CTLZ, VT, Expand); 791 } 792 793 // Vector instructions introduced in P9 794 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 795 setOperationAction(ISD::CTTZ, VT, Legal); 796 else 797 setOperationAction(ISD::CTTZ, VT, Expand); 798 799 // We promote all shuffles to v16i8. 800 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 801 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 802 803 // We promote all non-typed operations to v4i32. 804 setOperationAction(ISD::AND , VT, Promote); 805 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 806 setOperationAction(ISD::OR , VT, Promote); 807 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 808 setOperationAction(ISD::XOR , VT, Promote); 809 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 810 setOperationAction(ISD::LOAD , VT, Promote); 811 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 812 setOperationAction(ISD::SELECT, VT, Promote); 813 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 814 setOperationAction(ISD::VSELECT, VT, Legal); 815 setOperationAction(ISD::SELECT_CC, VT, Promote); 816 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 817 setOperationAction(ISD::STORE, VT, Promote); 818 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 819 820 // No other operations are legal. 821 setOperationAction(ISD::MUL , VT, Expand); 822 setOperationAction(ISD::SDIV, VT, Expand); 823 setOperationAction(ISD::SREM, VT, Expand); 824 setOperationAction(ISD::UDIV, VT, Expand); 825 setOperationAction(ISD::UREM, VT, Expand); 826 setOperationAction(ISD::FDIV, VT, Expand); 827 setOperationAction(ISD::FREM, VT, Expand); 828 setOperationAction(ISD::FNEG, VT, Expand); 829 setOperationAction(ISD::FSQRT, VT, Expand); 830 setOperationAction(ISD::FLOG, VT, Expand); 831 setOperationAction(ISD::FLOG10, VT, Expand); 832 setOperationAction(ISD::FLOG2, VT, Expand); 833 setOperationAction(ISD::FEXP, VT, Expand); 834 setOperationAction(ISD::FEXP2, VT, Expand); 835 setOperationAction(ISD::FSIN, VT, Expand); 836 setOperationAction(ISD::FCOS, VT, Expand); 837 setOperationAction(ISD::FABS, VT, Expand); 838 setOperationAction(ISD::FFLOOR, VT, Expand); 839 setOperationAction(ISD::FCEIL, VT, Expand); 840 setOperationAction(ISD::FTRUNC, VT, Expand); 841 setOperationAction(ISD::FRINT, VT, Expand); 842 setOperationAction(ISD::FNEARBYINT, VT, Expand); 843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 844 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 845 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 846 setOperationAction(ISD::MULHU, VT, Expand); 847 setOperationAction(ISD::MULHS, VT, Expand); 848 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 849 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 850 setOperationAction(ISD::UDIVREM, VT, Expand); 851 setOperationAction(ISD::SDIVREM, VT, Expand); 852 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 853 setOperationAction(ISD::FPOW, VT, Expand); 854 setOperationAction(ISD::BSWAP, VT, Expand); 855 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 856 setOperationAction(ISD::ROTL, VT, Expand); 857 setOperationAction(ISD::ROTR, VT, Expand); 858 859 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 860 setTruncStoreAction(VT, InnerVT, Expand); 861 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 862 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 863 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 864 } 865 } 866 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 867 if (!Subtarget.hasP8Vector()) { 868 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 869 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 870 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 871 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 872 } 873 874 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 875 // with merges, splats, etc. 876 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 877 878 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 879 // are cheap, so handle them before they get expanded to scalar. 880 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 881 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 882 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 883 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 884 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 885 886 setOperationAction(ISD::AND , MVT::v4i32, Legal); 887 setOperationAction(ISD::OR , MVT::v4i32, Legal); 888 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 889 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 890 setOperationAction(ISD::SELECT, MVT::v4i32, 891 Subtarget.useCRBits() ? Legal : Expand); 892 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 893 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 894 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 895 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 896 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 897 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 898 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 899 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 900 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 901 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 902 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 903 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 904 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 905 906 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 907 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 908 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 909 if (Subtarget.hasAltivec()) 910 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 911 setOperationAction(ISD::ROTL, VT, Legal); 912 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 913 if (Subtarget.hasP8Altivec()) 914 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 915 916 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 917 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 918 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 919 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 920 921 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 922 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 923 924 if (Subtarget.hasVSX()) { 925 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 926 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 927 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 928 } 929 930 if (Subtarget.hasP8Altivec()) 931 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 932 else 933 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 934 935 if (Subtarget.isISA3_1()) { 936 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 937 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 938 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 939 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 940 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 941 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 942 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 943 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 944 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 945 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 946 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 947 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 948 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 949 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 950 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 951 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 952 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 953 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 954 } 955 956 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 957 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 958 959 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 960 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 961 962 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 963 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 964 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 965 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 966 967 // Altivec does not contain unordered floating-point compare instructions 968 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 969 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 970 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 971 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 972 973 if (Subtarget.hasVSX()) { 974 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 975 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 976 if (Subtarget.hasP8Vector()) { 977 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 978 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 979 } 980 if (Subtarget.hasDirectMove() && isPPC64) { 981 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 982 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 983 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 984 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 985 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 986 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 987 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 988 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 989 } 990 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 991 992 // The nearbyint variants are not allowed to raise the inexact exception 993 // so we can only code-gen them with unsafe math. 994 if (TM.Options.UnsafeFPMath) { 995 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 996 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 997 } 998 999 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 1000 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 1001 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 1002 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 1003 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 1004 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 1005 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1006 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1007 1008 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 1009 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 1010 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1011 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1012 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1013 1014 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 1015 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 1016 1017 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 1018 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 1019 1020 // Share the Altivec comparison restrictions. 1021 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 1022 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 1023 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 1024 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 1025 1026 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 1027 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1028 1029 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1030 1031 if (Subtarget.hasP8Vector()) 1032 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1033 1034 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1035 1036 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1037 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1038 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1039 1040 if (Subtarget.hasP8Altivec()) { 1041 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1042 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1043 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1044 1045 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1046 // SRL, but not for SRA because of the instructions available: 1047 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1048 // doing 1049 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1050 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1051 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1052 1053 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1054 } 1055 else { 1056 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1057 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1058 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1059 1060 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1061 1062 // VSX v2i64 only supports non-arithmetic operations. 1063 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1064 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1065 } 1066 1067 if (Subtarget.isISA3_1()) 1068 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1069 else 1070 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1071 1072 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1073 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1074 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1075 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1076 1077 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1078 1079 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1080 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1081 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1082 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1083 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1084 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1085 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1086 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1087 1088 // Custom handling for partial vectors of integers converted to 1089 // floating point. We already have optimal handling for v2i32 through 1090 // the DAG combine, so those aren't necessary. 1091 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1092 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1093 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1094 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1095 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1096 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1097 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1098 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1099 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1100 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1101 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1102 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1103 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1104 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1105 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1106 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1107 1108 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1109 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1110 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1111 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1112 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1113 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1114 1115 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1116 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1117 1118 // Handle constrained floating-point operations of vector. 1119 // The predictor is `hasVSX` because altivec instruction has 1120 // no exception but VSX vector instruction has. 1121 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1122 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1123 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1124 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1125 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1126 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1127 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1128 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1129 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1130 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1131 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1132 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1133 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1134 1135 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1136 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1137 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1138 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1139 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1140 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1141 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1142 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1143 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1144 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1145 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1146 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1147 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1148 1149 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1150 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1151 1152 for (MVT FPT : MVT::fp_valuetypes()) 1153 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1154 1155 // Expand the SELECT to SELECT_CC 1156 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1157 1158 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1159 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1160 1161 // No implementation for these ops for PowerPC. 1162 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1163 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1164 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1165 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1166 setOperationAction(ISD::FREM, MVT::f128, Expand); 1167 } 1168 1169 if (Subtarget.hasP8Altivec()) { 1170 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1171 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1172 } 1173 1174 if (Subtarget.hasP9Vector()) { 1175 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1176 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1177 1178 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1179 // SRL, but not for SRA because of the instructions available: 1180 // VS{RL} and VS{RL}O. 1181 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1182 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1183 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1184 1185 setOperationAction(ISD::FADD, MVT::f128, Legal); 1186 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1187 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1188 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1189 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1190 1191 setOperationAction(ISD::FMA, MVT::f128, Legal); 1192 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1193 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1194 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1195 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1196 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1197 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1198 1199 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1200 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1201 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1202 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1203 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1204 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1205 1206 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1207 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1208 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1209 1210 // Handle constrained floating-point operations of fp128 1211 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1212 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1213 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1214 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1215 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1216 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1217 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1218 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1219 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1220 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1221 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1222 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1223 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1224 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1225 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1226 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1227 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1228 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1229 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1230 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1231 } else if (Subtarget.hasVSX()) { 1232 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1233 setOperationAction(ISD::STORE, MVT::f128, Promote); 1234 1235 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1236 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1237 1238 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1239 // fp_to_uint and int_to_fp. 1240 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1241 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1242 1243 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1244 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1245 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1246 setOperationAction(ISD::FABS, MVT::f128, Expand); 1247 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1248 setOperationAction(ISD::FMA, MVT::f128, Expand); 1249 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1250 1251 // Expand the fp_extend if the target type is fp128. 1252 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1253 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1254 1255 // Expand the fp_round if the source type is fp128. 1256 for (MVT VT : {MVT::f32, MVT::f64}) { 1257 setOperationAction(ISD::FP_ROUND, VT, Custom); 1258 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1259 } 1260 1261 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1262 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1263 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1264 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1265 1266 // Lower following f128 select_cc pattern: 1267 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1268 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1269 1270 // We need to handle f128 SELECT_CC with integer result type. 1271 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1272 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1273 } 1274 1275 if (Subtarget.hasP9Altivec()) { 1276 if (Subtarget.isISA3_1()) { 1277 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 1278 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); 1279 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); 1280 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 1281 } else { 1282 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1283 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1284 } 1285 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1286 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1287 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1288 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1289 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1290 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1291 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1292 } 1293 1294 if (Subtarget.hasP10Vector()) { 1295 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1296 } 1297 } 1298 1299 if (Subtarget.pairedVectorMemops()) { 1300 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1301 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1302 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1303 } 1304 if (Subtarget.hasMMA()) { 1305 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1306 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1307 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1308 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1309 } 1310 1311 if (Subtarget.has64BitSupport()) 1312 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1313 1314 if (Subtarget.isISA3_1()) 1315 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1316 1317 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1318 1319 if (!isPPC64) { 1320 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1321 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1322 } 1323 1324 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) { 1325 setMaxAtomicSizeInBitsSupported(128); 1326 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 1327 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 1328 setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); 1329 } 1330 1331 setBooleanContents(ZeroOrOneBooleanContent); 1332 1333 if (Subtarget.hasAltivec()) { 1334 // Altivec instructions set fields to all zeros or all ones. 1335 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1336 } 1337 1338 setLibcallName(RTLIB::MULO_I128, nullptr); 1339 if (!isPPC64) { 1340 // These libcalls are not available in 32-bit. 1341 setLibcallName(RTLIB::SHL_I128, nullptr); 1342 setLibcallName(RTLIB::SRL_I128, nullptr); 1343 setLibcallName(RTLIB::SRA_I128, nullptr); 1344 setLibcallName(RTLIB::MUL_I128, nullptr); 1345 setLibcallName(RTLIB::MULO_I64, nullptr); 1346 } 1347 1348 if (!isPPC64) 1349 setMaxAtomicSizeInBitsSupported(32); 1350 1351 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1352 1353 // We have target-specific dag combine patterns for the following nodes: 1354 setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL, 1355 ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); 1356 if (Subtarget.hasFPCVT()) 1357 setTargetDAGCombine(ISD::UINT_TO_FP); 1358 setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); 1359 if (Subtarget.useCRBits()) 1360 setTargetDAGCombine(ISD::BRCOND); 1361 setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, 1362 ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); 1363 1364 setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); 1365 1366 setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); 1367 1368 if (Subtarget.useCRBits()) { 1369 setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); 1370 } 1371 1372 if (Subtarget.hasP9Altivec()) { 1373 setTargetDAGCombine({ISD::ABS, ISD::VSELECT}); 1374 } 1375 1376 setLibcallName(RTLIB::LOG_F128, "logf128"); 1377 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1378 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1379 setLibcallName(RTLIB::EXP_F128, "expf128"); 1380 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1381 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1382 setLibcallName(RTLIB::COS_F128, "cosf128"); 1383 setLibcallName(RTLIB::POW_F128, "powf128"); 1384 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1385 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1386 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1387 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1388 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1389 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1390 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1391 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1392 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1393 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1394 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1395 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1396 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1397 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1398 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1399 1400 // With 32 condition bits, we don't need to sink (and duplicate) compares 1401 // aggressively in CodeGenPrep. 1402 if (Subtarget.useCRBits()) { 1403 setHasMultipleConditionRegisters(); 1404 setJumpIsExpensive(); 1405 } 1406 1407 setMinFunctionAlignment(Align(4)); 1408 1409 switch (Subtarget.getCPUDirective()) { 1410 default: break; 1411 case PPC::DIR_970: 1412 case PPC::DIR_A2: 1413 case PPC::DIR_E500: 1414 case PPC::DIR_E500mc: 1415 case PPC::DIR_E5500: 1416 case PPC::DIR_PWR4: 1417 case PPC::DIR_PWR5: 1418 case PPC::DIR_PWR5X: 1419 case PPC::DIR_PWR6: 1420 case PPC::DIR_PWR6X: 1421 case PPC::DIR_PWR7: 1422 case PPC::DIR_PWR8: 1423 case PPC::DIR_PWR9: 1424 case PPC::DIR_PWR10: 1425 case PPC::DIR_PWR_FUTURE: 1426 setPrefLoopAlignment(Align(16)); 1427 setPrefFunctionAlignment(Align(16)); 1428 break; 1429 } 1430 1431 if (Subtarget.enableMachineScheduler()) 1432 setSchedulingPreference(Sched::Source); 1433 else 1434 setSchedulingPreference(Sched::Hybrid); 1435 1436 computeRegisterProperties(STI.getRegisterInfo()); 1437 1438 // The Freescale cores do better with aggressive inlining of memcpy and 1439 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1440 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1441 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1442 MaxStoresPerMemset = 32; 1443 MaxStoresPerMemsetOptSize = 16; 1444 MaxStoresPerMemcpy = 32; 1445 MaxStoresPerMemcpyOptSize = 8; 1446 MaxStoresPerMemmove = 32; 1447 MaxStoresPerMemmoveOptSize = 8; 1448 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1449 // The A2 also benefits from (very) aggressive inlining of memcpy and 1450 // friends. The overhead of a the function call, even when warm, can be 1451 // over one hundred cycles. 1452 MaxStoresPerMemset = 128; 1453 MaxStoresPerMemcpy = 128; 1454 MaxStoresPerMemmove = 128; 1455 MaxLoadsPerMemcmp = 128; 1456 } else { 1457 MaxLoadsPerMemcmp = 8; 1458 MaxLoadsPerMemcmpOptSize = 4; 1459 } 1460 1461 IsStrictFPEnabled = true; 1462 1463 // Let the subtarget (CPU) decide if a predictable select is more expensive 1464 // than the corresponding branch. This information is used in CGP to decide 1465 // when to convert selects into branches. 1466 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1467 } 1468 1469 // *********************************** NOTE ************************************ 1470 // For selecting load and store instructions, the addressing modes are defined 1471 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1472 // patterns to match the load the store instructions. 1473 // 1474 // The TD definitions for the addressing modes correspond to their respective 1475 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1476 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1477 // address mode flags of a particular node. Afterwards, the computed address 1478 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1479 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1480 // accordingly, based on the preferred addressing mode. 1481 // 1482 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1483 // MemOpFlags contains all the possible flags that can be used to compute the 1484 // optimal addressing mode for load and store instructions. 1485 // AddrMode contains all the possible load and store addressing modes available 1486 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1487 // 1488 // When adding new load and store instructions, it is possible that new address 1489 // flags may need to be added into MemOpFlags, and a new addressing mode will 1490 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1491 // of the minimal and main distinguishing address flags for the new load/store 1492 // instructions) will need to be added into initializeAddrModeMap() below. 1493 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1494 // need to be updated to account for selecting the optimal addressing mode. 1495 // ***************************************************************************** 1496 /// Initialize the map that relates the different addressing modes of the load 1497 /// and store instructions to a set of flags. This ensures the load/store 1498 /// instruction is correctly matched during instruction selection. 1499 void PPCTargetLowering::initializeAddrModeMap() { 1500 AddrModesMap[PPC::AM_DForm] = { 1501 // LWZ, STW 1502 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1503 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1504 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1505 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1506 // LBZ, LHZ, STB, STH 1507 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1508 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1509 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1510 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1511 // LHA 1512 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1513 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1514 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1515 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1516 // LFS, LFD, STFS, STFD 1517 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1518 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1519 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1520 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1521 }; 1522 AddrModesMap[PPC::AM_DSForm] = { 1523 // LWA 1524 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1525 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1526 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1527 // LD, STD 1528 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1529 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1530 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1531 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1532 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1533 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1534 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1535 }; 1536 AddrModesMap[PPC::AM_DQForm] = { 1537 // LXV, STXV 1538 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1539 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1540 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1541 }; 1542 AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | 1543 PPC::MOF_SubtargetP10}; 1544 // TODO: Add mapping for quadword load/store. 1545 } 1546 1547 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1548 /// the desired ByVal argument alignment. 1549 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1550 if (MaxAlign == MaxMaxAlign) 1551 return; 1552 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1553 if (MaxMaxAlign >= 32 && 1554 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1555 MaxAlign = Align(32); 1556 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1557 MaxAlign < 16) 1558 MaxAlign = Align(16); 1559 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1560 Align EltAlign; 1561 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1562 if (EltAlign > MaxAlign) 1563 MaxAlign = EltAlign; 1564 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1565 for (auto *EltTy : STy->elements()) { 1566 Align EltAlign; 1567 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1568 if (EltAlign > MaxAlign) 1569 MaxAlign = EltAlign; 1570 if (MaxAlign == MaxMaxAlign) 1571 break; 1572 } 1573 } 1574 } 1575 1576 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1577 /// function arguments in the caller parameter area. 1578 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1579 const DataLayout &DL) const { 1580 // 16byte and wider vectors are passed on 16byte boundary. 1581 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1582 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1583 if (Subtarget.hasAltivec()) 1584 getMaxByValAlign(Ty, Alignment, Align(16)); 1585 return Alignment.value(); 1586 } 1587 1588 bool PPCTargetLowering::useSoftFloat() const { 1589 return Subtarget.useSoftFloat(); 1590 } 1591 1592 bool PPCTargetLowering::hasSPE() const { 1593 return Subtarget.hasSPE(); 1594 } 1595 1596 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1597 return VT.isScalarInteger(); 1598 } 1599 1600 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1601 switch ((PPCISD::NodeType)Opcode) { 1602 case PPCISD::FIRST_NUMBER: break; 1603 case PPCISD::FSEL: return "PPCISD::FSEL"; 1604 case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; 1605 case PPCISD::XSMINC: return "PPCISD::XSMINC"; 1606 case PPCISD::FCFID: return "PPCISD::FCFID"; 1607 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1608 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1609 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1610 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1611 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1612 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1613 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1614 case PPCISD::FP_TO_UINT_IN_VSR: 1615 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1616 case PPCISD::FP_TO_SINT_IN_VSR: 1617 return "PPCISD::FP_TO_SINT_IN_VSR"; 1618 case PPCISD::FRE: return "PPCISD::FRE"; 1619 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1620 case PPCISD::FTSQRT: 1621 return "PPCISD::FTSQRT"; 1622 case PPCISD::FSQRT: 1623 return "PPCISD::FSQRT"; 1624 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1625 case PPCISD::VPERM: return "PPCISD::VPERM"; 1626 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1627 case PPCISD::XXSPLTI_SP_TO_DP: 1628 return "PPCISD::XXSPLTI_SP_TO_DP"; 1629 case PPCISD::XXSPLTI32DX: 1630 return "PPCISD::XXSPLTI32DX"; 1631 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1632 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1633 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1634 case PPCISD::CMPB: return "PPCISD::CMPB"; 1635 case PPCISD::Hi: return "PPCISD::Hi"; 1636 case PPCISD::Lo: return "PPCISD::Lo"; 1637 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1638 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1639 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1640 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1641 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1642 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1643 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1644 case PPCISD::SRL: return "PPCISD::SRL"; 1645 case PPCISD::SRA: return "PPCISD::SRA"; 1646 case PPCISD::SHL: return "PPCISD::SHL"; 1647 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1648 case PPCISD::CALL: return "PPCISD::CALL"; 1649 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1650 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1651 case PPCISD::CALL_RM: 1652 return "PPCISD::CALL_RM"; 1653 case PPCISD::CALL_NOP_RM: 1654 return "PPCISD::CALL_NOP_RM"; 1655 case PPCISD::CALL_NOTOC_RM: 1656 return "PPCISD::CALL_NOTOC_RM"; 1657 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1658 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1659 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1660 case PPCISD::BCTRL_RM: 1661 return "PPCISD::BCTRL_RM"; 1662 case PPCISD::BCTRL_LOAD_TOC_RM: 1663 return "PPCISD::BCTRL_LOAD_TOC_RM"; 1664 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1665 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1666 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1667 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1668 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1669 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1670 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1671 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1672 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1673 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1674 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1675 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1676 case PPCISD::ANDI_rec_1_EQ_BIT: 1677 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1678 case PPCISD::ANDI_rec_1_GT_BIT: 1679 return "PPCISD::ANDI_rec_1_GT_BIT"; 1680 case PPCISD::VCMP: return "PPCISD::VCMP"; 1681 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1682 case PPCISD::LBRX: return "PPCISD::LBRX"; 1683 case PPCISD::STBRX: return "PPCISD::STBRX"; 1684 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1685 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1686 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1687 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1688 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1689 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1690 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1691 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1692 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1693 case PPCISD::ST_VSR_SCAL_INT: 1694 return "PPCISD::ST_VSR_SCAL_INT"; 1695 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1696 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1697 case PPCISD::BDZ: return "PPCISD::BDZ"; 1698 case PPCISD::MFFS: return "PPCISD::MFFS"; 1699 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1700 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1701 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1702 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1703 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1704 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1705 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1706 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1707 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1708 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1709 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1710 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1711 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1712 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1713 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1714 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1715 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1716 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1717 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1718 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1719 case PPCISD::PADDI_DTPREL: 1720 return "PPCISD::PADDI_DTPREL"; 1721 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1722 case PPCISD::SC: return "PPCISD::SC"; 1723 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1724 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1725 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1726 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1727 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1728 case PPCISD::VABSD: return "PPCISD::VABSD"; 1729 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1730 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1731 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1732 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1733 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1734 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1735 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1736 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1737 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1738 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1739 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1740 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1741 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1742 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1743 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1744 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1745 case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; 1746 case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; 1747 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1748 case PPCISD::STRICT_FADDRTZ: 1749 return "PPCISD::STRICT_FADDRTZ"; 1750 case PPCISD::STRICT_FCTIDZ: 1751 return "PPCISD::STRICT_FCTIDZ"; 1752 case PPCISD::STRICT_FCTIWZ: 1753 return "PPCISD::STRICT_FCTIWZ"; 1754 case PPCISD::STRICT_FCTIDUZ: 1755 return "PPCISD::STRICT_FCTIDUZ"; 1756 case PPCISD::STRICT_FCTIWUZ: 1757 return "PPCISD::STRICT_FCTIWUZ"; 1758 case PPCISD::STRICT_FCFID: 1759 return "PPCISD::STRICT_FCFID"; 1760 case PPCISD::STRICT_FCFIDU: 1761 return "PPCISD::STRICT_FCFIDU"; 1762 case PPCISD::STRICT_FCFIDS: 1763 return "PPCISD::STRICT_FCFIDS"; 1764 case PPCISD::STRICT_FCFIDUS: 1765 return "PPCISD::STRICT_FCFIDUS"; 1766 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1767 } 1768 return nullptr; 1769 } 1770 1771 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1772 EVT VT) const { 1773 if (!VT.isVector()) 1774 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1775 1776 return VT.changeVectorElementTypeToInteger(); 1777 } 1778 1779 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1780 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1781 return true; 1782 } 1783 1784 //===----------------------------------------------------------------------===// 1785 // Node matching predicates, for use by the tblgen matching code. 1786 //===----------------------------------------------------------------------===// 1787 1788 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1789 static bool isFloatingPointZero(SDValue Op) { 1790 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1791 return CFP->getValueAPF().isZero(); 1792 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1793 // Maybe this has already been legalized into the constant pool? 1794 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1795 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1796 return CFP->getValueAPF().isZero(); 1797 } 1798 return false; 1799 } 1800 1801 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1802 /// true if Op is undef or if it matches the specified value. 1803 static bool isConstantOrUndef(int Op, int Val) { 1804 return Op < 0 || Op == Val; 1805 } 1806 1807 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1808 /// VPKUHUM instruction. 1809 /// The ShuffleKind distinguishes between big-endian operations with 1810 /// two different inputs (0), either-endian operations with two identical 1811 /// inputs (1), and little-endian operations with two different inputs (2). 1812 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1813 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1814 SelectionDAG &DAG) { 1815 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1816 if (ShuffleKind == 0) { 1817 if (IsLE) 1818 return false; 1819 for (unsigned i = 0; i != 16; ++i) 1820 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1821 return false; 1822 } else if (ShuffleKind == 2) { 1823 if (!IsLE) 1824 return false; 1825 for (unsigned i = 0; i != 16; ++i) 1826 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1827 return false; 1828 } else if (ShuffleKind == 1) { 1829 unsigned j = IsLE ? 0 : 1; 1830 for (unsigned i = 0; i != 8; ++i) 1831 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1832 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1833 return false; 1834 } 1835 return true; 1836 } 1837 1838 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1839 /// VPKUWUM instruction. 1840 /// The ShuffleKind distinguishes between big-endian operations with 1841 /// two different inputs (0), either-endian operations with two identical 1842 /// inputs (1), and little-endian operations with two different inputs (2). 1843 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1844 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1845 SelectionDAG &DAG) { 1846 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1847 if (ShuffleKind == 0) { 1848 if (IsLE) 1849 return false; 1850 for (unsigned i = 0; i != 16; i += 2) 1851 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1852 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1853 return false; 1854 } else if (ShuffleKind == 2) { 1855 if (!IsLE) 1856 return false; 1857 for (unsigned i = 0; i != 16; i += 2) 1858 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1859 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1860 return false; 1861 } else if (ShuffleKind == 1) { 1862 unsigned j = IsLE ? 0 : 2; 1863 for (unsigned i = 0; i != 8; i += 2) 1864 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1865 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1866 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1867 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1868 return false; 1869 } 1870 return true; 1871 } 1872 1873 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1874 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1875 /// current subtarget. 1876 /// 1877 /// The ShuffleKind distinguishes between big-endian operations with 1878 /// two different inputs (0), either-endian operations with two identical 1879 /// inputs (1), and little-endian operations with two different inputs (2). 1880 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1881 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1882 SelectionDAG &DAG) { 1883 const PPCSubtarget& Subtarget = 1884 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1885 if (!Subtarget.hasP8Vector()) 1886 return false; 1887 1888 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1889 if (ShuffleKind == 0) { 1890 if (IsLE) 1891 return false; 1892 for (unsigned i = 0; i != 16; i += 4) 1893 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1894 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1895 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1896 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1897 return false; 1898 } else if (ShuffleKind == 2) { 1899 if (!IsLE) 1900 return false; 1901 for (unsigned i = 0; i != 16; i += 4) 1902 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1903 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1904 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1905 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1906 return false; 1907 } else if (ShuffleKind == 1) { 1908 unsigned j = IsLE ? 0 : 4; 1909 for (unsigned i = 0; i != 8; i += 4) 1910 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1911 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1912 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1913 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1914 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1915 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1916 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1917 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1918 return false; 1919 } 1920 return true; 1921 } 1922 1923 /// isVMerge - Common function, used to match vmrg* shuffles. 1924 /// 1925 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1926 unsigned LHSStart, unsigned RHSStart) { 1927 if (N->getValueType(0) != MVT::v16i8) 1928 return false; 1929 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1930 "Unsupported merge size!"); 1931 1932 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1933 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1934 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1935 LHSStart+j+i*UnitSize) || 1936 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1937 RHSStart+j+i*UnitSize)) 1938 return false; 1939 } 1940 return true; 1941 } 1942 1943 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1944 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1945 /// The ShuffleKind distinguishes between big-endian merges with two 1946 /// different inputs (0), either-endian merges with two identical inputs (1), 1947 /// and little-endian merges with two different inputs (2). For the latter, 1948 /// the input operands are swapped (see PPCInstrAltivec.td). 1949 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1950 unsigned ShuffleKind, SelectionDAG &DAG) { 1951 if (DAG.getDataLayout().isLittleEndian()) { 1952 if (ShuffleKind == 1) // unary 1953 return isVMerge(N, UnitSize, 0, 0); 1954 else if (ShuffleKind == 2) // swapped 1955 return isVMerge(N, UnitSize, 0, 16); 1956 else 1957 return false; 1958 } else { 1959 if (ShuffleKind == 1) // unary 1960 return isVMerge(N, UnitSize, 8, 8); 1961 else if (ShuffleKind == 0) // normal 1962 return isVMerge(N, UnitSize, 8, 24); 1963 else 1964 return false; 1965 } 1966 } 1967 1968 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1969 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1970 /// The ShuffleKind distinguishes between big-endian merges with two 1971 /// different inputs (0), either-endian merges with two identical inputs (1), 1972 /// and little-endian merges with two different inputs (2). For the latter, 1973 /// the input operands are swapped (see PPCInstrAltivec.td). 1974 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1975 unsigned ShuffleKind, SelectionDAG &DAG) { 1976 if (DAG.getDataLayout().isLittleEndian()) { 1977 if (ShuffleKind == 1) // unary 1978 return isVMerge(N, UnitSize, 8, 8); 1979 else if (ShuffleKind == 2) // swapped 1980 return isVMerge(N, UnitSize, 8, 24); 1981 else 1982 return false; 1983 } else { 1984 if (ShuffleKind == 1) // unary 1985 return isVMerge(N, UnitSize, 0, 0); 1986 else if (ShuffleKind == 0) // normal 1987 return isVMerge(N, UnitSize, 0, 16); 1988 else 1989 return false; 1990 } 1991 } 1992 1993 /** 1994 * Common function used to match vmrgew and vmrgow shuffles 1995 * 1996 * The indexOffset determines whether to look for even or odd words in 1997 * the shuffle mask. This is based on the of the endianness of the target 1998 * machine. 1999 * - Little Endian: 2000 * - Use offset of 0 to check for odd elements 2001 * - Use offset of 4 to check for even elements 2002 * - Big Endian: 2003 * - Use offset of 0 to check for even elements 2004 * - Use offset of 4 to check for odd elements 2005 * A detailed description of the vector element ordering for little endian and 2006 * big endian can be found at 2007 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 2008 * Targeting your applications - what little endian and big endian IBM XL C/C++ 2009 * compiler differences mean to you 2010 * 2011 * The mask to the shuffle vector instruction specifies the indices of the 2012 * elements from the two input vectors to place in the result. The elements are 2013 * numbered in array-access order, starting with the first vector. These vectors 2014 * are always of type v16i8, thus each vector will contain 16 elements of size 2015 * 8. More info on the shuffle vector can be found in the 2016 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 2017 * Language Reference. 2018 * 2019 * The RHSStartValue indicates whether the same input vectors are used (unary) 2020 * or two different input vectors are used, based on the following: 2021 * - If the instruction uses the same vector for both inputs, the range of the 2022 * indices will be 0 to 15. In this case, the RHSStart value passed should 2023 * be 0. 2024 * - If the instruction has two different vectors then the range of the 2025 * indices will be 0 to 31. In this case, the RHSStart value passed should 2026 * be 16 (indices 0-15 specify elements in the first vector while indices 16 2027 * to 31 specify elements in the second vector). 2028 * 2029 * \param[in] N The shuffle vector SD Node to analyze 2030 * \param[in] IndexOffset Specifies whether to look for even or odd elements 2031 * \param[in] RHSStartValue Specifies the starting index for the righthand input 2032 * vector to the shuffle_vector instruction 2033 * \return true iff this shuffle vector represents an even or odd word merge 2034 */ 2035 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 2036 unsigned RHSStartValue) { 2037 if (N->getValueType(0) != MVT::v16i8) 2038 return false; 2039 2040 for (unsigned i = 0; i < 2; ++i) 2041 for (unsigned j = 0; j < 4; ++j) 2042 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2043 i*RHSStartValue+j+IndexOffset) || 2044 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2045 i*RHSStartValue+j+IndexOffset+8)) 2046 return false; 2047 return true; 2048 } 2049 2050 /** 2051 * Determine if the specified shuffle mask is suitable for the vmrgew or 2052 * vmrgow instructions. 2053 * 2054 * \param[in] N The shuffle vector SD Node to analyze 2055 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2056 * \param[in] ShuffleKind Identify the type of merge: 2057 * - 0 = big-endian merge with two different inputs; 2058 * - 1 = either-endian merge with two identical inputs; 2059 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2060 * little-endian merges). 2061 * \param[in] DAG The current SelectionDAG 2062 * \return true iff this shuffle mask 2063 */ 2064 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2065 unsigned ShuffleKind, SelectionDAG &DAG) { 2066 if (DAG.getDataLayout().isLittleEndian()) { 2067 unsigned indexOffset = CheckEven ? 4 : 0; 2068 if (ShuffleKind == 1) // Unary 2069 return isVMerge(N, indexOffset, 0); 2070 else if (ShuffleKind == 2) // swapped 2071 return isVMerge(N, indexOffset, 16); 2072 else 2073 return false; 2074 } 2075 else { 2076 unsigned indexOffset = CheckEven ? 0 : 4; 2077 if (ShuffleKind == 1) // Unary 2078 return isVMerge(N, indexOffset, 0); 2079 else if (ShuffleKind == 0) // Normal 2080 return isVMerge(N, indexOffset, 16); 2081 else 2082 return false; 2083 } 2084 return false; 2085 } 2086 2087 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2088 /// amount, otherwise return -1. 2089 /// The ShuffleKind distinguishes between big-endian operations with two 2090 /// different inputs (0), either-endian operations with two identical inputs 2091 /// (1), and little-endian operations with two different inputs (2). For the 2092 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2093 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2094 SelectionDAG &DAG) { 2095 if (N->getValueType(0) != MVT::v16i8) 2096 return -1; 2097 2098 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2099 2100 // Find the first non-undef value in the shuffle mask. 2101 unsigned i; 2102 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2103 /*search*/; 2104 2105 if (i == 16) return -1; // all undef. 2106 2107 // Otherwise, check to see if the rest of the elements are consecutively 2108 // numbered from this value. 2109 unsigned ShiftAmt = SVOp->getMaskElt(i); 2110 if (ShiftAmt < i) return -1; 2111 2112 ShiftAmt -= i; 2113 bool isLE = DAG.getDataLayout().isLittleEndian(); 2114 2115 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2116 // Check the rest of the elements to see if they are consecutive. 2117 for (++i; i != 16; ++i) 2118 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2119 return -1; 2120 } else if (ShuffleKind == 1) { 2121 // Check the rest of the elements to see if they are consecutive. 2122 for (++i; i != 16; ++i) 2123 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2124 return -1; 2125 } else 2126 return -1; 2127 2128 if (isLE) 2129 ShiftAmt = 16 - ShiftAmt; 2130 2131 return ShiftAmt; 2132 } 2133 2134 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2135 /// specifies a splat of a single element that is suitable for input to 2136 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2137 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2138 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2139 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2140 2141 // The consecutive indices need to specify an element, not part of two 2142 // different elements. So abandon ship early if this isn't the case. 2143 if (N->getMaskElt(0) % EltSize != 0) 2144 return false; 2145 2146 // This is a splat operation if each element of the permute is the same, and 2147 // if the value doesn't reference the second vector. 2148 unsigned ElementBase = N->getMaskElt(0); 2149 2150 // FIXME: Handle UNDEF elements too! 2151 if (ElementBase >= 16) 2152 return false; 2153 2154 // Check that the indices are consecutive, in the case of a multi-byte element 2155 // splatted with a v16i8 mask. 2156 for (unsigned i = 1; i != EltSize; ++i) 2157 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2158 return false; 2159 2160 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2161 if (N->getMaskElt(i) < 0) continue; 2162 for (unsigned j = 0; j != EltSize; ++j) 2163 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2164 return false; 2165 } 2166 return true; 2167 } 2168 2169 /// Check that the mask is shuffling N byte elements. Within each N byte 2170 /// element of the mask, the indices could be either in increasing or 2171 /// decreasing order as long as they are consecutive. 2172 /// \param[in] N the shuffle vector SD Node to analyze 2173 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2174 /// Word/DoubleWord/QuadWord). 2175 /// \param[in] StepLen the delta indices number among the N byte element, if 2176 /// the mask is in increasing/decreasing order then it is 1/-1. 2177 /// \return true iff the mask is shuffling N byte elements. 2178 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2179 int StepLen) { 2180 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2181 "Unexpected element width."); 2182 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2183 2184 unsigned NumOfElem = 16 / Width; 2185 unsigned MaskVal[16]; // Width is never greater than 16 2186 for (unsigned i = 0; i < NumOfElem; ++i) { 2187 MaskVal[0] = N->getMaskElt(i * Width); 2188 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2189 return false; 2190 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2191 return false; 2192 } 2193 2194 for (unsigned int j = 1; j < Width; ++j) { 2195 MaskVal[j] = N->getMaskElt(i * Width + j); 2196 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2197 return false; 2198 } 2199 } 2200 } 2201 2202 return true; 2203 } 2204 2205 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2206 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2207 if (!isNByteElemShuffleMask(N, 4, 1)) 2208 return false; 2209 2210 // Now we look at mask elements 0,4,8,12 2211 unsigned M0 = N->getMaskElt(0) / 4; 2212 unsigned M1 = N->getMaskElt(4) / 4; 2213 unsigned M2 = N->getMaskElt(8) / 4; 2214 unsigned M3 = N->getMaskElt(12) / 4; 2215 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2216 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2217 2218 // Below, let H and L be arbitrary elements of the shuffle mask 2219 // where H is in the range [4,7] and L is in the range [0,3]. 2220 // H, 1, 2, 3 or L, 5, 6, 7 2221 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2222 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2223 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2224 InsertAtByte = IsLE ? 12 : 0; 2225 Swap = M0 < 4; 2226 return true; 2227 } 2228 // 0, H, 2, 3 or 4, L, 6, 7 2229 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2230 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2231 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2232 InsertAtByte = IsLE ? 8 : 4; 2233 Swap = M1 < 4; 2234 return true; 2235 } 2236 // 0, 1, H, 3 or 4, 5, L, 7 2237 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2238 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2239 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2240 InsertAtByte = IsLE ? 4 : 8; 2241 Swap = M2 < 4; 2242 return true; 2243 } 2244 // 0, 1, 2, H or 4, 5, 6, L 2245 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2246 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2247 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2248 InsertAtByte = IsLE ? 0 : 12; 2249 Swap = M3 < 4; 2250 return true; 2251 } 2252 2253 // If both vector operands for the shuffle are the same vector, the mask will 2254 // contain only elements from the first one and the second one will be undef. 2255 if (N->getOperand(1).isUndef()) { 2256 ShiftElts = 0; 2257 Swap = true; 2258 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2259 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2260 InsertAtByte = IsLE ? 12 : 0; 2261 return true; 2262 } 2263 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2264 InsertAtByte = IsLE ? 8 : 4; 2265 return true; 2266 } 2267 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2268 InsertAtByte = IsLE ? 4 : 8; 2269 return true; 2270 } 2271 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2272 InsertAtByte = IsLE ? 0 : 12; 2273 return true; 2274 } 2275 } 2276 2277 return false; 2278 } 2279 2280 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2281 bool &Swap, bool IsLE) { 2282 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2283 // Ensure each byte index of the word is consecutive. 2284 if (!isNByteElemShuffleMask(N, 4, 1)) 2285 return false; 2286 2287 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2288 unsigned M0 = N->getMaskElt(0) / 4; 2289 unsigned M1 = N->getMaskElt(4) / 4; 2290 unsigned M2 = N->getMaskElt(8) / 4; 2291 unsigned M3 = N->getMaskElt(12) / 4; 2292 2293 // If both vector operands for the shuffle are the same vector, the mask will 2294 // contain only elements from the first one and the second one will be undef. 2295 if (N->getOperand(1).isUndef()) { 2296 assert(M0 < 4 && "Indexing into an undef vector?"); 2297 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2298 return false; 2299 2300 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2301 Swap = false; 2302 return true; 2303 } 2304 2305 // Ensure each word index of the ShuffleVector Mask is consecutive. 2306 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2307 return false; 2308 2309 if (IsLE) { 2310 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2311 // Input vectors don't need to be swapped if the leading element 2312 // of the result is one of the 3 left elements of the second vector 2313 // (or if there is no shift to be done at all). 2314 Swap = false; 2315 ShiftElts = (8 - M0) % 8; 2316 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2317 // Input vectors need to be swapped if the leading element 2318 // of the result is one of the 3 left elements of the first vector 2319 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2320 Swap = true; 2321 ShiftElts = (4 - M0) % 4; 2322 } 2323 2324 return true; 2325 } else { // BE 2326 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2327 // Input vectors don't need to be swapped if the leading element 2328 // of the result is one of the 4 elements of the first vector. 2329 Swap = false; 2330 ShiftElts = M0; 2331 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2332 // Input vectors need to be swapped if the leading element 2333 // of the result is one of the 4 elements of the right vector. 2334 Swap = true; 2335 ShiftElts = M0 - 4; 2336 } 2337 2338 return true; 2339 } 2340 } 2341 2342 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2343 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2344 2345 if (!isNByteElemShuffleMask(N, Width, -1)) 2346 return false; 2347 2348 for (int i = 0; i < 16; i += Width) 2349 if (N->getMaskElt(i) != i + Width - 1) 2350 return false; 2351 2352 return true; 2353 } 2354 2355 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2356 return isXXBRShuffleMaskHelper(N, 2); 2357 } 2358 2359 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2360 return isXXBRShuffleMaskHelper(N, 4); 2361 } 2362 2363 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2364 return isXXBRShuffleMaskHelper(N, 8); 2365 } 2366 2367 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2368 return isXXBRShuffleMaskHelper(N, 16); 2369 } 2370 2371 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2372 /// if the inputs to the instruction should be swapped and set \p DM to the 2373 /// value for the immediate. 2374 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2375 /// AND element 0 of the result comes from the first input (LE) or second input 2376 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2377 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2378 /// mask. 2379 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2380 bool &Swap, bool IsLE) { 2381 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2382 2383 // Ensure each byte index of the double word is consecutive. 2384 if (!isNByteElemShuffleMask(N, 8, 1)) 2385 return false; 2386 2387 unsigned M0 = N->getMaskElt(0) / 8; 2388 unsigned M1 = N->getMaskElt(8) / 8; 2389 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2390 2391 // If both vector operands for the shuffle are the same vector, the mask will 2392 // contain only elements from the first one and the second one will be undef. 2393 if (N->getOperand(1).isUndef()) { 2394 if ((M0 | M1) < 2) { 2395 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2396 Swap = false; 2397 return true; 2398 } else 2399 return false; 2400 } 2401 2402 if (IsLE) { 2403 if (M0 > 1 && M1 < 2) { 2404 Swap = false; 2405 } else if (M0 < 2 && M1 > 1) { 2406 M0 = (M0 + 2) % 4; 2407 M1 = (M1 + 2) % 4; 2408 Swap = true; 2409 } else 2410 return false; 2411 2412 // Note: if control flow comes here that means Swap is already set above 2413 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2414 return true; 2415 } else { // BE 2416 if (M0 < 2 && M1 > 1) { 2417 Swap = false; 2418 } else if (M0 > 1 && M1 < 2) { 2419 M0 = (M0 + 2) % 4; 2420 M1 = (M1 + 2) % 4; 2421 Swap = true; 2422 } else 2423 return false; 2424 2425 // Note: if control flow comes here that means Swap is already set above 2426 DM = (M0 << 1) + (M1 & 1); 2427 return true; 2428 } 2429 } 2430 2431 2432 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2433 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2434 /// elements are counted from the left of the vector register). 2435 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2436 SelectionDAG &DAG) { 2437 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2438 assert(isSplatShuffleMask(SVOp, EltSize)); 2439 if (DAG.getDataLayout().isLittleEndian()) 2440 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2441 else 2442 return SVOp->getMaskElt(0) / EltSize; 2443 } 2444 2445 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2446 /// by using a vspltis[bhw] instruction of the specified element size, return 2447 /// the constant being splatted. The ByteSize field indicates the number of 2448 /// bytes of each element [124] -> [bhw]. 2449 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2450 SDValue OpVal; 2451 2452 // If ByteSize of the splat is bigger than the element size of the 2453 // build_vector, then we have a case where we are checking for a splat where 2454 // multiple elements of the buildvector are folded together into a single 2455 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2456 unsigned EltSize = 16/N->getNumOperands(); 2457 if (EltSize < ByteSize) { 2458 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2459 SDValue UniquedVals[4]; 2460 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2461 2462 // See if all of the elements in the buildvector agree across. 2463 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2464 if (N->getOperand(i).isUndef()) continue; 2465 // If the element isn't a constant, bail fully out. 2466 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2467 2468 if (!UniquedVals[i&(Multiple-1)].getNode()) 2469 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2470 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2471 return SDValue(); // no match. 2472 } 2473 2474 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2475 // either constant or undef values that are identical for each chunk. See 2476 // if these chunks can form into a larger vspltis*. 2477 2478 // Check to see if all of the leading entries are either 0 or -1. If 2479 // neither, then this won't fit into the immediate field. 2480 bool LeadingZero = true; 2481 bool LeadingOnes = true; 2482 for (unsigned i = 0; i != Multiple-1; ++i) { 2483 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2484 2485 LeadingZero &= isNullConstant(UniquedVals[i]); 2486 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2487 } 2488 // Finally, check the least significant entry. 2489 if (LeadingZero) { 2490 if (!UniquedVals[Multiple-1].getNode()) 2491 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2492 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2493 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2494 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2495 } 2496 if (LeadingOnes) { 2497 if (!UniquedVals[Multiple-1].getNode()) 2498 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2499 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2500 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2501 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2502 } 2503 2504 return SDValue(); 2505 } 2506 2507 // Check to see if this buildvec has a single non-undef value in its elements. 2508 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2509 if (N->getOperand(i).isUndef()) continue; 2510 if (!OpVal.getNode()) 2511 OpVal = N->getOperand(i); 2512 else if (OpVal != N->getOperand(i)) 2513 return SDValue(); 2514 } 2515 2516 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2517 2518 unsigned ValSizeInBytes = EltSize; 2519 uint64_t Value = 0; 2520 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2521 Value = CN->getZExtValue(); 2522 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2523 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2524 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2525 } 2526 2527 // If the splat value is larger than the element value, then we can never do 2528 // this splat. The only case that we could fit the replicated bits into our 2529 // immediate field for would be zero, and we prefer to use vxor for it. 2530 if (ValSizeInBytes < ByteSize) return SDValue(); 2531 2532 // If the element value is larger than the splat value, check if it consists 2533 // of a repeated bit pattern of size ByteSize. 2534 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2535 return SDValue(); 2536 2537 // Properly sign extend the value. 2538 int MaskVal = SignExtend32(Value, ByteSize * 8); 2539 2540 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2541 if (MaskVal == 0) return SDValue(); 2542 2543 // Finally, if this value fits in a 5 bit sext field, return it 2544 if (SignExtend32<5>(MaskVal) == MaskVal) 2545 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2546 return SDValue(); 2547 } 2548 2549 //===----------------------------------------------------------------------===// 2550 // Addressing Mode Selection 2551 //===----------------------------------------------------------------------===// 2552 2553 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2554 /// or 64-bit immediate, and if the value can be accurately represented as a 2555 /// sign extension from a 16-bit value. If so, this returns true and the 2556 /// immediate. 2557 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2558 if (!isa<ConstantSDNode>(N)) 2559 return false; 2560 2561 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2562 if (N->getValueType(0) == MVT::i32) 2563 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2564 else 2565 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2566 } 2567 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2568 return isIntS16Immediate(Op.getNode(), Imm); 2569 } 2570 2571 /// Used when computing address flags for selecting loads and stores. 2572 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2573 /// An OR of two provably disjoint values is equivalent to an ADD. 2574 /// Most PPC load/store instructions compute the effective address as a sum, 2575 /// so doing this conversion is useful. 2576 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2577 if (N.getOpcode() != ISD::OR) 2578 return false; 2579 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2580 if (!LHSKnown.Zero.getBoolValue()) 2581 return false; 2582 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2583 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2584 } 2585 2586 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2587 /// be represented as an indexed [r+r] operation. 2588 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2589 SDValue &Index, 2590 SelectionDAG &DAG) const { 2591 for (SDNode *U : N->uses()) { 2592 if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { 2593 if (Memop->getMemoryVT() == MVT::f64) { 2594 Base = N.getOperand(0); 2595 Index = N.getOperand(1); 2596 return true; 2597 } 2598 } 2599 } 2600 return false; 2601 } 2602 2603 /// isIntS34Immediate - This method tests if value of node given can be 2604 /// accurately represented as a sign extension from a 34-bit value. If so, 2605 /// this returns true and the immediate. 2606 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2607 if (!isa<ConstantSDNode>(N)) 2608 return false; 2609 2610 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2611 return isInt<34>(Imm); 2612 } 2613 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2614 return isIntS34Immediate(Op.getNode(), Imm); 2615 } 2616 2617 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2618 /// can be represented as an indexed [r+r] operation. Returns false if it 2619 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2620 /// non-zero and N can be represented by a base register plus a signed 16-bit 2621 /// displacement, make a more precise judgement by checking (displacement % \p 2622 /// EncodingAlignment). 2623 bool PPCTargetLowering::SelectAddressRegReg( 2624 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2625 MaybeAlign EncodingAlignment) const { 2626 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2627 // a [pc+imm]. 2628 if (SelectAddressPCRel(N, Base)) 2629 return false; 2630 2631 int16_t Imm = 0; 2632 if (N.getOpcode() == ISD::ADD) { 2633 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2634 // SPE load/store can only handle 8-bit offsets. 2635 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2636 return true; 2637 if (isIntS16Immediate(N.getOperand(1), Imm) && 2638 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2639 return false; // r+i 2640 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2641 return false; // r+i 2642 2643 Base = N.getOperand(0); 2644 Index = N.getOperand(1); 2645 return true; 2646 } else if (N.getOpcode() == ISD::OR) { 2647 if (isIntS16Immediate(N.getOperand(1), Imm) && 2648 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2649 return false; // r+i can fold it if we can. 2650 2651 // If this is an or of disjoint bitfields, we can codegen this as an add 2652 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2653 // disjoint. 2654 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2655 2656 if (LHSKnown.Zero.getBoolValue()) { 2657 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2658 // If all of the bits are known zero on the LHS or RHS, the add won't 2659 // carry. 2660 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2661 Base = N.getOperand(0); 2662 Index = N.getOperand(1); 2663 return true; 2664 } 2665 } 2666 } 2667 2668 return false; 2669 } 2670 2671 // If we happen to be doing an i64 load or store into a stack slot that has 2672 // less than a 4-byte alignment, then the frame-index elimination may need to 2673 // use an indexed load or store instruction (because the offset may not be a 2674 // multiple of 4). The extra register needed to hold the offset comes from the 2675 // register scavenger, and it is possible that the scavenger will need to use 2676 // an emergency spill slot. As a result, we need to make sure that a spill slot 2677 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2678 // stack slot. 2679 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2680 // FIXME: This does not handle the LWA case. 2681 if (VT != MVT::i64) 2682 return; 2683 2684 // NOTE: We'll exclude negative FIs here, which come from argument 2685 // lowering, because there are no known test cases triggering this problem 2686 // using packed structures (or similar). We can remove this exclusion if 2687 // we find such a test case. The reason why this is so test-case driven is 2688 // because this entire 'fixup' is only to prevent crashes (from the 2689 // register scavenger) on not-really-valid inputs. For example, if we have: 2690 // %a = alloca i1 2691 // %b = bitcast i1* %a to i64* 2692 // store i64* a, i64 b 2693 // then the store should really be marked as 'align 1', but is not. If it 2694 // were marked as 'align 1' then the indexed form would have been 2695 // instruction-selected initially, and the problem this 'fixup' is preventing 2696 // won't happen regardless. 2697 if (FrameIdx < 0) 2698 return; 2699 2700 MachineFunction &MF = DAG.getMachineFunction(); 2701 MachineFrameInfo &MFI = MF.getFrameInfo(); 2702 2703 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2704 return; 2705 2706 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2707 FuncInfo->setHasNonRISpills(); 2708 } 2709 2710 /// Returns true if the address N can be represented by a base register plus 2711 /// a signed 16-bit displacement [r+imm], and if it is not better 2712 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2713 /// displacements that are multiples of that value. 2714 bool PPCTargetLowering::SelectAddressRegImm( 2715 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2716 MaybeAlign EncodingAlignment) const { 2717 // FIXME dl should come from parent load or store, not from address 2718 SDLoc dl(N); 2719 2720 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2721 // a [pc+imm]. 2722 if (SelectAddressPCRel(N, Base)) 2723 return false; 2724 2725 // If this can be more profitably realized as r+r, fail. 2726 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2727 return false; 2728 2729 if (N.getOpcode() == ISD::ADD) { 2730 int16_t imm = 0; 2731 if (isIntS16Immediate(N.getOperand(1), imm) && 2732 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2733 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2734 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2735 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2736 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2737 } else { 2738 Base = N.getOperand(0); 2739 } 2740 return true; // [r+i] 2741 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2742 // Match LOAD (ADD (X, Lo(G))). 2743 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2744 && "Cannot handle constant offsets yet!"); 2745 Disp = N.getOperand(1).getOperand(0); // The global address. 2746 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2747 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2748 Disp.getOpcode() == ISD::TargetConstantPool || 2749 Disp.getOpcode() == ISD::TargetJumpTable); 2750 Base = N.getOperand(0); 2751 return true; // [&g+r] 2752 } 2753 } else if (N.getOpcode() == ISD::OR) { 2754 int16_t imm = 0; 2755 if (isIntS16Immediate(N.getOperand(1), imm) && 2756 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2757 // If this is an or of disjoint bitfields, we can codegen this as an add 2758 // (for better address arithmetic) if the LHS and RHS of the OR are 2759 // provably disjoint. 2760 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2761 2762 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2763 // If all of the bits are known zero on the LHS or RHS, the add won't 2764 // carry. 2765 if (FrameIndexSDNode *FI = 2766 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2767 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2768 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2769 } else { 2770 Base = N.getOperand(0); 2771 } 2772 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2773 return true; 2774 } 2775 } 2776 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2777 // Loading from a constant address. 