1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPCCallingConv.h" 17 #include "PPCCCState.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCPerfectShuffle.h" 20 #include "PPCTargetMachine.h" 21 #include "PPCTargetObjectFile.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/Format.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include <list> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "ppc-lowering" 50 51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 53 54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 56 57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 59 60 static cl::opt<bool> DisableSCO("disable-ppc-sco", 61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 62 63 STATISTIC(NumTailCalls, "Number of tail calls"); 64 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 65 66 // FIXME: Remove this once the bug has been fixed! 67 extern cl::opt<bool> ANDIGlueBug; 68 69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 70 const PPCSubtarget &STI) 71 : TargetLowering(TM), Subtarget(STI) { 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 bool isPPC64 = Subtarget.isPPC64(); 79 setMinStackArgumentAlignment(isPPC64 ? 8:4); 80 81 // Set up the register classes. 82 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 83 if (!Subtarget.useSoftFloat()) { 84 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 85 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 86 } 87 88 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 89 for (MVT VT : MVT::integer_valuetypes()) { 90 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 91 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 92 } 93 94 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 95 96 // PowerPC has pre-inc load and store's. 97 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 102 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 103 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 104 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 105 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 106 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 107 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 108 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 109 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 110 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 111 112 if (Subtarget.useCRBits()) { 113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 114 115 if (isPPC64 || Subtarget.hasFPCVT()) { 116 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 117 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 118 isPPC64 ? MVT::i64 : MVT::i32); 119 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 120 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 121 isPPC64 ? MVT::i64 : MVT::i32); 122 } else { 123 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 124 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 125 } 126 127 // PowerPC does not support direct load / store of condition registers 128 setOperationAction(ISD::LOAD, MVT::i1, Custom); 129 setOperationAction(ISD::STORE, MVT::i1, Custom); 130 131 // FIXME: Remove this once the ANDI glue bug is fixed: 132 if (ANDIGlueBug) 133 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 134 135 for (MVT VT : MVT::integer_valuetypes()) { 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 138 setTruncStoreAction(VT, MVT::i1, Expand); 139 } 140 141 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 142 } 143 144 // This is used in the ppcf128->int sequence. Note it has different semantics 145 // from FP_ROUND: that rounds to nearest, this rounds to zero. 146 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 147 148 // We do not currently implement these libm ops for PowerPC. 149 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 150 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 151 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 152 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 153 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 154 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 155 156 // PowerPC has no SREM/UREM instructions 157 setOperationAction(ISD::SREM, MVT::i32, Expand); 158 setOperationAction(ISD::UREM, MVT::i32, Expand); 159 setOperationAction(ISD::SREM, MVT::i64, Expand); 160 setOperationAction(ISD::UREM, MVT::i64, Expand); 161 162 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 163 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 164 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 165 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 166 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 167 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 168 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 169 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 170 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 171 172 // We don't support sin/cos/sqrt/fmod/pow 173 setOperationAction(ISD::FSIN , MVT::f64, Expand); 174 setOperationAction(ISD::FCOS , MVT::f64, Expand); 175 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 176 setOperationAction(ISD::FREM , MVT::f64, Expand); 177 setOperationAction(ISD::FPOW , MVT::f64, Expand); 178 setOperationAction(ISD::FMA , MVT::f64, Legal); 179 setOperationAction(ISD::FSIN , MVT::f32, Expand); 180 setOperationAction(ISD::FCOS , MVT::f32, Expand); 181 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 182 setOperationAction(ISD::FREM , MVT::f32, Expand); 183 setOperationAction(ISD::FPOW , MVT::f32, Expand); 184 setOperationAction(ISD::FMA , MVT::f32, Legal); 185 186 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 187 188 // If we're enabling GP optimizations, use hardware square root 189 if (!Subtarget.hasFSQRT() && 190 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 191 Subtarget.hasFRE())) 192 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 193 194 if (!Subtarget.hasFSQRT() && 195 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 196 Subtarget.hasFRES())) 197 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 198 199 if (Subtarget.hasFCPSGN()) { 200 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 201 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 202 } else { 203 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 204 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 205 } 206 207 if (Subtarget.hasFPRND()) { 208 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 209 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 210 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 211 setOperationAction(ISD::FROUND, MVT::f64, Legal); 212 213 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 214 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 215 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 216 setOperationAction(ISD::FROUND, MVT::f32, Legal); 217 } 218 219 // PowerPC does not have BSWAP, CTPOP or CTTZ 220 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 221 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 222 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 223 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 224 225 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 226 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 227 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 228 } else { 229 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 230 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 231 } 232 233 // PowerPC does not have ROTR 234 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 235 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 236 237 if (!Subtarget.useCRBits()) { 238 // PowerPC does not have Select 239 setOperationAction(ISD::SELECT, MVT::i32, Expand); 240 setOperationAction(ISD::SELECT, MVT::i64, Expand); 241 setOperationAction(ISD::SELECT, MVT::f32, Expand); 242 setOperationAction(ISD::SELECT, MVT::f64, Expand); 243 } 244 245 // PowerPC wants to turn select_cc of FP into fsel when possible. 246 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 247 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 248 249 // PowerPC wants to optimize integer setcc a bit 250 if (!Subtarget.useCRBits()) 251 setOperationAction(ISD::SETCC, MVT::i32, Custom); 252 253 // PowerPC does not have BRCOND which requires SetCC 254 if (!Subtarget.useCRBits()) 255 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 256 257 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 258 259 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 260 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 261 262 // PowerPC does not have [U|S]INT_TO_FP 263 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 264 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 265 266 if (Subtarget.hasDirectMove() && isPPC64) { 267 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 268 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 269 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 270 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 271 } else { 272 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 273 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 274 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 275 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 276 } 277 278 // We cannot sextinreg(i1). Expand to shifts. 279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 280 281 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 282 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 283 // support continuation, user-level threading, and etc.. As a result, no 284 // other SjLj exception interfaces are implemented and please don't build 285 // your own exception handling based on them. 286 // LLVM/Clang supports zero-cost DWARF exception handling. 287 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 288 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 289 290 // We want to legalize GlobalAddress and ConstantPool nodes into the 291 // appropriate instructions to materialize the address. 292 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 293 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 294 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 295 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 296 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 297 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 298 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 299 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 300 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 301 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 302 303 // TRAP is legal. 304 setOperationAction(ISD::TRAP, MVT::Other, Legal); 305 306 // TRAMPOLINE is custom lowered. 307 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 308 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 309 310 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 311 setOperationAction(ISD::VASTART , MVT::Other, Custom); 312 313 if (Subtarget.isSVR4ABI()) { 314 if (isPPC64) { 315 // VAARG always uses double-word chunks, so promote anything smaller. 316 setOperationAction(ISD::VAARG, MVT::i1, Promote); 317 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64); 318 setOperationAction(ISD::VAARG, MVT::i8, Promote); 319 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64); 320 setOperationAction(ISD::VAARG, MVT::i16, Promote); 321 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64); 322 setOperationAction(ISD::VAARG, MVT::i32, Promote); 323 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64); 324 setOperationAction(ISD::VAARG, MVT::Other, Expand); 325 } else { 326 // VAARG is custom lowered with the 32-bit SVR4 ABI. 327 setOperationAction(ISD::VAARG, MVT::Other, Custom); 328 setOperationAction(ISD::VAARG, MVT::i64, Custom); 329 } 330 } else 331 setOperationAction(ISD::VAARG, MVT::Other, Expand); 332 333 if (Subtarget.isSVR4ABI() && !isPPC64) 334 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 335 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 336 else 337 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 338 339 // Use the default implementation. 340 setOperationAction(ISD::VAEND , MVT::Other, Expand); 341 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 342 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 343 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 344 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 345 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 346 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 347 348 // We want to custom lower some of our intrinsics. 349 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 350 351 // To handle counter-based loop conditions. 352 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 353 354 // Comparisons that require checking two conditions. 355 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 356 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 357 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 358 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 359 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 360 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 361 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 362 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 363 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 364 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 365 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 366 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 367 368 if (Subtarget.has64BitSupport()) { 369 // They also have instructions for converting between i64 and fp. 370 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 371 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 372 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 373 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 374 // This is just the low 32 bits of a (signed) fp->i64 conversion. 375 // We cannot do this with Promote because i64 is not a legal type. 376 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 377 378 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 379 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 380 } else { 381 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 382 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 383 } 384 385 // With the instructions enabled under FPCVT, we can do everything. 386 if (Subtarget.hasFPCVT()) { 387 if (Subtarget.has64BitSupport()) { 388 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 389 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 390 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 391 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 392 } 393 394 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 395 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 396 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 397 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 398 } 399 400 if (Subtarget.use64BitRegs()) { 401 // 64-bit PowerPC implementations can support i64 types directly 402 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 403 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 404 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 405 // 64-bit PowerPC wants to expand i128 shifts itself. 406 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 407 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 408 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 409 } else { 410 // 32-bit PowerPC wants to expand i64 shifts itself. 411 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 412 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 413 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 414 } 415 416 if (Subtarget.hasAltivec()) { 417 // First set operation action for all vector types to expand. Then we 418 // will selectively turn on ones that can be effectively codegen'd. 419 for (MVT VT : MVT::vector_valuetypes()) { 420 // add/sub are legal for all supported vector VT's. 421 setOperationAction(ISD::ADD, VT, Legal); 422 setOperationAction(ISD::SUB, VT, Legal); 423 424 // Vector instructions introduced in P8 425 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 426 setOperationAction(ISD::CTPOP, VT, Legal); 427 setOperationAction(ISD::CTLZ, VT, Legal); 428 } 429 else { 430 setOperationAction(ISD::CTPOP, VT, Expand); 431 setOperationAction(ISD::CTLZ, VT, Expand); 432 } 433 434 // We promote all shuffles to v16i8. 435 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 436 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 437 438 // We promote all non-typed operations to v4i32. 439 setOperationAction(ISD::AND , VT, Promote); 440 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 441 setOperationAction(ISD::OR , VT, Promote); 442 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 443 setOperationAction(ISD::XOR , VT, Promote); 444 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 445 setOperationAction(ISD::LOAD , VT, Promote); 446 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 447 setOperationAction(ISD::SELECT, VT, Promote); 448 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 449 setOperationAction(ISD::SELECT_CC, VT, Promote); 450 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 451 setOperationAction(ISD::STORE, VT, Promote); 452 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 453 454 // No other operations are legal. 455 setOperationAction(ISD::MUL , VT, Expand); 456 setOperationAction(ISD::SDIV, VT, Expand); 457 setOperationAction(ISD::SREM, VT, Expand); 458 setOperationAction(ISD::UDIV, VT, Expand); 459 setOperationAction(ISD::UREM, VT, Expand); 460 setOperationAction(ISD::FDIV, VT, Expand); 461 setOperationAction(ISD::FREM, VT, Expand); 462 setOperationAction(ISD::FNEG, VT, Expand); 463 setOperationAction(ISD::FSQRT, VT, Expand); 464 setOperationAction(ISD::FLOG, VT, Expand); 465 setOperationAction(ISD::FLOG10, VT, Expand); 466 setOperationAction(ISD::FLOG2, VT, Expand); 467 setOperationAction(ISD::FEXP, VT, Expand); 468 setOperationAction(ISD::FEXP2, VT, Expand); 469 setOperationAction(ISD::FSIN, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FABS, VT, Expand); 472 setOperationAction(ISD::FPOWI, VT, Expand); 473 setOperationAction(ISD::FFLOOR, VT, Expand); 474 setOperationAction(ISD::FCEIL, VT, Expand); 475 setOperationAction(ISD::FTRUNC, VT, Expand); 476 setOperationAction(ISD::FRINT, VT, Expand); 477 setOperationAction(ISD::FNEARBYINT, VT, Expand); 478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 479 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 480 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 481 setOperationAction(ISD::MULHU, VT, Expand); 482 setOperationAction(ISD::MULHS, VT, Expand); 483 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 484 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 485 setOperationAction(ISD::UDIVREM, VT, Expand); 486 setOperationAction(ISD::SDIVREM, VT, Expand); 487 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 488 setOperationAction(ISD::FPOW, VT, Expand); 489 setOperationAction(ISD::BSWAP, VT, Expand); 490 setOperationAction(ISD::CTTZ, VT, Expand); 491 setOperationAction(ISD::VSELECT, VT, Expand); 492 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 493 setOperationAction(ISD::ROTL, VT, Expand); 494 setOperationAction(ISD::ROTR, VT, Expand); 495 496 for (MVT InnerVT : MVT::vector_valuetypes()) { 497 setTruncStoreAction(VT, InnerVT, Expand); 498 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 499 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 500 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 501 } 502 } 503 504 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 505 // with merges, splats, etc. 506 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 507 508 setOperationAction(ISD::AND , MVT::v4i32, Legal); 509 setOperationAction(ISD::OR , MVT::v4i32, Legal); 510 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 511 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 512 setOperationAction(ISD::SELECT, MVT::v4i32, 513 Subtarget.useCRBits() ? Legal : Expand); 514 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 515 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 516 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 517 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 518 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 519 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 520 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 521 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 523 524 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 525 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 526 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 527 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 528 529 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 530 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 531 532 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 533 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 534 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 535 } 536 537 if (Subtarget.hasP8Altivec()) 538 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 539 else 540 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 541 542 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 543 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 544 545 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 546 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 547 548 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 549 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 550 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 551 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 552 553 // Altivec does not contain unordered floating-point compare instructions 554 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 555 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 556 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 557 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 558 559 if (Subtarget.hasVSX()) { 560 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 561 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 562 if (Subtarget.hasP8Vector()) { 563 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 564 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 565 } 566 if (Subtarget.hasDirectMove() && isPPC64) { 567 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 568 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 569 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 570 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 571 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 572 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 573 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 574 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 575 } 576 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 577 578 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 579 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 580 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 581 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 582 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 583 584 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 585 586 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 587 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 588 589 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 590 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 591 592 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); 593 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal); 594 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); 595 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 596 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); 597 598 // Share the Altivec comparison restrictions. 599 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 600 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 601 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 602 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 603 604 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 605 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 606 607 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 608 609 if (Subtarget.hasP8Vector()) 610 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 611 612 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 613 614 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 615 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 616 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 617 618 if (Subtarget.hasP8Altivec()) { 619 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 620 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 621 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 622 623 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 624 } 625 else { 626 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 627 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 628 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 629 630 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 631 632 // VSX v2i64 only supports non-arithmetic operations. 633 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 634 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 635 } 636 637 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 638 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 639 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 640 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 641 642 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 643 644 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 645 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 646 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 647 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 648 649 // Vector operation legalization checks the result type of 650 // SIGN_EXTEND_INREG, overall legalization checks the inner type. 651 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 652 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 653 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); 654 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); 655 656 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 657 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 658 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 659 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 660 661 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 662 } 663 664 if (Subtarget.hasP8Altivec()) { 665 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 666 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 667 } 668 } 669 670 if (Subtarget.hasQPX()) { 671 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 672 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 673 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 674 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 675 676 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 677 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 678 679 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 680 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 681 682 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 683 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 684 685 if (!Subtarget.useCRBits()) 686 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 687 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 688 689 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 690 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 691 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 692 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 693 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 694 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 695 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 696 697 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 698 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 699 700 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 701 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand); 702 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 703 704 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 705 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 706 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 707 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 708 setOperationAction(ISD::FPOWI , MVT::v4f64, Expand); 709 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 710 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 711 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 712 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 713 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 714 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 715 716 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 717 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 718 719 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 720 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 721 722 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 723 724 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 725 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 726 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 727 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 728 729 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 730 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 731 732 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 733 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 734 735 if (!Subtarget.useCRBits()) 736 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 737 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 738 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 740 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 741 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 742 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 743 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 744 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 745 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 746 747 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 748 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 749 750 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 751 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 752 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 753 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 754 setOperationAction(ISD::FPOWI , MVT::v4f32, Expand); 755 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 756 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 757 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 758 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 759 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 760 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 761 762 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 763 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 764 765 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 766 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 767 768 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 769 770 setOperationAction(ISD::AND , MVT::v4i1, Legal); 771 setOperationAction(ISD::OR , MVT::v4i1, Legal); 772 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 773 774 if (!Subtarget.useCRBits()) 775 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 776 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 777 778 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 779 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 780 781 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 782 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 783 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 784 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 785 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 786 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 787 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 788 789 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 790 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 791 792 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 793 794 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 795 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 796 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 797 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 798 799 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 800 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 801 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 802 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 803 804 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 805 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 806 807 // These need to set FE_INEXACT, and so cannot be vectorized here. 808 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 809 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 810 811 if (TM.Options.UnsafeFPMath) { 812 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 813 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 814 815 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 816 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 817 } else { 818 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 819 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 820 821 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 822 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 823 } 824 } 825 826 if (Subtarget.has64BitSupport()) 827 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 828 829 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 830 831 if (!isPPC64) { 832 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 833 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 834 } 835 836 setBooleanContents(ZeroOrOneBooleanContent); 837 838 if (Subtarget.hasAltivec()) { 839 // Altivec instructions set fields to all zeros or all ones. 840 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 841 } 842 843 if (!isPPC64) { 844 // These libcalls are not available in 32-bit. 845 setLibcallName(RTLIB::SHL_I128, nullptr); 846 setLibcallName(RTLIB::SRL_I128, nullptr); 847 setLibcallName(RTLIB::SRA_I128, nullptr); 848 } 849 850 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 851 852 // We have target-specific dag combine patterns for the following nodes: 853 setTargetDAGCombine(ISD::SINT_TO_FP); 854 if (Subtarget.hasFPCVT()) 855 setTargetDAGCombine(ISD::UINT_TO_FP); 856 setTargetDAGCombine(ISD::LOAD); 857 setTargetDAGCombine(ISD::STORE); 858 setTargetDAGCombine(ISD::BR_CC); 859 if (Subtarget.useCRBits()) 860 setTargetDAGCombine(ISD::BRCOND); 861 setTargetDAGCombine(ISD::BSWAP); 862 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 863 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 864 setTargetDAGCombine(ISD::INTRINSIC_VOID); 865 866 setTargetDAGCombine(ISD::SIGN_EXTEND); 867 setTargetDAGCombine(ISD::ZERO_EXTEND); 868 setTargetDAGCombine(ISD::ANY_EXTEND); 869 870 if (Subtarget.useCRBits()) { 871 setTargetDAGCombine(ISD::TRUNCATE); 872 setTargetDAGCombine(ISD::SETCC); 873 setTargetDAGCombine(ISD::SELECT_CC); 874 } 875 876 // Use reciprocal estimates. 877 if (TM.Options.UnsafeFPMath) { 878 setTargetDAGCombine(ISD::FDIV); 879 setTargetDAGCombine(ISD::FSQRT); 880 } 881 882 // Darwin long double math library functions have $LDBL128 appended. 883 if (Subtarget.isDarwin()) { 884 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 885 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 886 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 887 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 888 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 889 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 890 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 891 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 892 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 893 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 894 } 895 896 // With 32 condition bits, we don't need to sink (and duplicate) compares 897 // aggressively in CodeGenPrep. 898 if (Subtarget.useCRBits()) { 899 setHasMultipleConditionRegisters(); 900 setJumpIsExpensive(); 901 } 902 903 setMinFunctionAlignment(2); 904 if (Subtarget.isDarwin()) 905 setPrefFunctionAlignment(4); 906 907 switch (Subtarget.getDarwinDirective()) { 908 default: break; 909 case PPC::DIR_970: 910 case PPC::DIR_A2: 911 case PPC::DIR_E500mc: 912 case PPC::DIR_E5500: 913 case PPC::DIR_PWR4: 914 case PPC::DIR_PWR5: 915 case PPC::DIR_PWR5X: 916 case PPC::DIR_PWR6: 917 case PPC::DIR_PWR6X: 918 case PPC::DIR_PWR7: 919 case PPC::DIR_PWR8: 920 case PPC::DIR_PWR9: 921 setPrefFunctionAlignment(4); 922 setPrefLoopAlignment(4); 923 break; 924 } 925 926 if (Subtarget.enableMachineScheduler()) 927 setSchedulingPreference(Sched::Source); 928 else 929 setSchedulingPreference(Sched::Hybrid); 930 931 computeRegisterProperties(STI.getRegisterInfo()); 932 933 // The Freescale cores do better with aggressive inlining of memcpy and 934 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 935 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc || 936 Subtarget.getDarwinDirective() == PPC::DIR_E5500) { 937 MaxStoresPerMemset = 32; 938 MaxStoresPerMemsetOptSize = 16; 939 MaxStoresPerMemcpy = 32; 940 MaxStoresPerMemcpyOptSize = 8; 941 MaxStoresPerMemmove = 32; 942 MaxStoresPerMemmoveOptSize = 8; 943 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) { 944 // The A2 also benefits from (very) aggressive inlining of memcpy and 945 // friends. The overhead of a the function call, even when warm, can be 946 // over one hundred cycles. 947 MaxStoresPerMemset = 128; 948 MaxStoresPerMemcpy = 128; 949 MaxStoresPerMemmove = 128; 950 } 951 } 952 953 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 954 /// the desired ByVal argument alignment. 955 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 956 unsigned MaxMaxAlign) { 957 if (MaxAlign == MaxMaxAlign) 958 return; 959 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 960 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 961 MaxAlign = 32; 962 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 963 MaxAlign = 16; 964 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 965 unsigned EltAlign = 0; 966 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 967 if (EltAlign > MaxAlign) 968 MaxAlign = EltAlign; 969 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 970 for (auto *EltTy : STy->elements()) { 971 unsigned EltAlign = 0; 972 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 973 if (EltAlign > MaxAlign) 974 MaxAlign = EltAlign; 975 if (MaxAlign == MaxMaxAlign) 976 break; 977 } 978 } 979 } 980 981 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 982 /// function arguments in the caller parameter area. 983 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 984 const DataLayout &DL) const { 985 // Darwin passes everything on 4 byte boundary. 986 if (Subtarget.isDarwin()) 987 return 4; 988 989 // 16byte and wider vectors are passed on 16byte boundary. 990 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 991 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 992 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 993 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 994 return Align; 995 } 996 997 bool PPCTargetLowering::useSoftFloat() const { 998 return Subtarget.useSoftFloat(); 999 } 1000 1001 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1002 switch ((PPCISD::NodeType)Opcode) { 1003 case PPCISD::FIRST_NUMBER: break; 1004 case PPCISD::FSEL: return "PPCISD::FSEL"; 1005 case PPCISD::FCFID: return "PPCISD::FCFID"; 1006 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1007 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1008 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1009 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1010 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1011 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1012 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1013 case PPCISD::FRE: return "PPCISD::FRE"; 1014 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1015 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1016 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1017 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1018 case PPCISD::VPERM: return "PPCISD::VPERM"; 1019 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1020 case PPCISD::CMPB: return "PPCISD::CMPB"; 1021 case PPCISD::Hi: return "PPCISD::Hi"; 1022 case PPCISD::Lo: return "PPCISD::Lo"; 1023 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1024 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1025 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1026 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1027 case PPCISD::SRL: return "PPCISD::SRL"; 1028 case PPCISD::SRA: return "PPCISD::SRA"; 1029 case PPCISD::SHL: return "PPCISD::SHL"; 1030 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1031 case PPCISD::CALL: return "PPCISD::CALL"; 1032 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1033 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1034 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1035 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1036 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1037 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1038 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1039 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1040 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1041 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1042 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1043 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1044 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT"; 1045 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT"; 1046 case PPCISD::VCMP: return "PPCISD::VCMP"; 1047 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1048 case PPCISD::LBRX: return "PPCISD::LBRX"; 1049 case PPCISD::STBRX: return "PPCISD::STBRX"; 1050 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1051 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1052 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1053 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1054 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1055 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1056 case PPCISD::BDZ: return "PPCISD::BDZ"; 1057 case PPCISD::MFFS: return "PPCISD::MFFS"; 1058 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1059 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1060 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1061 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1062 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1063 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1064 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1065 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1066 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1067 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1068 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1069 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1070 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1071 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1072 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1073 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1074 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1075 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1076 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1077 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1078 case PPCISD::SC: return "PPCISD::SC"; 1079 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1080 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1081 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1082 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1083 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1084 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1085 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1086 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1087 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1088 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1089 } 1090 return nullptr; 1091 } 1092 1093 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1094 EVT VT) const { 1095 if (!VT.isVector()) 1096 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1097 1098 if (Subtarget.hasQPX()) 1099 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1100 1101 return VT.changeVectorElementTypeToInteger(); 1102 } 1103 1104 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1105 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1106 return true; 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // Node matching predicates, for use by the tblgen matching code. 1111 //===----------------------------------------------------------------------===// 1112 1113 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1114 static bool isFloatingPointZero(SDValue Op) { 1115 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1116 return CFP->getValueAPF().isZero(); 1117 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1118 // Maybe this has already been legalized into the constant pool? 1119 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1120 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1121 return CFP->getValueAPF().isZero(); 1122 } 1123 return false; 1124 } 1125 1126 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1127 /// true if Op is undef or if it matches the specified value. 1128 static bool isConstantOrUndef(int Op, int Val) { 1129 return Op < 0 || Op == Val; 1130 } 1131 1132 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1133 /// VPKUHUM instruction. 1134 /// The ShuffleKind distinguishes between big-endian operations with 1135 /// two different inputs (0), either-endian operations with two identical 1136 /// inputs (1), and little-endian operations with two different inputs (2). 1137 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1138 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1139 SelectionDAG &DAG) { 1140 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1141 if (ShuffleKind == 0) { 1142 if (IsLE) 1143 return false; 1144 for (unsigned i = 0; i != 16; ++i) 1145 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1146 return false; 1147 } else if (ShuffleKind == 2) { 1148 if (!IsLE) 1149 return false; 1150 for (unsigned i = 0; i != 16; ++i) 1151 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1152 return false; 1153 } else if (ShuffleKind == 1) { 1154 unsigned j = IsLE ? 0 : 1; 1155 for (unsigned i = 0; i != 8; ++i) 1156 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1157 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1158 return false; 1159 } 1160 return true; 1161 } 1162 1163 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1164 /// VPKUWUM instruction. 1165 /// The ShuffleKind distinguishes between big-endian operations with 1166 /// two different inputs (0), either-endian operations with two identical 1167 /// inputs (1), and little-endian operations with two different inputs (2). 1168 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1169 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1170 SelectionDAG &DAG) { 1171 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1172 if (ShuffleKind == 0) { 1173 if (IsLE) 1174 return false; 1175 for (unsigned i = 0; i != 16; i += 2) 1176 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1177 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1178 return false; 1179 } else if (ShuffleKind == 2) { 1180 if (!IsLE) 1181 return false; 1182 for (unsigned i = 0; i != 16; i += 2) 1183 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1184 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1185 return false; 1186 } else if (ShuffleKind == 1) { 1187 unsigned j = IsLE ? 0 : 2; 1188 for (unsigned i = 0; i != 8; i += 2) 1189 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1190 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1191 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1192 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1193 return false; 1194 } 1195 return true; 1196 } 1197 1198 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1199 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1200 /// current subtarget. 1201 /// 1202 /// The ShuffleKind distinguishes between big-endian operations with 1203 /// two different inputs (0), either-endian operations with two identical 1204 /// inputs (1), and little-endian operations with two different inputs (2). 1205 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1206 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1207 SelectionDAG &DAG) { 1208 const PPCSubtarget& Subtarget = 1209 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1210 if (!Subtarget.hasP8Vector()) 1211 return false; 1212 1213 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1214 if (ShuffleKind == 0) { 1215 if (IsLE) 1216 return false; 1217 for (unsigned i = 0; i != 16; i += 4) 1218 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1219 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1220 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1221 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1222 return false; 1223 } else if (ShuffleKind == 2) { 1224 if (!IsLE) 1225 return false; 1226 for (unsigned i = 0; i != 16; i += 4) 1227 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1228 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1229 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1230 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1231 return false; 1232 } else if (ShuffleKind == 1) { 1233 unsigned j = IsLE ? 