2778 2779 // If this address fits entirely in a 16-bit sext immediate field, codegen 2780 // this as "d, 0" 2781 int16_t Imm; 2782 if (isIntS16Immediate(CN, Imm) && 2783 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2784 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2785 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2786 CN->getValueType(0)); 2787 return true; 2788 } 2789 2790 // Handle 32-bit sext immediates with LIS + addr mode. 2791 if ((CN->getValueType(0) == MVT::i32 || 2792 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2793 (!EncodingAlignment || 2794 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2795 int Addr = (int)CN->getZExtValue(); 2796 2797 // Otherwise, break this down into an LIS + disp. 2798 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2799 2800 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2801 MVT::i32); 2802 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2803 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2804 return true; 2805 } 2806 } 2807 2808 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2809 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2810 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2811 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2812 } else 2813 Base = N; 2814 return true; // [r+0] 2815 } 2816 2817 /// Similar to the 16-bit case but for instructions that take a 34-bit 2818 /// displacement field (prefixed loads/stores). 2819 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2820 SDValue &Base, 2821 SelectionDAG &DAG) const { 2822 // Only on 64-bit targets. 2823 if (N.getValueType() != MVT::i64) 2824 return false; 2825 2826 SDLoc dl(N); 2827 int64_t Imm = 0; 2828 2829 if (N.getOpcode() == ISD::ADD) { 2830 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2831 return false; 2832 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2833 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2834 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2835 else 2836 Base = N.getOperand(0); 2837 return true; 2838 } 2839 2840 if (N.getOpcode() == ISD::OR) { 2841 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2842 return false; 2843 // If this is an or of disjoint bitfields, we can codegen this as an add 2844 // (for better address arithmetic) if the LHS and RHS of the OR are 2845 // provably disjoint. 2846 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2847 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2848 return false; 2849 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2850 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2851 else 2852 Base = N.getOperand(0); 2853 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2854 return true; 2855 } 2856 2857 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2858 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2859 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2860 return true; 2861 } 2862 2863 return false; 2864 } 2865 2866 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2867 /// represented as an indexed [r+r] operation. 2868 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2869 SDValue &Index, 2870 SelectionDAG &DAG) const { 2871 // Check to see if we can easily represent this as an [r+r] address. This 2872 // will fail if it thinks that the address is more profitably represented as 2873 // reg+imm, e.g. where imm = 0. 2874 if (SelectAddressRegReg(N, Base, Index, DAG)) 2875 return true; 2876 2877 // If the address is the result of an add, we will utilize the fact that the 2878 // address calculation includes an implicit add. However, we can reduce 2879 // register pressure if we do not materialize a constant just for use as the 2880 // index register. We only get rid of the add if it is not an add of a 2881 // value and a 16-bit signed constant and both have a single use. 2882 int16_t imm = 0; 2883 if (N.getOpcode() == ISD::ADD && 2884 (!isIntS16Immediate(N.getOperand(1), imm) || 2885 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2886 Base = N.getOperand(0); 2887 Index = N.getOperand(1); 2888 return true; 2889 } 2890 2891 // Otherwise, do it the hard way, using R0 as the base register. 2892 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2893 N.getValueType()); 2894 Index = N; 2895 return true; 2896 } 2897 2898 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2899 Ty *PCRelCand = dyn_cast<Ty>(N); 2900 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2901 } 2902 2903 /// Returns true if this address is a PC Relative address. 2904 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2905 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2906 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2907 // This is a materialize PC Relative node. Always select this as PC Relative. 2908 Base = N; 2909 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2910 return true; 2911 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2912 isValidPCRelNode<GlobalAddressSDNode>(N) || 2913 isValidPCRelNode<JumpTableSDNode>(N) || 2914 isValidPCRelNode<BlockAddressSDNode>(N)) 2915 return true; 2916 return false; 2917 } 2918 2919 /// Returns true if we should use a direct load into vector instruction 2920 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2921 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2922 2923 // If there are any other uses other than scalar to vector, then we should 2924 // keep it as a scalar load -> direct move pattern to prevent multiple 2925 // loads. 2926 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2927 if (!LD) 2928 return false; 2929 2930 EVT MemVT = LD->getMemoryVT(); 2931 if (!MemVT.isSimple()) 2932 return false; 2933 switch(MemVT.getSimpleVT().SimpleTy) { 2934 case MVT::i64: 2935 break; 2936 case MVT::i32: 2937 if (!ST.hasP8Vector()) 2938 return false; 2939 break; 2940 case MVT::i16: 2941 case MVT::i8: 2942 if (!ST.hasP9Vector()) 2943 return false; 2944 break; 2945 default: 2946 return false; 2947 } 2948 2949 SDValue LoadedVal(N, 0); 2950 if (!LoadedVal.hasOneUse()) 2951 return false; 2952 2953 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2954 UI != UE; ++UI) 2955 if (UI.getUse().get().getResNo() == 0 && 2956 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2957 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2958 return false; 2959 2960 return true; 2961 } 2962 2963 /// getPreIndexedAddressParts - returns true by value, base pointer and 2964 /// offset pointer and addressing mode by reference if the node's address 2965 /// can be legally represented as pre-indexed load / store address. 2966 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2967 SDValue &Offset, 2968 ISD::MemIndexedMode &AM, 2969 SelectionDAG &DAG) const { 2970 if (DisablePPCPreinc) return false; 2971 2972 bool isLoad = true; 2973 SDValue Ptr; 2974 EVT VT; 2975 unsigned Alignment; 2976 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2977 Ptr = LD->getBasePtr(); 2978 VT = LD->getMemoryVT(); 2979 Alignment = LD->getAlignment(); 2980 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2981 Ptr = ST->getBasePtr(); 2982 VT = ST->getMemoryVT(); 2983 Alignment = ST->getAlignment(); 2984 isLoad = false; 2985 } else 2986 return false; 2987 2988 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2989 // instructions because we can fold these into a more efficient instruction 2990 // instead, (such as LXSD). 2991 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2992 return false; 2993 } 2994 2995 // PowerPC doesn't have preinc load/store instructions for vectors 2996 if (VT.isVector()) 2997 return false; 2998 2999 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 3000 // Common code will reject creating a pre-inc form if the base pointer 3001 // is a frame index, or if N is a store and the base pointer is either 3002 // the same as or a predecessor of the value being stored. Check for 3003 // those situations here, and try with swapped Base/Offset instead. 3004 bool Swap = false; 3005 3006 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 3007 Swap = true; 3008 else if (!isLoad) { 3009 SDValue Val = cast<StoreSDNode>(N)->getValue(); 3010 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 3011 Swap = true; 3012 } 3013 3014 if (Swap) 3015 std::swap(Base, Offset); 3016 3017 AM = ISD::PRE_INC; 3018 return true; 3019 } 3020 3021 // LDU/STU can only handle immediates that are a multiple of 4. 3022 if (VT != MVT::i64) { 3023 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 3024 return false; 3025 } else { 3026 // LDU/STU need an address with at least 4-byte alignment. 3027 if (Alignment < 4) 3028 return false; 3029 3030 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 3031 return false; 3032 } 3033 3034 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 3035 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3036 // sext i32 to i64 when addr mode is r+i. 3037 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3038 LD->getExtensionType() == ISD::SEXTLOAD && 3039 isa<ConstantSDNode>(Offset)) 3040 return false; 3041 } 3042 3043 AM = ISD::PRE_INC; 3044 return true; 3045 } 3046 3047 //===----------------------------------------------------------------------===// 3048 // LowerOperation implementation 3049 //===----------------------------------------------------------------------===// 3050 3051 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3052 /// and LoOpFlags to the target MO flags. 3053 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3054 unsigned &HiOpFlags, unsigned &LoOpFlags, 3055 const GlobalValue *GV = nullptr) { 3056 HiOpFlags = PPCII::MO_HA; 3057 LoOpFlags = PPCII::MO_LO; 3058 3059 // Don't use the pic base if not in PIC relocation model. 3060 if (IsPIC) { 3061 HiOpFlags |= PPCII::MO_PIC_FLAG; 3062 LoOpFlags |= PPCII::MO_PIC_FLAG; 3063 } 3064 } 3065 3066 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3067 SelectionDAG &DAG) { 3068 SDLoc DL(HiPart); 3069 EVT PtrVT = HiPart.getValueType(); 3070 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3071 3072 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3073 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3074 3075 // With PIC, the first instruction is actually "GR+hi(&G)". 3076 if (isPIC) 3077 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3078 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3079 3080 // Generate non-pic code that has direct accesses to the constant pool. 3081 // The address of the global is just (hi(&g)+lo(&g)). 3082 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3083 } 3084 3085 static void setUsesTOCBasePtr(MachineFunction &MF) { 3086 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3087 FuncInfo->setUsesTOCBasePtr(); 3088 } 3089 3090 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3091 setUsesTOCBasePtr(DAG.getMachineFunction()); 3092 } 3093 3094 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3095 SDValue GA) const { 3096 const bool Is64Bit = Subtarget.isPPC64(); 3097 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3098 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3099 : Subtarget.isAIXABI() 3100 ? DAG.getRegister(PPC::R2, VT) 3101 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3102 SDValue Ops[] = { GA, Reg }; 3103 return DAG.getMemIntrinsicNode( 3104 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3105 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3106 MachineMemOperand::MOLoad); 3107 } 3108 3109 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3110 SelectionDAG &DAG) const { 3111 EVT PtrVT = Op.getValueType(); 3112 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3113 const Constant *C = CP->getConstVal(); 3114 3115 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3116 // The actual address of the GlobalValue is stored in the TOC. 3117 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3118 if (Subtarget.isUsingPCRelativeCalls()) { 3119 SDLoc DL(CP); 3120 EVT Ty = getPointerTy(DAG.getDataLayout()); 3121 SDValue ConstPool = DAG.getTargetConstantPool( 3122 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3123 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3124 } 3125 setUsesTOCBasePtr(DAG); 3126 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3127 return getTOCEntry(DAG, SDLoc(CP), GA); 3128 } 3129 3130 unsigned MOHiFlag, MOLoFlag; 3131 bool IsPIC = isPositionIndependent(); 3132 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3133 3134 if (IsPIC && Subtarget.isSVR4ABI()) { 3135 SDValue GA = 3136 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3137 return getTOCEntry(DAG, SDLoc(CP), GA); 3138 } 3139 3140 SDValue CPIHi = 3141 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3142 SDValue CPILo = 3143 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3144 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3145 } 3146 3147 // For 64-bit PowerPC, prefer the more compact relative encodings. 3148 // This trades 32 bits per jump table entry for one or two instructions 3149 // on the jump site. 3150 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3151 if (isJumpTableRelative()) 3152 return MachineJumpTableInfo::EK_LabelDifference32; 3153 3154 return TargetLowering::getJumpTableEncoding(); 3155 } 3156 3157 bool PPCTargetLowering::isJumpTableRelative() const { 3158 if (UseAbsoluteJumpTables) 3159 return false; 3160 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3161 return true; 3162 return TargetLowering::isJumpTableRelative(); 3163 } 3164 3165 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3166 SelectionDAG &DAG) const { 3167 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3168 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3169 3170 switch (getTargetMachine().getCodeModel()) { 3171 case CodeModel::Small: 3172 case CodeModel::Medium: 3173 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3174 default: 3175 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3176 getPointerTy(DAG.getDataLayout())); 3177 } 3178 } 3179 3180 const MCExpr * 3181 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3182 unsigned JTI, 3183 MCContext &Ctx) const { 3184 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3185 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3186 3187 switch (getTargetMachine().getCodeModel()) { 3188 case CodeModel::Small: 3189 case CodeModel::Medium: 3190 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3191 default: 3192 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3193 } 3194 } 3195 3196 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3197 EVT PtrVT = Op.getValueType(); 3198 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3199 3200 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3201 if (Subtarget.isUsingPCRelativeCalls()) { 3202 SDLoc DL(JT); 3203 EVT Ty = getPointerTy(DAG.getDataLayout()); 3204 SDValue GA = 3205 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3206 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3207 return MatAddr; 3208 } 3209 3210 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3211 // The actual address of the GlobalValue is stored in the TOC. 3212 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3213 setUsesTOCBasePtr(DAG); 3214 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3215 return getTOCEntry(DAG, SDLoc(JT), GA); 3216 } 3217 3218 unsigned MOHiFlag, MOLoFlag; 3219 bool IsPIC = isPositionIndependent(); 3220 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3221 3222 if (IsPIC && Subtarget.isSVR4ABI()) { 3223 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3224 PPCII::MO_PIC_FLAG); 3225 return getTOCEntry(DAG, SDLoc(GA), GA); 3226 } 3227 3228 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3229 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3230 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3231 } 3232 3233 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3234 SelectionDAG &DAG) const { 3235 EVT PtrVT = Op.getValueType(); 3236 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3237 const BlockAddress *BA = BASDN->getBlockAddress(); 3238 3239 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3240 if (Subtarget.isUsingPCRelativeCalls()) { 3241 SDLoc DL(BASDN); 3242 EVT Ty = getPointerTy(DAG.getDataLayout()); 3243 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3244 PPCII::MO_PCREL_FLAG); 3245 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3246 return MatAddr; 3247 } 3248 3249 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3250 // The actual BlockAddress is stored in the TOC. 3251 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3252 setUsesTOCBasePtr(DAG); 3253 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3254 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3255 } 3256 3257 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3258 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3259 return getTOCEntry( 3260 DAG, SDLoc(BASDN), 3261 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3262 3263 unsigned MOHiFlag, MOLoFlag; 3264 bool IsPIC = isPositionIndependent(); 3265 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3266 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3267 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3268 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3269 } 3270 3271 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3272 SelectionDAG &DAG) const { 3273 if (Subtarget.isAIXABI()) 3274 return LowerGlobalTLSAddressAIX(Op, DAG); 3275 3276 return LowerGlobalTLSAddressLinux(Op, DAG); 3277 } 3278 3279 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3280 SelectionDAG &DAG) const { 3281 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3282 3283 if (DAG.getTarget().useEmulatedTLS()) 3284 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3285 3286 SDLoc dl(GA); 3287 const GlobalValue *GV = GA->getGlobal(); 3288 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3289 3290 // The general-dynamic model is the only access model supported for now, so 3291 // all the GlobalTLSAddress nodes are lowered with this model. 3292 // We need to generate two TOC entries, one for the variable offset, one for 3293 // the region handle. The global address for the TOC entry of the region 3294 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3295 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3296 SDValue VariableOffsetTGA = 3297 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3298 SDValue RegionHandleTGA = 3299 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3300 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3301 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3302 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3303 RegionHandle); 3304 } 3305 3306 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3307 SelectionDAG &DAG) const { 3308 // FIXME: TLS addresses currently use medium model code sequences, 3309 // which is the most useful form. Eventually support for small and 3310 // large models could be added if users need it, at the cost of 3311 // additional complexity. 3312 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3313 if (DAG.getTarget().useEmulatedTLS()) 3314 return LowerToTLSEmulatedModel(GA, DAG); 3315 3316 SDLoc dl(GA); 3317 const GlobalValue *GV = GA->getGlobal(); 3318 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3319 bool is64bit = Subtarget.isPPC64(); 3320 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3321 PICLevel::Level picLevel = M->getPICLevel(); 3322 3323 const TargetMachine &TM = getTargetMachine(); 3324 TLSModel::Model Model = TM.getTLSModel(GV); 3325 3326 if (Model == TLSModel::LocalExec) { 3327 if (Subtarget.isUsingPCRelativeCalls()) { 3328 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3329 SDValue TGA = DAG.getTargetGlobalAddress( 3330 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3331 SDValue MatAddr = 3332 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3333 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3334 } 3335 3336 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3337 PPCII::MO_TPREL_HA); 3338 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3339 PPCII::MO_TPREL_LO); 3340 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3341 : DAG.getRegister(PPC::R2, MVT::i32); 3342 3343 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3344 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3345 } 3346 3347 if (Model == TLSModel::InitialExec) { 3348 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3349 SDValue TGA = DAG.getTargetGlobalAddress( 3350 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3351 SDValue TGATLS = DAG.getTargetGlobalAddress( 3352 GV, dl, PtrVT, 0, 3353 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3354 SDValue TPOffset; 3355 if (IsPCRel) { 3356 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3357 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3358 MachinePointerInfo()); 3359 } else { 3360 SDValue GOTPtr; 3361 if (is64bit) { 3362 setUsesTOCBasePtr(DAG); 3363 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3364 GOTPtr = 3365 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3366 } else { 3367 if (!TM.isPositionIndependent()) 3368 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3369 else if (picLevel == PICLevel::SmallPIC) 3370 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3371 else 3372 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3373 } 3374 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3375 } 3376 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3377 } 3378 3379 if (Model == TLSModel::GeneralDynamic) { 3380 if (Subtarget.isUsingPCRelativeCalls()) { 3381 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3382 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3383 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3384 } 3385 3386 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3387 SDValue GOTPtr; 3388 if (is64bit) { 3389 setUsesTOCBasePtr(DAG); 3390 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3391 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3392 GOTReg, TGA); 3393 } else { 3394 if (picLevel == PICLevel::SmallPIC) 3395 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3396 else 3397 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3398 } 3399 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3400 GOTPtr, TGA, TGA); 3401 } 3402 3403 if (Model == TLSModel::LocalDynamic) { 3404 if (Subtarget.isUsingPCRelativeCalls()) { 3405 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3406 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3407 SDValue MatPCRel = 3408 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3409 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3410 } 3411 3412 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3413 SDValue GOTPtr; 3414 if (is64bit) { 3415 setUsesTOCBasePtr(DAG); 3416 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3417 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3418 GOTReg, TGA); 3419 } else { 3420 if (picLevel == PICLevel::SmallPIC) 3421 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3422 else 3423 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3424 } 3425 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3426 PtrVT, GOTPtr, TGA, TGA); 3427 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3428 PtrVT, TLSAddr, TGA); 3429 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3430 } 3431 3432 llvm_unreachable("Unknown TLS model!"); 3433 } 3434 3435 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3436 SelectionDAG &DAG) const { 3437 EVT PtrVT = Op.getValueType(); 3438 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3439 SDLoc DL(GSDN); 3440 const GlobalValue *GV = GSDN->getGlobal(); 3441 3442 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3443 // The actual address of the GlobalValue is stored in the TOC. 3444 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3445 if (Subtarget.isUsingPCRelativeCalls()) { 3446 EVT Ty = getPointerTy(DAG.getDataLayout()); 3447 if (isAccessedAsGotIndirect(Op)) { 3448 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3449 PPCII::MO_PCREL_FLAG | 3450 PPCII::MO_GOT_FLAG); 3451 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3452 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3453 MachinePointerInfo()); 3454 return Load; 3455 } else { 3456 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3457 PPCII::MO_PCREL_FLAG); 3458 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3459 } 3460 } 3461 setUsesTOCBasePtr(DAG); 3462 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3463 return getTOCEntry(DAG, DL, GA); 3464 } 3465 3466 unsigned MOHiFlag, MOLoFlag; 3467 bool IsPIC = isPositionIndependent(); 3468 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3469 3470 if (IsPIC && Subtarget.isSVR4ABI()) { 3471 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3472 GSDN->getOffset(), 3473 PPCII::MO_PIC_FLAG); 3474 return getTOCEntry(DAG, DL, GA); 3475 } 3476 3477 SDValue GAHi = 3478 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3479 SDValue GALo = 3480 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3481 3482 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3483 } 3484 3485 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3486 bool IsStrict = Op->isStrictFPOpcode(); 3487 ISD::CondCode CC = 3488 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3489 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3490 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3491 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3492 EVT LHSVT = LHS.getValueType(); 3493 SDLoc dl(Op); 3494 3495 // Soften the setcc with libcall if it is fp128. 3496 if (LHSVT == MVT::f128) { 3497 assert(!Subtarget.hasP9Vector() && 3498 "SETCC for f128 is already legal under Power9!"); 3499 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3500 Op->getOpcode() == ISD::STRICT_FSETCCS); 3501 if (RHS.getNode()) 3502 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3503 DAG.getCondCode(CC)); 3504 if (IsStrict) 3505 return DAG.getMergeValues({LHS, Chain}, dl); 3506 return LHS; 3507 } 3508 3509 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3510 3511 if (Op.getValueType() == MVT::v2i64) { 3512 // When the operands themselves are v2i64 values, we need to do something 3513 // special because VSX has no underlying comparison operations for these. 3514 if (LHS.getValueType() == MVT::v2i64) { 3515 // Equality can be handled by casting to the legal type for Altivec 3516 // comparisons, everything else needs to be expanded. 3517 if (CC != ISD::SETEQ && CC != ISD::SETNE) 3518 return SDValue(); 3519 SDValue SetCC32 = DAG.getSetCC( 3520 dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3521 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); 3522 int ShuffV[] = {1, 0, 3, 2}; 3523 SDValue Shuff = 3524 DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); 3525 return DAG.getBitcast(MVT::v2i64, 3526 DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, 3527 dl, MVT::v4i32, Shuff, SetCC32)); 3528 } 3529 3530 // We handle most of these in the usual way. 3531 return Op; 3532 } 3533 3534 // If we're comparing for equality to zero, expose the fact that this is 3535 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3536 // fold the new nodes. 3537 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3538 return V; 3539 3540 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3541 // Leave comparisons against 0 and -1 alone for now, since they're usually 3542 // optimized. FIXME: revisit this when we can custom lower all setcc 3543 // optimizations. 3544 if (C->isAllOnes() || C->isZero()) 3545 return SDValue(); 3546 } 3547 3548 // If we have an integer seteq/setne, turn it into a compare against zero 3549 // by xor'ing the rhs with the lhs, which is faster than setting a 3550 // condition register, reading it back out, and masking the correct bit. The 3551 // normal approach here uses sub to do this instead of xor. Using xor exposes 3552 // the result to other bit-twiddling opportunities. 3553 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3554 EVT VT = Op.getValueType(); 3555 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3556 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3557 } 3558 return SDValue(); 3559 } 3560 3561 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3562 SDNode *Node = Op.getNode(); 3563 EVT VT = Node->getValueType(0); 3564 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3565 SDValue InChain = Node->getOperand(0); 3566 SDValue VAListPtr = Node->getOperand(1); 3567 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3568 SDLoc dl(Node); 3569 3570 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3571 3572 // gpr_index 3573 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3574 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3575 InChain = GprIndex.getValue(1); 3576 3577 if (VT == MVT::i64) { 3578 // Check if GprIndex is even 3579 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3580 DAG.getConstant(1, dl, MVT::i32)); 3581 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3582 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3583 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3584 DAG.getConstant(1, dl, MVT::i32)); 3585 // Align GprIndex to be even if it isn't 3586 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3587 GprIndex); 3588 } 3589 3590 // fpr index is 1 byte after gpr 3591 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3592 DAG.getConstant(1, dl, MVT::i32)); 3593 3594 // fpr 3595 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3596 FprPtr, MachinePointerInfo(SV), MVT::i8); 3597 InChain = FprIndex.getValue(1); 3598 3599 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3600 DAG.getConstant(8, dl, MVT::i32)); 3601 3602 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3603 DAG.getConstant(4, dl, MVT::i32)); 3604 3605 // areas 3606 SDValue OverflowArea = 3607 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3608 InChain = OverflowArea.getValue(1); 3609 3610 SDValue RegSaveArea = 3611 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3612 InChain = RegSaveArea.getValue(1); 3613 3614 // select overflow_area if index > 8 3615 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3616 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3617 3618 // adjustment constant gpr_index * 4/8 3619 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3620 VT.isInteger() ? GprIndex : FprIndex, 3621 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3622 MVT::i32)); 3623 3624 // OurReg = RegSaveArea + RegConstant 3625 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3626 RegConstant); 3627 3628 // Floating types are 32 bytes into RegSaveArea 3629 if (VT.isFloatingPoint()) 3630 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3631 DAG.getConstant(32, dl, MVT::i32)); 3632 3633 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3634 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3635 VT.isInteger() ? GprIndex : FprIndex, 3636 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3637 MVT::i32)); 3638 3639 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3640 VT.isInteger() ? VAListPtr : FprPtr, 3641 MachinePointerInfo(SV), MVT::i8); 3642 3643 // determine if we should load from reg_save_area or overflow_area 3644 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3645 3646 // increase overflow_area by 4/8 if gpr/fpr > 8 3647 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3648 DAG.getConstant(VT.isInteger() ? 4 : 8, 3649 dl, MVT::i32)); 3650 3651 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3652 OverflowAreaPlusN); 3653 3654 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3655 MachinePointerInfo(), MVT::i32); 3656 3657 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3658 } 3659 3660 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3661 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3662 3663 // We have to copy the entire va_list struct: 3664 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3665 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3666 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3667 false, true, false, MachinePointerInfo(), 3668 MachinePointerInfo()); 3669 } 3670 3671 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3672 SelectionDAG &DAG) const { 3673 if (Subtarget.isAIXABI()) 3674 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3675 3676 return Op.getOperand(0); 3677 } 3678 3679 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3680 MachineFunction &MF = DAG.getMachineFunction(); 3681 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3682 3683 assert((Op.getOpcode() == ISD::INLINEASM || 3684 Op.getOpcode() == ISD::INLINEASM_BR) && 3685 "Expecting Inline ASM node."); 3686 3687 // If an LR store is already known to be required then there is not point in 3688 // checking this ASM as well. 3689 if (MFI.isLRStoreRequired()) 3690 return Op; 3691 3692 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3693 // type MVT::Glue. We want to ignore this last operand if that is the case. 3694 unsigned NumOps = Op.getNumOperands(); 3695 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3696 --NumOps; 3697 3698 // Check all operands that may contain the LR. 3699 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3700 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3701 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3702 ++i; // Skip the ID value. 3703 3704 switch (InlineAsm::getKind(Flags)) { 3705 default: 3706 llvm_unreachable("Bad flags!"); 3707 case InlineAsm::Kind_RegUse: 3708 case InlineAsm::Kind_Imm: 3709 case InlineAsm::Kind_Mem: 3710 i += NumVals; 3711 break; 3712 case InlineAsm::Kind_Clobber: 3713 case InlineAsm::Kind_RegDef: 3714 case InlineAsm::Kind_RegDefEarlyClobber: { 3715 for (; NumVals; --NumVals, ++i) { 3716 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3717 if (Reg != PPC::LR && Reg != PPC::LR8) 3718 continue; 3719 MFI.setLRStoreRequired(); 3720 return Op; 3721 } 3722 break; 3723 } 3724 } 3725 } 3726 3727 return Op; 3728 } 3729 3730 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3731 SelectionDAG &DAG) const { 3732 if (Subtarget.isAIXABI()) 3733 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3734 3735 SDValue Chain = Op.getOperand(0); 3736 SDValue Trmp = Op.getOperand(1); // trampoline 3737 SDValue FPtr = Op.getOperand(2); // nested function 3738 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3739 SDLoc dl(Op); 3740 3741 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3742 bool isPPC64 = (PtrVT == MVT::i64); 3743 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3744 3745 TargetLowering::ArgListTy Args; 3746 TargetLowering::ArgListEntry Entry; 3747 3748 Entry.Ty = IntPtrTy; 3749 Entry.Node = Trmp; Args.push_back(Entry); 3750 3751 // TrampSize == (isPPC64 ? 48 : 40); 3752 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3753 isPPC64 ? MVT::i64 : MVT::i32); 3754 Args.push_back(Entry); 3755 3756 Entry.Node = FPtr; Args.push_back(Entry); 3757 Entry.Node = Nest; Args.push_back(Entry); 3758 3759 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3760 TargetLowering::CallLoweringInfo CLI(DAG); 3761 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3762 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3763 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3764 3765 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3766 return CallResult.second; 3767 } 3768 3769 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3770 MachineFunction &MF = DAG.getMachineFunction(); 3771 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3772 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3773 3774 SDLoc dl(Op); 3775 3776 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3777 // vastart just stores the address of the VarArgsFrameIndex slot into the 3778 // memory location argument. 3779 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3780 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3781 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3782 MachinePointerInfo(SV)); 3783 } 3784 3785 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3786 // We suppose the given va_list is already allocated. 3787 // 3788 // typedef struct { 3789 // char gpr; /* index into the array of 8 GPRs 3790 // * stored in the register save area 3791 // * gpr=0 corresponds to r3, 3792 // * gpr=1 to r4, etc. 3793 // */ 3794 // char fpr; /* index into the array of 8 FPRs 3795 // * stored in the register save area 3796 // * fpr=0 corresponds to f1, 3797 // * fpr=1 to f2, etc. 3798 // */ 3799 // char *overflow_arg_area; 3800 // /* location on stack that holds 3801 // * the next overflow argument 3802 // */ 3803 // char *reg_save_area; 3804 // /* where r3:r10 and f1:f8 (if saved) 3805 // * are stored 3806 // */ 3807 // } va_list[1]; 3808 3809 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3810 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3811 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3812 PtrVT); 3813 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3814 PtrVT); 3815 3816 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3817 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3818 3819 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3820 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3821 3822 uint64_t FPROffset = 1; 3823 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3824 3825 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3826 3827 // Store first byte : number of int regs 3828 SDValue firstStore = 3829 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3830 MachinePointerInfo(SV), MVT::i8); 3831 uint64_t nextOffset = FPROffset; 3832 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3833 ConstFPROffset); 3834 3835 // Store second byte : number of float regs 3836 SDValue secondStore = 3837 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3838 MachinePointerInfo(SV, nextOffset), MVT::i8); 3839 nextOffset += StackOffset; 3840 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3841 3842 // Store second word : arguments given on stack 3843 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3844 MachinePointerInfo(SV, nextOffset)); 3845 nextOffset += FrameOffset; 3846 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3847 3848 // Store third word : arguments given in registers 3849 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3850 MachinePointerInfo(SV, nextOffset)); 3851 } 3852 3853 /// FPR - The set of FP registers that should be allocated for arguments 3854 /// on Darwin and AIX. 3855 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3856 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3857 PPC::F11, PPC::F12, PPC::F13}; 3858 3859 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3860 /// the stack. 3861 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3862 unsigned PtrByteSize) { 3863 unsigned ArgSize = ArgVT.getStoreSize(); 3864 if (Flags.isByVal()) 3865 ArgSize = Flags.getByValSize(); 3866 3867 // Round up to multiples of the pointer size, except for array members, 3868 // which are always packed. 3869 if (!Flags.isInConsecutiveRegs()) 3870 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3871 3872 return ArgSize; 3873 } 3874 3875 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3876 /// on the stack. 3877 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3878 ISD::ArgFlagsTy Flags, 3879 unsigned PtrByteSize) { 3880 Align Alignment(PtrByteSize); 3881 3882 // Altivec parameters are padded to a 16 byte boundary. 3883 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3884 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3885 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3886 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3887 Alignment = Align(16); 3888 3889 // ByVal parameters are aligned as requested. 3890 if (Flags.isByVal()) { 3891 auto BVAlign = Flags.getNonZeroByValAlign(); 3892 if (BVAlign > PtrByteSize) { 3893 if (BVAlign.value() % PtrByteSize != 0) 3894 llvm_unreachable( 3895 "ByVal alignment is not a multiple of the pointer size"); 3896 3897 Alignment = BVAlign; 3898 } 3899 } 3900 3901 // Array members are always packed to their original alignment. 3902 if (Flags.isInConsecutiveRegs()) { 3903 // If the array member was split into multiple registers, the first 3904 // needs to be aligned to the size of the full type. (Except for 3905 // ppcf128, which is only aligned as its f64 components.) 3906 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3907 Alignment = Align(OrigVT.getStoreSize()); 3908 else 3909 Alignment = Align(ArgVT.getStoreSize()); 3910 } 3911 3912 return Alignment; 3913 } 3914 3915 /// CalculateStackSlotUsed - Return whether this argument will use its 3916 /// stack slot (instead of being passed in registers). ArgOffset, 3917 /// AvailableFPRs, and AvailableVRs must hold the current argument 3918 /// position, and will be updated to account for this argument. 3919 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3920 unsigned PtrByteSize, unsigned LinkageSize, 3921 unsigned ParamAreaSize, unsigned &ArgOffset, 3922 unsigned &AvailableFPRs, 3923 unsigned &AvailableVRs) { 3924 bool UseMemory = false; 3925 3926 // Respect alignment of argument on the stack. 3927 Align Alignment = 3928 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3929 ArgOffset = alignTo(ArgOffset, Alignment); 3930 // If there's no space left in the argument save area, we must 3931 // use memory (this check also catches zero-sized arguments). 3932 if (ArgOffset >= LinkageSize + ParamAreaSize) 3933 UseMemory = true; 3934 3935 // Allocate argument on the stack. 3936 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3937 if (Flags.isInConsecutiveRegsLast()) 3938 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3939 // If we overran the argument save area, we must use memory 3940 // (this check catches arguments passed partially in memory) 3941 if (ArgOffset > LinkageSize + ParamAreaSize) 3942 UseMemory = true; 3943 3944 // However, if the argument is actually passed in an FPR or a VR, 3945 // we don't use memory after all. 3946 if (!Flags.isByVal()) { 3947 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3948 if (AvailableFPRs > 0) { 3949 --AvailableFPRs; 3950 return false; 3951 } 3952 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3953 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3954 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3955 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3956 if (AvailableVRs > 0) { 3957 --AvailableVRs; 3958 return false; 3959 } 3960 } 3961 3962 return UseMemory; 3963 } 3964 3965 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3966 /// ensure minimum alignment required for target. 3967 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3968 unsigned NumBytes) { 3969 return alignTo(NumBytes, Lowering->getStackAlign()); 3970 } 3971 3972 SDValue PPCTargetLowering::LowerFormalArguments( 3973 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3974 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3975 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3976 if (Subtarget.isAIXABI()) 3977 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3978 InVals); 3979 if (Subtarget.is64BitELFABI()) 3980 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3981 InVals); 3982 assert(Subtarget.is32BitELFABI()); 3983 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3984 InVals); 3985 } 3986 3987 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3988 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3989 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3990 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3991 3992 // 32-bit SVR4 ABI Stack Frame Layout: 3993 // +-----------------------------------+ 3994 // +--> | Back chain | 3995 // | +-----------------------------------+ 3996 // | | Floating-point register save area | 3997 // | +-----------------------------------+ 3998 // | | General register save area | 3999 // | +-----------------------------------+ 4000 // | | CR save word | 4001 // | +-----------------------------------+ 4002 // | | VRSAVE save word | 4003 // | +-----------------------------------+ 4004 // | | Alignment padding | 4005 // | +-----------------------------------+ 4006 // | | Vector register save area | 4007 // | +-----------------------------------+ 4008 // | | Local variable space | 4009 // | +-----------------------------------+ 4010 // | | Parameter list area | 4011 // | +-----------------------------------+ 4012 // | | LR save word | 4013 // | +-----------------------------------+ 4014 // SP--> +--- | Back chain | 4015 // +-----------------------------------+ 4016 // 4017 // Specifications: 4018 // System V Application Binary Interface PowerPC Processor Supplement 4019 // AltiVec Technology Programming Interface Manual 4020 4021 MachineFunction &MF = DAG.getMachineFunction(); 4022 MachineFrameInfo &MFI = MF.getFrameInfo(); 4023 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4024 4025 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4026 // Potential tail calls could cause overwriting of argument stack slots. 4027 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4028 (CallConv == CallingConv::Fast)); 4029 const Align PtrAlign(4); 4030 4031 // Assign locations to all of the incoming arguments. 4032 SmallVector<CCValAssign, 16> ArgLocs; 4033 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4034 *DAG.getContext()); 4035 4036 // Reserve space for the linkage area on the stack. 4037 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4038 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4039 if (useSoftFloat()) 4040 CCInfo.PreAnalyzeFormalArguments(Ins); 4041 4042 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4043 CCInfo.clearWasPPCF128(); 4044 4045 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4046 CCValAssign &VA = ArgLocs[i]; 4047 4048 // Arguments stored in registers. 4049 if (VA.isRegLoc()) { 4050 const TargetRegisterClass *RC; 4051 EVT ValVT = VA.getValVT(); 4052 4053 switch (ValVT.getSimpleVT().SimpleTy) { 4054 default: 4055 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4056 case MVT::i1: 4057 case MVT::i32: 4058 RC = &PPC::GPRCRegClass; 4059 break; 4060 case MVT::f32: 4061 if (Subtarget.hasP8Vector()) 4062 RC = &PPC::VSSRCRegClass; 4063 else if (Subtarget.hasSPE()) 4064 RC = &PPC::GPRCRegClass; 4065 else 4066 RC = &PPC::F4RCRegClass; 4067 break; 4068 case MVT::f64: 4069 if (Subtarget.hasVSX()) 4070 RC = &PPC::VSFRCRegClass; 4071 else if (Subtarget.hasSPE()) 4072 // SPE passes doubles in GPR pairs. 4073 RC = &PPC::GPRCRegClass; 4074 else 4075 RC = &PPC::F8RCRegClass; 4076 break; 4077 case MVT::v16i8: 4078 case MVT::v8i16: 4079 case MVT::v4i32: 4080 RC = &PPC::VRRCRegClass; 4081 break; 4082 case MVT::v4f32: 4083 RC = &PPC::VRRCRegClass; 4084 break; 4085 case MVT::v2f64: 4086 case MVT::v2i64: 4087 RC = &PPC::VRRCRegClass; 4088 break; 4089 } 4090 4091 SDValue ArgValue; 4092 // Transform the arguments stored in physical registers into 4093 // virtual ones. 4094 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4095 assert(i + 1 < e && "No second half of double precision argument"); 4096 Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4097 Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4098 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4099 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4100 if (!Subtarget.isLittleEndian()) 4101 std::swap (ArgValueLo, ArgValueHi); 4102 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4103 ArgValueHi); 4104 } else { 4105 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4106 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4107 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4108 if (ValVT == MVT::i1) 4109 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4110 } 4111 4112 InVals.push_back(ArgValue); 4113 } else { 4114 // Argument stored in memory. 4115 assert(VA.isMemLoc()); 4116 4117 // Get the extended size of the argument type in stack 4118 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4119 // Get the actual size of the argument type 4120 unsigned ObjSize = VA.getValVT().getStoreSize(); 4121 unsigned ArgOffset = VA.getLocMemOffset(); 4122 // Stack objects in PPC32 are right justified. 4123 ArgOffset += ArgSize - ObjSize; 4124 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4125 4126 // Create load nodes to retrieve arguments from the stack. 4127 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4128 InVals.push_back( 4129 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4130 } 4131 } 4132 4133 // Assign locations to all of the incoming aggregate by value arguments. 4134 // Aggregates passed by value are stored in the local variable space of the 4135 // caller's stack frame, right above the parameter list area. 4136 SmallVector<CCValAssign, 16> ByValArgLocs; 4137 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4138 ByValArgLocs, *DAG.getContext()); 4139 4140 // Reserve stack space for the allocations in CCInfo. 4141 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4142 4143 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4144 4145 // Area that is at least reserved in the caller of this function. 4146 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4147 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4148 4149 // Set the size that is at least reserved in caller of this function. Tail 4150 // call optimized function's reserved stack space needs to be aligned so that 4151 // taking the difference between two stack areas will result in an aligned 4152 // stack. 4153 MinReservedArea = 4154 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4155 FuncInfo->setMinReservedArea(MinReservedArea); 4156 4157 SmallVector<SDValue, 8> MemOps; 4158 4159 // If the function takes variable number of arguments, make a frame index for 4160 // the start of the first vararg value... for expansion of llvm.va_start. 4161 if (isVarArg) { 4162 static const MCPhysReg GPArgRegs[] = { 4163 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4164 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4165 }; 4166 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4167 4168 static const MCPhysReg FPArgRegs[] = { 4169 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4170 PPC::F8 4171 }; 4172 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4173 4174 if (useSoftFloat() || hasSPE()) 4175 NumFPArgRegs = 0; 4176 4177 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4178 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4179 4180 // Make room for NumGPArgRegs and NumFPArgRegs. 4181 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4182 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4183 4184 FuncInfo->setVarArgsStackOffset( 4185 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4186 CCInfo.getNextStackOffset(), true)); 4187 4188 FuncInfo->setVarArgsFrameIndex( 4189 MFI.CreateStackObject(Depth, Align(8), false)); 4190 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4191 4192 // The fixed integer arguments of a variadic function are stored to the 4193 // VarArgsFrameIndex on the stack so that they may be loaded by 4194 // dereferencing the result of va_next. 4195 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4196 // Get an existing live-in vreg, or add a new one. 4197 Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4198 if (!VReg) 4199 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4200 4201 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4202 SDValue Store = 4203 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4204 MemOps.push_back(Store); 4205 // Increment the address by four for the next argument to store 4206 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4207 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4208 } 4209 4210 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4211 // is set. 4212 // The double arguments are stored to the VarArgsFrameIndex 4213 // on the stack. 4214 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4215 // Get an existing live-in vreg, or add a new one. 4216 Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4217 if (!VReg) 4218 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4219 4220 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4221 SDValue Store = 4222 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4223 MemOps.push_back(Store); 4224 // Increment the address by eight for the next argument to store 4225 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4226 PtrVT); 4227 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4228 } 4229 } 4230 4231 if (!MemOps.empty()) 4232 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4233 4234 return Chain; 4235 } 4236 4237 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4238 // value to MVT::i64 and then truncate to the correct register size. 4239 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4240 EVT ObjectVT, SelectionDAG &DAG, 4241 SDValue ArgVal, 4242 const SDLoc &dl) const { 4243 if (Flags.isSExt()) 4244 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4245 DAG.getValueType(ObjectVT)); 4246 else if (Flags.isZExt()) 4247 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4248 DAG.getValueType(ObjectVT)); 4249 4250 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4251 } 4252 4253 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4254 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4255 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4256 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4257 // TODO: add description of PPC stack frame format, or at least some docs. 4258 // 4259 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4260 bool isLittleEndian = Subtarget.isLittleEndian(); 4261 MachineFunction &MF = DAG.getMachineFunction(); 4262 MachineFrameInfo &MFI = MF.getFrameInfo(); 4263 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4264 4265 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4266 "fastcc not supported on varargs functions"); 4267 4268 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4269 // Potential tail calls could cause overwriting of argument stack slots. 4270 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4271 (CallConv == CallingConv::Fast)); 4272 unsigned PtrByteSize = 8; 4273 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4274 4275 static const MCPhysReg GPR[] = { 4276 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4277 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4278 }; 4279 static const MCPhysReg VR[] = { 4280 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4281 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4282 }; 4283 4284 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4285 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4286 const unsigned Num_VR_Regs = array_lengthof(VR); 4287 4288 // Do a first pass over the arguments to determine whether the ABI 4289 // guarantees that our caller has allocated the parameter save area 4290 // on its stack frame. In the ELFv1 ABI, this is always the case; 4291 // in the ELFv2 ABI, it is true if this is a vararg function or if 4292 // any parameter is located in a stack slot. 4293 4294 bool HasParameterArea = !isELFv2ABI || isVarArg; 4295 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4296 unsigned NumBytes = LinkageSize; 4297 unsigned AvailableFPRs = Num_FPR_Regs; 4298 unsigned AvailableVRs = Num_VR_Regs; 4299 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4300 if (Ins[i].Flags.isNest()) 4301 continue; 4302 4303 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4304 PtrByteSize, LinkageSize, ParamAreaSize, 4305 NumBytes, AvailableFPRs, AvailableVRs)) 4306 HasParameterArea = true; 4307 } 4308 4309 // Add DAG nodes to load the arguments or copy them out of registers. On 4310 // entry to a function on PPC, the arguments start after the linkage area, 4311 // although the first ones are often in registers. 4312 4313 unsigned ArgOffset = LinkageSize; 4314 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4315 SmallVector<SDValue, 8> MemOps; 4316 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4317 unsigned CurArgIdx = 0; 4318 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4319 SDValue ArgVal; 4320 bool needsLoad = false; 4321 EVT ObjectVT = Ins[ArgNo].VT; 4322 EVT OrigVT = Ins[ArgNo].ArgVT; 4323 unsigned ObjSize = ObjectVT.getStoreSize(); 4324 unsigned ArgSize = ObjSize; 4325 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4326 if (Ins[ArgNo].isOrigArg()) { 4327 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4328 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4329 } 4330 // We re-align the argument offset for each argument, except when using the 4331 // fast calling convention, when we need to make sure we do that only when 4332 // we'll actually use a stack slot. 4333 unsigned CurArgOffset; 4334 Align Alignment; 4335 auto ComputeArgOffset = [&]() { 4336 /* Respect alignment of argument on the stack. */ 4337 Alignment = 4338 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4339 ArgOffset = alignTo(ArgOffset, Alignment); 4340 CurArgOffset = ArgOffset; 4341 }; 4342 4343 if (CallConv != CallingConv::Fast) { 4344 ComputeArgOffset(); 4345 4346 /* Compute GPR index associated with argument offset. */ 4347 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4348 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4349 } 4350 4351 // FIXME the codegen can be much improved in some cases. 4352 // We do not have to keep everything in memory. 4353 if (Flags.isByVal()) { 4354 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4355 4356 if (CallConv == CallingConv::Fast) 4357 ComputeArgOffset(); 4358 4359 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4360 ObjSize = Flags.getByValSize(); 4361 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4362 // Empty aggregate parameters do not take up registers. Examples: 4363 // struct { } a; 4364 // union { } b; 4365 // int c[0]; 4366 // etc. However, we have to provide a place-holder in InVals, so 4367 // pretend we have an 8-byte item at the current address for that 4368 // purpose. 4369 if (!ObjSize) { 4370 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4371 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4372 InVals.push_back(FIN); 4373 continue; 4374 } 4375 4376 // Create a stack object covering all stack doublewords occupied 4377 // by the argument. If the argument is (fully or partially) on 4378 // the stack, or if the argument is fully in registers but the 4379 // caller has allocated the parameter save anyway, we can refer 4380 // directly to the caller's stack frame. Otherwise, create a 4381 // local copy in our own frame. 4382 int FI; 4383 if (HasParameterArea || 4384 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4385 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4386 else 4387 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4388 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4389 4390 // Handle aggregates smaller than 8 bytes. 4391 if (ObjSize < PtrByteSize) { 4392 // The value of the object is its address, which differs from the 4393 // address of the enclosing doubleword on big-endian systems. 4394 SDValue Arg = FIN; 4395 if (!isLittleEndian) { 4396 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4397 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4398 } 4399 InVals.push_back(Arg); 4400 4401 if (GPR_idx != Num_GPR_Regs) { 4402 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4403 FuncInfo->addLiveInAttr(VReg, Flags); 4404 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4405 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); 4406 SDValue Store = 4407 DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4408 MachinePointerInfo(&*FuncArg), ObjType); 4409 MemOps.push_back(Store); 4410 } 4411 // Whether we copied from a register or not, advance the offset 4412 // into the parameter save area by a full doubleword. 4413 ArgOffset += PtrByteSize; 4414 continue; 4415 } 4416 4417 // The value of the object is its address, which is the address of 4418 // its first stack doubleword. 4419 InVals.push_back(FIN); 4420 4421 // Store whatever pieces of the object are in registers to memory. 4422 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4423 if (GPR_idx == Num_GPR_Regs) 4424 break; 4425 4426 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4427 FuncInfo->addLiveInAttr(VReg, Flags); 4428 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4429 SDValue Addr = FIN; 4430 if (j) { 4431 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4432 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4433 } 4434 unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; 4435 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); 4436 SDValue Store = 4437 DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, 4438 MachinePointerInfo(&*FuncArg, j), ObjType); 4439 MemOps.push_back(Store); 4440 ++GPR_idx; 4441 } 4442 ArgOffset += ArgSize; 4443 continue; 4444 } 4445 4446 switch (ObjectVT.getSimpleVT().SimpleTy) { 4447 default: llvm_unreachable("Unhandled argument type!"); 4448 case MVT::i1: 4449 case MVT::i32: 4450 case MVT::i64: 4451 if (Flags.isNest()) { 4452 // The 'nest' parameter, if any, is passed in R11. 4453 Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4454 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4455 4456 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4457 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4458 4459 break; 4460 } 4461 4462 // These can be scalar arguments or elements of an integer array type 4463 // passed directly. Clang may use those instead of "byval" aggregate 4464 // types to avoid forcing arguments to memory unnecessarily. 4465 if (GPR_idx != Num_GPR_Regs) { 4466 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4467 FuncInfo->addLiveInAttr(VReg, Flags); 4468 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4469 4470 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4471 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4472 // value to MVT::i64 and then truncate to the correct register size. 4473 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4474 } else { 4475 if (CallConv == CallingConv::Fast) 4476 ComputeArgOffset(); 4477 4478 needsLoad = true; 4479 ArgSize = PtrByteSize; 4480 } 4481 if (CallConv != CallingConv::Fast || needsLoad) 4482 ArgOffset += 8; 4483 break; 4484 4485 case MVT::f32: 4486 case MVT::f64: 4487 // These can be scalar arguments or elements of a float array type 4488 // passed directly. The latter are used to implement ELFv2 homogenous 4489 // float aggregates. 4490 if (FPR_idx != Num_FPR_Regs) { 4491 unsigned VReg; 4492 4493 if (ObjectVT == MVT::f32) 4494 VReg = MF.addLiveIn(FPR[FPR_idx], 4495 Subtarget.hasP8Vector() 4496 ? &PPC::VSSRCRegClass 4497 : &PPC::F4RCRegClass); 4498 else 4499 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4500 ? &PPC::VSFRCRegClass 4501 : &PPC::F8RCRegClass); 4502 4503 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4504 ++FPR_idx; 4505 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4506 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4507 // once we support fp <-> gpr moves. 4508 4509 // This can only ever happen in the presence of f32 array types, 4510 // since otherwise we never run out of FPRs before running out 4511 // of GPRs. 4512 Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4513 FuncInfo->addLiveInAttr(VReg, Flags); 4514 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4515 4516 if (ObjectVT == MVT::f32) { 4517 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4518 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4519 DAG.getConstant(32, dl, MVT::i32)); 4520 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4521 } 4522 4523 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4524 } else { 4525 if (CallConv == CallingConv::Fast) 4526 ComputeArgOffset(); 4527 4528 needsLoad = true; 4529 } 4530 4531 // When passing an array of floats, the array occupies consecutive 4532 // space in the argument area; only round up to the next doubleword 4533 // at the end of the array. Otherwise, each float takes 8 bytes. 4534 if (CallConv != CallingConv::Fast || needsLoad) { 4535 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4536 ArgOffset += ArgSize; 4537 if (Flags.isInConsecutiveRegsLast()) 4538 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4539 } 4540 break; 4541 case MVT::v4f32: 4542 case MVT::v4i32: 4543 case MVT::v8i16: 4544 case MVT::v16i8: 4545 case MVT::v2f64: 4546 case MVT::v2i64: 4547 case MVT::v1i128: 4548 case MVT::f128: 4549 // These can be scalar arguments or elements of a vector array type 4550 // passed directly. The latter are used to implement ELFv2 homogenous 4551 // vector aggregates. 4552 if (VR_idx != Num_VR_Regs) { 4553 Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4554 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4555 ++VR_idx; 4556 } else { 4557 if (CallConv == CallingConv::Fast) 4558 ComputeArgOffset(); 4559 needsLoad = true; 4560 } 4561 if (CallConv != CallingConv::Fast || needsLoad) 4562 ArgOffset += 16; 4563 break; 4564 } 4565 4566 // We need to load the argument to a virtual register if we determined 4567 // above that we ran out of physical registers of the appropriate type. 4568 if (needsLoad) { 4569 if (ObjSize < ArgSize && !isLittleEndian) 4570 CurArgOffset += ArgSize - ObjSize; 4571 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4572 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4573 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4574 } 4575 4576 InVals.push_back(ArgVal); 4577 } 4578 4579 // Area that is at least reserved in the caller of this function. 4580 unsigned MinReservedArea; 4581 if (HasParameterArea) 4582 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4583 else 4584 MinReservedArea = LinkageSize; 4585 4586 // Set the size that is at least reserved in caller of this function. Tail 4587 // call optimized functions' reserved stack space needs to be aligned so that 4588 // taking the difference between two stack areas will result in an aligned 4589 // stack. 4590 MinReservedArea = 4591 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4592 FuncInfo->setMinReservedArea(MinReservedArea); 4593 4594 // If the function takes variable number of arguments, make a frame index for 4595 // the start of the first vararg value... for expansion of llvm.va_start. 4596 // On ELFv2ABI spec, it writes: 4597 // C programs that are intended to be *portable* across different compilers 4598 // and architectures must use the header file <stdarg.h> to deal with variable 4599 // argument lists. 4600 if (isVarArg && MFI.hasVAStart()) { 4601 int Depth = ArgOffset; 4602 4603 FuncInfo->setVarArgsFrameIndex( 4604 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4605 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4606 4607 // If this function is vararg, store any remaining integer argument regs 4608 // to their spots on the stack so that they may be loaded by dereferencing 4609 // the result of va_next. 4610 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4611 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4612 Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4613 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4614 SDValue Store = 4615 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4616 MemOps.push_back(Store); 4617 // Increment the address by four for the next argument to store 4618 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4619 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4620 } 4621 } 4622 4623 if (!MemOps.empty()) 4624 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4625 4626 return Chain; 4627 } 4628 4629 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4630 /// adjusted to accommodate the arguments for the tailcall. 4631 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4632 unsigned ParamSize) { 4633 4634 if (!isTailCall) return 0; 4635 4636 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4637 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4638 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4639 // Remember only if the new adjustment is bigger. 4640 if (SPDiff < FI->getTailCallSPDelta()) 4641 FI->setTailCallSPDelta(SPDiff); 4642 4643 return SPDiff; 4644 } 4645 4646 static bool isFunctionGlobalAddress(SDValue Callee); 4647 4648 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4649 const TargetMachine &TM) { 4650 // It does not make sense to call callsShareTOCBase() with a caller that 4651 // is PC Relative since PC Relative callers do not have a TOC. 4652 #ifndef NDEBUG 4653 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4654 assert(!STICaller->isUsingPCRelativeCalls() && 4655 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4656 #endif 4657 4658 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4659 // don't have enough information to determine if the caller and callee share 4660 // the same TOC base, so we have to pessimistically assume they don't for 4661 // correctness. 4662 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4663 if (!G) 4664 return false; 4665 4666 const GlobalValue *GV = G->getGlobal(); 4667 4668 // If the callee is preemptable, then the static linker will use a plt-stub 4669 // which saves the toc to the stack, and needs a nop after the call 4670 // instruction to convert to a toc-restore. 4671 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4672 return false; 4673 4674 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4675 // We may need a TOC restore in the situation where the caller requires a 4676 // valid TOC but the callee is PC Relative and does not. 4677 const Function *F = dyn_cast<Function>(GV); 4678 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4679 4680 // If we have an Alias we can try to get the function from there. 4681 if (Alias) { 4682 const GlobalObject *GlobalObj = Alias->getAliaseeObject(); 4683 F = dyn_cast<Function>(GlobalObj); 4684 } 4685 4686 // If we still have no valid function pointer we do not have enough 4687 // information to determine if the callee uses PC Relative calls so we must 4688 // assume that it does. 4689 if (!F) 4690 return false; 4691 4692 // If the callee uses PC Relative we cannot guarantee that the callee won't 4693 // clobber the TOC of the caller and so we must assume that the two 4694 // functions do not share a TOC base. 4695 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4696 if (STICallee->isUsingPCRelativeCalls()) 4697 return false; 4698 4699 // If the GV is not a strong definition then we need to assume it can be 4700 // replaced by another function at link time. The function that replaces 4701 // it may not share the same TOC as the caller since the callee may be 4702 // replaced by a PC Relative version of the same function. 4703 if (!GV->isStrongDefinitionForLinker()) 4704 return false; 4705 4706 // The medium and large code models are expected to provide a sufficiently 4707 // large TOC to provide all data addressing needs of a module with a 4708 // single TOC. 4709 if (CodeModel::Medium == TM.getCodeModel() || 4710 CodeModel::Large == TM.getCodeModel()) 4711 return true; 4712 4713 // Any explicitly-specified sections and section prefixes must also match. 4714 // Also, if we're using -ffunction-sections, then each function is always in 4715 // a different section (the same is true for COMDAT functions). 4716 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4717 GV->getSection() != Caller->getSection()) 4718 return false; 4719 if (const auto *F = dyn_cast<Function>(GV)) { 4720 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4721 return false; 4722 } 4723 4724 return true; 4725 } 4726 4727 static bool 4728 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4729 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4730 assert(Subtarget.is64BitELFABI()); 4731 4732 const unsigned PtrByteSize = 8; 4733 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4734 4735 static const MCPhysReg GPR[] = { 4736 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4737 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4738 }; 4739 static const MCPhysReg VR[] = { 4740 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4741 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4742 }; 4743 4744 const unsigned NumGPRs = array_lengthof(GPR); 4745 const unsigned NumFPRs = 13; 4746 const unsigned NumVRs = array_lengthof(VR); 4747 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4748 4749 unsigned NumBytes = LinkageSize; 4750 unsigned AvailableFPRs = NumFPRs; 4751 unsigned AvailableVRs = NumVRs; 4752 4753 for (const ISD::OutputArg& Param : Outs) { 4754 if (Param.Flags.isNest()) continue; 4755 4756 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4757 LinkageSize, ParamAreaSize, NumBytes, 4758 AvailableFPRs, AvailableVRs)) 4759 return true; 4760 } 4761 return false; 4762 } 4763 4764 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4765 if (CB.arg_size() != CallerFn->arg_size()) 4766 return false; 4767 4768 auto CalleeArgIter = CB.arg_begin(); 4769 auto CalleeArgEnd = CB.arg_end(); 4770 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4771 4772 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4773 const Value* CalleeArg = *CalleeArgIter; 4774 const Value* CallerArg = &(*CallerArgIter); 4775 if (CalleeArg == CallerArg) 4776 continue; 4777 4778 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4779 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4780 // } 4781 // 1st argument of callee is undef and has the same type as caller. 4782 if (CalleeArg->getType() == CallerArg->getType() && 4783 isa<UndefValue>(CalleeArg)) 4784 continue; 4785 4786 return false; 4787 } 4788 4789 return true; 4790 } 4791 4792 // Returns true if TCO is possible between the callers and callees 4793 // calling conventions. 4794 static bool 4795 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4796 CallingConv::ID CalleeCC) { 4797 // Tail calls are possible with fastcc and ccc. 4798 auto isTailCallableCC = [] (CallingConv::ID CC){ 4799 return CC == CallingConv::C || CC == CallingConv::Fast; 4800 }; 4801 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4802 return false; 4803 4804 // We can safely tail call both fastcc and ccc callees from a c calling 4805 // convention caller. If the caller is fastcc, we may have less stack space 4806 // than a non-fastcc caller with the same signature so disable tail-calls in 4807 // that case. 4808 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4809 } 4810 4811 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4812 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4813 const SmallVectorImpl<ISD::OutputArg> &Outs, 4814 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4815 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4816 4817 if (DisableSCO && !TailCallOpt) return false; 4818 4819 // Variadic argument functions are not supported. 4820 if (isVarArg) return false; 4821 4822 auto &Caller = DAG.getMachineFunction().getFunction(); 4823 // Check that the calling conventions are compatible for tco. 4824 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4825 return false; 4826 4827 // Caller contains any byval parameter is not supported. 4828 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4829 return false; 4830 4831 // Callee contains any byval parameter is not supported, too. 4832 // Note: This is a quick work around, because in some cases, e.g. 4833 // caller's stack size > callee's stack size, we are still able to apply 4834 // sibling call optimization. For example, gcc is able to do SCO for caller1 4835 // in the following example, but not for caller2. 4836 // struct test { 4837 // long int a; 4838 // char ary[56]; 4839 // } gTest; 4840 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4841 // b->a = v.a; 4842 // return 0; 4843 // } 4844 // void caller1(struct test a, struct test c, struct test *b) { 4845 // callee(gTest, b); } 4846 // void caller2(struct test *b) { callee(gTest, b); } 4847 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4848 return false; 4849 4850 // If callee and caller use different calling conventions, we cannot pass 4851 // parameters on stack since offsets for the parameter area may be different. 4852 if (Caller.getCallingConv() != CalleeCC && 4853 needStackSlotPassParameters(Subtarget, Outs)) 4854 return false; 4855 4856 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4857 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4858 // callee potentially have different TOC bases then we cannot tail call since 4859 // we need to restore the TOC pointer after the call. 4860 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4861 // We cannot guarantee this for indirect calls or calls to external functions. 4862 // When PC-Relative addressing is used, the concept of the TOC is no longer 4863 // applicable so this check is not required. 4864 // Check first for indirect calls. 4865 if (!Subtarget.isUsingPCRelativeCalls() && 4866 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4867 return false; 4868 4869 // Check if we share the TOC base. 4870 if (!Subtarget.isUsingPCRelativeCalls() && 4871 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4872 return false; 4873 4874 // TCO allows altering callee ABI, so we don't have to check further. 4875 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4876 return true; 4877 4878 if (DisableSCO) return false; 4879 4880 // If callee use the same argument list that caller is using, then we can 4881 // apply SCO on this case. If it is not, then we need to check if callee needs 4882 // stack for passing arguments. 4883 // PC Relative tail calls may not have a CallBase. 4884 // If there is no CallBase we cannot verify if we have the same argument 4885 // list so assume that we don't have the same argument list. 4886 if (CB && !hasSameArgumentList(&Caller, *CB) && 4887 needStackSlotPassParameters(Subtarget, Outs)) 4888 return false; 4889 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4890 return false; 4891 4892 return true; 4893 } 4894 4895 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4896 /// for tail call optimization. Targets which want to do tail call 4897 /// optimization should implement this function. 4898 bool 4899 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4900 CallingConv::ID CalleeCC, 4901 bool isVarArg, 4902 const SmallVectorImpl<ISD::InputArg> &Ins, 4903 SelectionDAG& DAG) const { 4904 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4905 return false; 4906 4907 // Variable argument functions are not supported. 4908 if (isVarArg) 4909 return false; 4910 4911 MachineFunction &MF = DAG.getMachineFunction(); 4912 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4913 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4914 // Functions containing by val parameters are not supported. 4915 for (unsigned i = 0; i != Ins.size(); i++) { 4916 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4917 if (Flags.isByVal()) return false; 4918 } 4919 4920 // Non-PIC/GOT tail calls are supported. 4921 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4922 return true; 4923 4924 // At the moment we can only do local tail calls (in same module, hidden 4925 // or protected) if we are generating PIC. 4926 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4927 return G->getGlobal()->hasHiddenVisibility() 4928 || G->getGlobal()->hasProtectedVisibility(); 4929 } 4930 4931 return false; 4932 } 4933 4934 /// isCallCompatibleAddress - Return the immediate to use if the specified 4935 /// 32-bit value is representable in the immediate field of a BxA instruction. 4936 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4937 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4938 if (!C) return nullptr; 4939 4940 int Addr = C->getZExtValue(); 4941 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4942 SignExtend32<26>(Addr) != Addr) 4943 return nullptr; // Top 6 bits have to be sext of immediate. 4944 4945 return DAG 4946 .getConstant( 4947 (int)C->getZExtValue() >> 2, SDLoc(Op), 4948 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4949 .getNode(); 4950 } 4951 4952 namespace { 4953 4954 struct TailCallArgumentInfo { 4955 SDValue Arg; 4956 SDValue FrameIdxOp; 4957 int FrameIdx = 0; 4958 4959 TailCallArgumentInfo() = default; 4960 }; 4961 4962 } // end anonymous namespace 4963 4964 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4965 static void StoreTailCallArgumentsToStackSlot( 4966 SelectionDAG &DAG, SDValue Chain, 4967 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4968 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4969 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4970 SDValue Arg = TailCallArgs[i].Arg; 4971 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4972 int FI = TailCallArgs[i].FrameIdx; 4973 // Store relative to framepointer. 4974 MemOpChains.push_back(DAG.getStore( 4975 Chain, dl, Arg, FIN, 4976 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4977 } 4978 } 4979 4980 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4981 /// the appropriate stack slot for the tail call optimized function call. 4982 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4983 SDValue OldRetAddr, SDValue OldFP, 4984 int SPDiff, const SDLoc &dl) { 4985 if (SPDiff) { 4986 // Calculate the new stack slot for the return address. 4987 MachineFunction &MF = DAG.getMachineFunction(); 4988 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4989 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4990 bool isPPC64 = Subtarget.isPPC64(); 4991 int SlotSize = isPPC64 ? 8 : 4; 4992 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4993 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4994 NewRetAddrLoc, true); 4995 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4996 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4997 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4998 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4999 } 5000 return Chain; 5001 } 5002 5003 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 5004 /// the position of the argument. 5005 static void 5006 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 5007 SDValue Arg, int SPDiff, unsigned ArgOffset, 5008 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 5009 int Offset = ArgOffset + SPDiff; 5010 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 5011 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 5012 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 5013 SDValue FIN = DAG.getFrameIndex(FI, VT); 5014 TailCallArgumentInfo Info; 5015 Info.Arg = Arg; 5016 Info.FrameIdxOp = FIN; 5017 Info.FrameIdx = FI; 5018 TailCallArguments.push_back(Info); 5019 } 5020 5021 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 5022 /// stack slot. Returns the chain as result and the loaded frame pointers in 5023 /// LROpOut/FPOpout. Used when tail calling. 