0 : 4; 1234 for (unsigned i = 0; i != 8; i += 4) 1235 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1236 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1237 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1238 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1239 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1240 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1241 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1242 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1243 return false; 1244 } 1245 return true; 1246 } 1247 1248 /// isVMerge - Common function, used to match vmrg* shuffles. 1249 /// 1250 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1251 unsigned LHSStart, unsigned RHSStart) { 1252 if (N->getValueType(0) != MVT::v16i8) 1253 return false; 1254 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1255 "Unsupported merge size!"); 1256 1257 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1258 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1259 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1260 LHSStart+j+i*UnitSize) || 1261 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1262 RHSStart+j+i*UnitSize)) 1263 return false; 1264 } 1265 return true; 1266 } 1267 1268 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1269 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1270 /// The ShuffleKind distinguishes between big-endian merges with two 1271 /// different inputs (0), either-endian merges with two identical inputs (1), 1272 /// and little-endian merges with two different inputs (2). For the latter, 1273 /// the input operands are swapped (see PPCInstrAltivec.td). 1274 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1275 unsigned ShuffleKind, SelectionDAG &DAG) { 1276 if (DAG.getDataLayout().isLittleEndian()) { 1277 if (ShuffleKind == 1) // unary 1278 return isVMerge(N, UnitSize, 0, 0); 1279 else if (ShuffleKind == 2) // swapped 1280 return isVMerge(N, UnitSize, 0, 16); 1281 else 1282 return false; 1283 } else { 1284 if (ShuffleKind == 1) // unary 1285 return isVMerge(N, UnitSize, 8, 8); 1286 else if (ShuffleKind == 0) // normal 1287 return isVMerge(N, UnitSize, 8, 24); 1288 else 1289 return false; 1290 } 1291 } 1292 1293 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1294 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1295 /// The ShuffleKind distinguishes between big-endian merges with two 1296 /// different inputs (0), either-endian merges with two identical inputs (1), 1297 /// and little-endian merges with two different inputs (2). For the latter, 1298 /// the input operands are swapped (see PPCInstrAltivec.td). 1299 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1300 unsigned ShuffleKind, SelectionDAG &DAG) { 1301 if (DAG.getDataLayout().isLittleEndian()) { 1302 if (ShuffleKind == 1) // unary 1303 return isVMerge(N, UnitSize, 8, 8); 1304 else if (ShuffleKind == 2) // swapped 1305 return isVMerge(N, UnitSize, 8, 24); 1306 else 1307 return false; 1308 } else { 1309 if (ShuffleKind == 1) // unary 1310 return isVMerge(N, UnitSize, 0, 0); 1311 else if (ShuffleKind == 0) // normal 1312 return isVMerge(N, UnitSize, 0, 16); 1313 else 1314 return false; 1315 } 1316 } 1317 1318 /** 1319 * \brief Common function used to match vmrgew and vmrgow shuffles 1320 * 1321 * The indexOffset determines whether to look for even or odd words in 1322 * the shuffle mask. This is based on the of the endianness of the target 1323 * machine. 1324 * - Little Endian: 1325 * - Use offset of 0 to check for odd elements 1326 * - Use offset of 4 to check for even elements 1327 * - Big Endian: 1328 * - Use offset of 0 to check for even elements 1329 * - Use offset of 4 to check for odd elements 1330 * A detailed description of the vector element ordering for little endian and 1331 * big endian can be found at 1332 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1333 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1334 * compiler differences mean to you 1335 * 1336 * The mask to the shuffle vector instruction specifies the indices of the 1337 * elements from the two input vectors to place in the result. The elements are 1338 * numbered in array-access order, starting with the first vector. These vectors 1339 * are always of type v16i8, thus each vector will contain 16 elements of size 1340 * 8. More info on the shuffle vector can be found in the 1341 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1342 * Language Reference. 1343 * 1344 * The RHSStartValue indicates whether the same input vectors are used (unary) 1345 * or two different input vectors are used, based on the following: 1346 * - If the instruction uses the same vector for both inputs, the range of the 1347 * indices will be 0 to 15. In this case, the RHSStart value passed should 1348 * be 0. 1349 * - If the instruction has two different vectors then the range of the 1350 * indices will be 0 to 31. In this case, the RHSStart value passed should 1351 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1352 * to 31 specify elements in the second vector). 1353 * 1354 * \param[in] N The shuffle vector SD Node to analyze 1355 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1356 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1357 * vector to the shuffle_vector instruction 1358 * \return true iff this shuffle vector represents an even or odd word merge 1359 */ 1360 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1361 unsigned RHSStartValue) { 1362 if (N->getValueType(0) != MVT::v16i8) 1363 return false; 1364 1365 for (unsigned i = 0; i < 2; ++i) 1366 for (unsigned j = 0; j < 4; ++j) 1367 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1368 i*RHSStartValue+j+IndexOffset) || 1369 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1370 i*RHSStartValue+j+IndexOffset+8)) 1371 return false; 1372 return true; 1373 } 1374 1375 /** 1376 * \brief Determine if the specified shuffle mask is suitable for the vmrgew or 1377 * vmrgow instructions. 1378 * 1379 * \param[in] N The shuffle vector SD Node to analyze 1380 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1381 * \param[in] ShuffleKind Identify the type of merge: 1382 * - 0 = big-endian merge with two different inputs; 1383 * - 1 = either-endian merge with two identical inputs; 1384 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1385 * little-endian merges). 1386 * \param[in] DAG The current SelectionDAG 1387 * \return true iff this shuffle mask 1388 */ 1389 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1390 unsigned ShuffleKind, SelectionDAG &DAG) { 1391 if (DAG.getDataLayout().isLittleEndian()) { 1392 unsigned indexOffset = CheckEven ? 4 : 0; 1393 if (ShuffleKind == 1) // Unary 1394 return isVMerge(N, indexOffset, 0); 1395 else if (ShuffleKind == 2) // swapped 1396 return isVMerge(N, indexOffset, 16); 1397 else 1398 return false; 1399 } 1400 else { 1401 unsigned indexOffset = CheckEven ? 0 : 4; 1402 if (ShuffleKind == 1) // Unary 1403 return isVMerge(N, indexOffset, 0); 1404 else if (ShuffleKind == 0) // Normal 1405 return isVMerge(N, indexOffset, 16); 1406 else 1407 return false; 1408 } 1409 return false; 1410 } 1411 1412 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1413 /// amount, otherwise return -1. 1414 /// The ShuffleKind distinguishes between big-endian operations with two 1415 /// different inputs (0), either-endian operations with two identical inputs 1416 /// (1), and little-endian operations with two different inputs (2). For the 1417 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1418 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1419 SelectionDAG &DAG) { 1420 if (N->getValueType(0) != MVT::v16i8) 1421 return -1; 1422 1423 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1424 1425 // Find the first non-undef value in the shuffle mask. 1426 unsigned i; 1427 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1428 /*search*/; 1429 1430 if (i == 16) return -1; // all undef. 1431 1432 // Otherwise, check to see if the rest of the elements are consecutively 1433 // numbered from this value. 1434 unsigned ShiftAmt = SVOp->getMaskElt(i); 1435 if (ShiftAmt < i) return -1; 1436 1437 ShiftAmt -= i; 1438 bool isLE = DAG.getDataLayout().isLittleEndian(); 1439 1440 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1441 // Check the rest of the elements to see if they are consecutive. 1442 for (++i; i != 16; ++i) 1443 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1444 return -1; 1445 } else if (ShuffleKind == 1) { 1446 // Check the rest of the elements to see if they are consecutive. 1447 for (++i; i != 16; ++i) 1448 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1449 return -1; 1450 } else 1451 return -1; 1452 1453 if (isLE) 1454 ShiftAmt = 16 - ShiftAmt; 1455 1456 return ShiftAmt; 1457 } 1458 1459 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1460 /// specifies a splat of a single element that is suitable for input to 1461 /// VSPLTB/VSPLTH/VSPLTW. 1462 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1463 assert(N->getValueType(0) == MVT::v16i8 && 1464 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 1465 1466 // The consecutive indices need to specify an element, not part of two 1467 // different elements. So abandon ship early if this isn't the case. 1468 if (N->getMaskElt(0) % EltSize != 0) 1469 return false; 1470 1471 // This is a splat operation if each element of the permute is the same, and 1472 // if the value doesn't reference the second vector. 1473 unsigned ElementBase = N->getMaskElt(0); 1474 1475 // FIXME: Handle UNDEF elements too! 1476 if (ElementBase >= 16) 1477 return false; 1478 1479 // Check that the indices are consecutive, in the case of a multi-byte element 1480 // splatted with a v16i8 mask. 1481 for (unsigned i = 1; i != EltSize; ++i) 1482 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1483 return false; 1484 1485 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1486 if (N->getMaskElt(i) < 0) continue; 1487 for (unsigned j = 0; j != EltSize; ++j) 1488 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1489 return false; 1490 } 1491 return true; 1492 } 1493 1494 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 1495 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 1496 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize, 1497 SelectionDAG &DAG) { 1498 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1499 assert(isSplatShuffleMask(SVOp, EltSize)); 1500 if (DAG.getDataLayout().isLittleEndian()) 1501 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 1502 else 1503 return SVOp->getMaskElt(0) / EltSize; 1504 } 1505 1506 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 1507 /// by using a vspltis[bhw] instruction of the specified element size, return 1508 /// the constant being splatted. The ByteSize field indicates the number of 1509 /// bytes of each element [124] -> [bhw]. 1510 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 1511 SDValue OpVal(nullptr, 0); 1512 1513 // If ByteSize of the splat is bigger than the element size of the 1514 // build_vector, then we have a case where we are checking for a splat where 1515 // multiple elements of the buildvector are folded together into a single 1516 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 1517 unsigned EltSize = 16/N->getNumOperands(); 1518 if (EltSize < ByteSize) { 1519 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 1520 SDValue UniquedVals[4]; 1521 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 1522 1523 // See if all of the elements in the buildvector agree across. 1524 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1525 if (N->getOperand(i).isUndef()) continue; 1526 // If the element isn't a constant, bail fully out. 1527 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 1528 1529 1530 if (!UniquedVals[i&(Multiple-1)].getNode()) 1531 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 1532 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 1533 return SDValue(); // no match. 1534 } 1535 1536 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 1537 // either constant or undef values that are identical for each chunk. See 1538 // if these chunks can form into a larger vspltis*. 1539 1540 // Check to see if all of the leading entries are either 0 or -1. If 1541 // neither, then this won't fit into the immediate field. 1542 bool LeadingZero = true; 1543 bool LeadingOnes = true; 1544 for (unsigned i = 0; i != Multiple-1; ++i) { 1545 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 1546 1547 LeadingZero &= isNullConstant(UniquedVals[i]); 1548 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 1549 } 1550 // Finally, check the least significant entry. 1551 if (LeadingZero) { 1552 if (!UniquedVals[Multiple-1].getNode()) 1553 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 1554 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 1555 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 1556 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1557 } 1558 if (LeadingOnes) { 1559 if (!UniquedVals[Multiple-1].getNode()) 1560 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 1561 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 1562 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 1563 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 1564 } 1565 1566 return SDValue(); 1567 } 1568 1569 // Check to see if this buildvec has a single non-undef value in its elements. 1570 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1571 if (N->getOperand(i).isUndef()) continue; 1572 if (!OpVal.getNode()) 1573 OpVal = N->getOperand(i); 1574 else if (OpVal != N->getOperand(i)) 1575 return SDValue(); 1576 } 1577 1578 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 1579 1580 unsigned ValSizeInBytes = EltSize; 1581 uint64_t Value = 0; 1582 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 1583 Value = CN->getZExtValue(); 1584 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 1585 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 1586 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 1587 } 1588 1589 // If the splat value is larger than the element value, then we can never do 1590 // this splat. The only case that we could fit the replicated bits into our 1591 // immediate field for would be zero, and we prefer to use vxor for it. 1592 if (ValSizeInBytes < ByteSize) return SDValue(); 1593 1594 // If the element value is larger than the splat value, check if it consists 1595 // of a repeated bit pattern of size ByteSize. 1596 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 1597 return SDValue(); 1598 1599 // Properly sign extend the value. 1600 int MaskVal = SignExtend32(Value, ByteSize * 8); 1601 1602 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 1603 if (MaskVal == 0) return SDValue(); 1604 1605 // Finally, if this value fits in a 5 bit sext field, return it 1606 if (SignExtend32<5>(MaskVal) == MaskVal) 1607 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 1608 return SDValue(); 1609 } 1610 1611 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 1612 /// amount, otherwise return -1. 1613 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 1614 EVT VT = N->getValueType(0); 1615 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 1616 return -1; 1617 1618 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1619 1620 // Find the first non-undef value in the shuffle mask. 1621 unsigned i; 1622 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 1623 /*search*/; 1624 1625 if (i == 4) return -1; // all undef. 1626 1627 // Otherwise, check to see if the rest of the elements are consecutively 1628 // numbered from this value. 1629 unsigned ShiftAmt = SVOp->getMaskElt(i); 1630 if (ShiftAmt < i) return -1; 1631 ShiftAmt -= i; 1632 1633 // Check the rest of the elements to see if they are consecutive. 1634 for (++i; i != 4; ++i) 1635 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1636 return -1; 1637 1638 return ShiftAmt; 1639 } 1640 1641 //===----------------------------------------------------------------------===// 1642 // Addressing Mode Selection 1643 //===----------------------------------------------------------------------===// 1644 1645 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 1646 /// or 64-bit immediate, and if the value can be accurately represented as a 1647 /// sign extension from a 16-bit value. If so, this returns true and the 1648 /// immediate. 1649 static bool isIntS16Immediate(SDNode *N, short &Imm) { 1650 if (!isa<ConstantSDNode>(N)) 1651 return false; 1652 1653 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 1654 if (N->getValueType(0) == MVT::i32) 1655 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 1656 else 1657 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 1658 } 1659 static bool isIntS16Immediate(SDValue Op, short &Imm) { 1660 return isIntS16Immediate(Op.getNode(), Imm); 1661 } 1662 1663 /// SelectAddressRegReg - Given the specified addressed, check to see if it 1664 /// can be represented as an indexed [r+r] operation. Returns false if it 1665 /// can be more efficiently represented with [r+imm]. 1666 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 1667 SDValue &Index, 1668 SelectionDAG &DAG) const { 1669 short imm = 0; 1670 if (N.getOpcode() == ISD::ADD) { 1671 if (isIntS16Immediate(N.getOperand(1), imm)) 1672 return false; // r+i 1673 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 1674 return false; // r+i 1675 1676 Base = N.getOperand(0); 1677 Index = N.getOperand(1); 1678 return true; 1679 } else if (N.getOpcode() == ISD::OR) { 1680 if (isIntS16Immediate(N.getOperand(1), imm)) 1681 return false; // r+i can fold it if we can. 1682 1683 // If this is an or of disjoint bitfields, we can codegen this as an add 1684 // (for better address arithmetic) if the LHS and RHS of the OR are provably 1685 // disjoint. 1686 APInt LHSKnownZero, LHSKnownOne; 1687 APInt RHSKnownZero, RHSKnownOne; 1688 DAG.computeKnownBits(N.getOperand(0), 1689 LHSKnownZero, LHSKnownOne); 1690 1691 if (LHSKnownZero.getBoolValue()) { 1692 DAG.computeKnownBits(N.getOperand(1), 1693 RHSKnownZero, RHSKnownOne); 1694 // If all of the bits are known zero on the LHS or RHS, the add won't 1695 // carry. 1696 if (~(LHSKnownZero | RHSKnownZero) == 0) { 1697 Base = N.getOperand(0); 1698 Index = N.getOperand(1); 1699 return true; 1700 } 1701 } 1702 } 1703 1704 return false; 1705 } 1706 1707 // If we happen to be doing an i64 load or store into a stack slot that has 1708 // less than a 4-byte alignment, then the frame-index elimination may need to 1709 // use an indexed load or store instruction (because the offset may not be a 1710 // multiple of 4). The extra register needed to hold the offset comes from the 1711 // register scavenger, and it is possible that the scavenger will need to use 1712 // an emergency spill slot. As a result, we need to make sure that a spill slot 1713 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 1714 // stack slot. 1715 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 1716 // FIXME: This does not handle the LWA case. 1717 if (VT != MVT::i64) 1718 return; 1719 1720 // NOTE: We'll exclude negative FIs here, which come from argument 1721 // lowering, because there are no known test cases triggering this problem 1722 // using packed structures (or similar). We can remove this exclusion if 1723 // we find such a test case. The reason why this is so test-case driven is 1724 // because this entire 'fixup' is only to prevent crashes (from the 1725 // register scavenger) on not-really-valid inputs. For example, if we have: 1726 // %a = alloca i1 1727 // %b = bitcast i1* %a to i64* 1728 // store i64* a, i64 b 1729 // then the store should really be marked as 'align 1', but is not. If it 1730 // were marked as 'align 1' then the indexed form would have been 1731 // instruction-selected initially, and the problem this 'fixup' is preventing 1732 // won't happen regardless. 1733 if (FrameIdx < 0) 1734 return; 1735 1736 MachineFunction &MF = DAG.getMachineFunction(); 1737 MachineFrameInfo *MFI = MF.getFrameInfo(); 1738 1739 unsigned Align = MFI->getObjectAlignment(FrameIdx); 1740 if (Align >= 4) 1741 return; 1742 1743 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1744 FuncInfo->setHasNonRISpills(); 1745 } 1746 1747 /// Returns true if the address N can be represented by a base register plus 1748 /// a signed 16-bit displacement [r+imm], and if it is not better 1749 /// represented as reg+reg. If Aligned is true, only accept displacements 1750 /// suitable for STD and friends, i.e. multiples of 4. 1751 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 1752 SDValue &Base, 1753 SelectionDAG &DAG, 1754 bool Aligned) const { 1755 // FIXME dl should come from parent load or store, not from address 1756 SDLoc dl(N); 1757 // If this can be more profitably realized as r+r, fail. 1758 if (SelectAddressRegReg(N, Disp, Base, DAG)) 1759 return false; 1760 1761 if (N.getOpcode() == ISD::ADD) { 1762 short imm = 0; 1763 if (isIntS16Immediate(N.getOperand(1), imm) && 1764 (!Aligned || (imm & 3) == 0)) { 1765 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1766 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1767 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1768 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1769 } else { 1770 Base = N.getOperand(0); 1771 } 1772 return true; // [r+i] 1773 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 1774 // Match LOAD (ADD (X, Lo(G))). 1775 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 1776 && "Cannot handle constant offsets yet!"); 1777 Disp = N.getOperand(1).getOperand(0); // The global address. 1778 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 1779 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 1780 Disp.getOpcode() == ISD::TargetConstantPool || 1781 Disp.getOpcode() == ISD::TargetJumpTable); 1782 Base = N.getOperand(0); 1783 return true; // [&g+r] 1784 } 1785 } else if (N.getOpcode() == ISD::OR) { 1786 short imm = 0; 1787 if (isIntS16Immediate(N.getOperand(1), imm) && 1788 (!Aligned || (imm & 3) == 0)) { 1789 // If this is an or of disjoint bitfields, we can codegen this as an add 1790 // (for better address arithmetic) if the LHS and RHS of the OR are 1791 // provably disjoint. 1792 APInt LHSKnownZero, LHSKnownOne; 1793 DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne); 1794 1795 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1796 // If all of the bits are known zero on the LHS or RHS, the add won't 1797 // carry. 1798 if (FrameIndexSDNode *FI = 1799 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 1800 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1801 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1802 } else { 1803 Base = N.getOperand(0); 1804 } 1805 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 1806 return true; 1807 } 1808 } 1809 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1810 // Loading from a constant address. 1811 1812 // If this address fits entirely in a 16-bit sext immediate field, codegen 1813 // this as "d, 0" 1814 short Imm; 1815 if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) { 1816 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 1817 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1818 CN->getValueType(0)); 1819 return true; 1820 } 1821 1822 // Handle 32-bit sext immediates with LIS + addr mode. 1823 if ((CN->getValueType(0) == MVT::i32 || 1824 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 1825 (!Aligned || (CN->getZExtValue() & 3) == 0)) { 1826 int Addr = (int)CN->getZExtValue(); 1827 1828 // Otherwise, break this down into an LIS + disp. 1829 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 1830 1831 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 1832 MVT::i32); 1833 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1834 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 1835 return true; 1836 } 1837 } 1838 1839 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 1840 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 1841 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1842 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 1843 } else 1844 Base = N; 1845 return true; // [r+0] 1846 } 1847 1848 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 1849 /// represented as an indexed [r+r] operation. 1850 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 1851 SDValue &Index, 1852 SelectionDAG &DAG) const { 1853 // Check to see if we can easily represent this as an [r+r] address. This 1854 // will fail if it thinks that the address is more profitably represented as 1855 // reg+imm, e.g. where imm = 0. 1856 if (SelectAddressRegReg(N, Base, Index, DAG)) 1857 return true; 1858 1859 // If the operand is an addition, always emit this as [r+r], since this is 1860 // better (for code size, and execution, as the memop does the add for free) 1861 // than emitting an explicit add. 1862 if (N.getOpcode() == ISD::ADD) { 1863 Base = N.getOperand(0); 1864 Index = N.getOperand(1); 1865 return true; 1866 } 1867 1868 // Otherwise, do it the hard way, using R0 as the base register. 1869 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 1870 N.getValueType()); 1871 Index = N; 1872 return true; 1873 } 1874 1875 /// getPreIndexedAddressParts - returns true by value, base pointer and 1876 /// offset pointer and addressing mode by reference if the node's address 1877 /// can be legally represented as pre-indexed load / store address. 1878 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1879 SDValue &Offset, 1880 ISD::MemIndexedMode &AM, 1881 SelectionDAG &DAG) const { 1882 if (DisablePPCPreinc) return false; 1883 1884 bool isLoad = true; 1885 SDValue Ptr; 1886 EVT VT; 1887 unsigned Alignment; 1888 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1889 Ptr = LD->getBasePtr(); 1890 VT = LD->getMemoryVT(); 1891 Alignment = LD->getAlignment(); 1892 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1893 Ptr = ST->getBasePtr(); 1894 VT = ST->getMemoryVT(); 1895 Alignment = ST->getAlignment(); 1896 isLoad = false; 1897 } else 1898 return false; 1899 1900 // PowerPC doesn't have preinc load/store instructions for vectors (except 1901 // for QPX, which does have preinc r+r forms). 1902 if (VT.isVector()) { 1903 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 1904 return false; 1905 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 1906 AM = ISD::PRE_INC; 1907 return true; 1908 } 1909 } 1910 1911 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 1912 1913 // Common code will reject creating a pre-inc form if the base pointer 1914 // is a frame index, or if N is a store and the base pointer is either 1915 // the same as or a predecessor of the value being stored. Check for 1916 // those situations here, and try with swapped Base/Offset instead. 1917 bool Swap = false; 1918 1919 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 1920 Swap = true; 1921 else if (!isLoad) { 1922 SDValue Val = cast<StoreSDNode>(N)->getValue(); 1923 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 1924 Swap = true; 1925 } 1926 1927 if (Swap) 1928 std::swap(Base, Offset); 1929 1930 AM = ISD::PRE_INC; 1931 return true; 1932 } 1933 1934 // LDU/STU can only handle immediates that are a multiple of 4. 1935 if (VT != MVT::i64) { 1936 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false)) 1937 return false; 1938 } else { 1939 // LDU/STU need an address with at least 4-byte alignment. 1940 if (Alignment < 4) 1941 return false; 1942 1943 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true)) 1944 return false; 1945 } 1946 1947 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1948 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1949 // sext i32 to i64 when addr mode is r+i. 1950 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1951 LD->getExtensionType() == ISD::SEXTLOAD && 1952 isa<ConstantSDNode>(Offset)) 1953 return false; 1954 } 1955 1956 AM = ISD::PRE_INC; 1957 return true; 1958 } 1959 1960 //===----------------------------------------------------------------------===// 1961 // LowerOperation implementation 1962 //===----------------------------------------------------------------------===// 1963 1964 /// GetLabelAccessInfo - Return true if we should reference labels using a 1965 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1966 static bool GetLabelAccessInfo(const TargetMachine &TM, 1967 const PPCSubtarget &Subtarget, 1968 unsigned &HiOpFlags, unsigned &LoOpFlags, 1969 const GlobalValue *GV = nullptr) { 1970 HiOpFlags = PPCII::MO_HA; 1971 LoOpFlags = PPCII::MO_LO; 1972 1973 // Don't use the pic base if not in PIC relocation model. 1974 bool isPIC = TM.getRelocationModel() == Reloc::PIC_; 1975 1976 if (isPIC) { 1977 HiOpFlags |= PPCII::MO_PIC_FLAG; 1978 LoOpFlags |= PPCII::MO_PIC_FLAG; 1979 } 1980 1981 // If this is a reference to a global value that requires a non-lazy-ptr, make 1982 // sure that instruction lowering adds it. 1983 if (GV && Subtarget.hasLazyResolverStub(GV)) { 1984 HiOpFlags |= PPCII::MO_NLP_FLAG; 1985 LoOpFlags |= PPCII::MO_NLP_FLAG; 1986 1987 if (GV->hasHiddenVisibility()) { 1988 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1989 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1990 } 1991 } 1992 1993 return isPIC; 1994 } 1995 1996 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1997 SelectionDAG &DAG) { 1998 SDLoc DL(HiPart); 1999 EVT PtrVT = HiPart.getValueType(); 2000 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2001 2002 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2003 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2004 2005 // With PIC, the first instruction is actually "GR+hi(&G)". 2006 if (isPIC) 2007 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2008 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2009 2010 // Generate non-pic code that has direct accesses to the constant pool. 2011 // The address of the global is just (hi(&g)+lo(&g)). 2012 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2013 } 2014 2015 static void setUsesTOCBasePtr(MachineFunction &MF) { 2016 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2017 FuncInfo->setUsesTOCBasePtr(); 2018 } 2019 2020 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2021 setUsesTOCBasePtr(DAG.getMachineFunction()); 2022 } 2023 2024 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit, 2025 SDValue GA) { 2026 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2027 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : 2028 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2029 2030 SDValue Ops[] = { GA, Reg }; 2031 return DAG.getMemIntrinsicNode( 2032 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2033 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true, 2034 false, 0); 2035 } 2036 2037 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2038 SelectionDAG &DAG) const { 2039 EVT PtrVT = Op.getValueType(); 2040 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2041 const Constant *C = CP->getConstVal(); 2042 2043 // 64-bit SVR4 ABI code is always position-independent. 2044 // The actual address of the GlobalValue is stored in the TOC. 2045 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2046 setUsesTOCBasePtr(DAG); 2047 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2048 return getTOCEntry(DAG, SDLoc(CP), true, GA); 2049 } 2050 2051 unsigned MOHiFlag, MOLoFlag; 2052 bool isPIC = 2053 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2054 2055 if (isPIC && Subtarget.isSVR4ABI()) { 2056 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2057 PPCII::MO_PIC_FLAG); 2058 return getTOCEntry(DAG, SDLoc(CP), false, GA); 2059 } 2060 2061 SDValue CPIHi = 2062 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2063 SDValue CPILo = 2064 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2065 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 2066 } 2067 2068 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2069 EVT PtrVT = Op.getValueType(); 2070 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2071 2072 // 64-bit SVR4 ABI code is always position-independent. 2073 // The actual address of the GlobalValue is stored in the TOC. 2074 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2075 setUsesTOCBasePtr(DAG); 2076 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2077 return getTOCEntry(DAG, SDLoc(JT), true, GA); 2078 } 2079 2080 unsigned MOHiFlag, MOLoFlag; 2081 bool isPIC = 2082 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2083 2084 if (isPIC && Subtarget.isSVR4ABI()) { 2085 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2086 PPCII::MO_PIC_FLAG); 2087 return getTOCEntry(DAG, SDLoc(GA), false, GA); 2088 } 2089 2090 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2091 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2092 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 2093 } 2094 2095 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2096 SelectionDAG &DAG) const { 2097 EVT PtrVT = Op.getValueType(); 2098 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2099 const BlockAddress *BA = BASDN->getBlockAddress(); 2100 2101 // 64-bit SVR4 ABI code is always position-independent. 2102 // The actual BlockAddress is stored in the TOC. 2103 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2104 setUsesTOCBasePtr(DAG); 2105 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2106 return getTOCEntry(DAG, SDLoc(BASDN), true, GA); 2107 } 2108 2109 unsigned MOHiFlag, MOLoFlag; 2110 bool isPIC = 2111 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag); 2112 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2113 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2114 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 2115 } 2116 2117 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2118 SelectionDAG &DAG) const { 2119 2120 // FIXME: TLS addresses currently use medium model code sequences, 2121 // which is the most useful form. Eventually support for small and 2122 // large models could be added if users need it, at the cost of 2123 // additional complexity. 2124 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2125 if (DAG.getTarget().Options.EmulatedTLS) 2126 return LowerToTLSEmulatedModel(GA, DAG); 2127 2128 SDLoc dl(GA); 2129 const GlobalValue *GV = GA->getGlobal(); 2130 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2131 bool is64bit = Subtarget.isPPC64(); 2132 const Module *M = DAG.getMachineFunction().getFunction()->getParent(); 2133 PICLevel::Level picLevel = M->getPICLevel(); 2134 2135 TLSModel::Model Model = getTargetMachine().getTLSModel(GV); 2136 2137 if (Model == TLSModel::LocalExec) { 2138 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2139 PPCII::MO_TPREL_HA); 2140 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2141 PPCII::MO_TPREL_LO); 2142 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 2143 is64bit ? MVT::i64 : MVT::i32); 2144 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2145 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2146 } 2147 2148 if (Model == TLSModel::InitialExec) { 2149 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2150 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2151 PPCII::MO_TLS); 2152 SDValue GOTPtr; 2153 if (is64bit) { 2154 setUsesTOCBasePtr(DAG); 2155 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2156 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2157 PtrVT, GOTReg, TGA); 2158 } else 2159 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2160 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2161 PtrVT, TGA, GOTPtr); 2162 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2163 } 2164 2165 if (Model == TLSModel::GeneralDynamic) { 2166 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2167 SDValue GOTPtr; 2168 if (is64bit) { 2169 setUsesTOCBasePtr(DAG); 2170 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2171 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2172 GOTReg, TGA); 2173 } else { 2174 if (picLevel == PICLevel::SmallPIC) 2175 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2176 else 2177 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2178 } 2179 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2180 GOTPtr, TGA, TGA); 2181 } 2182 2183 if (Model == TLSModel::LocalDynamic) { 2184 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2185 SDValue GOTPtr; 2186 if (is64bit) { 2187 setUsesTOCBasePtr(DAG); 2188 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2189 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2190 GOTReg, TGA); 2191 } else { 2192 if (picLevel == PICLevel::SmallPIC) 2193 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2194 else 2195 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2196 } 2197 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2198 PtrVT, GOTPtr, TGA, TGA); 2199 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2200 PtrVT, TLSAddr, TGA); 2201 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2202 } 2203 2204 llvm_unreachable("Unknown TLS model!"); 2205 } 2206 2207 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 2208 SelectionDAG &DAG) const { 2209 EVT PtrVT = Op.getValueType(); 2210 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 2211 SDLoc DL(GSDN); 2212 const GlobalValue *GV = GSDN->getGlobal(); 2213 2214 // 64-bit SVR4 ABI code is always position-independent. 2215 // The actual address of the GlobalValue is stored in the TOC. 2216 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) { 2217 setUsesTOCBasePtr(DAG); 2218 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 2219 return getTOCEntry(DAG, DL, true, GA); 2220 } 2221 2222 unsigned MOHiFlag, MOLoFlag; 2223 bool isPIC = 2224 GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV); 2225 2226 if (isPIC && Subtarget.isSVR4ABI()) { 2227 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 2228 GSDN->getOffset(), 2229 PPCII::MO_PIC_FLAG); 2230 return getTOCEntry(DAG, DL, false, GA); 2231 } 2232 2233 SDValue GAHi = 2234 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 2235 SDValue GALo = 2236 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 2237 2238 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 2239 2240 // If the global reference is actually to a non-lazy-pointer, we have to do an 2241 // extra load to get the address of the global. 2242 if (MOHiFlag & PPCII::MO_NLP_FLAG) 2243 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 2244 false, false, false, 0); 2245 return Ptr; 2246 } 2247 2248 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2249 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2250 SDLoc dl(Op); 2251 2252 if (Op.getValueType() == MVT::v2i64) { 2253 // When the operands themselves are v2i64 values, we need to do something 2254 // special because VSX has no underlying comparison operations for these. 2255 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 2256 // Equality can be handled by casting to the legal type for Altivec 2257 // comparisons, everything else needs to be expanded. 2258 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2259 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 2260 DAG.getSetCC(dl, MVT::v4i32, 2261 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 2262 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 2263 CC)); 2264 } 2265 2266 return SDValue(); 2267 } 2268 2269 // We handle most of these in the usual way. 2270 return Op; 2271 } 2272 2273 // If we're comparing for equality to zero, expose the fact that this is 2274 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 2275 // fold the new nodes. 2276 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2277 if (C->isNullValue() && CC == ISD::SETEQ) { 2278 EVT VT = Op.getOperand(0).getValueType(); 2279 SDValue Zext = Op.getOperand(0); 2280 if (VT.bitsLT(MVT::i32)) { 2281 VT = MVT::i32; 2282 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 2283 } 2284 unsigned Log2b = Log2_32(VT.getSizeInBits()); 2285 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 2286 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 2287 DAG.getConstant(Log2b, dl, MVT::i32)); 2288 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 2289 } 2290 // Leave comparisons against 0 and -1 alone for now, since they're usually 2291 // optimized. FIXME: revisit this when we can custom lower all setcc 2292 // optimizations. 2293 if (C->isAllOnesValue() || C->isNullValue()) 2294 return SDValue(); 2295 } 2296 2297 // If we have an integer seteq/setne, turn it into a compare against zero 2298 // by xor'ing the rhs with the lhs, which is faster than setting a 2299 // condition register, reading it back out, and masking the correct bit. The 2300 // normal approach here uses sub to do this instead of xor. Using xor exposes 2301 // the result to other bit-twiddling opportunities. 2302 EVT LHSVT = Op.getOperand(0).getValueType(); 2303 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2304 EVT VT = Op.getValueType(); 2305 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 2306 Op.getOperand(1)); 2307 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 2308 } 2309 return SDValue(); 2310 } 2311 2312 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 2313 const PPCSubtarget &Subtarget) const { 2314 SDNode *Node = Op.getNode(); 2315 EVT VT = Node->getValueType(0); 2316 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2317 SDValue InChain = Node->getOperand(0); 2318 SDValue VAListPtr = Node->getOperand(1); 2319 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2320 SDLoc dl(Node); 2321 2322 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 2323 2324 // gpr_index 2325 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2326 VAListPtr, MachinePointerInfo(SV), MVT::i8, 2327 false, false, false, 0); 2328 InChain = GprIndex.getValue(1); 2329 2330 if (VT == MVT::i64) { 2331 // Check if GprIndex is even 2332 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 2333 DAG.getConstant(1, dl, MVT::i32)); 2334 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 2335 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 2336 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 2337 DAG.getConstant(1, dl, MVT::i32)); 2338 // Align GprIndex to be even if it isn't 2339 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 2340 GprIndex); 2341 } 2342 2343 // fpr index is 1 byte after gpr 2344 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2345 DAG.getConstant(1, dl, MVT::i32)); 2346 2347 // fpr 2348 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 2349 FprPtr, MachinePointerInfo(SV), MVT::i8, 2350 false, false, false, 0); 2351 InChain = FprIndex.getValue(1); 2352 2353 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2354 DAG.getConstant(8, dl, MVT::i32)); 2355 2356 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 2357 DAG.getConstant(4, dl, MVT::i32)); 2358 2359 // areas 2360 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 2361 MachinePointerInfo(), false, false, 2362 false, 0); 2363 InChain = OverflowArea.getValue(1); 2364 2365 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 2366 MachinePointerInfo(), false, false, 2367 false, 0); 2368 InChain = RegSaveArea.getValue(1); 2369 2370 // select overflow_area if index > 8 2371 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 2372 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 2373 2374 // adjustment constant gpr_index * 4/8 2375 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 2376 VT.isInteger() ? GprIndex : FprIndex, 2377 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 2378 MVT::i32)); 2379 2380 // OurReg = RegSaveArea + RegConstant 2381 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 2382 RegConstant); 2383 2384 // Floating types are 32 bytes into RegSaveArea 2385 if (VT.isFloatingPoint()) 2386 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 2387 DAG.getConstant(32, dl, MVT::i32)); 2388 2389 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 2390 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2391 VT.isInteger() ? GprIndex : FprIndex, 2392 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 2393 MVT::i32)); 2394 2395 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 2396 VT.isInteger() ? VAListPtr : FprPtr, 2397 MachinePointerInfo(SV), 2398 MVT::i8, false, false, 0); 2399 2400 // determine if we should load from reg_save_area or overflow_area 2401 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 2402 2403 // increase overflow_area by 4/8 if gpr/fpr > 8 2404 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 2405 DAG.getConstant(VT.isInteger() ? 4 : 8, 2406 dl, MVT::i32)); 2407 2408 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 2409 OverflowAreaPlusN); 2410 2411 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 2412 OverflowAreaPtr, 2413 MachinePointerInfo(), 2414 MVT::i32, false, false, 0); 2415 2416 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 2417 false, false, false, 0); 2418 } 2419 2420 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG, 2421 const PPCSubtarget &Subtarget) const { 2422 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 2423 2424 // We have to copy the entire va_list struct: 2425 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 2426 return DAG.getMemcpy(Op.getOperand(0), Op, 2427 Op.getOperand(1), Op.getOperand(2), 2428 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 2429 false, MachinePointerInfo(), MachinePointerInfo()); 2430 } 2431 2432 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 2433 SelectionDAG &DAG) const { 2434 return Op.getOperand(0); 2435 } 2436 2437 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 2438 SelectionDAG &DAG) const { 2439 SDValue Chain = Op.getOperand(0); 2440 SDValue Trmp = Op.getOperand(1); // trampoline 2441 SDValue FPtr = Op.getOperand(2); // nested function 2442 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 2443 SDLoc dl(Op); 2444 2445 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2446 bool isPPC64 = (PtrVT == MVT::i64); 2447 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 2448 2449 TargetLowering::ArgListTy Args; 2450 TargetLowering::ArgListEntry Entry; 2451 2452 Entry.Ty = IntPtrTy; 2453 Entry.Node = Trmp; Args.push_back(Entry); 2454 2455 // TrampSize == (isPPC64 ? 48 : 40); 2456 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 2457 isPPC64 ? MVT::i64 : MVT::i32); 2458 Args.push_back(Entry); 2459 2460 Entry.Node = FPtr; Args.push_back(Entry); 2461 Entry.Node = Nest; Args.push_back(Entry); 2462 2463 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 2464 TargetLowering::CallLoweringInfo CLI(DAG); 2465 CLI.setDebugLoc(dl).setChain(Chain) 2466 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 2467 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 2468 std::move(Args), 0); 2469 2470 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2471 return CallResult.second; 2472 } 2473 2474 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 2475 const PPCSubtarget &Subtarget) const { 2476 MachineFunction &MF = DAG.getMachineFunction(); 2477 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2478 2479 SDLoc dl(Op); 2480 2481 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 2482 // vastart just stores the address of the VarArgsFrameIndex slot into the 2483 // memory location argument. 2484 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2485 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2486 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2487 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2488 MachinePointerInfo(SV), 2489 false, false, 0); 2490 } 2491 2492 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 2493 // We suppose the given va_list is already allocated. 2494 // 2495 // typedef struct { 2496 // char gpr; /* index into the array of 8 GPRs 2497 // * stored in the register save area 2498 // * gpr=0 corresponds to r3, 2499 // * gpr=1 to r4, etc. 2500 // */ 2501 // char fpr; /* index into the array of 8 FPRs 2502 // * stored in the register save area 2503 // * fpr=0 corresponds to f1, 2504 // * fpr=1 to f2, etc. 2505 // */ 2506 // char *overflow_arg_area; 2507 // /* location on stack that holds 2508 // * the next overflow argument 2509 // */ 2510 // char *reg_save_area; 2511 // /* where r3:r10 and f1:f8 (if saved) 2512 // * are stored 2513 // */ 2514 // } va_list[1]; 2515 2516 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 2517 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 2518 2519 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2520 2521 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 2522 PtrVT); 2523 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2524 PtrVT); 2525 2526 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 2527 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 2528 2529 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 2530 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 2531 2532 uint64_t FPROffset = 1; 2533 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 2534 2535 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2536 2537 // Store first byte : number of int regs 2538 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 2539 Op.getOperand(1), 2540 MachinePointerInfo(SV), 2541 MVT::i8, false, false, 0); 2542 uint64_t nextOffset = FPROffset; 2543 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 2544 ConstFPROffset); 2545 2546 // Store second byte : number of float regs 2547 SDValue secondStore = 2548 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 2549 MachinePointerInfo(SV, nextOffset), MVT::i8, 2550 false, false, 0); 2551 nextOffset += StackOffset; 2552 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 2553 2554 // Store second word : arguments given on stack 2555 SDValue thirdStore = 2556 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 2557 MachinePointerInfo(SV, nextOffset), 2558 false, false, 0); 2559 nextOffset += FrameOffset; 2560 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 2561 2562 // Store third word : arguments given in registers 2563 return DAG.getStore(thirdStore, dl, FR, nextPtr, 2564 MachinePointerInfo(SV, nextOffset), 2565 false, false, 0); 2566 2567 } 2568 2569 #include "PPCGenCallingConv.inc" 2570 2571 // Function whose sole purpose is to kill compiler warnings 2572 // stemming from unused functions included from PPCGenCallingConv.inc. 2573 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const { 2574 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS; 2575 } 2576 2577 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 2578 CCValAssign::LocInfo &LocInfo, 2579 ISD::ArgFlagsTy &ArgFlags, 2580 CCState &State) { 2581 return true; 2582 } 2583 2584 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 2585 MVT &LocVT, 2586 CCValAssign::LocInfo &LocInfo, 2587 ISD::ArgFlagsTy &ArgFlags, 2588 CCState &State) { 2589 static const MCPhysReg ArgRegs[] = { 2590 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2591 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2592 }; 2593 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2594 2595 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2596 2597 // Skip one register if the first unallocated register has an even register 2598 // number and there are still argument registers available which have not been 2599 // allocated yet. RegNum is actually an index into ArgRegs, which means we 2600 // need to skip a register if RegNum is odd. 2601 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 2602 State.AllocateReg(ArgRegs[RegNum]); 2603 } 2604 2605 // Always return false here, as this function only makes sure that the first 2606 // unallocated register has an odd register number and does not actually 2607 // allocate a register for the current argument. 2608 return false; 2609 } 2610 2611 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 2612 MVT &LocVT, 2613 CCValAssign::LocInfo &LocInfo, 2614 ISD::ArgFlagsTy &ArgFlags, 2615 CCState &State) { 2616 static const MCPhysReg ArgRegs[] = { 2617 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2618 PPC::F8 2619 }; 2620 2621 const unsigned NumArgRegs = array_lengthof(ArgRegs); 2622 2623 unsigned RegNum = State.getFirstUnallocated(ArgRegs); 2624 2625 // If there is only one Floating-point register left we need to put both f64 2626 // values of a split ppc_fp128 value on the stack. 2627 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 2628 State.AllocateReg(ArgRegs[RegNum]); 2629 } 2630 2631 // Always return false here, as this function only makes sure that the two f64 2632 // values a ppc_fp128 value is split into are both passed in registers or both 2633 // passed on the stack and does not actually allocate a register for the 2634 // current argument. 2635 return false; 2636 } 2637 2638 /// FPR - The set of FP registers that should be allocated for arguments, 2639 /// on Darwin. 2640 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 2641 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 2642 PPC::F11, PPC::F12, PPC::F13}; 2643 2644 /// QFPR - The set of QPX registers that should be allocated for arguments. 2645 static const MCPhysReg QFPR[] = { 2646 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 2647 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 2648 2649 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 2650 /// the stack. 2651 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 2652 unsigned PtrByteSize) { 2653 unsigned ArgSize = ArgVT.getStoreSize(); 2654 if (Flags.isByVal()) 2655 ArgSize = Flags.getByValSize(); 2656 2657 // Round up to multiples of the pointer size, except for array members, 2658 // which are always packed. 2659 if (!Flags.isInConsecutiveRegs()) 2660 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2661 2662 return ArgSize; 2663 } 2664 2665 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 2666 /// on the stack. 2667 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 2668 ISD::ArgFlagsTy Flags, 2669 unsigned PtrByteSize) { 2670 unsigned Align = PtrByteSize; 2671 2672 // Altivec parameters are padded to a 16 byte boundary. 2673 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2674 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2675 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2676 ArgVT == MVT::v1i128) 2677 Align = 16; 2678 // QPX vector types stored in double-precision are padded to a 32 byte 2679 // boundary. 2680 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 2681 Align = 32; 2682 2683 // ByVal parameters are aligned as requested. 2684 if (Flags.isByVal()) { 2685 unsigned BVAlign = Flags.getByValAlign(); 2686 if (BVAlign > PtrByteSize) { 2687 if (BVAlign % PtrByteSize != 0) 2688 llvm_unreachable( 2689 "ByVal alignment is not a multiple of the pointer size"); 2690 2691 Align = BVAlign; 2692 } 2693 } 2694 2695 // Array members are always packed to their original alignment. 2696 if (Flags.isInConsecutiveRegs()) { 2697 // If the array member was split into multiple registers, the first 2698 // needs to be aligned to the size of the full type. (Except for 2699 // ppcf128, which is only aligned as its f64 components.) 2700 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 2701 Align = OrigVT.getStoreSize(); 2702 else 2703 Align = ArgVT.getStoreSize(); 2704 } 2705 2706 return Align; 2707 } 2708 2709 /// CalculateStackSlotUsed - Return whether this argument will use its 2710 /// stack slot (instead of being passed in registers). ArgOffset, 2711 /// AvailableFPRs, and AvailableVRs must hold the current argument 2712 /// position, and will be updated to account for this argument. 2713 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 2714 ISD::ArgFlagsTy Flags, 2715 unsigned PtrByteSize, 2716 unsigned LinkageSize, 2717 unsigned ParamAreaSize, 2718 unsigned &ArgOffset, 2719 unsigned &AvailableFPRs, 2720 unsigned &AvailableVRs, bool HasQPX) { 2721 bool UseMemory = false; 2722 2723 // Respect alignment of argument on the stack. 2724 unsigned Align = 2725 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 2726 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 2727 // If there's no space left in the argument save area, we must 2728 // use memory (this check also catches zero-sized arguments). 2729 if (ArgOffset >= LinkageSize + ParamAreaSize) 2730 UseMemory = true; 2731 2732 // Allocate argument on the stack. 2733 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2734 if (Flags.isInConsecutiveRegsLast()) 2735 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 2736 // If we overran the argument save area, we must use memory 2737 // (this check catches arguments passed partially in memory) 2738 if (ArgOffset > LinkageSize + ParamAreaSize) 2739 UseMemory = true; 2740 2741 // However, if the argument is actually passed in an FPR or a VR, 2742 // we don't use memory after all. 2743 if (!Flags.isByVal()) { 2744 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 2745 // QPX registers overlap with the scalar FP registers. 2746 (HasQPX && (ArgVT == MVT::v4f32 || 2747 ArgVT == MVT::v4f64 || 2748 ArgVT == MVT::v4i1))) 2749 if (AvailableFPRs > 0) { 2750 --AvailableFPRs; 2751 return false; 2752 } 2753 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 2754 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 2755 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 2756 ArgVT == MVT::v1i128) 2757 if (AvailableVRs > 0) { 2758 --AvailableVRs; 2759 return false; 2760 } 2761 } 2762 2763 return UseMemory; 2764 } 2765 2766 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 2767 /// ensure minimum alignment required for target. 2768 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 2769 unsigned NumBytes) { 2770 unsigned TargetAlign = Lowering->getStackAlignment(); 2771 unsigned AlignMask = TargetAlign - 1; 2772 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2773 return NumBytes; 2774 } 2775 2776 SDValue PPCTargetLowering::LowerFormalArguments( 2777 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2778 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2779 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2780 if (Subtarget.isSVR4ABI()) { 2781 if (Subtarget.isPPC64()) 2782 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, 2783 dl, DAG, InVals); 2784 else 2785 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, 2786 dl, DAG, InVals); 2787 } else { 2788 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 2789 dl, DAG, InVals); 2790 } 2791 } 2792 2793 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 2794 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 2795 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2796 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 2797 2798 // 32-bit SVR4 ABI Stack Frame Layout: 2799 // +-----------------------------------+ 2800 // +--> | Back chain | 2801 // | +-----------------------------------+ 2802 // | | Floating-point register save area | 2803 // | +-----------------------------------+ 2804 // | | General register save area | 2805 // | +-----------------------------------+ 2806 // | | CR save word | 2807 // | +-----------------------------------+ 2808 // | | VRSAVE save word | 2809 // | +-----------------------------------+ 2810 // | | Alignment padding | 2811 // | +-----------------------------------+ 2812 // | | Vector register save area | 2813 // | +-----------------------------------+ 2814 // | | Local variable space | 2815 // | +-----------------------------------+ 2816 // | | Parameter list area | 2817 // | +-----------------------------------+ 2818 // | | LR save word | 2819 // | +-----------------------------------+ 2820 // SP--> +--- | Back chain | 2821 // +-----------------------------------+ 2822 // 2823 // Specifications: 2824 // System V Application Binary Interface PowerPC Processor Supplement 2825 // AltiVec Technology Programming Interface Manual 2826 2827 MachineFunction &MF = DAG.getMachineFunction(); 2828 MachineFrameInfo *MFI = MF.getFrameInfo(); 2829 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2830 2831 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 2832 // Potential tail calls could cause overwriting of argument stack slots. 2833 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 2834 (CallConv == CallingConv::Fast)); 2835 unsigned PtrByteSize = 4; 2836 2837 // Assign locations to all of the incoming arguments. 2838 SmallVector<CCValAssign, 16> ArgLocs; 2839 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2840 *DAG.getContext()); 2841 2842 // Reserve space for the linkage area on the stack. 2843 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 2844 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 2845 if (Subtarget.useSoftFloat()) 2846 CCInfo.PreAnalyzeFormalArguments(Ins); 2847 2848 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 2849 CCInfo.clearWasPPCF128(); 2850 2851 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2852 CCValAssign &VA = ArgLocs[i]; 2853 2854 // Arguments stored in registers. 2855 if (VA.isRegLoc()) { 2856 const TargetRegisterClass *RC; 2857 EVT ValVT = VA.getValVT(); 2858 2859 switch (ValVT.getSimpleVT().SimpleTy) { 2860 default: 2861 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 2862 case MVT::i1: 2863 case MVT::i32: 2864 RC = &PPC::GPRCRegClass; 2865 break; 2866 case MVT::f32: 2867 if (Subtarget.hasP8Vector()) 2868 RC = &PPC::VSSRCRegClass; 2869 else 2870 RC = &PPC::F4RCRegClass; 2871 break; 2872 case MVT::f64: 2873 if (Subtarget.hasVSX()) 2874 RC = &PPC::VSFRCRegClass; 2875 else 2876 RC = &PPC::F8RCRegClass; 2877 break; 2878 case MVT::v16i8: 2879 case MVT::v8i16: 2880 case MVT::v4i32: 2881 RC = &PPC::VRRCRegClass; 2882 break; 2883 case MVT::v4f32: 2884 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 2885 break; 2886 case MVT::v2f64: 2887 case MVT::v2i64: 2888 RC = &PPC::VSHRCRegClass; 2889 break; 2890 case MVT::v4f64: 2891 RC = &PPC::QFRCRegClass; 2892 break; 2893 case MVT::v4i1: 2894 RC = &PPC::QBRCRegClass; 2895 break; 2896 } 2897 2898 // Transform the arguments stored in physical registers into virtual ones. 2899 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2900 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 2901 ValVT == MVT::i1 ? MVT::i32 : ValVT); 2902 2903 if (ValVT == MVT::i1) 2904 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 2905 2906 InVals.push_back(ArgValue); 2907 } else { 2908 // Argument stored in memory. 2909 assert(VA.isMemLoc()); 2910 2911 unsigned ArgSize = VA.getLocVT().getStoreSize(); 2912 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 2913 isImmutable); 2914 2915 // Create load nodes to retrieve arguments from the stack. 2916 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2917 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2918 MachinePointerInfo(), 2919 false, false, false, 0)); 2920 } 2921 } 2922 2923 // Assign locations to all of the incoming aggregate by value arguments. 2924 // Aggregates passed by value are stored in the local variable space of the 2925 // caller's stack frame, right above the parameter list area. 2926 SmallVector<CCValAssign, 16> ByValArgLocs; 2927 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2928 ByValArgLocs, *DAG.getContext()); 2929 2930 // Reserve stack space for the allocations in CCInfo. 2931 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2932 2933 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 2934 2935 // Area that is at least reserved in the caller of this function. 2936 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 2937 MinReservedArea = std::max(MinReservedArea, LinkageSize); 2938 2939 // Set the size that is at least reserved in caller of this function. Tail 2940 // call optimized function's reserved stack space needs to be aligned so that 2941 // taking the difference between two stack areas will result in an aligned 2942 // stack. 2943 MinReservedArea = 2944 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 2945 FuncInfo->setMinReservedArea(MinReservedArea); 2946 2947 SmallVector<SDValue, 8> MemOps; 2948 2949 // If the function takes variable number of arguments, make a frame index for 2950 // the start of the first vararg value... for expansion of llvm.va_start. 2951 if (isVarArg) { 2952 static const MCPhysReg GPArgRegs[] = { 2953 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 2954 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 2955 }; 2956 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 2957 2958 static const MCPhysReg FPArgRegs[] = { 2959 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 2960 PPC::F8 2961 }; 2962 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 2963 2964 if (Subtarget.useSoftFloat()) 2965 NumFPArgRegs = 0; 2966 2967 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 2968 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 2969 2970 // Make room for NumGPArgRegs and NumFPArgRegs. 2971 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 2972 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 2973 2974 FuncInfo->setVarArgsStackOffset( 2975 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2976 CCInfo.getNextStackOffset(), true)); 2977 2978 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 2979 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2980 2981 // The fixed integer arguments of a variadic function are stored to the 2982 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 2983 // the result of va_next. 2984 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 2985 // Get an existing live-in vreg, or add a new one. 2986 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 2987 if (!VReg) 2988 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 2989 2990 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2991 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2992 MachinePointerInfo(), false, false, 0); 2993 MemOps.push_back(Store); 2994 // Increment the address by four for the next argument to store 2995 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 2996 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2997 } 2998 2999 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3000 // is set. 3001 // The double arguments are stored to the VarArgsFrameIndex 3002 // on the stack. 3003 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3004 // Get an existing live-in vreg, or add a new one. 3005 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3006 if (!VReg) 3007 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3008 3009 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3010 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3011 MachinePointerInfo(), false, false, 0); 3012 MemOps.push_back(Store); 3013 // Increment the address by eight for the next argument to store 3014 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3015 PtrVT); 3016 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3017 } 3018 } 3019 3020 if (!MemOps.empty()) 3021 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3022 3023 return Chain; 3024 } 3025 3026 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3027 // value to MVT::i64 and then truncate to the correct register size. 3028 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3029 EVT ObjectVT, SelectionDAG &DAG, 3030 SDValue ArgVal, 3031 const SDLoc &dl) const { 3032 if (Flags.isSExt()) 3033 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3034 DAG.getValueType(ObjectVT)); 3035 else if (Flags.isZExt()) 3036 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3037 DAG.getValueType(ObjectVT)); 3038 3039 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3040 } 3041 3042 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3043 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3044 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3045 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3046 // TODO: add description of PPC stack frame format, or at least some docs. 3047 // 3048 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3049 bool isLittleEndian = Subtarget.isLittleEndian(); 3050 MachineFunction &MF = DAG.getMachineFunction(); 3051 MachineFrameInfo *MFI = MF.getFrameInfo(); 3052 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3053 3054 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3055 "fastcc not supported on varargs functions"); 3056 3057 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3058 // Potential tail calls could cause overwriting of argument stack slots. 3059 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3060 (CallConv == CallingConv::Fast)); 3061 unsigned PtrByteSize = 8; 3062 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3063 3064 static const MCPhysReg GPR[] = { 3065 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3066 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3067 }; 3068 static const MCPhysReg VR[] = { 3069 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3070 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3071 }; 3072 static const MCPhysReg VSRH[] = { 3073 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 3074 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 3075 }; 3076 3077 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3078 const unsigned Num_FPR_Regs = 13; 3079 const unsigned Num_VR_Regs = array_lengthof(VR); 3080 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3081 3082 // Do a first pass over the arguments to determine whether the ABI 3083 // guarantees that our caller has allocated the parameter save area 3084 // on its stack frame. In the ELFv1 ABI, this is always the case; 3085 // in the ELFv2 ABI, it is true if this is a vararg function or if 3086 // any parameter is located in a stack slot. 3087 3088 bool HasParameterArea = !isELFv2ABI || isVarArg; 3089 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3090 unsigned NumBytes = LinkageSize; 3091 unsigned AvailableFPRs = Num_FPR_Regs; 3092 unsigned AvailableVRs = Num_VR_Regs; 3093 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3094 if (Ins[i].Flags.isNest()) 3095 continue; 3096 3097 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3098 PtrByteSize, LinkageSize, ParamAreaSize, 3099 NumBytes, AvailableFPRs, AvailableVRs, 3100 Subtarget.hasQPX())) 3101 HasParameterArea = true; 3102 } 3103 3104 // Add DAG nodes to load the arguments or copy them out of registers. On 3105 // entry to a function on PPC, the arguments start after the linkage area, 3106 // although the first ones are often in registers. 3107 3108 unsigned ArgOffset = LinkageSize; 3109 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3110 unsigned &QFPR_idx = FPR_idx; 3111 SmallVector<SDValue, 8> MemOps; 3112 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3113 unsigned CurArgIdx = 0; 3114 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3115 SDValue ArgVal; 3116 bool needsLoad = false; 3117 EVT ObjectVT = Ins[ArgNo].VT; 3118 EVT OrigVT = Ins[ArgNo].ArgVT; 3119 unsigned ObjSize = ObjectVT.getStoreSize(); 3120 unsigned ArgSize = ObjSize; 3121 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3122 if (Ins[ArgNo].isOrigArg()) { 3123 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3124 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3125 } 3126 // We re-align the argument offset for each argument, except when using the 3127 // fast calling convention, when we need to make sure we do that only when 3128 // we'll actually use a stack slot. 3129 unsigned CurArgOffset, Align; 3130 auto ComputeArgOffset = [&]() { 3131 /* Respect alignment of argument on the stack. */ 3132 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3133 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3134 CurArgOffset = ArgOffset; 3135 }; 3136 3137 if (CallConv != CallingConv::Fast) { 3138 ComputeArgOffset(); 3139 3140 /* Compute GPR index associated with argument offset. */ 3141 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3142 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3143 } 3144 3145 // FIXME the codegen can be much improved in some cases. 3146 // We do not have to keep everything in memory. 3147 if (Flags.isByVal()) { 3148 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3149 3150 if (CallConv == CallingConv::Fast) 3151 ComputeArgOffset(); 3152 3153 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3154 ObjSize = Flags.getByValSize(); 3155 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3156 // Empty aggregate parameters do not take up registers. Examples: 3157 // struct { } a; 3158 // union { } b; 3159 // int c[0]; 3160 // etc. However, we have to provide a place-holder in InVals, so 3161 // pretend we have an 8-byte item at the current address for that 3162 // purpose. 3163 if (!ObjSize) { 3164 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3165 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3166 InVals.push_back(FIN); 3167 continue; 3168 } 3169 3170 // Create a stack object covering all stack doublewords occupied 3171 // by the argument. If the argument is (fully or partially) on 3172 // the stack, or if the argument is fully in registers but the 3173 // caller has allocated the parameter save anyway, we can refer 3174 // directly to the caller's stack frame. Otherwise, create a 3175 // local copy in our own frame. 3176 int FI; 3177 if (HasParameterArea || 3178 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3179 FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true); 3180 else 3181 FI = MFI->CreateStackObject(ArgSize, Align, false); 3182 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3183 3184 // Handle aggregates smaller than 8 bytes. 3185 if (ObjSize < PtrByteSize) { 3186 // The value of the object is its address, which differs from the 3187 // address of the enclosing doubleword on big-endian systems. 3188 SDValue Arg = FIN; 3189 if (!isLittleEndian) { 3190 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3191 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3192 } 3193 InVals.push_back(Arg); 3194 3195 if (GPR_idx != Num_GPR_Regs) { 3196 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3197 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3198 SDValue Store; 3199 3200 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3201 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3202 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3203 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3204 MachinePointerInfo(&*FuncArg), ObjType, 3205 false, false, 0); 3206 } else { 3207 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3208 // store the whole register as-is to the parameter save area 3209 // slot. 3210 Store = 3211 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3212 MachinePointerInfo(&*FuncArg), false, false, 0); 3213 } 3214 3215 MemOps.push_back(Store); 3216 } 3217 // Whether we copied from a register or not, advance the offset 3218 // into the parameter save area by a full doubleword. 3219 ArgOffset += PtrByteSize; 3220 continue; 3221 } 3222 3223 // The value of the object is its address, which is the address of 3224 // its first stack doubleword. 3225 InVals.push_back(FIN); 3226 3227 // Store whatever pieces of the object are in registers to memory. 3228 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3229 if (GPR_idx == Num_GPR_Regs) 3230 break; 3231 3232 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3233 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3234 SDValue Addr = FIN; 3235 if (j) { 3236 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3237 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3238 } 3239 SDValue Store = 3240 DAG.getStore(Val.getValue(1), dl, Val, Addr, 3241 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3242 MemOps.push_back(Store); 3243 ++GPR_idx; 3244 } 3245 ArgOffset += ArgSize; 3246 continue; 3247 } 3248 3249 switch (ObjectVT.getSimpleVT().SimpleTy) { 3250 default: llvm_unreachable("Unhandled argument type!"); 3251 case MVT::i1: 3252 case MVT::i32: 3253 case MVT::i64: 3254 if (Flags.isNest()) { 3255 // The 'nest' parameter, if any, is passed in R11. 3256 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3257 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3258 3259 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3260 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3261 3262 break; 3263 } 3264 3265 // These can be scalar arguments or elements of an integer array type 3266 // passed directly. Clang may use those instead of "byval" aggregate 3267 // types to avoid forcing arguments to memory unnecessarily. 3268 if (GPR_idx != Num_GPR_Regs) { 3269 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3270 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3271 3272 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3273 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3274 // value to MVT::i64 and then truncate to the correct register size. 3275 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3276 } else { 3277 if (CallConv == CallingConv::Fast) 3278 ComputeArgOffset(); 3279 3280 needsLoad = true; 3281 ArgSize = PtrByteSize; 3282 } 3283 if (CallConv != CallingConv::Fast || needsLoad) 3284 ArgOffset += 8; 3285 break; 3286 3287 case MVT::f32: 3288 case MVT::f64: 3289 // These can be scalar arguments or elements of a float array type 3290 // passed directly. The latter are used to implement ELFv2 homogenous 3291 // float aggregates. 3292 if (FPR_idx != Num_FPR_Regs) { 3293 unsigned VReg; 3294 3295 if (ObjectVT == MVT::f32) 3296 VReg = MF.addLiveIn(FPR[FPR_idx], 3297 Subtarget.hasP8Vector() 3298 ? &PPC::VSSRCRegClass 3299 : &PPC::F4RCRegClass); 3300 else 3301 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 3302 ? &PPC::VSFRCRegClass 3303 : &PPC::F8RCRegClass); 3304 3305 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3306 ++FPR_idx; 3307 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 3308 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 3309 // once we support fp <-> gpr moves. 3310 3311 // This can only ever happen in the presence of f32 array types, 3312 // since otherwise we never run out of FPRs before running out 3313 // of GPRs. 3314 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3315 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3316 3317 if (ObjectVT == MVT::f32) { 3318 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 3319 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 3320 DAG.getConstant(32, dl, MVT::i32)); 3321 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 3322 } 3323 3324 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 3325 } else { 3326 if (CallConv == CallingConv::Fast) 3327 ComputeArgOffset(); 3328 3329 needsLoad = true; 3330 } 3331 3332 // When passing an array of floats, the array occupies consecutive 3333 // space in the argument area; only round up to the next doubleword 3334 // at the end of the array. Otherwise, each float takes 8 bytes. 3335 if (CallConv != CallingConv::Fast || needsLoad) { 3336 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 3337 ArgOffset += ArgSize; 3338 if (Flags.isInConsecutiveRegsLast()) 3339 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3340 } 3341 break; 3342 case MVT::v4f32: 3343 case MVT::v4i32: 3344 case MVT::v8i16: 3345 case MVT::v16i8: 3346 case MVT::v2f64: 3347 case MVT::v2i64: 3348 case MVT::v1i128: 3349 if (!Subtarget.hasQPX()) { 3350 // These can be scalar arguments or elements of a vector array type 3351 // passed directly. The latter are used to implement ELFv2 homogenous 3352 // vector aggregates. 3353 if (VR_idx != Num_VR_Regs) { 3354 unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ? 3355 MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) : 3356 MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3357 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3358 ++VR_idx; 3359 } else { 3360 if (CallConv == CallingConv::Fast) 3361 ComputeArgOffset(); 3362 3363 needsLoad = true; 3364 } 3365 if (CallConv != CallingConv::Fast || needsLoad) 3366 ArgOffset += 16; 3367 break; 3368 } // not QPX 3369 3370 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 3371 "Invalid QPX parameter type"); 3372 /* fall through */ 3373 3374 case MVT::v4f64: 3375 case MVT::v4i1: 3376 // QPX vectors are treated like their scalar floating-point subregisters 3377 // (except that they're larger). 3378 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 3379 if (QFPR_idx != Num_QFPR_Regs) { 3380 const TargetRegisterClass *RC; 3381 switch (ObjectVT.getSimpleVT().SimpleTy) { 3382 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 3383 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 3384 default: RC = &PPC::QBRCRegClass; break; 3385 } 3386 3387 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 3388 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3389 ++QFPR_idx; 3390 } else { 3391 if (CallConv == CallingConv::Fast) 3392 ComputeArgOffset(); 3393 needsLoad = true; 3394 } 3395 if (CallConv != CallingConv::Fast || needsLoad) 3396 ArgOffset += Sz; 3397 break; 3398 } 3399 3400 // We need to load the argument to a virtual register if we determined 3401 // above that we ran out of physical registers of the appropriate type. 3402 if (needsLoad) { 3403 if (ObjSize < ArgSize && !isLittleEndian) 3404 CurArgOffset += ArgSize - ObjSize; 3405 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 3406 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3407 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3408 false, false, false, 0); 3409 } 3410 3411 InVals.push_back(ArgVal); 3412 } 3413 3414 // Area that is at least reserved in the caller of this function. 3415 unsigned MinReservedArea; 3416 if (HasParameterArea) 3417 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 3418 else 3419 MinReservedArea = LinkageSize; 3420 3421 // Set the size that is at least reserved in caller of this function. Tail 3422 // call optimized functions' reserved stack space needs to be aligned so that 3423 // taking the difference between two stack areas will result in an aligned 3424 // stack. 3425 MinReservedArea = 3426 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3427 FuncInfo->setMinReservedArea(MinReservedArea); 3428 3429 // If the function takes variable number of arguments, make a frame index for 3430 // the start of the first vararg value... for expansion of llvm.va_start. 3431 if (isVarArg) { 3432 int Depth = ArgOffset; 3433 3434 FuncInfo->setVarArgsFrameIndex( 3435 MFI->CreateFixedObject(PtrByteSize, Depth, true)); 3436 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3437 3438 // If this function is vararg, store any remaining integer argument regs 3439 // to their spots on the stack so that they may be loaded by deferencing the 3440 // result of va_next. 3441 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3442 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 3443 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3444 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3445 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3446 MachinePointerInfo(), false, false, 0); 3447 MemOps.push_back(Store); 3448 // Increment the address by four for the next argument to store 3449 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 3450 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3451 } 3452 } 3453 3454 if (!MemOps.empty()) 3455 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3456 3457 return Chain; 3458 } 3459 3460 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 3461 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3462 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3463 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3464 // TODO: add description of PPC stack frame format, or at least some docs. 3465 // 3466 MachineFunction &MF = DAG.getMachineFunction(); 3467 MachineFrameInfo *MFI = MF.getFrameInfo(); 3468 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3469 3470 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 3471 bool isPPC64 = PtrVT == MVT::i64; 3472 // Potential tail calls could cause overwriting of argument stack slots. 3473 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3474 (CallConv == CallingConv::Fast)); 3475 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3476 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3477 unsigned ArgOffset = LinkageSize; 3478 // Area that is at least reserved in caller of this function. 3479 unsigned MinReservedArea = ArgOffset; 3480 3481 static const MCPhysReg GPR_32[] = { // 32-bit registers. 3482 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3483 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3484 }; 3485 static const MCPhysReg GPR_64[] = { // 64-bit registers. 3486 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3487 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3488 }; 3489 static const MCPhysReg VR[] = { 3490 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3491 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3492 }; 3493 3494 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 3495 const unsigned Num_FPR_Regs = 13; 3496 const unsigned Num_VR_Regs = array_lengthof( VR); 3497 3498 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3499 3500 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 3501 3502 // In 32-bit non-varargs functions, the stack space for vectors is after the 3503 // stack space for non-vectors. We do not use this space unless we have 3504 // too many vectors to fit in registers, something that only occurs in 3505 // constructed examples:), but we have to walk the arglist to figure 3506 // that out...for the pathological case, compute VecArgOffset as the 3507 // start of the vector parameter area. Computing VecArgOffset is the 3508 // entire point of the following loop. 3509 unsigned VecArgOffset = ArgOffset; 3510 if (!isVarArg && !isPPC64) { 3511 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 3512 ++ArgNo) { 3513 EVT ObjectVT = Ins[ArgNo].VT; 3514 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3515 3516 if (Flags.isByVal()) { 3517 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 3518 unsigned ObjSize = Flags.getByValSize(); 3519 unsigned ArgSize = 3520 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3521 VecArgOffset += ArgSize; 3522 continue; 3523 } 3524 3525 switch(ObjectVT.getSimpleVT().SimpleTy) { 3526 default: llvm_unreachable("Unhandled argument type!"); 3527 case MVT::i1: 3528 case MVT::i32: 3529 case MVT::f32: 3530 VecArgOffset += 4; 3531 break; 3532 case MVT::i64: // PPC64 3533 case MVT::f64: 3534 // FIXME: We are guaranteed to be !isPPC64 at this point. 3535 // Does MVT::i64 apply? 3536 VecArgOffset += 8; 3537 break; 3538 case MVT::v4f32: 3539 case MVT::v4i32: 3540 case MVT::v8i16: 3541 case MVT::v16i8: 3542 // Nothing to do, we're only looking at Nonvector args here. 3543 break; 3544 } 3545 } 3546 } 3547 // We've found where the vector parameter area in memory is. Skip the 3548 // first 12 parameters; these don't use that memory. 3549 VecArgOffset = ((VecArgOffset+15)/16)*16; 3550 VecArgOffset += 12*16; 3551 3552 // Add DAG nodes to load the arguments or copy them out of registers. On 3553 // entry to a function on PPC, the arguments start after the linkage area, 3554 // although the first ones are often in registers. 3555 3556 SmallVector<SDValue, 8> MemOps; 3557 unsigned nAltivecParamsAtEnd = 0; 3558 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin(); 3559 unsigned CurArgIdx = 0; 3560 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3561 SDValue ArgVal; 3562 bool needsLoad = false; 3563 EVT ObjectVT = Ins[ArgNo].VT; 3564 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 3565 unsigned ArgSize = ObjSize; 3566 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3567 if (Ins[ArgNo].isOrigArg()) { 3568 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3569 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3570 } 3571 unsigned CurArgOffset = ArgOffset; 3572 3573 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 3574 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 3575 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 3576 if (isVarArg || isPPC64) { 3577 MinReservedArea = ((MinReservedArea+15)/16)*16; 3578 MinReservedArea += CalculateStackSlotSize(ObjectVT, 3579 Flags, 3580 PtrByteSize); 3581 } else nAltivecParamsAtEnd++; 3582 } else 3583 // Calculate min reserved area. 3584 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 3585 Flags, 3586 PtrByteSize); 3587 3588 // FIXME the codegen can be much improved in some cases. 3589 // We do not have to keep everything in memory. 3590 if (Flags.isByVal()) { 3591 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3592 3593 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3594 ObjSize = Flags.getByValSize(); 3595 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3596 // Objects of size 1 and 2 are right justified, everything else is 3597 // left justified. This means the memory address is adjusted forwards. 3598 if (ObjSize==1 || ObjSize==2) { 3599 CurArgOffset = CurArgOffset + (4 - ObjSize); 3600 } 3601 // The value of the object is its address. 3602 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true); 3603 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3604 InVals.push_back(FIN); 3605 if (ObjSize==1 || ObjSize==2) { 3606 if (GPR_idx != Num_GPR_Regs) { 3607 unsigned VReg; 3608 if (isPPC64) 3609 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3610 else 3611 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3612 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3613 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 3614 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 3615 MachinePointerInfo(&*FuncArg), 3616 ObjType, false, false, 0); 3617 MemOps.push_back(Store); 3618 ++GPR_idx; 3619 } 3620 3621 ArgOffset += PtrByteSize; 3622 3623 continue; 3624 } 3625 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3626 // Store whatever pieces of the object are in registers 3627 // to memory. ArgOffset will be the address of the beginning 3628 // of the object. 3629 if (GPR_idx != Num_GPR_Regs) { 3630 unsigned VReg; 3631 if (isPPC64) 3632 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3633 else 3634 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3635 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 3636 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3637 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3638 SDValue Store = 3639 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3640 MachinePointerInfo(&*FuncArg, j), false, false, 0); 3641 MemOps.push_back(Store); 3642 ++GPR_idx; 3643 ArgOffset += PtrByteSize; 3644 } else { 3645 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 3646 break; 3647 } 3648 } 3649 continue; 3650 } 3651 3652 switch (ObjectVT.getSimpleVT().SimpleTy) { 3653 default: llvm_unreachable("Unhandled argument type!"); 3654 case MVT::i1: 3655 case MVT::i32: 3656 if (!isPPC64) { 3657 if (GPR_idx != Num_GPR_Regs) { 3658 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3659 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3660 3661 if (ObjectVT == MVT::i1) 3662 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 3663 3664 ++GPR_idx; 3665 } else { 3666 needsLoad = true; 3667 ArgSize = PtrByteSize; 3668 } 3669 // All int arguments reserve stack space in the Darwin ABI. 3670 ArgOffset += PtrByteSize; 3671 break; 3672 } 3673 // FALLTHROUGH 3674 case MVT::i64: // PPC64 3675 if (GPR_idx != Num_GPR_Regs) { 3676 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3677 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3678 3679 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3680 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3681 // value to MVT::i64 and then truncate to the correct register size. 3682 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3683 3684 ++GPR_idx; 3685 } else { 3686 needsLoad = true; 3687 ArgSize = PtrByteSize; 3688 } 3689 // All int arguments reserve stack space in the Darwin ABI. 3690 ArgOffset += 8; 3691 break; 3692 3693 case MVT::f32: 3694 case MVT::f64: 3695 // Every 4 bytes of argument space consumes one of the GPRs available for 3696 // argument passing. 3697 if (GPR_idx != Num_GPR_Regs) { 3698 ++GPR_idx; 3699 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 3700 ++GPR_idx; 3701 } 3702 if (FPR_idx != Num_FPR_Regs) { 3703 unsigned VReg; 3704 3705 if (ObjectVT == MVT::f32) 3706 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 3707 else 3708 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 3709 3710 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3711 ++FPR_idx; 3712 } else { 3713 needsLoad = true; 3714 } 3715 3716 // All FP arguments reserve stack space in the Darwin ABI. 3717 ArgOffset += isPPC64 ? 8 : ObjSize; 3718 break; 3719 case MVT::v4f32: 3720 case MVT::v4i32: 3721 case MVT::v8i16: 3722 case MVT::v16i8: 3723 // Note that vector arguments in registers don't reserve stack space, 3724 // except in varargs functions. 3725 if (VR_idx != Num_VR_Regs) { 3726 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 3727 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 3728 if (isVarArg) { 3729 while ((ArgOffset % 16) != 0) { 3730 ArgOffset += PtrByteSize; 3731 if (GPR_idx != Num_GPR_Regs) 3732 GPR_idx++; 3733 } 3734 ArgOffset += 16; 3735 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 3736 } 3737 ++VR_idx; 3738 } else { 3739 if (!isVarArg && !isPPC64) { 3740 // Vectors go after all the nonvectors. 3741 CurArgOffset = VecArgOffset; 3742 VecArgOffset += 16; 3743 } else { 3744 // Vectors are aligned. 3745 ArgOffset = ((ArgOffset+15)/16)*16; 3746 CurArgOffset = ArgOffset; 3747 ArgOffset += 16; 3748 } 3749 needsLoad = true; 3750 } 3751 break; 3752 } 3753 3754 // We need to load the argument to a virtual register if we determined above 3755 // that we ran out of physical registers of the appropriate type. 3756 if (needsLoad) { 3757 int FI = MFI->CreateFixedObject(ObjSize, 3758 CurArgOffset + (ArgSize - ObjSize), 3759 isImmutable); 3760 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3761 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 3762 false, false, false, 0); 3763 } 3764 3765 InVals.push_back(ArgVal); 3766 } 3767 3768 // Allow for Altivec parameters at the end, if needed. 3769 if (nAltivecParamsAtEnd) { 3770 MinReservedArea = ((MinReservedArea+15)/16)*16; 3771 MinReservedArea += 16*nAltivecParamsAtEnd; 3772 } 3773 3774 // Area that is at least reserved in the caller of this function. 3775 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 3776 3777 // Set the size that is at least reserved in caller of this function. Tail 3778 // call optimized functions' reserved stack space needs to be aligned so that 3779 // taking the difference between two stack areas will result in an aligned 3780 // stack. 3781 MinReservedArea = 3782 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3783 FuncInfo->setMinReservedArea(MinReservedArea); 3784 3785 // If the function takes variable number of arguments, make a frame index for 3786 // the start of the first vararg value... for expansion of llvm.va_start. 3787 if (isVarArg) { 3788 int Depth = ArgOffset; 3789 3790 FuncInfo->setVarArgsFrameIndex( 3791 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 3792 Depth, true)); 3793 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3794 3795 // If this function is vararg, store any remaining integer argument regs 3796 // to their spots on the stack so that they may be loaded by deferencing the 3797 // result of va_next. 3798 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 3799 unsigned VReg; 3800 3801 if (isPPC64) 3802 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3803 else 3804 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 3805 3806 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3807 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3808 MachinePointerInfo(), false, false, 0); 3809 MemOps.push_back(Store); 3810 // Increment the address by four for the next argument to store 3811 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3812 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3813 } 3814 } 3815 3816 if (!MemOps.empty()) 3817 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3818 3819 return Chain; 3820 } 3821 3822 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 3823 /// adjusted to accommodate the arguments for the tailcall. 3824 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 3825 unsigned ParamSize) { 3826 3827 if (!isTailCall) return 0; 3828 3829 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 3830 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 3831 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 3832 // Remember only if the new adjustement is bigger. 3833 if (SPDiff < FI->getTailCallSPDelta()) 3834 FI->setTailCallSPDelta(SPDiff); 3835 3836 return SPDiff; 3837 } 3838 3839 static bool isFunctionGlobalAddress(SDValue Callee); 3840 3841 static bool 3842 resideInSameModule(SDValue Callee, Reloc::Model RelMod) { 3843 // If !G, Callee can be an external symbol. 3844 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 3845 if (!G) return false; 3846 3847 const GlobalValue *GV = G->getGlobal(); 3848 3849 if (GV->isDeclaration()) return false; 3850 3851 switch(GV->getLinkage()) { 3852 default: llvm_unreachable("unknow linkage type"); 3853 case GlobalValue::AvailableExternallyLinkage: 3854 case GlobalValue::ExternalWeakLinkage: 3855 return false; 3856 3857 // Callee with weak linkage is allowed if it has hidden or protected 3858 // visibility 3859 case GlobalValue::LinkOnceAnyLinkage: 3860 case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions 3861 case GlobalValue::WeakAnyLinkage: 3862 case GlobalValue::WeakODRLinkage: // e.g. c++ template instantiation 3863 if (GV->hasDefaultVisibility()) 3864 return false; 3865 3866 case GlobalValue::ExternalLinkage: 3867 case GlobalValue::InternalLinkage: 3868 case GlobalValue::PrivateLinkage: 3869 break; 3870 } 3871 3872 // With '-fPIC', calling default visiblity function need insert 'nop' after 3873 // function call, no matter that function resides in same module or not, so 3874 // we treat it as in different module. 3875 if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility()) 3876 return false; 3877 3878 return true; 3879 } 3880 3881 static bool 3882 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 3883 const SmallVectorImpl<ISD::OutputArg> &Outs) { 3884 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64()); 3885 3886 const unsigned PtrByteSize = 8; 3887 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3888 3889 static const MCPhysReg GPR[] = { 3890 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3891 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3892 }; 3893 static const MCPhysReg VR[] = { 3894 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3895 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3896 }; 3897 3898 const unsigned NumGPRs = array_lengthof(GPR); 3899 const unsigned NumFPRs = 13; 3900 const unsigned NumVRs = array_lengthof(VR); 3901 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 3902 3903 unsigned NumBytes = LinkageSize; 3904 unsigned AvailableFPRs = NumFPRs; 3905 unsigned AvailableVRs = NumVRs; 3906 3907 for (const ISD::OutputArg& Param : Outs) { 3908 if (Param.Flags.isNest()) continue; 3909 3910 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 3911 PtrByteSize, LinkageSize, ParamAreaSize, 3912 NumBytes, AvailableFPRs, AvailableVRs, 3913 Subtarget.hasQPX())) 3914 return true; 3915 } 3916 return false; 3917 } 3918 3919 static bool 3920 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) { 3921 if (CS->arg_size() != CallerFn->getArgumentList().size()) 3922 return false; 3923 3924 ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin(); 3925 ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end(); 3926 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 3927 3928 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 3929 const Value* CalleeArg = *CalleeArgIter; 3930 const Value* CallerArg = &(*CallerArgIter); 3931 if (CalleeArg == CallerArg) 3932 continue; 3933 3934 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 3935 // tail call @callee([4 x i64] undef, [4 x i64] %b) 3936 // } 3937 // 1st argument of callee is undef and has the same type as caller. 3938 if (CalleeArg->getType() == CallerArg->getType() && 3939 isa<UndefValue>(CalleeArg)) 3940 continue; 3941 3942 return false; 3943 } 3944 3945 return true; 3946 } 3947 3948 bool 3949 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 3950 SDValue Callee, 3951 CallingConv::ID CalleeCC, 3952 ImmutableCallSite *CS, 3953 bool isVarArg, 3954 const SmallVectorImpl<ISD::OutputArg> &Outs, 3955 const SmallVectorImpl<ISD::InputArg> &Ins, 3956 SelectionDAG& DAG) const { 3957 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 3958 3959 if (DisableSCO && !TailCallOpt) return false; 3960 3961 // Variadic argument functions are not supported. 