5024 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 5025 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 5026 SDValue &FPOpOut, const SDLoc &dl) const { 5027 if (SPDiff) { 5028 // Load the LR and FP stack slot for later adjusting. 5029 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5030 LROpOut = getReturnAddrFrameIndex(DAG); 5031 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5032 Chain = SDValue(LROpOut.getNode(), 1); 5033 } 5034 return Chain; 5035 } 5036 5037 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5038 /// by "Src" to address "Dst" of size "Size". Alignment information is 5039 /// specified by the specific parameter attribute. The copy will be passed as 5040 /// a byval function parameter. 5041 /// Sometimes what we are copying is the end of a larger object, the part that 5042 /// does not fit in registers. 5043 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5044 SDValue Chain, ISD::ArgFlagsTy Flags, 5045 SelectionDAG &DAG, const SDLoc &dl) { 5046 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5047 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5048 Flags.getNonZeroByValAlign(), false, false, false, 5049 MachinePointerInfo(), MachinePointerInfo()); 5050 } 5051 5052 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5053 /// tail calls. 5054 static void LowerMemOpCallTo( 5055 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5056 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5057 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5058 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5059 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5060 if (!isTailCall) { 5061 if (isVector) { 5062 SDValue StackPtr; 5063 if (isPPC64) 5064 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5065 else 5066 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5067 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5068 DAG.getConstant(ArgOffset, dl, PtrVT)); 5069 } 5070 MemOpChains.push_back( 5071 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5072 // Calculate and remember argument location. 5073 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5074 TailCallArguments); 5075 } 5076 5077 static void 5078 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5079 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5080 SDValue FPOp, 5081 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5082 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5083 // might overwrite each other in case of tail call optimization. 5084 SmallVector<SDValue, 8> MemOpChains2; 5085 // Do not flag preceding copytoreg stuff together with the following stuff. 5086 InFlag = SDValue(); 5087 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5088 MemOpChains2, dl); 5089 if (!MemOpChains2.empty()) 5090 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5091 5092 // Store the return address to the appropriate stack slot. 5093 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5094 5095 // Emit callseq_end just before tailcall node. 5096 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5097 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5098 InFlag = Chain.getValue(1); 5099 } 5100 5101 // Is this global address that of a function that can be called by name? (as 5102 // opposed to something that must hold a descriptor for an indirect call). 5103 static bool isFunctionGlobalAddress(SDValue Callee) { 5104 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5105 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5106 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5107 return false; 5108 5109 return G->getGlobal()->getValueType()->isFunctionTy(); 5110 } 5111 5112 return false; 5113 } 5114 5115 SDValue PPCTargetLowering::LowerCallResult( 5116 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5117 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5118 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5119 SmallVector<CCValAssign, 16> RVLocs; 5120 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5121 *DAG.getContext()); 5122 5123 CCRetInfo.AnalyzeCallResult( 5124 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5125 ? RetCC_PPC_Cold 5126 : RetCC_PPC); 5127 5128 // Copy all of the result registers out of their specified physreg. 5129 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5130 CCValAssign &VA = RVLocs[i]; 5131 assert(VA.isRegLoc() && "Can only return in registers!"); 5132 5133 SDValue Val; 5134 5135 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5136 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5137 InFlag); 5138 Chain = Lo.getValue(1); 5139 InFlag = Lo.getValue(2); 5140 VA = RVLocs[++i]; // skip ahead to next loc 5141 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5142 InFlag); 5143 Chain = Hi.getValue(1); 5144 InFlag = Hi.getValue(2); 5145 if (!Subtarget.isLittleEndian()) 5146 std::swap (Lo, Hi); 5147 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5148 } else { 5149 Val = DAG.getCopyFromReg(Chain, dl, 5150 VA.getLocReg(), VA.getLocVT(), InFlag); 5151 Chain = Val.getValue(1); 5152 InFlag = Val.getValue(2); 5153 } 5154 5155 switch (VA.getLocInfo()) { 5156 default: llvm_unreachable("Unknown loc info!"); 5157 case CCValAssign::Full: break; 5158 case CCValAssign::AExt: 5159 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5160 break; 5161 case CCValAssign::ZExt: 5162 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5163 DAG.getValueType(VA.getValVT())); 5164 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5165 break; 5166 case CCValAssign::SExt: 5167 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5168 DAG.getValueType(VA.getValVT())); 5169 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5170 break; 5171 } 5172 5173 InVals.push_back(Val); 5174 } 5175 5176 return Chain; 5177 } 5178 5179 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5180 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5181 // PatchPoint calls are not indirect. 5182 if (isPatchPoint) 5183 return false; 5184 5185 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5186 return false; 5187 5188 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5189 // becuase the immediate function pointer points to a descriptor instead of 5190 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5191 // pointer immediate points to the global entry point, while the BLA would 5192 // need to jump to the local entry point (see rL211174). 5193 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5194 isBLACompatibleAddress(Callee, DAG)) 5195 return false; 5196 5197 return true; 5198 } 5199 5200 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5201 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5202 return Subtarget.isAIXABI() || 5203 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5204 } 5205 5206 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5207 const Function &Caller, const SDValue &Callee, 5208 const PPCSubtarget &Subtarget, 5209 const TargetMachine &TM, 5210 bool IsStrictFPCall = false) { 5211 if (CFlags.IsTailCall) 5212 return PPCISD::TC_RETURN; 5213 5214 unsigned RetOpc = 0; 5215 // This is a call through a function pointer. 5216 if (CFlags.IsIndirect) { 5217 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5218 // indirect calls. The save of the caller's TOC pointer to the stack will be 5219 // inserted into the DAG as part of call lowering. The restore of the TOC 5220 // pointer is modeled by using a pseudo instruction for the call opcode that 5221 // represents the 2 instruction sequence of an indirect branch and link, 5222 // immediately followed by a load of the TOC pointer from the the stack save 5223 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5224 // as it is not saved or used. 5225 RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5226 : PPCISD::BCTRL; 5227 } else if (Subtarget.isUsingPCRelativeCalls()) { 5228 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5229 RetOpc = PPCISD::CALL_NOTOC; 5230 } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5231 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5232 // immediately following the call instruction if the caller and callee may 5233 // have different TOC bases. At link time if the linker determines the calls 5234 // may not share a TOC base, the call is redirected to a trampoline inserted 5235 // by the linker. The trampoline will (among other things) save the callers 5236 // TOC pointer at an ABI designated offset in the linkage area and the 5237 // linker will rewrite the nop to be a load of the TOC pointer from the 5238 // linkage area into gpr2. 5239 RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5240 : PPCISD::CALL_NOP; 5241 else 5242 RetOpc = PPCISD::CALL; 5243 if (IsStrictFPCall) { 5244 switch (RetOpc) { 5245 default: 5246 llvm_unreachable("Unknown call opcode"); 5247 case PPCISD::BCTRL_LOAD_TOC: 5248 RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; 5249 break; 5250 case PPCISD::BCTRL: 5251 RetOpc = PPCISD::BCTRL_RM; 5252 break; 5253 case PPCISD::CALL_NOTOC: 5254 RetOpc = PPCISD::CALL_NOTOC_RM; 5255 break; 5256 case PPCISD::CALL: 5257 RetOpc = PPCISD::CALL_RM; 5258 break; 5259 case PPCISD::CALL_NOP: 5260 RetOpc = PPCISD::CALL_NOP_RM; 5261 break; 5262 } 5263 } 5264 return RetOpc; 5265 } 5266 5267 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5268 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5269 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5270 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5271 return SDValue(Dest, 0); 5272 5273 // Returns true if the callee is local, and false otherwise. 5274 auto isLocalCallee = [&]() { 5275 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5276 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5277 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5278 5279 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5280 !isa_and_nonnull<GlobalIFunc>(GV); 5281 }; 5282 5283 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5284 // a static relocation model causes some versions of GNU LD (2.17.50, at 5285 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5286 // built with secure-PLT. 5287 bool UsePlt = 5288 Subtarget.is32BitELFABI() && !isLocalCallee() && 5289 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5290 5291 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5292 const TargetMachine &TM = Subtarget.getTargetMachine(); 5293 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5294 MCSymbolXCOFF *S = 5295 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5296 5297 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5298 return DAG.getMCSymbol(S, PtrVT); 5299 }; 5300 5301 if (isFunctionGlobalAddress(Callee)) { 5302 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5303 5304 if (Subtarget.isAIXABI()) { 5305 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5306 return getAIXFuncEntryPointSymbolSDNode(GV); 5307 } 5308 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5309 UsePlt ? PPCII::MO_PLT : 0); 5310 } 5311 5312 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5313 const char *SymName = S->getSymbol(); 5314 if (Subtarget.isAIXABI()) { 5315 // If there exists a user-declared function whose name is the same as the 5316 // ExternalSymbol's, then we pick up the user-declared version. 5317 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5318 if (const Function *F = 5319 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5320 return getAIXFuncEntryPointSymbolSDNode(F); 5321 5322 // On AIX, direct function calls reference the symbol for the function's 5323 // entry point, which is named by prepending a "." before the function's 5324 // C-linkage name. A Qualname is returned here because an external 5325 // function entry point is a csect with XTY_ER property. 5326 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5327 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5328 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5329 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5330 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5331 return Sec->getQualNameSymbol(); 5332 }; 5333 5334 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5335 } 5336 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5337 UsePlt ? PPCII::MO_PLT : 0); 5338 } 5339 5340 // No transformation needed. 5341 assert(Callee.getNode() && "What no callee?"); 5342 return Callee; 5343 } 5344 5345 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5346 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5347 "Expected a CALLSEQ_STARTSDNode."); 5348 5349 // The last operand is the chain, except when the node has glue. If the node 5350 // has glue, then the last operand is the glue, and the chain is the second 5351 // last operand. 5352 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5353 if (LastValue.getValueType() != MVT::Glue) 5354 return LastValue; 5355 5356 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5357 } 5358 5359 // Creates the node that moves a functions address into the count register 5360 // to prepare for an indirect call instruction. 5361 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5362 SDValue &Glue, SDValue &Chain, 5363 const SDLoc &dl) { 5364 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5365 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5366 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5367 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5368 // The glue is the second value produced. 5369 Glue = Chain.getValue(1); 5370 } 5371 5372 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5373 SDValue &Glue, SDValue &Chain, 5374 SDValue CallSeqStart, 5375 const CallBase *CB, const SDLoc &dl, 5376 bool hasNest, 5377 const PPCSubtarget &Subtarget) { 5378 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5379 // entry point, but to the function descriptor (the function entry point 5380 // address is part of the function descriptor though). 5381 // The function descriptor is a three doubleword structure with the 5382 // following fields: function entry point, TOC base address and 5383 // environment pointer. 5384 // Thus for a call through a function pointer, the following actions need 5385 // to be performed: 5386 // 1. Save the TOC of the caller in the TOC save area of its stack 5387 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5388 // 2. Load the address of the function entry point from the function 5389 // descriptor. 5390 // 3. Load the TOC of the callee from the function descriptor into r2. 5391 // 4. Load the environment pointer from the function descriptor into 5392 // r11. 5393 // 5. Branch to the function entry point address. 5394 // 6. On return of the callee, the TOC of the caller needs to be 5395 // restored (this is done in FinishCall()). 5396 // 5397 // The loads are scheduled at the beginning of the call sequence, and the 5398 // register copies are flagged together to ensure that no other 5399 // operations can be scheduled in between. E.g. without flagging the 5400 // copies together, a TOC access in the caller could be scheduled between 5401 // the assignment of the callee TOC and the branch to the callee, which leads 5402 // to incorrect code. 5403 5404 // Start by loading the function address from the descriptor. 5405 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5406 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5407 ? (MachineMemOperand::MODereferenceable | 5408 MachineMemOperand::MOInvariant) 5409 : MachineMemOperand::MONone; 5410 5411 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5412 5413 // Registers used in building the DAG. 5414 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5415 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5416 5417 // Offsets of descriptor members. 5418 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5419 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5420 5421 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5422 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5423 5424 // One load for the functions entry point address. 5425 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5426 Alignment, MMOFlags); 5427 5428 // One for loading the TOC anchor for the module that contains the called 5429 // function. 5430 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5431 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5432 SDValue TOCPtr = 5433 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5434 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5435 5436 // One for loading the environment pointer. 5437 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5438 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5439 SDValue LoadEnvPtr = 5440 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5441 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5442 5443 5444 // Then copy the newly loaded TOC anchor to the TOC pointer. 5445 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5446 Chain = TOCVal.getValue(0); 5447 Glue = TOCVal.getValue(1); 5448 5449 // If the function call has an explicit 'nest' parameter, it takes the 5450 // place of the environment pointer. 5451 assert((!hasNest || !Subtarget.isAIXABI()) && 5452 "Nest parameter is not supported on AIX."); 5453 if (!hasNest) { 5454 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5455 Chain = EnvVal.getValue(0); 5456 Glue = EnvVal.getValue(1); 5457 } 5458 5459 // The rest of the indirect call sequence is the same as the non-descriptor 5460 // DAG. 5461 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5462 } 5463 5464 static void 5465 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5466 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5467 SelectionDAG &DAG, 5468 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5469 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5470 const PPCSubtarget &Subtarget) { 5471 const bool IsPPC64 = Subtarget.isPPC64(); 5472 // MVT for a general purpose register. 5473 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5474 5475 // First operand is always the chain. 5476 Ops.push_back(Chain); 5477 5478 // If it's a direct call pass the callee as the second operand. 5479 if (!CFlags.IsIndirect) 5480 Ops.push_back(Callee); 5481 else { 5482 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5483 5484 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5485 // on the stack (this would have been done in `LowerCall_64SVR4` or 5486 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5487 // represents both the indirect branch and a load that restores the TOC 5488 // pointer from the linkage area. The operand for the TOC restore is an add 5489 // of the TOC save offset to the stack pointer. This must be the second 5490 // operand: after the chain input but before any other variadic arguments. 5491 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5492 // saved or used. 5493 if (isTOCSaveRestoreRequired(Subtarget)) { 5494 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5495 5496 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5497 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5498 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5499 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5500 Ops.push_back(AddTOC); 5501 } 5502 5503 // Add the register used for the environment pointer. 5504 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5505 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5506 RegVT)); 5507 5508 5509 // Add CTR register as callee so a bctr can be emitted later. 5510 if (CFlags.IsTailCall) 5511 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5512 } 5513 5514 // If this is a tail call add stack pointer delta. 5515 if (CFlags.IsTailCall) 5516 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5517 5518 // Add argument registers to the end of the list so that they are known live 5519 // into the call. 5520 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5521 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5522 RegsToPass[i].second.getValueType())); 5523 5524 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5525 // no way to mark dependencies as implicit here. 5526 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5527 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5528 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5529 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5530 5531 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5532 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5533 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5534 5535 // Add a register mask operand representing the call-preserved registers. 5536 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5537 const uint32_t *Mask = 5538 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5539 assert(Mask && "Missing call preserved mask for calling convention"); 5540 Ops.push_back(DAG.getRegisterMask(Mask)); 5541 5542 // If the glue is valid, it is the last operand. 5543 if (Glue.getNode()) 5544 Ops.push_back(Glue); 5545 } 5546 5547 SDValue PPCTargetLowering::FinishCall( 5548 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5549 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5550 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5551 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5552 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5553 5554 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5555 Subtarget.isAIXABI()) 5556 setUsesTOCBasePtr(DAG); 5557 5558 unsigned CallOpc = 5559 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5560 Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); 5561 5562 if (!CFlags.IsIndirect) 5563 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5564 else if (Subtarget.usesFunctionDescriptors()) 5565 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5566 dl, CFlags.HasNest, Subtarget); 5567 else 5568 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5569 5570 // Build the operand list for the call instruction. 5571 SmallVector<SDValue, 8> Ops; 5572 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5573 SPDiff, Subtarget); 5574 5575 // Emit tail call. 5576 if (CFlags.IsTailCall) { 5577 // Indirect tail call when using PC Relative calls do not have the same 5578 // constraints. 5579 assert(((Callee.getOpcode() == ISD::Register && 5580 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5581 Callee.getOpcode() == ISD::TargetExternalSymbol || 5582 Callee.getOpcode() == ISD::TargetGlobalAddress || 5583 isa<ConstantSDNode>(Callee) || 5584 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5585 "Expecting a global address, external symbol, absolute value, " 5586 "register or an indirect tail call when PC Relative calls are " 5587 "used."); 5588 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5589 assert(CallOpc == PPCISD::TC_RETURN && 5590 "Unexpected call opcode for a tail call."); 5591 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5592 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5593 } 5594 5595 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5596 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5597 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5598 Glue = Chain.getValue(1); 5599 5600 // When performing tail call optimization the callee pops its arguments off 5601 // the stack. Account for this here so these bytes can be pushed back on in 5602 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5603 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5604 getTargetMachine().Options.GuaranteedTailCallOpt) 5605 ? NumBytes 5606 : 0; 5607 5608 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5609 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5610 Glue, dl); 5611 Glue = Chain.getValue(1); 5612 5613 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5614 DAG, InVals); 5615 } 5616 5617 SDValue 5618 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5619 SmallVectorImpl<SDValue> &InVals) const { 5620 SelectionDAG &DAG = CLI.DAG; 5621 SDLoc &dl = CLI.DL; 5622 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5623 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5624 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5625 SDValue Chain = CLI.Chain; 5626 SDValue Callee = CLI.Callee; 5627 bool &isTailCall = CLI.IsTailCall; 5628 CallingConv::ID CallConv = CLI.CallConv; 5629 bool isVarArg = CLI.IsVarArg; 5630 bool isPatchPoint = CLI.IsPatchPoint; 5631 const CallBase *CB = CLI.CB; 5632 5633 if (isTailCall) { 5634 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5635 isTailCall = false; 5636 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5637 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5638 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5639 else 5640 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5641 Ins, DAG); 5642 if (isTailCall) { 5643 ++NumTailCalls; 5644 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5645 ++NumSiblingCalls; 5646 5647 // PC Relative calls no longer guarantee that the callee is a Global 5648 // Address Node. The callee could be an indirect tail call in which 5649 // case the SDValue for the callee could be a load (to load the address 5650 // of a function pointer) or it may be a register copy (to move the 5651 // address of the callee from a function parameter into a virtual 5652 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5653 assert((Subtarget.isUsingPCRelativeCalls() || 5654 isa<GlobalAddressSDNode>(Callee)) && 5655 "Callee should be an llvm::Function object."); 5656 5657 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5658 << "\nTCO callee: "); 5659 LLVM_DEBUG(Callee.dump()); 5660 } 5661 } 5662 5663 if (!isTailCall && CB && CB->isMustTailCall()) 5664 report_fatal_error("failed to perform tail call elimination on a call " 5665 "site marked musttail"); 5666 5667 // When long calls (i.e. indirect calls) are always used, calls are always 5668 // made via function pointer. If we have a function name, first translate it 5669 // into a pointer. 5670 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5671 !isTailCall) 5672 Callee = LowerGlobalAddress(Callee, DAG); 5673 5674 CallFlags CFlags( 5675 CallConv, isTailCall, isVarArg, isPatchPoint, 5676 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5677 // hasNest 5678 Subtarget.is64BitELFABI() && 5679 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5680 CLI.NoMerge); 5681 5682 if (Subtarget.isAIXABI()) 5683 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5684 InVals, CB); 5685 5686 assert(Subtarget.isSVR4ABI()); 5687 if (Subtarget.isPPC64()) 5688 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5689 InVals, CB); 5690 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5691 InVals, CB); 5692 } 5693 5694 SDValue PPCTargetLowering::LowerCall_32SVR4( 5695 SDValue Chain, SDValue Callee, CallFlags CFlags, 5696 const SmallVectorImpl<ISD::OutputArg> &Outs, 5697 const SmallVectorImpl<SDValue> &OutVals, 5698 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5699 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5700 const CallBase *CB) const { 5701 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5702 // of the 32-bit SVR4 ABI stack frame layout. 5703 5704 const CallingConv::ID CallConv = CFlags.CallConv; 5705 const bool IsVarArg = CFlags.IsVarArg; 5706 const bool IsTailCall = CFlags.IsTailCall; 5707 5708 assert((CallConv == CallingConv::C || 5709 CallConv == CallingConv::Cold || 5710 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5711 5712 const Align PtrAlign(4); 5713 5714 MachineFunction &MF = DAG.getMachineFunction(); 5715 5716 // Mark this function as potentially containing a function that contains a 5717 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5718 // and restoring the callers stack pointer in this functions epilog. This is 5719 // done because by tail calling the called function might overwrite the value 5720 // in this function's (MF) stack pointer stack slot 0(SP). 5721 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5722 CallConv == CallingConv::Fast) 5723 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5724 5725 // Count how many bytes are to be pushed on the stack, including the linkage 5726 // area, parameter list area and the part of the local variable space which 5727 // contains copies of aggregates which are passed by value. 5728 5729 // Assign locations to all of the outgoing arguments. 5730 SmallVector<CCValAssign, 16> ArgLocs; 5731 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5732 5733 // Reserve space for the linkage area on the stack. 5734 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5735 PtrAlign); 5736 if (useSoftFloat()) 5737 CCInfo.PreAnalyzeCallOperands(Outs); 5738 5739 if (IsVarArg) { 5740 // Handle fixed and variable vector arguments differently. 5741 // Fixed vector arguments go into registers as long as registers are 5742 // available. Variable vector arguments always go into memory. 5743 unsigned NumArgs = Outs.size(); 5744 5745 for (unsigned i = 0; i != NumArgs; ++i) { 5746 MVT ArgVT = Outs[i].VT; 5747 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5748 bool Result; 5749 5750 if (Outs[i].IsFixed) { 5751 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5752 CCInfo); 5753 } else { 5754 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5755 ArgFlags, CCInfo); 5756 } 5757 5758 if (Result) { 5759 #ifndef NDEBUG 5760 errs() << "Call operand #" << i << " has unhandled type " 5761 << EVT(ArgVT).getEVTString() << "\n"; 5762 #endif 5763 llvm_unreachable(nullptr); 5764 } 5765 } 5766 } else { 5767 // All arguments are treated the same. 5768 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5769 } 5770 CCInfo.clearWasPPCF128(); 5771 5772 // Assign locations to all of the outgoing aggregate by value arguments. 5773 SmallVector<CCValAssign, 16> ByValArgLocs; 5774 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5775 5776 // Reserve stack space for the allocations in CCInfo. 5777 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5778 5779 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5780 5781 // Size of the linkage area, parameter list area and the part of the local 5782 // space variable where copies of aggregates which are passed by value are 5783 // stored. 5784 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5785 5786 // Calculate by how many bytes the stack has to be adjusted in case of tail 5787 // call optimization. 5788 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5789 5790 // Adjust the stack pointer for the new arguments... 5791 // These operations are automatically eliminated by the prolog/epilog pass 5792 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5793 SDValue CallSeqStart = Chain; 5794 5795 // Load the return address and frame pointer so it can be moved somewhere else 5796 // later. 5797 SDValue LROp, FPOp; 5798 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5799 5800 // Set up a copy of the stack pointer for use loading and storing any 5801 // arguments that may not fit in the registers available for argument 5802 // passing. 5803 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5804 5805 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5806 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5807 SmallVector<SDValue, 8> MemOpChains; 5808 5809 bool seenFloatArg = false; 5810 // Walk the register/memloc assignments, inserting copies/loads. 5811 // i - Tracks the index into the list of registers allocated for the call 5812 // RealArgIdx - Tracks the index into the list of actual function arguments 5813 // j - Tracks the index into the list of byval arguments 5814 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5815 i != e; 5816 ++i, ++RealArgIdx) { 5817 CCValAssign &VA = ArgLocs[i]; 5818 SDValue Arg = OutVals[RealArgIdx]; 5819 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5820 5821 if (Flags.isByVal()) { 5822 // Argument is an aggregate which is passed by value, thus we need to 5823 // create a copy of it in the local variable space of the current stack 5824 // frame (which is the stack frame of the caller) and pass the address of 5825 // this copy to the callee. 5826 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5827 CCValAssign &ByValVA = ByValArgLocs[j++]; 5828 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5829 5830 // Memory reserved in the local variable space of the callers stack frame. 5831 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5832 5833 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5834 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5835 StackPtr, PtrOff); 5836 5837 // Create a copy of the argument in the local area of the current 5838 // stack frame. 5839 SDValue MemcpyCall = 5840 CreateCopyOfByValArgument(Arg, PtrOff, 5841 CallSeqStart.getNode()->getOperand(0), 5842 Flags, DAG, dl); 5843 5844 // This must go outside the CALLSEQ_START..END. 5845 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5846 SDLoc(MemcpyCall)); 5847 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5848 NewCallSeqStart.getNode()); 5849 Chain = CallSeqStart = NewCallSeqStart; 5850 5851 // Pass the address of the aggregate copy on the stack either in a 5852 // physical register or in the parameter list area of the current stack 5853 // frame to the callee. 5854 Arg = PtrOff; 5855 } 5856 5857 // When useCRBits() is true, there can be i1 arguments. 5858 // It is because getRegisterType(MVT::i1) => MVT::i1, 5859 // and for other integer types getRegisterType() => MVT::i32. 5860 // Extend i1 and ensure callee will get i32. 5861 if (Arg.getValueType() == MVT::i1) 5862 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5863 dl, MVT::i32, Arg); 5864 5865 if (VA.isRegLoc()) { 5866 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5867 // Put argument in a physical register. 5868 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5869 bool IsLE = Subtarget.isLittleEndian(); 5870 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5871 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5872 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5873 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5874 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5875 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5876 SVal.getValue(0))); 5877 } else 5878 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5879 } else { 5880 // Put argument in the parameter list area of the current stack frame. 5881 assert(VA.isMemLoc()); 5882 unsigned LocMemOffset = VA.getLocMemOffset(); 5883 5884 if (!IsTailCall) { 5885 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5886 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5887 StackPtr, PtrOff); 5888 5889 MemOpChains.push_back( 5890 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5891 } else { 5892 // Calculate and remember argument location. 5893 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5894 TailCallArguments); 5895 } 5896 } 5897 } 5898 5899 if (!MemOpChains.empty()) 5900 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5901 5902 // Build a sequence of copy-to-reg nodes chained together with token chain 5903 // and flag operands which copy the outgoing args into the appropriate regs. 5904 SDValue InFlag; 5905 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5906 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5907 RegsToPass[i].second, InFlag); 5908 InFlag = Chain.getValue(1); 5909 } 5910 5911 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5912 // registers. 5913 if (IsVarArg) { 5914 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5915 SDValue Ops[] = { Chain, InFlag }; 5916 5917 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5918 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5919 5920 InFlag = Chain.getValue(1); 5921 } 5922 5923 if (IsTailCall) 5924 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5925 TailCallArguments); 5926 5927 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5928 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5929 } 5930 5931 // Copy an argument into memory, being careful to do this outside the 5932 // call sequence for the call to which the argument belongs. 5933 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5934 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5935 SelectionDAG &DAG, const SDLoc &dl) const { 5936 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5937 CallSeqStart.getNode()->getOperand(0), 5938 Flags, DAG, dl); 5939 // The MEMCPY must go outside the CALLSEQ_START..END. 5940 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5941 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5942 SDLoc(MemcpyCall)); 5943 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5944 NewCallSeqStart.getNode()); 5945 return NewCallSeqStart; 5946 } 5947 5948 SDValue PPCTargetLowering::LowerCall_64SVR4( 5949 SDValue Chain, SDValue Callee, CallFlags CFlags, 5950 const SmallVectorImpl<ISD::OutputArg> &Outs, 5951 const SmallVectorImpl<SDValue> &OutVals, 5952 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5953 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5954 const CallBase *CB) const { 5955 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5956 bool isLittleEndian = Subtarget.isLittleEndian(); 5957 unsigned NumOps = Outs.size(); 5958 bool IsSibCall = false; 5959 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5960 5961 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5962 unsigned PtrByteSize = 8; 5963 5964 MachineFunction &MF = DAG.getMachineFunction(); 5965 5966 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5967 IsSibCall = true; 5968 5969 // Mark this function as potentially containing a function that contains a 5970 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5971 // and restoring the callers stack pointer in this functions epilog. This is 5972 // done because by tail calling the called function might overwrite the value 5973 // in this function's (MF) stack pointer stack slot 0(SP). 5974 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5975 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5976 5977 assert(!(IsFastCall && CFlags.IsVarArg) && 5978 "fastcc not supported on varargs functions"); 5979 5980 // Count how many bytes are to be pushed on the stack, including the linkage 5981 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5982 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5983 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5984 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5985 unsigned NumBytes = LinkageSize; 5986 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5987 5988 static const MCPhysReg GPR[] = { 5989 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5990 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5991 }; 5992 static const MCPhysReg VR[] = { 5993 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5994 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5995 }; 5996 5997 const unsigned NumGPRs = array_lengthof(GPR); 5998 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5999 const unsigned NumVRs = array_lengthof(VR); 6000 6001 // On ELFv2, we can avoid allocating the parameter area if all the arguments 6002 // can be passed to the callee in registers. 6003 // For the fast calling convention, there is another check below. 6004 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 6005 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 6006 if (!HasParameterArea) { 6007 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 6008 unsigned AvailableFPRs = NumFPRs; 6009 unsigned AvailableVRs = NumVRs; 6010 unsigned NumBytesTmp = NumBytes; 6011 for (unsigned i = 0; i != NumOps; ++i) { 6012 if (Outs[i].Flags.isNest()) continue; 6013 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 6014 PtrByteSize, LinkageSize, ParamAreaSize, 6015 NumBytesTmp, AvailableFPRs, AvailableVRs)) 6016 HasParameterArea = true; 6017 } 6018 } 6019 6020 // When using the fast calling convention, we don't provide backing for 6021 // arguments that will be in registers. 6022 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 6023 6024 // Avoid allocating parameter area for fastcc functions if all the arguments 6025 // can be passed in the registers. 6026 if (IsFastCall) 6027 HasParameterArea = false; 6028 6029 // Add up all the space actually used. 6030 for (unsigned i = 0; i != NumOps; ++i) { 6031 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6032 EVT ArgVT = Outs[i].VT; 6033 EVT OrigVT = Outs[i].ArgVT; 6034 6035 if (Flags.isNest()) 6036 continue; 6037 6038 if (IsFastCall) { 6039 if (Flags.isByVal()) { 6040 NumGPRsUsed += (Flags.getByValSize()+7)/8; 6041 if (NumGPRsUsed > NumGPRs) 6042 HasParameterArea = true; 6043 } else { 6044 switch (ArgVT.getSimpleVT().SimpleTy) { 6045 default: llvm_unreachable("Unexpected ValueType for argument!"); 6046 case MVT::i1: 6047 case MVT::i32: 6048 case MVT::i64: 6049 if (++NumGPRsUsed <= NumGPRs) 6050 continue; 6051 break; 6052 case MVT::v4i32: 6053 case MVT::v8i16: 6054 case MVT::v16i8: 6055 case MVT::v2f64: 6056 case MVT::v2i64: 6057 case MVT::v1i128: 6058 case MVT::f128: 6059 if (++NumVRsUsed <= NumVRs) 6060 continue; 6061 break; 6062 case MVT::v4f32: 6063 if (++NumVRsUsed <= NumVRs) 6064 continue; 6065 break; 6066 case MVT::f32: 6067 case MVT::f64: 6068 if (++NumFPRsUsed <= NumFPRs) 6069 continue; 6070 break; 6071 } 6072 HasParameterArea = true; 6073 } 6074 } 6075 6076 /* Respect alignment of argument on the stack. */ 6077 auto Alignement = 6078 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6079 NumBytes = alignTo(NumBytes, Alignement); 6080 6081 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6082 if (Flags.isInConsecutiveRegsLast()) 6083 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6084 } 6085 6086 unsigned NumBytesActuallyUsed = NumBytes; 6087 6088 // In the old ELFv1 ABI, 6089 // the prolog code of the callee may store up to 8 GPR argument registers to 6090 // the stack, allowing va_start to index over them in memory if its varargs. 6091 // Because we cannot tell if this is needed on the caller side, we have to 6092 // conservatively assume that it is needed. As such, make sure we have at 6093 // least enough stack space for the caller to store the 8 GPRs. 6094 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6095 // really requires memory operands, e.g. a vararg function. 6096 if (HasParameterArea) 6097 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6098 else 6099 NumBytes = LinkageSize; 6100 6101 // Tail call needs the stack to be aligned. 6102 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6103 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6104 6105 int SPDiff = 0; 6106 6107 // Calculate by how many bytes the stack has to be adjusted in case of tail 6108 // call optimization. 6109 if (!IsSibCall) 6110 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6111 6112 // To protect arguments on the stack from being clobbered in a tail call, 6113 // force all the loads to happen before doing any other lowering. 6114 if (CFlags.IsTailCall) 6115 Chain = DAG.getStackArgumentTokenFactor(Chain); 6116 6117 // Adjust the stack pointer for the new arguments... 6118 // These operations are automatically eliminated by the prolog/epilog pass 6119 if (!IsSibCall) 6120 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6121 SDValue CallSeqStart = Chain; 6122 6123 // Load the return address and frame pointer so it can be move somewhere else 6124 // later. 6125 SDValue LROp, FPOp; 6126 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6127 6128 // Set up a copy of the stack pointer for use loading and storing any 6129 // arguments that may not fit in the registers available for argument 6130 // passing. 6131 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6132 6133 // Figure out which arguments are going to go in registers, and which in 6134 // memory. Also, if this is a vararg function, floating point operations 6135 // must be stored to our stack, and loaded into integer regs as well, if 6136 // any integer regs are available for argument passing. 6137 unsigned ArgOffset = LinkageSize; 6138 6139 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6140 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6141 6142 SmallVector<SDValue, 8> MemOpChains; 6143 for (unsigned i = 0; i != NumOps; ++i) { 6144 SDValue Arg = OutVals[i]; 6145 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6146 EVT ArgVT = Outs[i].VT; 6147 EVT OrigVT = Outs[i].ArgVT; 6148 6149 // PtrOff will be used to store the current argument to the stack if a 6150 // register cannot be found for it. 6151 SDValue PtrOff; 6152 6153 // We re-align the argument offset for each argument, except when using the 6154 // fast calling convention, when we need to make sure we do that only when 6155 // we'll actually use a stack slot. 6156 auto ComputePtrOff = [&]() { 6157 /* Respect alignment of argument on the stack. */ 6158 auto Alignment = 6159 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6160 ArgOffset = alignTo(ArgOffset, Alignment); 6161 6162 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6163 6164 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6165 }; 6166 6167 if (!IsFastCall) { 6168 ComputePtrOff(); 6169 6170 /* Compute GPR index associated with argument offset. */ 6171 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6172 GPR_idx = std::min(GPR_idx, NumGPRs); 6173 } 6174 6175 // Promote integers to 64-bit values. 6176 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6177 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6178 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6179 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6180 } 6181 6182 // FIXME memcpy is used way more than necessary. Correctness first. 6183 // Note: "by value" is code for passing a structure by value, not 6184 // basic types. 6185 if (Flags.isByVal()) { 6186 // Note: Size includes alignment padding, so 6187 // struct x { short a; char b; } 6188 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6189 // These are the proper values we need for right-justifying the 6190 // aggregate in a parameter register. 6191 unsigned Size = Flags.getByValSize(); 6192 6193 // An empty aggregate parameter takes up no storage and no 6194 // registers. 6195 if (Size == 0) 6196 continue; 6197 6198 if (IsFastCall) 6199 ComputePtrOff(); 6200 6201 // All aggregates smaller than 8 bytes must be passed right-justified. 6202 if (Size==1 || Size==2 || Size==4) { 6203 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6204 if (GPR_idx != NumGPRs) { 6205 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6206 MachinePointerInfo(), VT); 6207 MemOpChains.push_back(Load.getValue(1)); 6208 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6209 6210 ArgOffset += PtrByteSize; 6211 continue; 6212 } 6213 } 6214 6215 if (GPR_idx == NumGPRs && Size < 8) { 6216 SDValue AddPtr = PtrOff; 6217 if (!isLittleEndian) { 6218 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6219 PtrOff.getValueType()); 6220 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6221 } 6222 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6223 CallSeqStart, 6224 Flags, DAG, dl); 6225 ArgOffset += PtrByteSize; 6226 continue; 6227 } 6228 // Copy the object to parameter save area if it can not be entirely passed 6229 // by registers. 6230 // FIXME: we only need to copy the parts which need to be passed in 6231 // parameter save area. For the parts passed by registers, we don't need 6232 // to copy them to the stack although we need to allocate space for them 6233 // in parameter save area. 6234 if ((NumGPRs - GPR_idx) * PtrByteSize < Size) 6235 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6236 CallSeqStart, 6237 Flags, DAG, dl); 6238 6239 // When a register is available, pass a small aggregate right-justified. 6240 if (Size < 8 && GPR_idx != NumGPRs) { 6241 // The easiest way to get this right-justified in a register 6242 // is to copy the structure into the rightmost portion of a 6243 // local variable slot, then load the whole slot into the 6244 // register. 6245 // FIXME: The memcpy seems to produce pretty awful code for 6246 // small aggregates, particularly for packed ones. 6247 // FIXME: It would be preferable to use the slot in the 6248 // parameter save area instead of a new local variable. 6249 SDValue AddPtr = PtrOff; 6250 if (!isLittleEndian) { 6251 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6252 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6253 } 6254 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6255 CallSeqStart, 6256 Flags, DAG, dl); 6257 6258 // Load the slot into the register. 6259 SDValue Load = 6260 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6261 MemOpChains.push_back(Load.getValue(1)); 6262 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6263 6264 // Done with this argument. 6265 ArgOffset += PtrByteSize; 6266 continue; 6267 } 6268 6269 // For aggregates larger than PtrByteSize, copy the pieces of the 6270 // object that fit into registers from the parameter save area. 6271 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6272 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6273 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6274 if (GPR_idx != NumGPRs) { 6275 unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8; 6276 EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits); 6277 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg, 6278 MachinePointerInfo(), ObjType); 6279 6280 MemOpChains.push_back(Load.getValue(1)); 6281 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6282 ArgOffset += PtrByteSize; 6283 } else { 6284 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6285 break; 6286 } 6287 } 6288 continue; 6289 } 6290 6291 switch (Arg.getSimpleValueType().SimpleTy) { 6292 default: llvm_unreachable("Unexpected ValueType for argument!"); 6293 case MVT::i1: 6294 case MVT::i32: 6295 case MVT::i64: 6296 if (Flags.isNest()) { 6297 // The 'nest' parameter, if any, is passed in R11. 6298 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6299 break; 6300 } 6301 6302 // These can be scalar arguments or elements of an integer array type 6303 // passed directly. Clang may use those instead of "byval" aggregate 6304 // types to avoid forcing arguments to memory unnecessarily. 6305 if (GPR_idx != NumGPRs) { 6306 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6307 } else { 6308 if (IsFastCall) 6309 ComputePtrOff(); 6310 6311 assert(HasParameterArea && 6312 "Parameter area must exist to pass an argument in memory."); 6313 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6314 true, CFlags.IsTailCall, false, MemOpChains, 6315 TailCallArguments, dl); 6316 if (IsFastCall) 6317 ArgOffset += PtrByteSize; 6318 } 6319 if (!IsFastCall) 6320 ArgOffset += PtrByteSize; 6321 break; 6322 case MVT::f32: 6323 case MVT::f64: { 6324 // These can be scalar arguments or elements of a float array type 6325 // passed directly. The latter are used to implement ELFv2 homogenous 6326 // float aggregates. 6327 6328 // Named arguments go into FPRs first, and once they overflow, the 6329 // remaining arguments go into GPRs and then the parameter save area. 6330 // Unnamed arguments for vararg functions always go to GPRs and 6331 // then the parameter save area. For now, put all arguments to vararg 6332 // routines always in both locations (FPR *and* GPR or stack slot). 6333 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6334 bool NeededLoad = false; 6335 6336 // First load the argument into the next available FPR. 6337 if (FPR_idx != NumFPRs) 6338 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6339 6340 // Next, load the argument into GPR or stack slot if needed. 6341 if (!NeedGPROrStack) 6342 ; 6343 else if (GPR_idx != NumGPRs && !IsFastCall) { 6344 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6345 // once we support fp <-> gpr moves. 6346 6347 // In the non-vararg case, this can only ever happen in the 6348 // presence of f32 array types, since otherwise we never run 6349 // out of FPRs before running out of GPRs. 6350 SDValue ArgVal; 6351 6352 // Double values are always passed in a single GPR. 6353 if (Arg.getValueType() != MVT::f32) { 6354 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6355 6356 // Non-array float values are extended and passed in a GPR. 6357 } else if (!Flags.isInConsecutiveRegs()) { 6358 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6359 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6360 6361 // If we have an array of floats, we collect every odd element 6362 // together with its predecessor into one GPR. 6363 } else if (ArgOffset % PtrByteSize != 0) { 6364 SDValue Lo, Hi; 6365 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6366 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6367 if (!isLittleEndian) 6368 std::swap(Lo, Hi); 6369 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6370 6371 // The final element, if even, goes into the first half of a GPR. 6372 } else if (Flags.isInConsecutiveRegsLast()) { 6373 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6374 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6375 if (!isLittleEndian) 6376 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6377 DAG.getConstant(32, dl, MVT::i32)); 6378 6379 // Non-final even elements are skipped; they will be handled 6380 // together the with subsequent argument on the next go-around. 6381 } else 6382 ArgVal = SDValue(); 6383 6384 if (ArgVal.getNode()) 6385 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6386 } else { 6387 if (IsFastCall) 6388 ComputePtrOff(); 6389 6390 // Single-precision floating-point values are mapped to the 6391 // second (rightmost) word of the stack doubleword. 6392 if (Arg.getValueType() == MVT::f32 && 6393 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6394 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6395 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6396 } 6397 6398 assert(HasParameterArea && 6399 "Parameter area must exist to pass an argument in memory."); 6400 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6401 true, CFlags.IsTailCall, false, MemOpChains, 6402 TailCallArguments, dl); 6403 6404 NeededLoad = true; 6405 } 6406 // When passing an array of floats, the array occupies consecutive 6407 // space in the argument area; only round up to the next doubleword 6408 // at the end of the array. Otherwise, each float takes 8 bytes. 6409 if (!IsFastCall || NeededLoad) { 6410 ArgOffset += (Arg.getValueType() == MVT::f32 && 6411 Flags.isInConsecutiveRegs()) ? 4 : 8; 6412 if (Flags.isInConsecutiveRegsLast()) 6413 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6414 } 6415 break; 6416 } 6417 case MVT::v4f32: 6418 case MVT::v4i32: 6419 case MVT::v8i16: 6420 case MVT::v16i8: 6421 case MVT::v2f64: 6422 case MVT::v2i64: 6423 case MVT::v1i128: 6424 case MVT::f128: 6425 // These can be scalar arguments or elements of a vector array type 6426 // passed directly. The latter are used to implement ELFv2 homogenous 6427 // vector aggregates. 6428 6429 // For a varargs call, named arguments go into VRs or on the stack as 6430 // usual; unnamed arguments always go to the stack or the corresponding 6431 // GPRs when within range. For now, we always put the value in both 6432 // locations (or even all three). 6433 if (CFlags.IsVarArg) { 6434 assert(HasParameterArea && 6435 "Parameter area must exist if we have a varargs call."); 6436 // We could elide this store in the case where the object fits 6437 // entirely in R registers. Maybe later. 6438 SDValue Store = 6439 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6440 MemOpChains.push_back(Store); 6441 if (VR_idx != NumVRs) { 6442 SDValue Load = 6443 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6444 MemOpChains.push_back(Load.getValue(1)); 6445 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6446 } 6447 ArgOffset += 16; 6448 for (unsigned i=0; i<16; i+=PtrByteSize) { 6449 if (GPR_idx == NumGPRs) 6450 break; 6451 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6452 DAG.getConstant(i, dl, PtrVT)); 6453 SDValue Load = 6454 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6455 MemOpChains.push_back(Load.getValue(1)); 6456 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6457 } 6458 break; 6459 } 6460 6461 // Non-varargs Altivec params go into VRs or on the stack. 6462 if (VR_idx != NumVRs) { 6463 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6464 } else { 6465 if (IsFastCall) 6466 ComputePtrOff(); 6467 6468 assert(HasParameterArea && 6469 "Parameter area must exist to pass an argument in memory."); 6470 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6471 true, CFlags.IsTailCall, true, MemOpChains, 6472 TailCallArguments, dl); 6473 if (IsFastCall) 6474 ArgOffset += 16; 6475 } 6476 6477 if (!IsFastCall) 6478 ArgOffset += 16; 6479 break; 6480 } 6481 } 6482 6483 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6484 "mismatch in size of parameter area"); 6485 (void)NumBytesActuallyUsed; 6486 6487 if (!MemOpChains.empty()) 6488 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6489 6490 // Check if this is an indirect call (MTCTR/BCTRL). 6491 // See prepareDescriptorIndirectCall and buildCallOperands for more 6492 // information about calls through function pointers in the 64-bit SVR4 ABI. 6493 if (CFlags.IsIndirect) { 6494 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6495 // caller in the TOC save area. 6496 if (isTOCSaveRestoreRequired(Subtarget)) { 6497 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6498 // Load r2 into a virtual register and store it to the TOC save area. 6499 setUsesTOCBasePtr(DAG); 6500 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6501 // TOC save area offset. 6502 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6503 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6504 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6505 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6506 MachinePointerInfo::getStack( 6507 DAG.getMachineFunction(), TOCSaveOffset)); 6508 } 6509 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6510 // This does not mean the MTCTR instruction must use R12; it's easier 6511 // to model this as an extra parameter, so do that. 6512 if (isELFv2ABI && !CFlags.IsPatchPoint) 6513 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6514 } 6515 6516 // Build a sequence of copy-to-reg nodes chained together with token chain 6517 // and flag operands which copy the outgoing args into the appropriate regs. 6518 SDValue InFlag; 6519 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6520 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6521 RegsToPass[i].second, InFlag); 6522 InFlag = Chain.getValue(1); 6523 } 6524 6525 if (CFlags.IsTailCall && !IsSibCall) 6526 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6527 TailCallArguments); 6528 6529 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6530 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6531 } 6532 6533 // Returns true when the shadow of a general purpose argument register 6534 // in the parameter save area is aligned to at least 'RequiredAlign'. 6535 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6536 assert(RequiredAlign.value() <= 16 && 6537 "Required alignment greater than stack alignment."); 6538 switch (Reg) { 6539 default: 6540 report_fatal_error("called on invalid register."); 6541 case PPC::R5: 6542 case PPC::R9: 6543 case PPC::X3: 6544 case PPC::X5: 6545 case PPC::X7: 6546 case PPC::X9: 6547 // These registers are 16 byte aligned which is the most strict aligment 6548 // we can support. 6549 return true; 6550 case PPC::R3: 6551 case PPC::R7: 6552 case PPC::X4: 6553 case PPC::X6: 6554 case PPC::X8: 6555 case PPC::X10: 6556 // The shadow of these registers in the PSA is 8 byte aligned. 6557 return RequiredAlign <= 8; 6558 case PPC::R4: 6559 case PPC::R6: 6560 case PPC::R8: 6561 case PPC::R10: 6562 return RequiredAlign <= 4; 6563 } 6564 } 6565 6566 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6567 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6568 CCState &S) { 6569 AIXCCState &State = static_cast<AIXCCState &>(S); 6570 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6571 State.getMachineFunction().getSubtarget()); 6572 const bool IsPPC64 = Subtarget.isPPC64(); 6573 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6574 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6575 6576 if (ValVT == MVT::f128) 6577 report_fatal_error("f128 is unimplemented on AIX."); 6578 6579 if (ArgFlags.isNest()) 6580 report_fatal_error("Nest arguments are unimplemented."); 6581 6582 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6583 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6584 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6585 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6586 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6587 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6588 6589 static const MCPhysReg VR[] = {// Vector registers. 6590 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6591 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6592 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6593 6594 if (ArgFlags.isByVal()) { 6595 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6596 report_fatal_error("Pass-by-value arguments with alignment greater than " 6597 "register width are not supported."); 6598 6599 const unsigned ByValSize = ArgFlags.getByValSize(); 6600 6601 // An empty aggregate parameter takes up no storage and no registers, 6602 // but needs a MemLoc for a stack slot for the formal arguments side. 6603 if (ByValSize == 0) { 6604 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6605 State.getNextStackOffset(), RegVT, 6606 LocInfo)); 6607 return false; 6608 } 6609 6610 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6611 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6612 for (const unsigned E = Offset + StackSize; Offset < E; 6613 Offset += PtrAlign.value()) { 6614 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6615 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6616 else { 6617 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6618 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6619 LocInfo)); 6620 break; 6621 } 6622 } 6623 return false; 6624 } 6625 6626 // Arguments always reserve parameter save area. 6627 switch (ValVT.SimpleTy) { 6628 default: 6629 report_fatal_error("Unhandled value type for argument."); 6630 case MVT::i64: 6631 // i64 arguments should have been split to i32 for PPC32. 6632 assert(IsPPC64 && "PPC32 should have split i64 values."); 6633 LLVM_FALLTHROUGH; 6634 case MVT::i1: 6635 case MVT::i32: { 6636 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6637 // AIX integer arguments are always passed in register width. 6638 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6639 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6640 : CCValAssign::LocInfo::ZExt; 6641 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6642 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6643 else 6644 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6645 6646 return false; 6647 } 6648 case MVT::f32: 6649 case MVT::f64: { 6650 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6651 const unsigned StoreSize = LocVT.getStoreSize(); 6652 // Floats are always 4-byte aligned in the PSA on AIX. 6653 // This includes f64 in 64-bit mode for ABI compatibility. 6654 const unsigned Offset = 6655 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6656 unsigned FReg = State.AllocateReg(FPR); 6657 if (FReg) 6658 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6659 6660 // Reserve and initialize GPRs or initialize the PSA as required. 6661 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6662 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6663 assert(FReg && "An FPR should be available when a GPR is reserved."); 6664 if (State.isVarArg()) { 6665 // Successfully reserved GPRs are only initialized for vararg calls. 6666 // Custom handling is required for: 6667 // f64 in PPC32 needs to be split into 2 GPRs. 6668 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6669 State.addLoc( 6670 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6671 } 6672 } else { 6673 // If there are insufficient GPRs, the PSA needs to be initialized. 6674 // Initialization occurs even if an FPR was initialized for 6675 // compatibility with the AIX XL compiler. The full memory for the 6676 // argument will be initialized even if a prior word is saved in GPR. 6677 // A custom memLoc is used when the argument also passes in FPR so 6678 // that the callee handling can skip over it easily. 6679 State.addLoc( 6680 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6681 LocInfo) 6682 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6683 break; 6684 } 6685 } 6686 6687 return false; 6688 } 6689 case MVT::v4f32: 6690 case MVT::v4i32: 6691 case MVT::v8i16: 6692 case MVT::v16i8: 6693 case MVT::v2i64: 6694 case MVT::v2f64: 6695 case MVT::v1i128: { 6696 const unsigned VecSize = 16; 6697 const Align VecAlign(VecSize); 6698 6699 if (!State.isVarArg()) { 6700 // If there are vector registers remaining we don't consume any stack 6701 // space. 6702 if (unsigned VReg = State.AllocateReg(VR)) { 6703 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6704 return false; 6705 } 6706 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6707 // might be allocated in the portion of the PSA that is shadowed by the 6708 // GPRs. 6709 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6710 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6711 return false; 6712 } 6713 6714 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6715 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6716 6717 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6718 // Burn any underaligned registers and their shadowed stack space until 6719 // we reach the required alignment. 6720 while (NextRegIndex != GPRs.size() && 6721 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6722 // Shadow allocate register and its stack shadow. 6723 unsigned Reg = State.AllocateReg(GPRs); 6724 State.AllocateStack(PtrSize, PtrAlign); 6725 assert(Reg && "Allocating register unexpectedly failed."); 6726 (void)Reg; 6727 NextRegIndex = State.getFirstUnallocated(GPRs); 6728 } 6729 6730 // Vectors that are passed as fixed arguments are handled differently. 6731 // They are passed in VRs if any are available (unlike arguments passed 6732 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6733 // functions) 6734 if (State.isFixed(ValNo)) { 6735 if (unsigned VReg = State.AllocateReg(VR)) { 6736 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6737 // Shadow allocate GPRs and stack space even though we pass in a VR. 6738 for (unsigned I = 0; I != VecSize; I += PtrSize) 6739 State.AllocateReg(GPRs); 6740 State.AllocateStack(VecSize, VecAlign); 6741 return false; 6742 } 6743 // No vector registers remain so pass on the stack. 6744 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6745 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6746 return false; 6747 } 6748 6749 // If all GPRS are consumed then we pass the argument fully on the stack. 6750 if (NextRegIndex == GPRs.size()) { 6751 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6752 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6753 return false; 6754 } 6755 6756 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6757 // half of the argument, and then need to pass the remaining half on the 6758 // stack. 6759 if (GPRs[NextRegIndex] == PPC::R9) { 6760 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6761 State.addLoc( 6762 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6763 6764 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6765 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6766 assert(FirstReg && SecondReg && 6767 "Allocating R9 or R10 unexpectedly failed."); 6768 State.addLoc( 6769 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6770 State.addLoc( 6771 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6772 return false; 6773 } 6774 6775 // We have enough GPRs to fully pass the vector argument, and we have 6776 // already consumed any underaligned registers. Start with the custom 6777 // MemLoc and then the custom RegLocs. 6778 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6779 State.addLoc( 6780 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6781 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6782 const unsigned Reg = State.AllocateReg(GPRs); 6783 assert(Reg && "Failed to allocated register for vararg vector argument"); 6784 State.addLoc( 6785 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6786 } 6787 return false; 6788 } 6789 } 6790 return true; 6791 } 6792 6793 // So far, this function is only used by LowerFormalArguments_AIX() 6794 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6795 bool IsPPC64, 6796 bool HasP8Vector, 6797 bool HasVSX) { 6798 assert((IsPPC64 || SVT != MVT::i64) && 6799 "i64 should have been split for 32-bit codegen."); 6800 6801 switch (SVT) { 6802 default: 6803 report_fatal_error("Unexpected value type for formal argument"); 6804 case MVT::i1: 6805 case MVT::i32: 6806 case MVT::i64: 6807 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6808 case MVT::f32: 6809 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6810 case MVT::f64: 6811 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6812 case MVT::v4f32: 6813 case MVT::v4i32: 6814 case MVT::v8i16: 6815 case MVT::v16i8: 6816 case MVT::v2i64: 6817 case MVT::v2f64: 6818 case MVT::v1i128: 6819 return &PPC::VRRCRegClass; 6820 } 6821 } 6822 6823 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6824 SelectionDAG &DAG, SDValue ArgValue, 6825 MVT LocVT, const SDLoc &dl) { 6826 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6827 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6828 6829 if (Flags.isSExt()) 6830 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6831 DAG.getValueType(ValVT)); 6832 else if (Flags.isZExt()) 6833 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6834 DAG.getValueType(ValVT)); 6835 6836 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6837 } 6838 6839 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6840 const unsigned LASize = FL->getLinkageSize(); 6841 6842 if (PPC::GPRCRegClass.contains(Reg)) { 6843 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6844 "Reg must be a valid argument register!"); 6845 return LASize + 4 * (Reg - PPC::R3); 6846 } 6847 6848 if (PPC::G8RCRegClass.contains(Reg)) { 6849 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6850 "Reg must be a valid argument register!"); 6851 return LASize + 8 * (Reg - PPC::X3); 6852 } 6853 6854 llvm_unreachable("Only general purpose registers expected."); 6855 } 6856 6857 // AIX ABI Stack Frame Layout: 6858 // 6859 // Low Memory +--------------------------------------------+ 6860 // SP +---> | Back chain | ---+ 6861 // | +--------------------------------------------+ | 6862 // | | Saved Condition Register | | 6863 // | +--------------------------------------------+ | 6864 // | | Saved Linkage Register | | 6865 // | +--------------------------------------------+ | Linkage Area 6866 // | | Reserved for compilers | | 6867 // | +--------------------------------------------+ | 6868 // | | Reserved for binders | | 6869 // | +--------------------------------------------+ | 6870 // | | Saved TOC pointer | ---+ 6871 // | +--------------------------------------------+ 6872 // | | Parameter save area | 6873 // | +--------------------------------------------+ 6874 // | | Alloca space | 6875 // | +--------------------------------------------+ 6876 // | | Local variable space | 6877 // | +--------------------------------------------+ 6878 // | | Float/int conversion temporary | 6879 // | +--------------------------------------------+ 6880 // | | Save area for AltiVec registers | 6881 // | +--------------------------------------------+ 6882 // | | AltiVec alignment padding | 6883 // | +--------------------------------------------+ 6884 // | | Save area for VRSAVE register | 6885 // | +--------------------------------------------+ 6886 // | | Save area for General Purpose registers | 6887 // | +--------------------------------------------+ 6888 // | | Save area for Floating Point registers | 6889 // | +--------------------------------------------+ 6890 // +---- | Back chain | 6891 // High Memory +--------------------------------------------+ 6892 // 6893 // Specifications: 6894 // AIX 7.2 Assembler Language Reference 6895 // Subroutine linkage convention 6896 6897 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6898 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6899 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6900 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6901 6902 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6903 CallConv == CallingConv::Fast) && 6904 "Unexpected calling convention!"); 6905 6906 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6907 report_fatal_error("Tail call support is unimplemented on AIX."); 6908 6909 if (useSoftFloat()) 6910 report_fatal_error("Soft float support is unimplemented on AIX."); 6911 6912 const PPCSubtarget &Subtarget = 6913 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6914 6915 const bool IsPPC64 = Subtarget.isPPC64(); 6916 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6917 6918 // Assign locations to all of the incoming arguments. 6919 SmallVector<CCValAssign, 16> ArgLocs; 6920 MachineFunction &MF = DAG.getMachineFunction(); 6921 MachineFrameInfo &MFI = MF.getFrameInfo(); 6922 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6923 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6924 6925 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6926 // Reserve space for the linkage area on the stack. 6927 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6928 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6929 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6930 6931 SmallVector<SDValue, 8> MemOps; 6932 6933 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6934 CCValAssign &VA = ArgLocs[I++]; 6935 MVT LocVT = VA.getLocVT(); 6936 MVT ValVT = VA.getValVT(); 6937 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6938 // For compatibility with the AIX XL compiler, the float args in the 6939 // parameter save area are initialized even if the argument is available 6940 // in register. The caller is required to initialize both the register 6941 // and memory, however, the callee can choose to expect it in either. 6942 // The memloc is dismissed here because the argument is retrieved from 6943 // the register. 6944 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6945 continue; 6946 6947 auto HandleMemLoc = [&]() { 6948 const unsigned LocSize = LocVT.getStoreSize(); 6949 const unsigned ValSize = ValVT.getStoreSize(); 6950 assert((ValSize <= LocSize) && 6951 "Object size is larger than size of MemLoc"); 6952 int CurArgOffset = VA.getLocMemOffset(); 6953 // Objects are right-justified because AIX is big-endian. 6954 if (LocSize > ValSize) 6955 CurArgOffset += LocSize - ValSize; 6956 // Potential tail calls could cause overwriting of argument stack slots. 6957 const bool IsImmutable = 6958 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6959 (CallConv == CallingConv::Fast)); 6960 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6961 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6962 SDValue ArgValue = 6963 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6964 InVals.push_back(ArgValue); 6965 }; 6966 6967 // Vector arguments to VaArg functions are passed both on the stack, and 6968 // in any available GPRs. Load the value from the stack and add the GPRs 6969 // as live ins. 6970 if (VA.isMemLoc() && VA.needsCustom()) { 6971 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6972 assert(isVarArg && "Only use custom memloc for vararg."); 6973 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6974 // matching custom RegLocs. 6975 const unsigned OriginalValNo = VA.getValNo(); 6976 (void)OriginalValNo; 6977 6978 auto HandleCustomVecRegLoc = [&]() { 6979 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6980 "Missing custom RegLoc."); 6981 VA = ArgLocs[I++]; 6982 assert(VA.getValVT().isVector() && 6983 "Unexpected Val type for custom RegLoc."); 6984 assert(VA.getValNo() == OriginalValNo && 6985 "ValNo mismatch between custom MemLoc and RegLoc."); 6986 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6987 MF.addLiveIn(VA.getLocReg(), 6988 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6989 Subtarget.hasVSX())); 6990 }; 6991 6992 HandleMemLoc(); 6993 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6994 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6995 // R10. 6996 HandleCustomVecRegLoc(); 6997 HandleCustomVecRegLoc(); 6998 6999 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 7000 // we passed the vector in R5, R6, R7 and R8. 7001 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 7002 assert(!IsPPC64 && 7003 "Only 2 custom RegLocs expected for 64-bit codegen."); 7004 HandleCustomVecRegLoc(); 7005 HandleCustomVecRegLoc(); 7006 } 7007 7008 continue; 7009 } 7010 7011 if (VA.isRegLoc()) { 7012 if (VA.getValVT().isScalarInteger()) 7013 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7014 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 7015 switch (VA.getValVT().SimpleTy) { 7016 default: 7017 report_fatal_error("Unhandled value type for argument."); 7018 case MVT::f32: 7019 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 7020 break; 7021 case MVT::f64: 7022 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 7023 break; 7024 } 7025 } else if (VA.getValVT().isVector()) { 7026 switch (VA.getValVT().SimpleTy) { 7027 default: 7028 report_fatal_error("Unhandled value type for argument."); 7029 case MVT::v16i8: 7030 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 7031 break; 7032 case MVT::v8i16: 7033 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 7034 break; 7035 case MVT::v4i32: 7036 case MVT::v2i64: 7037 case MVT::v1i128: 7038 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 7039 break; 7040 case MVT::v4f32: 7041 case MVT::v2f64: 7042 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 7043 break; 7044 } 7045 } 7046 } 7047 7048 if (Flags.isByVal() && VA.isMemLoc()) { 7049 const unsigned Size = 7050 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7051 PtrByteSize); 7052 const int FI = MF.getFrameInfo().CreateFixedObject( 7053 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7054 /* IsAliased */ true); 7055 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7056 InVals.push_back(FIN); 7057 7058 continue; 7059 } 7060 7061 if (Flags.isByVal()) { 7062 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7063 7064 const MCPhysReg ArgReg = VA.getLocReg(); 7065 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7066 7067 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7068 report_fatal_error("Over aligned byvals not supported yet."); 7069 7070 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7071 const int FI = MF.getFrameInfo().CreateFixedObject( 7072 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7073 /* IsAliased */ true); 7074 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7075 InVals.push_back(FIN); 7076 7077 // Add live ins for all the RegLocs for the same ByVal. 7078 const TargetRegisterClass *RegClass = 7079 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7080 7081 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7082 unsigned Offset) { 7083 const Register VReg = MF.addLiveIn(PhysReg, RegClass); 7084 // Since the callers side has left justified the aggregate in the 7085 // register, we can simply store the entire register into the stack 7086 // slot. 7087 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7088 // The store to the fixedstack object is needed becuase accessing a 7089 // field of the ByVal will use a gep and load. Ideally we will optimize 7090 // to extracting the value from the register directly, and elide the 7091 // stores when the arguments address is not taken, but that will need to 7092 // be future work. 7093 SDValue Store = DAG.getStore( 7094 CopyFrom.getValue(1), dl, CopyFrom, 7095 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7096 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7097 7098 MemOps.push_back(Store); 7099 }; 7100 7101 unsigned Offset = 0; 7102 HandleRegLoc(VA.getLocReg(), Offset); 7103 Offset += PtrByteSize; 7104 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7105 Offset += PtrByteSize) { 7106 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7107 "RegLocs should be for ByVal argument."); 7108 7109 const CCValAssign RL = ArgLocs[I++]; 7110 HandleRegLoc(RL.getLocReg(), Offset); 7111 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7112 } 7113 7114 if (Offset != StackSize) { 7115 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7116 "Expected MemLoc for remaining bytes."); 7117 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7118 // Consume the MemLoc.The InVal has already been emitted, so nothing 7119 // more needs to be done. 7120 ++I; 7121 } 7122 7123 continue; 7124 } 7125 7126 if (VA.isRegLoc() && !VA.needsCustom()) { 7127 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7128 Register VReg = 7129 MF.addLiveIn(VA.getLocReg(), 7130 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7131 Subtarget.hasVSX())); 7132 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7133 if (ValVT.isScalarInteger() && 7134 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7135 ArgValue = 7136 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7137 } 7138 InVals.push_back(ArgValue); 7139 continue; 7140 } 7141 if (VA.isMemLoc()) { 7142 HandleMemLoc(); 7143 continue; 7144 } 7145 } 7146 7147 // On AIX a minimum of 8 words is saved to the parameter save area. 7148 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7149 // Area that is at least reserved in the caller of this function. 7150 unsigned CallerReservedArea = 7151 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7152 7153 // Set the size that is at least reserved in caller of this function. Tail 7154 // call optimized function's reserved stack space needs to be aligned so 7155 // that taking the difference between two stack areas will result in an 7156 // aligned stack. 