3962 if (isVarArg) return false; 3963 3964 MachineFunction &MF = DAG.getMachineFunction(); 3965 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 3966 3967 // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has 3968 // the same calling convention 3969 if (CallerCC != CalleeCC) return false; 3970 3971 // SCO support C calling convention 3972 if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C) 3973 return false; 3974 3975 // Functions containing by val parameters are not supported. 3976 if (std::any_of(Ins.begin(), Ins.end(), 3977 [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); })) 3978 return false; 3979 3980 // No TCO/SCO on indirect call because Caller have to restore its TOC 3981 if (!isFunctionGlobalAddress(Callee) && 3982 !isa<ExternalSymbolSDNode>(Callee)) 3983 return false; 3984 3985 // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI 3986 // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another 3987 // module. 3988 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 3989 if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel())) 3990 return false; 3991 3992 // TCO allows altering callee ABI, so we don't have to check further. 3993 if (CalleeCC == CallingConv::Fast && TailCallOpt) 3994 return true; 3995 3996 if (DisableSCO) return false; 3997 3998 // If callee use the same argument list that caller is using, then we can 3999 // apply SCO on this case. If it is not, then we need to check if callee needs 4000 // stack for passing arguments. 4001 if (!hasSameArgumentList(MF.getFunction(), CS) && 4002 needStackSlotPassParameters(Subtarget, Outs)) { 4003 return false; 4004 } 4005 4006 return true; 4007 } 4008 4009 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4010 /// for tail call optimization. Targets which want to do tail call 4011 /// optimization should implement this function. 4012 bool 4013 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4014 CallingConv::ID CalleeCC, 4015 bool isVarArg, 4016 const SmallVectorImpl<ISD::InputArg> &Ins, 4017 SelectionDAG& DAG) const { 4018 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4019 return false; 4020 4021 // Variable argument functions are not supported. 4022 if (isVarArg) 4023 return false; 4024 4025 MachineFunction &MF = DAG.getMachineFunction(); 4026 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 4027 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4028 // Functions containing by val parameters are not supported. 4029 for (unsigned i = 0; i != Ins.size(); i++) { 4030 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4031 if (Flags.isByVal()) return false; 4032 } 4033 4034 // Non-PIC/GOT tail calls are supported. 4035 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4036 return true; 4037 4038 // At the moment we can only do local tail calls (in same module, hidden 4039 // or protected) if we are generating PIC. 4040 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4041 return G->getGlobal()->hasHiddenVisibility() 4042 || G->getGlobal()->hasProtectedVisibility(); 4043 } 4044 4045 return false; 4046 } 4047 4048 /// isCallCompatibleAddress - Return the immediate to use if the specified 4049 /// 32-bit value is representable in the immediate field of a BxA instruction. 4050 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4051 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4052 if (!C) return nullptr; 4053 4054 int Addr = C->getZExtValue(); 4055 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4056 SignExtend32<26>(Addr) != Addr) 4057 return nullptr; // Top 6 bits have to be sext of immediate. 4058 4059 return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op), 4060 DAG.getTargetLoweringInfo().getPointerTy( 4061 DAG.getDataLayout())).getNode(); 4062 } 4063 4064 namespace { 4065 4066 struct TailCallArgumentInfo { 4067 SDValue Arg; 4068 SDValue FrameIdxOp; 4069 int FrameIdx; 4070 4071 TailCallArgumentInfo() : FrameIdx(0) {} 4072 }; 4073 } 4074 4075 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4076 static void StoreTailCallArgumentsToStackSlot( 4077 SelectionDAG &DAG, SDValue Chain, 4078 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4079 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4080 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4081 SDValue Arg = TailCallArgs[i].Arg; 4082 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4083 int FI = TailCallArgs[i].FrameIdx; 4084 // Store relative to framepointer. 4085 MemOpChains.push_back(DAG.getStore( 4086 Chain, dl, Arg, FIN, 4087 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 4088 false, 0)); 4089 } 4090 } 4091 4092 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4093 /// the appropriate stack slot for the tail call optimized function call. 4094 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 4095 MachineFunction &MF, SDValue Chain, 4096 SDValue OldRetAddr, SDValue OldFP, 4097 int SPDiff, bool isPPC64, 4098 bool isDarwinABI, 4099 const SDLoc &dl) { 4100 if (SPDiff) { 4101 // Calculate the new stack slot for the return address. 4102 int SlotSize = isPPC64 ? 8 : 4; 4103 const PPCFrameLowering *FL = 4104 MF.getSubtarget<PPCSubtarget>().getFrameLowering(); 4105 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4106 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 4107 NewRetAddrLoc, true); 4108 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4109 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4110 Chain = DAG.getStore( 4111 Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4112 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr), 4113 false, false, 0); 4114 4115 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4116 // slot as the FP is never overwritten. 4117 if (isDarwinABI) { 4118 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4119 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 4120 true); 4121 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4122 Chain = DAG.getStore( 4123 Chain, dl, OldFP, NewFramePtrIdx, 4124 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx), 4125 false, false, 0); 4126 } 4127 } 4128 return Chain; 4129 } 4130 4131 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4132 /// the position of the argument. 4133 static void 4134 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4135 SDValue Arg, int SPDiff, unsigned ArgOffset, 4136 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4137 int Offset = ArgOffset + SPDiff; 4138 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 4139 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 4140 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4141 SDValue FIN = DAG.getFrameIndex(FI, VT); 4142 TailCallArgumentInfo Info; 4143 Info.Arg = Arg; 4144 Info.FrameIdxOp = FIN; 4145 Info.FrameIdx = FI; 4146 TailCallArguments.push_back(Info); 4147 } 4148 4149 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4150 /// stack slot. Returns the chain as result and the loaded frame pointers in 4151 /// LROpOut/FPOpout. Used when tail calling. 4152 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4153 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4154 SDValue &FPOpOut, bool isDarwinABI, const SDLoc &dl) const { 4155 if (SPDiff) { 4156 // Load the LR and FP stack slot for later adjusting. 4157 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4158 LROpOut = getReturnAddrFrameIndex(DAG); 4159 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 4160 false, false, false, 0); 4161 Chain = SDValue(LROpOut.getNode(), 1); 4162 4163 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4164 // slot as the FP is never overwritten. 4165 if (isDarwinABI) { 4166 FPOpOut = getFramePointerFrameIndex(DAG); 4167 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 4168 false, false, false, 0); 4169 Chain = SDValue(FPOpOut.getNode(), 1); 4170 } 4171 } 4172 return Chain; 4173 } 4174 4175 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4176 /// by "Src" to address "Dst" of size "Size". Alignment information is 4177 /// specified by the specific parameter attribute. The copy will be passed as 4178 /// a byval function parameter. 4179 /// Sometimes what we are copying is the end of a larger object, the part that 4180 /// does not fit in registers. 4181 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4182 SDValue Chain, ISD::ArgFlagsTy Flags, 4183 SelectionDAG &DAG, const SDLoc &dl) { 4184 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4185 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4186 false, false, false, MachinePointerInfo(), 4187 MachinePointerInfo()); 4188 } 4189 4190 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4191 /// tail calls. 4192 static void LowerMemOpCallTo( 4193 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4194 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4195 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4196 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4197 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4198 if (!isTailCall) { 4199 if (isVector) { 4200 SDValue StackPtr; 4201 if (isPPC64) 4202 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4203 else 4204 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4205 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4206 DAG.getConstant(ArgOffset, dl, PtrVT)); 4207 } 4208 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4209 MachinePointerInfo(), false, false, 0)); 4210 // Calculate and remember argument location. 4211 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4212 TailCallArguments); 4213 } 4214 4215 static void 4216 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4217 const SDLoc &dl, bool isPPC64, int SPDiff, unsigned NumBytes, 4218 SDValue LROp, SDValue FPOp, bool isDarwinABI, 4219 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4220 MachineFunction &MF = DAG.getMachineFunction(); 4221 4222 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4223 // might overwrite each other in case of tail call optimization. 4224 SmallVector<SDValue, 8> MemOpChains2; 4225 // Do not flag preceding copytoreg stuff together with the following stuff. 4226 InFlag = SDValue(); 4227 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4228 MemOpChains2, dl); 4229 if (!MemOpChains2.empty()) 4230 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4231 4232 // Store the return address to the appropriate stack slot. 4233 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 4234 isPPC64, isDarwinABI, dl); 4235 4236 // Emit callseq_end just before tailcall node. 4237 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4238 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 4239 InFlag = Chain.getValue(1); 4240 } 4241 4242 // Is this global address that of a function that can be called by name? (as 4243 // opposed to something that must hold a descriptor for an indirect call). 4244 static bool isFunctionGlobalAddress(SDValue Callee) { 4245 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4246 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 4247 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 4248 return false; 4249 4250 return G->getGlobal()->getValueType()->isFunctionTy(); 4251 } 4252 4253 return false; 4254 } 4255 4256 static unsigned 4257 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain, 4258 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall, 4259 bool IsPatchPoint, bool hasNest, 4260 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, 4261 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys, 4262 ImmutableCallSite *CS, const PPCSubtarget &Subtarget) { 4263 4264 bool isPPC64 = Subtarget.isPPC64(); 4265 bool isSVR4ABI = Subtarget.isSVR4ABI(); 4266 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4267 4268 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4269 NodeTys.push_back(MVT::Other); // Returns a chain 4270 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 4271 4272 unsigned CallOpc = PPCISD::CALL; 4273 4274 bool needIndirectCall = true; 4275 if (!isSVR4ABI || !isPPC64) 4276 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 4277 // If this is an absolute destination address, use the munged value. 4278 Callee = SDValue(Dest, 0); 4279 needIndirectCall = false; 4280 } 4281 4282 if (isFunctionGlobalAddress(Callee)) { 4283 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 4284 // A call to a TLS address is actually an indirect call to a 4285 // thread-specific pointer. 4286 unsigned OpFlags = 0; 4287 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4288 (Subtarget.getTargetTriple().isMacOSX() && 4289 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 4290 !G->getGlobal()->isStrongDefinitionForLinker()) || 4291 (Subtarget.isTargetELF() && !isPPC64 && 4292 !G->getGlobal()->hasLocalLinkage() && 4293 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4294 // PC-relative references to external symbols should go through $stub, 4295 // unless we're building with the leopard linker or later, which 4296 // automatically synthesizes these stubs. 4297 OpFlags = PPCII::MO_PLT_OR_STUB; 4298 } 4299 4300 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 4301 // every direct call is) turn it into a TargetGlobalAddress / 4302 // TargetExternalSymbol node so that legalize doesn't hack it. 4303 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 4304 Callee.getValueType(), 0, OpFlags); 4305 needIndirectCall = false; 4306 } 4307 4308 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4309 unsigned char OpFlags = 0; 4310 4311 if ((DAG.getTarget().getRelocationModel() != Reloc::Static && 4312 (Subtarget.getTargetTriple().isMacOSX() && 4313 Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) || 4314 (Subtarget.isTargetELF() && !isPPC64 && 4315 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { 4316 // PC-relative references to external symbols should go through $stub, 4317 // unless we're building with the leopard linker or later, which 4318 // automatically synthesizes these stubs. 4319 OpFlags = PPCII::MO_PLT_OR_STUB; 4320 } 4321 4322 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 4323 OpFlags); 4324 needIndirectCall = false; 4325 } 4326 4327 if (IsPatchPoint) { 4328 // We'll form an invalid direct call when lowering a patchpoint; the full 4329 // sequence for an indirect call is complicated, and many of the 4330 // instructions introduced might have side effects (and, thus, can't be 4331 // removed later). The call itself will be removed as soon as the 4332 // argument/return lowering is complete, so the fact that it has the wrong 4333 // kind of operands should not really matter. 4334 needIndirectCall = false; 4335 } 4336 4337 if (needIndirectCall) { 4338 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 4339 // to do the call, we can't use PPCISD::CALL. 4340 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 4341 4342 if (isSVR4ABI && isPPC64 && !isELFv2ABI) { 4343 // Function pointers in the 64-bit SVR4 ABI do not point to the function 4344 // entry point, but to the function descriptor (the function entry point 4345 // address is part of the function descriptor though). 4346 // The function descriptor is a three doubleword structure with the 4347 // following fields: function entry point, TOC base address and 4348 // environment pointer. 4349 // Thus for a call through a function pointer, the following actions need 4350 // to be performed: 4351 // 1. Save the TOC of the caller in the TOC save area of its stack 4352 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 4353 // 2. Load the address of the function entry point from the function 4354 // descriptor. 4355 // 3. Load the TOC of the callee from the function descriptor into r2. 4356 // 4. Load the environment pointer from the function descriptor into 4357 // r11. 4358 // 5. Branch to the function entry point address. 4359 // 6. On return of the callee, the TOC of the caller needs to be 4360 // restored (this is done in FinishCall()). 4361 // 4362 // The loads are scheduled at the beginning of the call sequence, and the 4363 // register copies are flagged together to ensure that no other 4364 // operations can be scheduled in between. E.g. without flagging the 4365 // copies together, a TOC access in the caller could be scheduled between 4366 // the assignment of the callee TOC and the branch to the callee, which 4367 // results in the TOC access going through the TOC of the callee instead 4368 // of going through the TOC of the caller, which leads to incorrect code. 4369 4370 // Load the address of the function entry point from the function 4371 // descriptor. 4372 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1); 4373 if (LDChain.getValueType() == MVT::Glue) 4374 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2); 4375 4376 bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors(); 4377 4378 MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr); 4379 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI, 4380 false, false, LoadsInv, 8); 4381 4382 // Load environment pointer into r11. 4383 SDValue PtrOff = DAG.getIntPtrConstant(16, dl); 4384 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 4385 SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, 4386 MPI.getWithOffset(16), false, false, 4387 LoadsInv, 8); 4388 4389 SDValue TOCOff = DAG.getIntPtrConstant(8, dl); 4390 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff); 4391 SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, 4392 MPI.getWithOffset(8), false, false, 4393 LoadsInv, 8); 4394 4395 setUsesTOCBasePtr(DAG); 4396 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr, 4397 InFlag); 4398 Chain = TOCVal.getValue(0); 4399 InFlag = TOCVal.getValue(1); 4400 4401 // If the function call has an explicit 'nest' parameter, it takes the 4402 // place of the environment pointer. 4403 if (!hasNest) { 4404 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 4405 InFlag); 4406 4407 Chain = EnvVal.getValue(0); 4408 InFlag = EnvVal.getValue(1); 4409 } 4410 4411 MTCTROps[0] = Chain; 4412 MTCTROps[1] = LoadFuncPtr; 4413 MTCTROps[2] = InFlag; 4414 } 4415 4416 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, 4417 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2)); 4418 InFlag = Chain.getValue(1); 4419 4420 NodeTys.clear(); 4421 NodeTys.push_back(MVT::Other); 4422 NodeTys.push_back(MVT::Glue); 4423 Ops.push_back(Chain); 4424 CallOpc = PPCISD::BCTRL; 4425 Callee.setNode(nullptr); 4426 // Add use of X11 (holding environment pointer) 4427 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest) 4428 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT)); 4429 // Add CTR register as callee so a bctr can be emitted later. 4430 if (isTailCall) 4431 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 4432 } 4433 4434 // If this is a direct call, pass the chain and the callee. 4435 if (Callee.getNode()) { 4436 Ops.push_back(Chain); 4437 Ops.push_back(Callee); 4438 } 4439 // If this is a tail call add stack pointer delta. 4440 if (isTailCall) 4441 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 4442 4443 // Add argument registers to the end of the list so that they are known live 4444 // into the call. 4445 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 4446 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 4447 RegsToPass[i].second.getValueType())); 4448 4449 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live 4450 // into the call. 4451 if (isSVR4ABI && isPPC64 && !IsPatchPoint) { 4452 setUsesTOCBasePtr(DAG); 4453 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT)); 4454 } 4455 4456 return CallOpc; 4457 } 4458 4459 static 4460 bool isLocalCall(const SDValue &Callee) 4461 { 4462 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4463 return G->getGlobal()->isStrongDefinitionForLinker(); 4464 return false; 4465 } 4466 4467 SDValue PPCTargetLowering::LowerCallResult( 4468 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4469 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4470 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4471 4472 SmallVector<CCValAssign, 16> RVLocs; 4473 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4474 *DAG.getContext()); 4475 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 4476 4477 // Copy all of the result registers out of their specified physreg. 4478 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 4479 CCValAssign &VA = RVLocs[i]; 4480 assert(VA.isRegLoc() && "Can only return in registers!"); 4481 4482 SDValue Val = DAG.getCopyFromReg(Chain, dl, 4483 VA.getLocReg(), VA.getLocVT(), InFlag); 4484 Chain = Val.getValue(1); 4485 InFlag = Val.getValue(2); 4486 4487 switch (VA.getLocInfo()) { 4488 default: llvm_unreachable("Unknown loc info!"); 4489 case CCValAssign::Full: break; 4490 case CCValAssign::AExt: 4491 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4492 break; 4493 case CCValAssign::ZExt: 4494 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 4495 DAG.getValueType(VA.getValVT())); 4496 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4497 break; 4498 case CCValAssign::SExt: 4499 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 4500 DAG.getValueType(VA.getValVT())); 4501 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 4502 break; 4503 } 4504 4505 InVals.push_back(Val); 4506 } 4507 4508 return Chain; 4509 } 4510 4511 SDValue PPCTargetLowering::FinishCall( 4512 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 4513 bool IsPatchPoint, bool hasNest, SelectionDAG &DAG, 4514 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag, 4515 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 4516 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 4517 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const { 4518 4519 std::vector<EVT> NodeTys; 4520 SmallVector<SDValue, 8> Ops; 4521 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl, 4522 SPDiff, isTailCall, IsPatchPoint, hasNest, 4523 RegsToPass, Ops, NodeTys, CS, Subtarget); 4524 4525 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 4526 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64()) 4527 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 4528 4529 // When performing tail call optimization the callee pops its arguments off 4530 // the stack. Account for this here so these bytes can be pushed back on in 4531 // PPCFrameLowering::eliminateCallFramePseudoInstr. 4532 int BytesCalleePops = 4533 (CallConv == CallingConv::Fast && 4534 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; 4535 4536 // Add a register mask operand representing the call-preserved registers. 4537 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 4538 const uint32_t *Mask = 4539 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 4540 assert(Mask && "Missing call preserved mask for calling convention"); 4541 Ops.push_back(DAG.getRegisterMask(Mask)); 4542 4543 if (InFlag.getNode()) 4544 Ops.push_back(InFlag); 4545 4546 // Emit tail call. 4547 if (isTailCall) { 4548 assert(((Callee.getOpcode() == ISD::Register && 4549 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 4550 Callee.getOpcode() == ISD::TargetExternalSymbol || 4551 Callee.getOpcode() == ISD::TargetGlobalAddress || 4552 isa<ConstantSDNode>(Callee)) && 4553 "Expecting an global address, external symbol, absolute value or register"); 4554 4555 DAG.getMachineFunction().getFrameInfo()->setHasTailCall(); 4556 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops); 4557 } 4558 4559 // Add a NOP immediately after the branch instruction when using the 64-bit 4560 // SVR4 ABI. At link time, if caller and callee are in a different module and 4561 // thus have a different TOC, the call will be replaced with a call to a stub 4562 // function which saves the current TOC, loads the TOC of the callee and 4563 // branches to the callee. The NOP will be replaced with a load instruction 4564 // which restores the TOC of the caller from the TOC save slot of the current 4565 // stack frame. If caller and callee belong to the same module (and have the 4566 // same TOC), the NOP will remain unchanged. 4567 4568 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() && 4569 !IsPatchPoint) { 4570 if (CallOpc == PPCISD::BCTRL) { 4571 // This is a call through a function pointer. 4572 // Restore the caller TOC from the save area into R2. 4573 // See PrepareCall() for more information about calls through function 4574 // pointers in the 64-bit SVR4 ABI. 4575 // We are using a target-specific load with r2 hard coded, because the 4576 // result of a target-independent load would never go directly into r2, 4577 // since r2 is a reserved register (which prevents the register allocator 4578 // from allocating it), resulting in an additional register being 4579 // allocated and an unnecessary move instruction being generated. 4580 CallOpc = PPCISD::BCTRL_LOAD_TOC; 4581 4582 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4583 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT); 4584 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 4585 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 4586 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff); 4587 4588 // The address needs to go after the chain input but before the flag (or 4589 // any other variadic arguments). 4590 Ops.insert(std::next(Ops.begin()), AddTOC); 4591 } else if ((CallOpc == PPCISD::CALL) && 4592 (!isLocalCall(Callee) || 4593 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) 4594 // Otherwise insert NOP for non-local calls. 4595 CallOpc = PPCISD::CALL_NOP; 4596 } 4597 4598 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 4599 InFlag = Chain.getValue(1); 4600 4601 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4602 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 4603 InFlag, dl); 4604 if (!Ins.empty()) 4605 InFlag = Chain.getValue(1); 4606 4607 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 4608 Ins, dl, DAG, InVals); 4609 } 4610 4611 SDValue 4612 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 4613 SmallVectorImpl<SDValue> &InVals) const { 4614 SelectionDAG &DAG = CLI.DAG; 4615 SDLoc &dl = CLI.DL; 4616 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 4617 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 4618 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 4619 SDValue Chain = CLI.Chain; 4620 SDValue Callee = CLI.Callee; 4621 bool &isTailCall = CLI.IsTailCall; 4622 CallingConv::ID CallConv = CLI.CallConv; 4623 bool isVarArg = CLI.IsVarArg; 4624 bool IsPatchPoint = CLI.IsPatchPoint; 4625 ImmutableCallSite *CS = CLI.CS; 4626 4627 if (isTailCall) { 4628 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 4629 isTailCall = 4630 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 4631 isVarArg, Outs, Ins, DAG); 4632 else 4633 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 4634 Ins, DAG); 4635 if (isTailCall) { 4636 ++NumTailCalls; 4637 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4638 ++NumSiblingCalls; 4639 4640 assert(isa<GlobalAddressSDNode>(Callee) && 4641 "Callee should be an llvm::Function object."); 4642 DEBUG( 4643 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 4644 const unsigned Width = 80 - strlen("TCO caller: ") 4645 - strlen(", callee linkage: 0, 0"); 4646 dbgs() << "TCO caller: " 4647 << left_justify(DAG.getMachineFunction().getName(), Width) 4648 << ", callee linkage: " 4649 << GV->getVisibility() << ", " << GV->getLinkage() << "\n" 4650 ); 4651 } 4652 } 4653 4654 if (!isTailCall && CS && CS->isMustTailCall()) 4655 report_fatal_error("failed to perform tail call elimination on a call " 4656 "site marked musttail"); 4657 4658 if (Subtarget.isSVR4ABI()) { 4659 if (Subtarget.isPPC64()) 4660 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 4661 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4662 dl, DAG, InVals, CS); 4663 else 4664 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 4665 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4666 dl, DAG, InVals, CS); 4667 } 4668 4669 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 4670 isTailCall, IsPatchPoint, Outs, OutVals, Ins, 4671 dl, DAG, InVals, CS); 4672 } 4673 4674 SDValue PPCTargetLowering::LowerCall_32SVR4( 4675 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4676 bool isTailCall, bool IsPatchPoint, 4677 const SmallVectorImpl<ISD::OutputArg> &Outs, 4678 const SmallVectorImpl<SDValue> &OutVals, 4679 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4680 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4681 ImmutableCallSite *CS) const { 4682 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 4683 // of the 32-bit SVR4 ABI stack frame layout. 4684 4685 assert((CallConv == CallingConv::C || 4686 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 4687 4688 unsigned PtrByteSize = 4; 4689 4690 MachineFunction &MF = DAG.getMachineFunction(); 4691 4692 // Mark this function as potentially containing a function that contains a 4693 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4694 // and restoring the callers stack pointer in this functions epilog. This is 4695 // done because by tail calling the called function might overwrite the value 4696 // in this function's (MF) stack pointer stack slot 0(SP). 4697 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4698 CallConv == CallingConv::Fast) 4699 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4700 4701 // Count how many bytes are to be pushed on the stack, including the linkage 4702 // area, parameter list area and the part of the local variable space which 4703 // contains copies of aggregates which are passed by value. 4704 4705 // Assign locations to all of the outgoing arguments. 4706 SmallVector<CCValAssign, 16> ArgLocs; 4707 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4708 *DAG.getContext()); 4709 4710 // Reserve space for the linkage area on the stack. 4711 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 4712 PtrByteSize); 4713 if (Subtarget.useSoftFloat()) 4714 CCInfo.PreAnalyzeCallOperands(Outs); 4715 4716 if (isVarArg) { 4717 // Handle fixed and variable vector arguments differently. 4718 // Fixed vector arguments go into registers as long as registers are 4719 // available. Variable vector arguments always go into memory. 4720 unsigned NumArgs = Outs.size(); 4721 4722 for (unsigned i = 0; i != NumArgs; ++i) { 4723 MVT ArgVT = Outs[i].VT; 4724 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4725 bool Result; 4726 4727 if (Outs[i].IsFixed) { 4728 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 4729 CCInfo); 4730 } else { 4731 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 4732 ArgFlags, CCInfo); 4733 } 4734 4735 if (Result) { 4736 #ifndef NDEBUG 4737 errs() << "Call operand #" << i << " has unhandled type " 4738 << EVT(ArgVT).getEVTString() << "\n"; 4739 #endif 4740 llvm_unreachable(nullptr); 4741 } 4742 } 4743 } else { 4744 // All arguments are treated the same. 4745 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 4746 } 4747 CCInfo.clearWasPPCF128(); 4748 4749 // Assign locations to all of the outgoing aggregate by value arguments. 4750 SmallVector<CCValAssign, 16> ByValArgLocs; 4751 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4752 ByValArgLocs, *DAG.getContext()); 4753 4754 // Reserve stack space for the allocations in CCInfo. 4755 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 4756 4757 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 4758 4759 // Size of the linkage area, parameter list area and the part of the local 4760 // space variable where copies of aggregates which are passed by value are 4761 // stored. 4762 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 4763 4764 // Calculate by how many bytes the stack has to be adjusted in case of tail 4765 // call optimization. 4766 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 4767 4768 // Adjust the stack pointer for the new arguments... 4769 // These operations are automatically eliminated by the prolog/epilog pass 4770 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 4771 dl); 4772 SDValue CallSeqStart = Chain; 4773 4774 // Load the return address and frame pointer so it can be moved somewhere else 4775 // later. 4776 SDValue LROp, FPOp; 4777 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 4778 dl); 4779 4780 // Set up a copy of the stack pointer for use loading and storing any 4781 // arguments that may not fit in the registers available for argument 4782 // passing. 4783 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4784 4785 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4786 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 4787 SmallVector<SDValue, 8> MemOpChains; 4788 4789 bool seenFloatArg = false; 4790 // Walk the register/memloc assignments, inserting copies/loads. 4791 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 4792 i != e; 4793 ++i) { 4794 CCValAssign &VA = ArgLocs[i]; 4795 SDValue Arg = OutVals[i]; 4796 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4797 4798 if (Flags.isByVal()) { 4799 // Argument is an aggregate which is passed by value, thus we need to 4800 // create a copy of it in the local variable space of the current stack 4801 // frame (which is the stack frame of the caller) and pass the address of 4802 // this copy to the callee. 4803 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 4804 CCValAssign &ByValVA = ByValArgLocs[j++]; 4805 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 4806 4807 // Memory reserved in the local variable space of the callers stack frame. 4808 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 4809 4810 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4811 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4812 StackPtr, PtrOff); 4813 4814 // Create a copy of the argument in the local area of the current 4815 // stack frame. 4816 SDValue MemcpyCall = 4817 CreateCopyOfByValArgument(Arg, PtrOff, 4818 CallSeqStart.getNode()->getOperand(0), 4819 Flags, DAG, dl); 4820 4821 // This must go outside the CALLSEQ_START..END. 4822 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4823 CallSeqStart.getNode()->getOperand(1), 4824 SDLoc(MemcpyCall)); 4825 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4826 NewCallSeqStart.getNode()); 4827 Chain = CallSeqStart = NewCallSeqStart; 4828 4829 // Pass the address of the aggregate copy on the stack either in a 4830 // physical register or in the parameter list area of the current stack 4831 // frame to the callee. 4832 Arg = PtrOff; 4833 } 4834 4835 if (VA.isRegLoc()) { 4836 if (Arg.getValueType() == MVT::i1) 4837 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg); 4838 4839 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 4840 // Put argument in a physical register. 4841 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 4842 } else { 4843 // Put argument in the parameter list area of the current stack frame. 4844 assert(VA.isMemLoc()); 4845 unsigned LocMemOffset = VA.getLocMemOffset(); 4846 4847 if (!isTailCall) { 4848 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 4849 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 4850 StackPtr, PtrOff); 4851 4852 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 4853 MachinePointerInfo(), 4854 false, false, 0)); 4855 } else { 4856 // Calculate and remember argument location. 4857 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 4858 TailCallArguments); 4859 } 4860 } 4861 } 4862 4863 if (!MemOpChains.empty()) 4864 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 4865 4866 // Build a sequence of copy-to-reg nodes chained together with token chain 4867 // and flag operands which copy the outgoing args into the appropriate regs. 4868 SDValue InFlag; 4869 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 4870 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 4871 RegsToPass[i].second, InFlag); 4872 InFlag = Chain.getValue(1); 4873 } 4874 4875 // Set CR bit 6 to true if this is a vararg call with floating args passed in 4876 // registers. 4877 if (isVarArg) { 4878 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 4879 SDValue Ops[] = { Chain, InFlag }; 4880 4881 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 4882 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 4883 4884 InFlag = Chain.getValue(1); 4885 } 4886 4887 if (isTailCall) 4888 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 4889 false, TailCallArguments); 4890 4891 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 4892 /* unused except on PPC64 ELFv1 */ false, DAG, 4893 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 4894 NumBytes, Ins, InVals, CS); 4895 } 4896 4897 // Copy an argument into memory, being careful to do this outside the 4898 // call sequence for the call to which the argument belongs. 4899 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 4900 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 4901 SelectionDAG &DAG, const SDLoc &dl) const { 4902 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 4903 CallSeqStart.getNode()->getOperand(0), 4904 Flags, DAG, dl); 4905 // The MEMCPY must go outside the CALLSEQ_START..END. 4906 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 4907 CallSeqStart.getNode()->getOperand(1), 4908 SDLoc(MemcpyCall)); 4909 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 4910 NewCallSeqStart.getNode()); 4911 return NewCallSeqStart; 4912 } 4913 4914 SDValue PPCTargetLowering::LowerCall_64SVR4( 4915 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 4916 bool isTailCall, bool IsPatchPoint, 4917 const SmallVectorImpl<ISD::OutputArg> &Outs, 4918 const SmallVectorImpl<SDValue> &OutVals, 4919 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4920 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 4921 ImmutableCallSite *CS) const { 4922 4923 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4924 bool isLittleEndian = Subtarget.isLittleEndian(); 4925 unsigned NumOps = Outs.size(); 4926 bool hasNest = false; 4927 bool IsSibCall = false; 4928 4929 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4930 unsigned PtrByteSize = 8; 4931 4932 MachineFunction &MF = DAG.getMachineFunction(); 4933 4934 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 4935 IsSibCall = true; 4936 4937 // Mark this function as potentially containing a function that contains a 4938 // tail call. As a consequence the frame pointer will be used for dynamicalloc 4939 // and restoring the callers stack pointer in this functions epilog. This is 4940 // done because by tail calling the called function might overwrite the value 4941 // in this function's (MF) stack pointer stack slot 0(SP). 4942 if (getTargetMachine().Options.GuaranteedTailCallOpt && 4943 CallConv == CallingConv::Fast) 4944 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 4945 4946 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4947 "fastcc not supported on varargs functions"); 4948 4949 // Count how many bytes are to be pushed on the stack, including the linkage 4950 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 4951 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 4952 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 4953 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4954 unsigned NumBytes = LinkageSize; 4955 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4956 unsigned &QFPR_idx = FPR_idx; 4957 4958 static const MCPhysReg GPR[] = { 4959 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4960 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4961 }; 4962 static const MCPhysReg VR[] = { 4963 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4964 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4965 }; 4966 static const MCPhysReg VSRH[] = { 4967 PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8, 4968 PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13 4969 }; 4970 4971 const unsigned NumGPRs = array_lengthof(GPR); 4972 const unsigned NumFPRs = 13; 4973 const unsigned NumVRs = array_lengthof(VR); 4974 const unsigned NumQFPRs = NumFPRs; 4975 4976 // When using the fast calling convention, we don't provide backing for 4977 // arguments that will be in registers. 4978 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 4979 4980 // Add up all the space actually used. 4981 for (unsigned i = 0; i != NumOps; ++i) { 4982 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4983 EVT ArgVT = Outs[i].VT; 4984 EVT OrigVT = Outs[i].ArgVT; 4985 4986 if (Flags.isNest()) 4987 continue; 4988 4989 if (CallConv == CallingConv::Fast) { 4990 if (Flags.isByVal()) 4991 NumGPRsUsed += (Flags.getByValSize()+7)/8; 4992 else 4993 switch (ArgVT.getSimpleVT().SimpleTy) { 4994 default: llvm_unreachable("Unexpected ValueType for argument!"); 4995 case MVT::i1: 4996 case MVT::i32: 4997 case MVT::i64: 4998 if (++NumGPRsUsed <= NumGPRs) 4999 continue; 5000 break; 5001 case MVT::v4i32: 5002 case MVT::v8i16: 5003 case MVT::v16i8: 5004 case MVT::v2f64: 5005 case MVT::v2i64: 5006 case MVT::v1i128: 5007 if (++NumVRsUsed <= NumVRs) 5008 continue; 5009 break; 5010 case MVT::v4f32: 5011 // When using QPX, this is handled like a FP register, otherwise, it 5012 // is an Altivec register. 5013 if (Subtarget.hasQPX()) { 5014 if (++NumFPRsUsed <= NumFPRs) 5015 continue; 5016 } else { 5017 if (++NumVRsUsed <= NumVRs) 5018 continue; 5019 } 5020 break; 5021 case MVT::f32: 5022 case MVT::f64: 5023 case MVT::v4f64: // QPX 5024 case MVT::v4i1: // QPX 5025 if (++NumFPRsUsed <= NumFPRs) 5026 continue; 5027 break; 5028 } 5029 } 5030 5031 /* Respect alignment of argument on the stack. */ 5032 unsigned Align = 5033 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5034 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5035 5036 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5037 if (Flags.isInConsecutiveRegsLast()) 5038 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5039 } 5040 5041 unsigned NumBytesActuallyUsed = NumBytes; 5042 5043 // The prolog code of the callee may store up to 8 GPR argument registers to 5044 // the stack, allowing va_start to index over them in memory if its varargs. 5045 // Because we cannot tell if this is needed on the caller side, we have to 5046 // conservatively assume that it is needed. As such, make sure we have at 5047 // least enough stack space for the caller to store the 8 GPRs. 5048 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 5049 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5050 5051 // Tail call needs the stack to be aligned. 5052 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5053 CallConv == CallingConv::Fast) 5054 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5055 5056 int SPDiff = 0; 5057 5058 // Calculate by how many bytes the stack has to be adjusted in case of tail 5059 // call optimization. 5060 if (!IsSibCall) 5061 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5062 5063 // To protect arguments on the stack from being clobbered in a tail call, 5064 // force all the loads to happen before doing any other lowering. 5065 if (isTailCall) 5066 Chain = DAG.getStackArgumentTokenFactor(Chain); 5067 5068 // Adjust the stack pointer for the new arguments... 5069 // These operations are automatically eliminated by the prolog/epilog pass 5070 if (!IsSibCall) 5071 Chain = DAG.getCALLSEQ_START(Chain, 5072 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 5073 SDValue CallSeqStart = Chain; 5074 5075 // Load the return address and frame pointer so it can be move somewhere else 5076 // later. 5077 SDValue LROp, FPOp; 5078 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5079 dl); 5080 5081 // Set up a copy of the stack pointer for use loading and storing any 5082 // arguments that may not fit in the registers available for argument 5083 // passing. 5084 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5085 5086 // Figure out which arguments are going to go in registers, and which in 5087 // memory. Also, if this is a vararg function, floating point operations 5088 // must be stored to our stack, and loaded into integer regs as well, if 5089 // any integer regs are available for argument passing. 5090 unsigned ArgOffset = LinkageSize; 5091 5092 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5093 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5094 5095 SmallVector<SDValue, 8> MemOpChains; 5096 for (unsigned i = 0; i != NumOps; ++i) { 5097 SDValue Arg = OutVals[i]; 5098 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5099 EVT ArgVT = Outs[i].VT; 5100 EVT OrigVT = Outs[i].ArgVT; 5101 5102 // PtrOff will be used to store the current argument to the stack if a 5103 // register cannot be found for it. 5104 SDValue PtrOff; 5105 5106 // We re-align the argument offset for each argument, except when using the 5107 // fast calling convention, when we need to make sure we do that only when 5108 // we'll actually use a stack slot. 5109 auto ComputePtrOff = [&]() { 5110 /* Respect alignment of argument on the stack. */ 5111 unsigned Align = 5112 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5113 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 5114 5115 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5116 5117 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5118 }; 5119 5120 if (CallConv != CallingConv::Fast) { 5121 ComputePtrOff(); 5122 5123 /* Compute GPR index associated with argument offset. */ 5124 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 5125 GPR_idx = std::min(GPR_idx, NumGPRs); 5126 } 5127 5128 // Promote integers to 64-bit values. 5129 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 5130 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5131 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5132 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5133 } 5134 5135 // FIXME memcpy is used way more than necessary. Correctness first. 5136 // Note: "by value" is code for passing a structure by value, not 5137 // basic types. 5138 if (Flags.isByVal()) { 5139 // Note: Size includes alignment padding, so 5140 // struct x { short a; char b; } 5141 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 5142 // These are the proper values we need for right-justifying the 5143 // aggregate in a parameter register. 5144 unsigned Size = Flags.getByValSize(); 5145 5146 // An empty aggregate parameter takes up no storage and no 5147 // registers. 5148 if (Size == 0) 5149 continue; 5150 5151 if (CallConv == CallingConv::Fast) 5152 ComputePtrOff(); 5153 5154 // All aggregates smaller than 8 bytes must be passed right-justified. 5155 if (Size==1 || Size==2 || Size==4) { 5156 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 5157 if (GPR_idx != NumGPRs) { 5158 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5159 MachinePointerInfo(), VT, 5160 false, false, false, 0); 5161 MemOpChains.push_back(Load.getValue(1)); 5162 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5163 5164 ArgOffset += PtrByteSize; 5165 continue; 5166 } 5167 } 5168 5169 if (GPR_idx == NumGPRs && Size < 8) { 5170 SDValue AddPtr = PtrOff; 5171 if (!isLittleEndian) { 5172 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5173 PtrOff.getValueType()); 5174 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5175 } 5176 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5177 CallSeqStart, 5178 Flags, DAG, dl); 5179 ArgOffset += PtrByteSize; 5180 continue; 5181 } 5182 // Copy entire object into memory. There are cases where gcc-generated 5183 // code assumes it is there, even if it could be put entirely into 5184 // registers. (This is not what the doc says.) 5185 5186 // FIXME: The above statement is likely due to a misunderstanding of the 5187 // documents. All arguments must be copied into the parameter area BY 5188 // THE CALLEE in the event that the callee takes the address of any 5189 // formal argument. That has not yet been implemented. However, it is 5190 // reasonable to use the stack area as a staging area for the register 5191 // load. 5192 5193 // Skip this for small aggregates, as we will use the same slot for a 5194 // right-justified copy, below. 5195 if (Size >= 8) 5196 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5197 CallSeqStart, 5198 Flags, DAG, dl); 5199 5200 // When a register is available, pass a small aggregate right-justified. 5201 if (Size < 8 && GPR_idx != NumGPRs) { 5202 // The easiest way to get this right-justified in a register 5203 // is to copy the structure into the rightmost portion of a 5204 // local variable slot, then load the whole slot into the 5205 // register. 5206 // FIXME: The memcpy seems to produce pretty awful code for 5207 // small aggregates, particularly for packed ones. 5208 // FIXME: It would be preferable to use the slot in the 5209 // parameter save area instead of a new local variable. 5210 SDValue AddPtr = PtrOff; 5211 if (!isLittleEndian) { 5212 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 5213 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5214 } 5215 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5216 CallSeqStart, 5217 Flags, DAG, dl); 5218 5219 // Load the slot into the register. 5220 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, 5221 MachinePointerInfo(), 5222 false, false, false, 0); 5223 MemOpChains.push_back(Load.getValue(1)); 5224 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5225 5226 // Done with this argument. 5227 ArgOffset += PtrByteSize; 5228 continue; 5229 } 5230 5231 // For aggregates larger than PtrByteSize, copy the pieces of the 5232 // object that fit into registers from the parameter save area. 5233 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5234 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5235 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5236 if (GPR_idx != NumGPRs) { 5237 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5238 MachinePointerInfo(), 5239 false, false, false, 0); 5240 MemOpChains.push_back(Load.getValue(1)); 5241 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5242 ArgOffset += PtrByteSize; 5243 } else { 5244 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5245 break; 5246 } 5247 } 5248 continue; 5249 } 5250 5251 switch (Arg.getSimpleValueType().SimpleTy) { 5252 default: llvm_unreachable("Unexpected ValueType for argument!"); 5253 case MVT::i1: 5254 case MVT::i32: 5255 case MVT::i64: 5256 if (Flags.isNest()) { 5257 // The 'nest' parameter, if any, is passed in R11. 5258 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 5259 hasNest = true; 5260 break; 5261 } 5262 5263 // These can be scalar arguments or elements of an integer array type 5264 // passed directly. Clang may use those instead of "byval" aggregate 5265 // types to avoid forcing arguments to memory unnecessarily. 5266 if (GPR_idx != NumGPRs) { 5267 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5268 } else { 5269 if (CallConv == CallingConv::Fast) 5270 ComputePtrOff(); 5271 5272 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5273 true, isTailCall, false, MemOpChains, 5274 TailCallArguments, dl); 5275 if (CallConv == CallingConv::Fast) 5276 ArgOffset += PtrByteSize; 5277 } 5278 if (CallConv != CallingConv::Fast) 5279 ArgOffset += PtrByteSize; 5280 break; 5281 case MVT::f32: 5282 case MVT::f64: { 5283 // These can be scalar arguments or elements of a float array type 5284 // passed directly. The latter are used to implement ELFv2 homogenous 5285 // float aggregates. 5286 5287 // Named arguments go into FPRs first, and once they overflow, the 5288 // remaining arguments go into GPRs and then the parameter save area. 5289 // Unnamed arguments for vararg functions always go to GPRs and 5290 // then the parameter save area. For now, put all arguments to vararg 5291 // routines always in both locations (FPR *and* GPR or stack slot). 5292 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 5293 bool NeededLoad = false; 5294 5295 // First load the argument into the next available FPR. 5296 if (FPR_idx != NumFPRs) 5297 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5298 5299 // Next, load the argument into GPR or stack slot if needed. 5300 if (!NeedGPROrStack) 5301 ; 5302 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 5303 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 5304 // once we support fp <-> gpr moves. 5305 5306 // In the non-vararg case, this can only ever happen in the 5307 // presence of f32 array types, since otherwise we never run 5308 // out of FPRs before running out of GPRs. 5309 SDValue ArgVal; 5310 5311 // Double values are always passed in a single GPR. 5312 if (Arg.getValueType() != MVT::f32) { 5313 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 5314 5315 // Non-array float values are extended and passed in a GPR. 5316 } else if (!Flags.isInConsecutiveRegs()) { 5317 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5318 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5319 5320 // If we have an array of floats, we collect every odd element 5321 // together with its predecessor into one GPR. 5322 } else if (ArgOffset % PtrByteSize != 0) { 5323 SDValue Lo, Hi; 5324 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 5325 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5326 if (!isLittleEndian) 5327 std::swap(Lo, Hi); 5328 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 5329 5330 // The final element, if even, goes into the first half of a GPR. 5331 } else if (Flags.isInConsecutiveRegsLast()) { 5332 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 5333 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 5334 if (!isLittleEndian) 5335 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 5336 DAG.getConstant(32, dl, MVT::i32)); 5337 5338 // Non-final even elements are skipped; they will be handled 5339 // together the with subsequent argument on the next go-around. 5340 } else 5341 ArgVal = SDValue(); 5342 5343 if (ArgVal.getNode()) 5344 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 5345 } else { 5346 if (CallConv == CallingConv::Fast) 5347 ComputePtrOff(); 5348 5349 // Single-precision floating-point values are mapped to the 5350 // second (rightmost) word of the stack doubleword. 5351 if (Arg.getValueType() == MVT::f32 && 5352 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 5353 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5354 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5355 } 5356 5357 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5358 true, isTailCall, false, MemOpChains, 5359 TailCallArguments, dl); 5360 5361 NeededLoad = true; 5362 } 5363 // When passing an array of floats, the array occupies consecutive 5364 // space in the argument area; only round up to the next doubleword 5365 // at the end of the array. Otherwise, each float takes 8 bytes. 5366 if (CallConv != CallingConv::Fast || NeededLoad) { 5367 ArgOffset += (Arg.getValueType() == MVT::f32 && 5368 Flags.isInConsecutiveRegs()) ? 4 : 8; 5369 if (Flags.isInConsecutiveRegsLast()) 5370 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5371 } 5372 break; 5373 } 5374 case MVT::v4f32: 5375 case MVT::v4i32: 5376 case MVT::v8i16: 5377 case MVT::v16i8: 5378 case MVT::v2f64: 5379 case MVT::v2i64: 5380 case MVT::v1i128: 5381 if (!Subtarget.hasQPX()) { 5382 // These can be scalar arguments or elements of a vector array type 5383 // passed directly. The latter are used to implement ELFv2 homogenous 5384 // vector aggregates. 5385 5386 // For a varargs call, named arguments go into VRs or on the stack as 5387 // usual; unnamed arguments always go to the stack or the corresponding 5388 // GPRs when within range. For now, we always put the value in both 5389 // locations (or even all three). 5390 if (isVarArg) { 5391 // We could elide this store in the case where the object fits 5392 // entirely in R registers. Maybe later. 5393 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5394 MachinePointerInfo(), false, false, 0); 5395 MemOpChains.push_back(Store); 5396 if (VR_idx != NumVRs) { 5397 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5398 MachinePointerInfo(), 5399 false, false, false, 0); 5400 MemOpChains.push_back(Load.getValue(1)); 5401 5402 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5403 Arg.getSimpleValueType() == MVT::v2i64) ? 5404 VSRH[VR_idx] : VR[VR_idx]; 5405 ++VR_idx; 5406 5407 RegsToPass.push_back(std::make_pair(VReg, Load)); 5408 } 5409 ArgOffset += 16; 5410 for (unsigned i=0; i<16; i+=PtrByteSize) { 5411 if (GPR_idx == NumGPRs) 5412 break; 5413 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5414 DAG.getConstant(i, dl, PtrVT)); 5415 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5416 false, false, false, 0); 5417 MemOpChains.push_back(Load.getValue(1)); 5418 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5419 } 5420 break; 5421 } 5422 5423 // Non-varargs Altivec params go into VRs or on the stack. 5424 if (VR_idx != NumVRs) { 5425 unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 || 5426 Arg.getSimpleValueType() == MVT::v2i64) ? 5427 VSRH[VR_idx] : VR[VR_idx]; 5428 ++VR_idx; 5429 5430 RegsToPass.push_back(std::make_pair(VReg, Arg)); 5431 } else { 5432 if (CallConv == CallingConv::Fast) 5433 ComputePtrOff(); 5434 5435 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5436 true, isTailCall, true, MemOpChains, 5437 TailCallArguments, dl); 5438 if (CallConv == CallingConv::Fast) 5439 ArgOffset += 16; 5440 } 5441 5442 if (CallConv != CallingConv::Fast) 5443 ArgOffset += 16; 5444 break; 5445 } // not QPX 5446 5447 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 5448 "Invalid QPX parameter type"); 5449 5450 /* fall through */ 5451 case MVT::v4f64: 5452 case MVT::v4i1: { 5453 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 5454 if (isVarArg) { 5455 // We could elide this store in the case where the object fits 5456 // entirely in R registers. Maybe later. 5457 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5458 MachinePointerInfo(), false, false, 0); 5459 MemOpChains.push_back(Store); 5460 if (QFPR_idx != NumQFPRs) { 5461 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, 5462 Store, PtrOff, MachinePointerInfo(), 5463 false, false, false, 0); 5464 MemOpChains.push_back(Load.getValue(1)); 5465 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 5466 } 5467 ArgOffset += (IsF32 ? 16 : 32); 5468 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 5469 if (GPR_idx == NumGPRs) 5470 break; 5471 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5472 DAG.getConstant(i, dl, PtrVT)); 5473 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5474 false, false, false, 0); 5475 MemOpChains.push_back(Load.getValue(1)); 5476 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5477 } 5478 break; 5479 } 5480 5481 // Non-varargs QPX params go into registers or on the stack. 5482 if (QFPR_idx != NumQFPRs) { 5483 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 5484 } else { 5485 if (CallConv == CallingConv::Fast) 5486 ComputePtrOff(); 5487 5488 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5489 true, isTailCall, true, MemOpChains, 5490 TailCallArguments, dl); 5491 if (CallConv == CallingConv::Fast) 5492 ArgOffset += (IsF32 ? 16 : 32); 5493 } 5494 5495 if (CallConv != CallingConv::Fast) 5496 ArgOffset += (IsF32 ? 16 : 32); 5497 break; 5498 } 5499 } 5500 } 5501 5502 assert(NumBytesActuallyUsed == ArgOffset); 5503 (void)NumBytesActuallyUsed; 5504 5505 if (!MemOpChains.empty()) 5506 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5507 5508 // Check if this is an indirect call (MTCTR/BCTRL). 5509 // See PrepareCall() for more information about calls through function 5510 // pointers in the 64-bit SVR4 ABI. 5511 if (!isTailCall && !IsPatchPoint && 5512 !isFunctionGlobalAddress(Callee) && 5513 !isa<ExternalSymbolSDNode>(Callee)) { 5514 // Load r2 into a virtual register and store it to the TOC save area. 5515 setUsesTOCBasePtr(DAG); 5516 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 5517 // TOC save area offset. 5518 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5519 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5520 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5521 Chain = DAG.getStore( 5522 Val.getValue(1), dl, Val, AddPtr, 5523 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset), 5524 false, false, 0); 5525 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 5526 // This does not mean the MTCTR instruction must use R12; it's easier 5527 // to model this as an extra parameter, so do that. 5528 if (isELFv2ABI && !IsPatchPoint) 5529 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 5530 } 5531 5532 // Build a sequence of copy-to-reg nodes chained together with token chain 5533 // and flag operands which copy the outgoing args into the appropriate regs. 5534 SDValue InFlag; 5535 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5536 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5537 RegsToPass[i].second, InFlag); 5538 InFlag = Chain.getValue(1); 5539 } 5540 5541 if (isTailCall && !IsSibCall) 5542 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp, 5543 FPOp, true, TailCallArguments); 5544 5545 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest, 5546 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 5547 SPDiff, NumBytes, Ins, InVals, CS); 5548 } 5549 5550 SDValue PPCTargetLowering::LowerCall_Darwin( 5551 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5552 bool isTailCall, bool IsPatchPoint, 5553 const SmallVectorImpl<ISD::OutputArg> &Outs, 5554 const SmallVectorImpl<SDValue> &OutVals, 5555 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5556 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5557 ImmutableCallSite *CS) const { 5558 5559 unsigned NumOps = Outs.size(); 5560 5561 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5562 bool isPPC64 = PtrVT == MVT::i64; 5563 unsigned PtrByteSize = isPPC64 ? 8 : 4; 5564 5565 MachineFunction &MF = DAG.getMachineFunction(); 5566 5567 // Mark this function as potentially containing a function that contains a 5568 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5569 // and restoring the callers stack pointer in this functions epilog. This is 5570 // done because by tail calling the called function might overwrite the value 5571 // in this function's (MF) stack pointer stack slot 0(SP). 5572 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5573 CallConv == CallingConv::Fast) 5574 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5575 5576 // Count how many bytes are to be pushed on the stack, including the linkage 5577 // area, and parameter passing area. We start with 24/48 bytes, which is 5578 // prereserved space for [SP][CR][LR][3 x unused]. 5579 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5580 unsigned NumBytes = LinkageSize; 5581 5582 // Add up all the space actually used. 5583 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 5584 // they all go in registers, but we must reserve stack space for them for 5585 // possible use by the caller. In varargs or 64-bit calls, parameters are 5586 // assigned stack space in order, with padding so Altivec parameters are 5587 // 16-byte aligned. 5588 unsigned nAltivecParamsAtEnd = 0; 5589 for (unsigned i = 0; i != NumOps; ++i) { 5590 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5591 EVT ArgVT = Outs[i].VT; 5592 // Varargs Altivec parameters are padded to a 16 byte boundary. 5593 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 5594 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 5595 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 5596 if (!isVarArg && !isPPC64) { 5597 // Non-varargs Altivec parameters go after all the non-Altivec 5598 // parameters; handle those later so we know how much padding we need. 5599 nAltivecParamsAtEnd++; 5600 continue; 5601 } 5602 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 5603 NumBytes = ((NumBytes+15)/16)*16; 5604 } 5605 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5606 } 5607 5608 // Allow for Altivec parameters at the end, if needed. 5609 if (nAltivecParamsAtEnd) { 5610 NumBytes = ((NumBytes+15)/16)*16; 5611 NumBytes += 16*nAltivecParamsAtEnd; 5612 } 5613 5614 // The prolog code of the callee may store up to 8 GPR argument registers to 5615 // the stack, allowing va_start to index over them in memory if its varargs. 5616 // Because we cannot tell if this is needed on the caller side, we have to 5617 // conservatively assume that it is needed. As such, make sure we have at 5618 // least enough stack space for the caller to store the 8 GPRs. 5619 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 5620 5621 // Tail call needs the stack to be aligned. 5622 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5623 CallConv == CallingConv::Fast) 5624 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 5625 5626 // Calculate by how many bytes the stack has to be adjusted in case of tail 5627 // call optimization. 5628 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5629 5630 // To protect arguments on the stack from being clobbered in a tail call, 5631 // force all the loads to happen before doing any other lowering. 5632 if (isTailCall) 5633 Chain = DAG.getStackArgumentTokenFactor(Chain); 5634 5635 // Adjust the stack pointer for the new arguments... 5636 // These operations are automatically eliminated by the prolog/epilog pass 5637 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5638 dl); 5639 SDValue CallSeqStart = Chain; 5640 5641 // Load the return address and frame pointer so it can be move somewhere else 5642 // later. 5643 SDValue LROp, FPOp; 5644 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 5645 dl); 5646 5647 // Set up a copy of the stack pointer for use loading and storing any 5648 // arguments that may not fit in the registers available for argument 5649 // passing. 5650 SDValue StackPtr; 5651 if (isPPC64) 5652 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5653 else 5654 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5655 5656 // Figure out which arguments are going to go in registers, and which in 5657 // memory. Also, if this is a vararg function, floating point operations 5658 // must be stored to our stack, and loaded into integer regs as well, if 5659 // any integer regs are available for argument passing. 5660 unsigned ArgOffset = LinkageSize; 5661 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5662 5663 static const MCPhysReg GPR_32[] = { // 32-bit registers. 5664 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 5665 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 5666 }; 5667 static const MCPhysReg GPR_64[] = { // 64-bit registers. 5668 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5669 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5670 }; 5671 static const MCPhysReg VR[] = { 5672 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5673 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5674 }; 5675 const unsigned NumGPRs = array_lengthof(GPR_32); 5676 const unsigned NumFPRs = 13; 5677 const unsigned NumVRs = array_lengthof(VR); 5678 5679 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 5680 5681 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5682 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5683 5684 SmallVector<SDValue, 8> MemOpChains; 5685 for (unsigned i = 0; i != NumOps; ++i) { 5686 SDValue Arg = OutVals[i]; 5687 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5688 5689 // PtrOff will be used to store the current argument to the stack if a 5690 // register cannot be found for it. 5691 SDValue PtrOff; 5692 5693 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 5694 5695 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 5696 5697 // On PPC64, promote integers to 64-bit values. 5698 if (isPPC64 && Arg.getValueType() == MVT::i32) { 5699 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 5700 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 5701 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 5702 } 5703 5704 // FIXME memcpy is used way more than necessary. Correctness first. 5705 // Note: "by value" is code for passing a structure by value, not 5706 // basic types. 5707 if (Flags.isByVal()) { 5708 unsigned Size = Flags.getByValSize(); 5709 // Very small objects are passed right-justified. Everything else is 5710 // passed left-justified. 5711 if (Size==1 || Size==2) { 5712 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 5713 if (GPR_idx != NumGPRs) { 5714 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 5715 MachinePointerInfo(), VT, 5716 false, false, false, 0); 5717 MemOpChains.push_back(Load.getValue(1)); 5718 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5719 5720 ArgOffset += PtrByteSize; 5721 } else { 5722 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 5723 PtrOff.getValueType()); 5724 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 5725 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 5726 CallSeqStart, 5727 Flags, DAG, dl); 5728 ArgOffset += PtrByteSize; 5729 } 5730 continue; 5731 } 5732 // Copy entire object into memory. There are cases where gcc-generated 5733 // code assumes it is there, even if it could be put entirely into 5734 // registers. (This is not what the doc says.) 5735 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 5736 CallSeqStart, 5737 Flags, DAG, dl); 5738 5739 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 5740 // copy the pieces of the object that fit into registers from the 5741 // parameter save area. 5742 for (unsigned j=0; j<Size; j+=PtrByteSize) { 5743 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 5744 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 5745 if (GPR_idx != NumGPRs) { 5746 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 5747 MachinePointerInfo(), 5748 false, false, false, 0); 5749 MemOpChains.push_back(Load.getValue(1)); 5750 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5751 ArgOffset += PtrByteSize; 5752 } else { 5753 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 5754 break; 5755 } 5756 } 5757 continue; 5758 } 5759 5760 switch (Arg.getSimpleValueType().SimpleTy) { 5761 default: llvm_unreachable("Unexpected ValueType for argument!"); 5762 case MVT::i1: 5763 case MVT::i32: 5764 case MVT::i64: 5765 if (GPR_idx != NumGPRs) { 5766 if (Arg.getValueType() == MVT::i1) 5767 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 5768 5769 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 5770 } else { 5771 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5772 isPPC64, isTailCall, false, MemOpChains, 5773 TailCallArguments, dl); 5774 } 5775 ArgOffset += PtrByteSize; 5776 break; 5777 case MVT::f32: 5778 case MVT::f64: 5779 if (FPR_idx != NumFPRs) { 5780 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 5781 5782 if (isVarArg) { 5783 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5784 MachinePointerInfo(), false, false, 0); 5785 MemOpChains.push_back(Store); 5786 5787 // Float varargs are always shadowed in available integer registers 5788 if (GPR_idx != NumGPRs) { 5789 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5790 MachinePointerInfo(), false, false, 5791 false, 0); 5792 MemOpChains.push_back(Load.getValue(1)); 5793 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5794 } 5795 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 5796 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 5797 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 5798 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 5799 MachinePointerInfo(), 5800 false, false, false, 0); 5801 MemOpChains.push_back(Load.getValue(1)); 5802 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5803 } 5804 } else { 5805 // If we have any FPRs remaining, we may also have GPRs remaining. 5806 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 5807 // GPRs. 5808 if (GPR_idx != NumGPRs) 5809 ++GPR_idx; 5810 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 5811 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 5812 ++GPR_idx; 5813 } 5814 } else 5815 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5816 isPPC64, isTailCall, false, MemOpChains, 5817 TailCallArguments, dl); 5818 if (isPPC64) 5819 ArgOffset += 8; 5820 else 5821 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 5822 break; 5823 case MVT::v4f32: 5824 case MVT::v4i32: 5825 case MVT::v8i16: 5826 case MVT::v16i8: 5827 if (isVarArg) { 5828 // These go aligned on the stack, or in the corresponding R registers 5829 // when within range. The Darwin PPC ABI doc claims they also go in 5830 // V registers; in fact gcc does this only for arguments that are 5831 // prototyped, not for those that match the ... We do it for all 5832 // arguments, seems to work. 5833 while (ArgOffset % 16 !=0) { 5834 ArgOffset += PtrByteSize; 5835 if (GPR_idx != NumGPRs) 5836 GPR_idx++; 5837 } 5838 // We could elide this store in the case where the object fits 5839 // entirely in R registers. Maybe later. 5840 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5841 DAG.getConstant(ArgOffset, dl, PtrVT)); 5842 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 5843 MachinePointerInfo(), false, false, 0); 5844 MemOpChains.push_back(Store); 5845 if (VR_idx != NumVRs) { 5846 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 5847 MachinePointerInfo(), 5848 false, false, false, 0); 5849 MemOpChains.push_back(Load.getValue(1)); 5850 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 5851 } 5852 ArgOffset += 16; 5853 for (unsigned i=0; i<16; i+=PtrByteSize) { 5854 if (GPR_idx == NumGPRs) 5855 break; 5856 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 5857 DAG.getConstant(i, dl, PtrVT)); 5858 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 5859 false, false, false, 0); 5860 MemOpChains.push_back(Load.getValue(1)); 5861 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 5862 } 5863 break; 5864 } 5865 5866 // Non-varargs Altivec params generally go in registers, but have 5867 // stack space allocated at the end. 5868 if (VR_idx != NumVRs) { 5869 // Doesn't have GPR space allocated. 5870 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 5871 } else if (nAltivecParamsAtEnd==0) { 5872 // We are emitting Altivec params in order. 5873 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5874 isPPC64, isTailCall, true, MemOpChains, 5875 TailCallArguments, dl); 5876 ArgOffset += 16; 5877 } 5878 break; 5879 } 5880 } 5881 // If all Altivec parameters fit in registers, as they usually do, 5882 // they get stack space following the non-Altivec parameters. We 5883 // don't track this here because nobody below needs it. 5884 // If there are more Altivec parameters than fit in registers emit 5885 // the stores here. 5886 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 5887 unsigned j = 0; 5888 // Offset is aligned; skip 1st 12 params which go in V registers. 5889 ArgOffset = ((ArgOffset+15)/16)*16; 5890 ArgOffset += 12*16; 5891 for (unsigned i = 0; i != NumOps; ++i) { 5892 SDValue Arg = OutVals[i]; 5893 EVT ArgType = Outs[i].VT; 5894 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 5895 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 5896 if (++j > NumVRs) { 5897 SDValue PtrOff; 5898 // We are emitting Altivec params in order. 5899 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 5900 isPPC64, isTailCall, true, MemOpChains, 5901 TailCallArguments, dl); 5902 ArgOffset += 16; 5903 } 5904 } 5905 } 5906 } 5907 5908 if (!MemOpChains.empty()) 5909 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5910 5911 // On Darwin, R12 must contain the address of an indirect callee. This does 5912 // not mean the MTCTR instruction must use R12; it's easier to model this as 5913 // an extra parameter, so do that. 5914 if (!isTailCall && 5915 !isFunctionGlobalAddress(Callee) && 5916 !isa<ExternalSymbolSDNode>(Callee) && 5917 !isBLACompatibleAddress(Callee, DAG)) 5918 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 5919 PPC::R12), Callee)); 5920 5921 // Build a sequence of copy-to-reg nodes chained together with token chain 5922 // and flag operands which copy the outgoing args into the appropriate regs. 5923 SDValue InFlag; 5924 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5925 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5926 RegsToPass[i].second, InFlag); 5927 InFlag = Chain.getValue(1); 5928 } 5929 5930 if (isTailCall) 5931 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 5932 FPOp, true, TailCallArguments); 5933 5934 return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, 5935 /* unused except on PPC64 ELFv1 */ false, DAG, 5936 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5937 NumBytes, Ins, InVals, CS); 5938 } 5939 5940 bool 5941 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 5942 MachineFunction &MF, bool isVarArg, 5943 const SmallVectorImpl<ISD::OutputArg> &Outs, 5944 LLVMContext &Context) const { 5945 SmallVector<CCValAssign, 16> RVLocs; 5946 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 5947 return CCInfo.CheckReturn(Outs, RetCC_PPC); 5948 } 5949 5950 SDValue 5951 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 5952 bool isVarArg, 5953 const SmallVectorImpl<ISD::OutputArg> &Outs, 5954 const SmallVectorImpl<SDValue> &OutVals, 5955 const SDLoc &dl, SelectionDAG &DAG) const { 5956 5957 SmallVector<CCValAssign, 16> RVLocs; 5958 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5959 *DAG.getContext()); 5960 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 5961 5962 SDValue Flag; 5963 SmallVector<SDValue, 4> RetOps(1, Chain); 5964 5965 // Copy the result values into the output registers. 5966 for (unsigned i = 0; i != RVLocs.size(); ++i) { 5967 CCValAssign &VA = RVLocs[i]; 5968 assert(VA.isRegLoc() && "Can only return in registers!"); 5969 5970 SDValue Arg = OutVals[i]; 5971 5972 switch (VA.getLocInfo()) { 5973 default: llvm_unreachable("Unknown loc info!"); 5974 case CCValAssign::Full: break; 5975 case CCValAssign::AExt: 5976 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 5977 break; 5978 case CCValAssign::ZExt: 5979 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 5980 break; 5981 case CCValAssign::SExt: 5982 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 5983 break; 5984 } 5985 5986 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 5987 Flag = Chain.getValue(1); 5988 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 5989 } 5990 5991 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5992 const MCPhysReg *I = 5993 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 5994 if (I) { 5995 for (; *I; ++I) { 5996 5997 if (PPC::G8RCRegClass.contains(*I)) 5998 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 5999 else if (PPC::F8RCRegClass.contains(*I)) 6000 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 6001 else if (PPC::CRRCRegClass.contains(*I)) 6002 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 6003 else if (PPC::VRRCRegClass.contains(*I)) 6004 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 6005 else 6006 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 6007 } 6008 } 6009 6010 RetOps[0] = Chain; // Update chain. 6011 6012 // Add the flag if we have it. 6013 if (Flag.getNode()) 6014 RetOps.push_back(Flag); 6015 6016 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 6017 } 6018 6019 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET( 6020 SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const { 6021 SDLoc dl(Op); 6022 6023 // Get the corect type for integers. 6024 EVT IntVT = Op.getValueType(); 6025 6026 // Get the inputs. 6027 SDValue Chain = Op.getOperand(0); 6028 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6029 // Build a DYNAREAOFFSET node. 6030 SDValue Ops[2] = {Chain, FPSIdx}; 6031 SDVTList VTs = DAG.getVTList(IntVT); 6032 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 6033 } 6034 6035 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 6036 const PPCSubtarget &Subtarget) const { 6037 // When we pop the dynamic allocation we need to restore the SP link. 6038 SDLoc dl(Op); 6039 6040 // Get the corect type for pointers. 6041 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6042 6043 // Construct the stack pointer operand. 6044 bool isPPC64 = Subtarget.isPPC64(); 6045 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 6046 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 6047 6048 // Get the operands for the STACKRESTORE. 6049 SDValue Chain = Op.getOperand(0); 6050 SDValue SaveSP = Op.getOperand(1); 6051 6052 // Load the old link SP. 6053 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 6054 MachinePointerInfo(), 6055 false, false, false, 0); 6056 6057 // Restore the stack pointer. 6058 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 6059 6060 // Store the old link SP. 6061 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 6062 false, false, 0); 6063 } 6064 6065 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 6066 MachineFunction &MF = DAG.getMachineFunction(); 6067 bool isPPC64 = Subtarget.isPPC64(); 6068 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6069 6070 // Get current frame pointer save index. The users of this index will be 6071 // primarily DYNALLOC instructions. 6072 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6073 int RASI = FI->getReturnAddrSaveIndex(); 6074 6075 // If the frame pointer save index hasn't been defined yet. 6076 if (!RASI) { 6077 // Find out what the fix offset of the frame pointer save area. 6078 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 6079 // Allocate the frame index for frame pointer save area. 6080 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 6081 // Save the result. 6082 FI->setReturnAddrSaveIndex(RASI); 6083 } 6084 return DAG.getFrameIndex(RASI, PtrVT); 6085 } 6086 6087 SDValue 6088 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 6089 MachineFunction &MF = DAG.getMachineFunction(); 6090 bool isPPC64 = Subtarget.isPPC64(); 6091 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6092 6093 // Get current frame pointer save index. The users of this index will be 6094 // primarily DYNALLOC instructions. 6095 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 6096 int FPSI = FI->getFramePointerSaveIndex(); 6097 6098 // If the frame pointer save index hasn't been defined yet. 6099 if (!FPSI) { 6100 // Find out what the fix offset of the frame pointer save area. 6101 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 6102 // Allocate the frame index for frame pointer save area. 6103 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 6104 // Save the result. 6105 FI->setFramePointerSaveIndex(FPSI); 6106 } 6107 return DAG.getFrameIndex(FPSI, PtrVT); 6108 } 6109 6110 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 6111 SelectionDAG &DAG, 6112 const PPCSubtarget &Subtarget) const { 6113 // Get the inputs. 6114 SDValue Chain = Op.getOperand(0); 6115 SDValue Size = Op.getOperand(1); 6116 SDLoc dl(Op); 6117 6118 // Get the corect type for pointers. 6119 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6120 // Negate the size. 6121 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 6122 DAG.getConstant(0, dl, PtrVT), Size); 6123 // Construct a node for the frame pointer save index. 6124 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 6125 // Build a DYNALLOC node. 6126 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 6127 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 6128 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 6129 } 6130 6131 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 6132 SelectionDAG &DAG) const { 6133 SDLoc DL(Op); 6134 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 6135 DAG.getVTList(MVT::i32, MVT::Other), 6136 Op.getOperand(0), Op.getOperand(1)); 6137 } 6138 6139 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 6140 SelectionDAG &DAG) const { 6141 SDLoc DL(Op); 6142 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 6143 Op.getOperand(0), Op.getOperand(1)); 6144 } 6145 6146 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 6147 if (Op.getValueType().isVector()) 6148 return LowerVectorLoad(Op, DAG); 6149 6150 assert(Op.getValueType() == MVT::i1 && 6151 "Custom lowering only for i1 loads"); 6152 6153 // First, load 8 bits into 32 bits, then truncate to 1 bit. 6154 6155 SDLoc dl(Op); 6156 LoadSDNode *LD = cast<LoadSDNode>(Op); 6157 6158 SDValue Chain = LD->getChain(); 6159 SDValue BasePtr = LD->getBasePtr(); 6160 MachineMemOperand *MMO = LD->getMemOperand(); 6161 6162 SDValue NewLD = 6163 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 6164 BasePtr, MVT::i8, MMO); 6165 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 6166 6167 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 6168 return DAG.getMergeValues(Ops, dl); 6169 } 6170 6171 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 6172 if (Op.getOperand(1).getValueType().isVector()) 6173 return LowerVectorStore(Op, DAG); 6174 6175 assert(Op.getOperand(1).getValueType() == MVT::i1 && 6176 "Custom lowering only for i1 stores"); 6177 6178 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 6179 6180 SDLoc dl(Op); 6181 StoreSDNode *ST = cast<StoreSDNode>(Op); 6182 6183 SDValue Chain = ST->getChain(); 6184 SDValue BasePtr = ST->getBasePtr(); 6185 SDValue Value = ST->getValue(); 6186 MachineMemOperand *MMO = ST->getMemOperand(); 6187 6188 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 6189 Value); 6190 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 6191 } 6192 6193 // FIXME: Remove this once the ANDI glue bug is fixed: 6194 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 6195 assert(Op.getValueType() == MVT::i1 && 6196 "Custom lowering only for i1 results"); 6197 6198 SDLoc DL(Op); 6199 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1, 6200 Op.getOperand(0)); 6201 } 6202 6203 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 6204 /// possible. 6205 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 6206 // Not FP? Not a fsel. 6207 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 6208 !Op.getOperand(2).getValueType().isFloatingPoint()) 6209 return Op; 6210 6211 // We might be able to do better than this under some circumstances, but in 6212 // general, fsel-based lowering of select is a finite-math-only optimization. 6213 // For more information, see section F.3 of the 2.06 ISA specification. 6214 if (!DAG.getTarget().Options.NoInfsFPMath || 6215 !DAG.getTarget().Options.NoNaNsFPMath) 6216 return Op; 6217 // TODO: Propagate flags from the select rather than global settings. 6218 SDNodeFlags Flags; 6219 Flags.setNoInfs(true); 6220 Flags.setNoNaNs(true); 6221 6222 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 6223 6224 EVT ResVT = Op.getValueType(); 6225 EVT CmpVT = Op.getOperand(0).getValueType(); 6226 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 6227 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 6228 SDLoc dl(Op); 6229 6230 // If the RHS of the comparison is a 0.0, we don't need to do the 6231 // subtraction at all. 6232 SDValue Sel1; 6233 if (isFloatingPointZero(RHS)) 6234 switch (CC) { 6235 default: break; // SETUO etc aren't handled by fsel. 6236 case ISD::SETNE: 6237 std::swap(TV, FV); 6238 case ISD::SETEQ: 6239 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6240 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6241 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6242 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6243 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6244 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6245 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 6246 case ISD::SETULT: 6247 case ISD::SETLT: 6248 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6249 case ISD::SETOGE: 6250 case ISD::SETGE: 6251 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6252 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6253 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 6254 case ISD::SETUGT: 6255 case ISD::SETGT: 6256 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 6257 case ISD::SETOLE: 6258 case ISD::SETLE: 6259 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 6260 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 6261 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6262 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 6263 } 6264 6265 SDValue Cmp; 6266 switch (CC) { 6267 default: break; // SETUO etc aren't handled by fsel. 6268 case ISD::SETNE: 6269 std::swap(TV, FV); 6270 case ISD::SETEQ: 6271 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6272 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6273 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6274 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6275 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 6276 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 6277 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 6278 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 6279 case ISD::SETULT: 6280 case ISD::SETLT: 6281 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6282 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6283 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6284 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6285 case ISD::SETOGE: 6286 case ISD::SETGE: 6287 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags); 6288 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6289 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6290 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6291 case ISD::SETUGT: 6292 case ISD::SETGT: 6293 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6294 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6295 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6296 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 6297 case ISD::SETOLE: 6298 case ISD::SETLE: 6299 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags); 6300 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 6301 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 6302 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 6303 } 6304 return Op; 6305 } 6306 6307 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 6308 SelectionDAG &DAG, 6309 const SDLoc &dl) const { 6310 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6311 SDValue Src = Op.getOperand(0); 6312 if (Src.getValueType() == MVT::f32) 6313 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6314 6315 SDValue Tmp; 6316 switch (Op.getSimpleValueType().SimpleTy) { 6317 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6318 case MVT::i32: 6319 Tmp = DAG.getNode( 6320 Op.getOpcode() == ISD::FP_TO_SINT 6321 ? PPCISD::FCTIWZ 6322 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6323 dl, MVT::f64, Src); 6324 break; 6325 case MVT::i64: 6326 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6327 "i64 FP_TO_UINT is supported only with FPCVT"); 6328 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6329 PPCISD::FCTIDUZ, 6330 dl, MVT::f64, Src); 6331 break; 6332 } 6333 6334 // Convert the FP value to an int value through memory. 6335 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 6336 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 6337 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 6338 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 6339 MachinePointerInfo MPI = 6340 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 6341 6342 // Emit a store to the stack slot. 6343 SDValue Chain; 6344 if (i32Stack) { 6345 MachineFunction &MF = DAG.getMachineFunction(); 6346 MachineMemOperand *MMO = 6347 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4); 6348 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 6349 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 6350 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 6351 } else 6352 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 6353 MPI, false, false, 0); 6354 6355 // Result is a load from the stack slot. If loading 4 bytes, make sure to 6356 // add in a bias on big endian. 6357 if (Op.getValueType() == MVT::i32 && !i32Stack) { 6358 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 6359 DAG.getConstant(4, dl, FIPtr.getValueType())); 6360 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 6361 } 6362 6363 RLI.Chain = Chain; 6364 RLI.Ptr = FIPtr; 6365 RLI.MPI = MPI; 6366 } 6367 6368 /// \brief Custom lowers floating point to integer conversions to use 6369 /// the direct move instructions available in ISA 2.07 to avoid the 6370 /// need for load/store combinations. 6371 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 6372 SelectionDAG &DAG, 6373 const SDLoc &dl) const { 6374 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 6375 SDValue Src = Op.getOperand(0); 6376 6377 if (Src.getValueType() == MVT::f32) 6378 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 6379 6380 SDValue Tmp; 6381 switch (Op.getSimpleValueType().SimpleTy) { 6382 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 6383 case MVT::i32: 6384 Tmp = DAG.getNode( 6385 Op.getOpcode() == ISD::FP_TO_SINT 6386 ? PPCISD::FCTIWZ 6387 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 6388 dl, MVT::f64, Src); 6389 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 6390 break; 6391 case MVT::i64: 6392 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 6393 "i64 FP_TO_UINT is supported only with FPCVT"); 6394 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 6395 PPCISD::FCTIDUZ, 6396 dl, MVT::f64, Src); 6397 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 6398 break; 6399 } 6400 return Tmp; 6401 } 6402 6403 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 6404 const SDLoc &dl) const { 6405 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 6406 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 6407 6408 ReuseLoadInfo RLI; 6409 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6410 6411 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6412 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6413 RLI.Ranges); 6414 } 6415 6416 // We're trying to insert a regular store, S, and then a load, L. If the 6417 // incoming value, O, is a load, we might just be able to have our load use the 6418 // address used by O. However, we don't know if anything else will store to 6419 // that address before we can load from it. To prevent this situation, we need 6420 // to insert our load, L, into the chain as a peer of O. To do this, we give L 6421 // the same chain operand as O, we create a token factor from the chain results 6422 // of O and L, and we replace all uses of O's chain result with that token 6423 // factor (see spliceIntoChain below for this last part). 6424 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 6425 ReuseLoadInfo &RLI, 6426 SelectionDAG &DAG, 6427 ISD::LoadExtType ET) const { 6428 SDLoc dl(Op); 6429 if (ET == ISD::NON_EXTLOAD && 6430 (Op.getOpcode() == ISD::FP_TO_UINT || 6431 Op.getOpcode() == ISD::FP_TO_SINT) && 6432 isOperationLegalOrCustom(Op.getOpcode(), 6433 Op.getOperand(0).getValueType())) { 6434 6435 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 6436 return true; 6437 } 6438 6439 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 6440 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 6441 LD->isNonTemporal()) 6442 return false; 6443 if (LD->getMemoryVT() != MemVT) 6444 return false; 6445 6446 RLI.Ptr = LD->getBasePtr(); 6447 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 6448 assert(LD->getAddressingMode() == ISD::PRE_INC && 6449 "Non-pre-inc AM on PPC?"); 6450 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 6451 LD->getOffset()); 6452 } 6453 6454 RLI.Chain = LD->getChain(); 6455 RLI.MPI = LD->getPointerInfo(); 6456 RLI.IsInvariant = LD->isInvariant(); 6457 RLI.Alignment = LD->getAlignment(); 6458 RLI.AAInfo = LD->getAAInfo(); 6459 RLI.Ranges = LD->getRanges(); 6460 6461 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 6462 return true; 6463 } 6464 6465 // Given the head of the old chain, ResChain, insert a token factor containing 6466 // it and NewResChain, and make users of ResChain now be users of that token 6467 // factor. 6468 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 6469 SDValue NewResChain, 6470 SelectionDAG &DAG) const { 6471 if (!ResChain) 6472 return; 6473 6474 SDLoc dl(NewResChain); 6475 6476 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6477 NewResChain, DAG.getUNDEF(MVT::Other)); 6478 assert(TF.getNode() != NewResChain.getNode() && 6479 "A new TF really is required here"); 6480 6481 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 6482 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 6483 } 6484 6485 /// \brief Analyze profitability of direct move 6486 /// prefer float load to int load plus direct move 6487 /// when there is no integer use of int load 6488 static bool directMoveIsProfitable(const SDValue &Op) { 6489 SDNode *Origin = Op.getOperand(0).getNode(); 6490 if (Origin->getOpcode() != ISD::LOAD) 6491 return true; 6492 6493 for (SDNode::use_iterator UI = Origin->use_begin(), 6494 UE = Origin->use_end(); 6495 UI != UE; ++UI) { 6496 6497 // Only look at the users of the loaded value. 6498 if (UI.getUse().get().getResNo() != 0) 6499 continue; 6500 6501 if (UI->getOpcode() != ISD::SINT_TO_FP && 6502 UI->getOpcode() != ISD::UINT_TO_FP) 6503 return true; 6504 } 6505 6506 return false; 6507 } 6508 6509 /// \brief Custom lowers integer to floating point conversions to use 6510 /// the direct move instructions available in ISA 2.07 to avoid the 6511 /// need for load/store combinations. 6512 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 6513 SelectionDAG &DAG, 6514 const SDLoc &dl) const { 6515 assert((Op.getValueType() == MVT::f32 || 6516 Op.getValueType() == MVT::f64) && 6517 "Invalid floating point type as target of conversion"); 6518 assert(Subtarget.hasFPCVT() && 6519 "Int to FP conversions with direct moves require FPCVT"); 6520 SDValue FP; 6521 SDValue Src = Op.getOperand(0); 6522 bool SinglePrec = Op.getValueType() == MVT::f32; 6523 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 6524 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 6525 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 6526 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 6527 6528 if (WordInt) { 6529 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 6530 dl, MVT::f64, Src); 6531 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6532 } 6533 else { 6534 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 6535 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 6536 } 6537 6538 return FP; 6539 } 6540 6541 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 6542 SelectionDAG &DAG) const { 6543 SDLoc dl(Op); 6544 6545 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 6546 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 6547 return SDValue(); 6548 6549 SDValue Value = Op.getOperand(0); 6550 // The values are now known to be -1 (false) or 1 (true). To convert this 6551 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 6552 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 6553 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 6554 6555 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 6556 6557 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 6558 6559 if (Op.getValueType() != MVT::v4f64) 6560 Value = DAG.getNode(ISD::FP_ROUND, dl, 6561 Op.getValueType(), Value, 6562 DAG.getIntPtrConstant(1, dl)); 6563 return Value; 6564 } 6565 6566 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 6567 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 6568 return SDValue(); 6569 6570 if (Op.getOperand(0).getValueType() == MVT::i1) 6571 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 6572 DAG.getConstantFP(1.0, dl, Op.getValueType()), 6573 DAG.getConstantFP(0.0, dl, Op.getValueType())); 6574 6575 // If we have direct moves, we can do all the conversion, skip the store/load 6576 // however, without FPCVT we can't do most conversions. 6577 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 6578 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 6579 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 6580 6581 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 6582 "UINT_TO_FP is supported only with FPCVT"); 6583 6584 // If we have FCFIDS, then use it when converting to single-precision. 6585 // Otherwise, convert to double-precision and then round. 