7157 CallerReservedArea = 7158 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7159 FuncInfo->setMinReservedArea(CallerReservedArea); 7160 7161 if (isVarArg) { 7162 FuncInfo->setVarArgsFrameIndex( 7163 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7164 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7165 7166 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7167 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7168 7169 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7170 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7171 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7172 7173 // The fixed integer arguments of a variadic function are stored to the 7174 // VarArgsFrameIndex on the stack so that they may be loaded by 7175 // dereferencing the result of va_next. 7176 for (unsigned GPRIndex = 7177 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7178 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7179 7180 const Register VReg = 7181 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7182 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7183 7184 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7185 SDValue Store = 7186 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7187 MemOps.push_back(Store); 7188 // Increment the address for the next argument to store. 7189 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7190 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7191 } 7192 } 7193 7194 if (!MemOps.empty()) 7195 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7196 7197 return Chain; 7198 } 7199 7200 SDValue PPCTargetLowering::LowerCall_AIX( 7201 SDValue Chain, SDValue Callee, CallFlags CFlags, 7202 const SmallVectorImpl<ISD::OutputArg> &Outs, 7203 const SmallVectorImpl<SDValue> &OutVals, 7204 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7205 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7206 const CallBase *CB) const { 7207 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7208 // AIX ABI stack frame layout. 7209 7210 assert((CFlags.CallConv == CallingConv::C || 7211 CFlags.CallConv == CallingConv::Cold || 7212 CFlags.CallConv == CallingConv::Fast) && 7213 "Unexpected calling convention!"); 7214 7215 if (CFlags.IsPatchPoint) 7216 report_fatal_error("This call type is unimplemented on AIX."); 7217 7218 const PPCSubtarget& Subtarget = 7219 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7220 7221 MachineFunction &MF = DAG.getMachineFunction(); 7222 SmallVector<CCValAssign, 16> ArgLocs; 7223 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7224 *DAG.getContext()); 7225 7226 // Reserve space for the linkage save area (LSA) on the stack. 7227 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7228 // [SP][CR][LR][2 x reserved][TOC]. 7229 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7230 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7231 const bool IsPPC64 = Subtarget.isPPC64(); 7232 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7233 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7234 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7235 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7236 7237 // The prolog code of the callee may store up to 8 GPR argument registers to 7238 // the stack, allowing va_start to index over them in memory if the callee 7239 // is variadic. 7240 // Because we cannot tell if this is needed on the caller side, we have to 7241 // conservatively assume that it is needed. As such, make sure we have at 7242 // least enough stack space for the caller to store the 8 GPRs. 7243 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7244 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7245 CCInfo.getNextStackOffset()); 7246 7247 // Adjust the stack pointer for the new arguments... 7248 // These operations are automatically eliminated by the prolog/epilog pass. 7249 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7250 SDValue CallSeqStart = Chain; 7251 7252 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7253 SmallVector<SDValue, 8> MemOpChains; 7254 7255 // Set up a copy of the stack pointer for loading and storing any 7256 // arguments that may not fit in the registers available for argument 7257 // passing. 7258 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7259 : DAG.getRegister(PPC::R1, MVT::i32); 7260 7261 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7262 const unsigned ValNo = ArgLocs[I].getValNo(); 7263 SDValue Arg = OutVals[ValNo]; 7264 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7265 7266 if (Flags.isByVal()) { 7267 const unsigned ByValSize = Flags.getByValSize(); 7268 7269 // Nothing to do for zero-sized ByVals on the caller side. 7270 if (!ByValSize) { 7271 ++I; 7272 continue; 7273 } 7274 7275 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7276 return DAG.getExtLoad( 7277 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7278 (LoadOffset != 0) 7279 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7280 : Arg, 7281 MachinePointerInfo(), VT); 7282 }; 7283 7284 unsigned LoadOffset = 0; 7285 7286 // Initialize registers, which are fully occupied by the by-val argument. 7287 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7288 SDValue Load = GetLoad(PtrVT, LoadOffset); 7289 MemOpChains.push_back(Load.getValue(1)); 7290 LoadOffset += PtrByteSize; 7291 const CCValAssign &ByValVA = ArgLocs[I++]; 7292 assert(ByValVA.getValNo() == ValNo && 7293 "Unexpected location for pass-by-value argument."); 7294 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7295 } 7296 7297 if (LoadOffset == ByValSize) 7298 continue; 7299 7300 // There must be one more loc to handle the remainder. 7301 assert(ArgLocs[I].getValNo() == ValNo && 7302 "Expected additional location for by-value argument."); 7303 7304 if (ArgLocs[I].isMemLoc()) { 7305 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7306 const CCValAssign &ByValVA = ArgLocs[I++]; 7307 ISD::ArgFlagsTy MemcpyFlags = Flags; 7308 // Only memcpy the bytes that don't pass in register. 7309 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7310 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7311 (LoadOffset != 0) 7312 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7313 : Arg, 7314 DAG.getObjectPtrOffset(dl, StackPtr, 7315 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7316 CallSeqStart, MemcpyFlags, DAG, dl); 7317 continue; 7318 } 7319 7320 // Initialize the final register residue. 7321 // Any residue that occupies the final by-val arg register must be 7322 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7323 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7324 // 2 and 1 byte loads. 7325 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7326 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7327 "Unexpected register residue for by-value argument."); 7328 SDValue ResidueVal; 7329 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7330 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7331 const MVT VT = 7332 N == 1 ? MVT::i8 7333 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7334 SDValue Load = GetLoad(VT, LoadOffset); 7335 MemOpChains.push_back(Load.getValue(1)); 7336 LoadOffset += N; 7337 Bytes += N; 7338 7339 // By-val arguments are passed left-justfied in register. 7340 // Every load here needs to be shifted, otherwise a full register load 7341 // should have been used. 7342 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7343 "Unexpected load emitted during handling of pass-by-value " 7344 "argument."); 7345 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7346 EVT ShiftAmountTy = 7347 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7348 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7349 SDValue ShiftedLoad = 7350 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7351 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7352 ShiftedLoad) 7353 : ShiftedLoad; 7354 } 7355 7356 const CCValAssign &ByValVA = ArgLocs[I++]; 7357 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7358 continue; 7359 } 7360 7361 CCValAssign &VA = ArgLocs[I++]; 7362 const MVT LocVT = VA.getLocVT(); 7363 const MVT ValVT = VA.getValVT(); 7364 7365 switch (VA.getLocInfo()) { 7366 default: 7367 report_fatal_error("Unexpected argument extension type."); 7368 case CCValAssign::Full: 7369 break; 7370 case CCValAssign::ZExt: 7371 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7372 break; 7373 case CCValAssign::SExt: 7374 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7375 break; 7376 } 7377 7378 if (VA.isRegLoc() && !VA.needsCustom()) { 7379 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7380 continue; 7381 } 7382 7383 // Vector arguments passed to VarArg functions need custom handling when 7384 // they are passed (at least partially) in GPRs. 7385 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7386 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7387 // Store value to its stack slot. 7388 SDValue PtrOff = 7389 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7390 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7391 SDValue Store = 7392 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7393 MemOpChains.push_back(Store); 7394 const unsigned OriginalValNo = VA.getValNo(); 7395 // Then load the GPRs from the stack 7396 unsigned LoadOffset = 0; 7397 auto HandleCustomVecRegLoc = [&]() { 7398 assert(I != E && "Unexpected end of CCvalAssigns."); 7399 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7400 "Expected custom RegLoc."); 7401 CCValAssign RegVA = ArgLocs[I++]; 7402 assert(RegVA.getValNo() == OriginalValNo && 7403 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7404 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7405 DAG.getConstant(LoadOffset, dl, PtrVT)); 7406 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7407 MemOpChains.push_back(Load.getValue(1)); 7408 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7409 LoadOffset += PtrByteSize; 7410 }; 7411 7412 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7413 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7414 // R10. 7415 HandleCustomVecRegLoc(); 7416 HandleCustomVecRegLoc(); 7417 7418 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7419 ArgLocs[I].getValNo() == OriginalValNo) { 7420 assert(!IsPPC64 && 7421 "Only 2 custom RegLocs expected for 64-bit codegen."); 7422 HandleCustomVecRegLoc(); 7423 HandleCustomVecRegLoc(); 7424 } 7425 7426 continue; 7427 } 7428 7429 if (VA.isMemLoc()) { 7430 SDValue PtrOff = 7431 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7432 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7433 MemOpChains.push_back( 7434 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7435 7436 continue; 7437 } 7438 7439 if (!ValVT.isFloatingPoint()) 7440 report_fatal_error( 7441 "Unexpected register handling for calling convention."); 7442 7443 // Custom handling is used for GPR initializations for vararg float 7444 // arguments. 7445 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7446 LocVT.isInteger() && 7447 "Custom register handling only expected for VarArg."); 7448 7449 SDValue ArgAsInt = 7450 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7451 7452 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7453 // f32 in 32-bit GPR 7454 // f64 in 64-bit GPR 7455 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7456 else if (Arg.getValueType().getFixedSizeInBits() < 7457 LocVT.getFixedSizeInBits()) 7458 // f32 in 64-bit GPR. 7459 RegsToPass.push_back(std::make_pair( 7460 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7461 else { 7462 // f64 in two 32-bit GPRs 7463 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7464 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7465 "Unexpected custom register for argument!"); 7466 CCValAssign &GPR1 = VA; 7467 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7468 DAG.getConstant(32, dl, MVT::i8)); 7469 RegsToPass.push_back(std::make_pair( 7470 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7471 7472 if (I != E) { 7473 // If only 1 GPR was available, there will only be one custom GPR and 7474 // the argument will also pass in memory. 7475 CCValAssign &PeekArg = ArgLocs[I]; 7476 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7477 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7478 CCValAssign &GPR2 = ArgLocs[I++]; 7479 RegsToPass.push_back(std::make_pair( 7480 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7481 } 7482 } 7483 } 7484 } 7485 7486 if (!MemOpChains.empty()) 7487 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7488 7489 // For indirect calls, we need to save the TOC base to the stack for 7490 // restoration after the call. 7491 if (CFlags.IsIndirect) { 7492 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7493 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7494 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7495 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7496 const unsigned TOCSaveOffset = 7497 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7498 7499 setUsesTOCBasePtr(DAG); 7500 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7501 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7502 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7503 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7504 Chain = DAG.getStore( 7505 Val.getValue(1), dl, Val, AddPtr, 7506 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7507 } 7508 7509 // Build a sequence of copy-to-reg nodes chained together with token chain 7510 // and flag operands which copy the outgoing args into the appropriate regs. 7511 SDValue InFlag; 7512 for (auto Reg : RegsToPass) { 7513 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7514 InFlag = Chain.getValue(1); 7515 } 7516 7517 const int SPDiff = 0; 7518 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7519 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7520 } 7521 7522 bool 7523 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7524 MachineFunction &MF, bool isVarArg, 7525 const SmallVectorImpl<ISD::OutputArg> &Outs, 7526 LLVMContext &Context) const { 7527 SmallVector<CCValAssign, 16> RVLocs; 7528 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7529 return CCInfo.CheckReturn( 7530 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7531 ? RetCC_PPC_Cold 7532 : RetCC_PPC); 7533 } 7534 7535 SDValue 7536 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7537 bool isVarArg, 7538 const SmallVectorImpl<ISD::OutputArg> &Outs, 7539 const SmallVectorImpl<SDValue> &OutVals, 7540 const SDLoc &dl, SelectionDAG &DAG) const { 7541 SmallVector<CCValAssign, 16> RVLocs; 7542 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7543 *DAG.getContext()); 7544 CCInfo.AnalyzeReturn(Outs, 7545 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7546 ? RetCC_PPC_Cold 7547 : RetCC_PPC); 7548 7549 SDValue Flag; 7550 SmallVector<SDValue, 4> RetOps(1, Chain); 7551 7552 // Copy the result values into the output registers. 7553 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7554 CCValAssign &VA = RVLocs[i]; 7555 assert(VA.isRegLoc() && "Can only return in registers!"); 7556 7557 SDValue Arg = OutVals[RealResIdx]; 7558 7559 switch (VA.getLocInfo()) { 7560 default: llvm_unreachable("Unknown loc info!"); 7561 case CCValAssign::Full: break; 7562 case CCValAssign::AExt: 7563 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7564 break; 7565 case CCValAssign::ZExt: 7566 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7567 break; 7568 case CCValAssign::SExt: 7569 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7570 break; 7571 } 7572 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7573 bool isLittleEndian = Subtarget.isLittleEndian(); 7574 // Legalize ret f64 -> ret 2 x i32. 7575 SDValue SVal = 7576 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7577 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7578 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7579 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7580 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7581 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7582 Flag = Chain.getValue(1); 7583 VA = RVLocs[++i]; // skip ahead to next loc 7584 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7585 } else 7586 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7587 Flag = Chain.getValue(1); 7588 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7589 } 7590 7591 RetOps[0] = Chain; // Update chain. 7592 7593 // Add the flag if we have it. 7594 if (Flag.getNode()) 7595 RetOps.push_back(Flag); 7596 7597 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7598 } 7599 7600 SDValue 7601 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7602 SelectionDAG &DAG) const { 7603 SDLoc dl(Op); 7604 7605 // Get the correct type for integers. 7606 EVT IntVT = Op.getValueType(); 7607 7608 // Get the inputs. 7609 SDValue Chain = Op.getOperand(0); 7610 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7611 // Build a DYNAREAOFFSET node. 7612 SDValue Ops[2] = {Chain, FPSIdx}; 7613 SDVTList VTs = DAG.getVTList(IntVT); 7614 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7615 } 7616 7617 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7618 SelectionDAG &DAG) const { 7619 // When we pop the dynamic allocation we need to restore the SP link. 7620 SDLoc dl(Op); 7621 7622 // Get the correct type for pointers. 7623 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7624 7625 // Construct the stack pointer operand. 7626 bool isPPC64 = Subtarget.isPPC64(); 7627 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7628 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7629 7630 // Get the operands for the STACKRESTORE. 7631 SDValue Chain = Op.getOperand(0); 7632 SDValue SaveSP = Op.getOperand(1); 7633 7634 // Load the old link SP. 7635 SDValue LoadLinkSP = 7636 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7637 7638 // Restore the stack pointer. 7639 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7640 7641 // Store the old link SP. 7642 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7643 } 7644 7645 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7646 MachineFunction &MF = DAG.getMachineFunction(); 7647 bool isPPC64 = Subtarget.isPPC64(); 7648 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7649 7650 // Get current frame pointer save index. The users of this index will be 7651 // primarily DYNALLOC instructions. 7652 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7653 int RASI = FI->getReturnAddrSaveIndex(); 7654 7655 // If the frame pointer save index hasn't been defined yet. 7656 if (!RASI) { 7657 // Find out what the fix offset of the frame pointer save area. 7658 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7659 // Allocate the frame index for frame pointer save area. 7660 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7661 // Save the result. 7662 FI->setReturnAddrSaveIndex(RASI); 7663 } 7664 return DAG.getFrameIndex(RASI, PtrVT); 7665 } 7666 7667 SDValue 7668 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7669 MachineFunction &MF = DAG.getMachineFunction(); 7670 bool isPPC64 = Subtarget.isPPC64(); 7671 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7672 7673 // Get current frame pointer save index. The users of this index will be 7674 // primarily DYNALLOC instructions. 7675 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7676 int FPSI = FI->getFramePointerSaveIndex(); 7677 7678 // If the frame pointer save index hasn't been defined yet. 7679 if (!FPSI) { 7680 // Find out what the fix offset of the frame pointer save area. 7681 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7682 // Allocate the frame index for frame pointer save area. 7683 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7684 // Save the result. 7685 FI->setFramePointerSaveIndex(FPSI); 7686 } 7687 return DAG.getFrameIndex(FPSI, PtrVT); 7688 } 7689 7690 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7691 SelectionDAG &DAG) const { 7692 MachineFunction &MF = DAG.getMachineFunction(); 7693 // Get the inputs. 7694 SDValue Chain = Op.getOperand(0); 7695 SDValue Size = Op.getOperand(1); 7696 SDLoc dl(Op); 7697 7698 // Get the correct type for pointers. 7699 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7700 // Negate the size. 7701 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7702 DAG.getConstant(0, dl, PtrVT), Size); 7703 // Construct a node for the frame pointer save index. 7704 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7705 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7706 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7707 if (hasInlineStackProbe(MF)) 7708 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7709 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7710 } 7711 7712 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7713 SelectionDAG &DAG) const { 7714 MachineFunction &MF = DAG.getMachineFunction(); 7715 7716 bool isPPC64 = Subtarget.isPPC64(); 7717 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7718 7719 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7720 return DAG.getFrameIndex(FI, PtrVT); 7721 } 7722 7723 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7724 SelectionDAG &DAG) const { 7725 SDLoc DL(Op); 7726 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7727 DAG.getVTList(MVT::i32, MVT::Other), 7728 Op.getOperand(0), Op.getOperand(1)); 7729 } 7730 7731 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7732 SelectionDAG &DAG) const { 7733 SDLoc DL(Op); 7734 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7735 Op.getOperand(0), Op.getOperand(1)); 7736 } 7737 7738 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7739 if (Op.getValueType().isVector()) 7740 return LowerVectorLoad(Op, DAG); 7741 7742 assert(Op.getValueType() == MVT::i1 && 7743 "Custom lowering only for i1 loads"); 7744 7745 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7746 7747 SDLoc dl(Op); 7748 LoadSDNode *LD = cast<LoadSDNode>(Op); 7749 7750 SDValue Chain = LD->getChain(); 7751 SDValue BasePtr = LD->getBasePtr(); 7752 MachineMemOperand *MMO = LD->getMemOperand(); 7753 7754 SDValue NewLD = 7755 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7756 BasePtr, MVT::i8, MMO); 7757 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7758 7759 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7760 return DAG.getMergeValues(Ops, dl); 7761 } 7762 7763 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7764 if (Op.getOperand(1).getValueType().isVector()) 7765 return LowerVectorStore(Op, DAG); 7766 7767 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7768 "Custom lowering only for i1 stores"); 7769 7770 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7771 7772 SDLoc dl(Op); 7773 StoreSDNode *ST = cast<StoreSDNode>(Op); 7774 7775 SDValue Chain = ST->getChain(); 7776 SDValue BasePtr = ST->getBasePtr(); 7777 SDValue Value = ST->getValue(); 7778 MachineMemOperand *MMO = ST->getMemOperand(); 7779 7780 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7781 Value); 7782 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7783 } 7784 7785 // FIXME: Remove this once the ANDI glue bug is fixed: 7786 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7787 assert(Op.getValueType() == MVT::i1 && 7788 "Custom lowering only for i1 results"); 7789 7790 SDLoc DL(Op); 7791 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7792 } 7793 7794 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7795 SelectionDAG &DAG) const { 7796 7797 // Implements a vector truncate that fits in a vector register as a shuffle. 7798 // We want to legalize vector truncates down to where the source fits in 7799 // a vector register (and target is therefore smaller than vector register 7800 // size). At that point legalization will try to custom lower the sub-legal 7801 // result and get here - where we can contain the truncate as a single target 7802 // operation. 7803 7804 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7805 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7806 // 7807 // We will implement it for big-endian ordering as this (where x denotes 7808 // undefined): 7809 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7810 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7811 // 7812 // The same operation in little-endian ordering will be: 7813 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7814 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7815 7816 EVT TrgVT = Op.getValueType(); 7817 assert(TrgVT.isVector() && "Vector type expected."); 7818 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7819 EVT EltVT = TrgVT.getVectorElementType(); 7820 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7821 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7822 !isPowerOf2_32(EltVT.getSizeInBits())) 7823 return SDValue(); 7824 7825 SDValue N1 = Op.getOperand(0); 7826 EVT SrcVT = N1.getValueType(); 7827 unsigned SrcSize = SrcVT.getSizeInBits(); 7828 if (SrcSize > 256 || 7829 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7830 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7831 return SDValue(); 7832 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7833 return SDValue(); 7834 7835 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7836 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7837 7838 SDLoc DL(Op); 7839 SDValue Op1, Op2; 7840 if (SrcSize == 256) { 7841 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7842 EVT SplitVT = 7843 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7844 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7845 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7846 DAG.getConstant(0, DL, VecIdxTy)); 7847 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7848 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7849 } 7850 else { 7851 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7852 Op2 = DAG.getUNDEF(WideVT); 7853 } 7854 7855 // First list the elements we want to keep. 7856 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7857 SmallVector<int, 16> ShuffV; 7858 if (Subtarget.isLittleEndian()) 7859 for (unsigned i = 0; i < TrgNumElts; ++i) 7860 ShuffV.push_back(i * SizeMult); 7861 else 7862 for (unsigned i = 1; i <= TrgNumElts; ++i) 7863 ShuffV.push_back(i * SizeMult - 1); 7864 7865 // Populate the remaining elements with undefs. 7866 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7867 // ShuffV.push_back(i + WideNumElts); 7868 ShuffV.push_back(WideNumElts + 1); 7869 7870 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7871 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7872 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7873 } 7874 7875 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7876 /// possible. 7877 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7878 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7879 EVT ResVT = Op.getValueType(); 7880 EVT CmpVT = Op.getOperand(0).getValueType(); 7881 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7882 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7883 SDLoc dl(Op); 7884 7885 // Without power9-vector, we don't have native instruction for f128 comparison. 7886 // Following transformation to libcall is needed for setcc: 7887 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7888 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7889 SDValue Z = DAG.getSetCC( 7890 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7891 LHS, RHS, CC); 7892 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7893 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7894 } 7895 7896 // Not FP, or using SPE? Not a fsel. 7897 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7898 Subtarget.hasSPE()) 7899 return Op; 7900 7901 SDNodeFlags Flags = Op.getNode()->getFlags(); 7902 7903 // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the 7904 // presence of infinities. 7905 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7906 switch (CC) { 7907 default: 7908 break; 7909 case ISD::SETOGT: 7910 case ISD::SETGT: 7911 return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); 7912 case ISD::SETOLT: 7913 case ISD::SETLT: 7914 return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); 7915 } 7916 } 7917 7918 // We might be able to do better than this under some circumstances, but in 7919 // general, fsel-based lowering of select is a finite-math-only optimization. 7920 // For more information, see section F.3 of the 2.06 ISA specification. 7921 // With ISA 3.0 7922 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7923 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7924 return Op; 7925 7926 // If the RHS of the comparison is a 0.0, we don't need to do the 7927 // subtraction at all. 7928 SDValue Sel1; 7929 if (isFloatingPointZero(RHS)) 7930 switch (CC) { 7931 default: break; // SETUO etc aren't handled by fsel. 7932 case ISD::SETNE: 7933 std::swap(TV, FV); 7934 LLVM_FALLTHROUGH; 7935 case ISD::SETEQ: 7936 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7937 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7938 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7939 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7940 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7941 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7942 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7943 case ISD::SETULT: 7944 case ISD::SETLT: 7945 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7946 LLVM_FALLTHROUGH; 7947 case ISD::SETOGE: 7948 case ISD::SETGE: 7949 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7950 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7951 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7952 case ISD::SETUGT: 7953 case ISD::SETGT: 7954 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7955 LLVM_FALLTHROUGH; 7956 case ISD::SETOLE: 7957 case ISD::SETLE: 7958 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7959 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7960 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7961 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7962 } 7963 7964 SDValue Cmp; 7965 switch (CC) { 7966 default: break; // SETUO etc aren't handled by fsel. 7967 case ISD::SETNE: 7968 std::swap(TV, FV); 7969 LLVM_FALLTHROUGH; 7970 case ISD::SETEQ: 7971 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7972 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7973 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7974 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7975 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7976 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7977 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7978 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7979 case ISD::SETULT: 7980 case ISD::SETLT: 7981 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7982 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7983 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7984 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7985 case ISD::SETOGE: 7986 case ISD::SETGE: 7987 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7988 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7989 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7990 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7991 case ISD::SETUGT: 7992 case ISD::SETGT: 7993 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7994 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7995 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7996 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7997 case ISD::SETOLE: 7998 case ISD::SETLE: 7999 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 8000 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 8001 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 8002 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 8003 } 8004 return Op; 8005 } 8006 8007 static unsigned getPPCStrictOpcode(unsigned Opc) { 8008 switch (Opc) { 8009 default: 8010 llvm_unreachable("No strict version of this opcode!"); 8011 case PPCISD::FCTIDZ: 8012 return PPCISD::STRICT_FCTIDZ; 8013 case PPCISD::FCTIWZ: 8014 return PPCISD::STRICT_FCTIWZ; 8015 case PPCISD::FCTIDUZ: 8016 return PPCISD::STRICT_FCTIDUZ; 8017 case PPCISD::FCTIWUZ: 8018 return PPCISD::STRICT_FCTIWUZ; 8019 case PPCISD::FCFID: 8020 return PPCISD::STRICT_FCFID; 8021 case PPCISD::FCFIDU: 8022 return PPCISD::STRICT_FCFIDU; 8023 case PPCISD::FCFIDS: 8024 return PPCISD::STRICT_FCFIDS; 8025 case PPCISD::FCFIDUS: 8026 return PPCISD::STRICT_FCFIDUS; 8027 } 8028 } 8029 8030 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 8031 const PPCSubtarget &Subtarget) { 8032 SDLoc dl(Op); 8033 bool IsStrict = Op->isStrictFPOpcode(); 8034 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8035 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8036 8037 // TODO: Any other flags to propagate? 8038 SDNodeFlags Flags; 8039 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8040 8041 // For strict nodes, source is the second operand. 8042 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8043 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 8044 assert(Src.getValueType().isFloatingPoint()); 8045 if (Src.getValueType() == MVT::f32) { 8046 if (IsStrict) { 8047 Src = 8048 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8049 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8050 Chain = Src.getValue(1); 8051 } else 8052 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8053 } 8054 SDValue Conv; 8055 unsigned Opc = ISD::DELETED_NODE; 8056 switch (Op.getSimpleValueType().SimpleTy) { 8057 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8058 case MVT::i32: 8059 Opc = IsSigned ? PPCISD::FCTIWZ 8060 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8061 break; 8062 case MVT::i64: 8063 assert((IsSigned || Subtarget.hasFPCVT()) && 8064 "i64 FP_TO_UINT is supported only with FPCVT"); 8065 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8066 } 8067 if (IsStrict) { 8068 Opc = getPPCStrictOpcode(Opc); 8069 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8070 {Chain, Src}, Flags); 8071 } else { 8072 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8073 } 8074 return Conv; 8075 } 8076 8077 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8078 SelectionDAG &DAG, 8079 const SDLoc &dl) const { 8080 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8081 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8082 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8083 bool IsStrict = Op->isStrictFPOpcode(); 8084 8085 // Convert the FP value to an int value through memory. 8086 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8087 (IsSigned || Subtarget.hasFPCVT()); 8088 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8089 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8090 MachinePointerInfo MPI = 8091 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8092 8093 // Emit a store to the stack slot. 8094 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8095 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8096 if (i32Stack) { 8097 MachineFunction &MF = DAG.getMachineFunction(); 8098 Alignment = Align(4); 8099 MachineMemOperand *MMO = 8100 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8101 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8102 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8103 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8104 } else 8105 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8106 8107 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8108 // add in a bias on big endian. 8109 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8110 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8111 DAG.getConstant(4, dl, FIPtr.getValueType())); 8112 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8113 } 8114 8115 RLI.Chain = Chain; 8116 RLI.Ptr = FIPtr; 8117 RLI.MPI = MPI; 8118 RLI.Alignment = Alignment; 8119 } 8120 8121 /// Custom lowers floating point to integer conversions to use 8122 /// the direct move instructions available in ISA 2.07 to avoid the 8123 /// need for load/store combinations. 8124 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8125 SelectionDAG &DAG, 8126 const SDLoc &dl) const { 8127 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8128 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8129 if (Op->isStrictFPOpcode()) 8130 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8131 else 8132 return Mov; 8133 } 8134 8135 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8136 const SDLoc &dl) const { 8137 bool IsStrict = Op->isStrictFPOpcode(); 8138 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8139 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8140 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8141 EVT SrcVT = Src.getValueType(); 8142 EVT DstVT = Op.getValueType(); 8143 8144 // FP to INT conversions are legal for f128. 8145 if (SrcVT == MVT::f128) 8146 return Subtarget.hasP9Vector() ? Op : SDValue(); 8147 8148 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8149 // PPC (the libcall is not available). 8150 if (SrcVT == MVT::ppcf128) { 8151 if (DstVT == MVT::i32) { 8152 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8153 // set other fast-math flags to FP operations in both strict and 8154 // non-strict cases. (FP_TO_SINT, FSUB) 8155 SDNodeFlags Flags; 8156 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8157 8158 if (IsSigned) { 8159 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8160 DAG.getIntPtrConstant(0, dl)); 8161 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8162 DAG.getIntPtrConstant(1, dl)); 8163 8164 // Add the two halves of the long double in round-to-zero mode, and use 8165 // a smaller FP_TO_SINT. 8166 if (IsStrict) { 8167 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8168 DAG.getVTList(MVT::f64, MVT::Other), 8169 {Op.getOperand(0), Lo, Hi}, Flags); 8170 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8171 DAG.getVTList(MVT::i32, MVT::Other), 8172 {Res.getValue(1), Res}, Flags); 8173 } else { 8174 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8175 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8176 } 8177 } else { 8178 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8179 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8180 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8181 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8182 if (IsStrict) { 8183 // Sel = Src < 0x80000000 8184 // FltOfs = select Sel, 0.0, 0x80000000 8185 // IntOfs = select Sel, 0, 0x80000000 8186 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8187 SDValue Chain = Op.getOperand(0); 8188 EVT SetCCVT = 8189 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8190 EVT DstSetCCVT = 8191 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8192 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8193 Chain, true); 8194 Chain = Sel.getValue(1); 8195 8196 SDValue FltOfs = DAG.getSelect( 8197 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8198 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8199 8200 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8201 DAG.getVTList(SrcVT, MVT::Other), 8202 {Chain, Src, FltOfs}, Flags); 8203 Chain = Val.getValue(1); 8204 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8205 DAG.getVTList(DstVT, MVT::Other), 8206 {Chain, Val}, Flags); 8207 Chain = SInt.getValue(1); 8208 SDValue IntOfs = DAG.getSelect( 8209 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8210 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8211 return DAG.getMergeValues({Result, Chain}, dl); 8212 } else { 8213 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8214 // FIXME: generated code sucks. 8215 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8216 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8217 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8218 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8219 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8220 } 8221 } 8222 } 8223 8224 return SDValue(); 8225 } 8226 8227 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8228 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8229 8230 ReuseLoadInfo RLI; 8231 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8232 8233 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8234 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8235 } 8236 8237 // We're trying to insert a regular store, S, and then a load, L. If the 8238 // incoming value, O, is a load, we might just be able to have our load use the 8239 // address used by O. However, we don't know if anything else will store to 8240 // that address before we can load from it. To prevent this situation, we need 8241 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8242 // the same chain operand as O, we create a token factor from the chain results 8243 // of O and L, and we replace all uses of O's chain result with that token 8244 // factor (see spliceIntoChain below for this last part). 8245 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8246 ReuseLoadInfo &RLI, 8247 SelectionDAG &DAG, 8248 ISD::LoadExtType ET) const { 8249 // Conservatively skip reusing for constrained FP nodes. 8250 if (Op->isStrictFPOpcode()) 8251 return false; 8252 8253 SDLoc dl(Op); 8254 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8255 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8256 if (ET == ISD::NON_EXTLOAD && 8257 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8258 isOperationLegalOrCustom(Op.getOpcode(), 8259 Op.getOperand(0).getValueType())) { 8260 8261 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8262 return true; 8263 } 8264 8265 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8266 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8267 LD->isNonTemporal()) 8268 return false; 8269 if (LD->getMemoryVT() != MemVT) 8270 return false; 8271 8272 // If the result of the load is an illegal type, then we can't build a 8273 // valid chain for reuse since the legalised loads and token factor node that 8274 // ties the legalised loads together uses a different output chain then the 8275 // illegal load. 8276 if (!isTypeLegal(LD->getValueType(0))) 8277 return false; 8278 8279 RLI.Ptr = LD->getBasePtr(); 8280 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8281 assert(LD->getAddressingMode() == ISD::PRE_INC && 8282 "Non-pre-inc AM on PPC?"); 8283 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8284 LD->getOffset()); 8285 } 8286 8287 RLI.Chain = LD->getChain(); 8288 RLI.MPI = LD->getPointerInfo(); 8289 RLI.IsDereferenceable = LD->isDereferenceable(); 8290 RLI.IsInvariant = LD->isInvariant(); 8291 RLI.Alignment = LD->getAlign(); 8292 RLI.AAInfo = LD->getAAInfo(); 8293 RLI.Ranges = LD->getRanges(); 8294 8295 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8296 return true; 8297 } 8298 8299 // Given the head of the old chain, ResChain, insert a token factor containing 8300 // it and NewResChain, and make users of ResChain now be users of that token 8301 // factor. 8302 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8303 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8304 SDValue NewResChain, 8305 SelectionDAG &DAG) const { 8306 if (!ResChain) 8307 return; 8308 8309 SDLoc dl(NewResChain); 8310 8311 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8312 NewResChain, DAG.getUNDEF(MVT::Other)); 8313 assert(TF.getNode() != NewResChain.getNode() && 8314 "A new TF really is required here"); 8315 8316 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8317 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8318 } 8319 8320 /// Analyze profitability of direct move 8321 /// prefer float load to int load plus direct move 8322 /// when there is no integer use of int load 8323 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8324 SDNode *Origin = Op.getOperand(0).getNode(); 8325 if (Origin->getOpcode() != ISD::LOAD) 8326 return true; 8327 8328 // If there is no LXSIBZX/LXSIHZX, like Power8, 8329 // prefer direct move if the memory size is 1 or 2 bytes. 8330 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8331 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8332 return true; 8333 8334 for (SDNode::use_iterator UI = Origin->use_begin(), 8335 UE = Origin->use_end(); 8336 UI != UE; ++UI) { 8337 8338 // Only look at the users of the loaded value. 8339 if (UI.getUse().get().getResNo() != 0) 8340 continue; 8341 8342 if (UI->getOpcode() != ISD::SINT_TO_FP && 8343 UI->getOpcode() != ISD::UINT_TO_FP && 8344 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8345 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8346 return true; 8347 } 8348 8349 return false; 8350 } 8351 8352 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8353 const PPCSubtarget &Subtarget, 8354 SDValue Chain = SDValue()) { 8355 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8356 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8357 SDLoc dl(Op); 8358 8359 // TODO: Any other flags to propagate? 8360 SDNodeFlags Flags; 8361 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8362 8363 // If we have FCFIDS, then use it when converting to single-precision. 8364 // Otherwise, convert to double-precision and then round. 8365 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8366 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8367 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8368 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8369 if (Op->isStrictFPOpcode()) { 8370 if (!Chain) 8371 Chain = Op.getOperand(0); 8372 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8373 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8374 } else 8375 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8376 } 8377 8378 /// Custom lowers integer to floating point conversions to use 8379 /// the direct move instructions available in ISA 2.07 to avoid the 8380 /// need for load/store combinations. 8381 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8382 SelectionDAG &DAG, 8383 const SDLoc &dl) const { 8384 assert((Op.getValueType() == MVT::f32 || 8385 Op.getValueType() == MVT::f64) && 8386 "Invalid floating point type as target of conversion"); 8387 assert(Subtarget.hasFPCVT() && 8388 "Int to FP conversions with direct moves require FPCVT"); 8389 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8390 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8391 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8392 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8393 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8394 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8395 return convertIntToFP(Op, Mov, DAG, Subtarget); 8396 } 8397 8398 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8399 8400 EVT VecVT = Vec.getValueType(); 8401 assert(VecVT.isVector() && "Expected a vector type."); 8402 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8403 8404 EVT EltVT = VecVT.getVectorElementType(); 8405 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8406 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8407 8408 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8409 SmallVector<SDValue, 16> Ops(NumConcat); 8410 Ops[0] = Vec; 8411 SDValue UndefVec = DAG.getUNDEF(VecVT); 8412 for (unsigned i = 1; i < NumConcat; ++i) 8413 Ops[i] = UndefVec; 8414 8415 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8416 } 8417 8418 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8419 const SDLoc &dl) const { 8420 bool IsStrict = Op->isStrictFPOpcode(); 8421 unsigned Opc = Op.getOpcode(); 8422 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8423 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8424 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8425 "Unexpected conversion type"); 8426 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8427 "Supports conversions to v2f64/v4f32 only."); 8428 8429 // TODO: Any other flags to propagate? 8430 SDNodeFlags Flags; 8431 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8432 8433 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8434 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8435 8436 SDValue Wide = widenVec(DAG, Src, dl); 8437 EVT WideVT = Wide.getValueType(); 8438 unsigned WideNumElts = WideVT.getVectorNumElements(); 8439 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8440 8441 SmallVector<int, 16> ShuffV; 8442 for (unsigned i = 0; i < WideNumElts; ++i) 8443 ShuffV.push_back(i + WideNumElts); 8444 8445 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8446 int SaveElts = FourEltRes ? 4 : 2; 8447 if (Subtarget.isLittleEndian()) 8448 for (int i = 0; i < SaveElts; i++) 8449 ShuffV[i * Stride] = i; 8450 else 8451 for (int i = 1; i <= SaveElts; i++) 8452 ShuffV[i * Stride - 1] = i - 1; 8453 8454 SDValue ShuffleSrc2 = 8455 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8456 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8457 8458 SDValue Extend; 8459 if (SignedConv) { 8460 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8461 EVT ExtVT = Src.getValueType(); 8462 if (Subtarget.hasP9Altivec()) 8463 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8464 IntermediateVT.getVectorNumElements()); 8465 8466 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8467 DAG.getValueType(ExtVT)); 8468 } else 8469 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8470 8471 if (IsStrict) 8472 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8473 {Op.getOperand(0), Extend}, Flags); 8474 8475 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8476 } 8477 8478 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8479 SelectionDAG &DAG) const { 8480 SDLoc dl(Op); 8481 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8482 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8483 bool IsStrict = Op->isStrictFPOpcode(); 8484 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8485 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8486 8487 // TODO: Any other flags to propagate? 8488 SDNodeFlags Flags; 8489 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8490 8491 EVT InVT = Src.getValueType(); 8492 EVT OutVT = Op.getValueType(); 8493 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8494 isOperationCustom(Op.getOpcode(), InVT)) 8495 return LowerINT_TO_FPVector(Op, DAG, dl); 8496 8497 // Conversions to f128 are legal. 8498 if (Op.getValueType() == MVT::f128) 8499 return Subtarget.hasP9Vector() ? Op : SDValue(); 8500 8501 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8502 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8503 return SDValue(); 8504 8505 if (Src.getValueType() == MVT::i1) { 8506 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8507 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8508 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8509 if (IsStrict) 8510 return DAG.getMergeValues({Sel, Chain}, dl); 8511 else 8512 return Sel; 8513 } 8514 8515 // If we have direct moves, we can do all the conversion, skip the store/load 8516 // however, without FPCVT we can't do most conversions. 8517 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8518 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8519 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8520 8521 assert((IsSigned || Subtarget.hasFPCVT()) && 8522 "UINT_TO_FP is supported only with FPCVT"); 8523 8524 if (Src.getValueType() == MVT::i64) { 8525 SDValue SINT = Src; 8526 // When converting to single-precision, we actually need to convert 8527 // to double-precision first and then round to single-precision. 8528 // To avoid double-rounding effects during that operation, we have 8529 // to prepare the input operand. Bits that might be truncated when 8530 // converting to double-precision are replaced by a bit that won't 8531 // be lost at this stage, but is below the single-precision rounding 8532 // position. 8533 // 8534 // However, if -enable-unsafe-fp-math is in effect, accept double 8535 // rounding to avoid the extra overhead. 8536 if (Op.getValueType() == MVT::f32 && 8537 !Subtarget.hasFPCVT() && 8538 !DAG.getTarget().Options.UnsafeFPMath) { 8539 8540 // Twiddle input to make sure the low 11 bits are zero. (If this 8541 // is the case, we are guaranteed the value will fit into the 53 bit 8542 // mantissa of an IEEE double-precision value without rounding.) 8543 // If any of those low 11 bits were not zero originally, make sure 8544 // bit 12 (value 2048) is set instead, so that the final rounding 8545 // to single-precision gets the correct result. 8546 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8547 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8548 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8549 Round, DAG.getConstant(2047, dl, MVT::i64)); 8550 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8551 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8552 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8553 8554 // However, we cannot use that value unconditionally: if the magnitude 8555 // of the input value is small, the bit-twiddling we did above might 8556 // end up visibly changing the output. Fortunately, in that case, we 8557 // don't need to twiddle bits since the original input will convert 8558 // exactly to double-precision floating-point already. Therefore, 8559 // construct a conditional to use the original value if the top 11 8560 // bits are all sign-bit copies, and use the rounded value computed 8561 // above otherwise. 8562 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8563 SINT, DAG.getConstant(53, dl, MVT::i32)); 8564 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8565 Cond, DAG.getConstant(1, dl, MVT::i64)); 8566 Cond = DAG.getSetCC( 8567 dl, 8568 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8569 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8570 8571 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8572 } 8573 8574 ReuseLoadInfo RLI; 8575 SDValue Bits; 8576 8577 MachineFunction &MF = DAG.getMachineFunction(); 8578 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8579 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8580 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8581 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8582 } else if (Subtarget.hasLFIWAX() && 8583 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8584 MachineMemOperand *MMO = 8585 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8586 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8587 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8588 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8589 DAG.getVTList(MVT::f64, MVT::Other), 8590 Ops, MVT::i32, MMO); 8591 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8592 } else if (Subtarget.hasFPCVT() && 8593 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8594 MachineMemOperand *MMO = 8595 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8596 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8597 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8598 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8599 DAG.getVTList(MVT::f64, MVT::Other), 8600 Ops, MVT::i32, MMO); 8601 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8602 } else if (((Subtarget.hasLFIWAX() && 8603 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8604 (Subtarget.hasFPCVT() && 8605 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8606 SINT.getOperand(0).getValueType() == MVT::i32) { 8607 MachineFrameInfo &MFI = MF.getFrameInfo(); 8608 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8609 8610 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8611 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8612 8613 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8614 MachinePointerInfo::getFixedStack( 8615 DAG.getMachineFunction(), FrameIdx)); 8616 Chain = Store; 8617 8618 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8619 "Expected an i32 store"); 8620 8621 RLI.Ptr = FIdx; 8622 RLI.Chain = Chain; 8623 RLI.MPI = 8624 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8625 RLI.Alignment = Align(4); 8626 8627 MachineMemOperand *MMO = 8628 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8629 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8630 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8631 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8632 PPCISD::LFIWZX : PPCISD::LFIWAX, 8633 dl, DAG.getVTList(MVT::f64, MVT::Other), 8634 Ops, MVT::i32, MMO); 8635 Chain = Bits.getValue(1); 8636 } else 8637 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8638 8639 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8640 if (IsStrict) 8641 Chain = FP.getValue(1); 8642 8643 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8644 if (IsStrict) 8645 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8646 DAG.getVTList(MVT::f32, MVT::Other), 8647 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8648 else 8649 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8650 DAG.getIntPtrConstant(0, dl)); 8651 } 8652 return FP; 8653 } 8654 8655 assert(Src.getValueType() == MVT::i32 && 8656 "Unhandled INT_TO_FP type in custom expander!"); 8657 // Since we only generate this in 64-bit mode, we can take advantage of 8658 // 64-bit registers. In particular, sign extend the input value into the 8659 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8660 // then lfd it and fcfid it. 8661 MachineFunction &MF = DAG.getMachineFunction(); 8662 MachineFrameInfo &MFI = MF.getFrameInfo(); 8663 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8664 8665 SDValue Ld; 8666 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8667 ReuseLoadInfo RLI; 8668 bool ReusingLoad; 8669 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8670 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8671 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8672 8673 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8674 MachinePointerInfo::getFixedStack( 8675 DAG.getMachineFunction(), FrameIdx)); 8676 Chain = Store; 8677 8678 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8679 "Expected an i32 store"); 8680 8681 RLI.Ptr = FIdx; 8682 RLI.Chain = Chain; 8683 RLI.MPI = 8684 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8685 RLI.Alignment = Align(4); 8686 } 8687 8688 MachineMemOperand *MMO = 8689 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8690 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8691 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8692 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8693 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8694 MVT::i32, MMO); 8695 Chain = Ld.getValue(1); 8696 if (ReusingLoad) 8697 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8698 } else { 8699 assert(Subtarget.isPPC64() && 8700 "i32->FP without LFIWAX supported only on PPC64"); 8701 8702 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8703 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8704 8705 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8706 8707 // STD the extended value into the stack slot. 8708 SDValue Store = DAG.getStore( 8709 Chain, dl, Ext64, FIdx, 8710 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8711 Chain = Store; 8712 8713 // Load the value as a double. 8714 Ld = DAG.getLoad( 8715 MVT::f64, dl, Chain, FIdx, 8716 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8717 Chain = Ld.getValue(1); 8718 } 8719 8720 // FCFID it and return it. 8721 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8722 if (IsStrict) 8723 Chain = FP.getValue(1); 8724 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8725 if (IsStrict) 8726 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8727 DAG.getVTList(MVT::f32, MVT::Other), 8728 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8729 else 8730 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8731 DAG.getIntPtrConstant(0, dl)); 8732 } 8733 return FP; 8734 } 8735 8736 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8737 SelectionDAG &DAG) const { 8738 SDLoc dl(Op); 8739 /* 8740 The rounding mode is in bits 30:31 of FPSR, and has the following 8741 settings: 8742 00 Round to nearest 8743 01 Round to 0 8744 10 Round to +inf 8745 11 Round to -inf 8746 8747 FLT_ROUNDS, on the other hand, expects the following: 8748 -1 Undefined 8749 0 Round to 0 8750 1 Round to nearest 8751 2 Round to +inf 8752 3 Round to -inf 8753 8754 To perform the conversion, we do: 8755 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8756 */ 8757 8758 MachineFunction &MF = DAG.getMachineFunction(); 8759 EVT VT = Op.getValueType(); 8760 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8761 8762 // Save FP Control Word to register 8763 SDValue Chain = Op.getOperand(0); 8764 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8765 Chain = MFFS.getValue(1); 8766 8767 SDValue CWD; 8768 if (isTypeLegal(MVT::i64)) { 8769 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8770 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8771 } else { 8772 // Save FP register to stack slot 8773 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8774 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8775 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8776 8777 // Load FP Control Word from low 32 bits of stack slot. 8778 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8779 "Stack slot adjustment is valid only on big endian subtargets!"); 8780 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8781 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8782 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8783 Chain = CWD.getValue(1); 8784 } 8785 8786 // Transform as necessary 8787 SDValue CWD1 = 8788 DAG.getNode(ISD::AND, dl, MVT::i32, 8789 CWD, DAG.getConstant(3, dl, MVT::i32)); 8790 SDValue CWD2 = 8791 DAG.getNode(ISD::SRL, dl, MVT::i32, 8792 DAG.getNode(ISD::AND, dl, MVT::i32, 8793 DAG.getNode(ISD::XOR, dl, MVT::i32, 8794 CWD, DAG.getConstant(3, dl, MVT::i32)), 8795 DAG.getConstant(3, dl, MVT::i32)), 8796 DAG.getConstant(1, dl, MVT::i32)); 8797 8798 SDValue RetVal = 8799 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8800 8801 RetVal = 8802 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8803 dl, VT, RetVal); 8804 8805 return DAG.getMergeValues({RetVal, Chain}, dl); 8806 } 8807 8808 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8809 EVT VT = Op.getValueType(); 8810 unsigned BitWidth = VT.getSizeInBits(); 8811 SDLoc dl(Op); 8812 assert(Op.getNumOperands() == 3 && 8813 VT == Op.getOperand(1).getValueType() && 8814 "Unexpected SHL!"); 8815 8816 // Expand into a bunch of logical ops. Note that these ops 8817 // depend on the PPC behavior for oversized shift amounts. 8818 SDValue Lo = Op.getOperand(0); 8819 SDValue Hi = Op.getOperand(1); 8820 SDValue Amt = Op.getOperand(2); 8821 EVT AmtVT = Amt.getValueType(); 8822 8823 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8824 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8825 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8826 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8827 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8828 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8829 DAG.getConstant(-BitWidth, dl, AmtVT)); 8830 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8831 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8832 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8833 SDValue OutOps[] = { OutLo, OutHi }; 8834 return DAG.getMergeValues(OutOps, dl); 8835 } 8836 8837 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8838 EVT VT = Op.getValueType(); 8839 SDLoc dl(Op); 8840 unsigned BitWidth = VT.getSizeInBits(); 8841 assert(Op.getNumOperands() == 3 && 8842 VT == Op.getOperand(1).getValueType() && 8843 "Unexpected SRL!"); 8844 8845 // Expand into a bunch of logical ops. Note that these ops 8846 // depend on the PPC behavior for oversized shift amounts. 8847 SDValue Lo = Op.getOperand(0); 8848 SDValue Hi = Op.getOperand(1); 8849 SDValue Amt = Op.getOperand(2); 8850 EVT AmtVT = Amt.getValueType(); 8851 8852 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8853 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8854 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8855 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8856 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8857 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8858 DAG.getConstant(-BitWidth, dl, AmtVT)); 8859 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8860 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8861 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8862 SDValue OutOps[] = { OutLo, OutHi }; 8863 return DAG.getMergeValues(OutOps, dl); 8864 } 8865 8866 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8867 SDLoc dl(Op); 8868 EVT VT = Op.getValueType(); 8869 unsigned BitWidth = VT.getSizeInBits(); 8870 assert(Op.getNumOperands() == 3 && 8871 VT == Op.getOperand(1).getValueType() && 8872 "Unexpected SRA!"); 8873 8874 // Expand into a bunch of logical ops, followed by a select_cc. 8875 SDValue Lo = Op.getOperand(0); 8876 SDValue Hi = Op.getOperand(1); 8877 SDValue Amt = Op.getOperand(2); 8878 EVT AmtVT = Amt.getValueType(); 8879 8880 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8881 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8882 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8883 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8884 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8885 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8886 DAG.getConstant(-BitWidth, dl, AmtVT)); 8887 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8888 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8889 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8890 Tmp4, Tmp6, ISD::SETLE); 8891 SDValue OutOps[] = { OutLo, OutHi }; 8892 return DAG.getMergeValues(OutOps, dl); 8893 } 8894 8895 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8896 SelectionDAG &DAG) const { 8897 SDLoc dl(Op); 8898 EVT VT = Op.getValueType(); 8899 unsigned BitWidth = VT.getSizeInBits(); 8900 8901 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8902 SDValue X = Op.getOperand(0); 8903 SDValue Y = Op.getOperand(1); 8904 SDValue Z = Op.getOperand(2); 8905 EVT AmtVT = Z.getValueType(); 8906 8907 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8908 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8909 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8910 // on PowerPC shift by BW being well defined. 8911 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8912 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8913 SDValue SubZ = 8914 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8915 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8916 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8917 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8918 } 8919 8920 //===----------------------------------------------------------------------===// 8921 // Vector related lowering. 8922 // 8923 8924 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8925 /// element size of SplatSize. Cast the result to VT. 8926 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8927 SelectionDAG &DAG, const SDLoc &dl) { 8928 static const MVT VTys[] = { // canonical VT to use for each size. 8929 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8930 }; 8931 8932 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8933 8934 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8935 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8936 SplatSize = 1; 8937 Val = 0xFF; 8938 } 8939 8940 EVT CanonicalVT = VTys[SplatSize-1]; 8941 8942 // Build a canonical splat for this value. 8943 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8944 } 8945 8946 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8947 /// specified intrinsic ID. 8948 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8949 const SDLoc &dl, EVT DestVT = MVT::Other) { 8950 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8951 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8952 DAG.getConstant(IID, dl, MVT::i32), Op); 8953 } 8954 8955 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8956 /// specified intrinsic ID. 8957 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8958 SelectionDAG &DAG, const SDLoc &dl, 8959 EVT DestVT = MVT::Other) { 8960 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8961 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8962 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8963 } 8964 8965 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8966 /// specified intrinsic ID. 8967 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8968 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8969 EVT DestVT = MVT::Other) { 8970 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8971 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8972 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8973 } 8974 8975 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8976 /// amount. The result has the specified value type. 8977 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8978 SelectionDAG &DAG, const SDLoc &dl) { 8979 // Force LHS/RHS to be the right type. 8980 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8981 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8982 8983 int Ops[16]; 8984 for (unsigned i = 0; i != 16; ++i) 8985 Ops[i] = i + Amt; 8986 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8987 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8988 } 8989 8990 /// Do we have an efficient pattern in a .td file for this node? 8991 /// 8992 /// \param V - pointer to the BuildVectorSDNode being matched 8993 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8994 /// 8995 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8996 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8997 /// the opposite is true (expansion is beneficial) are: 8998 /// - The node builds a vector out of integers that are not 32 or 64-bits 8999 /// - The node builds a vector out of constants 9000 /// - The node is a "load-and-splat" 9001 /// In all other cases, we will choose to keep the BUILD_VECTOR. 9002 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 9003 bool HasDirectMove, 9004 bool HasP8Vector) { 9005 EVT VecVT = V->getValueType(0); 9006 bool RightType = VecVT == MVT::v2f64 || 9007 (HasP8Vector && VecVT == MVT::v4f32) || 9008 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 9009 if (!RightType) 9010 return false; 9011 9012 bool IsSplat = true; 9013 bool IsLoad = false; 9014 SDValue Op0 = V->getOperand(0); 9015 9016 // This function is called in a block that confirms the node is not a constant 9017 // splat. So a constant BUILD_VECTOR here means the vector is built out of 9018 // different constants. 9019 if (V->isConstant()) 9020 return false; 9021 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 9022 if (V->getOperand(i).isUndef()) 9023 return false; 9024 // We want to expand nodes that represent load-and-splat even if the 9025 // loaded value is a floating point truncation or conversion to int. 9026 if (V->getOperand(i).getOpcode() == ISD::LOAD || 9027 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 9028 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9029 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 9030 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 9031 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 9032 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 9033 IsLoad = true; 9034 // If the operands are different or the input is not a load and has more 9035 // uses than just this BV node, then it isn't a splat. 9036 if (V->getOperand(i) != Op0 || 9037 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 9038 IsSplat = false; 9039 } 9040 return !(IsSplat && IsLoad); 9041 } 9042 9043 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 9044 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9045 9046 SDLoc dl(Op); 9047 SDValue Op0 = Op->getOperand(0); 9048 9049 if ((Op.getValueType() != MVT::f128) || 9050 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9051 (Op0.getOperand(0).getValueType() != MVT::i64) || 9052 (Op0.getOperand(1).getValueType() != MVT::i64)) 9053 return SDValue(); 9054 9055 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9056 Op0.getOperand(1)); 9057 } 9058 9059 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9060 const SDValue *InputLoad = &Op; 9061 if (InputLoad->getOpcode() == ISD::BITCAST) 9062 InputLoad = &InputLoad->getOperand(0); 9063 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9064 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9065 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9066 InputLoad = &InputLoad->getOperand(0); 9067 } 9068 if (InputLoad->getOpcode() != ISD::LOAD) 9069 return nullptr; 9070 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9071 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9072 } 9073 9074 // Convert the argument APFloat to a single precision APFloat if there is no 9075 // loss in information during the conversion to single precision APFloat and the 9076 // resulting number is not a denormal number. Return true if successful. 9077 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9078 APFloat APFloatToConvert = ArgAPFloat; 9079 bool LosesInfo = true; 9080 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9081 &LosesInfo); 9082 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9083 if (Success) 9084 ArgAPFloat = APFloatToConvert; 9085 return Success; 9086 } 9087 9088 // Bitcast the argument APInt to a double and convert it to a single precision 9089 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9090 // argument if there is no loss in information during the conversion from 9091 // double to single precision APFloat and the resulting number is not a denormal 9092 // number. Return true if successful. 9093 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9094 double DpValue = ArgAPInt.bitsToDouble(); 9095 APFloat APFloatDp(DpValue); 9096 bool Success = convertToNonDenormSingle(APFloatDp); 9097 if (Success) 9098 ArgAPInt = APFloatDp.bitcastToAPInt(); 9099 return Success; 9100 } 9101 9102 // Nondestructive check for convertTonNonDenormSingle. 9103 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9104 // Only convert if it loses info, since XXSPLTIDP should 9105 // handle the other case. 9106 APFloat APFloatToConvert = ArgAPFloat; 9107 bool LosesInfo = true; 9108 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9109 &LosesInfo); 9110 9111 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9112 } 9113 9114 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, 9115 unsigned &Opcode) { 9116 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); 9117 if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) 9118 return false; 9119 9120 EVT Ty = Op->getValueType(0); 9121 // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending 9122 // as we cannot handle extending loads for these types. 9123 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && 9124 ISD::isNON_EXTLoad(InputNode)) 9125 return true; 9126 9127 EVT MemVT = InputNode->getMemoryVT(); 9128 // For v8i16 and v16i8 types, extending loads can be handled as long as the 9129 // memory VT is the same vector element VT type. 9130 // The loads feeding into the v8i16 and v16i8 types will be extending because 9131 // scalar i8/i16 are not legal types. 9132 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && 9133 (MemVT == Ty.getVectorElementType())) 9134 return true; 9135 9136 if (Ty == MVT::v2i64) { 9137 // Check the extend type, when the input type is i32, and the output vector 9138 // type is v2i64. 9139 if (MemVT == MVT::i32) { 9140 if (ISD::isZEXTLoad(InputNode)) 9141 Opcode = PPCISD::ZEXT_LD_SPLAT; 9142 if (ISD::isSEXTLoad(InputNode)) 9143 Opcode = PPCISD::SEXT_LD_SPLAT; 9144 } 9145 return true; 9146 } 9147 return false; 9148 } 9149 9150 // If this is a case we can't handle, return null and let the default 9151 // expansion code take care of it. If we CAN select this case, and if it 9152 // selects to a single instruction, return Op. Otherwise, if we can codegen 9153 // this case more efficiently than a constant pool load, lower it to the 9154 // sequence of ops that should be used. 9155 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9156 SelectionDAG &DAG) const { 9157 SDLoc dl(Op); 9158 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9159 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9160 9161 // Check if this is a splat of a constant value. 9162 APInt APSplatBits, APSplatUndef; 9163 unsigned SplatBitSize; 9164 bool HasAnyUndefs; 9165 bool BVNIsConstantSplat = 9166 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9167 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9168 9169 // If it is a splat of a double, check if we can shrink it to a 32 bit 9170 // non-denormal float which when converted back to double gives us the same 9171 // double. This is to exploit the XXSPLTIDP instruction. 9172 // If we lose precision, we use XXSPLTI32DX. 9173 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9174 Subtarget.hasPrefixInstrs()) { 9175 // Check the type first to short-circuit so we don't modify APSplatBits if 9176 // this block isn't executed. 9177 if ((Op->getValueType(0) == MVT::v2f64) && 9178 convertToNonDenormSingle(APSplatBits)) { 9179 SDValue SplatNode = DAG.getNode( 9180 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9181 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9182 return DAG.getBitcast(Op.getValueType(), SplatNode); 9183 } else { 9184 // We may lose precision, so we have to use XXSPLTI32DX. 9185 9186 uint32_t Hi = 9187 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9188 uint32_t Lo = 9189 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9190 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9191 9192 if (!Hi || !Lo) 9193 // If either load is 0, then we should generate XXLXOR to set to 0. 9194 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9195 9196 if (Hi) 9197 SplatNode = DAG.getNode( 9198 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9199 DAG.getTargetConstant(0, dl, MVT::i32), 9200 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9201 9202 if (Lo) 9203 SplatNode = 9204 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9205 DAG.getTargetConstant(1, dl, MVT::i32), 9206 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9207 9208 return DAG.getBitcast(Op.getValueType(), SplatNode); 9209 } 9210 } 9211 9212 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9213 unsigned NewOpcode = PPCISD::LD_SPLAT; 9214 9215 // Handle load-and-splat patterns as we have instructions that will do this 9216 // in one go. 9217 if (DAG.isSplatValue(Op, true) && 9218 isValidSplatLoad(Subtarget, Op, NewOpcode)) { 9219 const SDValue *InputLoad = &Op.getOperand(0); 9220 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9221 9222 // If the input load is an extending load, it will be an i32 -> i64 9223 // extending load and isValidSplatLoad() will update NewOpcode. 9224 unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); 9225 unsigned ElementSize = 9226 MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); 9227 9228 assert(((ElementSize == 2 * MemorySize) 9229 ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || 9230 NewOpcode == PPCISD::SEXT_LD_SPLAT) 9231 : (NewOpcode == PPCISD::LD_SPLAT)) && 9232 "Unmatched element size and opcode!\n"); 9233 9234 // Checking for a single use of this load, we have to check for vector 9235 // width (128 bits) / ElementSize uses (since each operand of the 9236 // BUILD_VECTOR is a separate use of the value. 9237 unsigned NumUsesOfInputLD = 128 / ElementSize; 9238 for (SDValue BVInOp : Op->ops()) 9239 if (BVInOp.isUndef()) 9240 NumUsesOfInputLD--; 9241 9242 // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: 9243 // Below cases should also happen for "lfiwzx/lfiwax + LE target + index 9244 // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index 9245 // 15", but funciton IsValidSplatLoad() now will only return true when 9246 // the data at index 0 is not nullptr. So we will not get into trouble for 9247 // these cases. 9248 // 9249 // case 1 - lfiwzx/lfiwax 9250 // 1.1: load result is i32 and is sign/zero extend to i64; 9251 // 1.2: build a v2i64 vector type with above loaded value; 9252 // 1.3: the vector has only one value at index 0, others are all undef; 9253 // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. 9254 if (NumUsesOfInputLD == 1 && 9255 (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && 9256 !Subtarget.isLittleEndian() && Subtarget.hasVSX() && 9257 Subtarget.hasLFIWAX())) 9258 return SDValue(); 9259 9260 // case 2 - lxvr[hb]x 9261 // 2.1: load result is at most i16; 9262 // 2.2: build a vector with above loaded value; 9263 // 2.3: the vector has only one value at index 0, others are all undef; 9264 // 2.4: on LE target, so that lxvr[hb]x does not need any permute. 9265 if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && 9266 Subtarget.isISA3_1() && ElementSize <= 16) 9267 return SDValue(); 9268 9269 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9270 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9271 Subtarget.hasVSX()) { 9272 SDValue Ops[] = { 9273 LD->getChain(), // Chain 9274 LD->getBasePtr(), // Ptr 9275 DAG.getValueType(Op.getValueType()) // VT 9276 }; 9277 SDValue LdSplt = DAG.getMemIntrinsicNode( 9278 NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, 9279 LD->getMemoryVT(), LD->getMemOperand()); 9280 // Replace all uses of the output chain of the original load with the 9281 // output chain of the new load. 9282 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9283 LdSplt.getValue(1)); 9284 return LdSplt; 9285 } 9286 } 9287 9288 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9289 // 32-bits can be lowered to VSX instructions under certain conditions. 9290 // Without VSX, there is no pattern more efficient than expanding the node. 9291 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9292 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9293 Subtarget.hasP8Vector())) 9294 return Op; 9295 return SDValue(); 9296 } 9297 9298 uint64_t SplatBits = APSplatBits.getZExtValue(); 9299 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9300 unsigned SplatSize = SplatBitSize / 8; 9301 9302 // First, handle single instruction cases. 9303 9304 // All zeros? 9305 if (SplatBits == 0) { 9306 // Canonicalize all zero vectors to be v4i32. 9307 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9308 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9309 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9310 } 9311 return Op; 9312 } 9313 9314 // We have XXSPLTIW for constant splats four bytes wide. 9315 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9316 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9317 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9318 // turned into a 4-byte splat of 0xABABABAB. 9319 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9320 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9321 Op.getValueType(), DAG, dl); 9322 9323 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9324 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9325 dl); 9326 9327 // We have XXSPLTIB for constant splats one byte wide. 9328 if (Subtarget.hasP9Vector() && SplatSize == 1) 9329 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9330 dl); 9331 9332 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9333 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9334 (32-SplatBitSize)); 9335 if (SextVal >= -16 && SextVal <= 15) 9336 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9337 dl); 9338 9339 // Two instruction sequences. 