6586 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6587 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 6588 : PPCISD::FCFIDS) 6589 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 6590 : PPCISD::FCFID); 6591 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 6592 ? MVT::f32 6593 : MVT::f64; 6594 6595 if (Op.getOperand(0).getValueType() == MVT::i64) { 6596 SDValue SINT = Op.getOperand(0); 6597 // When converting to single-precision, we actually need to convert 6598 // to double-precision first and then round to single-precision. 6599 // To avoid double-rounding effects during that operation, we have 6600 // to prepare the input operand. Bits that might be truncated when 6601 // converting to double-precision are replaced by a bit that won't 6602 // be lost at this stage, but is below the single-precision rounding 6603 // position. 6604 // 6605 // However, if -enable-unsafe-fp-math is in effect, accept double 6606 // rounding to avoid the extra overhead. 6607 if (Op.getValueType() == MVT::f32 && 6608 !Subtarget.hasFPCVT() && 6609 !DAG.getTarget().Options.UnsafeFPMath) { 6610 6611 // Twiddle input to make sure the low 11 bits are zero. (If this 6612 // is the case, we are guaranteed the value will fit into the 53 bit 6613 // mantissa of an IEEE double-precision value without rounding.) 6614 // If any of those low 11 bits were not zero originally, make sure 6615 // bit 12 (value 2048) is set instead, so that the final rounding 6616 // to single-precision gets the correct result. 6617 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6618 SINT, DAG.getConstant(2047, dl, MVT::i64)); 6619 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 6620 Round, DAG.getConstant(2047, dl, MVT::i64)); 6621 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 6622 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 6623 Round, DAG.getConstant(-2048, dl, MVT::i64)); 6624 6625 // However, we cannot use that value unconditionally: if the magnitude 6626 // of the input value is small, the bit-twiddling we did above might 6627 // end up visibly changing the output. Fortunately, in that case, we 6628 // don't need to twiddle bits since the original input will convert 6629 // exactly to double-precision floating-point already. Therefore, 6630 // construct a conditional to use the original value if the top 11 6631 // bits are all sign-bit copies, and use the rounded value computed 6632 // above otherwise. 6633 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 6634 SINT, DAG.getConstant(53, dl, MVT::i32)); 6635 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 6636 Cond, DAG.getConstant(1, dl, MVT::i64)); 6637 Cond = DAG.getSetCC(dl, MVT::i32, 6638 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 6639 6640 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 6641 } 6642 6643 ReuseLoadInfo RLI; 6644 SDValue Bits; 6645 6646 MachineFunction &MF = DAG.getMachineFunction(); 6647 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 6648 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false, 6649 false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo, 6650 RLI.Ranges); 6651 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6652 } else if (Subtarget.hasLFIWAX() && 6653 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 6654 MachineMemOperand *MMO = 6655 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6656 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6657 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6658 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 6659 DAG.getVTList(MVT::f64, MVT::Other), 6660 Ops, MVT::i32, MMO); 6661 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6662 } else if (Subtarget.hasFPCVT() && 6663 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 6664 MachineMemOperand *MMO = 6665 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6666 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6667 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6668 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 6669 DAG.getVTList(MVT::f64, MVT::Other), 6670 Ops, MVT::i32, MMO); 6671 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 6672 } else if (((Subtarget.hasLFIWAX() && 6673 SINT.getOpcode() == ISD::SIGN_EXTEND) || 6674 (Subtarget.hasFPCVT() && 6675 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 6676 SINT.getOperand(0).getValueType() == MVT::i32) { 6677 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6678 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 6679 6680 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6681 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6682 6683 SDValue Store = DAG.getStore( 6684 DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 6685 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6686 false, false, 0); 6687 6688 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6689 "Expected an i32 store"); 6690 6691 RLI.Ptr = FIdx; 6692 RLI.Chain = Store; 6693 RLI.MPI = 6694 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6695 RLI.Alignment = 4; 6696 6697 MachineMemOperand *MMO = 6698 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6699 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6700 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6701 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 6702 PPCISD::LFIWZX : PPCISD::LFIWAX, 6703 dl, DAG.getVTList(MVT::f64, MVT::Other), 6704 Ops, MVT::i32, MMO); 6705 } else 6706 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 6707 6708 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 6709 6710 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6711 FP = DAG.getNode(ISD::FP_ROUND, dl, 6712 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 6713 return FP; 6714 } 6715 6716 assert(Op.getOperand(0).getValueType() == MVT::i32 && 6717 "Unhandled INT_TO_FP type in custom expander!"); 6718 // Since we only generate this in 64-bit mode, we can take advantage of 6719 // 64-bit registers. In particular, sign extend the input value into the 6720 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 6721 // then lfd it and fcfid it. 6722 MachineFunction &MF = DAG.getMachineFunction(); 6723 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 6724 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6725 6726 SDValue Ld; 6727 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 6728 ReuseLoadInfo RLI; 6729 bool ReusingLoad; 6730 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 6731 DAG))) { 6732 int FrameIdx = FrameInfo->CreateStackObject(4, 4, false); 6733 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6734 6735 SDValue Store = DAG.getStore( 6736 DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 6737 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6738 false, false, 0); 6739 6740 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 6741 "Expected an i32 store"); 6742 6743 RLI.Ptr = FIdx; 6744 RLI.Chain = Store; 6745 RLI.MPI = 6746 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 6747 RLI.Alignment = 4; 6748 } 6749 6750 MachineMemOperand *MMO = 6751 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 6752 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 6753 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 6754 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 6755 PPCISD::LFIWZX : PPCISD::LFIWAX, 6756 dl, DAG.getVTList(MVT::f64, MVT::Other), 6757 Ops, MVT::i32, MMO); 6758 if (ReusingLoad) 6759 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 6760 } else { 6761 assert(Subtarget.isPPC64() && 6762 "i32->FP without LFIWAX supported only on PPC64"); 6763 6764 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 6765 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 6766 6767 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 6768 Op.getOperand(0)); 6769 6770 // STD the extended value into the stack slot. 6771 SDValue Store = DAG.getStore( 6772 DAG.getEntryNode(), dl, Ext64, FIdx, 6773 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6774 false, false, 0); 6775 6776 // Load the value as a double. 6777 Ld = DAG.getLoad( 6778 MVT::f64, dl, Store, FIdx, 6779 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx), 6780 false, false, false, 0); 6781 } 6782 6783 // FCFID it and return it. 6784 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 6785 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 6786 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 6787 DAG.getIntPtrConstant(0, dl)); 6788 return FP; 6789 } 6790 6791 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 6792 SelectionDAG &DAG) const { 6793 SDLoc dl(Op); 6794 /* 6795 The rounding mode is in bits 30:31 of FPSR, and has the following 6796 settings: 6797 00 Round to nearest 6798 01 Round to 0 6799 10 Round to +inf 6800 11 Round to -inf 6801 6802 FLT_ROUNDS, on the other hand, expects the following: 6803 -1 Undefined 6804 0 Round to 0 6805 1 Round to nearest 6806 2 Round to +inf 6807 3 Round to -inf 6808 6809 To perform the conversion, we do: 6810 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 6811 */ 6812 6813 MachineFunction &MF = DAG.getMachineFunction(); 6814 EVT VT = Op.getValueType(); 6815 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 6816 6817 // Save FP Control Word to register 6818 EVT NodeTys[] = { 6819 MVT::f64, // return register 6820 MVT::Glue // unused in this context 6821 }; 6822 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 6823 6824 // Save FP register to stack slot 6825 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 6826 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 6827 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 6828 StackSlot, MachinePointerInfo(), false, false,0); 6829 6830 // Load FP Control Word from low 32 bits of stack slot. 6831 SDValue Four = DAG.getConstant(4, dl, PtrVT); 6832 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 6833 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 6834 false, false, false, 0); 6835 6836 // Transform as necessary 6837 SDValue CWD1 = 6838 DAG.getNode(ISD::AND, dl, MVT::i32, 6839 CWD, DAG.getConstant(3, dl, MVT::i32)); 6840 SDValue CWD2 = 6841 DAG.getNode(ISD::SRL, dl, MVT::i32, 6842 DAG.getNode(ISD::AND, dl, MVT::i32, 6843 DAG.getNode(ISD::XOR, dl, MVT::i32, 6844 CWD, DAG.getConstant(3, dl, MVT::i32)), 6845 DAG.getConstant(3, dl, MVT::i32)), 6846 DAG.getConstant(1, dl, MVT::i32)); 6847 6848 SDValue RetVal = 6849 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 6850 6851 return DAG.getNode((VT.getSizeInBits() < 16 ? 6852 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 6853 } 6854 6855 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6856 EVT VT = Op.getValueType(); 6857 unsigned BitWidth = VT.getSizeInBits(); 6858 SDLoc dl(Op); 6859 assert(Op.getNumOperands() == 3 && 6860 VT == Op.getOperand(1).getValueType() && 6861 "Unexpected SHL!"); 6862 6863 // Expand into a bunch of logical ops. Note that these ops 6864 // depend on the PPC behavior for oversized shift amounts. 6865 SDValue Lo = Op.getOperand(0); 6866 SDValue Hi = Op.getOperand(1); 6867 SDValue Amt = Op.getOperand(2); 6868 EVT AmtVT = Amt.getValueType(); 6869 6870 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6871 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6872 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 6873 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 6874 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 6875 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6876 DAG.getConstant(-BitWidth, dl, AmtVT)); 6877 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 6878 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6879 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 6880 SDValue OutOps[] = { OutLo, OutHi }; 6881 return DAG.getMergeValues(OutOps, dl); 6882 } 6883 6884 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 6885 EVT VT = Op.getValueType(); 6886 SDLoc dl(Op); 6887 unsigned BitWidth = VT.getSizeInBits(); 6888 assert(Op.getNumOperands() == 3 && 6889 VT == Op.getOperand(1).getValueType() && 6890 "Unexpected SRL!"); 6891 6892 // Expand into a bunch of logical ops. Note that these ops 6893 // depend on the PPC behavior for oversized shift amounts. 6894 SDValue Lo = Op.getOperand(0); 6895 SDValue Hi = Op.getOperand(1); 6896 SDValue Amt = Op.getOperand(2); 6897 EVT AmtVT = Amt.getValueType(); 6898 6899 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6900 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6901 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6902 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6903 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6904 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6905 DAG.getConstant(-BitWidth, dl, AmtVT)); 6906 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 6907 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 6908 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 6909 SDValue OutOps[] = { OutLo, OutHi }; 6910 return DAG.getMergeValues(OutOps, dl); 6911 } 6912 6913 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 6914 SDLoc dl(Op); 6915 EVT VT = Op.getValueType(); 6916 unsigned BitWidth = VT.getSizeInBits(); 6917 assert(Op.getNumOperands() == 3 && 6918 VT == Op.getOperand(1).getValueType() && 6919 "Unexpected SRA!"); 6920 6921 // Expand into a bunch of logical ops, followed by a select_cc. 6922 SDValue Lo = Op.getOperand(0); 6923 SDValue Hi = Op.getOperand(1); 6924 SDValue Amt = Op.getOperand(2); 6925 EVT AmtVT = Amt.getValueType(); 6926 6927 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 6928 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 6929 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 6930 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 6931 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 6932 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 6933 DAG.getConstant(-BitWidth, dl, AmtVT)); 6934 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 6935 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 6936 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 6937 Tmp4, Tmp6, ISD::SETLE); 6938 SDValue OutOps[] = { OutLo, OutHi }; 6939 return DAG.getMergeValues(OutOps, dl); 6940 } 6941 6942 //===----------------------------------------------------------------------===// 6943 // Vector related lowering. 6944 // 6945 6946 /// BuildSplatI - Build a canonical splati of Val with an element size of 6947 /// SplatSize. Cast the result to VT. 6948 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 6949 SelectionDAG &DAG, const SDLoc &dl) { 6950 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 6951 6952 static const MVT VTys[] = { // canonical VT to use for each size. 6953 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 6954 }; 6955 6956 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 6957 6958 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 6959 if (Val == -1) 6960 SplatSize = 1; 6961 6962 EVT CanonicalVT = VTys[SplatSize-1]; 6963 6964 // Build a canonical splat for this value. 6965 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 6966 } 6967 6968 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 6969 /// specified intrinsic ID. 6970 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 6971 const SDLoc &dl, EVT DestVT = MVT::Other) { 6972 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 6973 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6974 DAG.getConstant(IID, dl, MVT::i32), Op); 6975 } 6976 6977 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 6978 /// specified intrinsic ID. 6979 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 6980 SelectionDAG &DAG, const SDLoc &dl, 6981 EVT DestVT = MVT::Other) { 6982 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 6983 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6984 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 6985 } 6986 6987 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 6988 /// specified intrinsic ID. 6989 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 6990 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 6991 EVT DestVT = MVT::Other) { 6992 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 6993 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 6994 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 6995 } 6996 6997 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 6998 /// amount. The result has the specified value type. 6999 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 7000 SelectionDAG &DAG, const SDLoc &dl) { 7001 // Force LHS/RHS to be the right type. 7002 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 7003 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 7004 7005 int Ops[16]; 7006 for (unsigned i = 0; i != 16; ++i) 7007 Ops[i] = i + Amt; 7008 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 7009 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7010 } 7011 7012 // If this is a case we can't handle, return null and let the default 7013 // expansion code take care of it. If we CAN select this case, and if it 7014 // selects to a single instruction, return Op. Otherwise, if we can codegen 7015 // this case more efficiently than a constant pool load, lower it to the 7016 // sequence of ops that should be used. 7017 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 7018 SelectionDAG &DAG) const { 7019 SDLoc dl(Op); 7020 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 7021 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 7022 7023 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 7024 // We first build an i32 vector, load it into a QPX register, 7025 // then convert it to a floating-point vector and compare it 7026 // to a zero vector to get the boolean result. 7027 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7028 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7029 MachinePointerInfo PtrInfo = 7030 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7031 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7032 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7033 7034 assert(BVN->getNumOperands() == 4 && 7035 "BUILD_VECTOR for v4i1 does not have 4 operands"); 7036 7037 bool IsConst = true; 7038 for (unsigned i = 0; i < 4; ++i) { 7039 if (BVN->getOperand(i).isUndef()) continue; 7040 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 7041 IsConst = false; 7042 break; 7043 } 7044 } 7045 7046 if (IsConst) { 7047 Constant *One = 7048 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 7049 Constant *NegOne = 7050 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 7051 7052 Constant *CV[4]; 7053 for (unsigned i = 0; i < 4; ++i) { 7054 if (BVN->getOperand(i).isUndef()) 7055 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 7056 else if (isNullConstant(BVN->getOperand(i))) 7057 CV[i] = NegOne; 7058 else 7059 CV[i] = One; 7060 } 7061 7062 Constant *CP = ConstantVector::get(CV); 7063 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 7064 16 /* alignment */); 7065 7066 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 7067 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 7068 return DAG.getMemIntrinsicNode( 7069 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 7070 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 7071 } 7072 7073 SmallVector<SDValue, 4> Stores; 7074 for (unsigned i = 0; i < 4; ++i) { 7075 if (BVN->getOperand(i).isUndef()) continue; 7076 7077 unsigned Offset = 4*i; 7078 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7079 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7080 7081 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 7082 if (StoreSize > 4) { 7083 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 7084 BVN->getOperand(i), Idx, 7085 PtrInfo.getWithOffset(Offset), 7086 MVT::i32, false, false, 0)); 7087 } else { 7088 SDValue StoreValue = BVN->getOperand(i); 7089 if (StoreSize < 4) 7090 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 7091 7092 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 7093 StoreValue, Idx, 7094 PtrInfo.getWithOffset(Offset), 7095 false, false, 0)); 7096 } 7097 } 7098 7099 SDValue StoreChain; 7100 if (!Stores.empty()) 7101 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7102 else 7103 StoreChain = DAG.getEntryNode(); 7104 7105 // Now load from v4i32 into the QPX register; this will extend it to 7106 // v4i64 but not yet convert it to a floating point. Nevertheless, this 7107 // is typed as v4f64 because the QPX register integer states are not 7108 // explicitly represented. 7109 7110 SDValue Ops[] = {StoreChain, 7111 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 7112 FIdx}; 7113 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 7114 7115 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 7116 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7117 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7118 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 7119 LoadedVect); 7120 7121 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 7122 7123 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 7124 } 7125 7126 // All other QPX vectors are handled by generic code. 7127 if (Subtarget.hasQPX()) 7128 return SDValue(); 7129 7130 // Check if this is a splat of a constant value. 7131 APInt APSplatBits, APSplatUndef; 7132 unsigned SplatBitSize; 7133 bool HasAnyUndefs; 7134 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 7135 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 7136 SplatBitSize > 32) 7137 return SDValue(); 7138 7139 unsigned SplatBits = APSplatBits.getZExtValue(); 7140 unsigned SplatUndef = APSplatUndef.getZExtValue(); 7141 unsigned SplatSize = SplatBitSize / 8; 7142 7143 // First, handle single instruction cases. 7144 7145 // All zeros? 7146 if (SplatBits == 0) { 7147 // Canonicalize all zero vectors to be v4i32. 7148 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 7149 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 7150 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 7151 } 7152 return Op; 7153 } 7154 7155 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 7156 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 7157 (32-SplatBitSize)); 7158 if (SextVal >= -16 && SextVal <= 15) 7159 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 7160 7161 // Two instruction sequences. 7162 7163 // If this value is in the range [-32,30] and is even, use: 7164 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 7165 // If this value is in the range [17,31] and is odd, use: 7166 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 7167 // If this value is in the range [-31,-17] and is odd, use: 7168 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 7169 // Note the last two are three-instruction sequences. 7170 if (SextVal >= -32 && SextVal <= 31) { 7171 // To avoid having these optimizations undone by constant folding, 7172 // we convert to a pseudo that will be expanded later into one of 7173 // the above forms. 7174 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 7175 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 7176 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 7177 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 7178 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 7179 if (VT == Op.getValueType()) 7180 return RetVal; 7181 else 7182 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 7183 } 7184 7185 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 7186 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 7187 // for fneg/fabs. 7188 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 7189 // Make -1 and vspltisw -1: 7190 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 7191 7192 // Make the VSLW intrinsic, computing 0x8000_0000. 7193 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 7194 OnesV, DAG, dl); 7195 7196 // xor by OnesV to invert it. 7197 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 7198 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7199 } 7200 7201 // Check to see if this is a wide variety of vsplti*, binop self cases. 7202 static const signed char SplatCsts[] = { 7203 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 7204 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 7205 }; 7206 7207 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 7208 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 7209 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 7210 int i = SplatCsts[idx]; 7211 7212 // Figure out what shift amount will be used by altivec if shifted by i in 7213 // this splat size. 7214 unsigned TypeShiftAmt = i & (SplatBitSize-1); 7215 7216 // vsplti + shl self. 7217 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 7218 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7219 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7220 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 7221 Intrinsic::ppc_altivec_vslw 7222 }; 7223 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7224 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7225 } 7226 7227 // vsplti + srl self. 7228 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7229 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7230 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7231 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 7232 Intrinsic::ppc_altivec_vsrw 7233 }; 7234 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7235 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7236 } 7237 7238 // vsplti + sra self. 7239 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 7240 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7241 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7242 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 7243 Intrinsic::ppc_altivec_vsraw 7244 }; 7245 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7246 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7247 } 7248 7249 // vsplti + rol self. 7250 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 7251 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 7252 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 7253 static const unsigned IIDs[] = { // Intrinsic to use for each size. 7254 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 7255 Intrinsic::ppc_altivec_vrlw 7256 }; 7257 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 7258 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 7259 } 7260 7261 // t = vsplti c, result = vsldoi t, t, 1 7262 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 7263 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7264 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 7265 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7266 } 7267 // t = vsplti c, result = vsldoi t, t, 2 7268 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 7269 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7270 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 7271 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7272 } 7273 // t = vsplti c, result = vsldoi t, t, 3 7274 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 7275 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 7276 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 7277 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 7278 } 7279 } 7280 7281 return SDValue(); 7282 } 7283 7284 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7285 /// the specified operations to build the shuffle. 7286 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7287 SDValue RHS, SelectionDAG &DAG, 7288 const SDLoc &dl) { 7289 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7290 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 7291 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 7292 7293 enum { 7294 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7295 OP_VMRGHW, 7296 OP_VMRGLW, 7297 OP_VSPLTISW0, 7298 OP_VSPLTISW1, 7299 OP_VSPLTISW2, 7300 OP_VSPLTISW3, 7301 OP_VSLDOI4, 7302 OP_VSLDOI8, 7303 OP_VSLDOI12 7304 }; 7305 7306 if (OpNum == OP_COPY) { 7307 if (LHSID == (1*9+2)*9+3) return LHS; 7308 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 7309 return RHS; 7310 } 7311 7312 SDValue OpLHS, OpRHS; 7313 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7314 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7315 7316 int ShufIdxs[16]; 7317 switch (OpNum) { 7318 default: llvm_unreachable("Unknown i32 permute!"); 7319 case OP_VMRGHW: 7320 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 7321 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 7322 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 7323 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 7324 break; 7325 case OP_VMRGLW: 7326 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 7327 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 7328 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 7329 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 7330 break; 7331 case OP_VSPLTISW0: 7332 for (unsigned i = 0; i != 16; ++i) 7333 ShufIdxs[i] = (i&3)+0; 7334 break; 7335 case OP_VSPLTISW1: 7336 for (unsigned i = 0; i != 16; ++i) 7337 ShufIdxs[i] = (i&3)+4; 7338 break; 7339 case OP_VSPLTISW2: 7340 for (unsigned i = 0; i != 16; ++i) 7341 ShufIdxs[i] = (i&3)+8; 7342 break; 7343 case OP_VSPLTISW3: 7344 for (unsigned i = 0; i != 16; ++i) 7345 ShufIdxs[i] = (i&3)+12; 7346 break; 7347 case OP_VSLDOI4: 7348 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 7349 case OP_VSLDOI8: 7350 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 7351 case OP_VSLDOI12: 7352 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 7353 } 7354 EVT VT = OpLHS.getValueType(); 7355 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 7356 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 7357 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 7358 return DAG.getNode(ISD::BITCAST, dl, VT, T); 7359 } 7360 7361 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 7362 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 7363 /// return the code it can be lowered into. Worst case, it can always be 7364 /// lowered into a vperm. 7365 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7366 SelectionDAG &DAG) const { 7367 SDLoc dl(Op); 7368 SDValue V1 = Op.getOperand(0); 7369 SDValue V2 = Op.getOperand(1); 7370 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 7371 EVT VT = Op.getValueType(); 7372 bool isLittleEndian = Subtarget.isLittleEndian(); 7373 7374 if (Subtarget.hasVSX()) { 7375 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 7376 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG); 7377 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 7378 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 7379 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7380 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 7381 } 7382 } 7383 7384 if (Subtarget.hasQPX()) { 7385 if (VT.getVectorNumElements() != 4) 7386 return SDValue(); 7387 7388 if (V2.isUndef()) V2 = V1; 7389 7390 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 7391 if (AlignIdx != -1) { 7392 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 7393 DAG.getConstant(AlignIdx, dl, MVT::i32)); 7394 } else if (SVOp->isSplat()) { 7395 int SplatIdx = SVOp->getSplatIndex(); 7396 if (SplatIdx >= 4) { 7397 std::swap(V1, V2); 7398 SplatIdx -= 4; 7399 } 7400 7401 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 7402 DAG.getConstant(SplatIdx, dl, MVT::i32)); 7403 } 7404 7405 // Lower this into a qvgpci/qvfperm pair. 7406 7407 // Compute the qvgpci literal 7408 unsigned idx = 0; 7409 for (unsigned i = 0; i < 4; ++i) { 7410 int m = SVOp->getMaskElt(i); 7411 unsigned mm = m >= 0 ? (unsigned) m : i; 7412 idx |= mm << (3-i)*3; 7413 } 7414 7415 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 7416 DAG.getConstant(idx, dl, MVT::i32)); 7417 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 7418 } 7419 7420 // Cases that are handled by instructions that take permute immediates 7421 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 7422 // selected by the instruction selector. 7423 if (V2.isUndef()) { 7424 if (PPC::isSplatShuffleMask(SVOp, 1) || 7425 PPC::isSplatShuffleMask(SVOp, 2) || 7426 PPC::isSplatShuffleMask(SVOp, 4) || 7427 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 7428 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 7429 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 7430 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 7431 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 7432 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 7433 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 7434 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 7435 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 7436 (Subtarget.hasP8Altivec() && ( 7437 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 7438 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 7439 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 7440 return Op; 7441 } 7442 } 7443 7444 // Altivec has a variety of "shuffle immediates" that take two vector inputs 7445 // and produce a fixed permutation. If any of these match, do not lower to 7446 // VPERM. 7447 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 7448 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 7449 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 7450 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 7451 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7452 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7453 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7454 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 7455 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 7456 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 7457 (Subtarget.hasP8Altivec() && ( 7458 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 7459 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 7460 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 7461 return Op; 7462 7463 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 7464 // perfect shuffle table to emit an optimal matching sequence. 7465 ArrayRef<int> PermMask = SVOp->getMask(); 7466 7467 unsigned PFIndexes[4]; 7468 bool isFourElementShuffle = true; 7469 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 7470 unsigned EltNo = 8; // Start out undef. 7471 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 7472 if (PermMask[i*4+j] < 0) 7473 continue; // Undef, ignore it. 7474 7475 unsigned ByteSource = PermMask[i*4+j]; 7476 if ((ByteSource & 3) != j) { 7477 isFourElementShuffle = false; 7478 break; 7479 } 7480 7481 if (EltNo == 8) { 7482 EltNo = ByteSource/4; 7483 } else if (EltNo != ByteSource/4) { 7484 isFourElementShuffle = false; 7485 break; 7486 } 7487 } 7488 PFIndexes[i] = EltNo; 7489 } 7490 7491 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 7492 // perfect shuffle vector to determine if it is cost effective to do this as 7493 // discrete instructions, or whether we should use a vperm. 7494 // For now, we skip this for little endian until such time as we have a 7495 // little-endian perfect shuffle table. 7496 if (isFourElementShuffle && !isLittleEndian) { 7497 // Compute the index in the perfect shuffle table. 7498 unsigned PFTableIndex = 7499 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 7500 7501 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7502 unsigned Cost = (PFEntry >> 30); 7503 7504 // Determining when to avoid vperm is tricky. Many things affect the cost 7505 // of vperm, particularly how many times the perm mask needs to be computed. 7506 // For example, if the perm mask can be hoisted out of a loop or is already 7507 // used (perhaps because there are multiple permutes with the same shuffle 7508 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 7509 // the loop requires an extra register. 7510 // 7511 // As a compromise, we only emit discrete instructions if the shuffle can be 7512 // generated in 3 or fewer operations. When we have loop information 7513 // available, if this block is within a loop, we should avoid using vperm 7514 // for 3-operation perms and use a constant pool load instead. 7515 if (Cost < 3) 7516 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7517 } 7518 7519 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 7520 // vector that will get spilled to the constant pool. 7521 if (V2.isUndef()) V2 = V1; 7522 7523 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 7524 // that it is in input element units, not in bytes. Convert now. 7525 7526 // For little endian, the order of the input vectors is reversed, and 7527 // the permutation mask is complemented with respect to 31. This is 7528 // necessary to produce proper semantics with the big-endian-biased vperm 7529 // instruction. 7530 EVT EltVT = V1.getValueType().getVectorElementType(); 7531 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 7532 7533 SmallVector<SDValue, 16> ResultMask; 7534 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 7535 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 7536 7537 for (unsigned j = 0; j != BytesPerElement; ++j) 7538 if (isLittleEndian) 7539 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 7540 dl, MVT::i32)); 7541 else 7542 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 7543 MVT::i32)); 7544 } 7545 7546 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 7547 if (isLittleEndian) 7548 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7549 V2, V1, VPermMask); 7550 else 7551 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 7552 V1, V2, VPermMask); 7553 } 7554 7555 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 7556 /// vector comparison. If it is, return true and fill in Opc/isDot with 7557 /// information about the intrinsic. 7558 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 7559 bool &isDot, const PPCSubtarget &Subtarget) { 7560 unsigned IntrinsicID = 7561 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 7562 CompareOpc = -1; 7563 isDot = false; 7564 switch (IntrinsicID) { 7565 default: return false; 7566 // Comparison predicates. 7567 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 7568 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 7569 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 7570 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 7571 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 7572 case Intrinsic::ppc_altivec_vcmpequd_p: 7573 if (Subtarget.hasP8Altivec()) { 7574 CompareOpc = 199; 7575 isDot = 1; 7576 } else 7577 return false; 7578 7579 break; 7580 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 7581 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 7582 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 7583 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 7584 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 7585 case Intrinsic::ppc_altivec_vcmpgtsd_p: 7586 if (Subtarget.hasP8Altivec()) { 7587 CompareOpc = 967; 7588 isDot = 1; 7589 } else 7590 return false; 7591 7592 break; 7593 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 7594 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 7595 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 7596 case Intrinsic::ppc_altivec_vcmpgtud_p: 7597 if (Subtarget.hasP8Altivec()) { 7598 CompareOpc = 711; 7599 isDot = 1; 7600 } else 7601 return false; 7602 7603 break; 7604 // VSX predicate comparisons use the same infrastructure 7605 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 7606 case Intrinsic::ppc_vsx_xvcmpgedp_p: 7607 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 7608 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 7609 case Intrinsic::ppc_vsx_xvcmpgesp_p: 7610 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 7611 if (Subtarget.hasVSX()) { 7612 switch (IntrinsicID) { 7613 case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; 7614 case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; 7615 case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; 7616 case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; 7617 case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; 7618 case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; 7619 } 7620 isDot = 1; 7621 } 7622 else 7623 return false; 7624 7625 break; 7626 7627 // Normal Comparisons. 7628 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 7629 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 7630 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 7631 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 7632 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 7633 case Intrinsic::ppc_altivec_vcmpequd: 7634 if (Subtarget.hasP8Altivec()) { 7635 CompareOpc = 199; 7636 isDot = 0; 7637 } else 7638 return false; 7639 7640 break; 7641 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 7642 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 7643 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 7644 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 7645 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 7646 case Intrinsic::ppc_altivec_vcmpgtsd: 7647 if (Subtarget.hasP8Altivec()) { 7648 CompareOpc = 967; 7649 isDot = 0; 7650 } else 7651 return false; 7652 7653 break; 7654 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 7655 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 7656 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 7657 case Intrinsic::ppc_altivec_vcmpgtud: 7658 if (Subtarget.hasP8Altivec()) { 7659 CompareOpc = 711; 7660 isDot = 0; 7661 } else 7662 return false; 7663 7664 break; 7665 } 7666 return true; 7667 } 7668 7669 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 7670 /// lower, do it, otherwise return null. 7671 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 7672 SelectionDAG &DAG) const { 7673 unsigned IntrinsicID = 7674 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7675 7676 if (IntrinsicID == Intrinsic::thread_pointer) { 7677 // Reads the thread pointer register, used for __builtin_thread_pointer. 7678 bool is64bit = Subtarget.isPPC64(); 7679 return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2, 7680 is64bit ? MVT::i64 : MVT::i32); 7681 } 7682 7683 // If this is a lowered altivec predicate compare, CompareOpc is set to the 7684 // opcode number of the comparison. 7685 SDLoc dl(Op); 7686 int CompareOpc; 7687 bool isDot; 7688 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 7689 return SDValue(); // Don't custom lower most intrinsics. 7690 7691 // If this is a non-dot comparison, make the VCMP node and we are done. 7692 if (!isDot) { 7693 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 7694 Op.getOperand(1), Op.getOperand(2), 7695 DAG.getConstant(CompareOpc, dl, MVT::i32)); 7696 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 7697 } 7698 7699 // Create the PPCISD altivec 'dot' comparison node. 7700 SDValue Ops[] = { 7701 Op.getOperand(2), // LHS 7702 Op.getOperand(3), // RHS 7703 DAG.getConstant(CompareOpc, dl, MVT::i32) 7704 }; 7705 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 7706 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 7707 7708 // Now that we have the comparison, emit a copy from the CR to a GPR. 7709 // This is flagged to the above dot comparison. 7710 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 7711 DAG.getRegister(PPC::CR6, MVT::i32), 7712 CompNode.getValue(1)); 7713 7714 // Unpack the result based on how the target uses it. 7715 unsigned BitNo; // Bit # of CR6. 7716 bool InvertBit; // Invert result? 7717 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 7718 default: // Can't happen, don't crash on invalid number though. 7719 case 0: // Return the value of the EQ bit of CR6. 7720 BitNo = 0; InvertBit = false; 7721 break; 7722 case 1: // Return the inverted value of the EQ bit of CR6. 7723 BitNo = 0; InvertBit = true; 7724 break; 7725 case 2: // Return the value of the LT bit of CR6. 7726 BitNo = 2; InvertBit = false; 7727 break; 7728 case 3: // Return the inverted value of the LT bit of CR6. 7729 BitNo = 2; InvertBit = true; 7730 break; 7731 } 7732 7733 // Shift the bit into the low position. 7734 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 7735 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 7736 // Isolate the bit. 7737 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 7738 DAG.getConstant(1, dl, MVT::i32)); 7739 7740 // If we are supposed to, toggle the bit. 7741 if (InvertBit) 7742 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 7743 DAG.getConstant(1, dl, MVT::i32)); 7744 return Flags; 7745 } 7746 7747 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 7748 SelectionDAG &DAG) const { 7749 SDLoc dl(Op); 7750 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int 7751 // instructions), but for smaller types, we need to first extend up to v2i32 7752 // before doing going farther. 7753 if (Op.getValueType() == MVT::v2i64) { 7754 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 7755 if (ExtVT != MVT::v2i32) { 7756 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)); 7757 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op, 7758 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(), 7759 ExtVT.getVectorElementType(), 4))); 7760 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op); 7761 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op, 7762 DAG.getValueType(MVT::v2i32)); 7763 } 7764 7765 return Op; 7766 } 7767 7768 return SDValue(); 7769 } 7770 7771 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 7772 SelectionDAG &DAG) const { 7773 SDLoc dl(Op); 7774 // Create a stack slot that is 16-byte aligned. 7775 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7776 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7777 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7778 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7779 7780 // Store the input value into Value#0 of the stack slot. 7781 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 7782 Op.getOperand(0), FIdx, MachinePointerInfo(), 7783 false, false, 0); 7784 // Load it out. 7785 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 7786 false, false, false, 0); 7787 } 7788 7789 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 7790 SelectionDAG &DAG) const { 7791 SDLoc dl(Op); 7792 SDNode *N = Op.getNode(); 7793 7794 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 7795 "Unknown extract_vector_elt type"); 7796 7797 SDValue Value = N->getOperand(0); 7798 7799 // The first part of this is like the store lowering except that we don't 7800 // need to track the chain. 7801 7802 // The values are now known to be -1 (false) or 1 (true). To convert this 7803 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 7804 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 7805 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 7806 7807 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 7808 // understand how to form the extending load. 7809 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 7810 7811 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 7812 7813 // Now convert to an integer and store. 7814 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 7815 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 7816 Value); 7817 7818 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 7819 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 7820 MachinePointerInfo PtrInfo = 7821 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 7822 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7823 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 7824 7825 SDValue StoreChain = DAG.getEntryNode(); 7826 SDValue Ops[] = {StoreChain, 7827 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 7828 Value, FIdx}; 7829 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 7830 7831 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 7832 dl, VTs, Ops, MVT::v4i32, PtrInfo); 7833 7834 // Extract the value requested. 7835 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7836 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 7837 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 7838 7839 SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 7840 PtrInfo.getWithOffset(Offset), 7841 false, false, false, 0); 7842 7843 if (!Subtarget.useCRBits()) 7844 return IntVal; 7845 7846 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 7847 } 7848 7849 /// Lowering for QPX v4i1 loads 7850 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 7851 SelectionDAG &DAG) const { 7852 SDLoc dl(Op); 7853 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 7854 SDValue LoadChain = LN->getChain(); 7855 SDValue BasePtr = LN->getBasePtr(); 7856 7857 if (Op.getValueType() == MVT::v4f64 || 7858 Op.getValueType() == MVT::v4f32) { 7859 EVT MemVT = LN->getMemoryVT(); 7860 unsigned Alignment = LN->getAlignment(); 7861 7862 // If this load is properly aligned, then it is legal. 7863 if (Alignment >= MemVT.getStoreSize()) 7864 return Op; 7865 7866 EVT ScalarVT = Op.getValueType().getScalarType(), 7867 ScalarMemVT = MemVT.getScalarType(); 7868 unsigned Stride = ScalarMemVT.getStoreSize(); 7869 7870 SDValue Vals[4], LoadChains[4]; 7871 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7872 SDValue Load; 7873 if (ScalarVT != ScalarMemVT) 7874 Load = 7875 DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 7876 BasePtr, 7877 LN->getPointerInfo().getWithOffset(Idx*Stride), 7878 ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(), 7879 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7880 LN->getAAInfo()); 7881 else 7882 Load = 7883 DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 7884 LN->getPointerInfo().getWithOffset(Idx*Stride), 7885 LN->isVolatile(), LN->isNonTemporal(), 7886 LN->isInvariant(), MinAlign(Alignment, Idx*Stride), 7887 LN->getAAInfo()); 7888 7889 if (Idx == 0 && LN->isIndexed()) { 7890 assert(LN->getAddressingMode() == ISD::PRE_INC && 7891 "Unknown addressing mode on vector load"); 7892 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 7893 LN->getAddressingMode()); 7894 } 7895 7896 Vals[Idx] = Load; 7897 LoadChains[Idx] = Load.getValue(1); 7898 7899 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7900 DAG.getConstant(Stride, dl, 7901 BasePtr.getValueType())); 7902 } 7903 7904 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7905 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 7906 7907 if (LN->isIndexed()) { 7908 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 7909 return DAG.getMergeValues(RetOps, dl); 7910 } 7911 7912 SDValue RetOps[] = { Value, TF }; 7913 return DAG.getMergeValues(RetOps, dl); 7914 } 7915 7916 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 7917 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 7918 7919 // To lower v4i1 from a byte array, we load the byte elements of the 7920 // vector and then reuse the BUILD_VECTOR logic. 7921 7922 SDValue VectElmts[4], VectElmtChains[4]; 7923 for (unsigned i = 0; i < 4; ++i) { 7924 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 7925 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 7926 7927 VectElmts[i] = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 7928 LN->getPointerInfo().getWithOffset(i), 7929 MVT::i8 /* memory type */, LN->isVolatile(), 7930 LN->isNonTemporal(), LN->isInvariant(), 7931 1 /* alignment */, LN->getAAInfo()); 7932 VectElmtChains[i] = VectElmts[i].getValue(1); 7933 } 7934 7935 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 7936 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 7937 7938 SDValue RVals[] = { Value, LoadChain }; 7939 return DAG.getMergeValues(RVals, dl); 7940 } 7941 7942 /// Lowering for QPX v4i1 stores 7943 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 7944 SelectionDAG &DAG) const { 7945 SDLoc dl(Op); 7946 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 7947 SDValue StoreChain = SN->getChain(); 7948 SDValue BasePtr = SN->getBasePtr(); 7949 SDValue Value = SN->getValue(); 7950 7951 if (Value.getValueType() == MVT::v4f64 || 7952 Value.getValueType() == MVT::v4f32) { 7953 EVT MemVT = SN->getMemoryVT(); 7954 unsigned Alignment = SN->getAlignment(); 7955 7956 // If this store is properly aligned, then it is legal. 7957 if (Alignment >= MemVT.getStoreSize()) 7958 return Op; 7959 7960 EVT ScalarVT = Value.getValueType().getScalarType(), 7961 ScalarMemVT = MemVT.getScalarType(); 7962 unsigned Stride = ScalarMemVT.getStoreSize(); 7963 7964 SDValue Stores[4]; 7965 for (unsigned Idx = 0; Idx < 4; ++Idx) { 7966 SDValue Ex = DAG.getNode( 7967 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 7968 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 7969 SDValue Store; 7970 if (ScalarVT != ScalarMemVT) 7971 Store = 7972 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 7973 SN->getPointerInfo().getWithOffset(Idx*Stride), 7974 ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(), 7975 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7976 else 7977 Store = 7978 DAG.getStore(StoreChain, dl, Ex, BasePtr, 7979 SN->getPointerInfo().getWithOffset(Idx*Stride), 7980 SN->isVolatile(), SN->isNonTemporal(), 7981 MinAlign(Alignment, Idx*Stride), SN->getAAInfo()); 7982 7983 if (Idx == 0 && SN->isIndexed()) { 7984 assert(SN->getAddressingMode() == ISD::PRE_INC && 7985 "Unknown addressing mode on vector store"); 7986 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 7987 SN->getAddressingMode()); 7988 } 7989 7990 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 7991 DAG.getConstant(Stride, dl, 7992 BasePtr.getValueType())); 7993 Stores[Idx] = Store; 7994 } 7995 7996 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7997 7998 if (SN->isIndexed()) { 7999 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 8000 return DAG.getMergeValues(RetOps, dl); 8001 } 8002 8003 return TF; 8004 } 8005 8006 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 8007 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 8008 8009 // The values are now known to be -1 (false) or 1 (true). To convert this 8010 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8011 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8012 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8013 8014 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 8015 // understand how to form the extending load. 8016 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8017 8018 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8019 8020 // Now convert to an integer and store. 8021 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8022 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 8023 Value); 8024 8025 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 8026 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 8027 MachinePointerInfo PtrInfo = 8028 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8029 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8030 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8031 8032 SDValue Ops[] = {StoreChain, 8033 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 8034 Value, FIdx}; 8035 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 8036 8037 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 8038 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8039 8040 // Move data into the byte array. 8041 SDValue Loads[4], LoadChains[4]; 8042 for (unsigned i = 0; i < 4; ++i) { 8043 unsigned Offset = 4*i; 8044 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8045 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8046 8047 Loads[i] = 8048 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 8049 PtrInfo.getWithOffset(Offset), false, false, false, 0); 8050 LoadChains[i] = Loads[i].getValue(1); 8051 } 8052 8053 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 8054 8055 SDValue Stores[4]; 8056 for (unsigned i = 0; i < 4; ++i) { 8057 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 8058 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 8059 8060 Stores[i] = DAG.getTruncStore( 8061 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 8062 MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(), 8063 1 /* alignment */, SN->getAAInfo()); 8064 } 8065 8066 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8067 8068 return StoreChain; 8069 } 8070 8071 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 8072 SDLoc dl(Op); 8073 if (Op.getValueType() == MVT::v4i32) { 8074 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8075 8076 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 8077 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 8078 8079 SDValue RHSSwap = // = vrlw RHS, 16 8080 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 8081 8082 // Shrinkify inputs to v8i16. 8083 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 8084 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 8085 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 8086 8087 // Low parts multiplied together, generating 32-bit results (we ignore the 8088 // top parts). 8089 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 8090 LHS, RHS, DAG, dl, MVT::v4i32); 8091 8092 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 8093 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 8094 // Shift the high parts up 16 bits. 8095 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 8096 Neg16, DAG, dl); 8097 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 8098 } else if (Op.getValueType() == MVT::v8i16) { 8099 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8100 8101 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 8102 8103 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 8104 LHS, RHS, Zero, DAG, dl); 8105 } else if (Op.getValueType() == MVT::v16i8) { 8106 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 8107 bool isLittleEndian = Subtarget.isLittleEndian(); 8108 8109 // Multiply the even 8-bit parts, producing 16-bit sums. 8110 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 8111 LHS, RHS, DAG, dl, MVT::v8i16); 8112 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 8113 8114 // Multiply the odd 8-bit parts, producing 16-bit sums. 8115 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 8116 LHS, RHS, DAG, dl, MVT::v8i16); 8117 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 8118 8119 // Merge the results together. Because vmuleub and vmuloub are 8120 // instructions with a big-endian bias, we must reverse the 8121 // element numbering and reverse the meaning of "odd" and "even" 8122 // when generating little endian code. 8123 int Ops[16]; 8124 for (unsigned i = 0; i != 8; ++i) { 8125 if (isLittleEndian) { 8126 Ops[i*2 ] = 2*i; 8127 Ops[i*2+1] = 2*i+16; 8128 } else { 8129 Ops[i*2 ] = 2*i+1; 8130 Ops[i*2+1] = 2*i+1+16; 8131 } 8132 } 8133 if (isLittleEndian) 8134 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 8135 else 8136 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 8137 } else { 8138 llvm_unreachable("Unknown mul to lower!"); 8139 } 8140 } 8141 8142 /// LowerOperation - Provide custom lowering hooks for some operations. 8143 /// 8144 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8145 switch (Op.getOpcode()) { 8146 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 8147 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8148 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8149 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8150 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8151 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8152 case ISD::SETCC: return LowerSETCC(Op, DAG); 8153 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 8154 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 8155 case ISD::VASTART: 8156 return LowerVASTART(Op, DAG, Subtarget); 8157 8158 case ISD::VAARG: 8159 return LowerVAARG(Op, DAG, Subtarget); 8160 8161 case ISD::VACOPY: 8162 return LowerVACOPY(Op, DAG, Subtarget); 8163 8164 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget); 8165 case ISD::DYNAMIC_STACKALLOC: 8166 return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget); 8167 case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget); 8168 8169 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 8170 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 8171 8172 case ISD::LOAD: return LowerLOAD(Op, DAG); 8173 case ISD::STORE: return LowerSTORE(Op, DAG); 8174 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 8175 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 8176 case ISD::FP_TO_UINT: 8177 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 8178 SDLoc(Op)); 8179 case ISD::UINT_TO_FP: 8180 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 8181 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8182 8183 // Lower 64-bit shifts. 8184 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 8185 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 8186 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 8187 8188 // Vector-related lowering. 8189 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8190 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8191 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8192 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8193 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 8194 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8195 case ISD::MUL: return LowerMUL(Op, DAG); 8196 8197 // For counter-based loop handling. 8198 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 8199 8200 // Frame & Return address. 8201 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8202 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8203 } 8204 } 8205 8206 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 8207 SmallVectorImpl<SDValue>&Results, 8208 SelectionDAG &DAG) const { 8209 SDLoc dl(N); 8210 switch (N->getOpcode()) { 8211 default: 8212 llvm_unreachable("Do not know how to custom type legalize this operation!"); 8213 case ISD::READCYCLECOUNTER: { 8214 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8215 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 8216 8217 Results.push_back(RTB); 8218 Results.push_back(RTB.getValue(1)); 8219 Results.push_back(RTB.getValue(2)); 8220 break; 8221 } 8222 case ISD::INTRINSIC_W_CHAIN: { 8223 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 8224 Intrinsic::ppc_is_decremented_ctr_nonzero) 8225 break; 8226 8227 assert(N->getValueType(0) == MVT::i1 && 8228 "Unexpected result type for CTR decrement intrinsic"); 8229 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 8230 N->getValueType(0)); 8231 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 8232 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 8233 N->getOperand(1)); 8234 8235 Results.push_back(NewInt); 8236 Results.push_back(NewInt.getValue(1)); 8237 break; 8238 } 8239 case ISD::VAARG: { 8240 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 8241 return; 8242 8243 EVT VT = N->getValueType(0); 8244 8245 if (VT == MVT::i64) { 8246 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget); 8247 8248 Results.push_back(NewNode); 8249 Results.push_back(NewNode.getValue(1)); 8250 } 8251 return; 8252 } 8253 case ISD::FP_ROUND_INREG: { 8254 assert(N->getValueType(0) == MVT::ppcf128); 8255 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 8256 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8257 MVT::f64, N->getOperand(0), 8258 DAG.getIntPtrConstant(0, dl)); 8259 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 8260 MVT::f64, N->getOperand(0), 8261 DAG.getIntPtrConstant(1, dl)); 8262 8263 // Add the two halves of the long double in round-to-zero mode. 8264 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8265 8266 // We know the low half is about to be thrown away, so just use something 8267 // convenient. 8268 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 8269 FPreg, FPreg)); 8270 return; 8271 } 8272 case ISD::FP_TO_SINT: 8273 case ISD::FP_TO_UINT: 8274 // LowerFP_TO_INT() can only handle f32 and f64. 8275 if (N->getOperand(0).getValueType() == MVT::ppcf128) 8276 return; 8277 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 8278 return; 8279 } 8280 } 8281 8282 //===----------------------------------------------------------------------===// 8283 // Other Lowering Code 8284 //===----------------------------------------------------------------------===// 8285 8286 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 8287 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 8288 Function *Func = Intrinsic::getDeclaration(M, Id); 8289 return Builder.CreateCall(Func, {}); 8290 } 8291 8292 // The mappings for emitLeading/TrailingFence is taken from 8293 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 8294 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8295 AtomicOrdering Ord, bool IsStore, 8296 bool IsLoad) const { 8297 if (Ord == AtomicOrdering::SequentiallyConsistent) 8298 return callIntrinsic(Builder, Intrinsic::ppc_sync); 8299 if (isReleaseOrStronger(Ord)) 8300 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8301 return nullptr; 8302 } 8303 8304 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8305 AtomicOrdering Ord, bool IsStore, 8306 bool IsLoad) const { 8307 if (IsLoad && isAcquireOrStronger(Ord)) 8308 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 8309 // FIXME: this is too conservative, a dependent branch + isync is enough. 8310 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 8311 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 8312 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 8313 return nullptr; 8314 } 8315 8316 MachineBasicBlock * 8317 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 8318 unsigned AtomicSize, 8319 unsigned BinOpcode) const { 8320 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8321 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8322 8323 auto LoadMnemonic = PPC::LDARX; 8324 auto StoreMnemonic = PPC::STDCX; 8325 switch (AtomicSize) { 8326 default: 8327 llvm_unreachable("Unexpected size of atomic entity"); 8328 case 1: 8329 LoadMnemonic = PPC::LBARX; 8330 StoreMnemonic = PPC::STBCX; 8331 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8332 break; 8333 case 2: 8334 LoadMnemonic = PPC::LHARX; 8335 StoreMnemonic = PPC::STHCX; 8336 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 8337 break; 8338 case 4: 8339 LoadMnemonic = PPC::LWARX; 8340 StoreMnemonic = PPC::STWCX; 8341 break; 8342 case 8: 8343 LoadMnemonic = PPC::LDARX; 8344 StoreMnemonic = PPC::STDCX; 8345 break; 8346 } 8347 8348 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8349 MachineFunction *F = BB->getParent(); 8350 MachineFunction::iterator It = ++BB->getIterator(); 8351 8352 unsigned dest = MI->getOperand(0).getReg(); 8353 unsigned ptrA = MI->getOperand(1).getReg(); 8354 unsigned ptrB = MI->getOperand(2).getReg(); 8355 unsigned incr = MI->getOperand(3).getReg(); 8356 DebugLoc dl = MI->getDebugLoc(); 8357 8358 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8359 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8360 F->insert(It, loopMBB); 8361 F->insert(It, exitMBB); 8362 exitMBB->splice(exitMBB->begin(), BB, 8363 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8364 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8365 8366 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8367 unsigned TmpReg = (!BinOpcode) ? incr : 8368 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 8369 : &PPC::GPRCRegClass); 8370 8371 // thisMBB: 8372 // ... 8373 // fallthrough --> loopMBB 8374 BB->addSuccessor(loopMBB); 8375 8376 // loopMBB: 8377 // l[wd]arx dest, ptr 8378 // add r0, dest, incr 8379 // st[wd]cx. r0, ptr 8380 // bne- loopMBB 8381 // fallthrough --> exitMBB 8382 BB = loopMBB; 8383 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 8384 .addReg(ptrA).addReg(ptrB); 8385 if (BinOpcode) 8386 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 8387 BuildMI(BB, dl, TII->get(StoreMnemonic)) 8388 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 8389 BuildMI(BB, dl, TII->get(PPC::BCC)) 8390 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8391 BB->addSuccessor(loopMBB); 8392 BB->addSuccessor(exitMBB); 8393 8394 // exitMBB: 8395 // ... 8396 BB = exitMBB; 8397 return BB; 8398 } 8399 8400 MachineBasicBlock * 8401 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 8402 MachineBasicBlock *BB, 8403 bool is8bit, // operation 8404 unsigned BinOpcode) const { 8405 // If we support part-word atomic mnemonics, just use them 8406 if (Subtarget.hasPartwordAtomics()) 8407 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode); 8408 8409 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 8410 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8411 // In 64 bit mode we have to use 64 bits for addresses, even though the 8412 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 8413 // registers without caring whether they're 32 or 64, but here we're 8414 // doing actual arithmetic on the addresses. 8415 bool is64bit = Subtarget.isPPC64(); 8416 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 8417 8418 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8419 MachineFunction *F = BB->getParent(); 8420 MachineFunction::iterator It = ++BB->getIterator(); 8421 8422 unsigned dest = MI->getOperand(0).getReg(); 8423 unsigned ptrA = MI->getOperand(1).getReg(); 8424 unsigned ptrB = MI->getOperand(2).getReg(); 8425 unsigned incr = MI->getOperand(3).getReg(); 8426 DebugLoc dl = MI->getDebugLoc(); 8427 8428 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 8429 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 8430 F->insert(It, loopMBB); 8431 F->insert(It, exitMBB); 8432 exitMBB->splice(exitMBB->begin(), BB, 8433 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8434 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 8435 8436 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8437 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 8438 : &PPC::GPRCRegClass; 8439 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 8440 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 8441 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 8442 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 8443 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 8444 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 8445 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 8446 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 8447 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 8448 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 8449 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 8450 unsigned Ptr1Reg; 8451 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 8452 8453 // thisMBB: 8454 // ... 8455 // fallthrough --> loopMBB 8456 BB->addSuccessor(loopMBB); 8457 8458 // The 4-byte load must be aligned, while a char or short may be 8459 // anywhere in the word. Hence all this nasty bookkeeping code. 8460 // add ptr1, ptrA, ptrB [copy if ptrA==0] 8461 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 8462 // xori shift, shift1, 24 [16] 8463 // rlwinm ptr, ptr1, 0, 0, 29 8464 // slw incr2, incr, shift 8465 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 8466 // slw mask, mask2, shift 8467 // loopMBB: 8468 // lwarx tmpDest, ptr 8469 // add tmp, tmpDest, incr2 8470 // andc tmp2, tmpDest, mask 8471 // and tmp3, tmp, mask 8472 // or tmp4, tmp3, tmp2 8473 // stwcx. tmp4, ptr 8474 // bne- loopMBB 8475 // fallthrough --> exitMBB 8476 // srw dest, tmpDest, shift 8477 if (ptrA != ZeroReg) { 8478 Ptr1Reg = RegInfo.createVirtualRegister(RC); 8479 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 8480 .addReg(ptrA).addReg(ptrB); 8481 } else { 8482 Ptr1Reg = ptrB; 8483 } 8484 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 8485 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 8486 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 8487 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 8488 if (is64bit) 8489 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 8490 .addReg(Ptr1Reg).addImm(0).addImm(61); 8491 else 8492 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 8493 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 8494 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 8495 .addReg(incr).addReg(ShiftReg); 8496 if (is8bit) 8497 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 8498 else { 8499 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 8500 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 8501 } 8502 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 8503 .addReg(Mask2Reg).addReg(ShiftReg); 8504 8505 BB = loopMBB; 8506 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 8507 .addReg(ZeroReg).addReg(PtrReg); 8508 if (BinOpcode) 8509 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 8510 .addReg(Incr2Reg).addReg(TmpDestReg); 8511 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 8512 .addReg(TmpDestReg).addReg(MaskReg); 8513 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 8514 .addReg(TmpReg).addReg(MaskReg); 8515 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 8516 .addReg(Tmp3Reg).addReg(Tmp2Reg); 8517 BuildMI(BB, dl, TII->get(PPC::STWCX)) 8518 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 8519 BuildMI(BB, dl, TII->get(PPC::BCC)) 8520 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 8521 BB->addSuccessor(loopMBB); 8522 BB->addSuccessor(exitMBB); 8523 8524 // exitMBB: 8525 // ... 8526 BB = exitMBB; 8527 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 8528 .addReg(ShiftReg); 8529 return BB; 8530 } 8531 8532 llvm::MachineBasicBlock* 8533 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, 8534 MachineBasicBlock *MBB) const { 8535 DebugLoc DL = MI->getDebugLoc(); 8536 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8537 8538 MachineFunction *MF = MBB->getParent(); 8539 MachineRegisterInfo &MRI = MF->getRegInfo(); 8540 8541 const BasicBlock *BB = MBB->getBasicBlock(); 8542 MachineFunction::iterator I = ++MBB->getIterator(); 8543 8544 // Memory Reference 8545 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8546 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8547 8548 unsigned DstReg = MI->getOperand(0).getReg(); 8549 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 8550 assert(RC->hasType(MVT::i32) && "Invalid destination!"); 8551 unsigned mainDstReg = MRI.createVirtualRegister(RC); 8552 unsigned restoreDstReg = MRI.createVirtualRegister(RC); 8553 8554 MVT PVT = getPointerTy(MF->getDataLayout()); 8555 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8556 "Invalid Pointer Size!"); 8557 // For v = setjmp(buf), we generate 8558 // 8559 // thisMBB: 8560 // SjLjSetup mainMBB 8561 // bl mainMBB 8562 // v_restore = 1 8563 // b sinkMBB 8564 // 8565 // mainMBB: 8566 // buf[LabelOffset] = LR 8567 // v_main = 0 8568 // 8569 // sinkMBB: 8570 // v = phi(main, restore) 8571 // 8572 8573 MachineBasicBlock *thisMBB = MBB; 8574 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 8575 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 8576 MF->insert(I, mainMBB); 8577 MF->insert(I, sinkMBB); 8578 8579 MachineInstrBuilder MIB; 8580 8581 // Transfer the remainder of BB and its successor edges to sinkMBB. 8582 sinkMBB->splice(sinkMBB->begin(), MBB, 8583 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 8584 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 8585 8586 // Note that the structure of the jmp_buf used here is not compatible 8587 // with that used by libc, and is not designed to be. Specifically, it 8588 // stores only those 'reserved' registers that LLVM does not otherwise 8589 // understand how to spill. Also, by convention, by the time this 8590 // intrinsic is called, Clang has already stored the frame address in the 8591 // first slot of the buffer and stack address in the third. Following the 8592 // X86 target code, we'll store the jump address in the second slot. We also 8593 // need to save the TOC pointer (R2) to handle jumps between shared 8594 // libraries, and that will be stored in the fourth slot. The thread 8595 // identifier (R13) is not affected. 8596 8597 // thisMBB: 8598 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8599 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8600 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8601 8602 // Prepare IP either in reg. 8603 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 8604 unsigned LabelReg = MRI.createVirtualRegister(PtrRC); 8605 unsigned BufReg = MI->getOperand(1).getReg(); 8606 8607 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) { 8608 setUsesTOCBasePtr(*MBB->getParent()); 8609 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 8610 .addReg(PPC::X2) 8611 .addImm(TOCOffset) 8612 .addReg(BufReg); 8613 MIB.setMemRefs(MMOBegin, MMOEnd); 8614 } 8615 8616 // Naked functions never have a base pointer, and so we use r1. For all 8617 // other functions, this decision must be delayed until during PEI. 8618 unsigned BaseReg; 8619 if (MF->getFunction()->hasFnAttribute(Attribute::Naked)) 8620 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 8621 else 8622 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 8623 8624 MIB = BuildMI(*thisMBB, MI, DL, 8625 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 8626 .addReg(BaseReg) 8627 .addImm(BPOffset) 8628 .addReg(BufReg); 8629 MIB.setMemRefs(MMOBegin, MMOEnd); 8630 8631 // Setup 8632 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 8633 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 8634 MIB.addRegMask(TRI->getNoPreservedMask()); 8635 8636 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 8637 8638 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 8639 .addMBB(mainMBB); 8640 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 8641 8642 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 8643 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 8644 8645 // mainMBB: 8646 // mainDstReg = 0 8647 MIB = 8648 BuildMI(mainMBB, DL, 8649 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 8650 8651 // Store IP 8652 if (Subtarget.isPPC64()) { 8653 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 8654 .addReg(LabelReg) 8655 .addImm(LabelOffset) 8656 .addReg(BufReg); 8657 } else { 8658 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 8659 .addReg(LabelReg) 8660 .addImm(LabelOffset) 8661 .addReg(BufReg); 8662 } 8663 8664 MIB.setMemRefs(MMOBegin, MMOEnd); 8665 8666 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 8667 mainMBB->addSuccessor(sinkMBB); 8668 8669 // sinkMBB: 8670 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 8671 TII->get(PPC::PHI), DstReg) 8672 .addReg(mainDstReg).addMBB(mainMBB) 8673 .addReg(restoreDstReg).addMBB(thisMBB); 8674 8675 MI->eraseFromParent(); 8676 return sinkMBB; 8677 } 8678 8679 MachineBasicBlock * 8680 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, 8681 MachineBasicBlock *MBB) const { 8682 DebugLoc DL = MI->getDebugLoc(); 8683 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8684 8685 MachineFunction *MF = MBB->getParent(); 8686 MachineRegisterInfo &MRI = MF->getRegInfo(); 8687 8688 // Memory Reference 8689 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 8690 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 8691 8692 MVT PVT = getPointerTy(MF->getDataLayout()); 8693 assert((PVT == MVT::i64 || PVT == MVT::i32) && 8694 "Invalid Pointer Size!"); 8695 8696 const TargetRegisterClass *RC = 8697 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 8698 unsigned Tmp = MRI.createVirtualRegister(RC); 8699 // Since FP is only updated here but NOT referenced, it's treated as GPR. 8700 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 8701 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 8702 unsigned BP = 8703 (PVT == MVT::i64) 8704 ? PPC::X30 8705 : (Subtarget.isSVR4ABI() && 8706 MF->getTarget().getRelocationModel() == Reloc::PIC_ 8707 ? PPC::R29 8708 : PPC::R30); 8709 8710 MachineInstrBuilder MIB; 8711 8712 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 8713 const int64_t SPOffset = 2 * PVT.getStoreSize(); 8714 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 8715 const int64_t BPOffset = 4 * PVT.getStoreSize(); 8716 8717 unsigned BufReg = MI->getOperand(0).getReg(); 8718 8719 // Reload FP (the jumped-to function may not have had a 8720 // frame pointer, and if so, then its r31 will be restored 8721 // as necessary). 8722 if (PVT == MVT::i64) { 8723 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 8724 .addImm(0) 8725 .addReg(BufReg); 8726 } else { 8727 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 8728 .addImm(0) 8729 .addReg(BufReg); 8730 } 8731 MIB.setMemRefs(MMOBegin, MMOEnd); 8732 8733 // Reload IP 8734 if (PVT == MVT::i64) { 8735 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 8736 .addImm(LabelOffset) 8737 .addReg(BufReg); 8738 } else { 8739 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 8740 .addImm(LabelOffset) 8741 .addReg(BufReg); 8742 } 8743 MIB.setMemRefs(MMOBegin, MMOEnd); 8744 8745 // Reload SP 8746 if (PVT == MVT::i64) { 8747 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 8748 .addImm(SPOffset) 8749 .addReg(BufReg); 8750 } else { 8751 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 8752 .addImm(SPOffset) 8753 .addReg(BufReg); 8754 } 8755 MIB.setMemRefs(MMOBegin, MMOEnd); 8756 8757 // Reload BP 8758 if (PVT == MVT::i64) { 8759 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 8760 .addImm(BPOffset) 8761 .addReg(BufReg); 8762 } else { 8763 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 8764 .addImm(BPOffset) 8765 .addReg(BufReg); 8766 } 8767 MIB.setMemRefs(MMOBegin, MMOEnd); 8768 8769 // Reload TOC 8770 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 8771 setUsesTOCBasePtr(*MBB->getParent()); 8772 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 8773 .addImm(TOCOffset) 8774 .addReg(BufReg); 8775 8776 MIB.setMemRefs(MMOBegin, MMOEnd); 8777 } 8778 8779 // Jump 8780 BuildMI(*MBB, MI, DL, 8781 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 8782 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 8783 8784 MI->eraseFromParent(); 8785 return MBB; 8786 } 8787 8788 MachineBasicBlock * 8789 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 8790 MachineBasicBlock *BB) const { 8791 if (MI->getOpcode() == TargetOpcode::STACKMAP || 8792 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8793 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() && 8794 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 8795 // Call lowering should have added an r2 operand to indicate a dependence 8796 // on the TOC base pointer value. It can't however, because there is no 8797 // way to mark the dependence as implicit there, and so the stackmap code 8798 // will confuse it with a regular operand. Instead, add the dependence 8799 // here. 8800 setUsesTOCBasePtr(*BB->getParent()); 8801 MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 8802 } 8803 8804 return emitPatchPoint(MI, BB); 8805 } 8806 8807 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 || 8808 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) { 8809 return emitEHSjLjSetJmp(MI, BB); 8810 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 || 8811 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) { 8812 return emitEHSjLjLongJmp(MI, BB); 8813 } 8814 8815 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 8816 8817 // To "insert" these instructions we actually have to insert their 8818 // control-flow patterns. 8819 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8820 MachineFunction::iterator It = ++BB->getIterator(); 8821 8822 MachineFunction *F = BB->getParent(); 8823 8824 if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 || 8825 MI->getOpcode() == PPC::SELECT_CC_I8 || 8826 MI->getOpcode() == PPC::SELECT_I4 || 8827 MI->getOpcode() == PPC::SELECT_I8)) { 8828 SmallVector<MachineOperand, 2> Cond; 8829 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8830 MI->getOpcode() == PPC::SELECT_CC_I8) 8831 Cond.push_back(MI->getOperand(4)); 8832 else 8833 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 8834 Cond.push_back(MI->getOperand(1)); 8835 8836 DebugLoc dl = MI->getDebugLoc(); 8837 TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(), 8838 Cond, MI->getOperand(2).getReg(), 8839 MI->getOperand(3).getReg()); 8840 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 || 8841 MI->getOpcode() == PPC::SELECT_CC_I8 || 8842 MI->getOpcode() == PPC::SELECT_CC_F4 || 8843 MI->getOpcode() == PPC::SELECT_CC_F8 || 8844 MI->getOpcode() == PPC::SELECT_CC_QFRC || 8845 MI->getOpcode() == PPC::SELECT_CC_QSRC || 8846 MI->getOpcode() == PPC::SELECT_CC_QBRC || 8847 MI->getOpcode() == PPC::SELECT_CC_VRRC || 8848 MI->getOpcode() == PPC::SELECT_CC_VSFRC || 8849 MI->getOpcode() == PPC::SELECT_CC_VSSRC || 8850 MI->getOpcode() == PPC::SELECT_CC_VSRC || 8851 MI->getOpcode() == PPC::SELECT_I4 || 8852 MI->getOpcode() == PPC::SELECT_I8 || 8853 MI->getOpcode() == PPC::SELECT_F4 || 8854 MI->getOpcode() == PPC::SELECT_F8 || 8855 MI->getOpcode() == PPC::SELECT_QFRC || 8856 MI->getOpcode() == PPC::SELECT_QSRC || 8857 MI->getOpcode() == PPC::SELECT_QBRC || 8858 MI->getOpcode() == PPC::SELECT_VRRC || 8859 MI->getOpcode() == PPC::SELECT_VSFRC || 8860 MI->getOpcode() == PPC::SELECT_VSSRC || 8861 MI->getOpcode() == PPC::SELECT_VSRC) { 8862 // The incoming instruction knows the destination vreg to set, the 8863 // condition code register to branch on, the true/false values to 8864 // select between, and a branch opcode to use. 8865 8866 // thisMBB: 8867 // ... 8868 // TrueVal = ... 8869 // cmpTY ccX, r1, r2 8870 // bCC copy1MBB 8871 // fallthrough --> copy0MBB 8872 MachineBasicBlock *thisMBB = BB; 8873 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 8874 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8875 DebugLoc dl = MI->getDebugLoc(); 8876 F->insert(It, copy0MBB); 8877 F->insert(It, sinkMBB); 8878 8879 // Transfer the remainder of BB and its successor edges to sinkMBB. 8880 sinkMBB->splice(sinkMBB->begin(), BB, 8881 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8882 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8883 8884 // Next, add the true and fallthrough blocks as its successors. 8885 BB->addSuccessor(copy0MBB); 8886 BB->addSuccessor(sinkMBB); 8887 8888 if (MI->getOpcode() == PPC::SELECT_I4 || 8889 MI->getOpcode() == PPC::SELECT_I8 || 8890 MI->getOpcode() == PPC::SELECT_F4 || 8891 MI->getOpcode() == PPC::SELECT_F8 || 8892 MI->getOpcode() == PPC::SELECT_QFRC || 8893 MI->getOpcode() == PPC::SELECT_QSRC || 8894 MI->getOpcode() == PPC::SELECT_QBRC || 8895 MI->getOpcode() == PPC::SELECT_VRRC || 8896 MI->getOpcode() == PPC::SELECT_VSFRC || 8897 MI->getOpcode() == PPC::SELECT_VSSRC || 8898 MI->getOpcode() == PPC::SELECT_VSRC) { 8899 BuildMI(BB, dl, TII->get(PPC::BC)) 8900 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8901 } else { 8902 unsigned SelectPred = MI->getOperand(4).getImm(); 8903 BuildMI(BB, dl, TII->get(PPC::BCC)) 8904 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 8905 } 8906 8907 // copy0MBB: 8908 // %FalseValue = ... 8909 // # fallthrough to sinkMBB 8910 BB = copy0MBB; 8911 8912 // Update machine-CFG edges 8913 BB->addSuccessor(sinkMBB); 8914 8915 // sinkMBB: 8916 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 8917 // ... 8918 BB = sinkMBB; 8919 BuildMI(*BB, BB->begin(), dl, 8920 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 8921 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 8922 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 8923 } else if (MI->getOpcode() == PPC::ReadTB) { 8924 // To read the 64-bit time-base register on a 32-bit target, we read the 8925 // two halves. Should the counter have wrapped while it was being read, we 8926 // need to try again. 8927 // ... 8928 // readLoop: 8929 // mfspr Rx,TBU # load from TBU 8930 // mfspr Ry,TB # load from TB 8931 // mfspr Rz,TBU # load from TBU 8932 // cmpw crX,Rx,Rz # check if 'old'='new' 8933 // bne readLoop # branch if they're not equal 8934 // ... 8935 8936 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 8937 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 8938 DebugLoc dl = MI->getDebugLoc(); 8939 F->insert(It, readMBB); 8940 F->insert(It, sinkMBB); 8941 8942 // Transfer the remainder of BB and its successor edges to sinkMBB. 8943 sinkMBB->splice(sinkMBB->begin(), BB, 8944 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8945 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 8946 8947 BB->addSuccessor(readMBB); 8948 BB = readMBB; 8949 8950 MachineRegisterInfo &RegInfo = F->getRegInfo(); 8951 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 8952 unsigned LoReg = MI->getOperand(0).getReg(); 8953 unsigned HiReg = MI->getOperand(1).getReg(); 8954 8955 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 8956 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 8957 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 8958 8959 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 8960 8961 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 8962 .addReg(HiReg).addReg(ReadAgainReg); 8963 BuildMI(BB, dl, TII->get(PPC::BCC)) 8964 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB); 8965 8966 BB->addSuccessor(readMBB); 8967 BB->addSuccessor(sinkMBB); 8968 } 8969 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 8970 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 8971 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 8972 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 8973 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 8974 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 8975 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 8976 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 8977 8978 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 8979 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 8980 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 8981 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 8982 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 8983 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 8984 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 8985 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 8986 8987 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 8988 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 8989 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 8990 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 8991 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 8992 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 8993 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 8994 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 8995 8996 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 8997 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 8998 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 8999 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 9000 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 9001 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 9002 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 9003 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 9004 9005 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 9006 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 9007 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 9008 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 9009 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 9010 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 9011 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 9012 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 9013 9014 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 9015 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 9016 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 9017 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 9018 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 9019 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 9020 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 9021 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 9022 9023 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 9024 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 9025 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 9026 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 9027 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 9028 BB = EmitAtomicBinary(MI, BB, 4, 0); 9029 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 9030 BB = EmitAtomicBinary(MI, BB, 8, 0); 9031 9032 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 9033 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 9034 (Subtarget.hasPartwordAtomics() && 9035 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 9036 (Subtarget.hasPartwordAtomics() && 9037 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 9038 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 9039 9040 auto LoadMnemonic = PPC::LDARX; 9041 auto StoreMnemonic = PPC::STDCX; 9042 switch(MI->getOpcode()) { 9043 default: 9044 llvm_unreachable("Compare and swap of unknown size"); 9045 case PPC::ATOMIC_CMP_SWAP_I8: 9046 LoadMnemonic = PPC::LBARX; 9047 StoreMnemonic = PPC::STBCX; 9048 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9049 break; 9050 case PPC::ATOMIC_CMP_SWAP_I16: 9051 LoadMnemonic = PPC::LHARX; 9052 StoreMnemonic = PPC::STHCX; 9053 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 9054 break; 9055 case PPC::ATOMIC_CMP_SWAP_I32: 9056 LoadMnemonic = PPC::LWARX; 9057 StoreMnemonic = PPC::STWCX; 9058 break; 9059 case PPC::ATOMIC_CMP_SWAP_I64: 9060 LoadMnemonic = PPC::LDARX; 9061 StoreMnemonic = PPC::STDCX; 9062 break; 9063 } 9064 unsigned dest = MI->getOperand(0).getReg(); 9065 unsigned ptrA = MI->getOperand(1).getReg(); 9066 unsigned ptrB = MI->getOperand(2).getReg(); 9067 unsigned oldval = MI->getOperand(3).getReg(); 9068 unsigned newval = MI->getOperand(4).getReg(); 9069 DebugLoc dl = MI->getDebugLoc(); 9070 9071 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9072 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9073 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9074 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9075 F->insert(It, loop1MBB); 9076 F->insert(It, loop2MBB); 9077 F->insert(It, midMBB); 9078 F->insert(It, exitMBB); 9079 exitMBB->splice(exitMBB->begin(), BB, 9080 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9081 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9082 9083 // thisMBB: 9084 // ... 9085 // fallthrough --> loopMBB 9086 BB->addSuccessor(loop1MBB); 9087 9088 // loop1MBB: 9089 // l[bhwd]arx dest, ptr 9090 // cmp[wd] dest, oldval 9091 // bne- midMBB 9092 // loop2MBB: 9093 // st[bhwd]cx. newval, ptr 9094 // bne- loopMBB 9095 // b exitBB 9096 // midMBB: 9097 // st[bhwd]cx. dest, ptr 9098 // exitBB: 9099 BB = loop1MBB; 9100 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 9101 .addReg(ptrA).addReg(ptrB); 9102 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 9103 .addReg(oldval).addReg(dest); 9104 BuildMI(BB, dl, TII->get(PPC::BCC)) 9105 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9106 BB->addSuccessor(loop2MBB); 9107 BB->addSuccessor(midMBB); 9108 9109 BB = loop2MBB; 9110 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9111 .addReg(newval).addReg(ptrA).addReg(ptrB); 9112 BuildMI(BB, dl, TII->get(PPC::BCC)) 9113 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9114 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9115 BB->addSuccessor(loop1MBB); 9116 BB->addSuccessor(exitMBB); 9117 9118 BB = midMBB; 9119 BuildMI(BB, dl, TII->get(StoreMnemonic)) 9120 .addReg(dest).addReg(ptrA).addReg(ptrB); 9121 BB->addSuccessor(exitMBB); 9122 9123 // exitMBB: 9124 // ... 9125 BB = exitMBB; 9126 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 9127 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 9128 // We must use 64-bit registers for addresses when targeting 64-bit, 9129 // since we're actually doing arithmetic on them. Other registers 9130 // can be 32-bit. 9131 bool is64bit = Subtarget.isPPC64(); 9132 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 9133 9134 unsigned dest = MI->getOperand(0).getReg(); 9135 unsigned ptrA = MI->getOperand(1).getReg(); 9136 unsigned ptrB = MI->getOperand(2).getReg(); 9137 unsigned oldval = MI->getOperand(3).getReg(); 9138 unsigned newval = MI->getOperand(4).getReg(); 9139 DebugLoc dl = MI->getDebugLoc(); 9140 9141 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 9142 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 9143 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 9144 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 9145 F->insert(It, loop1MBB); 9146 F->insert(It, loop2MBB); 9147 F->insert(It, midMBB); 9148 F->insert(It, exitMBB); 9149 exitMBB->splice(exitMBB->begin(), BB, 9150 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 9151 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 9152 9153 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9154 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass 9155 : &PPC::GPRCRegClass; 9156 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 9157 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 9158 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 9159 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 9160 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 9161 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 9162 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 9163 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 9164 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 9165 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 9166 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 9167 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 9168 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 9169 unsigned Ptr1Reg; 9170 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 9171 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 9172 // thisMBB: 9173 // ... 9174 // fallthrough --> loopMBB 9175 BB->addSuccessor(loop1MBB); 9176 9177 // The 4-byte load must be aligned, while a char or short may be 9178 // anywhere in the word. Hence all this nasty bookkeeping code. 9179 // add ptr1, ptrA, ptrB [copy if ptrA==0] 9180 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 9181 // xori shift, shift1, 24 [16] 9182 // rlwinm ptr, ptr1, 0, 0, 29 9183 // slw newval2, newval, shift 9184 // slw oldval2, oldval,shift 9185 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 9186 // slw mask, mask2, shift 9187 // and newval3, newval2, mask 9188 // and oldval3, oldval2, mask 9189 // loop1MBB: 9190 // lwarx tmpDest, ptr 9191 // and tmp, tmpDest, mask 9192 // cmpw tmp, oldval3 9193 // bne- midMBB 9194 // loop2MBB: 9195 // andc tmp2, tmpDest, mask 9196 // or tmp4, tmp2, newval3 9197 // stwcx. tmp4, ptr 9198 // bne- loop1MBB 9199 // b exitBB 9200 // midMBB: 9201 // stwcx. tmpDest, ptr 9202 // exitBB: 9203 // srw dest, tmpDest, shift 9204 if (ptrA != ZeroReg) { 9205 Ptr1Reg = RegInfo.createVirtualRegister(RC); 9206 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 9207 .addReg(ptrA).addReg(ptrB); 9208 } else { 9209 Ptr1Reg = ptrB; 9210 } 9211 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 9212 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 9213 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 9214 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 9215 if (is64bit) 9216 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 9217 .addReg(Ptr1Reg).addImm(0).addImm(61); 9218 else 9219 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 9220 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 9221 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 9222 .addReg(newval).addReg(ShiftReg); 9223 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 9224 .addReg(oldval).addReg(ShiftReg); 9225 if (is8bit) 9226 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 9227 else { 9228 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 9229 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 9230 .addReg(Mask3Reg).addImm(65535); 9231 } 9232 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 9233 .addReg(Mask2Reg).addReg(ShiftReg); 9234 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 9235 .addReg(NewVal2Reg).addReg(MaskReg); 9236 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 9237 .addReg(OldVal2Reg).addReg(MaskReg); 9238 9239 BB = loop1MBB; 9240 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 9241 .addReg(ZeroReg).addReg(PtrReg); 9242 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 9243 .addReg(TmpDestReg).addReg(MaskReg); 9244 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 9245 .addReg(TmpReg).addReg(OldVal3Reg); 9246 BuildMI(BB, dl, TII->get(PPC::BCC)) 9247 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 9248 BB->addSuccessor(loop2MBB); 9249 BB->addSuccessor(midMBB); 9250 9251 BB = loop2MBB; 9252 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 9253 .addReg(TmpDestReg).addReg(MaskReg); 9254 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 9255 .addReg(Tmp2Reg).addReg(NewVal3Reg); 9256 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 9257 .addReg(ZeroReg).addReg(PtrReg); 9258 BuildMI(BB, dl, TII->get(PPC::BCC)) 9259 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 9260 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 9261 BB->addSuccessor(loop1MBB); 9262 BB->addSuccessor(exitMBB); 9263 9264 BB = midMBB; 9265 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 9266 .addReg(ZeroReg).addReg(PtrReg); 9267 BB->addSuccessor(exitMBB); 9268 9269 // exitMBB: 9270 // ... 