9340 9341 // If this value is in the range [-32,30] and is even, use: 9342 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9343 // If this value is in the range [17,31] and is odd, use: 9344 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9345 // If this value is in the range [-31,-17] and is odd, use: 9346 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9347 // Note the last two are three-instruction sequences. 9348 if (SextVal >= -32 && SextVal <= 31) { 9349 // To avoid having these optimizations undone by constant folding, 9350 // we convert to a pseudo that will be expanded later into one of 9351 // the above forms. 9352 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9353 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9354 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9355 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9356 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9357 if (VT == Op.getValueType()) 9358 return RetVal; 9359 else 9360 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9361 } 9362 9363 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9364 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9365 // for fneg/fabs. 9366 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9367 // Make -1 and vspltisw -1: 9368 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9369 9370 // Make the VSLW intrinsic, computing 0x8000_0000. 9371 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9372 OnesV, DAG, dl); 9373 9374 // xor by OnesV to invert it. 9375 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9376 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9377 } 9378 9379 // Check to see if this is a wide variety of vsplti*, binop self cases. 9380 static const signed char SplatCsts[] = { 9381 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9382 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9383 }; 9384 9385 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9386 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9387 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9388 int i = SplatCsts[idx]; 9389 9390 // Figure out what shift amount will be used by altivec if shifted by i in 9391 // this splat size. 9392 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9393 9394 // vsplti + shl self. 9395 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9396 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9397 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9398 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9399 Intrinsic::ppc_altivec_vslw 9400 }; 9401 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9402 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9403 } 9404 9405 // vsplti + srl self. 9406 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9407 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9408 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9409 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9410 Intrinsic::ppc_altivec_vsrw 9411 }; 9412 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9413 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9414 } 9415 9416 // vsplti + rol self. 9417 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9418 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9419 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9420 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9421 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9422 Intrinsic::ppc_altivec_vrlw 9423 }; 9424 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9425 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9426 } 9427 9428 // t = vsplti c, result = vsldoi t, t, 1 9429 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9430 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9431 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9432 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9433 } 9434 // t = vsplti c, result = vsldoi t, t, 2 9435 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9436 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9437 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9438 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9439 } 9440 // t = vsplti c, result = vsldoi t, t, 3 9441 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9442 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9443 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9444 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9445 } 9446 } 9447 9448 return SDValue(); 9449 } 9450 9451 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9452 /// the specified operations to build the shuffle. 9453 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9454 SDValue RHS, SelectionDAG &DAG, 9455 const SDLoc &dl) { 9456 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9457 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9458 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9459 9460 enum { 9461 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9462 OP_VMRGHW, 9463 OP_VMRGLW, 9464 OP_VSPLTISW0, 9465 OP_VSPLTISW1, 9466 OP_VSPLTISW2, 9467 OP_VSPLTISW3, 9468 OP_VSLDOI4, 9469 OP_VSLDOI8, 9470 OP_VSLDOI12 9471 }; 9472 9473 if (OpNum == OP_COPY) { 9474 if (LHSID == (1*9+2)*9+3) return LHS; 9475 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9476 return RHS; 9477 } 9478 9479 SDValue OpLHS, OpRHS; 9480 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9481 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9482 9483 int ShufIdxs[16]; 9484 switch (OpNum) { 9485 default: llvm_unreachable("Unknown i32 permute!"); 9486 case OP_VMRGHW: 9487 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9488 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9489 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9490 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9491 break; 9492 case OP_VMRGLW: 9493 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9494 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9495 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9496 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9497 break; 9498 case OP_VSPLTISW0: 9499 for (unsigned i = 0; i != 16; ++i) 9500 ShufIdxs[i] = (i&3)+0; 9501 break; 9502 case OP_VSPLTISW1: 9503 for (unsigned i = 0; i != 16; ++i) 9504 ShufIdxs[i] = (i&3)+4; 9505 break; 9506 case OP_VSPLTISW2: 9507 for (unsigned i = 0; i != 16; ++i) 9508 ShufIdxs[i] = (i&3)+8; 9509 break; 9510 case OP_VSPLTISW3: 9511 for (unsigned i = 0; i != 16; ++i) 9512 ShufIdxs[i] = (i&3)+12; 9513 break; 9514 case OP_VSLDOI4: 9515 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9516 case OP_VSLDOI8: 9517 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9518 case OP_VSLDOI12: 9519 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9520 } 9521 EVT VT = OpLHS.getValueType(); 9522 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9523 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9524 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9525 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9526 } 9527 9528 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9529 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9530 /// SDValue. 9531 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9532 SelectionDAG &DAG) const { 9533 const unsigned BytesInVector = 16; 9534 bool IsLE = Subtarget.isLittleEndian(); 9535 SDLoc dl(N); 9536 SDValue V1 = N->getOperand(0); 9537 SDValue V2 = N->getOperand(1); 9538 unsigned ShiftElts = 0, InsertAtByte = 0; 9539 bool Swap = false; 9540 9541 // Shifts required to get the byte we want at element 7. 9542 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9543 0, 15, 14, 13, 12, 11, 10, 9}; 9544 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9545 1, 2, 3, 4, 5, 6, 7, 8}; 9546 9547 ArrayRef<int> Mask = N->getMask(); 9548 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9549 9550 // For each mask element, find out if we're just inserting something 9551 // from V2 into V1 or vice versa. 9552 // Possible permutations inserting an element from V2 into V1: 9553 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9554 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9555 // ... 9556 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9557 // Inserting from V1 into V2 will be similar, except mask range will be 9558 // [16,31]. 9559 9560 bool FoundCandidate = false; 9561 // If both vector operands for the shuffle are the same vector, the mask 9562 // will contain only elements from the first one and the second one will be 9563 // undef. 9564 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9565 // Go through the mask of half-words to find an element that's being moved 9566 // from one vector to the other. 9567 for (unsigned i = 0; i < BytesInVector; ++i) { 9568 unsigned CurrentElement = Mask[i]; 9569 // If 2nd operand is undefined, we should only look for element 7 in the 9570 // Mask. 9571 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9572 continue; 9573 9574 bool OtherElementsInOrder = true; 9575 // Examine the other elements in the Mask to see if they're in original 9576 // order. 9577 for (unsigned j = 0; j < BytesInVector; ++j) { 9578 if (j == i) 9579 continue; 9580 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9581 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9582 // in which we always assume we're always picking from the 1st operand. 9583 int MaskOffset = 9584 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9585 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9586 OtherElementsInOrder = false; 9587 break; 9588 } 9589 } 9590 // If other elements are in original order, we record the number of shifts 9591 // we need to get the element we want into element 7. Also record which byte 9592 // in the vector we should insert into. 9593 if (OtherElementsInOrder) { 9594 // If 2nd operand is undefined, we assume no shifts and no swapping. 9595 if (V2.isUndef()) { 9596 ShiftElts = 0; 9597 Swap = false; 9598 } else { 9599 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9600 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9601 : BigEndianShifts[CurrentElement & 0xF]; 9602 Swap = CurrentElement < BytesInVector; 9603 } 9604 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9605 FoundCandidate = true; 9606 break; 9607 } 9608 } 9609 9610 if (!FoundCandidate) 9611 return SDValue(); 9612 9613 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9614 // optionally with VECSHL if shift is required. 9615 if (Swap) 9616 std::swap(V1, V2); 9617 if (V2.isUndef()) 9618 V2 = V1; 9619 if (ShiftElts) { 9620 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9621 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9622 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9623 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9624 } 9625 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9626 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9627 } 9628 9629 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9630 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9631 /// SDValue. 9632 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9633 SelectionDAG &DAG) const { 9634 const unsigned NumHalfWords = 8; 9635 const unsigned BytesInVector = NumHalfWords * 2; 9636 // Check that the shuffle is on half-words. 9637 if (!isNByteElemShuffleMask(N, 2, 1)) 9638 return SDValue(); 9639 9640 bool IsLE = Subtarget.isLittleEndian(); 9641 SDLoc dl(N); 9642 SDValue V1 = N->getOperand(0); 9643 SDValue V2 = N->getOperand(1); 9644 unsigned ShiftElts = 0, InsertAtByte = 0; 9645 bool Swap = false; 9646 9647 // Shifts required to get the half-word we want at element 3. 9648 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9649 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9650 9651 uint32_t Mask = 0; 9652 uint32_t OriginalOrderLow = 0x1234567; 9653 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9654 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9655 // 32-bit space, only need 4-bit nibbles per element. 9656 for (unsigned i = 0; i < NumHalfWords; ++i) { 9657 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9658 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9659 } 9660 9661 // For each mask element, find out if we're just inserting something 9662 // from V2 into V1 or vice versa. Possible permutations inserting an element 9663 // from V2 into V1: 9664 // X, 1, 2, 3, 4, 5, 6, 7 9665 // 0, X, 2, 3, 4, 5, 6, 7 9666 // 0, 1, X, 3, 4, 5, 6, 7 9667 // 0, 1, 2, X, 4, 5, 6, 7 9668 // 0, 1, 2, 3, X, 5, 6, 7 9669 // 0, 1, 2, 3, 4, X, 6, 7 9670 // 0, 1, 2, 3, 4, 5, X, 7 9671 // 0, 1, 2, 3, 4, 5, 6, X 9672 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9673 9674 bool FoundCandidate = false; 9675 // Go through the mask of half-words to find an element that's being moved 9676 // from one vector to the other. 9677 for (unsigned i = 0; i < NumHalfWords; ++i) { 9678 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9679 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9680 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9681 uint32_t TargetOrder = 0x0; 9682 9683 // If both vector operands for the shuffle are the same vector, the mask 9684 // will contain only elements from the first one and the second one will be 9685 // undef. 9686 if (V2.isUndef()) { 9687 ShiftElts = 0; 9688 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9689 TargetOrder = OriginalOrderLow; 9690 Swap = false; 9691 // Skip if not the correct element or mask of other elements don't equal 9692 // to our expected order. 9693 if (MaskOneElt == VINSERTHSrcElem && 9694 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9695 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9696 FoundCandidate = true; 9697 break; 9698 } 9699 } else { // If both operands are defined. 9700 // Target order is [8,15] if the current mask is between [0,7]. 9701 TargetOrder = 9702 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9703 // Skip if mask of other elements don't equal our expected order. 9704 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9705 // We only need the last 3 bits for the number of shifts. 9706 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9707 : BigEndianShifts[MaskOneElt & 0x7]; 9708 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9709 Swap = MaskOneElt < NumHalfWords; 9710 FoundCandidate = true; 9711 break; 9712 } 9713 } 9714 } 9715 9716 if (!FoundCandidate) 9717 return SDValue(); 9718 9719 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9720 // optionally with VECSHL if shift is required. 9721 if (Swap) 9722 std::swap(V1, V2); 9723 if (V2.isUndef()) 9724 V2 = V1; 9725 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9726 if (ShiftElts) { 9727 // Double ShiftElts because we're left shifting on v16i8 type. 9728 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9729 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9730 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9731 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9732 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9733 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9734 } 9735 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9736 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9737 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9738 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9739 } 9740 9741 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9742 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9743 /// return the default SDValue. 9744 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9745 SelectionDAG &DAG) const { 9746 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9747 // to v16i8. Peek through the bitcasts to get the actual operands. 9748 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9749 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9750 9751 auto ShuffleMask = SVN->getMask(); 9752 SDValue VecShuffle(SVN, 0); 9753 SDLoc DL(SVN); 9754 9755 // Check that we have a four byte shuffle. 9756 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9757 return SDValue(); 9758 9759 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9760 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9761 std::swap(LHS, RHS); 9762 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9763 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9764 } 9765 9766 // Ensure that the RHS is a vector of constants. 9767 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9768 if (!BVN) 9769 return SDValue(); 9770 9771 // Check if RHS is a splat of 4-bytes (or smaller). 9772 APInt APSplatValue, APSplatUndef; 9773 unsigned SplatBitSize; 9774 bool HasAnyUndefs; 9775 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9776 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9777 SplatBitSize > 32) 9778 return SDValue(); 9779 9780 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9781 // The instruction splats a constant C into two words of the source vector 9782 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9783 // Thus we check that the shuffle mask is the equivalent of 9784 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9785 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9786 // within each word are consecutive, so we only need to check the first byte. 9787 SDValue Index; 9788 bool IsLE = Subtarget.isLittleEndian(); 9789 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9790 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9791 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9792 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9793 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9794 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9795 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9796 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9797 else 9798 return SDValue(); 9799 9800 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9801 // for XXSPLTI32DX. 9802 unsigned SplatVal = APSplatValue.getZExtValue(); 9803 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9804 SplatVal |= (SplatVal << SplatBitSize); 9805 9806 SDValue SplatNode = DAG.getNode( 9807 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9808 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9809 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9810 } 9811 9812 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9813 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9814 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9815 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9816 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9817 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9818 assert(Op.getValueType() == MVT::v1i128 && 9819 "Only set v1i128 as custom, other type shouldn't reach here!"); 9820 SDLoc dl(Op); 9821 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9822 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9823 unsigned SHLAmt = N1.getConstantOperandVal(0); 9824 if (SHLAmt % 8 == 0) { 9825 std::array<int, 16> Mask; 9826 std::iota(Mask.begin(), Mask.end(), 0); 9827 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9828 if (SDValue Shuffle = 9829 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9830 DAG.getUNDEF(MVT::v16i8), Mask)) 9831 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9832 } 9833 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9834 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9835 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9836 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9837 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9838 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9839 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9840 } 9841 9842 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9843 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9844 /// return the code it can be lowered into. Worst case, it can always be 9845 /// lowered into a vperm. 9846 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9847 SelectionDAG &DAG) const { 9848 SDLoc dl(Op); 9849 SDValue V1 = Op.getOperand(0); 9850 SDValue V2 = Op.getOperand(1); 9851 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9852 9853 // Any nodes that were combined in the target-independent combiner prior 9854 // to vector legalization will not be sent to the target combine. Try to 9855 // combine it here. 9856 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9857 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9858 return NewShuffle; 9859 Op = NewShuffle; 9860 SVOp = cast<ShuffleVectorSDNode>(Op); 9861 V1 = Op.getOperand(0); 9862 V2 = Op.getOperand(1); 9863 } 9864 EVT VT = Op.getValueType(); 9865 bool isLittleEndian = Subtarget.isLittleEndian(); 9866 9867 unsigned ShiftElts, InsertAtByte; 9868 bool Swap = false; 9869 9870 // If this is a load-and-splat, we can do that with a single instruction 9871 // in some cases. However if the load has multiple uses, we don't want to 9872 // combine it because that will just produce multiple loads. 9873 bool IsPermutedLoad = false; 9874 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9875 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9876 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9877 InputLoad->hasOneUse()) { 9878 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9879 int SplatIdx = 9880 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9881 9882 // The splat index for permuted loads will be in the left half of the vector 9883 // which is strictly wider than the loaded value by 8 bytes. So we need to 9884 // adjust the splat index to point to the correct address in memory. 9885 if (IsPermutedLoad) { 9886 assert((isLittleEndian || IsFourByte) && 9887 "Unexpected size for permuted load on big endian target"); 9888 SplatIdx += IsFourByte ? 2 : 1; 9889 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9890 "Splat of a value outside of the loaded memory"); 9891 } 9892 9893 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9894 // For 4-byte load-and-splat, we need Power9. 9895 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9896 uint64_t Offset = 0; 9897 if (IsFourByte) 9898 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9899 else 9900 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9901 9902 // If the width of the load is the same as the width of the splat, 9903 // loading with an offset would load the wrong memory. 9904 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9905 Offset = 0; 9906 9907 SDValue BasePtr = LD->getBasePtr(); 9908 if (Offset != 0) 9909 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9910 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9911 SDValue Ops[] = { 9912 LD->getChain(), // Chain 9913 BasePtr, // BasePtr 9914 DAG.getValueType(Op.getValueType()) // VT 9915 }; 9916 SDVTList VTL = 9917 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9918 SDValue LdSplt = 9919 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9920 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9921 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9922 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9923 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9924 return LdSplt; 9925 } 9926 } 9927 if (Subtarget.hasP9Vector() && 9928 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9929 isLittleEndian)) { 9930 if (Swap) 9931 std::swap(V1, V2); 9932 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9933 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9934 if (ShiftElts) { 9935 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9936 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9937 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9938 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9939 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9940 } 9941 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9942 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9943 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9944 } 9945 9946 if (Subtarget.hasPrefixInstrs()) { 9947 SDValue SplatInsertNode; 9948 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9949 return SplatInsertNode; 9950 } 9951 9952 if (Subtarget.hasP9Altivec()) { 9953 SDValue NewISDNode; 9954 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9955 return NewISDNode; 9956 9957 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9958 return NewISDNode; 9959 } 9960 9961 if (Subtarget.hasVSX() && 9962 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9963 if (Swap) 9964 std::swap(V1, V2); 9965 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9966 SDValue Conv2 = 9967 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9968 9969 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9970 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9971 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9972 } 9973 9974 if (Subtarget.hasVSX() && 9975 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9976 if (Swap) 9977 std::swap(V1, V2); 9978 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9979 SDValue Conv2 = 9980 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9981 9982 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9983 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9984 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9985 } 9986 9987 if (Subtarget.hasP9Vector()) { 9988 if (PPC::isXXBRHShuffleMask(SVOp)) { 9989 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9990 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9991 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9992 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9993 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9994 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9995 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9996 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9997 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9998 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9999 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 10000 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 10001 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 10002 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 10003 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 10004 } 10005 } 10006 10007 if (Subtarget.hasVSX()) { 10008 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 10009 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 10010 10011 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 10012 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 10013 DAG.getConstant(SplatIdx, dl, MVT::i32)); 10014 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 10015 } 10016 10017 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 10018 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 10019 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 10020 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 10021 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 10022 } 10023 } 10024 10025 // Cases that are handled by instructions that take permute immediates 10026 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 10027 // selected by the instruction selector. 10028 if (V2.isUndef()) { 10029 if (PPC::isSplatShuffleMask(SVOp, 1) || 10030 PPC::isSplatShuffleMask(SVOp, 2) || 10031 PPC::isSplatShuffleMask(SVOp, 4) || 10032 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 10033 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 10034 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 10035 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 10036 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 10037 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 10038 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 10039 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 10040 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 10041 (Subtarget.hasP8Altivec() && ( 10042 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 10043 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 10044 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 10045 return Op; 10046 } 10047 } 10048 10049 // Altivec has a variety of "shuffle immediates" that take two vector inputs 10050 // and produce a fixed permutation. If any of these match, do not lower to 10051 // VPERM. 10052 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 10053 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 10054 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 10055 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 10056 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10057 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10058 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10059 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 10060 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 10061 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 10062 (Subtarget.hasP8Altivec() && ( 10063 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 10064 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 10065 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 10066 return Op; 10067 10068 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 10069 // perfect shuffle table to emit an optimal matching sequence. 10070 ArrayRef<int> PermMask = SVOp->getMask(); 10071 10072 if (!DisablePerfectShuffle && !isLittleEndian) { 10073 unsigned PFIndexes[4]; 10074 bool isFourElementShuffle = true; 10075 for (unsigned i = 0; i != 4 && isFourElementShuffle; 10076 ++i) { // Element number 10077 unsigned EltNo = 8; // Start out undef. 10078 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 10079 if (PermMask[i * 4 + j] < 0) 10080 continue; // Undef, ignore it. 10081 10082 unsigned ByteSource = PermMask[i * 4 + j]; 10083 if ((ByteSource & 3) != j) { 10084 isFourElementShuffle = false; 10085 break; 10086 } 10087 10088 if (EltNo == 8) { 10089 EltNo = ByteSource / 4; 10090 } else if (EltNo != ByteSource / 4) { 10091 isFourElementShuffle = false; 10092 break; 10093 } 10094 } 10095 PFIndexes[i] = EltNo; 10096 } 10097 10098 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 10099 // perfect shuffle vector to determine if it is cost effective to do this as 10100 // discrete instructions, or whether we should use a vperm. 10101 // For now, we skip this for little endian until such time as we have a 10102 // little-endian perfect shuffle table. 10103 if (isFourElementShuffle) { 10104 // Compute the index in the perfect shuffle table. 10105 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 10106 PFIndexes[2] * 9 + PFIndexes[3]; 10107 10108 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 10109 unsigned Cost = (PFEntry >> 30); 10110 10111 // Determining when to avoid vperm is tricky. Many things affect the cost 10112 // of vperm, particularly how many times the perm mask needs to be 10113 // computed. For example, if the perm mask can be hoisted out of a loop or 10114 // is already used (perhaps because there are multiple permutes with the 10115 // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the 10116 // permute mask out of the loop requires an extra register. 10117 // 10118 // As a compromise, we only emit discrete instructions if the shuffle can 10119 // be generated in 3 or fewer operations. When we have loop information 10120 // available, if this block is within a loop, we should avoid using vperm 10121 // for 3-operation perms and use a constant pool load instead. 10122 if (Cost < 3) 10123 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10124 } 10125 } 10126 10127 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10128 // vector that will get spilled to the constant pool. 10129 if (V2.isUndef()) V2 = V1; 10130 10131 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10132 // that it is in input element units, not in bytes. Convert now. 10133 10134 // For little endian, the order of the input vectors is reversed, and 10135 // the permutation mask is complemented with respect to 31. This is 10136 // necessary to produce proper semantics with the big-endian-biased vperm 10137 // instruction. 10138 EVT EltVT = V1.getValueType().getVectorElementType(); 10139 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10140 10141 SmallVector<SDValue, 16> ResultMask; 10142 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10143 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10144 10145 for (unsigned j = 0; j != BytesPerElement; ++j) 10146 if (isLittleEndian) 10147 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10148 dl, MVT::i32)); 10149 else 10150 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10151 MVT::i32)); 10152 } 10153 10154 ShufflesHandledWithVPERM++; 10155 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10156 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10157 LLVM_DEBUG(SVOp->dump()); 10158 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10159 LLVM_DEBUG(VPermMask.dump()); 10160 10161 if (isLittleEndian) 10162 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10163 V2, V1, VPermMask); 10164 else 10165 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10166 V1, V2, VPermMask); 10167 } 10168 10169 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10170 /// vector comparison. If it is, return true and fill in Opc/isDot with 10171 /// information about the intrinsic. 10172 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10173 bool &isDot, const PPCSubtarget &Subtarget) { 10174 unsigned IntrinsicID = 10175 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10176 CompareOpc = -1; 10177 isDot = false; 10178 switch (IntrinsicID) { 10179 default: 10180 return false; 10181 // Comparison predicates. 10182 case Intrinsic::ppc_altivec_vcmpbfp_p: 10183 CompareOpc = 966; 10184 isDot = true; 10185 break; 10186 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10187 CompareOpc = 198; 10188 isDot = true; 10189 break; 10190 case Intrinsic::ppc_altivec_vcmpequb_p: 10191 CompareOpc = 6; 10192 isDot = true; 10193 break; 10194 case Intrinsic::ppc_altivec_vcmpequh_p: 10195 CompareOpc = 70; 10196 isDot = true; 10197 break; 10198 case Intrinsic::ppc_altivec_vcmpequw_p: 10199 CompareOpc = 134; 10200 isDot = true; 10201 break; 10202 case Intrinsic::ppc_altivec_vcmpequd_p: 10203 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10204 CompareOpc = 199; 10205 isDot = true; 10206 } else 10207 return false; 10208 break; 10209 case Intrinsic::ppc_altivec_vcmpneb_p: 10210 case Intrinsic::ppc_altivec_vcmpneh_p: 10211 case Intrinsic::ppc_altivec_vcmpnew_p: 10212 case Intrinsic::ppc_altivec_vcmpnezb_p: 10213 case Intrinsic::ppc_altivec_vcmpnezh_p: 10214 case Intrinsic::ppc_altivec_vcmpnezw_p: 10215 if (Subtarget.hasP9Altivec()) { 10216 switch (IntrinsicID) { 10217 default: 10218 llvm_unreachable("Unknown comparison intrinsic."); 10219 case Intrinsic::ppc_altivec_vcmpneb_p: 10220 CompareOpc = 7; 10221 break; 10222 case Intrinsic::ppc_altivec_vcmpneh_p: 10223 CompareOpc = 71; 10224 break; 10225 case Intrinsic::ppc_altivec_vcmpnew_p: 10226 CompareOpc = 135; 10227 break; 10228 case Intrinsic::ppc_altivec_vcmpnezb_p: 10229 CompareOpc = 263; 10230 break; 10231 case Intrinsic::ppc_altivec_vcmpnezh_p: 10232 CompareOpc = 327; 10233 break; 10234 case Intrinsic::ppc_altivec_vcmpnezw_p: 10235 CompareOpc = 391; 10236 break; 10237 } 10238 isDot = true; 10239 } else 10240 return false; 10241 break; 10242 case Intrinsic::ppc_altivec_vcmpgefp_p: 10243 CompareOpc = 454; 10244 isDot = true; 10245 break; 10246 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10247 CompareOpc = 710; 10248 isDot = true; 10249 break; 10250 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10251 CompareOpc = 774; 10252 isDot = true; 10253 break; 10254 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10255 CompareOpc = 838; 10256 isDot = true; 10257 break; 10258 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10259 CompareOpc = 902; 10260 isDot = true; 10261 break; 10262 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10263 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10264 CompareOpc = 967; 10265 isDot = true; 10266 } else 10267 return false; 10268 break; 10269 case Intrinsic::ppc_altivec_vcmpgtub_p: 10270 CompareOpc = 518; 10271 isDot = true; 10272 break; 10273 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10274 CompareOpc = 582; 10275 isDot = true; 10276 break; 10277 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10278 CompareOpc = 646; 10279 isDot = true; 10280 break; 10281 case Intrinsic::ppc_altivec_vcmpgtud_p: 10282 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10283 CompareOpc = 711; 10284 isDot = true; 10285 } else 10286 return false; 10287 break; 10288 10289 case Intrinsic::ppc_altivec_vcmpequq: 10290 case Intrinsic::ppc_altivec_vcmpgtsq: 10291 case Intrinsic::ppc_altivec_vcmpgtuq: 10292 if (!Subtarget.isISA3_1()) 10293 return false; 10294 switch (IntrinsicID) { 10295 default: 10296 llvm_unreachable("Unknown comparison intrinsic."); 10297 case Intrinsic::ppc_altivec_vcmpequq: 10298 CompareOpc = 455; 10299 break; 10300 case Intrinsic::ppc_altivec_vcmpgtsq: 10301 CompareOpc = 903; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpgtuq: 10304 CompareOpc = 647; 10305 break; 10306 } 10307 break; 10308 10309 // VSX predicate comparisons use the same infrastructure 10310 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10311 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10312 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10313 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10314 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10315 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10316 if (Subtarget.hasVSX()) { 10317 switch (IntrinsicID) { 10318 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10319 CompareOpc = 99; 10320 break; 10321 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10322 CompareOpc = 115; 10323 break; 10324 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10325 CompareOpc = 107; 10326 break; 10327 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10328 CompareOpc = 67; 10329 break; 10330 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10331 CompareOpc = 83; 10332 break; 10333 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10334 CompareOpc = 75; 10335 break; 10336 } 10337 isDot = true; 10338 } else 10339 return false; 10340 break; 10341 10342 // Normal Comparisons. 10343 case Intrinsic::ppc_altivec_vcmpbfp: 10344 CompareOpc = 966; 10345 break; 10346 case Intrinsic::ppc_altivec_vcmpeqfp: 10347 CompareOpc = 198; 10348 break; 10349 case Intrinsic::ppc_altivec_vcmpequb: 10350 CompareOpc = 6; 10351 break; 10352 case Intrinsic::ppc_altivec_vcmpequh: 10353 CompareOpc = 70; 10354 break; 10355 case Intrinsic::ppc_altivec_vcmpequw: 10356 CompareOpc = 134; 10357 break; 10358 case Intrinsic::ppc_altivec_vcmpequd: 10359 if (Subtarget.hasP8Altivec()) 10360 CompareOpc = 199; 10361 else 10362 return false; 10363 break; 10364 case Intrinsic::ppc_altivec_vcmpneb: 10365 case Intrinsic::ppc_altivec_vcmpneh: 10366 case Intrinsic::ppc_altivec_vcmpnew: 10367 case Intrinsic::ppc_altivec_vcmpnezb: 10368 case Intrinsic::ppc_altivec_vcmpnezh: 10369 case Intrinsic::ppc_altivec_vcmpnezw: 10370 if (Subtarget.hasP9Altivec()) 10371 switch (IntrinsicID) { 10372 default: 10373 llvm_unreachable("Unknown comparison intrinsic."); 10374 case Intrinsic::ppc_altivec_vcmpneb: 10375 CompareOpc = 7; 10376 break; 10377 case Intrinsic::ppc_altivec_vcmpneh: 10378 CompareOpc = 71; 10379 break; 10380 case Intrinsic::ppc_altivec_vcmpnew: 10381 CompareOpc = 135; 10382 break; 10383 case Intrinsic::ppc_altivec_vcmpnezb: 10384 CompareOpc = 263; 10385 break; 10386 case Intrinsic::ppc_altivec_vcmpnezh: 10387 CompareOpc = 327; 10388 break; 10389 case Intrinsic::ppc_altivec_vcmpnezw: 10390 CompareOpc = 391; 10391 break; 10392 } 10393 else 10394 return false; 10395 break; 10396 case Intrinsic::ppc_altivec_vcmpgefp: 10397 CompareOpc = 454; 10398 break; 10399 case Intrinsic::ppc_altivec_vcmpgtfp: 10400 CompareOpc = 710; 10401 break; 10402 case Intrinsic::ppc_altivec_vcmpgtsb: 10403 CompareOpc = 774; 10404 break; 10405 case Intrinsic::ppc_altivec_vcmpgtsh: 10406 CompareOpc = 838; 10407 break; 10408 case Intrinsic::ppc_altivec_vcmpgtsw: 10409 CompareOpc = 902; 10410 break; 10411 case Intrinsic::ppc_altivec_vcmpgtsd: 10412 if (Subtarget.hasP8Altivec()) 10413 CompareOpc = 967; 10414 else 10415 return false; 10416 break; 10417 case Intrinsic::ppc_altivec_vcmpgtub: 10418 CompareOpc = 518; 10419 break; 10420 case Intrinsic::ppc_altivec_vcmpgtuh: 10421 CompareOpc = 582; 10422 break; 10423 case Intrinsic::ppc_altivec_vcmpgtuw: 10424 CompareOpc = 646; 10425 break; 10426 case Intrinsic::ppc_altivec_vcmpgtud: 10427 if (Subtarget.hasP8Altivec()) 10428 CompareOpc = 711; 10429 else 10430 return false; 10431 break; 10432 case Intrinsic::ppc_altivec_vcmpequq_p: 10433 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10434 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10435 if (!Subtarget.isISA3_1()) 10436 return false; 10437 switch (IntrinsicID) { 10438 default: 10439 llvm_unreachable("Unknown comparison intrinsic."); 10440 case Intrinsic::ppc_altivec_vcmpequq_p: 10441 CompareOpc = 455; 10442 break; 10443 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10444 CompareOpc = 903; 10445 break; 10446 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10447 CompareOpc = 647; 10448 break; 10449 } 10450 isDot = true; 10451 break; 10452 } 10453 return true; 10454 } 10455 10456 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10457 /// lower, do it, otherwise return null. 10458 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10459 SelectionDAG &DAG) const { 10460 unsigned IntrinsicID = 10461 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10462 10463 SDLoc dl(Op); 10464 10465 switch (IntrinsicID) { 10466 case Intrinsic::thread_pointer: 10467 // Reads the thread pointer register, used for __builtin_thread_pointer. 10468 if (Subtarget.isPPC64()) 10469 return DAG.getRegister(PPC::X13, MVT::i64); 10470 return DAG.getRegister(PPC::R2, MVT::i32); 10471 10472 case Intrinsic::ppc_mma_disassemble_acc: 10473 case Intrinsic::ppc_vsx_disassemble_pair: { 10474 int NumVecs = 2; 10475 SDValue WideVec = Op.getOperand(1); 10476 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10477 NumVecs = 4; 10478 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10479 } 10480 SmallVector<SDValue, 4> RetOps; 10481 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10482 SDValue Extract = DAG.getNode( 10483 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10484 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10485 : VecNo, 10486 dl, getPointerTy(DAG.getDataLayout()))); 10487 RetOps.push_back(Extract); 10488 } 10489 return DAG.getMergeValues(RetOps, dl); 10490 } 10491 10492 case Intrinsic::ppc_unpack_longdouble: { 10493 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10494 assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && 10495 "Argument of long double unpack must be 0 or 1!"); 10496 return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), 10497 DAG.getConstant(!!(Idx->getSExtValue()), dl, 10498 Idx->getValueType(0))); 10499 } 10500 10501 case Intrinsic::ppc_compare_exp_lt: 10502 case Intrinsic::ppc_compare_exp_gt: 10503 case Intrinsic::ppc_compare_exp_eq: 10504 case Intrinsic::ppc_compare_exp_uo: { 10505 unsigned Pred; 10506 switch (IntrinsicID) { 10507 case Intrinsic::ppc_compare_exp_lt: 10508 Pred = PPC::PRED_LT; 10509 break; 10510 case Intrinsic::ppc_compare_exp_gt: 10511 Pred = PPC::PRED_GT; 10512 break; 10513 case Intrinsic::ppc_compare_exp_eq: 10514 Pred = PPC::PRED_EQ; 10515 break; 10516 case Intrinsic::ppc_compare_exp_uo: 10517 Pred = PPC::PRED_UN; 10518 break; 10519 } 10520 return SDValue( 10521 DAG.getMachineNode( 10522 PPC::SELECT_CC_I4, dl, MVT::i32, 10523 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, 10524 Op.getOperand(1), Op.getOperand(2)), 10525 0), 10526 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10527 DAG.getTargetConstant(Pred, dl, MVT::i32)}), 10528 0); 10529 } 10530 case Intrinsic::ppc_test_data_class_d: 10531 case Intrinsic::ppc_test_data_class_f: { 10532 unsigned CmprOpc = PPC::XSTSTDCDP; 10533 if (IntrinsicID == Intrinsic::ppc_test_data_class_f) 10534 CmprOpc = PPC::XSTSTDCSP; 10535 return SDValue( 10536 DAG.getMachineNode( 10537 PPC::SELECT_CC_I4, dl, MVT::i32, 10538 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), 10539 Op.getOperand(1)), 10540 0), 10541 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), 10542 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 10543 0); 10544 } 10545 case Intrinsic::ppc_fnmsub: { 10546 EVT VT = Op.getOperand(1).getValueType(); 10547 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) 10548 return DAG.getNode( 10549 ISD::FNEG, dl, VT, 10550 DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), 10551 DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); 10552 return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), 10553 Op.getOperand(2), Op.getOperand(3)); 10554 } 10555 case Intrinsic::ppc_convert_f128_to_ppcf128: 10556 case Intrinsic::ppc_convert_ppcf128_to_f128: { 10557 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 10558 ? RTLIB::CONVERT_PPCF128_F128 10559 : RTLIB::CONVERT_F128_PPCF128; 10560 MakeLibCallOptions CallOptions; 10561 std::pair<SDValue, SDValue> Result = 10562 makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, 10563 dl, SDValue()); 10564 return Result.first; 10565 } 10566 case Intrinsic::ppc_maxfe: 10567 case Intrinsic::ppc_maxfl: 10568 case Intrinsic::ppc_maxfs: 10569 case Intrinsic::ppc_minfe: 10570 case Intrinsic::ppc_minfl: 10571 case Intrinsic::ppc_minfs: { 10572 EVT VT = Op.getValueType(); 10573 assert( 10574 all_of(Op->ops().drop_front(4), 10575 [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && 10576 "ppc_[max|min]f[e|l|s] must have uniform type arguments"); 10577 ISD::CondCode CC = ISD::SETGT; 10578 if (IntrinsicID == Intrinsic::ppc_minfe || 10579 IntrinsicID == Intrinsic::ppc_minfl || 10580 IntrinsicID == Intrinsic::ppc_minfs) 10581 CC = ISD::SETLT; 10582 unsigned I = Op.getNumOperands() - 2, Cnt = I; 10583 SDValue Res = Op.getOperand(I); 10584 for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { 10585 Res = 10586 DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); 10587 } 10588 return Res; 10589 } 10590 } 10591 10592 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10593 // opcode number of the comparison. 10594 int CompareOpc; 10595 bool isDot; 10596 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10597 return SDValue(); // Don't custom lower most intrinsics. 10598 10599 // If this is a non-dot comparison, make the VCMP node and we are done. 10600 if (!isDot) { 10601 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10602 Op.getOperand(1), Op.getOperand(2), 10603 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10604 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10605 } 10606 10607 // Create the PPCISD altivec 'dot' comparison node. 10608 SDValue Ops[] = { 10609 Op.getOperand(2), // LHS 10610 Op.getOperand(3), // RHS 10611 DAG.getConstant(CompareOpc, dl, MVT::i32) 10612 }; 10613 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10614 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10615 10616 // Now that we have the comparison, emit a copy from the CR to a GPR. 10617 // This is flagged to the above dot comparison. 10618 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10619 DAG.getRegister(PPC::CR6, MVT::i32), 10620 CompNode.getValue(1)); 10621 10622 // Unpack the result based on how the target uses it. 10623 unsigned BitNo; // Bit # of CR6. 10624 bool InvertBit; // Invert result? 10625 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10626 default: // Can't happen, don't crash on invalid number though. 10627 case 0: // Return the value of the EQ bit of CR6. 10628 BitNo = 0; InvertBit = false; 10629 break; 10630 case 1: // Return the inverted value of the EQ bit of CR6. 10631 BitNo = 0; InvertBit = true; 10632 break; 10633 case 2: // Return the value of the LT bit of CR6. 10634 BitNo = 2; InvertBit = false; 10635 break; 10636 case 3: // Return the inverted value of the LT bit of CR6. 10637 BitNo = 2; InvertBit = true; 10638 break; 10639 } 10640 10641 // Shift the bit into the low position. 10642 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10643 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10644 // Isolate the bit. 10645 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10646 DAG.getConstant(1, dl, MVT::i32)); 10647 10648 // If we are supposed to, toggle the bit. 10649 if (InvertBit) 10650 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10651 DAG.getConstant(1, dl, MVT::i32)); 10652 return Flags; 10653 } 10654 10655 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10656 SelectionDAG &DAG) const { 10657 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10658 // the beginning of the argument list. 10659 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10660 SDLoc DL(Op); 10661 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10662 case Intrinsic::ppc_cfence: { 10663 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10664 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10665 SDValue Val = Op.getOperand(ArgStart + 1); 10666 EVT Ty = Val.getValueType(); 10667 if (Ty == MVT::i128) { 10668 // FIXME: Testing one of two paired registers is sufficient to guarantee 10669 // ordering? 10670 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); 10671 } 10672 return SDValue( 10673 DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10674 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), 10675 Op.getOperand(0)), 10676 0); 10677 } 10678 default: 10679 break; 10680 } 10681 return SDValue(); 10682 } 10683 10684 // Lower scalar BSWAP64 to xxbrd. 10685 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10686 SDLoc dl(Op); 10687 if (!Subtarget.isPPC64()) 10688 return Op; 10689 // MTVSRDD 10690 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10691 Op.getOperand(0)); 10692 // XXBRD 10693 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10694 // MFVSRD 10695 int VectorIndex = 0; 10696 if (Subtarget.isLittleEndian()) 10697 VectorIndex = 1; 10698 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10699 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10700 return Op; 10701 } 10702 10703 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10704 // compared to a value that is atomically loaded (atomic loads zero-extend). 10705 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10706 SelectionDAG &DAG) const { 10707 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10708 "Expecting an atomic compare-and-swap here."); 10709 SDLoc dl(Op); 10710 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10711 EVT MemVT = AtomicNode->getMemoryVT(); 10712 if (MemVT.getSizeInBits() >= 32) 10713 return Op; 10714 10715 SDValue CmpOp = Op.getOperand(2); 10716 // If this is already correctly zero-extended, leave it alone. 10717 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10718 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10719 return Op; 10720 10721 // Clear the high bits of the compare operand. 10722 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10723 SDValue NewCmpOp = 10724 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10725 DAG.getConstant(MaskVal, dl, MVT::i32)); 10726 10727 // Replace the existing compare operand with the properly zero-extended one. 10728 SmallVector<SDValue, 4> Ops; 10729 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10730 Ops.push_back(AtomicNode->getOperand(i)); 10731 Ops[2] = NewCmpOp; 10732 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10733 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10734 auto NodeTy = 10735 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10736 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10737 } 10738 10739 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, 10740 SelectionDAG &DAG) const { 10741 AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); 10742 EVT MemVT = N->getMemoryVT(); 10743 assert(MemVT.getSimpleVT() == MVT::i128 && 10744 "Expect quadword atomic operations"); 10745 SDLoc dl(N); 10746 unsigned Opc = N->getOpcode(); 10747 switch (Opc) { 10748 case ISD::ATOMIC_LOAD: { 10749 // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be 10750 // lowered to ppc instructions by pattern matching instruction selector. 10751 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); 10752 SmallVector<SDValue, 4> Ops{ 10753 N->getOperand(0), 10754 DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; 10755 for (int I = 1, E = N->getNumOperands(); I < E; ++I) 10756 Ops.push_back(N->getOperand(I)); 10757 SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, 10758 Ops, MemVT, N->getMemOperand()); 10759 SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); 10760 SDValue ValHi = 10761 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); 10762 ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, 10763 DAG.getConstant(64, dl, MVT::i32)); 10764 SDValue Val = 10765 DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); 10766 return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, 10767 {Val, LoadedVal.getValue(2)}); 10768 } 10769 case ISD::ATOMIC_STORE: { 10770 // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be 10771 // lowered to ppc instructions by pattern matching instruction selector. 10772 SDVTList Tys = DAG.getVTList(MVT::Other); 10773 SmallVector<SDValue, 4> Ops{ 10774 N->getOperand(0), 10775 DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; 10776 SDValue Val = N->getOperand(2); 10777 SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); 10778 SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, 10779 DAG.getConstant(64, dl, MVT::i32)); 10780 ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); 10781 Ops.push_back(ValLo); 10782 Ops.push_back(ValHi); 10783 Ops.push_back(N->getOperand(1)); 10784 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, 10785 N->getMemOperand()); 10786 } 10787 default: 10788 llvm_unreachable("Unexpected atomic opcode"); 10789 } 10790 } 10791 10792 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10793 SelectionDAG &DAG) const { 10794 SDLoc dl(Op); 10795 // Create a stack slot that is 16-byte aligned. 10796 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10797 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10798 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10799 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10800 10801 // Store the input value into Value#0 of the stack slot. 10802 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10803 MachinePointerInfo()); 10804 // Load it out. 10805 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10806 } 10807 10808 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10809 SelectionDAG &DAG) const { 10810 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10811 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10812 10813 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10814 10815 EVT VT = Op.getValueType(); 10816 SDLoc dl(Op); 10817 SDValue V1 = Op.getOperand(0); 10818 SDValue V2 = Op.getOperand(1); 10819 10820 if (VT == MVT::v2f64 && C) 10821 return Op; 10822 10823 if (Subtarget.hasP9Vector()) { 10824 // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way 10825 // because on P10, it allows this specific insert_vector_elt load pattern to 10826 // utilize the refactored load and store infrastructure in order to exploit 10827 // prefixed loads. 10828 // On targets with inexpensive direct moves (Power9 and up), a 10829 // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer 10830 // load since a single precision load will involve conversion to double 10831 // precision on the load followed by another conversion to single precision. 10832 if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && 10833 (isa<LoadSDNode>(V2))) { 10834 SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); 10835 SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); 10836 SDValue InsVecElt = 10837 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, 10838 BitcastLoad, Op.getOperand(2)); 10839 return DAG.getBitcast(MVT::v4f32, InsVecElt); 10840 } 10841 } 10842 10843 if (Subtarget.isISA3_1()) { 10844 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10845 return SDValue(); 10846 // On P10, we have legal lowering for constant and variable indices for 10847 // all vectors. 10848 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10849 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) 10850 return Op; 10851 } 10852 10853 // Before P10, we have legal lowering for constant indices but not for 10854 // variable ones. 10855 if (!C) 10856 return SDValue(); 10857 10858 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10859 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10860 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10861 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10862 unsigned InsertAtElement = C->getZExtValue(); 10863 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10864 if (Subtarget.isLittleEndian()) { 10865 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10866 } 10867 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10868 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10869 } 10870 return Op; 10871 } 10872 10873 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10874 SelectionDAG &DAG) const { 10875 SDLoc dl(Op); 10876 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10877 SDValue LoadChain = LN->getChain(); 10878 SDValue BasePtr = LN->getBasePtr(); 10879 EVT VT = Op.getValueType(); 10880 10881 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10882 return Op; 10883 10884 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10885 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10886 // 2 or 4 vsx registers. 10887 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10888 "Type unsupported without MMA"); 10889 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10890 "Type unsupported without paired vector support"); 10891 Align Alignment = LN->getAlign(); 10892 SmallVector<SDValue, 4> Loads; 10893 SmallVector<SDValue, 4> LoadChains; 10894 unsigned NumVecs = VT.getSizeInBits() / 128; 10895 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10896 SDValue Load = 10897 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10898 LN->getPointerInfo().getWithOffset(Idx * 16), 10899 commonAlignment(Alignment, Idx * 16), 10900 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10901 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10902 DAG.getConstant(16, dl, BasePtr.getValueType())); 10903 Loads.push_back(Load); 10904 LoadChains.push_back(Load.getValue(1)); 10905 } 10906 if (Subtarget.isLittleEndian()) { 10907 std::reverse(Loads.begin(), Loads.end()); 10908 std::reverse(LoadChains.begin(), LoadChains.end()); 10909 } 10910 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10911 SDValue Value = 10912 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10913 dl, VT, Loads); 10914 SDValue RetOps[] = {Value, TF}; 10915 return DAG.getMergeValues(RetOps, dl); 10916 } 10917 10918 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10919 SelectionDAG &DAG) const { 10920 SDLoc dl(Op); 10921 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10922 SDValue StoreChain = SN->getChain(); 10923 SDValue BasePtr = SN->getBasePtr(); 10924 SDValue Value = SN->getValue(); 10925 EVT StoreVT = Value.getValueType(); 10926 10927 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10928 return Op; 10929 10930 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10931 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10932 // underlying registers individually. 10933 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10934 "Type unsupported without MMA"); 10935 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10936 "Type unsupported without paired vector support"); 10937 Align Alignment = SN->getAlign(); 10938 SmallVector<SDValue, 4> Stores; 10939 unsigned NumVecs = 2; 10940 if (StoreVT == MVT::v512i1) { 10941 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10942 NumVecs = 4; 10943 } 10944 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10945 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10946 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10947 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10948 SDValue Store = 10949 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10950 SN->getPointerInfo().getWithOffset(Idx * 16), 10951 commonAlignment(Alignment, Idx * 16), 10952 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10953 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10954 DAG.getConstant(16, dl, BasePtr.getValueType())); 10955 Stores.push_back(Store); 10956 } 10957 SDValue TF = DAG.getTokenFactor(dl, Stores); 10958 return TF; 10959 } 10960 10961 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10962 SDLoc dl(Op); 10963 if (Op.getValueType() == MVT::v4i32) { 10964 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10965 10966 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10967 // +16 as shift amt. 10968 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10969 SDValue RHSSwap = // = vrlw RHS, 16 10970 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10971 10972 // Shrinkify inputs to v8i16. 10973 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10974 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10975 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10976 10977 // Low parts multiplied together, generating 32-bit results (we ignore the 10978 // top parts). 10979 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10980 LHS, RHS, DAG, dl, MVT::v4i32); 10981 10982 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10983 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10984 // Shift the high parts up 16 bits. 10985 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10986 Neg16, DAG, dl); 10987 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10988 } else if (Op.getValueType() == MVT::v16i8) { 10989 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10990 bool isLittleEndian = Subtarget.isLittleEndian(); 10991 10992 // Multiply the even 8-bit parts, producing 16-bit sums. 10993 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10994 LHS, RHS, DAG, dl, MVT::v8i16); 10995 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10996 10997 // Multiply the odd 8-bit parts, producing 16-bit sums. 10998 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10999 LHS, RHS, DAG, dl, MVT::v8i16); 11000 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 11001 11002 // Merge the results together. Because vmuleub and vmuloub are 11003 // instructions with a big-endian bias, we must reverse the 11004 // element numbering and reverse the meaning of "odd" and "even" 11005 // when generating little endian code. 11006 int Ops[16]; 11007 for (unsigned i = 0; i != 8; ++i) { 11008 if (isLittleEndian) { 11009 Ops[i*2 ] = 2*i; 11010 Ops[i*2+1] = 2*i+16; 11011 } else { 11012 Ops[i*2 ] = 2*i+1; 11013 Ops[i*2+1] = 2*i+1+16; 11014 } 11015 } 11016 if (isLittleEndian) 11017 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 11018 else 11019 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 11020 } else { 11021 llvm_unreachable("Unknown mul to lower!"); 11022 } 11023 } 11024 11025 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11026 bool IsStrict = Op->isStrictFPOpcode(); 11027 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 11028 !Subtarget.hasP9Vector()) 11029 return SDValue(); 11030 11031 return Op; 11032 } 11033 11034 // Custom lowering for fpext vf32 to v2f64 11035 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11036 11037 assert(Op.getOpcode() == ISD::FP_EXTEND && 11038 "Should only be called for ISD::FP_EXTEND"); 11039 11040 // FIXME: handle extends from half precision float vectors on P9. 11041 // We only want to custom lower an extend from v2f32 to v2f64. 11042 if (Op.getValueType() != MVT::v2f64 || 11043 Op.getOperand(0).getValueType() != MVT::v2f32) 11044 return SDValue(); 11045 11046 SDLoc dl(Op); 11047 SDValue Op0 = Op.getOperand(0); 11048 11049 switch (Op0.getOpcode()) { 11050 default: 11051 return SDValue(); 11052 case ISD::EXTRACT_SUBVECTOR: { 11053 assert(Op0.getNumOperands() == 2 && 11054 isa<ConstantSDNode>(Op0->getOperand(1)) && 11055 "Node should have 2 operands with second one being a constant!"); 11056 11057 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 11058 return SDValue(); 11059 11060 // Custom lower is only done for high or low doubleword. 11061 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 11062 if (Idx % 2 != 0) 11063 return SDValue(); 11064 11065 // Since input is v4f32, at this point Idx is either 0 or 2. 11066 // Shift to get the doubleword position we want. 11067 int DWord = Idx >> 1; 11068 11069 // High and low word positions are different on little endian. 11070 if (Subtarget.isLittleEndian()) 11071 DWord ^= 0x1; 11072 11073 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 11074 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 11075 } 11076 case ISD::FADD: 11077 case ISD::FMUL: 11078 case ISD::FSUB: { 11079 SDValue NewLoad[2]; 11080 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 11081 // Ensure both input are loads. 11082 SDValue LdOp = Op0.getOperand(i); 11083 if (LdOp.getOpcode() != ISD::LOAD) 11084 return SDValue(); 11085 // Generate new load node. 11086 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 11087 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11088 NewLoad[i] = DAG.getMemIntrinsicNode( 11089 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11090 LD->getMemoryVT(), LD->getMemOperand()); 11091 } 11092 SDValue NewOp = 11093 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 11094 NewLoad[1], Op0.getNode()->getFlags()); 11095 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 11096 DAG.getConstant(0, dl, MVT::i32)); 11097 } 11098 case ISD::LOAD: { 11099 LoadSDNode *LD = cast<LoadSDNode>(Op0); 11100 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 11101 SDValue NewLd = DAG.getMemIntrinsicNode( 11102 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 11103 LD->getMemoryVT(), LD->getMemOperand()); 11104 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 11105 DAG.getConstant(0, dl, MVT::i32)); 11106 } 11107 } 11108 llvm_unreachable("ERROR:Should return for all cases within swtich."); 11109 } 11110 11111 /// LowerOperation - Provide custom lowering hooks for some operations. 11112 /// 11113 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11114 switch (Op.getOpcode()) { 11115 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 11116 case ISD::FPOW: return lowerPow(Op, DAG); 11117 case ISD::FSIN: return lowerSin(Op, DAG); 11118 case ISD::FCOS: return lowerCos(Op, DAG); 11119 case ISD::FLOG: return lowerLog(Op, DAG); 11120 case ISD::FLOG10: return lowerLog10(Op, DAG); 11121 case ISD::FEXP: return lowerExp(Op, DAG); 11122 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 11123 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 11124 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 11125 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 11126 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 11127 case ISD::STRICT_FSETCC: 11128 case ISD::STRICT_FSETCCS: 11129 case ISD::SETCC: return LowerSETCC(Op, DAG); 11130 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 11131 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 11132 11133 case ISD::INLINEASM: 11134 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 11135 // Variable argument lowering. 11136 case ISD::VASTART: return LowerVASTART(Op, DAG); 11137 case ISD::VAARG: return LowerVAARG(Op, DAG); 11138 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 11139 11140 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 11141 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 11142 case ISD::GET_DYNAMIC_AREA_OFFSET: 11143 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 11144 11145 // Exception handling lowering. 11146 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 11147 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 11148 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 11149 11150 case ISD::LOAD: return LowerLOAD(Op, DAG); 11151 case ISD::STORE: return LowerSTORE(Op, DAG); 11152 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 11153 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 11154 case ISD::STRICT_FP_TO_UINT: 11155 case ISD::STRICT_FP_TO_SINT: 11156 case ISD::FP_TO_UINT: 11157 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 11158 case ISD::STRICT_UINT_TO_FP: 11159 case ISD::STRICT_SINT_TO_FP: 11160 case ISD::UINT_TO_FP: 11161 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 11162 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 11163 11164 // Lower 64-bit shifts. 11165 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 11166 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 11167 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 11168 11169 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 11170 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 11171 11172 // Vector-related lowering. 11173 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 11174 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 11175 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 11176 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 11177 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 11178 case ISD::MUL: return LowerMUL(Op, DAG); 11179 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 11180 case ISD::STRICT_FP_ROUND: 11181 case ISD::FP_ROUND: 11182 return LowerFP_ROUND(Op, DAG); 11183 case ISD::ROTL: return LowerROTL(Op, DAG); 11184 11185 // For counter-based loop handling. 11186 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 11187 11188 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 11189 11190 // Frame & Return address. 11191 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 11192 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 11193 11194 case ISD::INTRINSIC_VOID: 11195 return LowerINTRINSIC_VOID(Op, DAG); 11196 case ISD::BSWAP: 11197 return LowerBSWAP(Op, DAG); 11198 case ISD::ATOMIC_CMP_SWAP: 11199 return LowerATOMIC_CMP_SWAP(Op, DAG); 11200 case ISD::ATOMIC_STORE: 11201 return LowerATOMIC_LOAD_STORE(Op, DAG); 11202 } 11203 } 11204 11205 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 11206 SmallVectorImpl<SDValue>&Results, 11207 SelectionDAG &DAG) const { 11208 SDLoc dl(N); 11209 switch (N->getOpcode()) { 11210 default: 11211 llvm_unreachable("Do not know how to custom type legalize this operation!"); 11212 case ISD::ATOMIC_LOAD: { 11213 SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); 11214 Results.push_back(Res); 11215 Results.push_back(Res.getValue(1)); 11216 break; 11217 } 11218 case ISD::READCYCLECOUNTER: { 11219 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 11220 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 11221 11222 Results.push_back( 11223 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 11224 Results.push_back(RTB.getValue(2)); 11225 break; 11226 } 11227 case ISD::INTRINSIC_W_CHAIN: { 11228 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 11229 Intrinsic::loop_decrement) 11230 break; 11231 11232 assert(N->getValueType(0) == MVT::i1 && 11233 "Unexpected result type for CTR decrement intrinsic"); 11234 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 11235 N->getValueType(0)); 11236 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 11237 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 11238 N->getOperand(1)); 11239 11240 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 11241 Results.push_back(NewInt.getValue(1)); 11242 break; 11243 } 11244 case ISD::INTRINSIC_WO_CHAIN: { 11245 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { 11246 case Intrinsic::ppc_pack_longdouble: 11247 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 11248 N->getOperand(2), N->getOperand(1))); 11249 break; 11250 case Intrinsic::ppc_maxfe: 11251 case Intrinsic::ppc_minfe: 11252 case Intrinsic::ppc_fnmsub: 11253 case Intrinsic::ppc_convert_f128_to_ppcf128: 11254 Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); 11255 break; 11256 } 11257 break; 11258 } 11259 case ISD::VAARG: { 11260 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 11261 return; 11262 11263 EVT VT = N->getValueType(0); 11264 11265 if (VT == MVT::i64) { 11266 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 11267 11268 Results.push_back(NewNode); 11269 Results.push_back(NewNode.getValue(1)); 11270 } 11271 return; 11272 } 11273 case ISD::STRICT_FP_TO_SINT: 11274 case ISD::STRICT_FP_TO_UINT: 11275 case ISD::FP_TO_SINT: 11276 case ISD::FP_TO_UINT: { 11277 // LowerFP_TO_INT() can only handle f32 and f64. 11278 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 11279 MVT::ppcf128) 11280 return; 11281 SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); 11282 Results.push_back(LoweredValue); 11283 if (N->isStrictFPOpcode()) 11284 Results.push_back(LoweredValue.getValue(1)); 11285 return; 11286 } 11287 case ISD::TRUNCATE: { 11288 if (!N->getValueType(0).isVector()) 11289 return; 11290 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 11291 if (Lowered) 11292 Results.push_back(Lowered); 11293 return; 11294 } 11295 case ISD::FSHL: 11296 case ISD::FSHR: 11297 // Don't handle funnel shifts here. 11298 return; 11299 case ISD::BITCAST: 11300 // Don't handle bitcast here. 11301 return; 11302 case ISD::FP_EXTEND: 11303 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 11304 if (Lowered) 11305 Results.push_back(Lowered); 11306 return; 11307 } 11308 } 11309 11310 //===----------------------------------------------------------------------===// 11311 // Other Lowering Code 11312 //===----------------------------------------------------------------------===// 11313 11314 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 11315 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11316 Function *Func = Intrinsic::getDeclaration(M, Id); 11317 return Builder.CreateCall(Func, {}); 11318 } 11319 11320 // The mappings for emitLeading/TrailingFence is taken from 11321 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11322 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11323 Instruction *Inst, 11324 AtomicOrdering Ord) const { 11325 if (Ord == AtomicOrdering::SequentiallyConsistent) 11326 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11327 if (isReleaseOrStronger(Ord)) 11328 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11329 return nullptr; 11330 } 11331 11332 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11333 Instruction *Inst, 11334 AtomicOrdering Ord) const { 11335 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11336 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11337 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11338 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11339 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11340 return Builder.CreateCall( 11341 Intrinsic::getDeclaration( 11342 Builder.GetInsertBlock()->getParent()->getParent(), 11343 Intrinsic::ppc_cfence, {Inst->getType()}), 11344 {Inst}); 11345 // FIXME: Can use isync for rmw operation. 11346 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11347 } 11348 return nullptr; 11349 } 11350 11351 MachineBasicBlock * 11352 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11353 unsigned AtomicSize, 11354 unsigned BinOpcode, 11355 unsigned CmpOpcode, 11356 unsigned CmpPred) const { 11357 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11358 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11359 11360 auto LoadMnemonic = PPC::LDARX; 11361 auto StoreMnemonic = PPC::STDCX; 11362 switch (AtomicSize) { 11363 default: 11364 llvm_unreachable("Unexpected size of atomic entity"); 11365 case 1: 11366 LoadMnemonic = PPC::LBARX; 11367 StoreMnemonic = PPC::STBCX; 11368 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11369 break; 11370 case 2: 11371 LoadMnemonic = PPC::LHARX; 11372 StoreMnemonic = PPC::STHCX; 11373 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11374 break; 11375 case 4: 11376 LoadMnemonic = PPC::LWARX; 11377 StoreMnemonic = PPC::STWCX; 11378 break; 11379 case 8: 11380 LoadMnemonic = PPC::LDARX; 11381 StoreMnemonic = PPC::STDCX; 11382 break; 11383 } 11384 11385 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11386 MachineFunction *F = BB->getParent(); 11387 MachineFunction::iterator It = ++BB->getIterator(); 11388 11389 Register dest = MI.getOperand(0).getReg(); 11390 Register ptrA = MI.getOperand(1).getReg(); 11391 Register ptrB = MI.getOperand(2).getReg(); 11392 Register incr = MI.getOperand(3).getReg(); 11393 DebugLoc dl = MI.getDebugLoc(); 11394 11395 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11396 MachineBasicBlock *loop2MBB = 11397 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11398 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11399 F->insert(It, loopMBB); 11400 if (CmpOpcode) 11401 F->insert(It, loop2MBB); 11402 F->insert(It, exitMBB); 11403 exitMBB->splice(exitMBB->begin(), BB, 11404 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11405 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11406 11407 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11408 Register TmpReg = (!BinOpcode) ? incr : 11409 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11410 : &PPC::GPRCRegClass); 11411 11412 // thisMBB: 11413 // ... 11414 // fallthrough --> loopMBB 11415 BB->addSuccessor(loopMBB); 11416 11417 // loopMBB: 11418 // l[wd]arx dest, ptr 11419 // add r0, dest, incr 11420 // st[wd]cx. r0, ptr 11421 // bne- loopMBB 11422 // fallthrough --> exitMBB 11423 11424 // For max/min... 11425 // loopMBB: 11426 // l[wd]arx dest, ptr 11427 // cmpl?[wd] incr, dest 11428 // bgt exitMBB 11429 // loop2MBB: 11430 // st[wd]cx. dest, ptr 11431 // bne- loopMBB 11432 // fallthrough --> exitMBB 11433 11434 BB = loopMBB; 11435 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11436 .addReg(ptrA).addReg(ptrB); 11437 if (BinOpcode) 11438 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11439 if (CmpOpcode) { 11440 // Signed comparisons of byte or halfword values must be sign-extended. 11441 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11442 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11443 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11444 ExtReg).addReg(dest); 11445 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11446 .addReg(incr).addReg(ExtReg); 11447 } else 11448 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11449 .addReg(incr).addReg(dest); 11450 11451 BuildMI(BB, dl, TII->get(PPC::BCC)) 11452 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11453 BB->addSuccessor(loop2MBB); 11454 BB->addSuccessor(exitMBB); 11455 BB = loop2MBB; 11456 } 11457 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11458 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11459 BuildMI(BB, dl, TII->get(PPC::BCC)) 11460 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11461 BB->addSuccessor(loopMBB); 11462 BB->addSuccessor(exitMBB); 11463 11464 // exitMBB: 11465 // ... 11466 BB = exitMBB; 11467 return BB; 11468 } 11469 11470 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11471 switch(MI.getOpcode()) { 11472 default: 11473 return false; 11474 case PPC::COPY: 11475 return TII->isSignExtended(MI); 11476 case PPC::LHA: 11477 case PPC::LHA8: 11478 case PPC::LHAU: 11479 case PPC::LHAU8: 11480 case PPC::LHAUX: 11481 case PPC::LHAUX8: 11482 case PPC::LHAX: 11483 case PPC::LHAX8: 11484 case PPC::LWA: 11485 case PPC::LWAUX: 11486 case PPC::LWAX: 11487 case PPC::LWAX_32: 11488 case PPC::LWA_32: 11489 case PPC::PLHA: 11490 case PPC::PLHA8: 11491 case PPC::PLHA8pc: 11492 case PPC::PLHApc: 11493 case PPC::PLWA: 11494 case PPC::PLWA8: 11495 case PPC::PLWA8pc: 11496 case PPC::PLWApc: 11497 case PPC::EXTSB: 11498 case PPC::EXTSB8: 11499 case PPC::EXTSB8_32_64: 11500 case PPC::EXTSB8_rec: 11501 case PPC::EXTSB_rec: 11502 case PPC::EXTSH: 11503 case PPC::EXTSH8: 11504 case PPC::EXTSH8_32_64: 11505 case PPC::EXTSH8_rec: 11506 case PPC::EXTSH_rec: 11507 case PPC::EXTSW: 11508 case PPC::EXTSWSLI: 11509 case PPC::EXTSWSLI_32_64: 11510 case PPC::EXTSWSLI_32_64_rec: 11511 case PPC::EXTSWSLI_rec: 11512 case PPC::EXTSW_32: 11513 case PPC::EXTSW_32_64: 11514 case PPC::EXTSW_32_64_rec: 11515 case PPC::EXTSW_rec: 11516 case PPC::SRAW: 11517 case PPC::SRAWI: 11518 case PPC::SRAWI_rec: 11519 case PPC::SRAW_rec: 11520 return true; 11521 } 11522 return false; 11523 } 11524 11525 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11526 MachineInstr &MI, MachineBasicBlock *BB, 11527 bool is8bit, // operation 11528 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11529 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11530 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11531 11532 // If this is a signed comparison and the value being compared is not known 11533 // to be sign extended, sign extend it here. 11534 DebugLoc dl = MI.getDebugLoc(); 11535 MachineFunction *F = BB->getParent(); 11536 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11537 Register incr = MI.getOperand(3).getReg(); 11538 bool IsSignExtended = Register::isVirtualRegister(incr) && 11539 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11540 11541 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11542 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11543 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11544 .addReg(MI.getOperand(3).getReg()); 11545 MI.getOperand(3).setReg(ValueReg); 11546 } 11547 // If we support part-word atomic mnemonics, just use them 11548 if (Subtarget.hasPartwordAtomics()) 11549 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11550 CmpPred); 11551 11552 // In 64 bit mode we have to use 64 bits for addresses, even though the 11553 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11554 // registers without caring whether they're 32 or 64, but here we're 11555 // doing actual arithmetic on the addresses. 11556 bool is64bit = Subtarget.isPPC64(); 11557 bool isLittleEndian = Subtarget.isLittleEndian(); 11558 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11559 11560 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11561 MachineFunction::iterator It = ++BB->getIterator(); 11562 11563 Register dest = MI.getOperand(0).getReg(); 11564 Register ptrA = MI.getOperand(1).getReg(); 11565 Register ptrB = MI.getOperand(2).getReg(); 11566 11567 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11568 MachineBasicBlock *loop2MBB = 11569 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11570 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11571 F->insert(It, loopMBB); 11572 if (CmpOpcode) 11573 F->insert(It, loop2MBB); 11574 F->insert(It, exitMBB); 11575 exitMBB->splice(exitMBB->begin(), BB, 11576 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11577 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11578 11579 const TargetRegisterClass *RC = 11580 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11581 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11582 11583 Register PtrReg = RegInfo.createVirtualRegister(RC); 11584 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11585 Register ShiftReg = 11586 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11587 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11588 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11589 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11590 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11591 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11592 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11593 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11594 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11595 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11596 Register Ptr1Reg; 11597 Register TmpReg = 11598 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11599 11600 // thisMBB: 11601 // ... 11602 // fallthrough --> loopMBB 11603 BB->addSuccessor(loopMBB); 11604 11605 // The 4-byte load must be aligned, while a char or short may be 11606 // anywhere in the word. Hence all this nasty bookkeeping code. 11607 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11608 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11609 // xori shift, shift1, 24 [16] 11610 // rlwinm ptr, ptr1, 0, 0, 29 11611 // slw incr2, incr, shift 11612 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11613 // slw mask, mask2, shift 11614 // loopMBB: 11615 // lwarx tmpDest, ptr 11616 // add tmp, tmpDest, incr2 11617 // andc tmp2, tmpDest, mask 11618 // and tmp3, tmp, mask 11619 // or tmp4, tmp3, tmp2 11620 // stwcx. tmp4, ptr 11621 // bne- loopMBB 11622 // fallthrough --> exitMBB 11623 // srw SrwDest, tmpDest, shift 11624 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11625 if (ptrA != ZeroReg) { 11626 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11627 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11628 .addReg(ptrA) 11629 .addReg(ptrB); 11630 } else { 11631 Ptr1Reg = ptrB; 11632 } 11633 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11634 // mode. 11635 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11636 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11637 .addImm(3) 11638 .addImm(27) 11639 .addImm(is8bit ? 28 : 27); 11640 if (!isLittleEndian) 11641 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11642 .addReg(Shift1Reg) 11643 .addImm(is8bit ? 24 : 16); 11644 if (is64bit) 11645 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11646 .addReg(Ptr1Reg) 11647 .addImm(0) 11648 .addImm(61); 11649 else 11650 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11651 .addReg(Ptr1Reg) 11652 .addImm(0) 11653 .addImm(0) 11654 .addImm(29); 11655 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11656 if (is8bit) 11657 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11658 else { 11659 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11660 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11661 .addReg(Mask3Reg) 11662 .addImm(65535); 11663 } 11664 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11665 .addReg(Mask2Reg) 11666 .addReg(ShiftReg); 11667 11668 BB = loopMBB; 11669 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11670 .addReg(ZeroReg) 11671 .addReg(PtrReg); 11672 if (BinOpcode) 11673 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11674 .addReg(Incr2Reg) 11675 .addReg(TmpDestReg); 11676 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11677 .addReg(TmpDestReg) 11678 .addReg(MaskReg); 11679 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11680 if (CmpOpcode) { 11681 // For unsigned comparisons, we can directly compare the shifted values. 11682 // For signed comparisons we shift and sign extend. 11683 Register SReg = RegInfo.createVirtualRegister(GPRC); 11684 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11685 .addReg(TmpDestReg) 11686 .addReg(MaskReg); 11687 unsigned ValueReg = SReg; 11688 unsigned CmpReg = Incr2Reg; 11689 if (CmpOpcode == PPC::CMPW) { 11690 ValueReg = RegInfo.createVirtualRegister(GPRC); 11691 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11692 .addReg(SReg) 11693 .addReg(ShiftReg); 11694 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11695 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11696 .addReg(ValueReg); 11697 ValueReg = ValueSReg; 11698 CmpReg = incr; 11699 } 11700 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11701 .addReg(CmpReg) 11702 .addReg(ValueReg); 11703 BuildMI(BB, dl, TII->get(PPC::BCC)) 11704 .addImm(CmpPred) 11705 .addReg(PPC::CR0) 11706 .addMBB(exitMBB); 11707 BB->addSuccessor(loop2MBB); 11708 BB->addSuccessor(exitMBB); 11709 BB = loop2MBB; 11710 } 11711 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11712 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11713 .addReg(Tmp4Reg) 11714 .addReg(ZeroReg) 11715 .addReg(PtrReg); 11716 BuildMI(BB, dl, TII->get(PPC::BCC)) 11717 .addImm(PPC::PRED_NE) 11718 .addReg(PPC::CR0) 11719 .addMBB(loopMBB); 11720 BB->addSuccessor(loopMBB); 11721 BB->addSuccessor(exitMBB); 11722 11723 // exitMBB: 11724 // ... 11725 BB = exitMBB; 11726 // Since the shift amount is not a constant, we need to clear 11727 // the upper bits with a separate RLWINM. 11728 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11729 .addReg(SrwDestReg) 11730 .addImm(0) 11731 .addImm(is8bit ? 24 : 16) 11732 .addImm(31); 11733 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11734 .addReg(TmpDestReg) 11735 .addReg(ShiftReg); 11736 return BB; 11737 } 11738 11739 llvm::MachineBasicBlock * 11740 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11741 MachineBasicBlock *MBB) const { 11742 DebugLoc DL = MI.getDebugLoc(); 11743 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11744 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11745 11746 MachineFunction *MF = MBB->getParent(); 11747 MachineRegisterInfo &MRI = MF->getRegInfo(); 11748 11749 const BasicBlock *BB = MBB->getBasicBlock(); 11750 MachineFunction::iterator I = ++MBB->getIterator(); 11751 11752 Register DstReg = MI.getOperand(0).getReg(); 11753 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11754 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11755 Register mainDstReg = MRI.createVirtualRegister(RC); 11756 Register restoreDstReg = MRI.createVirtualRegister(RC); 11757 11758 MVT PVT = getPointerTy(MF->getDataLayout()); 11759 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11760 "Invalid Pointer Size!"); 11761 // For v = setjmp(buf), we generate 11762 // 11763 // thisMBB: 11764 // SjLjSetup mainMBB 11765 // bl mainMBB 11766 // v_restore = 1 11767 // b sinkMBB 11768 // 11769 // mainMBB: 11770 // buf[LabelOffset] = LR 11771 // v_main = 0 11772 // 11773 // sinkMBB: 11774 // v = phi(main, restore) 11775 // 11776 11777 MachineBasicBlock *thisMBB = MBB; 11778 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11779 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11780 MF->insert(I, mainMBB); 11781 MF->insert(I, sinkMBB); 11782 11783 MachineInstrBuilder MIB; 11784 11785 // Transfer the remainder of BB and its successor edges to sinkMBB. 11786 sinkMBB->splice(sinkMBB->begin(), MBB, 11787 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11788 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11789 11790 // Note that the structure of the jmp_buf used here is not compatible 11791 // with that used by libc, and is not designed to be. Specifically, it 11792 // stores only those 'reserved' registers that LLVM does not otherwise 11793 // understand how to spill. Also, by convention, by the time this 11794 // intrinsic is called, Clang has already stored the frame address in the 11795 // first slot of the buffer and stack address in the third. Following the 11796 // X86 target code, we'll store the jump address in the second slot. We also 11797 // need to save the TOC pointer (R2) to handle jumps between shared 11798 // libraries, and that will be stored in the fourth slot. The thread 11799 // identifier (R13) is not affected. 11800 11801 // thisMBB: 11802 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11803 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11804 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11805 11806 // Prepare IP either in reg. 11807 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11808 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11809 Register BufReg = MI.getOperand(1).getReg(); 11810 11811 if (Subtarget.is64BitELFABI()) { 11812 setUsesTOCBasePtr(*MBB->getParent()); 11813 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11814 .addReg(PPC::X2) 11815 .addImm(TOCOffset) 11816 .addReg(BufReg) 11817 .cloneMemRefs(MI); 11818 } 11819 11820 // Naked functions never have a base pointer, and so we use r1. For all 11821 // other functions, this decision must be delayed until during PEI. 11822 unsigned BaseReg; 11823 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11824 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11825 else 11826 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11827 11828 MIB = BuildMI(*thisMBB, MI, DL, 11829 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11830 .addReg(BaseReg) 11831 .addImm(BPOffset) 11832 .addReg(BufReg) 11833 .cloneMemRefs(MI); 11834 11835 // Setup 11836 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11837 MIB.addRegMask(TRI->getNoPreservedMask()); 11838 11839 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11840 11841 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11842 .addMBB(mainMBB); 11843 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11844 11845 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11846 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11847 11848 // mainMBB: 11849 // mainDstReg = 0 11850 MIB = 11851 BuildMI(mainMBB, DL, 11852 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11853 11854 // Store IP 11855 if (Subtarget.isPPC64()) { 11856 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11857 .addReg(LabelReg) 11858 .addImm(LabelOffset) 11859 .addReg(BufReg); 11860 } else { 11861 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11862 .addReg(LabelReg) 11863 .addImm(LabelOffset) 11864 .addReg(BufReg); 11865 } 11866 MIB.cloneMemRefs(MI); 11867 11868 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11869 mainMBB->addSuccessor(sinkMBB); 11870 11871 // sinkMBB: 11872 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11873 TII->get(PPC::PHI), DstReg) 11874 .addReg(mainDstReg).addMBB(mainMBB) 11875 .addReg(restoreDstReg).addMBB(thisMBB); 11876 11877 MI.eraseFromParent(); 11878 return sinkMBB; 11879 } 11880 11881 MachineBasicBlock * 11882 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11883 MachineBasicBlock *MBB) const { 11884 DebugLoc DL = MI.getDebugLoc(); 11885 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11886 11887 MachineFunction *MF = MBB->getParent(); 11888 MachineRegisterInfo &MRI = MF->getRegInfo(); 11889 11890 MVT PVT = getPointerTy(MF->getDataLayout()); 11891 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11892 "Invalid Pointer Size!"); 11893 11894 const TargetRegisterClass *RC = 11895 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11896 Register Tmp = MRI.createVirtualRegister(RC); 11897 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11898 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11899 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11900 unsigned BP = 11901 (PVT == MVT::i64) 11902 ? PPC::X30 11903 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11904 : PPC::R30); 11905 11906 MachineInstrBuilder MIB; 11907 11908 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11909 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11910 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11911 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11912 11913 Register BufReg = MI.getOperand(0).getReg(); 11914 11915 // Reload FP (the jumped-to function may not have had a 11916 // frame pointer, and if so, then its r31 will be restored 11917 // as necessary). 11918 if (PVT == MVT::i64) { 11919 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11920 .addImm(0) 11921 .addReg(BufReg); 11922 } else { 11923 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11924 .addImm(0) 11925 .addReg(BufReg); 11926 } 11927 MIB.cloneMemRefs(MI); 11928 11929 // Reload IP 11930 if (PVT == MVT::i64) { 11931 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11932 .addImm(LabelOffset) 11933 .addReg(BufReg); 11934 } else { 11935 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11936 .addImm(LabelOffset) 11937 .addReg(BufReg); 11938 } 11939 MIB.cloneMemRefs(MI); 11940 11941 // Reload SP 11942 if (PVT == MVT::i64) { 11943 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11944 .addImm(SPOffset) 11945 .addReg(BufReg); 11946 } else { 11947 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11948 .addImm(SPOffset) 11949 .addReg(BufReg); 11950 } 11951 MIB.cloneMemRefs(MI); 11952 11953 // Reload BP 11954 if (PVT == MVT::i64) { 11955 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11956 .addImm(BPOffset) 11957 .addReg(BufReg); 11958 } else { 11959 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11960 .addImm(BPOffset) 11961 .addReg(BufReg); 11962 } 11963 MIB.cloneMemRefs(MI); 11964 11965 // Reload TOC 11966 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11967 setUsesTOCBasePtr(*MBB->getParent()); 11968 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11969 .addImm(TOCOffset) 11970 .addReg(BufReg) 11971 .cloneMemRefs(MI); 11972 } 11973 11974 // Jump 11975 BuildMI(*MBB, MI, DL, 11976 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11977 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11978 11979 MI.eraseFromParent(); 11980 return MBB; 11981 } 11982 11983 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11984 // If the function specifically requests inline stack probes, emit them. 11985 if (MF.getFunction().hasFnAttribute("probe-stack")) 11986 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11987 "inline-asm"; 11988 return false; 11989 } 11990 11991 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11992 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11993 unsigned StackAlign = TFI->getStackAlignment(); 11994 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11995 "Unexpected stack alignment"); 11996 // The default stack probe size is 4096 if the function has no 11997 // stack-probe-size attribute. 11998 unsigned StackProbeSize = 4096; 11999 const Function &Fn = MF.getFunction(); 12000 if (Fn.hasFnAttribute("stack-probe-size")) 12001 Fn.getFnAttribute("stack-probe-size") 12002 .getValueAsString() 12003 .getAsInteger(0, StackProbeSize); 12004 // Round down to the stack alignment. 12005 StackProbeSize &= ~(StackAlign - 1); 12006 return StackProbeSize ? StackProbeSize : StackAlign; 12007 } 12008 12009 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 12010 // into three phases. In the first phase, it uses pseudo instruction 12011 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 12012 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 12013 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 12014 // MaxCallFrameSize so that it can calculate correct data area pointer. 12015 MachineBasicBlock * 12016 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 12017 MachineBasicBlock *MBB) const { 12018 const bool isPPC64 = Subtarget.isPPC64(); 12019 MachineFunction *MF = MBB->getParent(); 12020 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12021 DebugLoc DL = MI.getDebugLoc(); 12022 const unsigned ProbeSize = getStackProbeSize(*MF); 12023 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 12024 MachineRegisterInfo &MRI = MF->getRegInfo(); 12025 // The CFG of probing stack looks as 12026 // +-----+ 12027 // | MBB | 12028 // +--+--+ 12029 // | 12030 // +----v----+ 12031 // +--->+ TestMBB +---+ 12032 // | +----+----+ | 12033 // | | | 12034 // | +-----v----+ | 12035 // +---+ BlockMBB | | 12036 // +----------+ | 12037 // | 12038 // +---------+ | 12039 // | TailMBB +<--+ 12040 // +---------+ 12041 // In MBB, calculate previous frame pointer and final stack pointer. 12042 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 12043 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 12044 // TailMBB is spliced via \p MI. 12045 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 12046 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 12047 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 12048 12049 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 12050 MF->insert(MBBIter, TestMBB); 12051 MF->insert(MBBIter, BlockMBB); 12052 MF->insert(MBBIter, TailMBB); 12053 12054 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 12055 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12056 12057 Register DstReg = MI.getOperand(0).getReg(); 12058 Register NegSizeReg = MI.getOperand(1).getReg(); 12059 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 12060 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12061 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12062 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12063 12064 // Since value of NegSizeReg might be realigned in prologepilog, insert a 12065 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 12066 // NegSize. 12067 unsigned ProbeOpc; 12068 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 12069 ProbeOpc = 12070 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 12071 else 12072 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 12073 // and NegSizeReg will be allocated in the same phyreg to avoid 12074 // redundant copy when NegSizeReg has only one use which is current MI and 12075 // will be replaced by PREPARE_PROBED_ALLOCA then. 12076 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 12077 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 12078 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 12079 .addDef(ActualNegSizeReg) 12080 .addReg(NegSizeReg) 12081 .add(MI.getOperand(2)) 12082 .add(MI.getOperand(3)); 12083 12084 // Calculate final stack pointer, which equals to SP + ActualNegSize. 12085 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 12086 FinalStackPtr) 12087 .addReg(SPReg) 12088 .addReg(ActualNegSizeReg); 12089 12090 // Materialize a scratch register for update. 12091 int64_t NegProbeSize = -(int64_t)ProbeSize; 12092 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 12093 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12094 if (!isInt<16>(NegProbeSize)) { 12095 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12096 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 12097 .addImm(NegProbeSize >> 16); 12098 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 12099 ScratchReg) 12100 .addReg(TempReg) 12101 .addImm(NegProbeSize & 0xFFFF); 12102 } else 12103 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 12104 .addImm(NegProbeSize); 12105 12106 { 12107 // Probing leading residual part. 12108 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12109 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 12110 .addReg(ActualNegSizeReg) 12111 .addReg(ScratchReg); 12112 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12113 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 12114 .addReg(Div) 12115 .addReg(ScratchReg); 12116 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12117 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 12118 .addReg(Mul) 12119 .addReg(ActualNegSizeReg); 12120 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12121 .addReg(FramePointer) 12122 .addReg(SPReg) 12123 .addReg(NegMod); 12124 } 12125 12126 { 12127 // Remaining part should be multiple of ProbeSize. 12128 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 12129 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 12130 .addReg(SPReg) 12131 .addReg(FinalStackPtr); 12132 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 12133 .addImm(PPC::PRED_EQ) 12134 .addReg(CmpResult) 12135 .addMBB(TailMBB); 12136 TestMBB->addSuccessor(BlockMBB); 12137 TestMBB->addSuccessor(TailMBB); 12138 } 12139 12140 { 12141 // Touch the block. 12142 // |P...|P...|P... 12143 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 12144 .addReg(FramePointer) 12145 .addReg(SPReg) 12146 .addReg(ScratchReg); 12147 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 12148 BlockMBB->addSuccessor(TestMBB); 12149 } 12150 12151 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 12152 // DYNAREAOFFSET pseudo instruction to get the future result. 12153 Register MaxCallFrameSizeReg = 12154 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 12155 BuildMI(TailMBB, DL, 12156 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 12157 MaxCallFrameSizeReg) 12158 .add(MI.getOperand(2)) 12159 .add(MI.getOperand(3)); 12160 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 12161 .addReg(SPReg) 12162 .addReg(MaxCallFrameSizeReg); 12163 12164 // Splice instructions after MI to TailMBB. 12165 TailMBB->splice(TailMBB->end(), MBB, 12166 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 12167 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 12168 MBB->addSuccessor(TestMBB); 12169 12170 // Delete the pseudo instruction. 12171 MI.eraseFromParent(); 12172 12173 ++NumDynamicAllocaProbed; 12174 return TailMBB; 12175 } 12176 12177 MachineBasicBlock * 12178 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 12179 MachineBasicBlock *BB) const { 12180 if (MI.getOpcode() == TargetOpcode::STACKMAP || 12181 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 12182 if (Subtarget.is64BitELFABI() && 12183 MI.getOpcode() == TargetOpcode::PATCHPOINT && 12184 !Subtarget.isUsingPCRelativeCalls()) { 12185 // Call lowering should have added an r2 operand to indicate a dependence 12186 // on the TOC base pointer value. It can't however, because there is no 12187 // way to mark the dependence as implicit there, and so the stackmap code 12188 // will confuse it with a regular operand. Instead, add the dependence 12189 // here. 12190 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 12191 } 12192 12193 return emitPatchPoint(MI, BB); 12194 } 12195 12196 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 12197 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 12198 return emitEHSjLjSetJmp(MI, BB); 12199 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 12200 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 12201 return emitEHSjLjLongJmp(MI, BB); 12202 } 12203 12204 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 12205 12206 // To "insert" these instructions we actually have to insert their 12207 // control-flow patterns. 12208 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12209 MachineFunction::iterator It = ++BB->getIterator(); 12210 12211 MachineFunction *F = BB->getParent(); 12212 MachineRegisterInfo &MRI = F->getRegInfo(); 12213 12214 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12215 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 12216 MI.getOpcode() == PPC::SELECT_I8) { 12217 SmallVector<MachineOperand, 2> Cond; 12218 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 12219 MI.getOpcode() == PPC::SELECT_CC_I8) 12220 Cond.push_back(MI.getOperand(4)); 12221 else 12222 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 12223 Cond.push_back(MI.getOperand(1)); 12224 12225 DebugLoc dl = MI.getDebugLoc(); 12226 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 12227 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 12228 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 12229 MI.getOpcode() == PPC::SELECT_CC_F8 || 12230 MI.getOpcode() == PPC::SELECT_CC_F16 || 12231 MI.getOpcode() == PPC::SELECT_CC_VRRC || 12232 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 12233 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 12234 MI.getOpcode() == PPC::SELECT_CC_VSRC || 12235 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 12236 MI.getOpcode() == PPC::SELECT_CC_SPE || 12237 MI.getOpcode() == PPC::SELECT_F4 || 12238 MI.getOpcode() == PPC::SELECT_F8 || 12239 MI.getOpcode() == PPC::SELECT_F16 || 12240 MI.getOpcode() == PPC::SELECT_SPE || 12241 MI.getOpcode() == PPC::SELECT_SPE4 || 12242 MI.getOpcode() == PPC::SELECT_VRRC || 12243 MI.getOpcode() == PPC::SELECT_VSFRC || 12244 MI.getOpcode() == PPC::SELECT_VSSRC || 12245 MI.getOpcode() == PPC::SELECT_VSRC) { 12246 // The incoming instruction knows the destination vreg to set, the 12247 // condition code register to branch on, the true/false values to 12248 // select between, and a branch opcode to use. 12249 12250 // thisMBB: 12251 // ... 12252 // TrueVal = ... 12253 // cmpTY ccX, r1, r2 12254 // bCC copy1MBB 12255 // fallthrough --> copy0MBB 12256 MachineBasicBlock *thisMBB = BB; 12257 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12258 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12259 DebugLoc dl = MI.getDebugLoc(); 12260 F->insert(It, copy0MBB); 12261 F->insert(It, sinkMBB); 12262 12263 // Transfer the remainder of BB and its successor edges to sinkMBB. 12264 sinkMBB->splice(sinkMBB->begin(), BB, 12265 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12266 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12267 12268 // Next, add the true and fallthrough blocks as its successors. 12269 BB->addSuccessor(copy0MBB); 12270 BB->addSuccessor(sinkMBB); 12271 12272 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 12273 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 12274 MI.getOpcode() == PPC::SELECT_F16 || 12275 MI.getOpcode() == PPC::SELECT_SPE4 || 12276 MI.getOpcode() == PPC::SELECT_SPE || 12277 MI.getOpcode() == PPC::SELECT_VRRC || 12278 MI.getOpcode() == PPC::SELECT_VSFRC || 12279 MI.getOpcode() == PPC::SELECT_VSSRC || 12280 MI.getOpcode() == PPC::SELECT_VSRC) { 12281 BuildMI(BB, dl, TII->get(PPC::BC)) 12282 .addReg(MI.getOperand(1).getReg()) 12283 .addMBB(sinkMBB); 12284 } else { 12285 unsigned SelectPred = MI.getOperand(4).getImm(); 12286 BuildMI(BB, dl, TII->get(PPC::BCC)) 12287 .addImm(SelectPred) 12288 .addReg(MI.getOperand(1).getReg()) 12289 .addMBB(sinkMBB); 12290 } 12291 12292 // copy0MBB: 12293 // %FalseValue = ... 12294 // # fallthrough to sinkMBB 12295 BB = copy0MBB; 12296 12297 // Update machine-CFG edges 12298 BB->addSuccessor(sinkMBB); 12299 12300 // sinkMBB: 12301 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12302 // ... 12303 BB = sinkMBB; 12304 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 12305 .addReg(MI.getOperand(3).getReg()) 12306 .addMBB(copy0MBB) 12307 .addReg(MI.getOperand(2).getReg()) 12308 .addMBB(thisMBB); 12309 } else if (MI.getOpcode() == PPC::ReadTB) { 12310 // To read the 64-bit time-base register on a 32-bit target, we read the 12311 // two halves. Should the counter have wrapped while it was being read, we 12312 // need to try again. 12313 // ... 12314 // readLoop: 12315 // mfspr Rx,TBU # load from TBU 12316 // mfspr Ry,TB # load from TB 12317 // mfspr Rz,TBU # load from TBU 12318 // cmpw crX,Rx,Rz # check if 'old'='new' 12319 // bne readLoop # branch if they're not equal 12320 // ... 12321 12322 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 12323 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12324 DebugLoc dl = MI.getDebugLoc(); 12325 F->insert(It, readMBB); 12326 F->insert(It, sinkMBB); 12327 12328 // Transfer the remainder of BB and its successor edges to sinkMBB. 12329 sinkMBB->splice(sinkMBB->begin(), BB, 12330 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12331 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12332 12333 BB->addSuccessor(readMBB); 12334 BB = readMBB; 12335 12336 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12337 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12338 Register LoReg = MI.getOperand(0).getReg(); 12339 Register HiReg = MI.getOperand(1).getReg(); 12340 12341 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12342 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12343 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12344 12345 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12346 12347 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12348 .addReg(HiReg) 12349 .addReg(ReadAgainReg); 12350 BuildMI(BB, dl, TII->get(PPC::BCC)) 12351 .addImm(PPC::PRED_NE) 12352 .addReg(CmpReg) 12353 .addMBB(readMBB); 12354 12355 BB->addSuccessor(readMBB); 12356 BB->addSuccessor(sinkMBB); 12357 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12358 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12359 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12360 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12361 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12362 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12363 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12364 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12365 12366 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12367 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12368 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12369 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12370 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12371 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12372 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12373 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12374 12375 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12376 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12377 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12378 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12379 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12380 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12381 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12382 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12383 12384 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12385 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12386 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12387 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12388 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12389 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12390 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12391 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12392 12393 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12394 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12395 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12396 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12397 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12398 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12399 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12400 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12401 12402 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12403 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12404 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12405 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12406 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12407 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12408 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12409 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12410 12411 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12412 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12413 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12414 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12415 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12416 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12417 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12418 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12419 12420 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12421 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12422 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12423 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12424 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12425 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12426 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12427 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12428 12429 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12430 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12431 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12432 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12433 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12434 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12435 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12436 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12437 12438 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12439 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12440 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12441 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12442 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12443 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12444 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12445 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12446 12447 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12448 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12449 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12450 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12451 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12452 BB = EmitAtomicBinary(MI, BB, 4, 0); 12453 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12454 BB = EmitAtomicBinary(MI, BB, 8, 0); 12455 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12456 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12457 (Subtarget.hasPartwordAtomics() && 12458 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12459 (Subtarget.hasPartwordAtomics() && 12460 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12461 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12462 12463 auto LoadMnemonic = PPC::LDARX; 12464 auto StoreMnemonic = PPC::STDCX; 12465 switch (MI.getOpcode()) { 12466 default: 12467 llvm_unreachable("Compare and swap of unknown size"); 12468 case PPC::ATOMIC_CMP_SWAP_I8: 12469 LoadMnemonic = PPC::LBARX; 12470 StoreMnemonic = PPC::STBCX; 12471 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12472 break; 12473 case PPC::ATOMIC_CMP_SWAP_I16: 12474 LoadMnemonic = PPC::LHARX; 12475 StoreMnemonic = PPC::STHCX; 12476 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12477 break; 12478 case PPC::ATOMIC_CMP_SWAP_I32: 12479 LoadMnemonic = PPC::LWARX; 12480 StoreMnemonic = PPC::STWCX; 12481 break; 12482 case PPC::ATOMIC_CMP_SWAP_I64: 12483 LoadMnemonic = PPC::LDARX; 12484 StoreMnemonic = PPC::STDCX; 12485 break; 12486 } 12487 Register dest = MI.getOperand(0).getReg(); 12488 Register ptrA = MI.getOperand(1).getReg(); 12489 Register ptrB = MI.getOperand(2).getReg(); 12490 Register oldval = MI.getOperand(3).getReg(); 12491 Register newval = MI.getOperand(4).getReg(); 12492 DebugLoc dl = MI.getDebugLoc(); 12493 12494 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12495 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12496 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12497 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12498 F->insert(It, loop1MBB); 12499 F->insert(It, loop2MBB); 12500 F->insert(It, midMBB); 12501 F->insert(It, exitMBB); 12502 exitMBB->splice(exitMBB->begin(), BB, 12503 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12504 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12505 12506 // thisMBB: 12507 // ... 12508 // fallthrough --> loopMBB 12509 BB->addSuccessor(loop1MBB); 12510 12511 // loop1MBB: 12512 // l[bhwd]arx dest, ptr 12513 // cmp[wd] dest, oldval 12514 // bne- midMBB 12515 // loop2MBB: 12516 // st[bhwd]cx. newval, ptr 12517 // bne- loopMBB 12518 // b exitBB 12519 // midMBB: 12520 // st[bhwd]cx. dest, ptr 12521 // exitBB: 12522 BB = loop1MBB; 12523 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12524 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12525 .addReg(oldval) 12526 .addReg(dest); 12527 BuildMI(BB, dl, TII->get(PPC::BCC)) 12528 .addImm(PPC::PRED_NE) 12529 .addReg(PPC::CR0) 12530 .addMBB(midMBB); 12531 BB->addSuccessor(loop2MBB); 12532 BB->addSuccessor(midMBB); 12533 12534 BB = loop2MBB; 12535 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12536 .addReg(newval) 12537 .addReg(ptrA) 12538 .addReg(ptrB); 12539 BuildMI(BB, dl, TII->get(PPC::BCC)) 12540 .addImm(PPC::PRED_NE) 12541 .addReg(PPC::CR0) 12542 .addMBB(loop1MBB); 12543 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12544 BB->addSuccessor(loop1MBB); 12545 BB->addSuccessor(exitMBB); 12546 12547 BB = midMBB; 12548 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12549 .addReg(dest) 12550 .addReg(ptrA) 12551 .addReg(ptrB); 12552 BB->addSuccessor(exitMBB); 12553 12554 // exitMBB: 12555 // ... 12556 BB = exitMBB; 12557 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12558 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12559 // We must use 64-bit registers for addresses when targeting 64-bit, 12560 // since we're actually doing arithmetic on them. Other registers 12561 // can be 32-bit. 12562 bool is64bit = Subtarget.isPPC64(); 12563 bool isLittleEndian = Subtarget.isLittleEndian(); 12564 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12565 12566 Register dest = MI.getOperand(0).getReg(); 12567 Register ptrA = MI.getOperand(1).getReg(); 12568 Register ptrB = MI.getOperand(2).getReg(); 12569 Register oldval = MI.getOperand(3).getReg(); 12570 Register newval = MI.getOperand(4).getReg(); 12571 DebugLoc dl = MI.getDebugLoc(); 12572 12573 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12574 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12575 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12576 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12577 F->insert(It, loop1MBB); 12578 F->insert(It, loop2MBB); 12579 F->insert(It, midMBB); 12580 F->insert(It, exitMBB); 12581 exitMBB->splice(exitMBB->begin(), BB, 12582 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12583 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12584 12585 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12586 const TargetRegisterClass *RC = 12587 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12588 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12589 12590 Register PtrReg = RegInfo.createVirtualRegister(RC); 12591 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12592 Register ShiftReg = 12593 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12594 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12595 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12596 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12597 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12598 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12599 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12600 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12601 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12602 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12603 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12604 Register Ptr1Reg; 12605 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12606 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12607 // thisMBB: 12608 // ... 12609 // fallthrough --> loopMBB 12610 BB->addSuccessor(loop1MBB); 12611 12612 // The 4-byte load must be aligned, while a char or short may be 12613 // anywhere in the word. Hence all this nasty bookkeeping code. 12614 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12615 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12616 // xori shift, shift1, 24 [16] 12617 // rlwinm ptr, ptr1, 0, 0, 29 12618 // slw newval2, newval, shift 12619 // slw oldval2, oldval,shift 12620 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12621 // slw mask, mask2, shift 12622 // and newval3, newval2, mask 12623 // and oldval3, oldval2, mask 12624 // loop1MBB: 12625 // lwarx tmpDest, ptr 12626 // and tmp, tmpDest, mask 12627 // cmpw tmp, oldval3 12628 // bne- midMBB 12629 // loop2MBB: 12630 // andc tmp2, tmpDest, mask 12631 // or tmp4, tmp2, newval3 12632 // stwcx. tmp4, ptr 12633 // bne- loop1MBB 12634 // b exitBB 12635 // midMBB: 12636 // stwcx. tmpDest, ptr 12637 // exitBB: 12638 // srw dest, tmpDest, shift 12639 if (ptrA != ZeroReg) { 12640 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12641 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12642 .addReg(ptrA) 12643 .addReg(ptrB); 12644 } else { 12645 Ptr1Reg = ptrB; 12646 } 12647 12648 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12649 // mode. 12650 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12651 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12652 .addImm(3) 12653 .addImm(27) 12654 .addImm(is8bit ? 28 : 27); 12655 if (!isLittleEndian) 12656 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12657 .addReg(Shift1Reg) 12658 .addImm(is8bit ? 24 : 16); 12659 if (is64bit) 12660 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12661 .addReg(Ptr1Reg) 12662 .addImm(0) 12663 .addImm(61); 12664 else 12665 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12666 .addReg(Ptr1Reg) 12667 .addImm(0) 12668 .addImm(0) 12669 .addImm(29); 12670 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12671 .addReg(newval) 12672 .addReg(ShiftReg); 12673 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12674 .addReg(oldval) 12675 .addReg(ShiftReg); 12676 if (is8bit) 12677 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12678 else { 12679 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12680 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12681 .addReg(Mask3Reg) 12682 .addImm(65535); 12683 } 12684 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12685 .addReg(Mask2Reg) 12686 .addReg(ShiftReg); 12687 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12688 .addReg(NewVal2Reg) 12689 .addReg(MaskReg); 12690 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12691 .addReg(OldVal2Reg) 12692 .addReg(MaskReg); 12693 12694 BB = loop1MBB; 12695 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12696 .addReg(ZeroReg) 12697 .addReg(PtrReg); 12698 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12699 .addReg(TmpDestReg) 12700 .addReg(MaskReg); 12701 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12702 .addReg(TmpReg) 12703 .addReg(OldVal3Reg); 12704 BuildMI(BB, dl, TII->get(PPC::BCC)) 12705 .addImm(PPC::PRED_NE) 12706 .addReg(PPC::CR0) 12707 .addMBB(midMBB); 12708 BB->addSuccessor(loop2MBB); 12709 BB->addSuccessor(midMBB); 12710 12711 BB = loop2MBB; 12712 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12713 .addReg(TmpDestReg) 12714 .addReg(MaskReg); 12715 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12716 .addReg(Tmp2Reg) 12717 .addReg(NewVal3Reg); 12718 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12719 .addReg(Tmp4Reg) 12720 .addReg(ZeroReg) 12721 .addReg(PtrReg); 12722 BuildMI(BB, dl, TII->get(PPC::BCC)) 12723 .addImm(PPC::PRED_NE) 12724 .addReg(PPC::CR0) 12725 .addMBB(loop1MBB); 12726 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12727 BB->addSuccessor(loop1MBB); 12728 BB->addSuccessor(exitMBB); 12729 12730 BB = midMBB; 12731 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12732 .addReg(TmpDestReg) 12733 .addReg(ZeroReg) 12734 .addReg(PtrReg); 12735 BB->addSuccessor(exitMBB); 12736 12737 // exitMBB: 12738 // ... 12739 BB = exitMBB; 12740 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12741 .addReg(TmpReg) 12742 .addReg(ShiftReg); 12743 } else if (MI.getOpcode() == PPC::FADDrtz) { 12744 // This pseudo performs an FADD with rounding mode temporarily forced 12745 // to round-to-zero. We emit this via custom inserter since the FPSCR 12746 // is not modeled at the SelectionDAG level. 12747 Register Dest = MI.getOperand(0).getReg(); 12748 Register Src1 = MI.getOperand(1).getReg(); 12749 Register Src2 = MI.getOperand(2).getReg(); 12750 DebugLoc dl = MI.getDebugLoc(); 12751 12752 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12753 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12754 12755 // Save FPSCR value. 12756 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12757 12758 // Set rounding mode to round-to-zero. 12759 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12760 .addImm(31) 12761 .addReg(PPC::RM, RegState::ImplicitDefine); 12762 12763 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12764 .addImm(30) 12765 .addReg(PPC::RM, RegState::ImplicitDefine); 12766 12767 // Perform addition. 12768 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12769 .addReg(Src1) 12770 .addReg(Src2); 12771 if (MI.getFlag(MachineInstr::NoFPExcept)) 12772 MIB.setMIFlag(MachineInstr::NoFPExcept); 12773 12774 // Restore FPSCR value. 12775 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12776 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12777 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12778 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12779 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12780 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12781 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12782 ? PPC::ANDI8_rec 12783 : PPC::ANDI_rec; 12784 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12785 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12786 12787 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12788 Register Dest = RegInfo.createVirtualRegister( 12789 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12790 12791 DebugLoc Dl = MI.getDebugLoc(); 12792 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12793 .addReg(MI.getOperand(1).getReg()) 12794 .addImm(1); 12795 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12796 MI.getOperand(0).getReg()) 12797 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12798 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12799 DebugLoc Dl = MI.getDebugLoc(); 12800 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12801 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12802 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12803 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12804 MI.getOperand(0).getReg()) 12805 .addReg(CRReg); 12806 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12807 DebugLoc Dl = MI.getDebugLoc(); 12808 unsigned Imm = MI.getOperand(1).getImm(); 12809 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12810 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12811 MI.getOperand(0).getReg()) 12812 .addReg(PPC::CR0EQ); 12813 } else if (MI.getOpcode() == PPC::SETRNDi) { 12814 DebugLoc dl = MI.getDebugLoc(); 12815 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12816 12817 // Save FPSCR value. 12818 if (MRI.use_empty(OldFPSCRReg)) 12819 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12820 else 12821 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12822 12823 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12824 // the following settings: 12825 // 00 Round to nearest 12826 // 01 Round to 0 12827 // 10 Round to +inf 12828 // 11 Round to -inf 12829 12830 // When the operand is immediate, using the two least significant bits of 12831 // the immediate to set the bits 62:63 of FPSCR. 12832 unsigned Mode = MI.getOperand(1).getImm(); 12833 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12834 .addImm(31) 12835 .addReg(PPC::RM, RegState::ImplicitDefine); 12836 12837 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12838 .addImm(30) 12839 .addReg(PPC::RM, RegState::ImplicitDefine); 12840 } else if (MI.getOpcode() == PPC::SETRND) { 12841 DebugLoc dl = MI.getDebugLoc(); 12842 12843 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12844 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12845 // If the target doesn't have DirectMove, we should use stack to do the 12846 // conversion, because the target doesn't have the instructions like mtvsrd 12847 // or mfvsrd to do this conversion directly. 12848 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12849 if (Subtarget.hasDirectMove()) { 12850 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12851 .addReg(SrcReg); 12852 } else { 12853 // Use stack to do the register copy. 12854 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12855 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12856 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12857 if (RC == &PPC::F8RCRegClass) { 12858 // Copy register from F8RCRegClass to G8RCRegclass. 12859 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12860 "Unsupported RegClass."); 12861 12862 StoreOp = PPC::STFD; 12863 LoadOp = PPC::LD; 12864 } else { 12865 // Copy register from G8RCRegClass to F8RCRegclass. 12866 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12867 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12868 "Unsupported RegClass."); 12869 } 12870 12871 MachineFrameInfo &MFI = F->getFrameInfo(); 12872 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12873 12874 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12875 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12876 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12877 MFI.getObjectAlign(FrameIdx)); 12878 12879 // Store the SrcReg into the stack. 12880 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12881 .addReg(SrcReg) 12882 .addImm(0) 12883 .addFrameIndex(FrameIdx) 12884 .addMemOperand(MMOStore); 12885 12886 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12887 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12888 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12889 MFI.getObjectAlign(FrameIdx)); 12890 12891 // Load from the stack where SrcReg is stored, and save to DestReg, 12892 // so we have done the RegClass conversion from RegClass::SrcReg to 12893 // RegClass::DestReg. 12894 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12895 .addImm(0) 12896 .addFrameIndex(FrameIdx) 12897 .addMemOperand(MMOLoad); 12898 } 12899 }; 12900 12901 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12902 12903 // Save FPSCR value. 12904 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12905 12906 // When the operand is gprc register, use two least significant bits of the 12907 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12908 // 12909 // copy OldFPSCRTmpReg, OldFPSCRReg 12910 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12911 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12912 // copy NewFPSCRReg, NewFPSCRTmpReg 12913 // mtfsf 255, NewFPSCRReg 12914 MachineOperand SrcOp = MI.getOperand(1); 12915 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12916 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12917 12918 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12919 12920 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12921 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12922 12923 // The first operand of INSERT_SUBREG should be a register which has 12924 // subregisters, we only care about its RegClass, so we should use an 12925 // IMPLICIT_DEF register. 12926 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12927 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12928 .addReg(ImDefReg) 12929 .add(SrcOp) 12930 .addImm(1); 12931 12932 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12933 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12934 .addReg(OldFPSCRTmpReg) 12935 .addReg(ExtSrcReg) 12936 .addImm(0) 12937 .addImm(62); 12938 12939 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12940 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12941 12942 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12943 // bits of FPSCR. 12944 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12945 .addImm(255) 12946 .addReg(NewFPSCRReg) 12947 .addImm(0) 12948 .addImm(0); 12949 } else if (MI.getOpcode() == PPC::SETFLM) { 12950 DebugLoc Dl = MI.getDebugLoc(); 12951 12952 // Result of setflm is previous FPSCR content, so we need to save it first. 12953 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12954 if (MRI.use_empty(OldFPSCRReg)) 12955 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); 12956 else 12957 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12958 12959 // Put bits in 32:63 to FPSCR. 12960 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12961 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12962 .addImm(255) 12963 .addReg(NewFPSCRReg) 12964 .addImm(0) 12965 .addImm(0); 12966 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12967 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12968 return emitProbedAlloca(MI, BB); 12969 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12970 DebugLoc DL = MI.getDebugLoc(); 12971 Register Src = MI.getOperand(2).getReg(); 12972 Register Lo = MI.getOperand(0).getReg(); 12973 Register Hi = MI.getOperand(1).getReg(); 12974 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12975 .addDef(Lo) 12976 .addUse(Src, 0, PPC::sub_gp8_x1); 12977 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12978 .addDef(Hi) 12979 .addUse(Src, 0, PPC::sub_gp8_x0); 12980 } else if (MI.getOpcode() == PPC::LQX_PSEUDO || 12981 MI.getOpcode() == PPC::STQX_PSEUDO) { 12982 DebugLoc DL = MI.getDebugLoc(); 12983 // Ptr is used as the ptr_rc_no_r0 part 12984 // of LQ/STQ's memory operand and adding result of RA and RB, 12985 // so it has to be g8rc_and_g8rc_nox0. 12986 Register Ptr = 12987 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 12988 Register Val = MI.getOperand(0).getReg(); 12989 Register RA = MI.getOperand(1).getReg(); 12990 Register RB = MI.getOperand(2).getReg(); 12991 BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); 12992 BuildMI(*BB, MI, DL, 12993 MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) 12994 : TII->get(PPC::STQ)) 12995 .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) 12996 .addImm(0) 12997 .addReg(Ptr); 12998 } else { 12999 llvm_unreachable("Unexpected instr type to insert"); 13000 } 13001 13002 MI.eraseFromParent(); // The pseudo instruction is gone now. 13003 return BB; 13004 } 13005 13006 //===----------------------------------------------------------------------===// 13007 // Target Optimization Hooks 13008 //===----------------------------------------------------------------------===// 13009 13010 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 13011 // For the estimates, convergence is quadratic, so we essentially double the 13012 // number of digits correct after every iteration. For both FRE and FRSQRTE, 13013 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 13014 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 13015 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 13016 if (VT.getScalarType() == MVT::f64) 13017 RefinementSteps++; 13018 return RefinementSteps; 13019 } 13020 13021 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 13022 const DenormalMode &Mode) const { 13023 // We only have VSX Vector Test for software Square Root. 13024 EVT VT = Op.getValueType(); 13025 if (!isTypeLegal(MVT::i1) || 13026 (VT != MVT::f64 && 13027 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 13028 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 13029 13030 SDLoc DL(Op); 13031 // The output register of FTSQRT is CR field. 13032 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 13033 // ftsqrt BF,FRB 13034 // Let e_b be the unbiased exponent of the double-precision 13035 // floating-point operand in register FRB. 13036 // fe_flag is set to 1 if either of the following conditions occurs. 13037 // - The double-precision floating-point operand in register FRB is a zero, 13038 // a NaN, or an infinity, or a negative value. 13039 // - e_b is less than or equal to -970. 13040 // Otherwise fe_flag is set to 0. 13041 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 13042 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 13043 // exponent is less than -970) 13044 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 13045 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 13046 FTSQRT, SRIdxVal), 13047 0); 13048 } 13049 13050 SDValue 13051 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 13052 SelectionDAG &DAG) const { 13053 // We only have VSX Vector Square Root. 13054 EVT VT = Op.getValueType(); 13055 if (VT != MVT::f64 && 13056 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 13057 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 13058 13059 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 13060 } 13061 13062 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 13063 int Enabled, int &RefinementSteps, 13064 bool &UseOneConstNR, 13065 bool Reciprocal) const { 13066 EVT VT = Operand.getValueType(); 13067 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 13068 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 13069 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13070 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13071 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13072 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13073 13074 // The Newton-Raphson computation with a single constant does not provide 13075 // enough accuracy on some CPUs. 13076 UseOneConstNR = !Subtarget.needsTwoConstNR(); 13077 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 13078 } 13079 return SDValue(); 13080 } 13081 13082 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 13083 int Enabled, 13084 int &RefinementSteps) const { 13085 EVT VT = Operand.getValueType(); 13086 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 13087 (VT == MVT::f64 && Subtarget.hasFRE()) || 13088 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 13089 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 13090 if (RefinementSteps == ReciprocalEstimate::Unspecified) 13091 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 13092 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 13093 } 13094 return SDValue(); 13095 } 13096 13097 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 13098 // Note: This functionality is used only when unsafe-fp-math is enabled, and 13099 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 13100 // enabled for division), this functionality is redundant with the default 13101 // combiner logic (once the division -> reciprocal/multiply transformation 13102 // has taken place). As a result, this matters more for older cores than for 13103 // newer ones. 13104 13105 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13106 // reciprocal if there are two or more FDIVs (for embedded cores with only 13107 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 13108 switch (Subtarget.getCPUDirective()) { 13109 default: 13110 return 3; 13111 case PPC::DIR_440: 13112 case PPC::DIR_A2: 13113 case PPC::DIR_E500: 13114 case PPC::DIR_E500mc: 13115 case PPC::DIR_E5500: 13116 return 2; 13117 } 13118 } 13119 13120 // isConsecutiveLSLoc needs to work even if all adds have not yet been 13121 // collapsed, and so we need to look through chains of them. 13122 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 13123 int64_t& Offset, SelectionDAG &DAG) { 13124 if (DAG.isBaseWithConstantOffset(Loc)) { 13125 Base = Loc.getOperand(0); 13126 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 13127 13128 // The base might itself be a base plus an offset, and if so, accumulate 13129 // that as well. 13130 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 13131 } 13132 } 13133 13134 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 13135 unsigned Bytes, int Dist, 13136 SelectionDAG &DAG) { 13137 if (VT.getSizeInBits() / 8 != Bytes) 13138 return false; 13139 13140 SDValue BaseLoc = Base->getBasePtr(); 13141 if (Loc.getOpcode() == ISD::FrameIndex) { 13142 if (BaseLoc.getOpcode() != ISD::FrameIndex) 13143 return false; 13144 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 13145 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 13146 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 13147 int FS = MFI.getObjectSize(FI); 13148 int BFS = MFI.getObjectSize(BFI); 13149 if (FS != BFS || FS != (int)Bytes) return false; 13150 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 13151 } 13152 13153 SDValue Base1 = Loc, Base2 = BaseLoc; 13154 int64_t Offset1 = 0, Offset2 = 0; 13155 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 13156 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 13157 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 13158 return true; 13159 13160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 13161 const GlobalValue *GV1 = nullptr; 13162 const GlobalValue *GV2 = nullptr; 13163 Offset1 = 0; 13164 Offset2 = 0; 13165 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 13166 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 13167 if (isGA1 && isGA2 && GV1 == GV2) 13168 return Offset1 == (Offset2 + Dist*Bytes); 13169 return false; 13170 } 13171 13172 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 13173 // not enforce equality of the chain operands. 13174 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 13175 unsigned Bytes, int Dist, 13176 SelectionDAG &DAG) { 13177 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 13178 EVT VT = LS->getMemoryVT(); 13179 SDValue Loc = LS->getBasePtr(); 13180 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 13181 } 13182 13183 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 13184 EVT VT; 13185 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13186 default: return false; 13187 case Intrinsic::ppc_altivec_lvx: 13188 case Intrinsic::ppc_altivec_lvxl: 13189 case Intrinsic::ppc_vsx_lxvw4x: 13190 case Intrinsic::ppc_vsx_lxvw4x_be: 13191 VT = MVT::v4i32; 13192 break; 13193 case Intrinsic::ppc_vsx_lxvd2x: 13194 case Intrinsic::ppc_vsx_lxvd2x_be: 13195 VT = MVT::v2f64; 13196 break; 13197 case Intrinsic::ppc_altivec_lvebx: 13198 VT = MVT::i8; 13199 break; 13200 case Intrinsic::ppc_altivec_lvehx: 13201 VT = MVT::i16; 13202 break; 13203 case Intrinsic::ppc_altivec_lvewx: 13204 VT = MVT::i32; 13205 break; 13206 } 13207 13208 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 13209 } 13210 13211 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 13212 EVT VT; 13213 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13214 default: return false; 13215 case Intrinsic::ppc_altivec_stvx: 13216 case Intrinsic::ppc_altivec_stvxl: 13217 case Intrinsic::ppc_vsx_stxvw4x: 13218 VT = MVT::v4i32; 13219 break; 13220 case Intrinsic::ppc_vsx_stxvd2x: 13221 VT = MVT::v2f64; 13222 break; 13223 case Intrinsic::ppc_vsx_stxvw4x_be: 13224 VT = MVT::v4i32; 13225 break; 13226 case Intrinsic::ppc_vsx_stxvd2x_be: 13227 VT = MVT::v2f64; 13228 break; 13229 case Intrinsic::ppc_altivec_stvebx: 13230 VT = MVT::i8; 13231 break; 13232 case Intrinsic::ppc_altivec_stvehx: 13233 VT = MVT::i16; 13234 break; 13235 case Intrinsic::ppc_altivec_stvewx: 13236 VT = MVT::i32; 13237 break; 13238 } 13239 13240 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 13241 } 13242 13243 return false; 13244 } 13245 13246 // Return true is there is a nearyby consecutive load to the one provided 13247 // (regardless of alignment). We search up and down the chain, looking though 13248 // token factors and other loads (but nothing else). As a result, a true result 13249 // indicates that it is safe to create a new consecutive load adjacent to the 13250 // load provided. 13251 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 13252 SDValue Chain = LD->getChain(); 13253 EVT VT = LD->getMemoryVT(); 13254 13255 SmallSet<SDNode *, 16> LoadRoots; 13256 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 13257 SmallSet<SDNode *, 16> Visited; 13258 13259 // First, search up the chain, branching to follow all token-factor operands. 13260 // If we find a consecutive load, then we're done, otherwise, record all 13261 // nodes just above the top-level loads and token factors. 13262 while (!Queue.empty()) { 13263 SDNode *ChainNext = Queue.pop_back_val(); 13264 if (!Visited.insert(ChainNext).second) 13265 continue; 13266 13267 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 13268 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13269 return true; 13270 13271 if (!Visited.count(ChainLD->getChain().getNode())) 13272 Queue.push_back(ChainLD->getChain().getNode()); 13273 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 13274 for (const SDUse &O : ChainNext->ops()) 13275 if (!Visited.count(O.getNode())) 13276 Queue.push_back(O.getNode()); 13277 } else 13278 LoadRoots.insert(ChainNext); 13279 } 13280 13281 // Second, search down the chain, starting from the top-level nodes recorded 13282 // in the first phase. These top-level nodes are the nodes just above all 13283 // loads and token factors. Starting with their uses, recursively look though 13284 // all loads (just the chain uses) and token factors to find a consecutive 13285 // load. 13286 Visited.clear(); 13287 Queue.clear(); 13288 13289 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 13290 IE = LoadRoots.end(); I != IE; ++I) { 13291 Queue.push_back(*I); 13292 13293 while (!Queue.empty()) { 13294 SDNode *LoadRoot = Queue.pop_back_val(); 13295 if (!Visited.insert(LoadRoot).second) 13296 continue; 13297 13298 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 13299 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 13300 return true; 13301 13302 for (SDNode *U : LoadRoot->uses()) 13303 if (((isa<MemSDNode>(U) && 13304 cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || 13305 U->getOpcode() == ISD::TokenFactor) && 13306 !Visited.count(U)) 13307 Queue.push_back(U); 13308 } 13309 } 13310 13311 return false; 13312 } 13313 13314 /// This function is called when we have proved that a SETCC node can be replaced 13315 /// by subtraction (and other supporting instructions) so that the result of 13316 /// comparison is kept in a GPR instead of CR. This function is purely for 13317 /// codegen purposes and has some flags to guide the codegen process. 13318 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 13319 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 13320 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13321 13322 // Zero extend the operands to the largest legal integer. Originally, they 13323 // must be of a strictly smaller size. 13324 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 13325 DAG.getConstant(Size, DL, MVT::i32)); 13326 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 13327 DAG.getConstant(Size, DL, MVT::i32)); 13328 13329 // Swap if needed. Depends on the condition code. 13330 if (Swap) 13331 std::swap(Op0, Op1); 13332 13333 // Subtract extended integers. 13334 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 13335 13336 // Move the sign bit to the least significant position and zero out the rest. 13337 // Now the least significant bit carries the result of original comparison. 13338 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 13339 DAG.getConstant(Size - 1, DL, MVT::i32)); 13340 auto Final = Shifted; 13341 13342 // Complement the result if needed. Based on the condition code. 13343 if (Complement) 13344 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 13345 DAG.getConstant(1, DL, MVT::i64)); 13346 13347 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13348 } 13349 13350 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13351 DAGCombinerInfo &DCI) const { 13352 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13353 13354 SelectionDAG &DAG = DCI.DAG; 13355 SDLoc DL(N); 13356 13357 // Size of integers being compared has a critical role in the following 13358 // analysis, so we prefer to do this when all types are legal. 13359 if (!DCI.isAfterLegalizeDAG()) 13360 return SDValue(); 13361 13362 // If all users of SETCC extend its value to a legal integer type 13363 // then we replace SETCC with a subtraction 13364 for (const SDNode *U : N->uses()) 13365 if (U->getOpcode() != ISD::ZERO_EXTEND) 13366 return SDValue(); 13367 13368 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13369 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13370 13371 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13372 13373 if (OpSize < Size) { 13374 switch (CC) { 13375 default: break; 13376 case ISD::SETULT: 13377 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13378 case ISD::SETULE: 13379 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13380 case ISD::SETUGT: 13381 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13382 case ISD::SETUGE: 13383 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13384 } 13385 } 13386 13387 return SDValue(); 13388 } 13389 13390 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13391 DAGCombinerInfo &DCI) const { 13392 SelectionDAG &DAG = DCI.DAG; 13393 SDLoc dl(N); 13394 13395 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13396 // If we're tracking CR bits, we need to be careful that we don't have: 13397 // trunc(binary-ops(zext(x), zext(y))) 13398 // or 13399 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13400 // such that we're unnecessarily moving things into GPRs when it would be 13401 // better to keep them in CR bits. 13402 13403 // Note that trunc here can be an actual i1 trunc, or can be the effective 13404 // truncation that comes from a setcc or select_cc. 13405 if (N->getOpcode() == ISD::TRUNCATE && 13406 N->getValueType(0) != MVT::i1) 13407 return SDValue(); 13408 13409 if (N->getOperand(0).getValueType() != MVT::i32 && 13410 N->getOperand(0).getValueType() != MVT::i64) 13411 return SDValue(); 13412 13413 if (N->getOpcode() == ISD::SETCC || 13414 N->getOpcode() == ISD::SELECT_CC) { 13415 // If we're looking at a comparison, then we need to make sure that the 13416 // high bits (all except for the first) don't matter the result. 13417 ISD::CondCode CC = 13418 cast<CondCodeSDNode>(N->getOperand( 13419 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13420 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13421 13422 if (ISD::isSignedIntSetCC(CC)) { 13423 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13424 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13425 return SDValue(); 13426 } else if (ISD::isUnsignedIntSetCC(CC)) { 13427 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13428 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13429 !DAG.MaskedValueIsZero(N->getOperand(1), 13430 APInt::getHighBitsSet(OpBits, OpBits-1))) 13431 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13432 : SDValue()); 13433 } else { 13434 // This is neither a signed nor an unsigned comparison, just make sure 13435 // that the high bits are equal. 13436 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13437 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13438 13439 // We don't really care about what is known about the first bit (if 13440 // anything), so pretend that it is known zero for both to ensure they can 13441 // be compared as constants. 13442 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13443 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13444 13445 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13446 Op1Known.getConstant() != Op2Known.getConstant()) 13447 return SDValue(); 13448 } 13449 } 13450 13451 // We now know that the higher-order bits are irrelevant, we just need to 13452 // make sure that all of the intermediate operations are bit operations, and 13453 // all inputs are extensions. 13454 if (N->getOperand(0).getOpcode() != ISD::AND && 13455 N->getOperand(0).getOpcode() != ISD::OR && 13456 N->getOperand(0).getOpcode() != ISD::XOR && 13457 N->getOperand(0).getOpcode() != ISD::SELECT && 13458 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13459 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13460 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13461 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13462 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13463 return SDValue(); 13464 13465 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13466 N->getOperand(1).getOpcode() != ISD::AND && 13467 N->getOperand(1).getOpcode() != ISD::OR && 13468 N->getOperand(1).getOpcode() != ISD::XOR && 13469 N->getOperand(1).getOpcode() != ISD::SELECT && 13470 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13471 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13472 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13473 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13474 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13475 return SDValue(); 13476 13477 SmallVector<SDValue, 4> Inputs; 13478 SmallVector<SDValue, 8> BinOps, PromOps; 13479 SmallPtrSet<SDNode *, 16> Visited; 13480 13481 for (unsigned i = 0; i < 2; ++i) { 13482 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13483 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13484 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13485 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13486 isa<ConstantSDNode>(N->getOperand(i))) 13487 Inputs.push_back(N->getOperand(i)); 13488 else 13489 BinOps.push_back(N->getOperand(i)); 13490 13491 if (N->getOpcode() == ISD::TRUNCATE) 13492 break; 13493 } 13494 13495 // Visit all inputs, collect all binary operations (and, or, xor and 13496 // select) that are all fed by extensions. 13497 while (!BinOps.empty()) { 13498 SDValue BinOp = BinOps.pop_back_val(); 13499 13500 if (!Visited.insert(BinOp.getNode()).second) 13501 continue; 13502 13503 PromOps.push_back(BinOp); 13504 13505 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13506 // The condition of the select is not promoted. 13507 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13508 continue; 13509 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13510 continue; 13511 13512 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13513 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13514 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13515 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13516 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13517 Inputs.push_back(BinOp.getOperand(i)); 13518 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13519 BinOp.getOperand(i).getOpcode() == ISD::OR || 13520 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13521 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13522 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13523 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13524 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13525 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13526 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13527 BinOps.push_back(BinOp.getOperand(i)); 13528 } else { 13529 // We have an input that is not an extension or another binary 13530 // operation; we'll abort this transformation. 13531 return SDValue(); 13532 } 13533 } 13534 } 13535 13536 // Make sure that this is a self-contained cluster of operations (which 13537 // is not quite the same thing as saying that everything has only one 13538 // use). 13539 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13540 if (isa<ConstantSDNode>(Inputs[i])) 13541 continue; 13542 13543 for (const SDNode *User : Inputs[i].getNode()->uses()) { 13544 if (User != N && !Visited.count(User)) 13545 return SDValue(); 13546 13547 // Make sure that we're not going to promote the non-output-value 13548 // operand(s) or SELECT or SELECT_CC. 13549 // FIXME: Although we could sometimes handle this, and it does occur in 13550 // practice that one of the condition inputs to the select is also one of 13551 // the outputs, we currently can't deal with this. 13552 if (User->getOpcode() == ISD::SELECT) { 13553 if (User->getOperand(0) == Inputs[i]) 13554 return SDValue(); 13555 } else if (User->getOpcode() == ISD::SELECT_CC) { 13556 if (User->getOperand(0) == Inputs[i] || 13557 User->getOperand(1) == Inputs[i]) 13558 return SDValue(); 13559 } 13560 } 13561 } 13562 13563 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13564 for (const SDNode *User : PromOps[i].getNode()->uses()) { 13565 if (User != N && !Visited.count(User)) 13566 return SDValue(); 13567 13568 // Make sure that we're not going to promote the non-output-value 13569 // operand(s) or SELECT or SELECT_CC. 13570 // FIXME: Although we could sometimes handle this, and it does occur in 13571 // practice that one of the condition inputs to the select is also one of 13572 // the outputs, we currently can't deal with this. 13573 if (User->getOpcode() == ISD::SELECT) { 13574 if (User->getOperand(0) == PromOps[i]) 13575 return SDValue(); 13576 } else if (User->getOpcode() == ISD::SELECT_CC) { 13577 if (User->getOperand(0) == PromOps[i] || 13578 User->getOperand(1) == PromOps[i]) 13579 return SDValue(); 13580 } 13581 } 13582 } 13583 13584 // Replace all inputs with the extension operand. 13585 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13586 // Constants may have users outside the cluster of to-be-promoted nodes, 13587 // and so we need to replace those as we do the promotions. 13588 if (isa<ConstantSDNode>(Inputs[i])) 13589 continue; 13590 else 13591 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13592 } 13593 13594 std::list<HandleSDNode> PromOpHandles; 13595 for (auto &PromOp : PromOps) 13596 PromOpHandles.emplace_back(PromOp); 13597 13598 // Replace all operations (these are all the same, but have a different 13599 // (i1) return type). DAG.getNode will validate that the types of 13600 // a binary operator match, so go through the list in reverse so that 13601 // we've likely promoted both operands first. Any intermediate truncations or 13602 // extensions disappear. 13603 while (!PromOpHandles.empty()) { 13604 SDValue PromOp = PromOpHandles.back().getValue(); 13605 PromOpHandles.pop_back(); 13606 13607 if (PromOp.getOpcode() == ISD::TRUNCATE || 13608 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13609 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13610 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13611 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13612 PromOp.getOperand(0).getValueType() != MVT::i1) { 13613 // The operand is not yet ready (see comment below). 13614 PromOpHandles.emplace_front(PromOp); 13615 continue; 13616 } 13617 13618 SDValue RepValue = PromOp.getOperand(0); 13619 if (isa<ConstantSDNode>(RepValue)) 13620 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13621 13622 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13623 continue; 13624 } 13625 13626 unsigned C; 13627 switch (PromOp.getOpcode()) { 13628 default: C = 0; break; 13629 case ISD::SELECT: C = 1; break; 13630 case ISD::SELECT_CC: C = 2; break; 13631 } 13632 13633 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13634 PromOp.getOperand(C).getValueType() != MVT::i1) || 13635 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13636 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13637 // The to-be-promoted operands of this node have not yet been 13638 // promoted (this should be rare because we're going through the 13639 // list backward, but if one of the operands has several users in 13640 // this cluster of to-be-promoted nodes, it is possible). 13641 PromOpHandles.emplace_front(PromOp); 13642 continue; 13643 } 13644 13645 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13646 PromOp.getNode()->op_end()); 13647 13648 // If there are any constant inputs, make sure they're replaced now. 13649 for (unsigned i = 0; i < 2; ++i) 13650 if (isa<ConstantSDNode>(Ops[C+i])) 13651 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13652 13653 DAG.ReplaceAllUsesOfValueWith(PromOp, 13654 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13655 } 13656 13657 // Now we're left with the initial truncation itself. 13658 if (N->getOpcode() == ISD::TRUNCATE) 13659 return N->getOperand(0); 13660 13661 // Otherwise, this is a comparison. The operands to be compared have just 13662 // changed type (to i1), but everything else is the same. 13663 return SDValue(N, 0); 13664 } 13665 13666 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13667 DAGCombinerInfo &DCI) const { 13668 SelectionDAG &DAG = DCI.DAG; 13669 SDLoc dl(N); 13670 13671 // If we're tracking CR bits, we need to be careful that we don't have: 13672 // zext(binary-ops(trunc(x), trunc(y))) 13673 // or 13674 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13675 // such that we're unnecessarily moving things into CR bits that can more 13676 // efficiently stay in GPRs. Note that if we're not certain that the high 13677 // bits are set as required by the final extension, we still may need to do 13678 // some masking to get the proper behavior. 13679 13680 // This same functionality is important on PPC64 when dealing with 13681 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13682 // the return values of functions. Because it is so similar, it is handled 13683 // here as well. 13684 13685 if (N->getValueType(0) != MVT::i32 && 13686 N->getValueType(0) != MVT::i64) 13687 return SDValue(); 13688 13689 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13690 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13691 return SDValue(); 13692 13693 if (N->getOperand(0).getOpcode() != ISD::AND && 13694 N->getOperand(0).getOpcode() != ISD::OR && 13695 N->getOperand(0).getOpcode() != ISD::XOR && 13696 N->getOperand(0).getOpcode() != ISD::SELECT && 13697 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13698 return SDValue(); 13699 13700 SmallVector<SDValue, 4> Inputs; 13701 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13702 SmallPtrSet<SDNode *, 16> Visited; 13703 13704 // Visit all inputs, collect all binary operations (and, or, xor and 13705 // select) that are all fed by truncations. 13706 while (!BinOps.empty()) { 13707 SDValue BinOp = BinOps.pop_back_val(); 13708 13709 if (!Visited.insert(BinOp.getNode()).second) 13710 continue; 13711 13712 PromOps.push_back(BinOp); 13713 13714 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13715 // The condition of the select is not promoted. 13716 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13717 continue; 13718 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13719 continue; 13720 13721 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13722 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13723 Inputs.push_back(BinOp.getOperand(i)); 13724 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13725 BinOp.getOperand(i).getOpcode() == ISD::OR || 13726 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13727 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13728 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13729 BinOps.push_back(BinOp.getOperand(i)); 13730 } else { 13731 // We have an input that is not a truncation or another binary 13732 // operation; we'll abort this transformation. 13733 return SDValue(); 13734 } 13735 } 13736 } 13737 13738 // The operands of a select that must be truncated when the select is 13739 // promoted because the operand is actually part of the to-be-promoted set. 13740 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13741 13742 // Make sure that this is a self-contained cluster of operations (which 13743 // is not quite the same thing as saying that everything has only one 13744 // use). 13745 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13746 if (isa<ConstantSDNode>(Inputs[i])) 13747 continue; 13748 13749 for (SDNode *User : Inputs[i].getNode()->uses()) { 13750 if (User != N && !Visited.count(User)) 13751 return SDValue(); 13752 13753 // If we're going to promote the non-output-value operand(s) or SELECT or 13754 // SELECT_CC, record them for truncation. 13755 if (User->getOpcode() == ISD::SELECT) { 13756 if (User->getOperand(0) == Inputs[i]) 13757 SelectTruncOp[0].insert(std::make_pair(User, 13758 User->getOperand(0).getValueType())); 13759 } else if (User->getOpcode() == ISD::SELECT_CC) { 13760 if (User->getOperand(0) == Inputs[i]) 13761 SelectTruncOp[0].insert(std::make_pair(User, 13762 User->getOperand(0).getValueType())); 13763 if (User->getOperand(1) == Inputs[i]) 13764 SelectTruncOp[1].insert(std::make_pair(User, 13765 User->getOperand(1).getValueType())); 13766 } 13767 } 13768 } 13769 13770 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13771 for (SDNode *User : PromOps[i].getNode()->uses()) { 13772 if (User != N && !Visited.count(User)) 13773 return SDValue(); 13774 13775 // If we're going to promote the non-output-value operand(s) or SELECT or 13776 // SELECT_CC, record them for truncation. 13777 if (User->getOpcode() == ISD::SELECT) { 13778 if (User->getOperand(0) == PromOps[i]) 13779 SelectTruncOp[0].insert(std::make_pair(User, 13780 User->getOperand(0).getValueType())); 13781 } else if (User->getOpcode() == ISD::SELECT_CC) { 13782 if (User->getOperand(0) == PromOps[i]) 13783 SelectTruncOp[0].insert(std::make_pair(User, 13784 User->getOperand(0).getValueType())); 13785 if (User->getOperand(1) == PromOps[i]) 13786 SelectTruncOp[1].insert(std::make_pair(User, 13787 User->getOperand(1).getValueType())); 13788 } 13789 } 13790 } 13791 13792 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13793 bool ReallyNeedsExt = false; 13794 if (N->getOpcode() != ISD::ANY_EXTEND) { 13795 // If all of the inputs are not already sign/zero extended, then 13796 // we'll still need to do that at the end. 13797 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13798 if (isa<ConstantSDNode>(Inputs[i])) 13799 continue; 13800 13801 unsigned OpBits = 13802 Inputs[i].getOperand(0).getValueSizeInBits(); 13803 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13804 13805 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13806 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13807 APInt::getHighBitsSet(OpBits, 13808 OpBits-PromBits))) || 13809 (N->getOpcode() == ISD::SIGN_EXTEND && 13810 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13811 (OpBits-(PromBits-1)))) { 13812 ReallyNeedsExt = true; 13813 break; 13814 } 13815 } 13816 } 13817 13818 // Replace all inputs, either with the truncation operand, or a 13819 // truncation or extension to the final output type. 13820 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13821 // Constant inputs need to be replaced with the to-be-promoted nodes that 13822 // use them because they might have users outside of the cluster of 13823 // promoted nodes. 13824 if (isa<ConstantSDNode>(Inputs[i])) 13825 continue; 13826 13827 SDValue InSrc = Inputs[i].getOperand(0); 13828 if (Inputs[i].getValueType() == N->getValueType(0)) 13829 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13830 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13831 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13832 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13833 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13834 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13835 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13836 else 13837 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13838 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13839 } 13840 13841 std::list<HandleSDNode> PromOpHandles; 13842 for (auto &PromOp : PromOps) 13843 PromOpHandles.emplace_back(PromOp); 13844 13845 // Replace all operations (these are all the same, but have a different 13846 // (promoted) return type). DAG.getNode will validate that the types of 13847 // a binary operator match, so go through the list in reverse so that 13848 // we've likely promoted both operands first. 13849 while (!PromOpHandles.empty()) { 13850 SDValue PromOp = PromOpHandles.back().getValue(); 13851 PromOpHandles.pop_back(); 13852 13853 unsigned C; 13854 switch (PromOp.getOpcode()) { 13855 default: C = 0; break; 13856 case ISD::SELECT: C = 1; break; 13857 case ISD::SELECT_CC: C = 2; break; 13858 } 13859 13860 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13861 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13862 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13863 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13864 // The to-be-promoted operands of this node have not yet been 13865 // promoted (this should be rare because we're going through the 13866 // list backward, but if one of the operands has several users in 13867 // this cluster of to-be-promoted nodes, it is possible). 13868 PromOpHandles.emplace_front(PromOp); 13869 continue; 13870 } 13871 13872 // For SELECT and SELECT_CC nodes, we do a similar check for any 13873 // to-be-promoted comparison inputs. 13874 if (PromOp.getOpcode() == ISD::SELECT || 13875 PromOp.getOpcode() == ISD::SELECT_CC) { 13876 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13877 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13878 (SelectTruncOp[1].count(PromOp.getNode()) && 13879 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13880 PromOpHandles.emplace_front(PromOp); 13881 continue; 13882 } 13883 } 13884 13885 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13886 PromOp.getNode()->op_end()); 13887 13888 // If this node has constant inputs, then they'll need to be promoted here. 13889 for (unsigned i = 0; i < 2; ++i) { 13890 if (!isa<ConstantSDNode>(Ops[C+i])) 13891 continue; 13892 if (Ops[C+i].getValueType() == N->getValueType(0)) 13893 continue; 13894 13895 if (N->getOpcode() == ISD::SIGN_EXTEND) 13896 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13897 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13898 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13899 else 13900 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13901 } 13902 13903 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13904 // truncate them again to the original value type. 13905 if (PromOp.getOpcode() == ISD::SELECT || 13906 PromOp.getOpcode() == ISD::SELECT_CC) { 13907 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13908 if (SI0 != SelectTruncOp[0].end()) 13909 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13910 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13911 if (SI1 != SelectTruncOp[1].end()) 13912 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13913 } 13914 13915 DAG.ReplaceAllUsesOfValueWith(PromOp, 13916 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13917 } 13918 13919 // Now we're left with the initial extension itself. 13920 if (!ReallyNeedsExt) 13921 return N->getOperand(0); 13922 13923 // To zero extend, just mask off everything except for the first bit (in the 13924 // i1 case). 13925 if (N->getOpcode() == ISD::ZERO_EXTEND) 13926 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13927 DAG.getConstant(APInt::getLowBitsSet( 13928 N->getValueSizeInBits(0), PromBits), 13929 dl, N->getValueType(0))); 13930 13931 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13932 "Invalid extension type"); 13933 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13934 SDValue ShiftCst = 13935 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13936 return DAG.getNode( 13937 ISD::SRA, dl, N->getValueType(0), 13938 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13939 ShiftCst); 13940 } 13941 13942 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13943 DAGCombinerInfo &DCI) const { 13944 assert(N->getOpcode() == ISD::SETCC && 13945 "Should be called with a SETCC node"); 13946 13947 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13948 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13949 SDValue LHS = N->getOperand(0); 13950 SDValue RHS = N->getOperand(1); 13951 13952 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13953 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13954 LHS.hasOneUse()) 13955 std::swap(LHS, RHS); 13956 13957 // x == 0-y --> x+y == 0 13958 // x != 0-y --> x+y != 0 13959 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13960 RHS.hasOneUse()) { 13961 SDLoc DL(N); 13962 SelectionDAG &DAG = DCI.DAG; 13963 EVT VT = N->getValueType(0); 13964 EVT OpVT = LHS.getValueType(); 13965 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13966 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13967 } 13968 } 13969 13970 return DAGCombineTruncBoolExt(N, DCI); 13971 } 13972 13973 // Is this an extending load from an f32 to an f64? 13974 static bool isFPExtLoad(SDValue Op) { 13975 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13976 return LD->getExtensionType() == ISD::EXTLOAD && 13977 Op.getValueType() == MVT::f64; 13978 return false; 13979 } 13980 13981 /// Reduces the number of fp-to-int conversion when building a vector. 13982 /// 13983 /// If this vector is built out of floating to integer conversions, 13984 /// transform it to a vector built out of floating point values followed by a 13985 /// single floating to integer conversion of the vector. 13986 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13987 /// becomes (fptosi (build_vector ($A, $B, ...))) 13988 SDValue PPCTargetLowering:: 13989 combineElementTruncationToVectorTruncation(SDNode *N, 13990 DAGCombinerInfo &DCI) const { 13991 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13992 "Should be called with a BUILD_VECTOR node"); 13993 13994 SelectionDAG &DAG = DCI.DAG; 13995 SDLoc dl(N); 13996 13997 SDValue FirstInput = N->getOperand(0); 13998 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13999 "The input operand must be an fp-to-int conversion."); 14000 14001 // This combine happens after legalization so the fp_to_[su]i nodes are 14002 // already converted to PPCSISD nodes. 14003 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 14004 if (FirstConversion == PPCISD::FCTIDZ || 14005 FirstConversion == PPCISD::FCTIDUZ || 14006 FirstConversion == PPCISD::FCTIWZ || 14007 FirstConversion == PPCISD::FCTIWUZ) { 14008 bool IsSplat = true; 14009 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 14010 FirstConversion == PPCISD::FCTIWUZ; 14011 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 14012 SmallVector<SDValue, 4> Ops; 14013 EVT TargetVT = N->getValueType(0); 14014 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14015 SDValue NextOp = N->getOperand(i); 14016 if (NextOp.getOpcode() != PPCISD::MFVSR) 14017 return SDValue(); 14018 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 14019 if (NextConversion != FirstConversion) 14020 return SDValue(); 14021 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 14022 // This is not valid if the input was originally double precision. It is 14023 // also not profitable to do unless this is an extending load in which 14024 // case doing this combine will allow us to combine consecutive loads. 14025 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 14026 return SDValue(); 14027 if (N->getOperand(i) != FirstInput) 14028 IsSplat = false; 14029 } 14030 14031 // If this is a splat, we leave it as-is since there will be only a single 14032 // fp-to-int conversion followed by a splat of the integer. This is better 14033 // for 32-bit and smaller ints and neutral for 64-bit ints. 14034 if (IsSplat) 14035 return SDValue(); 14036 14037 // Now that we know we have the right type of node, get its operands 14038 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 14039 SDValue In = N->getOperand(i).getOperand(0); 14040 if (Is32Bit) { 14041 // For 32-bit values, we need to add an FP_ROUND node (if we made it 14042 // here, we know that all inputs are extending loads so this is safe). 14043 if (In.isUndef()) 14044 Ops.push_back(DAG.getUNDEF(SrcVT)); 14045 else { 14046 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 14047 MVT::f32, In.getOperand(0), 14048 DAG.getIntPtrConstant(1, dl)); 14049 Ops.push_back(Trunc); 14050 } 14051 } else 14052 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 14053 } 14054 14055 unsigned Opcode; 14056 if (FirstConversion == PPCISD::FCTIDZ || 14057 FirstConversion == PPCISD::FCTIWZ) 14058 Opcode = ISD::FP_TO_SINT; 14059 else 14060 Opcode = ISD::FP_TO_UINT; 14061 14062 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 14063 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 14064 return DAG.getNode(Opcode, dl, TargetVT, BV); 14065 } 14066 return SDValue(); 14067 } 14068 14069 /// Reduce the number of loads when building a vector. 14070 /// 14071 /// Building a vector out of multiple loads can be converted to a load 14072 /// of the vector type if the loads are consecutive. If the loads are 14073 /// consecutive but in descending order, a shuffle is added at the end 14074 /// to reorder the vector. 14075 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 14076 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14077 "Should be called with a BUILD_VECTOR node"); 14078 14079 SDLoc dl(N); 14080 14081 // Return early for non byte-sized type, as they can't be consecutive. 14082 if (!N->getValueType(0).getVectorElementType().isByteSized()) 14083 return SDValue(); 14084 14085 bool InputsAreConsecutiveLoads = true; 14086 bool InputsAreReverseConsecutive = true; 14087 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 14088 SDValue FirstInput = N->getOperand(0); 14089 bool IsRoundOfExtLoad = false; 14090 14091 if (FirstInput.getOpcode() == ISD::FP_ROUND && 14092 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 14093 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 14094 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 14095 } 14096 // Not a build vector of (possibly fp_rounded) loads. 14097 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 14098 N->getNumOperands() == 1) 14099 return SDValue(); 14100 14101 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 14102 // If any inputs are fp_round(extload), they all must be. 14103 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 14104 return SDValue(); 14105 14106 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 14107 N->getOperand(i); 14108 if (NextInput.getOpcode() != ISD::LOAD) 14109 return SDValue(); 14110 14111 SDValue PreviousInput = 14112 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 14113 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 14114 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 14115 14116 // If any inputs are fp_round(extload), they all must be. 14117 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 14118 return SDValue(); 14119 14120 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 14121 InputsAreConsecutiveLoads = false; 14122 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 14123 InputsAreReverseConsecutive = false; 14124 14125 // Exit early if the loads are neither consecutive nor reverse consecutive. 14126 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 14127 return SDValue(); 14128 } 14129 14130 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 14131 "The loads cannot be both consecutive and reverse consecutive."); 14132 14133 SDValue FirstLoadOp = 14134 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 14135 SDValue LastLoadOp = 14136 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 14137 N->getOperand(N->getNumOperands()-1); 14138 14139 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 14140 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 14141 if (InputsAreConsecutiveLoads) { 14142 assert(LD1 && "Input needs to be a LoadSDNode."); 14143 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 14144 LD1->getBasePtr(), LD1->getPointerInfo(), 14145 LD1->getAlignment()); 14146 } 14147 if (InputsAreReverseConsecutive) { 14148 assert(LDL && "Input needs to be a LoadSDNode."); 14149 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 14150 LDL->getBasePtr(), LDL->getPointerInfo(), 14151 LDL->getAlignment()); 14152 SmallVector<int, 16> Ops; 14153 for (int i = N->getNumOperands() - 1; i >= 0; i--) 14154 Ops.push_back(i); 14155 14156 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 14157 DAG.getUNDEF(N->getValueType(0)), Ops); 14158 } 14159 return SDValue(); 14160 } 14161 14162 // This function adds the required vector_shuffle needed to get 14163 // the elements of the vector extract in the correct position 14164 // as specified by the CorrectElems encoding. 14165 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 14166 SDValue Input, uint64_t Elems, 14167 uint64_t CorrectElems) { 14168 SDLoc dl(N); 14169 14170 unsigned NumElems = Input.getValueType().getVectorNumElements(); 14171 SmallVector<int, 16> ShuffleMask(NumElems, -1); 14172 14173 // Knowing the element indices being extracted from the original 14174 // vector and the order in which they're being inserted, just put 14175 // them at element indices required for the instruction. 14176 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14177 if (DAG.getDataLayout().isLittleEndian()) 14178 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 14179 else 14180 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 14181 CorrectElems = CorrectElems >> 8; 14182 Elems = Elems >> 8; 14183 } 14184 14185 SDValue Shuffle = 14186 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 14187 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 14188 14189 EVT VT = N->getValueType(0); 14190 SDValue Conv = DAG.getBitcast(VT, Shuffle); 14191 14192 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 14193 Input.getValueType().getVectorElementType(), 14194 VT.getVectorNumElements()); 14195 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 14196 DAG.getValueType(ExtVT)); 14197 } 14198 14199 // Look for build vector patterns where input operands come from sign 14200 // extended vector_extract elements of specific indices. If the correct indices 14201 // aren't used, add a vector shuffle to fix up the indices and create 14202 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 14203 // during instruction selection. 14204 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 14205 // This array encodes the indices that the vector sign extend instructions 14206 // extract from when extending from one type to another for both BE and LE. 14207 // The right nibble of each byte corresponds to the LE incides. 14208 // and the left nibble of each byte corresponds to the BE incides. 14209 // For example: 0x3074B8FC byte->word 14210 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 14211 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 14212 // For example: 0x000070F8 byte->double word 14213 // For LE: the allowed indices are: 0x0,0x8 14214 // For BE: the allowed indices are: 0x7,0xF 14215 uint64_t TargetElems[] = { 14216 0x3074B8FC, // b->w 14217 0x000070F8, // b->d 14218 0x10325476, // h->w 14219 0x00003074, // h->d 14220 0x00001032, // w->d 14221 }; 14222 14223 uint64_t Elems = 0; 14224 int Index; 14225 SDValue Input; 14226 14227 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 14228 if (!Op) 14229 return false; 14230 if (Op.getOpcode() != ISD::SIGN_EXTEND && 14231 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 14232 return false; 14233 14234 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 14235 // of the right width. 14236 SDValue Extract = Op.getOperand(0); 14237 if (Extract.getOpcode() == ISD::ANY_EXTEND) 14238 Extract = Extract.getOperand(0); 14239 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14240 return false; 14241 14242 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 14243 if (!ExtOp) 14244 return false; 14245 14246 Index = ExtOp->getZExtValue(); 14247 if (Input && Input != Extract.getOperand(0)) 14248 return false; 14249 14250 if (!Input) 14251 Input = Extract.getOperand(0); 14252 14253 Elems = Elems << 8; 14254 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 14255 Elems |= Index; 14256 14257 return true; 14258 }; 14259 14260 // If the build vector operands aren't sign extended vector extracts, 14261 // of the same input vector, then return. 14262 for (unsigned i = 0; i < N->getNumOperands(); i++) { 14263 if (!isSExtOfVecExtract(N->getOperand(i))) { 14264 return SDValue(); 14265 } 14266 } 14267 14268 // If the vector extract indicies are not correct, add the appropriate 14269 // vector_shuffle. 14270 int TgtElemArrayIdx; 14271 int InputSize = Input.getValueType().getScalarSizeInBits(); 14272 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 14273 if (InputSize + OutputSize == 40) 14274 TgtElemArrayIdx = 0; 14275 else if (InputSize + OutputSize == 72) 14276 TgtElemArrayIdx = 1; 14277 else if (InputSize + OutputSize == 48) 14278 TgtElemArrayIdx = 2; 14279 else if (InputSize + OutputSize == 80) 14280 TgtElemArrayIdx = 3; 14281 else if (InputSize + OutputSize == 96) 14282 TgtElemArrayIdx = 4; 14283 else 14284 return SDValue(); 14285 14286 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 14287 CorrectElems = DAG.getDataLayout().isLittleEndian() 14288 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 14289 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 14290 if (Elems != CorrectElems) { 14291 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 14292 } 14293 14294 // Regular lowering will catch cases where a shuffle is not needed. 14295 return SDValue(); 14296 } 14297 14298 // Look for the pattern of a load from a narrow width to i128, feeding 14299 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 14300 // (LXVRZX). This node represents a zero extending load that will be matched 14301 // to the Load VSX Vector Rightmost instructions. 14302 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 14303 SDLoc DL(N); 14304 14305 // This combine is only eligible for a BUILD_VECTOR of v1i128. 14306 if (N->getValueType(0) != MVT::v1i128) 14307 return SDValue(); 14308 14309 SDValue Operand = N->getOperand(0); 14310 // Proceed with the transformation if the operand to the BUILD_VECTOR 14311 // is a load instruction. 14312 if (Operand.getOpcode() != ISD::LOAD) 14313 return SDValue(); 14314 14315 auto *LD = cast<LoadSDNode>(Operand); 14316 EVT MemoryType = LD->getMemoryVT(); 14317 14318 // This transformation is only valid if the we are loading either a byte, 14319 // halfword, word, or doubleword. 14320 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 14321 MemoryType == MVT::i32 || MemoryType == MVT::i64; 14322 14323 // Ensure that the load from the narrow width is being zero extended to i128. 14324 if (!ValidLDType || 14325 (LD->getExtensionType() != ISD::ZEXTLOAD && 14326 LD->getExtensionType() != ISD::EXTLOAD)) 14327 return SDValue(); 14328 14329 SDValue LoadOps[] = { 14330 LD->getChain(), LD->getBasePtr(), 14331 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 14332 14333 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14334 DAG.getVTList(MVT::v1i128, MVT::Other), 14335 LoadOps, MemoryType, LD->getMemOperand()); 14336 } 14337 14338 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14339 DAGCombinerInfo &DCI) const { 14340 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14341 "Should be called with a BUILD_VECTOR node"); 14342 14343 SelectionDAG &DAG = DCI.DAG; 14344 SDLoc dl(N); 14345 14346 if (!Subtarget.hasVSX()) 14347 return SDValue(); 14348 14349 // The target independent DAG combiner will leave a build_vector of 14350 // float-to-int conversions intact. We can generate MUCH better code for 14351 // a float-to-int conversion of a vector of floats. 14352 SDValue FirstInput = N->getOperand(0); 14353 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14354 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14355 if (Reduced) 14356 return Reduced; 14357 } 14358 14359 // If we're building a vector out of consecutive loads, just load that 14360 // vector type. 14361 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14362 if (Reduced) 14363 return Reduced; 14364 14365 // If we're building a vector out of extended elements from another vector 14366 // we have P9 vector integer extend instructions. The code assumes legal 14367 // input types (i.e. it can't handle things like v4i16) so do not run before 14368 // legalization. 14369 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14370 Reduced = combineBVOfVecSExt(N, DAG); 14371 if (Reduced) 14372 return Reduced; 14373 } 14374 14375 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14376 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14377 // is a load from <valid narrow width> to i128. 14378 if (Subtarget.isISA3_1()) { 14379 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14380 if (BVOfZLoad) 14381 return BVOfZLoad; 14382 } 14383 14384 if (N->getValueType(0) != MVT::v2f64) 14385 return SDValue(); 14386 14387 // Looking for: 14388 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14389 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14390 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14391 return SDValue(); 14392 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14393 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14394 return SDValue(); 14395 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14396 return SDValue(); 14397 14398 SDValue Ext1 = FirstInput.getOperand(0); 14399 SDValue Ext2 = N->getOperand(1).getOperand(0); 14400 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14401 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14402 return SDValue(); 14403 14404 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14405 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14406 if (!Ext1Op || !Ext2Op) 14407 return SDValue(); 14408 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14409 Ext1.getOperand(0) != Ext2.getOperand(0)) 14410 return SDValue(); 14411 14412 int FirstElem = Ext1Op->getZExtValue(); 14413 int SecondElem = Ext2Op->getZExtValue(); 14414 int SubvecIdx; 14415 if (FirstElem == 0 && SecondElem == 1) 14416 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14417 else if (FirstElem == 2 && SecondElem == 3) 14418 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14419 else 14420 return SDValue(); 14421 14422 SDValue SrcVec = Ext1.getOperand(0); 14423 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14424 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14425 return DAG.getNode(NodeType, dl, MVT::v2f64, 14426 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14427 } 14428 14429 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14430 DAGCombinerInfo &DCI) const { 14431 assert((N->getOpcode() == ISD::SINT_TO_FP || 14432 N->getOpcode() == ISD::UINT_TO_FP) && 14433 "Need an int -> FP conversion node here"); 14434 14435 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14436 return SDValue(); 14437 14438 SelectionDAG &DAG = DCI.DAG; 14439 SDLoc dl(N); 14440 SDValue Op(N, 0); 14441 14442 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14443 // from the hardware. 14444 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14445 return SDValue(); 14446 if (!Op.getOperand(0).getValueType().isSimple()) 14447 return SDValue(); 14448 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14449 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14450 return SDValue(); 14451 14452 SDValue FirstOperand(Op.getOperand(0)); 14453 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14454 (FirstOperand.getValueType() == MVT::i8 || 14455 FirstOperand.getValueType() == MVT::i16); 14456 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14457 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14458 bool DstDouble = Op.getValueType() == MVT::f64; 14459 unsigned ConvOp = Signed ? 14460 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14461 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14462 SDValue WidthConst = 14463 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14464 dl, false); 14465 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14466 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14467 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14468 DAG.getVTList(MVT::f64, MVT::Other), 14469 Ops, MVT::i8, LDN->getMemOperand()); 14470 14471 // For signed conversion, we need to sign-extend the value in the VSR 14472 if (Signed) { 14473 SDValue ExtOps[] = { Ld, WidthConst }; 14474 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14475 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14476 } else 14477 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14478 } 14479 14480 14481 // For i32 intermediate values, unfortunately, the conversion functions 14482 // leave the upper 32 bits of the value are undefined. Within the set of 14483 // scalar instructions, we have no method for zero- or sign-extending the 14484 // value. Thus, we cannot handle i32 intermediate values here. 14485 if (Op.getOperand(0).getValueType() == MVT::i32) 14486 return SDValue(); 14487 14488 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14489 "UINT_TO_FP is supported only with FPCVT"); 14490 14491 // If we have FCFIDS, then use it when converting to single-precision. 14492 // Otherwise, convert to double-precision and then round. 14493 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14494 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14495 : PPCISD::FCFIDS) 14496 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14497 : PPCISD::FCFID); 14498 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14499 ? MVT::f32 14500 : MVT::f64; 14501 14502 // If we're converting from a float, to an int, and back to a float again, 14503 // then we don't need the store/load pair at all. 14504 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14505 Subtarget.hasFPCVT()) || 14506 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14507 SDValue Src = Op.getOperand(0).getOperand(0); 14508 if (Src.getValueType() == MVT::f32) { 14509 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14510 DCI.AddToWorklist(Src.getNode()); 14511 } else if (Src.getValueType() != MVT::f64) { 14512 // Make sure that we don't pick up a ppc_fp128 source value. 14513 return SDValue(); 14514 } 14515 14516 unsigned FCTOp = 14517 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14518 PPCISD::FCTIDUZ; 14519 14520 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14521 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14522 14523 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14524 FP = DAG.getNode(ISD::FP_ROUND, dl, 14525 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14526 DCI.AddToWorklist(FP.getNode()); 14527 } 14528 14529 return FP; 14530 } 14531 14532 return SDValue(); 14533 } 14534 14535 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14536 // builtins) into loads with swaps. 14537 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14538 DAGCombinerInfo &DCI) const { 14539 SelectionDAG &DAG = DCI.DAG; 14540 SDLoc dl(N); 14541 SDValue Chain; 14542 SDValue Base; 14543 MachineMemOperand *MMO; 14544 14545 switch (N->getOpcode()) { 14546 default: 14547 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14548 case ISD::LOAD: { 14549 LoadSDNode *LD = cast<LoadSDNode>(N); 14550 Chain = LD->getChain(); 14551 Base = LD->getBasePtr(); 14552 MMO = LD->getMemOperand(); 14553 // If the MMO suggests this isn't a load of a full vector, leave 14554 // things alone. For a built-in, we have to make the change for 14555 // correctness, so if there is a size problem that will be a bug. 14556 if (MMO->getSize() < 16) 14557 return SDValue(); 14558 break; 14559 } 14560 case ISD::INTRINSIC_W_CHAIN: { 14561 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14562 Chain = Intrin->getChain(); 14563 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14564 // us what we want. Get operand 2 instead. 14565 Base = Intrin->getOperand(2); 14566 MMO = Intrin->getMemOperand(); 14567 break; 14568 } 14569 } 14570 14571 MVT VecTy = N->getValueType(0).getSimpleVT(); 14572 14573 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14574 // aligned and the type is a vector with elements up to 4 bytes 14575 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14576 VecTy.getScalarSizeInBits() <= 32) { 14577 return SDValue(); 14578 } 14579 14580 SDValue LoadOps[] = { Chain, Base }; 14581 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14582 DAG.getVTList(MVT::v2f64, MVT::Other), 14583 LoadOps, MVT::v2f64, MMO); 14584 14585 DCI.AddToWorklist(Load.getNode()); 14586 Chain = Load.getValue(1); 14587 SDValue Swap = DAG.getNode( 14588 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14589 DCI.AddToWorklist(Swap.getNode()); 14590 14591 // Add a bitcast if the resulting load type doesn't match v2f64. 14592 if (VecTy != MVT::v2f64) { 14593 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14594 DCI.AddToWorklist(N.getNode()); 14595 // Package {bitcast value, swap's chain} to match Load's shape. 14596 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14597 N, Swap.getValue(1)); 14598 } 14599 14600 return Swap; 14601 } 14602 14603 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14604 // builtins) into stores with swaps. 14605 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14606 DAGCombinerInfo &DCI) const { 14607 SelectionDAG &DAG = DCI.DAG; 14608 SDLoc dl(N); 14609 SDValue Chain; 14610 SDValue Base; 14611 unsigned SrcOpnd; 14612 MachineMemOperand *MMO; 14613 14614 switch (N->getOpcode()) { 14615 default: 14616 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14617 case ISD::STORE: { 14618 StoreSDNode *ST = cast<StoreSDNode>(N); 14619 Chain = ST->getChain(); 14620 Base = ST->getBasePtr(); 14621 MMO = ST->getMemOperand(); 14622 SrcOpnd = 1; 14623 // If the MMO suggests this isn't a store of a full vector, leave 14624 // things alone. For a built-in, we have to make the change for 14625 // correctness, so if there is a size problem that will be a bug. 14626 if (MMO->getSize() < 16) 14627 return SDValue(); 14628 break; 14629 } 14630 case ISD::INTRINSIC_VOID: { 14631 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14632 Chain = Intrin->getChain(); 14633 // Intrin->getBasePtr() oddly does not get what we want. 14634 Base = Intrin->getOperand(3); 14635 MMO = Intrin->getMemOperand(); 14636 SrcOpnd = 2; 14637 break; 14638 } 14639 } 14640 14641 SDValue Src = N->getOperand(SrcOpnd); 14642 MVT VecTy = Src.getValueType().getSimpleVT(); 14643 14644 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14645 // aligned and the type is a vector with elements up to 4 bytes 14646 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14647 VecTy.getScalarSizeInBits() <= 32) { 14648 return SDValue(); 14649 } 14650 14651 // All stores are done as v2f64 and possible bit cast. 14652 if (VecTy != MVT::v2f64) { 14653 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14654 DCI.AddToWorklist(Src.getNode()); 14655 } 14656 14657 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14658 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14659 DCI.AddToWorklist(Swap.getNode()); 14660 Chain = Swap.getValue(1); 14661 SDValue StoreOps[] = { Chain, Swap, Base }; 14662 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14663 DAG.getVTList(MVT::Other), 14664 StoreOps, VecTy, MMO); 14665 DCI.AddToWorklist(Store.getNode()); 14666 return Store; 14667 } 14668 14669 // Handle DAG combine for STORE (FP_TO_INT F). 14670 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14671 DAGCombinerInfo &DCI) const { 14672 14673 SelectionDAG &DAG = DCI.DAG; 14674 SDLoc dl(N); 14675 unsigned Opcode = N->getOperand(1).getOpcode(); 14676 14677 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14678 && "Not a FP_TO_INT Instruction!"); 14679 14680 SDValue Val = N->getOperand(1).getOperand(0); 14681 EVT Op1VT = N->getOperand(1).getValueType(); 14682 EVT ResVT = Val.getValueType(); 14683 14684 if (!isTypeLegal(ResVT)) 14685 return SDValue(); 14686 14687 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14688 bool ValidTypeForStoreFltAsInt = 14689 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14690 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14691 14692 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14693 return SDValue(); 14694 14695 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14696 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14697 return SDValue(); 14698 14699 // Extend f32 values to f64 14700 if (ResVT.getScalarSizeInBits() == 32) { 14701 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14702 DCI.AddToWorklist(Val.getNode()); 14703 } 14704 14705 // Set signed or unsigned conversion opcode. 14706 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14707 PPCISD::FP_TO_SINT_IN_VSR : 14708 PPCISD::FP_TO_UINT_IN_VSR; 14709 14710 Val = DAG.getNode(ConvOpcode, 14711 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14712 DCI.AddToWorklist(Val.getNode()); 14713 14714 // Set number of bytes being converted. 14715 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14716 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14717 DAG.getIntPtrConstant(ByteSize, dl, false), 14718 DAG.getValueType(Op1VT) }; 14719 14720 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14721 DAG.getVTList(MVT::Other), Ops, 14722 cast<StoreSDNode>(N)->getMemoryVT(), 14723 cast<StoreSDNode>(N)->getMemOperand()); 14724 14725 DCI.AddToWorklist(Val.getNode()); 14726 return Val; 14727 } 14728 14729 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14730 // Check that the source of the element keeps flipping 14731 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14732 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14733 for (int i = 1, e = Mask.size(); i < e; i++) { 14734 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14735 return false; 14736 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14737 return false; 14738 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14739 } 14740 return true; 14741 } 14742 14743 static bool isSplatBV(SDValue Op) { 14744 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14745 return false; 14746 SDValue FirstOp; 14747 14748 // Find first non-undef input. 14749 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14750 FirstOp = Op.getOperand(i); 14751 if (!FirstOp.isUndef()) 14752 break; 14753 } 14754 14755 // All inputs are undef or the same as the first non-undef input. 14756 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14757 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14758 return false; 14759 return true; 14760 } 14761 14762 static SDValue isScalarToVec(SDValue Op) { 14763 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14764 return Op; 14765 if (Op.getOpcode() != ISD::BITCAST) 14766 return SDValue(); 14767 Op = Op.getOperand(0); 14768 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14769 return Op; 14770 return SDValue(); 14771 } 14772 14773 // Fix up the shuffle mask to account for the fact that the result of 14774 // scalar_to_vector is not in lane zero. This just takes all values in 14775 // the ranges specified by the min/max indices and adds the number of 14776 // elements required to ensure each element comes from the respective 14777 // position in the valid lane. 14778 // On little endian, that's just the corresponding element in the other 14779 // half of the vector. On big endian, it is in the same half but right 14780 // justified rather than left justified in that half. 14781 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14782 int LHSMaxIdx, int RHSMinIdx, 14783 int RHSMaxIdx, int HalfVec, 14784 unsigned ValidLaneWidth, 14785 const PPCSubtarget &Subtarget) { 14786 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14787 int Idx = ShuffV[i]; 14788 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14789 ShuffV[i] += 14790 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14791 } 14792 } 14793 14794 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14795 // the original is: 14796 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14797 // In such a case, just change the shuffle mask to extract the element 14798 // from the permuted index. 14799 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14800 const PPCSubtarget &Subtarget) { 14801 SDLoc dl(OrigSToV); 14802 EVT VT = OrigSToV.getValueType(); 14803 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14804 "Expecting a SCALAR_TO_VECTOR here"); 14805 SDValue Input = OrigSToV.getOperand(0); 14806 14807 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14808 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14809 SDValue OrigVector = Input.getOperand(0); 14810 14811 // Can't handle non-const element indices or different vector types 14812 // for the input to the extract and the output of the scalar_to_vector. 14813 if (Idx && VT == OrigVector.getValueType()) { 14814 unsigned NumElts = VT.getVectorNumElements(); 14815 assert( 14816 NumElts > 1 && 14817 "Cannot produce a permuted scalar_to_vector for one element vector"); 14818 SmallVector<int, 16> NewMask(NumElts, -1); 14819 unsigned ResultInElt = NumElts / 2; 14820 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14821 NewMask[ResultInElt] = Idx->getZExtValue(); 14822 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14823 } 14824 } 14825 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14826 OrigSToV.getOperand(0)); 14827 } 14828 14829 // On little endian subtargets, combine shuffles such as: 14830 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14831 // into: 14832 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14833 // because the latter can be matched to a single instruction merge. 14834 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14835 // to put the value into element zero. Adjust the shuffle mask so that the 14836 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14837 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14838 // nodes with elements smaller than doubleword because all the ways 14839 // of getting scalar data into a vector register put the value in the 14840 // rightmost element of the left half of the vector. 14841 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14842 SelectionDAG &DAG) const { 14843 SDValue LHS = SVN->getOperand(0); 14844 SDValue RHS = SVN->getOperand(1); 14845 auto Mask = SVN->getMask(); 14846 int NumElts = LHS.getValueType().getVectorNumElements(); 14847 SDValue Res(SVN, 0); 14848 SDLoc dl(SVN); 14849 bool IsLittleEndian = Subtarget.isLittleEndian(); 14850 14851 // On big endian targets this is only useful for subtargets with direct moves. 14852 // On little endian targets it would be useful for all subtargets with VSX. 14853 // However adding special handling for LE subtargets without direct moves 14854 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14855 // which includes direct moves. 14856 if (!Subtarget.hasDirectMove()) 14857 return Res; 14858 14859 // If this is not a shuffle of a shuffle and the first element comes from 14860 // the second vector, canonicalize to the commuted form. This will make it 14861 // more likely to match one of the single instruction patterns. 14862 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14863 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14864 std::swap(LHS, RHS); 14865 Res = DAG.getCommutedVectorShuffle(*SVN); 14866 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14867 } 14868 14869 // Adjust the shuffle mask if either input vector comes from a 14870 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14871 // form (to prevent the need for a swap). 14872 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14873 SDValue SToVLHS = isScalarToVec(LHS); 14874 SDValue SToVRHS = isScalarToVec(RHS); 14875 if (SToVLHS || SToVRHS) { 14876 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14877 : SToVRHS.getValueType().getVectorNumElements(); 14878 int NumEltsOut = ShuffV.size(); 14879 // The width of the "valid lane" (i.e. the lane that contains the value that 14880 // is vectorized) needs to be expressed in terms of the number of elements 14881 // of the shuffle. It is thereby the ratio of the values before and after 14882 // any bitcast. 14883 unsigned ValidLaneWidth = 14884 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14885 LHS.getValueType().getScalarSizeInBits() 14886 : SToVRHS.getValueType().getScalarSizeInBits() / 14887 RHS.getValueType().getScalarSizeInBits(); 14888 14889 // Initially assume that neither input is permuted. These will be adjusted 14890 // accordingly if either input is. 14891 int LHSMaxIdx = -1; 14892 int RHSMinIdx = -1; 14893 int RHSMaxIdx = -1; 14894 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14895 14896 // Get the permuted scalar to vector nodes for the source(s) that come from 14897 // ISD::SCALAR_TO_VECTOR. 14898 // On big endian systems, this only makes sense for element sizes smaller 14899 // than 64 bits since for 64-bit elements, all instructions already put 14900 // the value into element zero. Since scalar size of LHS and RHS may differ 14901 // after isScalarToVec, this should be checked using their own sizes. 14902 if (SToVLHS) { 14903 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14904 return Res; 14905 // Set up the values for the shuffle vector fixup. 14906 LHSMaxIdx = NumEltsOut / NumEltsIn; 14907 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14908 if (SToVLHS.getValueType() != LHS.getValueType()) 14909 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14910 LHS = SToVLHS; 14911 } 14912 if (SToVRHS) { 14913 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14914 return Res; 14915 RHSMinIdx = NumEltsOut; 14916 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14917 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14918 if (SToVRHS.getValueType() != RHS.getValueType()) 14919 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14920 RHS = SToVRHS; 14921 } 14922 14923 // Fix up the shuffle mask to reflect where the desired element actually is. 14924 // The minimum and maximum indices that correspond to element zero for both 14925 // the LHS and RHS are computed and will control which shuffle mask entries 14926 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14927 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14928 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14929 HalfVec, ValidLaneWidth, Subtarget); 14930 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14931 14932 // We may have simplified away the shuffle. We won't be able to do anything 14933 // further with it here. 14934 if (!isa<ShuffleVectorSDNode>(Res)) 14935 return Res; 14936 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14937 } 14938 14939 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14940 // The common case after we commuted the shuffle is that the RHS is a splat 14941 // and we have elements coming in from the splat at indices that are not 14942 // conducive to using a merge. 14943 // Example: 14944 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14945 if (!isSplatBV(TheSplat)) 14946 return Res; 14947 14948 // We are looking for a mask such that all even elements are from 14949 // one vector and all odd elements from the other. 14950 if (!isAlternatingShuffMask(Mask, NumElts)) 14951 return Res; 14952 14953 // Adjust the mask so we are pulling in the same index from the splat 14954 // as the index from the interesting vector in consecutive elements. 14955 if (IsLittleEndian) { 14956 // Example (even elements from first vector): 14957 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14958 if (Mask[0] < NumElts) 14959 for (int i = 1, e = Mask.size(); i < e; i += 2) 14960 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14961 // Example (odd elements from first vector): 14962 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14963 else 14964 for (int i = 0, e = Mask.size(); i < e; i += 2) 14965 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14966 } else { 14967 // Example (even elements from first vector): 14968 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14969 if (Mask[0] < NumElts) 14970 for (int i = 0, e = Mask.size(); i < e; i += 2) 14971 ShuffV[i] = ShuffV[i + 1] - NumElts; 14972 // Example (odd elements from first vector): 14973 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14974 else 14975 for (int i = 1, e = Mask.size(); i < e; i += 2) 14976 ShuffV[i] = ShuffV[i - 1] - NumElts; 14977 } 14978 14979 // If the RHS has undefs, we need to remove them since we may have created 14980 // a shuffle that adds those instead of the splat value. 14981 SDValue SplatVal = 14982 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14983 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14984 14985 if (IsLittleEndian) 14986 RHS = TheSplat; 14987 else 14988 LHS = TheSplat; 14989 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14990 } 14991 14992 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14993 LSBaseSDNode *LSBase, 14994 DAGCombinerInfo &DCI) const { 14995 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14996 "Not a reverse memop pattern!"); 14997 14998 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14999 auto Mask = SVN->getMask(); 15000 int i = 0; 15001 auto I = Mask.rbegin(); 15002 auto E = Mask.rend(); 15003 15004 for (; I != E; ++I) { 15005 if (*I != i) 15006 return false; 15007 i++; 15008 } 15009 return true; 15010 }; 15011 15012 SelectionDAG &DAG = DCI.DAG; 15013 EVT VT = SVN->getValueType(0); 15014 15015 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 15016 return SDValue(); 15017 15018 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 15019 // See comment in PPCVSXSwapRemoval.cpp. 15020 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 15021 if (!Subtarget.hasP9Vector()) 15022 return SDValue(); 15023 15024 if(!IsElementReverse(SVN)) 15025 return SDValue(); 15026 15027 if (LSBase->getOpcode() == ISD::LOAD) { 15028 // If the load return value 0 has more than one user except the 15029 // shufflevector instruction, it is not profitable to replace the 15030 // shufflevector with a reverse load. 15031 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 15032 UI != UE; ++UI) 15033 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 15034 return SDValue(); 15035 15036 SDLoc dl(LSBase); 15037 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 15038 return DAG.getMemIntrinsicNode( 15039 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 15040 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15041 } 15042 15043 if (LSBase->getOpcode() == ISD::STORE) { 15044 // If there are other uses of the shuffle, the swap cannot be avoided. 15045 // Forcing the use of an X-Form (since swapped stores only have 15046 // X-Forms) without removing the swap is unprofitable. 15047 if (!SVN->hasOneUse()) 15048 return SDValue(); 15049 15050 SDLoc dl(LSBase); 15051 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 15052 LSBase->getBasePtr()}; 15053 return DAG.getMemIntrinsicNode( 15054 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 15055 LSBase->getMemoryVT(), LSBase->getMemOperand()); 15056 } 15057 15058 llvm_unreachable("Expected a load or store node here"); 15059 } 15060 15061 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 15062 DAGCombinerInfo &DCI) const { 15063 SelectionDAG &DAG = DCI.DAG; 15064 SDLoc dl(N); 15065 switch (N->getOpcode()) { 15066 default: break; 15067 case ISD::ADD: 15068 return combineADD(N, DCI); 15069 case ISD::SHL: 15070 return combineSHL(N, DCI); 15071 case ISD::SRA: 15072 return combineSRA(N, DCI); 15073 case ISD::SRL: 15074 return combineSRL(N, DCI); 15075 case ISD::MUL: 15076 return combineMUL(N, DCI); 15077 case ISD::FMA: 15078 case PPCISD::FNMSUB: 15079 return combineFMALike(N, DCI); 15080 case PPCISD::SHL: 15081 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 15082 return N->getOperand(0); 15083 break; 15084 case PPCISD::SRL: 15085 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 15086 return N->getOperand(0); 15087 break; 15088 case PPCISD::SRA: 15089 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 15090 if (C->isZero() || // 0 >>s V -> 0. 15091 C->isAllOnes()) // -1 >>s V -> -1. 15092 return N->getOperand(0); 15093 } 15094 break; 15095 case ISD::SIGN_EXTEND: 15096 case ISD::ZERO_EXTEND: 15097 case ISD::ANY_EXTEND: 15098 return DAGCombineExtBoolTrunc(N, DCI); 15099 case ISD::TRUNCATE: 15100 return combineTRUNCATE(N, DCI); 15101 case ISD::SETCC: 15102 if (SDValue CSCC = combineSetCC(N, DCI)) 15103 return CSCC; 15104 LLVM_FALLTHROUGH; 15105 case ISD::SELECT_CC: 15106 return DAGCombineTruncBoolExt(N, DCI); 15107 case ISD::SINT_TO_FP: 15108 case ISD::UINT_TO_FP: 15109 return combineFPToIntToFP(N, DCI); 15110 case ISD::VECTOR_SHUFFLE: 15111 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 15112 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 15113 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 15114 } 15115 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 15116 case ISD::STORE: { 15117 15118 EVT Op1VT = N->getOperand(1).getValueType(); 15119 unsigned Opcode = N->getOperand(1).getOpcode(); 15120 15121 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 15122 SDValue Val= combineStoreFPToInt(N, DCI); 15123 if (Val) 15124 return Val; 15125 } 15126 15127 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 15128 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 15129 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 15130 if (Val) 15131 return Val; 15132 } 15133 15134 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 15135 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 15136 N->getOperand(1).getNode()->hasOneUse() && 15137 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 15138 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 15139 15140 // STBRX can only handle simple types and it makes no sense to store less 15141 // two bytes in byte-reversed order. 15142 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 15143 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 15144 break; 15145 15146 SDValue BSwapOp = N->getOperand(1).getOperand(0); 15147 // Do an any-extend to 32-bits if this is a half-word input. 15148 if (BSwapOp.getValueType() == MVT::i16) 15149 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 15150 15151 // If the type of BSWAP operand is wider than stored memory width 15152 // it need to be shifted to the right side before STBRX. 15153 if (Op1VT.bitsGT(mVT)) { 15154 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 15155 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 15156 DAG.getConstant(Shift, dl, MVT::i32)); 15157 // Need to truncate if this is a bswap of i64 stored as i32/i16. 15158 if (Op1VT == MVT::i64) 15159 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 15160 } 15161 15162 SDValue Ops[] = { 15163 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 15164 }; 15165 return 15166 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 15167 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 15168 cast<StoreSDNode>(N)->getMemOperand()); 15169 } 15170 15171 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 15172 // So it can increase the chance of CSE constant construction. 15173 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 15174 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 15175 // Need to sign-extended to 64-bits to handle negative values. 15176 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 15177 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 15178 MemVT.getSizeInBits()); 15179 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 15180 15181 // DAG.getTruncStore() can't be used here because it doesn't accept 15182 // the general (base + offset) addressing mode. 15183 // So we use UpdateNodeOperands and setTruncatingStore instead. 15184 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 15185 N->getOperand(3)); 15186 cast<StoreSDNode>(N)->setTruncatingStore(true); 15187 return SDValue(N, 0); 15188 } 15189 15190 // For little endian, VSX stores require generating xxswapd/lxvd2x. 15191 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15192 if (Op1VT.isSimple()) { 15193 MVT StoreVT = Op1VT.getSimpleVT(); 15194 if (Subtarget.needsSwapsForVSXMemOps() && 15195 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 15196 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 15197 return expandVSXStoreForLE(N, DCI); 15198 } 15199 break; 15200 } 15201 case ISD::LOAD: { 15202 LoadSDNode *LD = cast<LoadSDNode>(N); 15203 EVT VT = LD->getValueType(0); 15204 15205 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15206 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15207 if (VT.isSimple()) { 15208 MVT LoadVT = VT.getSimpleVT(); 15209 if (Subtarget.needsSwapsForVSXMemOps() && 15210 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 15211 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 15212 return expandVSXLoadForLE(N, DCI); 15213 } 15214 15215 // We sometimes end up with a 64-bit integer load, from which we extract 15216 // two single-precision floating-point numbers. This happens with 15217 // std::complex<float>, and other similar structures, because of the way we 15218 // canonicalize structure copies. However, if we lack direct moves, 15219 // then the final bitcasts from the extracted integer values to the 15220 // floating-point numbers turn into store/load pairs. Even with direct moves, 15221 // just loading the two floating-point numbers is likely better. 15222 auto ReplaceTwoFloatLoad = [&]() { 15223 if (VT != MVT::i64) 15224 return false; 15225 15226 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 15227 LD->isVolatile()) 15228 return false; 15229 15230 // We're looking for a sequence like this: 15231 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 15232 // t16: i64 = srl t13, Constant:i32<32> 15233 // t17: i32 = truncate t16 15234 // t18: f32 = bitcast t17 15235 // t19: i32 = truncate t13 15236 // t20: f32 = bitcast t19 15237 15238 if (!LD->hasNUsesOfValue(2, 0)) 15239 return false; 15240 15241 auto UI = LD->use_begin(); 15242 while (UI.getUse().getResNo() != 0) ++UI; 15243 SDNode *Trunc = *UI++; 15244 while (UI.getUse().getResNo() != 0) ++UI; 15245 SDNode *RightShift = *UI; 15246 if (Trunc->getOpcode() != ISD::TRUNCATE) 15247 std::swap(Trunc, RightShift); 15248 15249 if (Trunc->getOpcode() != ISD::TRUNCATE || 15250 Trunc->getValueType(0) != MVT::i32 || 15251 !Trunc->hasOneUse()) 15252 return false; 15253 if (RightShift->getOpcode() != ISD::SRL || 15254 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 15255 RightShift->getConstantOperandVal(1) != 32 || 15256 !RightShift->hasOneUse()) 15257 return false; 15258 15259 SDNode *Trunc2 = *RightShift->use_begin(); 15260 if (Trunc2->getOpcode() != ISD::TRUNCATE || 15261 Trunc2->getValueType(0) != MVT::i32 || 15262 !Trunc2->hasOneUse()) 15263 return false; 15264 15265 SDNode *Bitcast = *Trunc->use_begin(); 15266 SDNode *Bitcast2 = *Trunc2->use_begin(); 15267 15268 if (Bitcast->getOpcode() != ISD::BITCAST || 15269 Bitcast->getValueType(0) != MVT::f32) 15270 return false; 15271 if (Bitcast2->getOpcode() != ISD::BITCAST || 15272 Bitcast2->getValueType(0) != MVT::f32) 15273 return false; 15274 15275 if (Subtarget.isLittleEndian()) 15276 std::swap(Bitcast, Bitcast2); 15277 15278 // Bitcast has the second float (in memory-layout order) and Bitcast2 15279 // has the first one. 15280 15281 SDValue BasePtr = LD->getBasePtr(); 15282 if (LD->isIndexed()) { 15283 assert(LD->getAddressingMode() == ISD::PRE_INC && 15284 "Non-pre-inc AM on PPC?"); 15285 BasePtr = 15286 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15287 LD->getOffset()); 15288 } 15289 15290 auto MMOFlags = 15291 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 15292 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 15293 LD->getPointerInfo(), LD->getAlignment(), 15294 MMOFlags, LD->getAAInfo()); 15295 SDValue AddPtr = 15296 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 15297 BasePtr, DAG.getIntPtrConstant(4, dl)); 15298 SDValue FloatLoad2 = DAG.getLoad( 15299 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 15300 LD->getPointerInfo().getWithOffset(4), 15301 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 15302 15303 if (LD->isIndexed()) { 15304 // Note that DAGCombine should re-form any pre-increment load(s) from 15305 // what is produced here if that makes sense. 15306 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 15307 } 15308 15309 DCI.CombineTo(Bitcast2, FloatLoad); 15310 DCI.CombineTo(Bitcast, FloatLoad2); 15311 15312 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 15313 SDValue(FloatLoad2.getNode(), 1)); 15314 return true; 15315 }; 15316 15317 if (ReplaceTwoFloatLoad()) 15318 return SDValue(N, 0); 15319 15320 EVT MemVT = LD->getMemoryVT(); 15321 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 15322 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 15323 if (LD->isUnindexed() && VT.isVector() && 15324 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 15325 // P8 and later hardware should just use LOAD. 15326 !Subtarget.hasP8Vector() && 15327 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 15328 VT == MVT::v4f32))) && 15329 LD->getAlign() < ABIAlignment) { 15330 // This is a type-legal unaligned Altivec load. 15331 SDValue Chain = LD->getChain(); 15332 SDValue Ptr = LD->getBasePtr(); 15333 bool isLittleEndian = Subtarget.isLittleEndian(); 15334 15335 // This implements the loading of unaligned vectors as described in 15336 // the venerable Apple Velocity Engine overview. Specifically: 15337 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15338 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15339 // 15340 // The general idea is to expand a sequence of one or more unaligned 15341 // loads into an alignment-based permutation-control instruction (lvsl 15342 // or lvsr), a series of regular vector loads (which always truncate 15343 // their input address to an aligned address), and a series of 15344 // permutations. The results of these permutations are the requested 15345 // loaded values. The trick is that the last "extra" load is not taken 15346 // from the address you might suspect (sizeof(vector) bytes after the 15347 // last requested load), but rather sizeof(vector) - 1 bytes after the 15348 // last requested vector. The point of this is to avoid a page fault if 15349 // the base address happened to be aligned. This works because if the 15350 // base address is aligned, then adding less than a full vector length 15351 // will cause the last vector in the sequence to be (re)loaded. 15352 // Otherwise, the next vector will be fetched as you might suspect was 15353 // necessary. 15354 15355 // We might be able to reuse the permutation generation from 15356 // a different base address offset from this one by an aligned amount. 15357 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15358 // optimization later. 15359 Intrinsic::ID Intr, IntrLD, IntrPerm; 15360 MVT PermCntlTy, PermTy, LDTy; 15361 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15362 : Intrinsic::ppc_altivec_lvsl; 15363 IntrLD = Intrinsic::ppc_altivec_lvx; 15364 IntrPerm = Intrinsic::ppc_altivec_vperm; 15365 PermCntlTy = MVT::v16i8; 15366 PermTy = MVT::v4i32; 15367 LDTy = MVT::v4i32; 15368 15369 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15370 15371 // Create the new MMO for the new base load. It is like the original MMO, 15372 // but represents an area in memory almost twice the vector size centered 15373 // on the original address. If the address is unaligned, we might start 15374 // reading up to (sizeof(vector)-1) bytes below the address of the 15375 // original unaligned load. 15376 MachineFunction &MF = DAG.getMachineFunction(); 15377 MachineMemOperand *BaseMMO = 15378 MF.getMachineMemOperand(LD->getMemOperand(), 15379 -(long)MemVT.getStoreSize()+1, 15380 2*MemVT.getStoreSize()-1); 15381 15382 // Create the new base load. 15383 SDValue LDXIntID = 15384 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15385 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15386 SDValue BaseLoad = 15387 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15388 DAG.getVTList(PermTy, MVT::Other), 15389 BaseLoadOps, LDTy, BaseMMO); 15390 15391 // Note that the value of IncOffset (which is provided to the next 15392 // load's pointer info offset value, and thus used to calculate the 15393 // alignment), and the value of IncValue (which is actually used to 15394 // increment the pointer value) are different! This is because we 15395 // require the next load to appear to be aligned, even though it 15396 // is actually offset from the base pointer by a lesser amount. 15397 int IncOffset = VT.getSizeInBits() / 8; 15398 int IncValue = IncOffset; 15399 15400 // Walk (both up and down) the chain looking for another load at the real 15401 // (aligned) offset (the alignment of the other load does not matter in 15402 // this case). If found, then do not use the offset reduction trick, as 15403 // that will prevent the loads from being later combined (as they would 15404 // otherwise be duplicates). 15405 if (!findConsecutiveLoad(LD, DAG)) 15406 --IncValue; 15407 15408 SDValue Increment = 15409 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15410 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15411 15412 MachineMemOperand *ExtraMMO = 15413 MF.getMachineMemOperand(LD->getMemOperand(), 15414 1, 2*MemVT.getStoreSize()-1); 15415 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15416 SDValue ExtraLoad = 15417 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15418 DAG.getVTList(PermTy, MVT::Other), 15419 ExtraLoadOps, LDTy, ExtraMMO); 15420 15421 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15422 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15423 15424 // Because vperm has a big-endian bias, we must reverse the order 15425 // of the input vectors and complement the permute control vector 15426 // when generating little endian code. We have already handled the 15427 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15428 // and ExtraLoad here. 15429 SDValue Perm; 15430 if (isLittleEndian) 15431 Perm = BuildIntrinsicOp(IntrPerm, 15432 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15433 else 15434 Perm = BuildIntrinsicOp(IntrPerm, 15435 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15436 15437 if (VT != PermTy) 15438 Perm = Subtarget.hasAltivec() 15439 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15440 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15441 DAG.getTargetConstant(1, dl, MVT::i64)); 15442 // second argument is 1 because this rounding 15443 // is always exact. 15444 15445 // The output of the permutation is our loaded result, the TokenFactor is 15446 // our new chain. 15447 DCI.CombineTo(N, Perm, TF); 15448 return SDValue(N, 0); 15449 } 15450 } 15451 break; 15452 case ISD::INTRINSIC_WO_CHAIN: { 15453 bool isLittleEndian = Subtarget.isLittleEndian(); 15454 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15455 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15456 : Intrinsic::ppc_altivec_lvsl); 15457 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15458 SDValue Add = N->getOperand(1); 15459 15460 int Bits = 4 /* 16 byte alignment */; 15461 15462 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15463 APInt::getAllOnes(Bits /* alignment */) 15464 .zext(Add.getScalarValueSizeInBits()))) { 15465 SDNode *BasePtr = Add->getOperand(0).getNode(); 15466 for (SDNode *U : BasePtr->uses()) { 15467 if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15468 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { 15469 // We've found another LVSL/LVSR, and this address is an aligned 15470 // multiple of that one. The results will be the same, so use the 15471 // one we've just found instead. 15472 15473 return SDValue(U, 0); 15474 } 15475 } 15476 } 15477 15478 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15479 SDNode *BasePtr = Add->getOperand(0).getNode(); 15480 for (SDNode *U : BasePtr->uses()) { 15481 if (U->getOpcode() == ISD::ADD && 15482 isa<ConstantSDNode>(U->getOperand(1)) && 15483 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15484 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % 15485 (1ULL << Bits) == 15486 0) { 15487 SDNode *OtherAdd = U; 15488 for (SDNode *V : OtherAdd->uses()) { 15489 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15490 cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == 15491 IID) { 15492 return SDValue(V, 0); 15493 } 15494 } 15495 } 15496 } 15497 } 15498 } 15499 15500 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15501 // Expose the vabsduw/h/b opportunity for down stream 15502 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15503 (IID == Intrinsic::ppc_altivec_vmaxsw || 15504 IID == Intrinsic::ppc_altivec_vmaxsh || 15505 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15506 SDValue V1 = N->getOperand(1); 15507 SDValue V2 = N->getOperand(2); 15508 if ((V1.getSimpleValueType() == MVT::v4i32 || 15509 V1.getSimpleValueType() == MVT::v8i16 || 15510 V1.getSimpleValueType() == MVT::v16i8) && 15511 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15512 // (0-a, a) 15513 if (V1.getOpcode() == ISD::SUB && 15514 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15515 V1.getOperand(1) == V2) { 15516 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15517 } 15518 // (a, 0-a) 15519 if (V2.getOpcode() == ISD::SUB && 15520 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15521 V2.getOperand(1) == V1) { 15522 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15523 } 15524 // (x-y, y-x) 15525 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15526 V1.getOperand(0) == V2.getOperand(1) && 15527 V1.getOperand(1) == V2.getOperand(0)) { 15528 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15529 } 15530 } 15531 } 15532 } 15533 15534 break; 15535 case ISD::INTRINSIC_W_CHAIN: 15536 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15537 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15538 if (Subtarget.needsSwapsForVSXMemOps()) { 15539 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15540 default: 15541 break; 15542 case Intrinsic::ppc_vsx_lxvw4x: 15543 case Intrinsic::ppc_vsx_lxvd2x: 15544 return expandVSXLoadForLE(N, DCI); 15545 } 15546 } 15547 break; 15548 case ISD::INTRINSIC_VOID: 15549 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15550 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15551 if (Subtarget.needsSwapsForVSXMemOps()) { 15552 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15553 default: 15554 break; 15555 case Intrinsic::ppc_vsx_stxvw4x: 15556 case Intrinsic::ppc_vsx_stxvd2x: 15557 return expandVSXStoreForLE(N, DCI); 15558 } 15559 } 15560 break; 15561 case ISD::BSWAP: { 15562 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15563 // For subtargets without LDBRX, we can still do better than the default 15564 // expansion even for 64-bit BSWAP (LOAD). 15565 bool Is64BitBswapOn64BitTgt = 15566 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15567 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15568 N->getOperand(0).hasOneUse(); 15569 if (IsSingleUseNormalLd && 15570 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15571 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15572 SDValue Load = N->getOperand(0); 15573 LoadSDNode *LD = cast<LoadSDNode>(Load); 15574 // Create the byte-swapping load. 15575 SDValue Ops[] = { 15576 LD->getChain(), // Chain 15577 LD->getBasePtr(), // Ptr 15578 DAG.getValueType(N->getValueType(0)) // VT 15579 }; 15580 SDValue BSLoad = 15581 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15582 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15583 MVT::i64 : MVT::i32, MVT::Other), 15584 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15585 15586 // If this is an i16 load, insert the truncate. 15587 SDValue ResVal = BSLoad; 15588 if (N->getValueType(0) == MVT::i16) 15589 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15590 15591 // First, combine the bswap away. This makes the value produced by the 15592 // load dead. 15593 DCI.CombineTo(N, ResVal); 15594 15595 // Next, combine the load away, we give it a bogus result value but a real 15596 // chain result. The result value is dead because the bswap is dead. 15597 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15598 15599 // Return N so it doesn't get rechecked! 15600 return SDValue(N, 0); 15601 } 15602 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15603 // before legalization so that the BUILD_PAIR is handled correctly. 15604 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15605 !IsSingleUseNormalLd) 15606 return SDValue(); 15607 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15608 15609 // Can't split volatile or atomic loads. 15610 if (!LD->isSimple()) 15611 return SDValue(); 15612 SDValue BasePtr = LD->getBasePtr(); 15613 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15614 LD->getPointerInfo(), LD->getAlignment()); 15615 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15616 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15617 DAG.getIntPtrConstant(4, dl)); 15618 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15619 LD->getMemOperand(), 4, 4); 15620 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15621 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15622 SDValue Res; 15623 if (Subtarget.isLittleEndian()) 15624 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15625 else 15626 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15627 SDValue TF = 15628 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15629 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15630 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15631 return Res; 15632 } 15633 case PPCISD::VCMP: 15634 // If a VCMP_rec node already exists with exactly the same operands as this 15635 // node, use its result instead of this node (VCMP_rec computes both a CR6 15636 // and a normal output). 15637 // 15638 if (!N->getOperand(0).hasOneUse() && 15639 !N->getOperand(1).hasOneUse() && 15640 !N->getOperand(2).hasOneUse()) { 15641 15642 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15643 SDNode *VCMPrecNode = nullptr; 15644 15645 SDNode *LHSN = N->getOperand(0).getNode(); 15646 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15647 UI != E; ++UI) 15648 if (UI->getOpcode() == PPCISD::VCMP_rec && 15649 UI->getOperand(1) == N->getOperand(1) && 15650 UI->getOperand(2) == N->getOperand(2) && 15651 UI->getOperand(0) == N->getOperand(0)) { 15652 VCMPrecNode = *UI; 15653 break; 15654 } 15655 15656 // If there is no VCMP_rec node, or if the flag value has a single use, 15657 // don't transform this. 15658 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15659 break; 15660 15661 // Look at the (necessarily single) use of the flag value. If it has a 15662 // chain, this transformation is more complex. Note that multiple things 15663 // could use the value result, which we should ignore. 15664 SDNode *FlagUser = nullptr; 15665 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15666 FlagUser == nullptr; ++UI) { 15667 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15668 SDNode *User = *UI; 15669 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15670 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15671 FlagUser = User; 15672 break; 15673 } 15674 } 15675 } 15676 15677 // If the user is a MFOCRF instruction, we know this is safe. 15678 // Otherwise we give up for right now. 15679 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15680 return SDValue(VCMPrecNode, 0); 15681 } 15682 break; 15683 case ISD::BRCOND: { 15684 SDValue Cond = N->getOperand(1); 15685 SDValue Target = N->getOperand(2); 15686 15687 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15688 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15689 Intrinsic::loop_decrement) { 15690 15691 // We now need to make the intrinsic dead (it cannot be instruction 15692 // selected). 15693 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15694 assert(Cond.getNode()->hasOneUse() && 15695 "Counter decrement has more than one use"); 15696 15697 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15698 N->getOperand(0), Target); 15699 } 15700 } 15701 break; 15702 case ISD::BR_CC: { 15703 // If this is a branch on an altivec predicate comparison, lower this so 15704 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15705 // lowering is done pre-legalize, because the legalizer lowers the predicate 15706 // compare down to code that is difficult to reassemble. 15707 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15708 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15709 15710 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15711 // value. If so, pass-through the AND to get to the intrinsic. 15712 if (LHS.getOpcode() == ISD::AND && 15713 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15714 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15715 Intrinsic::loop_decrement && 15716 isa<ConstantSDNode>(LHS.getOperand(1)) && 15717 !isNullConstant(LHS.getOperand(1))) 15718 LHS = LHS.getOperand(0); 15719 15720 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15721 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15722 Intrinsic::loop_decrement && 15723 isa<ConstantSDNode>(RHS)) { 15724 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15725 "Counter decrement comparison is not EQ or NE"); 15726 15727 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15728 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15729 (CC == ISD::SETNE && !Val); 15730 15731 // We now need to make the intrinsic dead (it cannot be instruction 15732 // selected). 15733 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15734 assert(LHS.getNode()->hasOneUse() && 15735 "Counter decrement has more than one use"); 15736 15737 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15738 N->getOperand(0), N->getOperand(4)); 15739 } 15740 15741 int CompareOpc; 15742 bool isDot; 15743 15744 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15745 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15746 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15747 assert(isDot && "Can't compare against a vector result!"); 15748 15749 // If this is a comparison against something other than 0/1, then we know 15750 // that the condition is never/always true. 15751 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15752 if (Val != 0 && Val != 1) { 15753 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15754 return N->getOperand(0); 15755 // Always !=, turn it into an unconditional branch. 15756 return DAG.getNode(ISD::BR, dl, MVT::Other, 15757 N->getOperand(0), N->getOperand(4)); 15758 } 15759 15760 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15761 15762 // Create the PPCISD altivec 'dot' comparison node. 15763 SDValue Ops[] = { 15764 LHS.getOperand(2), // LHS of compare 15765 LHS.getOperand(3), // RHS of compare 15766 DAG.getConstant(CompareOpc, dl, MVT::i32) 15767 }; 15768 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15769 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15770 15771 // Unpack the result based on how the target uses it. 15772 PPC::Predicate CompOpc; 15773 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15774 default: // Can't happen, don't crash on invalid number though. 15775 case 0: // Branch on the value of the EQ bit of CR6. 15776 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15777 break; 15778 case 1: // Branch on the inverted value of the EQ bit of CR6. 15779 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15780 break; 15781 case 2: // Branch on the value of the LT bit of CR6. 15782 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15783 break; 15784 case 3: // Branch on the inverted value of the LT bit of CR6. 15785 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15786 break; 15787 } 15788 15789 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15790 DAG.getConstant(CompOpc, dl, MVT::i32), 15791 DAG.getRegister(PPC::CR6, MVT::i32), 15792 N->getOperand(4), CompNode.getValue(1)); 15793 } 15794 break; 15795 } 15796 case ISD::BUILD_VECTOR: 15797 return DAGCombineBuildVector(N, DCI); 15798 case ISD::ABS: 15799 return combineABS(N, DCI); 15800 case ISD::VSELECT: 15801 return combineVSelect(N, DCI); 15802 } 15803 15804 return SDValue(); 15805 } 15806 15807 SDValue 15808 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15809 SelectionDAG &DAG, 15810 SmallVectorImpl<SDNode *> &Created) const { 15811 // fold (sdiv X, pow2) 15812 EVT VT = N->getValueType(0); 15813 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15814 return SDValue(); 15815 if ((VT != MVT::i32 && VT != MVT::i64) || 15816 !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) 15817 return SDValue(); 15818 15819 SDLoc DL(N); 15820 SDValue N0 = N->getOperand(0); 15821 15822 bool IsNegPow2 = Divisor.isNegatedPowerOf2(); 15823 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15824 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15825 15826 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15827 Created.push_back(Op.getNode()); 15828 15829 if (IsNegPow2) { 15830 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15831 Created.push_back(Op.getNode()); 15832 } 15833 15834 return Op; 15835 } 15836 15837 //===----------------------------------------------------------------------===// 15838 // Inline Assembly Support 15839 //===----------------------------------------------------------------------===// 15840 15841 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15842 KnownBits &Known, 15843 const APInt &DemandedElts, 15844 const SelectionDAG &DAG, 15845 unsigned Depth) const { 15846 Known.resetAll(); 15847 switch (Op.getOpcode()) { 15848 default: break; 15849 case PPCISD::LBRX: { 15850 // lhbrx is known to have the top bits cleared out. 15851 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15852 Known.Zero = 0xFFFF0000; 15853 break; 15854 } 15855 case ISD::INTRINSIC_WO_CHAIN: { 15856 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15857 default: break; 15858 case Intrinsic::ppc_altivec_vcmpbfp_p: 15859 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15860 case Intrinsic::ppc_altivec_vcmpequb_p: 15861 case Intrinsic::ppc_altivec_vcmpequh_p: 15862 case Intrinsic::ppc_altivec_vcmpequw_p: 15863 case Intrinsic::ppc_altivec_vcmpequd_p: 15864 case Intrinsic::ppc_altivec_vcmpequq_p: 15865 case Intrinsic::ppc_altivec_vcmpgefp_p: 15866 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15867 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15868 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15869 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15870 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15871 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15872 case Intrinsic::ppc_altivec_vcmpgtub_p: 15873 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15874 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15875 case Intrinsic::ppc_altivec_vcmpgtud_p: 15876 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15877 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15878 break; 15879 } 15880 break; 15881 } 15882 case ISD::INTRINSIC_W_CHAIN: { 15883 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 15884 default: 15885 break; 15886 case Intrinsic::ppc_load2r: 15887 // Top bits are cleared for load2r (which is the same as lhbrx). 15888 Known.Zero = 0xFFFF0000; 15889 break; 15890 } 15891 break; 15892 } 15893 } 15894 } 15895 15896 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15897 switch (Subtarget.getCPUDirective()) { 15898 default: break; 15899 case PPC::DIR_970: 15900 case PPC::DIR_PWR4: 15901 case PPC::DIR_PWR5: 15902 case PPC::DIR_PWR5X: 15903 case PPC::DIR_PWR6: 15904 case PPC::DIR_PWR6X: 15905 case PPC::DIR_PWR7: 15906 case PPC::DIR_PWR8: 15907 case PPC::DIR_PWR9: 15908 case PPC::DIR_PWR10: 15909 case PPC::DIR_PWR_FUTURE: { 15910 if (!ML) 15911 break; 15912 15913 if (!DisableInnermostLoopAlign32) { 15914 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15915 // so that we can decrease cache misses and branch-prediction misses. 15916 // Actual alignment of the loop will depend on the hotness check and other 15917 // logic in alignBlocks. 15918 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15919 return Align(32); 15920 } 15921 15922 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15923 15924 // For small loops (between 5 and 8 instructions), align to a 32-byte 15925 // boundary so that the entire loop fits in one instruction-cache line. 15926 uint64_t LoopSize = 0; 15927 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15928 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15929 LoopSize += TII->getInstSizeInBytes(*J); 15930 if (LoopSize > 32) 15931 break; 15932 } 15933 15934 if (LoopSize > 16 && LoopSize <= 32) 15935 return Align(32); 15936 15937 break; 15938 } 15939 } 15940 15941 return TargetLowering::getPrefLoopAlignment(ML); 15942 } 15943 15944 /// getConstraintType - Given a constraint, return the type of 15945 /// constraint it is for this target. 15946 PPCTargetLowering::ConstraintType 15947 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15948 if (Constraint.size() == 1) { 15949 switch (Constraint[0]) { 15950 default: break; 15951 case 'b': 15952 case 'r': 15953 case 'f': 15954 case 'd': 15955 case 'v': 15956 case 'y': 15957 return C_RegisterClass; 15958 case 'Z': 15959 // FIXME: While Z does indicate a memory constraint, it specifically 15960 // indicates an r+r address (used in conjunction with the 'y' modifier 15961 // in the replacement string). Currently, we're forcing the base 15962 // register to be r0 in the asm printer (which is interpreted as zero) 15963 // and forming the complete address in the second register. This is 15964 // suboptimal. 15965 return C_Memory; 15966 } 15967 } else if (Constraint == "wc") { // individual CR bits. 15968 return C_RegisterClass; 15969 } else if (Constraint == "wa" || Constraint == "wd" || 15970 Constraint == "wf" || Constraint == "ws" || 15971 Constraint == "wi" || Constraint == "ww") { 15972 return C_RegisterClass; // VSX registers. 15973 } 15974 return TargetLowering::getConstraintType(Constraint); 15975 } 15976 15977 /// Examine constraint type and operand type and determine a weight value. 15978 /// This object must already have been set up with the operand type 15979 /// and the current alternative constraint selected. 15980 TargetLowering::ConstraintWeight 15981 PPCTargetLowering::getSingleConstraintMatchWeight( 15982 AsmOperandInfo &info, const char *constraint) const { 15983 ConstraintWeight weight = CW_Invalid; 15984 Value *CallOperandVal = info.CallOperandVal; 15985 // If we don't have a value, we can't do a match, 15986 // but allow it at the lowest weight. 15987 if (!CallOperandVal) 15988 return CW_Default; 15989 Type *type = CallOperandVal->getType(); 15990 15991 // Look at the constraint type. 15992 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15993 return CW_Register; // an individual CR bit. 15994 else if ((StringRef(constraint) == "wa" || 15995 StringRef(constraint) == "wd" || 15996 StringRef(constraint) == "wf") && 15997 type->isVectorTy()) 15998 return CW_Register; 15999 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 16000 return CW_Register; // just hold 64-bit integers data. 16001 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 16002 return CW_Register; 16003 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 16004 return CW_Register; 16005 16006 switch (*constraint) { 16007 default: 16008 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 16009 break; 16010 case 'b': 16011 if (type->isIntegerTy()) 16012 weight = CW_Register; 16013 break; 16014 case 'f': 16015 if (type->isFloatTy()) 16016 weight = CW_Register; 16017 break; 16018 case 'd': 16019 if (type->isDoubleTy()) 16020 weight = CW_Register; 16021 break; 16022 case 'v': 16023 if (type->isVectorTy()) 16024 weight = CW_Register; 16025 break; 16026 case 'y': 16027 weight = CW_Register; 16028 break; 16029 case 'Z': 16030 weight = CW_Memory; 16031 break; 16032 } 16033 return weight; 16034 } 16035 16036 std::pair<unsigned, const TargetRegisterClass *> 16037 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 16038 StringRef Constraint, 16039 MVT VT) const { 16040 if (Constraint.size() == 1) { 16041 // GCC RS6000 Constraint Letters 16042 switch (Constraint[0]) { 16043 case 'b': // R1-R31 16044 if (VT == MVT::i64 && Subtarget.isPPC64()) 16045 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 16046 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 16047 case 'r': // R0-R31 16048 if (VT == MVT::i64 && Subtarget.isPPC64()) 16049 return std::make_pair(0U, &PPC::G8RCRegClass); 16050 return std::make_pair(0U, &PPC::GPRCRegClass); 16051 // 'd' and 'f' constraints are both defined to be "the floating point 16052 // registers", where one is for 32-bit and the other for 64-bit. We don't 16053 // really care overly much here so just give them all the same reg classes. 16054 case 'd': 16055 case 'f': 16056 if (Subtarget.hasSPE()) { 16057 if (VT == MVT::f32 || VT == MVT::i32) 16058 return std::make_pair(0U, &PPC::GPRCRegClass); 16059 if (VT == MVT::f64 || VT == MVT::i64) 16060 return std::make_pair(0U, &PPC::SPERCRegClass); 16061 } else { 16062 if (VT == MVT::f32 || VT == MVT::i32) 16063 return std::make_pair(0U, &PPC::F4RCRegClass); 16064 if (VT == MVT::f64 || VT == MVT::i64) 16065 return std::make_pair(0U, &PPC::F8RCRegClass); 16066 } 16067 break; 16068 case 'v': 16069 if (Subtarget.hasAltivec() && VT.isVector()) 16070 return std::make_pair(0U, &PPC::VRRCRegClass); 16071 else if (Subtarget.hasVSX()) 16072 // Scalars in Altivec registers only make sense with VSX. 16073 return std::make_pair(0U, &PPC::VFRCRegClass); 16074 break; 16075 case 'y': // crrc 16076 return std::make_pair(0U, &PPC::CRRCRegClass); 16077 } 16078 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 16079 // An individual CR bit. 16080 return std::make_pair(0U, &PPC::CRBITRCRegClass); 16081 } else if ((Constraint == "wa" || Constraint == "wd" || 16082 Constraint == "wf" || Constraint == "wi") && 16083 Subtarget.hasVSX()) { 16084 // A VSX register for either a scalar (FP) or vector. There is no 16085 // support for single precision scalars on subtargets prior to Power8. 16086 if (VT.isVector()) 16087 return std::make_pair(0U, &PPC::VSRCRegClass); 16088 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16089 return std::make_pair(0U, &PPC::VSSRCRegClass); 16090 return std::make_pair(0U, &PPC::VSFRCRegClass); 16091 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 16092 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 16093 return std::make_pair(0U, &PPC::VSSRCRegClass); 16094 else 16095 return std::make_pair(0U, &PPC::VSFRCRegClass); 16096 } else if (Constraint == "lr") { 16097 if (VT == MVT::i64) 16098 return std::make_pair(0U, &PPC::LR8RCRegClass); 16099 else 16100 return std::make_pair(0U, &PPC::LRRCRegClass); 16101 } 16102 16103 // Handle special cases of physical registers that are not properly handled 16104 // by the base class. 16105 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 16106 // If we name a VSX register, we can't defer to the base class because it 16107 // will not recognize the correct register (their names will be VSL{0-31} 16108 // and V{0-31} so they won't match). So we match them here. 16109 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 16110 int VSNum = atoi(Constraint.data() + 3); 16111 assert(VSNum >= 0 && VSNum <= 63 && 16112 "Attempted to access a vsr out of range"); 16113 if (VSNum < 32) 16114 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 16115 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 16116 } 16117 16118 // For float registers, we can't defer to the base class as it will match 16119 // the SPILLTOVSRRC class. 16120 if (Constraint.size() > 3 && Constraint[1] == 'f') { 16121 int RegNum = atoi(Constraint.data() + 2); 16122 if (RegNum > 31 || RegNum < 0) 16123 report_fatal_error("Invalid floating point register number"); 16124 if (VT == MVT::f32 || VT == MVT::i32) 16125 return Subtarget.hasSPE() 16126 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 16127 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 16128 if (VT == MVT::f64 || VT == MVT::i64) 16129 return Subtarget.hasSPE() 16130 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 16131 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 16132 } 16133 } 16134 16135 std::pair<unsigned, const TargetRegisterClass *> R = 16136 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 16137 16138 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 16139 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 16140 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 16141 // register. 16142 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 16143 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 16144 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 16145 PPC::GPRCRegClass.contains(R.first)) 16146 return std::make_pair(TRI->getMatchingSuperReg(R.first, 16147 PPC::sub_32, &PPC::G8RCRegClass), 16148 &PPC::G8RCRegClass); 16149 16150 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 16151 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 16152 R.first = PPC::CR0; 16153 R.second = &PPC::CRRCRegClass; 16154 } 16155 // FIXME: This warning should ideally be emitted in the front end. 16156 const auto &TM = getTargetMachine(); 16157 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 16158 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 16159 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 16160 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 16161 errs() << "warning: vector registers 20 to 32 are reserved in the " 16162 "default AIX AltiVec ABI and cannot be used\n"; 16163 } 16164 16165 return R; 16166 } 16167 16168 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 16169 /// vector. If it is invalid, don't add anything to Ops. 16170 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 16171 std::string &Constraint, 16172 std::vector<SDValue>&Ops, 16173 SelectionDAG &DAG) const { 16174 SDValue Result; 16175 16176 // Only support length 1 constraints. 16177 if (Constraint.length() > 1) return; 16178 16179 char Letter = Constraint[0]; 16180 switch (Letter) { 16181 default: break; 16182 case 'I': 16183 case 'J': 16184 case 'K': 16185 case 'L': 16186 case 'M': 16187 case 'N': 16188 case 'O': 16189 case 'P': { 16190 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 16191 if (!CST) return; // Must be an immediate to match. 16192 SDLoc dl(Op); 16193 int64_t Value = CST->getSExtValue(); 16194 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 16195 // numbers are printed as such. 16196 switch (Letter) { 16197 default: llvm_unreachable("Unknown constraint letter!"); 16198 case 'I': // "I" is a signed 16-bit constant. 16199 if (isInt<16>(Value)) 16200 Result = DAG.getTargetConstant(Value, dl, TCVT); 16201 break; 16202 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 16203 if (isShiftedUInt<16, 16>(Value)) 16204 Result = DAG.getTargetConstant(Value, dl, TCVT); 16205 break; 16206 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 16207 if (isShiftedInt<16, 16>(Value)) 16208 Result = DAG.getTargetConstant(Value, dl, TCVT); 16209 break; 16210 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 16211 if (isUInt<16>(Value)) 16212 Result = DAG.getTargetConstant(Value, dl, TCVT); 16213 break; 16214 case 'M': // "M" is a constant that is greater than 31. 16215 if (Value > 31) 16216 Result = DAG.getTargetConstant(Value, dl, TCVT); 16217 break; 16218 case 'N': // "N" is a positive constant that is an exact power of two. 16219 if (Value > 0 && isPowerOf2_64(Value)) 16220 Result = DAG.getTargetConstant(Value, dl, TCVT); 16221 break; 16222 case 'O': // "O" is the constant zero. 16223 if (Value == 0) 16224 Result = DAG.getTargetConstant(Value, dl, TCVT); 16225 break; 16226 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 16227 if (isInt<16>(-Value)) 16228 Result = DAG.getTargetConstant(Value, dl, TCVT); 16229 break; 16230 } 16231 break; 16232 } 16233 } 16234 16235 if (Result.getNode()) { 16236 Ops.push_back(Result); 16237 return; 16238 } 16239 16240 // Handle standard constraint letters. 16241 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 16242 } 16243 16244 // isLegalAddressingMode - Return true if the addressing mode represented 16245 // by AM is legal for this target, for a load/store of the specified type. 16246 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 16247 const AddrMode &AM, Type *Ty, 16248 unsigned AS, 16249 Instruction *I) const { 16250 // Vector type r+i form is supported since power9 as DQ form. We don't check 16251 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 16252 // imm form is preferred and the offset can be adjusted to use imm form later 16253 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 16254 // max offset to check legal addressing mode, we should be a little aggressive 16255 // to contain other offsets for that LSRUse. 16256 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 16257 return false; 16258 16259 // PPC allows a sign-extended 16-bit immediate field. 16260 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 16261 return false; 16262 16263 // No global is ever allowed as a base. 16264 if (AM.BaseGV) 16265 return false; 16266 16267 // PPC only support r+r, 16268 switch (AM.Scale) { 16269 case 0: // "r+i" or just "i", depending on HasBaseReg. 16270 break; 16271 case 1: 16272 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 16273 return false; 16274 // Otherwise we have r+r or r+i. 16275 break; 16276 case 2: 16277 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 16278 return false; 16279 // Allow 2*r as r+r. 16280 break; 16281 default: 16282 // No other scales are supported. 16283 return false; 16284 } 16285 16286 return true; 16287 } 16288 16289 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 16290 SelectionDAG &DAG) const { 16291 MachineFunction &MF = DAG.getMachineFunction(); 16292 MachineFrameInfo &MFI = MF.getFrameInfo(); 16293 MFI.setReturnAddressIsTaken(true); 16294 16295 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 16296 return SDValue(); 16297 16298 SDLoc dl(Op); 16299 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16300 16301 // Make sure the function does not optimize away the store of the RA to 16302 // the stack. 16303 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 16304 FuncInfo->setLRStoreRequired(); 16305 bool isPPC64 = Subtarget.isPPC64(); 16306 auto PtrVT = getPointerTy(MF.getDataLayout()); 16307 16308 if (Depth > 0) { 16309 // The link register (return address) is saved in the caller's frame 16310 // not the callee's stack frame. So we must get the caller's frame 16311 // address and load the return address at the LR offset from there. 16312 SDValue FrameAddr = 16313 DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16314 LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); 16315 SDValue Offset = 16316 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 16317 isPPC64 ? MVT::i64 : MVT::i32); 16318 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 16319 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 16320 MachinePointerInfo()); 16321 } 16322 16323 // Just load the return address off the stack. 16324 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 16325 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 16326 MachinePointerInfo()); 16327 } 16328 16329 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 16330 SelectionDAG &DAG) const { 16331 SDLoc dl(Op); 16332 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 16333 16334 MachineFunction &MF = DAG.getMachineFunction(); 16335 MachineFrameInfo &MFI = MF.getFrameInfo(); 16336 MFI.setFrameAddressIsTaken(true); 16337 16338 EVT PtrVT = getPointerTy(MF.getDataLayout()); 16339 bool isPPC64 = PtrVT == MVT::i64; 16340 16341 // Naked functions never have a frame pointer, and so we use r1. For all 16342 // other functions, this decision must be delayed until during PEI. 16343 unsigned FrameReg; 16344 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 16345 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 16346 else 16347 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 16348 16349 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 16350 PtrVT); 16351 while (Depth--) 16352 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16353 FrameAddr, MachinePointerInfo()); 16354 return FrameAddr; 16355 } 16356 16357 // FIXME? Maybe this could be a TableGen attribute on some registers and 16358 // this table could be generated automatically from RegInfo. 16359 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16360 const MachineFunction &MF) const { 16361 bool isPPC64 = Subtarget.isPPC64(); 16362 16363 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16364 if (!is64Bit && VT != LLT::scalar(32)) 16365 report_fatal_error("Invalid register global variable type"); 16366 16367 Register Reg = StringSwitch<Register>(RegName) 16368 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16369 .Case("r2", isPPC64 ? Register() : PPC::R2) 16370 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16371 .Default(Register()); 16372 16373 if (Reg) 16374 return Reg; 16375 report_fatal_error("Invalid register name global variable"); 16376 } 16377 16378 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16379 // 32-bit SVR4 ABI access everything as got-indirect. 16380 if (Subtarget.is32BitELFABI()) 16381 return true; 16382 16383 // AIX accesses everything indirectly through the TOC, which is similar to 16384 // the GOT. 16385 if (Subtarget.isAIXABI()) 16386 return true; 16387 16388 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16389 // If it is small or large code model, module locals are accessed 16390 // indirectly by loading their address from .toc/.got. 16391 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16392 return true; 16393 16394 // JumpTable and BlockAddress are accessed as got-indirect. 16395 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16396 return true; 16397 16398 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16399 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16400 16401 return false; 16402 } 16403 16404 bool 16405 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16406 // The PowerPC target isn't yet aware of offsets. 16407 return false; 16408 } 16409 16410 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16411 const CallInst &I, 16412 MachineFunction &MF, 16413 unsigned Intrinsic) const { 16414 switch (Intrinsic) { 16415 case Intrinsic::ppc_atomicrmw_xchg_i128: 16416 case Intrinsic::ppc_atomicrmw_add_i128: 16417 case Intrinsic::ppc_atomicrmw_sub_i128: 16418 case Intrinsic::ppc_atomicrmw_nand_i128: 16419 case Intrinsic::ppc_atomicrmw_and_i128: 16420 case Intrinsic::ppc_atomicrmw_or_i128: 16421 case Intrinsic::ppc_atomicrmw_xor_i128: 16422 case Intrinsic::ppc_cmpxchg_i128: 16423 Info.opc = ISD::INTRINSIC_W_CHAIN; 16424 Info.memVT = MVT::i128; 16425 Info.ptrVal = I.getArgOperand(0); 16426 Info.offset = 0; 16427 Info.align = Align(16); 16428 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16429 MachineMemOperand::MOVolatile; 16430 return true; 16431 case Intrinsic::ppc_atomic_load_i128: 16432 Info.opc = ISD::INTRINSIC_W_CHAIN; 16433 Info.memVT = MVT::i128; 16434 Info.ptrVal = I.getArgOperand(0); 16435 Info.offset = 0; 16436 Info.align = Align(16); 16437 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 16438 return true; 16439 case Intrinsic::ppc_atomic_store_i128: 16440 Info.opc = ISD::INTRINSIC_VOID; 16441 Info.memVT = MVT::i128; 16442 Info.ptrVal = I.getArgOperand(2); 16443 Info.offset = 0; 16444 Info.align = Align(16); 16445 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 16446 return true; 16447 case Intrinsic::ppc_altivec_lvx: 16448 case Intrinsic::ppc_altivec_lvxl: 16449 case Intrinsic::ppc_altivec_lvebx: 16450 case Intrinsic::ppc_altivec_lvehx: 16451 case Intrinsic::ppc_altivec_lvewx: 16452 case Intrinsic::ppc_vsx_lxvd2x: 16453 case Intrinsic::ppc_vsx_lxvw4x: 16454 case Intrinsic::ppc_vsx_lxvd2x_be: 16455 case Intrinsic::ppc_vsx_lxvw4x_be: 16456 case Intrinsic::ppc_vsx_lxvl: 16457 case Intrinsic::ppc_vsx_lxvll: { 16458 EVT VT; 16459 switch (Intrinsic) { 16460 case Intrinsic::ppc_altivec_lvebx: 16461 VT = MVT::i8; 16462 break; 16463 case Intrinsic::ppc_altivec_lvehx: 16464 VT = MVT::i16; 16465 break; 16466 case Intrinsic::ppc_altivec_lvewx: 16467 VT = MVT::i32; 16468 break; 16469 case Intrinsic::ppc_vsx_lxvd2x: 16470 case Intrinsic::ppc_vsx_lxvd2x_be: 16471 VT = MVT::v2f64; 16472 break; 16473 default: 16474 VT = MVT::v4i32; 16475 break; 16476 } 16477 16478 Info.opc = ISD::INTRINSIC_W_CHAIN; 16479 Info.memVT = VT; 16480 Info.ptrVal = I.getArgOperand(0); 16481 Info.offset = -VT.getStoreSize()+1; 16482 Info.size = 2*VT.getStoreSize()-1; 16483 Info.align = Align(1); 16484 Info.flags = MachineMemOperand::MOLoad; 16485 return true; 16486 } 16487 case Intrinsic::ppc_altivec_stvx: 16488 case Intrinsic::ppc_altivec_stvxl: 16489 case Intrinsic::ppc_altivec_stvebx: 16490 case Intrinsic::ppc_altivec_stvehx: 16491 case Intrinsic::ppc_altivec_stvewx: 16492 case Intrinsic::ppc_vsx_stxvd2x: 16493 case Intrinsic::ppc_vsx_stxvw4x: 16494 case Intrinsic::ppc_vsx_stxvd2x_be: 16495 case Intrinsic::ppc_vsx_stxvw4x_be: 16496 case Intrinsic::ppc_vsx_stxvl: 16497 case Intrinsic::ppc_vsx_stxvll: { 16498 EVT VT; 16499 switch (Intrinsic) { 16500 case Intrinsic::ppc_altivec_stvebx: 16501 VT = MVT::i8; 16502 break; 16503 case Intrinsic::ppc_altivec_stvehx: 16504 VT = MVT::i16; 16505 break; 16506 case Intrinsic::ppc_altivec_stvewx: 16507 VT = MVT::i32; 16508 break; 16509 case Intrinsic::ppc_vsx_stxvd2x: 16510 case Intrinsic::ppc_vsx_stxvd2x_be: 16511 VT = MVT::v2f64; 16512 break; 16513 default: 16514 VT = MVT::v4i32; 16515 break; 16516 } 16517 16518 Info.opc = ISD::INTRINSIC_VOID; 16519 Info.memVT = VT; 16520 Info.ptrVal = I.getArgOperand(1); 16521 Info.offset = -VT.getStoreSize()+1; 16522 Info.size = 2*VT.getStoreSize()-1; 16523 Info.align = Align(1); 16524 Info.flags = MachineMemOperand::MOStore; 16525 return true; 16526 } 16527 default: 16528 break; 16529 } 16530 16531 return false; 16532 } 16533 16534 /// It returns EVT::Other if the type should be determined using generic 16535 /// target-independent logic. 16536 EVT PPCTargetLowering::getOptimalMemOpType( 16537 const MemOp &Op, const AttributeList &FuncAttributes) const { 16538 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16539 // We should use Altivec/VSX loads and stores when available. For unaligned 16540 // addresses, unaligned VSX loads are only fast starting with the P8. 16541 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16542 (Op.isAligned(Align(16)) || 16543 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16544 return MVT::v4i32; 16545 } 16546 16547 if (Subtarget.isPPC64()) { 16548 return MVT::i64; 16549 } 16550 16551 return MVT::i32; 16552 } 16553 16554 /// Returns true if it is beneficial to convert a load of a constant 16555 /// to just the constant itself. 16556 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16557 Type *Ty) const { 16558 assert(Ty->isIntegerTy()); 16559 16560 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16561 return !(BitSize == 0 || BitSize > 64); 16562 } 16563 16564 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16565 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16566 return false; 16567 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16568 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16569 return NumBits1 == 64 && NumBits2 == 32; 16570 } 16571 16572 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16573 if (!VT1.isInteger() || !VT2.isInteger()) 16574 return false; 16575 unsigned NumBits1 = VT1.getSizeInBits(); 16576 unsigned NumBits2 = VT2.getSizeInBits(); 16577 return NumBits1 == 64 && NumBits2 == 32; 16578 } 16579 16580 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16581 // Generally speaking, zexts are not free, but they are free when they can be 16582 // folded with other operations. 16583 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16584 EVT MemVT = LD->getMemoryVT(); 16585 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16586 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16587 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16588 LD->getExtensionType() == ISD::ZEXTLOAD)) 16589 return true; 16590 } 16591 16592 // FIXME: Add other cases... 16593 // - 32-bit shifts with a zext to i64 16594 // - zext after ctlz, bswap, etc. 16595 // - zext after and by a constant mask 16596 16597 return TargetLowering::isZExtFree(Val, VT2); 16598 } 16599 16600 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16601 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16602 "invalid fpext types"); 16603 // Extending to float128 is not free. 16604 if (DestVT == MVT::f128) 16605 return false; 16606 return true; 16607 } 16608 16609 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16610 return isInt<16>(Imm) || isUInt<16>(Imm); 16611 } 16612 16613 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16614 return isInt<16>(Imm) || isUInt<16>(Imm); 16615 } 16616 16617 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16618 MachineMemOperand::Flags, 16619 bool *Fast) const { 16620 if (DisablePPCUnaligned) 16621 return false; 16622 16623 // PowerPC supports unaligned memory access for simple non-vector types. 16624 // Although accessing unaligned addresses is not as efficient as accessing 16625 // aligned addresses, it is generally more efficient than manual expansion, 16626 // and generally only traps for software emulation when crossing page 16627 // boundaries. 16628 16629 if (!VT.isSimple()) 16630 return false; 16631 16632 if (VT.isFloatingPoint() && !VT.isVector() && 16633 !Subtarget.allowsUnalignedFPAccess()) 16634 return false; 16635 16636 if (VT.getSimpleVT().isVector()) { 16637 if (Subtarget.hasVSX()) { 16638 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16639 VT != MVT::v4f32 && VT != MVT::v4i32) 16640 return false; 16641 } else { 16642 return false; 16643 } 16644 } 16645 16646 if (VT == MVT::ppcf128) 16647 return false; 16648 16649 if (Fast) 16650 *Fast = true; 16651 16652 return true; 16653 } 16654 16655 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16656 SDValue C) const { 16657 // Check integral scalar types. 16658 if (!VT.isScalarInteger()) 16659 return false; 16660 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16661 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16662 return false; 16663 // This transformation will generate >= 2 operations. But the following 16664 // cases will generate <= 2 instructions during ISEL. So exclude them. 16665 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16666 // HW instruction, ie. MULLI 16667 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16668 // instruction is needed than case 1, ie. MULLI and RLDICR 16669 int64_t Imm = ConstNode->getSExtValue(); 16670 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16671 Imm >>= Shift; 16672 if (isInt<16>(Imm)) 16673 return false; 16674 uint64_t UImm = static_cast<uint64_t>(Imm); 16675 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16676 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16677 return true; 16678 } 16679 return false; 16680 } 16681 16682 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16683 EVT VT) const { 16684 return isFMAFasterThanFMulAndFAdd( 16685 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16686 } 16687 16688 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16689 Type *Ty) const { 16690 switch (Ty->getScalarType()->getTypeID()) { 16691 case Type::FloatTyID: 16692 case Type::DoubleTyID: 16693 return true; 16694 case Type::FP128TyID: 16695 return Subtarget.hasP9Vector(); 16696 default: 16697 return false; 16698 } 16699 } 16700 16701 // FIXME: add more patterns which are not profitable to hoist. 16702 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16703 if (!I->hasOneUse()) 16704 return true; 16705 16706 Instruction *User = I->user_back(); 16707 assert(User && "A single use instruction with no uses."); 16708 16709 switch (I->getOpcode()) { 16710 case Instruction::FMul: { 16711 // Don't break FMA, PowerPC prefers FMA. 16712 if (User->getOpcode() != Instruction::FSub && 16713 User->getOpcode() != Instruction::FAdd) 16714 return true; 16715 16716 const TargetOptions &Options = getTargetMachine().Options; 16717 const Function *F = I->getFunction(); 16718 const DataLayout &DL = F->getParent()->getDataLayout(); 16719 Type *Ty = User->getOperand(0)->getType(); 16720 16721 return !( 16722 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16723 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16724 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16725 } 16726 case Instruction::Load: { 16727 // Don't break "store (load float*)" pattern, this pattern will be combined 16728 // to "store (load int32)" in later InstCombine pass. See function 16729 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16730 // cycles than loading a 32 bit integer. 16731 LoadInst *LI = cast<LoadInst>(I); 16732 // For the loads that combineLoadToOperationType does nothing, like 16733 // ordered load, it should be profitable to hoist them. 16734 // For swifterror load, it can only be used for pointer to pointer type, so 16735 // later type check should get rid of this case. 16736 if (!LI->isUnordered()) 16737 return true; 16738 16739 if (User->getOpcode() != Instruction::Store) 16740 return true; 16741 16742 if (I->getType()->getTypeID() != Type::FloatTyID) 16743 return true; 16744 16745 return false; 16746 } 16747 default: 16748 return true; 16749 } 16750 return true; 16751 } 16752 16753 const MCPhysReg * 16754 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16755 // LR is a callee-save register, but we must treat it as clobbered by any call 16756 // site. Hence we include LR in the scratch registers, which are in turn added 16757 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16758 // to CTR, which is used by any indirect call. 16759 static const MCPhysReg ScratchRegs[] = { 16760 PPC::X12, PPC::LR8, PPC::CTR8, 0 16761 }; 16762 16763 return ScratchRegs; 16764 } 16765 16766 Register PPCTargetLowering::getExceptionPointerRegister( 16767 const Constant *PersonalityFn) const { 16768 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16769 } 16770 16771 Register PPCTargetLowering::getExceptionSelectorRegister( 16772 const Constant *PersonalityFn) const { 16773 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16774 } 16775 16776 bool 16777 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16778 EVT VT , unsigned DefinedValues) const { 16779 if (VT == MVT::v2i64) 16780 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16781 16782 if (Subtarget.hasVSX()) 16783 return true; 16784 16785 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16786 } 16787 16788 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16789 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16790 return TargetLowering::getSchedulingPreference(N); 16791 16792 return Sched::ILP; 16793 } 16794 16795 // Create a fast isel object. 16796 FastISel * 16797 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16798 const TargetLibraryInfo *LibInfo) const { 16799 return PPC::createFastISel(FuncInfo, LibInfo); 16800 } 16801 16802 // 'Inverted' means the FMA opcode after negating one multiplicand. 16803 // For example, (fma -a b c) = (fnmsub a b c) 16804 static unsigned invertFMAOpcode(unsigned Opc) { 16805 switch (Opc) { 16806 default: 16807 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16808 case ISD::FMA: 16809 return PPCISD::FNMSUB; 16810 case PPCISD::FNMSUB: 16811 return ISD::FMA; 16812 } 16813 } 16814 16815 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16816 bool LegalOps, bool OptForSize, 16817 NegatibleCost &Cost, 16818 unsigned Depth) const { 16819 if (Depth > SelectionDAG::MaxRecursionDepth) 16820 return SDValue(); 16821 16822 unsigned Opc = Op.getOpcode(); 16823 EVT VT = Op.getValueType(); 16824 SDNodeFlags Flags = Op.getNode()->getFlags(); 16825 16826 switch (Opc) { 16827 case PPCISD::FNMSUB: 16828 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16829 break; 16830 16831 const TargetOptions &Options = getTargetMachine().Options; 16832 SDValue N0 = Op.getOperand(0); 16833 SDValue N1 = Op.getOperand(1); 16834 SDValue N2 = Op.getOperand(2); 16835 SDLoc Loc(Op); 16836 16837 NegatibleCost N2Cost = NegatibleCost::Expensive; 16838 SDValue NegN2 = 16839 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16840 16841 if (!NegN2) 16842 return SDValue(); 16843 16844 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16845 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16846 // These transformations may change sign of zeroes. For example, 16847 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16848 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16849 // Try and choose the cheaper one to negate. 16850 NegatibleCost N0Cost = NegatibleCost::Expensive; 16851 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16852 N0Cost, Depth + 1); 16853 16854 NegatibleCost N1Cost = NegatibleCost::Expensive; 16855 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16856 N1Cost, Depth + 1); 16857 16858 if (NegN0 && N0Cost <= N1Cost) { 16859 Cost = std::min(N0Cost, N2Cost); 16860 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16861 } else if (NegN1) { 16862 Cost = std::min(N1Cost, N2Cost); 16863 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16864 } 16865 } 16866 16867 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16868 if (isOperationLegal(ISD::FMA, VT)) { 16869 Cost = N2Cost; 16870 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16871 } 16872 16873 break; 16874 } 16875 16876 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16877 Cost, Depth); 16878 } 16879 16880 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16881 bool PPCTargetLowering::useLoadStackGuardNode() const { 16882 if (!Subtarget.isTargetLinux()) 16883 return TargetLowering::useLoadStackGuardNode(); 16884 return true; 16885 } 16886 16887 // Override to disable global variable loading on Linux and insert AIX canary 16888 // word declaration. 16889 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16890 if (Subtarget.isAIXABI()) { 16891 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16892 Type::getInt8PtrTy(M.getContext())); 16893 return; 16894 } 16895 if (!Subtarget.isTargetLinux()) 16896 return TargetLowering::insertSSPDeclarations(M); 16897 } 16898 16899 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16900 if (Subtarget.isAIXABI()) 16901 return M.getGlobalVariable(AIXSSPCanaryWordName); 16902 return TargetLowering::getSDagStackGuard(M); 16903 } 16904 16905 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16906 bool ForCodeSize) const { 16907 if (!VT.isSimple() || !Subtarget.hasVSX()) 16908 return false; 16909 16910 switch(VT.getSimpleVT().SimpleTy) { 16911 default: 16912 // For FP types that are currently not supported by PPC backend, return 16913 // false. Examples: f16, f80. 16914 return false; 16915 case MVT::f32: 16916 case MVT::f64: 16917 if (Subtarget.hasPrefixInstrs()) { 16918 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16919 return true; 16920 } 16921 LLVM_FALLTHROUGH; 16922 case MVT::ppcf128: 16923 return Imm.isPosZero(); 16924 } 16925 } 16926 16927 // For vector shift operation op, fold 16928 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16929 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16930 SelectionDAG &DAG) { 16931 SDValue N0 = N->getOperand(0); 16932 SDValue N1 = N->getOperand(1); 16933 EVT VT = N0.getValueType(); 16934 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16935 unsigned Opcode = N->getOpcode(); 16936 unsigned TargetOpcode; 16937 16938 switch (Opcode) { 16939 default: 16940 llvm_unreachable("Unexpected shift operation"); 16941 case ISD::SHL: 16942 TargetOpcode = PPCISD::SHL; 16943 break; 16944 case ISD::SRL: 16945 TargetOpcode = PPCISD::SRL; 16946 break; 16947 case ISD::SRA: 16948 TargetOpcode = PPCISD::SRA; 16949 break; 16950 } 16951 16952 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16953 N1->getOpcode() == ISD::AND) 16954 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16955 if (Mask->getZExtValue() == OpSizeInBits - 1) 16956 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16957 16958 return SDValue(); 16959 } 16960 16961 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16962 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16963 return Value; 16964 16965 SDValue N0 = N->getOperand(0); 16966 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16967 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16968 N0.getOpcode() != ISD::SIGN_EXTEND || 16969 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16970 N->getValueType(0) != MVT::i64) 16971 return SDValue(); 16972 16973 // We can't save an operation here if the value is already extended, and 16974 // the existing shift is easier to combine. 16975 SDValue ExtsSrc = N0.getOperand(0); 16976 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16977 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16978 return SDValue(); 16979 16980 SDLoc DL(N0); 16981 SDValue ShiftBy = SDValue(CN1, 0); 16982 // We want the shift amount to be i32 on the extswli, but the shift could 16983 // have an i64. 16984 if (ShiftBy.getValueType() == MVT::i64) 16985 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16986 16987 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16988 ShiftBy); 16989 } 16990 16991 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16992 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16993 return Value; 16994 16995 return SDValue(); 16996 } 16997 16998 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16999 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 17000 return Value; 17001 17002 return SDValue(); 17003 } 17004 17005 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 17006 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 17007 // When C is zero, the equation (addi Z, -C) can be simplified to Z 17008 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 17009 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 17010 const PPCSubtarget &Subtarget) { 17011 if (!Subtarget.isPPC64()) 17012 return SDValue(); 17013 17014 SDValue LHS = N->getOperand(0); 17015 SDValue RHS = N->getOperand(1); 17016 17017 auto isZextOfCompareWithConstant = [](SDValue Op) { 17018 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 17019 Op.getValueType() != MVT::i64) 17020 return false; 17021 17022 SDValue Cmp = Op.getOperand(0); 17023 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 17024 Cmp.getOperand(0).getValueType() != MVT::i64) 17025 return false; 17026 17027 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 17028 int64_t NegConstant = 0 - Constant->getSExtValue(); 17029 // Due to the limitations of the addi instruction, 17030 // -C is required to be [-32768, 32767]. 17031 return isInt<16>(NegConstant); 17032 } 17033 17034 return false; 17035 }; 17036 17037 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 17038 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 17039 17040 // If there is a pattern, canonicalize a zext operand to the RHS. 17041 if (LHSHasPattern && !RHSHasPattern) 17042 std::swap(LHS, RHS); 17043 else if (!LHSHasPattern && !RHSHasPattern) 17044 return SDValue(); 17045 17046 SDLoc DL(N); 17047 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 17048 SDValue Cmp = RHS.getOperand(0); 17049 SDValue Z = Cmp.getOperand(0); 17050 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 17051 int64_t NegConstant = 0 - Constant->getSExtValue(); 17052 17053 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 17054 default: break; 17055 case ISD::SETNE: { 17056 // when C == 0 17057 // --> addze X, (addic Z, -1).carry 17058 // / 17059 // add X, (zext(setne Z, C))-- 17060 // \ when -32768 <= -C <= 32767 && C != 0 17061 // --> addze X, (addic (addi Z, -C), -1).carry 17062 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17063 DAG.getConstant(NegConstant, DL, MVT::i64)); 17064 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17065 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17066 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 17067 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17068 SDValue(Addc.getNode(), 1)); 17069 } 17070 case ISD::SETEQ: { 17071 // when C == 0 17072 // --> addze X, (subfic Z, 0).carry 17073 // / 17074 // add X, (zext(sete Z, C))-- 17075 // \ when -32768 <= -C <= 32767 && C != 0 17076 // --> addze X, (subfic (addi Z, -C), 0).carry 17077 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 17078 DAG.getConstant(NegConstant, DL, MVT::i64)); 17079 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 17080 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 17081 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 17082 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 17083 SDValue(Subc.getNode(), 1)); 17084 } 17085 } 17086 17087 return SDValue(); 17088 } 17089 17090 // Transform 17091 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 17092 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 17093 // In this case both C1 and C2 must be known constants. 17094 // C1+C2 must fit into a 34 bit signed integer. 17095 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 17096 const PPCSubtarget &Subtarget) { 17097 if (!Subtarget.isUsingPCRelativeCalls()) 17098 return SDValue(); 17099 17100 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 17101 // If we find that node try to cast the Global Address and the Constant. 17102 SDValue LHS = N->getOperand(0); 17103 SDValue RHS = N->getOperand(1); 17104 17105 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17106 std::swap(LHS, RHS); 17107 17108 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 17109 return SDValue(); 17110 17111 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 17112 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 17113 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 17114 17115 // Check that both casts succeeded. 17116 if (!GSDN || !ConstNode) 17117 return SDValue(); 17118 17119 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 17120 SDLoc DL(GSDN); 17121 17122 // The signed int offset needs to fit in 34 bits. 17123 if (!isInt<34>(NewOffset)) 17124 return SDValue(); 17125 17126 // The new global address is a copy of the old global address except 17127 // that it has the updated Offset. 17128 SDValue GA = 17129 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 17130 NewOffset, GSDN->getTargetFlags()); 17131 SDValue MatPCRel = 17132 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 17133 return MatPCRel; 17134 } 17135 17136 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 17137 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 17138 return Value; 17139 17140 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 17141 return Value; 17142 17143 return SDValue(); 17144 } 17145 17146 // Detect TRUNCATE operations on bitcasts of float128 values. 17147 // What we are looking for here is the situtation where we extract a subset 17148 // of bits from a 128 bit float. 17149 // This can be of two forms: 17150 // 1) BITCAST of f128 feeding TRUNCATE 17151 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 17152 // The reason this is required is because we do not have a legal i128 type 17153 // and so we want to prevent having to store the f128 and then reload part 17154 // of it. 17155 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 17156 DAGCombinerInfo &DCI) const { 17157 // If we are using CRBits then try that first. 17158 if (Subtarget.useCRBits()) { 17159 // Check if CRBits did anything and return that if it did. 17160 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 17161 return CRTruncValue; 17162 } 17163 17164 SDLoc dl(N); 17165 SDValue Op0 = N->getOperand(0); 17166 17167 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 17168 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 17169 EVT VT = N->getValueType(0); 17170 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17171 return SDValue(); 17172 SDValue Sub = Op0.getOperand(0); 17173 if (Sub.getOpcode() == ISD::SUB) { 17174 SDValue SubOp0 = Sub.getOperand(0); 17175 SDValue SubOp1 = Sub.getOperand(1); 17176 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 17177 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 17178 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 17179 SubOp1.getOperand(0), 17180 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 17181 } 17182 } 17183 } 17184 17185 // Looking for a truncate of i128 to i64. 17186 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 17187 return SDValue(); 17188 17189 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 17190 17191 // SRL feeding TRUNCATE. 17192 if (Op0.getOpcode() == ISD::SRL) { 17193 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 17194 // The right shift has to be by 64 bits. 17195 if (!ConstNode || ConstNode->getZExtValue() != 64) 17196 return SDValue(); 17197 17198 // Switch the element number to extract. 17199 EltToExtract = EltToExtract ? 0 : 1; 17200 // Update Op0 past the SRL. 17201 Op0 = Op0.getOperand(0); 17202 } 17203 17204 // BITCAST feeding a TRUNCATE possibly via SRL. 17205 if (Op0.getOpcode() == ISD::BITCAST && 17206 Op0.getValueType() == MVT::i128 && 17207 Op0.getOperand(0).getValueType() == MVT::f128) { 17208 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 17209 return DCI.DAG.getNode( 17210 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 17211 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 17212 } 17213 return SDValue(); 17214 } 17215 17216 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 17217 SelectionDAG &DAG = DCI.DAG; 17218 17219 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 17220 if (!ConstOpOrElement) 17221 return SDValue(); 17222 17223 // An imul is usually smaller than the alternative sequence for legal type. 17224 if (DAG.getMachineFunction().getFunction().hasMinSize() && 17225 isOperationLegal(ISD::MUL, N->getValueType(0))) 17226 return SDValue(); 17227 17228 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 17229 switch (this->Subtarget.getCPUDirective()) { 17230 default: 17231 // TODO: enhance the condition for subtarget before pwr8 17232 return false; 17233 case PPC::DIR_PWR8: 17234 // type mul add shl 17235 // scalar 4 1 1 17236 // vector 7 2 2 17237 return true; 17238 case PPC::DIR_PWR9: 17239 case PPC::DIR_PWR10: 17240 case PPC::DIR_PWR_FUTURE: 17241 // type mul add shl 17242 // scalar 5 2 2 17243 // vector 7 2 2 17244 17245 // The cycle RATIO of related operations are showed as a table above. 17246 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 17247 // scalar and vector type. For 2 instrs patterns, add/sub + shl 17248 // are 4, it is always profitable; but for 3 instrs patterns 17249 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 17250 // So we should only do it for vector type. 17251 return IsAddOne && IsNeg ? VT.isVector() : true; 17252 } 17253 }; 17254 17255 EVT VT = N->getValueType(0); 17256 SDLoc DL(N); 17257 17258 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 17259 bool IsNeg = MulAmt.isNegative(); 17260 APInt MulAmtAbs = MulAmt.abs(); 17261 17262 if ((MulAmtAbs - 1).isPowerOf2()) { 17263 // (mul x, 2^N + 1) => (add (shl x, N), x) 17264 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 17265 17266 if (!IsProfitable(IsNeg, true, VT)) 17267 return SDValue(); 17268 17269 SDValue Op0 = N->getOperand(0); 17270 SDValue Op1 = 17271 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17272 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 17273 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 17274 17275 if (!IsNeg) 17276 return Res; 17277 17278 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 17279 } else if ((MulAmtAbs + 1).isPowerOf2()) { 17280 // (mul x, 2^N - 1) => (sub (shl x, N), x) 17281 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 17282 17283 if (!IsProfitable(IsNeg, false, VT)) 17284 return SDValue(); 17285 17286 SDValue Op0 = N->getOperand(0); 17287 SDValue Op1 = 17288 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 17289 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 17290 17291 if (!IsNeg) 17292 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 17293 else 17294 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 17295 17296 } else { 17297 return SDValue(); 17298 } 17299 } 17300 17301 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 17302 // in combiner since we need to check SD flags and other subtarget features. 17303 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 17304 DAGCombinerInfo &DCI) const { 17305 SDValue N0 = N->getOperand(0); 17306 SDValue N1 = N->getOperand(1); 17307 SDValue N2 = N->getOperand(2); 17308 SDNodeFlags Flags = N->getFlags(); 17309 EVT VT = N->getValueType(0); 17310 SelectionDAG &DAG = DCI.DAG; 17311 const TargetOptions &Options = getTargetMachine().Options; 17312 unsigned Opc = N->getOpcode(); 17313 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 17314 bool LegalOps = !DCI.isBeforeLegalizeOps(); 17315 SDLoc Loc(N); 17316 17317 if (!isOperationLegal(ISD::FMA, VT)) 17318 return SDValue(); 17319 17320 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 17321 // since (fnmsub a b c)=-0 while c-ab=+0. 17322 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 17323 return SDValue(); 17324 17325 // (fma (fneg a) b c) => (fnmsub a b c) 17326 // (fnmsub (fneg a) b c) => (fma a b c) 17327 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 17328 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 17329 17330 // (fma a (fneg b) c) => (fnmsub a b c) 17331 // (fnmsub a (fneg b) c) => (fma a b c) 17332 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 17333 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 17334 17335 return SDValue(); 17336 } 17337 17338 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 17339 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 17340 if (!Subtarget.is64BitELFABI()) 17341 return false; 17342 17343 // If not a tail call then no need to proceed. 17344 if (!CI->isTailCall()) 17345 return false; 17346 17347 // If sibling calls have been disabled and tail-calls aren't guaranteed 17348 // there is no reason to duplicate. 17349 auto &TM = getTargetMachine(); 17350 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 17351 return false; 17352 17353 // Can't tail call a function called indirectly, or if it has variadic args. 17354 const Function *Callee = CI->getCalledFunction(); 17355 if (!Callee || Callee->isVarArg()) 17356 return false; 17357 17358 // Make sure the callee and caller calling conventions are eligible for tco. 17359 const Function *Caller = CI->getParent()->getParent(); 17360 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 17361 CI->getCallingConv())) 17362 return false; 17363 17364 // If the function is local then we have a good chance at tail-calling it 17365 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 17366 } 17367 17368 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17369 if (!Subtarget.hasVSX()) 17370 return false; 17371 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17372 return true; 17373 return VT == MVT::f32 || VT == MVT::f64 || 17374 VT == MVT::v4f32 || VT == MVT::v2f64; 17375 } 17376 17377 bool PPCTargetLowering:: 17378 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17379 const Value *Mask = AndI.getOperand(1); 17380 // If the mask is suitable for andi. or andis. we should sink the and. 17381 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17382 // Can't handle constants wider than 64-bits. 17383 if (CI->getBitWidth() > 64) 17384 return false; 17385 int64_t ConstVal = CI->getZExtValue(); 17386 return isUInt<16>(ConstVal) || 17387 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17388 } 17389 17390 // For non-constant masks, we can always use the record-form and. 17391 return true; 17392 } 17393 17394 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17395 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17396 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17397 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17398 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17399 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17400 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17401 assert(Subtarget.hasP9Altivec() && 17402 "Only combine this when P9 altivec supported!"); 17403 EVT VT = N->getValueType(0); 17404 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17405 return SDValue(); 17406 17407 SelectionDAG &DAG = DCI.DAG; 17408 SDLoc dl(N); 17409 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17410 // Even for signed integers, if it's known to be positive (as signed 17411 // integer) due to zero-extended inputs. 17412 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17413 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17414 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17415 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17416 (SubOpcd1 == ISD::ZERO_EXTEND || 17417 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17418 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17419 N->getOperand(0)->getOperand(0), 17420 N->getOperand(0)->getOperand(1), 17421 DAG.getTargetConstant(0, dl, MVT::i32)); 17422 } 17423 17424 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17425 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17426 N->getOperand(0).hasOneUse()) { 17427 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17428 N->getOperand(0)->getOperand(0), 17429 N->getOperand(0)->getOperand(1), 17430 DAG.getTargetConstant(1, dl, MVT::i32)); 17431 } 17432 } 17433 17434 return SDValue(); 17435 } 17436 17437 // For type v4i32/v8ii16/v16i8, transform 17438 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17439 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17440 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17441 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17442 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17443 DAGCombinerInfo &DCI) const { 17444 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17445 assert(Subtarget.hasP9Altivec() && 17446 "Only combine this when P9 altivec supported!"); 17447 17448 SelectionDAG &DAG = DCI.DAG; 17449 SDLoc dl(N); 17450 SDValue Cond = N->getOperand(0); 17451 SDValue TrueOpnd = N->getOperand(1); 17452 SDValue FalseOpnd = N->getOperand(2); 17453 EVT VT = N->getOperand(1).getValueType(); 17454 17455 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17456 FalseOpnd.getOpcode() != ISD::SUB) 17457 return SDValue(); 17458 17459 // ABSD only available for type v4i32/v8i16/v16i8 17460 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17461 return SDValue(); 17462 17463 // At least to save one more dependent computation 17464 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17465 return SDValue(); 17466 17467 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17468 17469 // Can only handle unsigned comparison here 17470 switch (CC) { 17471 default: 17472 return SDValue(); 17473 case ISD::SETUGT: 17474 case ISD::SETUGE: 17475 break; 17476 case ISD::SETULT: 17477 case ISD::SETULE: 17478 std::swap(TrueOpnd, FalseOpnd); 17479 break; 17480 } 17481 17482 SDValue CmpOpnd1 = Cond.getOperand(0); 17483 SDValue CmpOpnd2 = Cond.getOperand(1); 17484 17485 // SETCC CmpOpnd1 CmpOpnd2 cond 17486 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17487 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17488 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17489 TrueOpnd.getOperand(1) == CmpOpnd2 && 17490 FalseOpnd.getOperand(0) == CmpOpnd2 && 17491 FalseOpnd.getOperand(1) == CmpOpnd1) { 17492 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17493 CmpOpnd1, CmpOpnd2, 17494 DAG.getTargetConstant(0, dl, MVT::i32)); 17495 } 17496 17497 return SDValue(); 17498 } 17499 17500 /// getAddrModeForFlags - Based on the set of address flags, select the most 17501 /// optimal instruction format to match by. 17502 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17503 // This is not a node we should be handling here. 17504 if (Flags == PPC::MOF_None) 17505 return PPC::AM_None; 17506 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17507 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17508 if ((Flags & FlagSet) == FlagSet) 17509 return PPC::AM_DForm; 17510 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17511 if ((Flags & FlagSet) == FlagSet) 17512 return PPC::AM_DSForm; 17513 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17514 if ((Flags & FlagSet) == FlagSet) 17515 return PPC::AM_DQForm; 17516 for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) 17517 if ((Flags & FlagSet) == FlagSet) 17518 return PPC::AM_PrefixDForm; 17519 // If no other forms are selected, return an X-Form as it is the most 17520 // general addressing mode. 17521 return PPC::AM_XForm; 17522 } 17523 17524 /// Set alignment flags based on whether or not the Frame Index is aligned. 17525 /// Utilized when computing flags for address computation when selecting 17526 /// load and store instructions. 17527 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17528 SelectionDAG &DAG) { 17529 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17530 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17531 if (!FI) 17532 return; 17533 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17534 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17535 // If this is (add $FI, $S16Imm), the alignment flags are already set 17536 // based on the immediate. We just need to clear the alignment flags 17537 // if the FI alignment is weaker. 17538 if ((FrameIndexAlign % 4) != 0) 17539 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17540 if ((FrameIndexAlign % 16) != 0) 17541 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17542 // If the address is a plain FrameIndex, set alignment flags based on 17543 // FI alignment. 17544 if (!IsAdd) { 17545 if ((FrameIndexAlign % 4) == 0) 17546 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17547 if ((FrameIndexAlign % 16) == 0) 17548 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17549 } 17550 } 17551 17552 /// Given a node, compute flags that are used for address computation when 17553 /// selecting load and store instructions. The flags computed are stored in 17554 /// FlagSet. This function takes into account whether the node is a constant, 17555 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17556 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17557 SelectionDAG &DAG) { 17558 // Set the alignment flags for the node depending on if the node is 17559 // 4-byte or 16-byte aligned. 17560 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17561 if ((Imm & 0x3) == 0) 17562 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17563 if ((Imm & 0xf) == 0) 17564 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17565 }; 17566 17567 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17568 // All 32-bit constants can be computed as LIS + Disp. 17569 const APInt &ConstImm = CN->getAPIntValue(); 17570 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17571 FlagSet |= PPC::MOF_AddrIsSImm32; 17572 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17573 setAlignFlagsForFI(N, FlagSet, DAG); 17574 } 17575 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17576 FlagSet |= PPC::MOF_RPlusSImm34; 17577 else // Let constant materialization handle large constants. 17578 FlagSet |= PPC::MOF_NotAddNorCst; 17579 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17580 // This address can be represented as an addition of: 17581 // - Register + Imm16 (possibly a multiple of 4/16) 17582 // - Register + Imm34 17583 // - Register + PPCISD::Lo 17584 // - Register + Register 17585 // In any case, we won't have to match this as Base + Zero. 17586 SDValue RHS = N.getOperand(1); 17587 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17588 const APInt &ConstImm = CN->getAPIntValue(); 17589 if (ConstImm.isSignedIntN(16)) { 17590 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17591 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17592 setAlignFlagsForFI(N, FlagSet, DAG); 17593 } 17594 if (ConstImm.isSignedIntN(34)) 17595 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17596 else 17597 FlagSet |= PPC::MOF_RPlusR; // Register. 17598 } else if (RHS.getOpcode() == PPCISD::Lo && 17599 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17600 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17601 else 17602 FlagSet |= PPC::MOF_RPlusR; 17603 } else { // The address computation is not a constant or an addition. 17604 setAlignFlagsForFI(N, FlagSet, DAG); 17605 FlagSet |= PPC::MOF_NotAddNorCst; 17606 } 17607 } 17608 17609 static bool isPCRelNode(SDValue N) { 17610 return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || 17611 isValidPCRelNode<ConstantPoolSDNode>(N) || 17612 isValidPCRelNode<GlobalAddressSDNode>(N) || 17613 isValidPCRelNode<JumpTableSDNode>(N) || 17614 isValidPCRelNode<BlockAddressSDNode>(N)); 17615 } 17616 17617 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17618 /// the address flags of the load/store instruction that is to be matched. 17619 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17620 SelectionDAG &DAG) const { 17621 unsigned FlagSet = PPC::MOF_None; 17622 17623 // Compute subtarget flags. 17624 if (!Subtarget.hasP9Vector()) 17625 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17626 else { 17627 FlagSet |= PPC::MOF_SubtargetP9; 17628 if (Subtarget.hasPrefixInstrs()) 17629 FlagSet |= PPC::MOF_SubtargetP10; 17630 } 17631 if (Subtarget.hasSPE()) 17632 FlagSet |= PPC::MOF_SubtargetSPE; 17633 17634 // Check if we have a PCRel node and return early. 17635 if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) 17636 return FlagSet; 17637 17638 // If the node is the paired load/store intrinsics, compute flags for 17639 // address computation and return early. 17640 unsigned ParentOp = Parent->getOpcode(); 17641 if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || 17642 (ParentOp == ISD::INTRINSIC_VOID))) { 17643 unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); 17644 if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { 17645 SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) 17646 ? Parent->getOperand(2) 17647 : Parent->getOperand(3); 17648 computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); 17649 FlagSet |= PPC::MOF_Vector; 17650 return FlagSet; 17651 } 17652 } 17653 17654 // Mark this as something we don't want to handle here if it is atomic 17655 // or pre-increment instruction. 17656 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17657 if (LSB->isIndexed()) 17658 return PPC::MOF_None; 17659 17660 // Compute in-memory type flags. This is based on if there are scalars, 17661 // floats or vectors. 17662 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17663 assert(MN && "Parent should be a MemSDNode!"); 17664 EVT MemVT = MN->getMemoryVT(); 17665 unsigned Size = MemVT.getSizeInBits(); 17666 if (MemVT.isScalarInteger()) { 17667 assert(Size <= 128 && 17668 "Not expecting scalar integers larger than 16 bytes!"); 17669 if (Size < 32) 17670 FlagSet |= PPC::MOF_SubWordInt; 17671 else if (Size == 32) 17672 FlagSet |= PPC::MOF_WordInt; 17673 else 17674 FlagSet |= PPC::MOF_DoubleWordInt; 17675 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17676 if (Size == 128) 17677 FlagSet |= PPC::MOF_Vector; 17678 else if (Size == 256) { 17679 assert(Subtarget.pairedVectorMemops() && 17680 "256-bit vectors are only available when paired vector memops is " 17681 "enabled!"); 17682 FlagSet |= PPC::MOF_Vector; 17683 } else 17684 llvm_unreachable("Not expecting illegal vectors!"); 17685 } else { // Floating point type: can be scalar, f128 or vector types. 17686 if (Size == 32 || Size == 64) 17687 FlagSet |= PPC::MOF_ScalarFloat; 17688 else if (MemVT == MVT::f128 || MemVT.isVector()) 17689 FlagSet |= PPC::MOF_Vector; 17690 else 17691 llvm_unreachable("Not expecting illegal scalar floats!"); 17692 } 17693 17694 // Compute flags for address computation. 17695 computeFlagsForAddressComputation(N, FlagSet, DAG); 17696 17697 // Compute type extension flags. 17698 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17699 switch (LN->getExtensionType()) { 17700 case ISD::SEXTLOAD: 17701 FlagSet |= PPC::MOF_SExt; 17702 break; 17703 case ISD::EXTLOAD: 17704 case ISD::ZEXTLOAD: 17705 FlagSet |= PPC::MOF_ZExt; 17706 break; 17707 case ISD::NON_EXTLOAD: 17708 FlagSet |= PPC::MOF_NoExt; 17709 break; 17710 } 17711 } else 17712 FlagSet |= PPC::MOF_NoExt; 17713 17714 // For integers, no extension is the same as zero extension. 17715 // We set the extension mode to zero extension so we don't have 17716 // to add separate entries in AddrModesMap for loads and stores. 17717 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17718 FlagSet |= PPC::MOF_ZExt; 17719 FlagSet &= ~PPC::MOF_NoExt; 17720 } 17721 17722 // If we don't have prefixed instructions, 34-bit constants should be 17723 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17724 bool IsNonP1034BitConst = 17725 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17726 FlagSet) == PPC::MOF_RPlusSImm34; 17727 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17728 IsNonP1034BitConst) 17729 FlagSet |= PPC::MOF_NotAddNorCst; 17730 17731 return FlagSet; 17732 } 17733 17734 /// SelectForceXFormMode - Given the specified address, force it to be 17735 /// represented as an indexed [r+r] operation (an XForm instruction). 17736 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17737 SDValue &Base, 17738 SelectionDAG &DAG) const { 17739 17740 PPC::AddrMode Mode = PPC::AM_XForm; 17741 int16_t ForceXFormImm = 0; 17742 if (provablyDisjointOr(DAG, N) && 17743 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17744 Disp = N.getOperand(0); 17745 Base = N.getOperand(1); 17746 return Mode; 17747 } 17748 17749 // If the address is the result of an add, we will utilize the fact that the 17750 // address calculation includes an implicit add. However, we can reduce 17751 // register pressure if we do not materialize a constant just for use as the 17752 // index register. We only get rid of the add if it is not an add of a 17753 // value and a 16-bit signed constant and both have a single use. 17754 if (N.getOpcode() == ISD::ADD && 17755 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17756 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17757 Disp = N.getOperand(0); 17758 Base = N.getOperand(1); 17759 return Mode; 17760 } 17761 17762 // Otherwise, use R0 as the base register. 17763 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17764 N.getValueType()); 17765 Base = N; 17766 17767 return Mode; 17768 } 17769 17770 bool PPCTargetLowering::splitValueIntoRegisterParts( 17771 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 17772 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 17773 EVT ValVT = Val.getValueType(); 17774 // If we are splitting a scalar integer into f64 parts (i.e. so they 17775 // can be placed into VFRC registers), we need to zero extend and 17776 // bitcast the values. This will ensure the value is placed into a 17777 // VSR using direct moves or stack operations as needed. 17778 if (PartVT == MVT::f64 && 17779 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { 17780 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 17781 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); 17782 Parts[0] = Val; 17783 return true; 17784 } 17785 return false; 17786 } 17787 17788 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, 17789 SelectionDAG &DAG) const { 17790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17791 TargetLowering::CallLoweringInfo CLI(DAG); 17792 EVT RetVT = Op.getValueType(); 17793 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 17794 SDValue Callee = 17795 DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); 17796 bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); 17797 TargetLowering::ArgListTy Args; 17798 TargetLowering::ArgListEntry Entry; 17799 for (const SDValue &N : Op->op_values()) { 17800 EVT ArgVT = N.getValueType(); 17801 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 17802 Entry.Node = N; 17803 Entry.Ty = ArgTy; 17804 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); 17805 Entry.IsZExt = !Entry.IsSExt; 17806 Args.push_back(Entry); 17807 } 17808 17809 SDValue InChain = DAG.getEntryNode(); 17810 SDValue TCChain = InChain; 17811 const Function &F = DAG.getMachineFunction().getFunction(); 17812 bool isTailCall = 17813 TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && 17814 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 17815 if (isTailCall) 17816 InChain = TCChain; 17817 CLI.setDebugLoc(SDLoc(Op)) 17818 .setChain(InChain) 17819 .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) 17820 .setTailCall(isTailCall) 17821 .setSExtResult(SignExtend) 17822 .setZExtResult(!SignExtend) 17823 .setIsPostTypeLegalization(true); 17824 return TLI.LowerCallTo(CLI).first; 17825 } 17826 17827 SDValue PPCTargetLowering::lowerLibCallBasedOnType( 17828 const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, 17829 SelectionDAG &DAG) const { 17830 if (Op.getValueType() == MVT::f32) 17831 return lowerToLibCall(LibCallFloatName, Op, DAG); 17832 17833 if (Op.getValueType() == MVT::f64) 17834 return lowerToLibCall(LibCallDoubleName, Op, DAG); 17835 17836 return SDValue(); 17837 } 17838 17839 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { 17840 SDNodeFlags Flags = Op.getNode()->getFlags(); 17841 return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && 17842 Flags.hasNoNaNs() && Flags.hasNoInfs(); 17843 } 17844 17845 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { 17846 return Op.getNode()->getFlags().hasApproximateFuncs(); 17847 } 17848 17849 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, 17850 const char *LibCallFloatName, 17851 const char *LibCallDoubleNameFinite, 17852 const char *LibCallFloatNameFinite, 17853 SDValue Op, 17854 SelectionDAG &DAG) const { 17855 if (!isLowringToMASSSafe(Op)) 17856 return SDValue(); 17857 17858 if (!isLowringToMASSFiniteSafe(Op)) 17859 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, 17860 DAG); 17861 17862 return lowerLibCallBasedOnType(LibCallFloatNameFinite, 17863 LibCallDoubleNameFinite, Op, DAG); 17864 } 17865 17866 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { 17867 return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", 17868 "__xl_powf_finite", Op, DAG); 17869 } 17870 17871 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { 17872 return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", 17873 "__xl_sinf_finite", Op, DAG); 17874 } 17875 17876 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { 17877 return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", 17878 "__xl_cosf_finite", Op, DAG); 17879 } 17880 17881 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { 17882 return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", 17883 "__xl_logf_finite", Op, DAG); 17884 } 17885 17886 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { 17887 return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", 17888 "__xl_log10f_finite", Op, DAG); 17889 } 17890 17891 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { 17892 return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", 17893 "__xl_expf_finite", Op, DAG); 17894 } 17895 17896 // If we happen to match to an aligned D-Form, check if the Frame Index is 17897 // adequately aligned. If it is not, reset the mode to match to X-Form. 17898 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17899 PPC::AddrMode &Mode) { 17900 if (!isa<FrameIndexSDNode>(N)) 17901 return; 17902 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17903 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17904 Mode = PPC::AM_XForm; 17905 } 17906 17907 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17908 /// compute the address flags of the node, get the optimal address mode based 17909 /// on the flags, and set the Base and Disp based on the address mode. 17910 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17911 SDValue N, SDValue &Disp, 17912 SDValue &Base, 17913 SelectionDAG &DAG, 17914 MaybeAlign Align) const { 17915 SDLoc DL(Parent); 17916 17917 // Compute the address flags. 17918 unsigned Flags = computeMOFlags(Parent, N, DAG); 17919 17920 // Get the optimal address mode based on the Flags. 17921 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17922 17923 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17924 // Select an X-Form load if it is not. 17925 setXFormForUnalignedFI(N, Flags, Mode); 17926 17927 // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. 17928 if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { 17929 assert(Subtarget.isUsingPCRelativeCalls() && 17930 "Must be using PC-Relative calls when a valid PC-Relative node is " 17931 "present!"); 17932 Mode = PPC::AM_PCRel; 17933 } 17934 17935 // Set Base and Disp accordingly depending on the address mode. 17936 switch (Mode) { 17937 case PPC::AM_DForm: 17938 case PPC::AM_DSForm: 17939 case PPC::AM_DQForm: { 17940 // This is a register plus a 16-bit immediate. The base will be the 17941 // register and the displacement will be the immediate unless it 17942 // isn't sufficiently aligned. 17943 if (Flags & PPC::MOF_RPlusSImm16) { 17944 SDValue Op0 = N.getOperand(0); 17945 SDValue Op1 = N.getOperand(1); 17946 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17947 if (!Align || isAligned(*Align, Imm)) { 17948 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17949 Base = Op0; 17950 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17951 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17952 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17953 } 17954 break; 17955 } 17956 } 17957 // This is a register plus the @lo relocation. The base is the register 17958 // and the displacement is the global address. 17959 else if (Flags & PPC::MOF_RPlusLo) { 17960 Disp = N.getOperand(1).getOperand(0); // The global address. 17961 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17962 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17963 Disp.getOpcode() == ISD::TargetConstantPool || 17964 Disp.getOpcode() == ISD::TargetJumpTable); 17965 Base = N.getOperand(0); 17966 break; 17967 } 17968 // This is a constant address at most 32 bits. The base will be 17969 // zero or load-immediate-shifted and the displacement will be 17970 // the low 16 bits of the address. 17971 else if (Flags & PPC::MOF_AddrIsSImm32) { 17972 auto *CN = cast<ConstantSDNode>(N); 17973 EVT CNType = CN->getValueType(0); 17974 uint64_t CNImm = CN->getZExtValue(); 17975 // If this address fits entirely in a 16-bit sext immediate field, codegen 17976 // this as "d, 0". 17977 int16_t Imm; 17978 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17979 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17980 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17981 CNType); 17982 break; 17983 } 17984 // Handle 32-bit sext immediate with LIS + Addr mode. 17985 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17986 (!Align || isAligned(*Align, CNImm))) { 17987 int32_t Addr = (int32_t)CNImm; 17988 // Otherwise, break this down into LIS + Disp. 17989 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17990 Base = 17991 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17992 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17993 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17994 break; 17995 } 17996 } 17997 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17998 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17999 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 18000 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18001 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 18002 } else 18003 Base = N; 18004 break; 18005 } 18006 case PPC::AM_PrefixDForm: { 18007 int64_t Imm34 = 0; 18008 unsigned Opcode = N.getOpcode(); 18009 if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && 18010 (isIntS34Immediate(N.getOperand(1), Imm34))) { 18011 // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. 18012 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18013 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 18014 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 18015 else 18016 Base = N.getOperand(0); 18017 } else if (isIntS34Immediate(N, Imm34)) { 18018 // The address is a 34-bit signed immediate. 18019 Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); 18020 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 18021 } 18022 break; 18023 } 18024 case PPC::AM_PCRel: { 18025 // When selecting PC-Relative instructions, "Base" is not utilized as 18026 // we select the address as [PC+imm]. 18027 Disp = N; 18028 break; 18029 } 18030 case PPC::AM_None: 18031 break; 18032 default: { // By default, X-Form is always available to be selected. 18033 // When a frame index is not aligned, we also match by XForm. 18034 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 18035 Base = FI ? N : N.getOperand(1); 18036 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 18037 N.getValueType()) 18038 : N.getOperand(0); 18039 break; 18040 } 18041 } 18042 return Mode; 18043 } 18044 18045 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 18046 bool Return, 18047 bool IsVarArg) const { 18048 switch (CC) { 18049 case CallingConv::Cold: 18050 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 18051 default: 18052 return CC_PPC64_ELF_FIS; 18053 } 18054 } 18055 18056 TargetLowering::AtomicExpansionKind 18057 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 18058 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 18059 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18060 return AtomicExpansionKind::MaskedIntrinsic; 18061 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 18062 } 18063 18064 TargetLowering::AtomicExpansionKind 18065 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 18066 unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); 18067 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 18068 return AtomicExpansionKind::MaskedIntrinsic; 18069 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 18070 } 18071 18072 static Intrinsic::ID 18073 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 18074 switch (BinOp) { 18075 default: 18076 llvm_unreachable("Unexpected AtomicRMW BinOp"); 18077 case AtomicRMWInst::Xchg: 18078 return Intrinsic::ppc_atomicrmw_xchg_i128; 18079 case AtomicRMWInst::Add: 18080 return Intrinsic::ppc_atomicrmw_add_i128; 18081 case AtomicRMWInst::Sub: 18082 return Intrinsic::ppc_atomicrmw_sub_i128; 18083 case AtomicRMWInst::And: 18084 return Intrinsic::ppc_atomicrmw_and_i128; 18085 case AtomicRMWInst::Or: 18086 return Intrinsic::ppc_atomicrmw_or_i128; 18087 case AtomicRMWInst::Xor: 18088 return Intrinsic::ppc_atomicrmw_xor_i128; 18089 case AtomicRMWInst::Nand: 18090 return Intrinsic::ppc_atomicrmw_nand_i128; 18091 } 18092 } 18093 18094 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 18095 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 18096 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 18097 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18098 "Only support quadword now"); 18099 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18100 Type *ValTy = Incr->getType(); 18101 assert(ValTy->getPrimitiveSizeInBits() == 128); 18102 Function *RMW = Intrinsic::getDeclaration( 18103 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 18104 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18105 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 18106 Value *IncrHi = 18107 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 18108 Value *Addr = 18109 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18110 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 18111 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18112 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18113 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18114 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18115 return Builder.CreateOr( 18116 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18117 } 18118 18119 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 18120 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 18121 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 18122 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 18123 "Only support quadword now"); 18124 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 18125 Type *ValTy = CmpVal->getType(); 18126 assert(ValTy->getPrimitiveSizeInBits() == 128); 18127 Function *IntCmpXchg = 18128 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 18129 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 18130 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 18131 Value *CmpHi = 18132 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 18133 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 18134 Value *NewHi = 18135 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 18136 Value *Addr = 18137 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 18138 emitLeadingFence(Builder, CI, Ord); 18139 Value *LoHi = 18140 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 18141 emitTrailingFence(Builder, CI, Ord); 18142 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 18143 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 18144 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 18145 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 18146 return Builder.CreateOr( 18147 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 18148 } 18149