9271 BB = exitMBB; 9272 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 9273 .addReg(ShiftReg); 9274 } else if (MI->getOpcode() == PPC::FADDrtz) { 9275 // This pseudo performs an FADD with rounding mode temporarily forced 9276 // to round-to-zero. We emit this via custom inserter since the FPSCR 9277 // is not modeled at the SelectionDAG level. 9278 unsigned Dest = MI->getOperand(0).getReg(); 9279 unsigned Src1 = MI->getOperand(1).getReg(); 9280 unsigned Src2 = MI->getOperand(2).getReg(); 9281 DebugLoc dl = MI->getDebugLoc(); 9282 9283 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9284 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 9285 9286 // Save FPSCR value. 9287 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 9288 9289 // Set rounding mode to round-to-zero. 9290 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 9291 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 9292 9293 // Perform addition. 9294 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 9295 9296 // Restore FPSCR value. 9297 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 9298 } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9299 MI->getOpcode() == PPC::ANDIo_1_GT_BIT || 9300 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9301 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) { 9302 unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 || 9303 MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ? 9304 PPC::ANDIo8 : PPC::ANDIo; 9305 bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT || 9306 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8); 9307 9308 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9309 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ? 9310 &PPC::GPRCRegClass : 9311 &PPC::G8RCRegClass); 9312 9313 DebugLoc dl = MI->getDebugLoc(); 9314 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest) 9315 .addReg(MI->getOperand(1).getReg()).addImm(1); 9316 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), 9317 MI->getOperand(0).getReg()) 9318 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT); 9319 } else if (MI->getOpcode() == PPC::TCHECK_RET) { 9320 DebugLoc Dl = MI->getDebugLoc(); 9321 MachineRegisterInfo &RegInfo = F->getRegInfo(); 9322 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 9323 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 9324 return BB; 9325 } else { 9326 llvm_unreachable("Unexpected instr type to insert"); 9327 } 9328 9329 MI->eraseFromParent(); // The pseudo instruction is gone now. 9330 return BB; 9331 } 9332 9333 //===----------------------------------------------------------------------===// 9334 // Target Optimization Hooks 9335 //===----------------------------------------------------------------------===// 9336 9337 static std::string getRecipOp(const char *Base, EVT VT) { 9338 std::string RecipOp(Base); 9339 if (VT.getScalarType() == MVT::f64) 9340 RecipOp += "d"; 9341 else 9342 RecipOp += "f"; 9343 9344 if (VT.isVector()) 9345 RecipOp = "vec-" + RecipOp; 9346 9347 return RecipOp; 9348 } 9349 9350 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand, 9351 DAGCombinerInfo &DCI, 9352 unsigned &RefinementSteps, 9353 bool &UseOneConstNR) const { 9354 EVT VT = Operand.getValueType(); 9355 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 9356 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 9357 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9358 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9359 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9360 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9361 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9362 std::string RecipOp = getRecipOp("sqrt", VT); 9363 if (!Recips.isEnabled(RecipOp)) 9364 return SDValue(); 9365 9366 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9367 UseOneConstNR = true; 9368 return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 9369 } 9370 return SDValue(); 9371 } 9372 9373 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, 9374 DAGCombinerInfo &DCI, 9375 unsigned &RefinementSteps) const { 9376 EVT VT = Operand.getValueType(); 9377 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 9378 (VT == MVT::f64 && Subtarget.hasFRE()) || 9379 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 9380 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 9381 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 9382 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 9383 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; 9384 std::string RecipOp = getRecipOp("div", VT); 9385 if (!Recips.isEnabled(RecipOp)) 9386 return SDValue(); 9387 9388 RefinementSteps = Recips.getRefinementSteps(RecipOp); 9389 return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 9390 } 9391 return SDValue(); 9392 } 9393 9394 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 9395 // Note: This functionality is used only when unsafe-fp-math is enabled, and 9396 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 9397 // enabled for division), this functionality is redundant with the default 9398 // combiner logic (once the division -> reciprocal/multiply transformation 9399 // has taken place). As a result, this matters more for older cores than for 9400 // newer ones. 9401 9402 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 9403 // reciprocal if there are two or more FDIVs (for embedded cores with only 9404 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 9405 switch (Subtarget.getDarwinDirective()) { 9406 default: 9407 return 3; 9408 case PPC::DIR_440: 9409 case PPC::DIR_A2: 9410 case PPC::DIR_E500mc: 9411 case PPC::DIR_E5500: 9412 return 2; 9413 } 9414 } 9415 9416 // isConsecutiveLSLoc needs to work even if all adds have not yet been 9417 // collapsed, and so we need to look through chains of them. 9418 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 9419 int64_t& Offset, SelectionDAG &DAG) { 9420 if (DAG.isBaseWithConstantOffset(Loc)) { 9421 Base = Loc.getOperand(0); 9422 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 9423 9424 // The base might itself be a base plus an offset, and if so, accumulate 9425 // that as well. 9426 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 9427 } 9428 } 9429 9430 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 9431 unsigned Bytes, int Dist, 9432 SelectionDAG &DAG) { 9433 if (VT.getSizeInBits() / 8 != Bytes) 9434 return false; 9435 9436 SDValue BaseLoc = Base->getBasePtr(); 9437 if (Loc.getOpcode() == ISD::FrameIndex) { 9438 if (BaseLoc.getOpcode() != ISD::FrameIndex) 9439 return false; 9440 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 9441 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 9442 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 9443 int FS = MFI->getObjectSize(FI); 9444 int BFS = MFI->getObjectSize(BFI); 9445 if (FS != BFS || FS != (int)Bytes) return false; 9446 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); 9447 } 9448 9449 SDValue Base1 = Loc, Base2 = BaseLoc; 9450 int64_t Offset1 = 0, Offset2 = 0; 9451 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 9452 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 9453 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 9454 return true; 9455 9456 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9457 const GlobalValue *GV1 = nullptr; 9458 const GlobalValue *GV2 = nullptr; 9459 Offset1 = 0; 9460 Offset2 = 0; 9461 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 9462 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 9463 if (isGA1 && isGA2 && GV1 == GV2) 9464 return Offset1 == (Offset2 + Dist*Bytes); 9465 return false; 9466 } 9467 9468 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 9469 // not enforce equality of the chain operands. 9470 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 9471 unsigned Bytes, int Dist, 9472 SelectionDAG &DAG) { 9473 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 9474 EVT VT = LS->getMemoryVT(); 9475 SDValue Loc = LS->getBasePtr(); 9476 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 9477 } 9478 9479 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 9480 EVT VT; 9481 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9482 default: return false; 9483 case Intrinsic::ppc_qpx_qvlfd: 9484 case Intrinsic::ppc_qpx_qvlfda: 9485 VT = MVT::v4f64; 9486 break; 9487 case Intrinsic::ppc_qpx_qvlfs: 9488 case Intrinsic::ppc_qpx_qvlfsa: 9489 VT = MVT::v4f32; 9490 break; 9491 case Intrinsic::ppc_qpx_qvlfcd: 9492 case Intrinsic::ppc_qpx_qvlfcda: 9493 VT = MVT::v2f64; 9494 break; 9495 case Intrinsic::ppc_qpx_qvlfcs: 9496 case Intrinsic::ppc_qpx_qvlfcsa: 9497 VT = MVT::v2f32; 9498 break; 9499 case Intrinsic::ppc_qpx_qvlfiwa: 9500 case Intrinsic::ppc_qpx_qvlfiwz: 9501 case Intrinsic::ppc_altivec_lvx: 9502 case Intrinsic::ppc_altivec_lvxl: 9503 case Intrinsic::ppc_vsx_lxvw4x: 9504 VT = MVT::v4i32; 9505 break; 9506 case Intrinsic::ppc_vsx_lxvd2x: 9507 VT = MVT::v2f64; 9508 break; 9509 case Intrinsic::ppc_altivec_lvebx: 9510 VT = MVT::i8; 9511 break; 9512 case Intrinsic::ppc_altivec_lvehx: 9513 VT = MVT::i16; 9514 break; 9515 case Intrinsic::ppc_altivec_lvewx: 9516 VT = MVT::i32; 9517 break; 9518 } 9519 9520 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 9521 } 9522 9523 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 9524 EVT VT; 9525 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9526 default: return false; 9527 case Intrinsic::ppc_qpx_qvstfd: 9528 case Intrinsic::ppc_qpx_qvstfda: 9529 VT = MVT::v4f64; 9530 break; 9531 case Intrinsic::ppc_qpx_qvstfs: 9532 case Intrinsic::ppc_qpx_qvstfsa: 9533 VT = MVT::v4f32; 9534 break; 9535 case Intrinsic::ppc_qpx_qvstfcd: 9536 case Intrinsic::ppc_qpx_qvstfcda: 9537 VT = MVT::v2f64; 9538 break; 9539 case Intrinsic::ppc_qpx_qvstfcs: 9540 case Intrinsic::ppc_qpx_qvstfcsa: 9541 VT = MVT::v2f32; 9542 break; 9543 case Intrinsic::ppc_qpx_qvstfiw: 9544 case Intrinsic::ppc_qpx_qvstfiwa: 9545 case Intrinsic::ppc_altivec_stvx: 9546 case Intrinsic::ppc_altivec_stvxl: 9547 case Intrinsic::ppc_vsx_stxvw4x: 9548 VT = MVT::v4i32; 9549 break; 9550 case Intrinsic::ppc_vsx_stxvd2x: 9551 VT = MVT::v2f64; 9552 break; 9553 case Intrinsic::ppc_altivec_stvebx: 9554 VT = MVT::i8; 9555 break; 9556 case Intrinsic::ppc_altivec_stvehx: 9557 VT = MVT::i16; 9558 break; 9559 case Intrinsic::ppc_altivec_stvewx: 9560 VT = MVT::i32; 9561 break; 9562 } 9563 9564 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 9565 } 9566 9567 return false; 9568 } 9569 9570 // Return true is there is a nearyby consecutive load to the one provided 9571 // (regardless of alignment). We search up and down the chain, looking though 9572 // token factors and other loads (but nothing else). As a result, a true result 9573 // indicates that it is safe to create a new consecutive load adjacent to the 9574 // load provided. 9575 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 9576 SDValue Chain = LD->getChain(); 9577 EVT VT = LD->getMemoryVT(); 9578 9579 SmallSet<SDNode *, 16> LoadRoots; 9580 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 9581 SmallSet<SDNode *, 16> Visited; 9582 9583 // First, search up the chain, branching to follow all token-factor operands. 9584 // If we find a consecutive load, then we're done, otherwise, record all 9585 // nodes just above the top-level loads and token factors. 9586 while (!Queue.empty()) { 9587 SDNode *ChainNext = Queue.pop_back_val(); 9588 if (!Visited.insert(ChainNext).second) 9589 continue; 9590 9591 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 9592 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9593 return true; 9594 9595 if (!Visited.count(ChainLD->getChain().getNode())) 9596 Queue.push_back(ChainLD->getChain().getNode()); 9597 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 9598 for (const SDUse &O : ChainNext->ops()) 9599 if (!Visited.count(O.getNode())) 9600 Queue.push_back(O.getNode()); 9601 } else 9602 LoadRoots.insert(ChainNext); 9603 } 9604 9605 // Second, search down the chain, starting from the top-level nodes recorded 9606 // in the first phase. These top-level nodes are the nodes just above all 9607 // loads and token factors. Starting with their uses, recursively look though 9608 // all loads (just the chain uses) and token factors to find a consecutive 9609 // load. 9610 Visited.clear(); 9611 Queue.clear(); 9612 9613 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 9614 IE = LoadRoots.end(); I != IE; ++I) { 9615 Queue.push_back(*I); 9616 9617 while (!Queue.empty()) { 9618 SDNode *LoadRoot = Queue.pop_back_val(); 9619 if (!Visited.insert(LoadRoot).second) 9620 continue; 9621 9622 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 9623 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 9624 return true; 9625 9626 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 9627 UE = LoadRoot->use_end(); UI != UE; ++UI) 9628 if (((isa<MemSDNode>(*UI) && 9629 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 9630 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 9631 Queue.push_back(*UI); 9632 } 9633 } 9634 9635 return false; 9636 } 9637 9638 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 9639 DAGCombinerInfo &DCI) const { 9640 SelectionDAG &DAG = DCI.DAG; 9641 SDLoc dl(N); 9642 9643 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 9644 // If we're tracking CR bits, we need to be careful that we don't have: 9645 // trunc(binary-ops(zext(x), zext(y))) 9646 // or 9647 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 9648 // such that we're unnecessarily moving things into GPRs when it would be 9649 // better to keep them in CR bits. 9650 9651 // Note that trunc here can be an actual i1 trunc, or can be the effective 9652 // truncation that comes from a setcc or select_cc. 9653 if (N->getOpcode() == ISD::TRUNCATE && 9654 N->getValueType(0) != MVT::i1) 9655 return SDValue(); 9656 9657 if (N->getOperand(0).getValueType() != MVT::i32 && 9658 N->getOperand(0).getValueType() != MVT::i64) 9659 return SDValue(); 9660 9661 if (N->getOpcode() == ISD::SETCC || 9662 N->getOpcode() == ISD::SELECT_CC) { 9663 // If we're looking at a comparison, then we need to make sure that the 9664 // high bits (all except for the first) don't matter the result. 9665 ISD::CondCode CC = 9666 cast<CondCodeSDNode>(N->getOperand( 9667 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 9668 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 9669 9670 if (ISD::isSignedIntSetCC(CC)) { 9671 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 9672 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 9673 return SDValue(); 9674 } else if (ISD::isUnsignedIntSetCC(CC)) { 9675 if (!DAG.MaskedValueIsZero(N->getOperand(0), 9676 APInt::getHighBitsSet(OpBits, OpBits-1)) || 9677 !DAG.MaskedValueIsZero(N->getOperand(1), 9678 APInt::getHighBitsSet(OpBits, OpBits-1))) 9679 return SDValue(); 9680 } else { 9681 // This is neither a signed nor an unsigned comparison, just make sure 9682 // that the high bits are equal. 9683 APInt Op1Zero, Op1One; 9684 APInt Op2Zero, Op2One; 9685 DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One); 9686 DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One); 9687 9688 // We don't really care about what is known about the first bit (if 9689 // anything), so clear it in all masks prior to comparing them. 9690 Op1Zero.clearBit(0); Op1One.clearBit(0); 9691 Op2Zero.clearBit(0); Op2One.clearBit(0); 9692 9693 if (Op1Zero != Op2Zero || Op1One != Op2One) 9694 return SDValue(); 9695 } 9696 } 9697 9698 // We now know that the higher-order bits are irrelevant, we just need to 9699 // make sure that all of the intermediate operations are bit operations, and 9700 // all inputs are extensions. 9701 if (N->getOperand(0).getOpcode() != ISD::AND && 9702 N->getOperand(0).getOpcode() != ISD::OR && 9703 N->getOperand(0).getOpcode() != ISD::XOR && 9704 N->getOperand(0).getOpcode() != ISD::SELECT && 9705 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 9706 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 9707 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 9708 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 9709 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 9710 return SDValue(); 9711 9712 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 9713 N->getOperand(1).getOpcode() != ISD::AND && 9714 N->getOperand(1).getOpcode() != ISD::OR && 9715 N->getOperand(1).getOpcode() != ISD::XOR && 9716 N->getOperand(1).getOpcode() != ISD::SELECT && 9717 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 9718 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 9719 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 9720 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 9721 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 9722 return SDValue(); 9723 9724 SmallVector<SDValue, 4> Inputs; 9725 SmallVector<SDValue, 8> BinOps, PromOps; 9726 SmallPtrSet<SDNode *, 16> Visited; 9727 9728 for (unsigned i = 0; i < 2; ++i) { 9729 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9730 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9731 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9732 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9733 isa<ConstantSDNode>(N->getOperand(i))) 9734 Inputs.push_back(N->getOperand(i)); 9735 else 9736 BinOps.push_back(N->getOperand(i)); 9737 9738 if (N->getOpcode() == ISD::TRUNCATE) 9739 break; 9740 } 9741 9742 // Visit all inputs, collect all binary operations (and, or, xor and 9743 // select) that are all fed by extensions. 9744 while (!BinOps.empty()) { 9745 SDValue BinOp = BinOps.back(); 9746 BinOps.pop_back(); 9747 9748 if (!Visited.insert(BinOp.getNode()).second) 9749 continue; 9750 9751 PromOps.push_back(BinOp); 9752 9753 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9754 // The condition of the select is not promoted. 9755 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9756 continue; 9757 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9758 continue; 9759 9760 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9761 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9762 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 9763 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 9764 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9765 Inputs.push_back(BinOp.getOperand(i)); 9766 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9767 BinOp.getOperand(i).getOpcode() == ISD::OR || 9768 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9769 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9770 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 9771 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9772 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 9773 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 9774 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 9775 BinOps.push_back(BinOp.getOperand(i)); 9776 } else { 9777 // We have an input that is not an extension or another binary 9778 // operation; we'll abort this transformation. 9779 return SDValue(); 9780 } 9781 } 9782 } 9783 9784 // Make sure that this is a self-contained cluster of operations (which 9785 // is not quite the same thing as saying that everything has only one 9786 // use). 9787 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9788 if (isa<ConstantSDNode>(Inputs[i])) 9789 continue; 9790 9791 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 9792 UE = Inputs[i].getNode()->use_end(); 9793 UI != UE; ++UI) { 9794 SDNode *User = *UI; 9795 if (User != N && !Visited.count(User)) 9796 return SDValue(); 9797 9798 // Make sure that we're not going to promote the non-output-value 9799 // operand(s) or SELECT or SELECT_CC. 9800 // FIXME: Although we could sometimes handle this, and it does occur in 9801 // practice that one of the condition inputs to the select is also one of 9802 // the outputs, we currently can't deal with this. 9803 if (User->getOpcode() == ISD::SELECT) { 9804 if (User->getOperand(0) == Inputs[i]) 9805 return SDValue(); 9806 } else if (User->getOpcode() == ISD::SELECT_CC) { 9807 if (User->getOperand(0) == Inputs[i] || 9808 User->getOperand(1) == Inputs[i]) 9809 return SDValue(); 9810 } 9811 } 9812 } 9813 9814 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 9815 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 9816 UE = PromOps[i].getNode()->use_end(); 9817 UI != UE; ++UI) { 9818 SDNode *User = *UI; 9819 if (User != N && !Visited.count(User)) 9820 return SDValue(); 9821 9822 // Make sure that we're not going to promote the non-output-value 9823 // operand(s) or SELECT or SELECT_CC. 9824 // FIXME: Although we could sometimes handle this, and it does occur in 9825 // practice that one of the condition inputs to the select is also one of 9826 // the outputs, we currently can't deal with this. 9827 if (User->getOpcode() == ISD::SELECT) { 9828 if (User->getOperand(0) == PromOps[i]) 9829 return SDValue(); 9830 } else if (User->getOpcode() == ISD::SELECT_CC) { 9831 if (User->getOperand(0) == PromOps[i] || 9832 User->getOperand(1) == PromOps[i]) 9833 return SDValue(); 9834 } 9835 } 9836 } 9837 9838 // Replace all inputs with the extension operand. 9839 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 9840 // Constants may have users outside the cluster of to-be-promoted nodes, 9841 // and so we need to replace those as we do the promotions. 9842 if (isa<ConstantSDNode>(Inputs[i])) 9843 continue; 9844 else 9845 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 9846 } 9847 9848 std::list<HandleSDNode> PromOpHandles; 9849 for (auto &PromOp : PromOps) 9850 PromOpHandles.emplace_back(PromOp); 9851 9852 // Replace all operations (these are all the same, but have a different 9853 // (i1) return type). DAG.getNode will validate that the types of 9854 // a binary operator match, so go through the list in reverse so that 9855 // we've likely promoted both operands first. Any intermediate truncations or 9856 // extensions disappear. 9857 while (!PromOpHandles.empty()) { 9858 SDValue PromOp = PromOpHandles.back().getValue(); 9859 PromOpHandles.pop_back(); 9860 9861 if (PromOp.getOpcode() == ISD::TRUNCATE || 9862 PromOp.getOpcode() == ISD::SIGN_EXTEND || 9863 PromOp.getOpcode() == ISD::ZERO_EXTEND || 9864 PromOp.getOpcode() == ISD::ANY_EXTEND) { 9865 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 9866 PromOp.getOperand(0).getValueType() != MVT::i1) { 9867 // The operand is not yet ready (see comment below). 9868 PromOpHandles.emplace_front(PromOp); 9869 continue; 9870 } 9871 9872 SDValue RepValue = PromOp.getOperand(0); 9873 if (isa<ConstantSDNode>(RepValue)) 9874 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 9875 9876 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 9877 continue; 9878 } 9879 9880 unsigned C; 9881 switch (PromOp.getOpcode()) { 9882 default: C = 0; break; 9883 case ISD::SELECT: C = 1; break; 9884 case ISD::SELECT_CC: C = 2; break; 9885 } 9886 9887 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 9888 PromOp.getOperand(C).getValueType() != MVT::i1) || 9889 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 9890 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 9891 // The to-be-promoted operands of this node have not yet been 9892 // promoted (this should be rare because we're going through the 9893 // list backward, but if one of the operands has several users in 9894 // this cluster of to-be-promoted nodes, it is possible). 9895 PromOpHandles.emplace_front(PromOp); 9896 continue; 9897 } 9898 9899 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 9900 PromOp.getNode()->op_end()); 9901 9902 // If there are any constant inputs, make sure they're replaced now. 9903 for (unsigned i = 0; i < 2; ++i) 9904 if (isa<ConstantSDNode>(Ops[C+i])) 9905 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 9906 9907 DAG.ReplaceAllUsesOfValueWith(PromOp, 9908 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 9909 } 9910 9911 // Now we're left with the initial truncation itself. 9912 if (N->getOpcode() == ISD::TRUNCATE) 9913 return N->getOperand(0); 9914 9915 // Otherwise, this is a comparison. The operands to be compared have just 9916 // changed type (to i1), but everything else is the same. 9917 return SDValue(N, 0); 9918 } 9919 9920 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 9921 DAGCombinerInfo &DCI) const { 9922 SelectionDAG &DAG = DCI.DAG; 9923 SDLoc dl(N); 9924 9925 // If we're tracking CR bits, we need to be careful that we don't have: 9926 // zext(binary-ops(trunc(x), trunc(y))) 9927 // or 9928 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 9929 // such that we're unnecessarily moving things into CR bits that can more 9930 // efficiently stay in GPRs. Note that if we're not certain that the high 9931 // bits are set as required by the final extension, we still may need to do 9932 // some masking to get the proper behavior. 9933 9934 // This same functionality is important on PPC64 when dealing with 9935 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 9936 // the return values of functions. Because it is so similar, it is handled 9937 // here as well. 9938 9939 if (N->getValueType(0) != MVT::i32 && 9940 N->getValueType(0) != MVT::i64) 9941 return SDValue(); 9942 9943 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 9944 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 9945 return SDValue(); 9946 9947 if (N->getOperand(0).getOpcode() != ISD::AND && 9948 N->getOperand(0).getOpcode() != ISD::OR && 9949 N->getOperand(0).getOpcode() != ISD::XOR && 9950 N->getOperand(0).getOpcode() != ISD::SELECT && 9951 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 9952 return SDValue(); 9953 9954 SmallVector<SDValue, 4> Inputs; 9955 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 9956 SmallPtrSet<SDNode *, 16> Visited; 9957 9958 // Visit all inputs, collect all binary operations (and, or, xor and 9959 // select) that are all fed by truncations. 9960 while (!BinOps.empty()) { 9961 SDValue BinOp = BinOps.back(); 9962 BinOps.pop_back(); 9963 9964 if (!Visited.insert(BinOp.getNode()).second) 9965 continue; 9966 9967 PromOps.push_back(BinOp); 9968 9969 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 9970 // The condition of the select is not promoted. 9971 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 9972 continue; 9973 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 9974 continue; 9975 9976 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 9977 isa<ConstantSDNode>(BinOp.getOperand(i))) { 9978 Inputs.push_back(BinOp.getOperand(i)); 9979 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 9980 BinOp.getOperand(i).getOpcode() == ISD::OR || 9981 BinOp.getOperand(i).getOpcode() == ISD::XOR || 9982 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 9983 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 9984 BinOps.push_back(BinOp.getOperand(i)); 9985 } else { 9986 // We have an input that is not a truncation or another binary 9987 // operation; we'll abort this transformation. 9988 return SDValue(); 9989 } 9990 } 9991 } 9992 9993 // The operands of a select that must be truncated when the select is 9994 // promoted because the operand is actually part of the to-be-promoted set. 9995 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 9996 9997 // Make sure that this is a self-contained cluster of operations (which 9998 // is not quite the same thing as saying that everything has only one 9999 // use). 10000 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10001 if (isa<ConstantSDNode>(Inputs[i])) 10002 continue; 10003 10004 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 10005 UE = Inputs[i].getNode()->use_end(); 10006 UI != UE; ++UI) { 10007 SDNode *User = *UI; 10008 if (User != N && !Visited.count(User)) 10009 return SDValue(); 10010 10011 // If we're going to promote the non-output-value operand(s) or SELECT or 10012 // SELECT_CC, record them for truncation. 10013 if (User->getOpcode() == ISD::SELECT) { 10014 if (User->getOperand(0) == Inputs[i]) 10015 SelectTruncOp[0].insert(std::make_pair(User, 10016 User->getOperand(0).getValueType())); 10017 } else if (User->getOpcode() == ISD::SELECT_CC) { 10018 if (User->getOperand(0) == Inputs[i]) 10019 SelectTruncOp[0].insert(std::make_pair(User, 10020 User->getOperand(0).getValueType())); 10021 if (User->getOperand(1) == Inputs[i]) 10022 SelectTruncOp[1].insert(std::make_pair(User, 10023 User->getOperand(1).getValueType())); 10024 } 10025 } 10026 } 10027 10028 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 10029 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 10030 UE = PromOps[i].getNode()->use_end(); 10031 UI != UE; ++UI) { 10032 SDNode *User = *UI; 10033 if (User != N && !Visited.count(User)) 10034 return SDValue(); 10035 10036 // If we're going to promote the non-output-value operand(s) or SELECT or 10037 // SELECT_CC, record them for truncation. 10038 if (User->getOpcode() == ISD::SELECT) { 10039 if (User->getOperand(0) == PromOps[i]) 10040 SelectTruncOp[0].insert(std::make_pair(User, 10041 User->getOperand(0).getValueType())); 10042 } else if (User->getOpcode() == ISD::SELECT_CC) { 10043 if (User->getOperand(0) == PromOps[i]) 10044 SelectTruncOp[0].insert(std::make_pair(User, 10045 User->getOperand(0).getValueType())); 10046 if (User->getOperand(1) == PromOps[i]) 10047 SelectTruncOp[1].insert(std::make_pair(User, 10048 User->getOperand(1).getValueType())); 10049 } 10050 } 10051 } 10052 10053 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 10054 bool ReallyNeedsExt = false; 10055 if (N->getOpcode() != ISD::ANY_EXTEND) { 10056 // If all of the inputs are not already sign/zero extended, then 10057 // we'll still need to do that at the end. 10058 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10059 if (isa<ConstantSDNode>(Inputs[i])) 10060 continue; 10061 10062 unsigned OpBits = 10063 Inputs[i].getOperand(0).getValueSizeInBits(); 10064 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 10065 10066 if ((N->getOpcode() == ISD::ZERO_EXTEND && 10067 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 10068 APInt::getHighBitsSet(OpBits, 10069 OpBits-PromBits))) || 10070 (N->getOpcode() == ISD::SIGN_EXTEND && 10071 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 10072 (OpBits-(PromBits-1)))) { 10073 ReallyNeedsExt = true; 10074 break; 10075 } 10076 } 10077 } 10078 10079 // Replace all inputs, either with the truncation operand, or a 10080 // truncation or extension to the final output type. 10081 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 10082 // Constant inputs need to be replaced with the to-be-promoted nodes that 10083 // use them because they might have users outside of the cluster of 10084 // promoted nodes. 10085 if (isa<ConstantSDNode>(Inputs[i])) 10086 continue; 10087 10088 SDValue InSrc = Inputs[i].getOperand(0); 10089 if (Inputs[i].getValueType() == N->getValueType(0)) 10090 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 10091 else if (N->getOpcode() == ISD::SIGN_EXTEND) 10092 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10093 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 10094 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10095 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10096 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 10097 else 10098 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 10099 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 10100 } 10101 10102 std::list<HandleSDNode> PromOpHandles; 10103 for (auto &PromOp : PromOps) 10104 PromOpHandles.emplace_back(PromOp); 10105 10106 // Replace all operations (these are all the same, but have a different 10107 // (promoted) return type). DAG.getNode will validate that the types of 10108 // a binary operator match, so go through the list in reverse so that 10109 // we've likely promoted both operands first. 10110 while (!PromOpHandles.empty()) { 10111 SDValue PromOp = PromOpHandles.back().getValue(); 10112 PromOpHandles.pop_back(); 10113 10114 unsigned C; 10115 switch (PromOp.getOpcode()) { 10116 default: C = 0; break; 10117 case ISD::SELECT: C = 1; break; 10118 case ISD::SELECT_CC: C = 2; break; 10119 } 10120 10121 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 10122 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 10123 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 10124 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 10125 // The to-be-promoted operands of this node have not yet been 10126 // promoted (this should be rare because we're going through the 10127 // list backward, but if one of the operands has several users in 10128 // this cluster of to-be-promoted nodes, it is possible). 10129 PromOpHandles.emplace_front(PromOp); 10130 continue; 10131 } 10132 10133 // For SELECT and SELECT_CC nodes, we do a similar check for any 10134 // to-be-promoted comparison inputs. 10135 if (PromOp.getOpcode() == ISD::SELECT || 10136 PromOp.getOpcode() == ISD::SELECT_CC) { 10137 if ((SelectTruncOp[0].count(PromOp.getNode()) && 10138 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 10139 (SelectTruncOp[1].count(PromOp.getNode()) && 10140 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 10141 PromOpHandles.emplace_front(PromOp); 10142 continue; 10143 } 10144 } 10145 10146 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 10147 PromOp.getNode()->op_end()); 10148 10149 // If this node has constant inputs, then they'll need to be promoted here. 10150 for (unsigned i = 0; i < 2; ++i) { 10151 if (!isa<ConstantSDNode>(Ops[C+i])) 10152 continue; 10153 if (Ops[C+i].getValueType() == N->getValueType(0)) 10154 continue; 10155 10156 if (N->getOpcode() == ISD::SIGN_EXTEND) 10157 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10158 else if (N->getOpcode() == ISD::ZERO_EXTEND) 10159 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10160 else 10161 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 10162 } 10163 10164 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 10165 // truncate them again to the original value type. 10166 if (PromOp.getOpcode() == ISD::SELECT || 10167 PromOp.getOpcode() == ISD::SELECT_CC) { 10168 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 10169 if (SI0 != SelectTruncOp[0].end()) 10170 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 10171 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 10172 if (SI1 != SelectTruncOp[1].end()) 10173 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 10174 } 10175 10176 DAG.ReplaceAllUsesOfValueWith(PromOp, 10177 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 10178 } 10179 10180 // Now we're left with the initial extension itself. 10181 if (!ReallyNeedsExt) 10182 return N->getOperand(0); 10183 10184 // To zero extend, just mask off everything except for the first bit (in the 10185 // i1 case). 10186 if (N->getOpcode() == ISD::ZERO_EXTEND) 10187 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 10188 DAG.getConstant(APInt::getLowBitsSet( 10189 N->getValueSizeInBits(0), PromBits), 10190 dl, N->getValueType(0))); 10191 10192 assert(N->getOpcode() == ISD::SIGN_EXTEND && 10193 "Invalid extension type"); 10194 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 10195 SDValue ShiftCst = 10196 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 10197 return DAG.getNode( 10198 ISD::SRA, dl, N->getValueType(0), 10199 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 10200 ShiftCst); 10201 } 10202 10203 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 10204 DAGCombinerInfo &DCI) const { 10205 assert((N->getOpcode() == ISD::SINT_TO_FP || 10206 N->getOpcode() == ISD::UINT_TO_FP) && 10207 "Need an int -> FP conversion node here"); 10208 10209 if (!Subtarget.has64BitSupport()) 10210 return SDValue(); 10211 10212 SelectionDAG &DAG = DCI.DAG; 10213 SDLoc dl(N); 10214 SDValue Op(N, 0); 10215 10216 // Don't handle ppc_fp128 here or i1 conversions. 10217 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 10218 return SDValue(); 10219 if (Op.getOperand(0).getValueType() == MVT::i1) 10220 return SDValue(); 10221 10222 // For i32 intermediate values, unfortunately, the conversion functions 10223 // leave the upper 32 bits of the value are undefined. Within the set of 10224 // scalar instructions, we have no method for zero- or sign-extending the 10225 // value. Thus, we cannot handle i32 intermediate values here. 10226 if (Op.getOperand(0).getValueType() == MVT::i32) 10227 return SDValue(); 10228 10229 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 10230 "UINT_TO_FP is supported only with FPCVT"); 10231 10232 // If we have FCFIDS, then use it when converting to single-precision. 10233 // Otherwise, convert to double-precision and then round. 10234 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10235 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 10236 : PPCISD::FCFIDS) 10237 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 10238 : PPCISD::FCFID); 10239 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 10240 ? MVT::f32 10241 : MVT::f64; 10242 10243 // If we're converting from a float, to an int, and back to a float again, 10244 // then we don't need the store/load pair at all. 10245 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 10246 Subtarget.hasFPCVT()) || 10247 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 10248 SDValue Src = Op.getOperand(0).getOperand(0); 10249 if (Src.getValueType() == MVT::f32) { 10250 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 10251 DCI.AddToWorklist(Src.getNode()); 10252 } else if (Src.getValueType() != MVT::f64) { 10253 // Make sure that we don't pick up a ppc_fp128 source value. 10254 return SDValue(); 10255 } 10256 10257 unsigned FCTOp = 10258 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 10259 PPCISD::FCTIDUZ; 10260 10261 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 10262 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 10263 10264 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 10265 FP = DAG.getNode(ISD::FP_ROUND, dl, 10266 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 10267 DCI.AddToWorklist(FP.getNode()); 10268 } 10269 10270 return FP; 10271 } 10272 10273 return SDValue(); 10274 } 10275 10276 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 10277 // builtins) into loads with swaps. 10278 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 10279 DAGCombinerInfo &DCI) const { 10280 SelectionDAG &DAG = DCI.DAG; 10281 SDLoc dl(N); 10282 SDValue Chain; 10283 SDValue Base; 10284 MachineMemOperand *MMO; 10285 10286 switch (N->getOpcode()) { 10287 default: 10288 llvm_unreachable("Unexpected opcode for little endian VSX load"); 10289 case ISD::LOAD: { 10290 LoadSDNode *LD = cast<LoadSDNode>(N); 10291 Chain = LD->getChain(); 10292 Base = LD->getBasePtr(); 10293 MMO = LD->getMemOperand(); 10294 // If the MMO suggests this isn't a load of a full vector, leave 10295 // things alone. For a built-in, we have to make the change for 10296 // correctness, so if there is a size problem that will be a bug. 10297 if (MMO->getSize() < 16) 10298 return SDValue(); 10299 break; 10300 } 10301 case ISD::INTRINSIC_W_CHAIN: { 10302 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10303 Chain = Intrin->getChain(); 10304 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 10305 // us what we want. Get operand 2 instead. 10306 Base = Intrin->getOperand(2); 10307 MMO = Intrin->getMemOperand(); 10308 break; 10309 } 10310 } 10311 10312 MVT VecTy = N->getValueType(0).getSimpleVT(); 10313 SDValue LoadOps[] = { Chain, Base }; 10314 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 10315 DAG.getVTList(MVT::v2f64, MVT::Other), 10316 LoadOps, MVT::v2f64, MMO); 10317 10318 DCI.AddToWorklist(Load.getNode()); 10319 Chain = Load.getValue(1); 10320 SDValue Swap = DAG.getNode( 10321 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 10322 DCI.AddToWorklist(Swap.getNode()); 10323 10324 // Add a bitcast if the resulting load type doesn't match v2f64. 10325 if (VecTy != MVT::v2f64) { 10326 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 10327 DCI.AddToWorklist(N.getNode()); 10328 // Package {bitcast value, swap's chain} to match Load's shape. 10329 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 10330 N, Swap.getValue(1)); 10331 } 10332 10333 return Swap; 10334 } 10335 10336 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 10337 // builtins) into stores with swaps. 10338 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 10339 DAGCombinerInfo &DCI) const { 10340 SelectionDAG &DAG = DCI.DAG; 10341 SDLoc dl(N); 10342 SDValue Chain; 10343 SDValue Base; 10344 unsigned SrcOpnd; 10345 MachineMemOperand *MMO; 10346 10347 switch (N->getOpcode()) { 10348 default: 10349 llvm_unreachable("Unexpected opcode for little endian VSX store"); 10350 case ISD::STORE: { 10351 StoreSDNode *ST = cast<StoreSDNode>(N); 10352 Chain = ST->getChain(); 10353 Base = ST->getBasePtr(); 10354 MMO = ST->getMemOperand(); 10355 SrcOpnd = 1; 10356 // If the MMO suggests this isn't a store of a full vector, leave 10357 // things alone. For a built-in, we have to make the change for 10358 // correctness, so if there is a size problem that will be a bug. 10359 if (MMO->getSize() < 16) 10360 return SDValue(); 10361 break; 10362 } 10363 case ISD::INTRINSIC_VOID: { 10364 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 10365 Chain = Intrin->getChain(); 10366 // Intrin->getBasePtr() oddly does not get what we want. 10367 Base = Intrin->getOperand(3); 10368 MMO = Intrin->getMemOperand(); 10369 SrcOpnd = 2; 10370 break; 10371 } 10372 } 10373 10374 SDValue Src = N->getOperand(SrcOpnd); 10375 MVT VecTy = Src.getValueType().getSimpleVT(); 10376 10377 // All stores are done as v2f64 and possible bit cast. 10378 if (VecTy != MVT::v2f64) { 10379 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 10380 DCI.AddToWorklist(Src.getNode()); 10381 } 10382 10383 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 10384 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 10385 DCI.AddToWorklist(Swap.getNode()); 10386 Chain = Swap.getValue(1); 10387 SDValue StoreOps[] = { Chain, Swap, Base }; 10388 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 10389 DAG.getVTList(MVT::Other), 10390 StoreOps, VecTy, MMO); 10391 DCI.AddToWorklist(Store.getNode()); 10392 return Store; 10393 } 10394 10395 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 10396 DAGCombinerInfo &DCI) const { 10397 SelectionDAG &DAG = DCI.DAG; 10398 SDLoc dl(N); 10399 switch (N->getOpcode()) { 10400 default: break; 10401 case PPCISD::SHL: 10402 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 10403 return N->getOperand(0); 10404 break; 10405 case PPCISD::SRL: 10406 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 10407 return N->getOperand(0); 10408 break; 10409 case PPCISD::SRA: 10410 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10411 if (C->isNullValue() || // 0 >>s V -> 0. 10412 C->isAllOnesValue()) // -1 >>s V -> -1. 10413 return N->getOperand(0); 10414 } 10415 break; 10416 case ISD::SIGN_EXTEND: 10417 case ISD::ZERO_EXTEND: 10418 case ISD::ANY_EXTEND: 10419 return DAGCombineExtBoolTrunc(N, DCI); 10420 case ISD::TRUNCATE: 10421 case ISD::SETCC: 10422 case ISD::SELECT_CC: 10423 return DAGCombineTruncBoolExt(N, DCI); 10424 case ISD::SINT_TO_FP: 10425 case ISD::UINT_TO_FP: 10426 return combineFPToIntToFP(N, DCI); 10427 case ISD::STORE: { 10428 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 10429 if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() && 10430 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 10431 N->getOperand(1).getValueType() == MVT::i32 && 10432 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 10433 SDValue Val = N->getOperand(1).getOperand(0); 10434 if (Val.getValueType() == MVT::f32) { 10435 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 10436 DCI.AddToWorklist(Val.getNode()); 10437 } 10438 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 10439 DCI.AddToWorklist(Val.getNode()); 10440 10441 SDValue Ops[] = { 10442 N->getOperand(0), Val, N->getOperand(2), 10443 DAG.getValueType(N->getOperand(1).getValueType()) 10444 }; 10445 10446 Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 10447 DAG.getVTList(MVT::Other), Ops, 10448 cast<StoreSDNode>(N)->getMemoryVT(), 10449 cast<StoreSDNode>(N)->getMemOperand()); 10450 DCI.AddToWorklist(Val.getNode()); 10451 return Val; 10452 } 10453 10454 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 10455 if (cast<StoreSDNode>(N)->isUnindexed() && 10456 N->getOperand(1).getOpcode() == ISD::BSWAP && 10457 N->getOperand(1).getNode()->hasOneUse() && 10458 (N->getOperand(1).getValueType() == MVT::i32 || 10459 N->getOperand(1).getValueType() == MVT::i16 || 10460 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10461 N->getOperand(1).getValueType() == MVT::i64))) { 10462 SDValue BSwapOp = N->getOperand(1).getOperand(0); 10463 // Do an any-extend to 32-bits if this is a half-word input. 10464 if (BSwapOp.getValueType() == MVT::i16) 10465 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 10466 10467 SDValue Ops[] = { 10468 N->getOperand(0), BSwapOp, N->getOperand(2), 10469 DAG.getValueType(N->getOperand(1).getValueType()) 10470 }; 10471 return 10472 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 10473 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 10474 cast<StoreSDNode>(N)->getMemOperand()); 10475 } 10476 10477 // For little endian, VSX stores require generating xxswapd/lxvd2x. 10478 EVT VT = N->getOperand(1).getValueType(); 10479 if (VT.isSimple()) { 10480 MVT StoreVT = VT.getSimpleVT(); 10481 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10482 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 10483 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 10484 return expandVSXStoreForLE(N, DCI); 10485 } 10486 break; 10487 } 10488 case ISD::LOAD: { 10489 LoadSDNode *LD = cast<LoadSDNode>(N); 10490 EVT VT = LD->getValueType(0); 10491 10492 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10493 if (VT.isSimple()) { 10494 MVT LoadVT = VT.getSimpleVT(); 10495 if (Subtarget.hasVSX() && Subtarget.isLittleEndian() && 10496 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 10497 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 10498 return expandVSXLoadForLE(N, DCI); 10499 } 10500 10501 // We sometimes end up with a 64-bit integer load, from which we extract 10502 // two single-precision floating-point numbers. This happens with 10503 // std::complex<float>, and other similar structures, because of the way we 10504 // canonicalize structure copies. However, if we lack direct moves, 10505 // then the final bitcasts from the extracted integer values to the 10506 // floating-point numbers turn into store/load pairs. Even with direct moves, 10507 // just loading the two floating-point numbers is likely better. 10508 auto ReplaceTwoFloatLoad = [&]() { 10509 if (VT != MVT::i64) 10510 return false; 10511 10512 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 10513 LD->isVolatile()) 10514 return false; 10515 10516 // We're looking for a sequence like this: 10517 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 10518 // t16: i64 = srl t13, Constant:i32<32> 10519 // t17: i32 = truncate t16 10520 // t18: f32 = bitcast t17 10521 // t19: i32 = truncate t13 10522 // t20: f32 = bitcast t19 10523 10524 if (!LD->hasNUsesOfValue(2, 0)) 10525 return false; 10526 10527 auto UI = LD->use_begin(); 10528 while (UI.getUse().getResNo() != 0) ++UI; 10529 SDNode *Trunc = *UI++; 10530 while (UI.getUse().getResNo() != 0) ++UI; 10531 SDNode *RightShift = *UI; 10532 if (Trunc->getOpcode() != ISD::TRUNCATE) 10533 std::swap(Trunc, RightShift); 10534 10535 if (Trunc->getOpcode() != ISD::TRUNCATE || 10536 Trunc->getValueType(0) != MVT::i32 || 10537 !Trunc->hasOneUse()) 10538 return false; 10539 if (RightShift->getOpcode() != ISD::SRL || 10540 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 10541 RightShift->getConstantOperandVal(1) != 32 || 10542 !RightShift->hasOneUse()) 10543 return false; 10544 10545 SDNode *Trunc2 = *RightShift->use_begin(); 10546 if (Trunc2->getOpcode() != ISD::TRUNCATE || 10547 Trunc2->getValueType(0) != MVT::i32 || 10548 !Trunc2->hasOneUse()) 10549 return false; 10550 10551 SDNode *Bitcast = *Trunc->use_begin(); 10552 SDNode *Bitcast2 = *Trunc2->use_begin(); 10553 10554 if (Bitcast->getOpcode() != ISD::BITCAST || 10555 Bitcast->getValueType(0) != MVT::f32) 10556 return false; 10557 if (Bitcast2->getOpcode() != ISD::BITCAST || 10558 Bitcast2->getValueType(0) != MVT::f32) 10559 return false; 10560 10561 if (Subtarget.isLittleEndian()) 10562 std::swap(Bitcast, Bitcast2); 10563 10564 // Bitcast has the second float (in memory-layout order) and Bitcast2 10565 // has the first one. 10566 10567 SDValue BasePtr = LD->getBasePtr(); 10568 if (LD->isIndexed()) { 10569 assert(LD->getAddressingMode() == ISD::PRE_INC && 10570 "Non-pre-inc AM on PPC?"); 10571 BasePtr = 10572 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10573 LD->getOffset()); 10574 } 10575 10576 SDValue FloatLoad = 10577 DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 10578 LD->getPointerInfo(), false, LD->isNonTemporal(), 10579 LD->isInvariant(), LD->getAlignment(), LD->getAAInfo()); 10580 SDValue AddPtr = 10581 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 10582 BasePtr, DAG.getIntPtrConstant(4, dl)); 10583 SDValue FloatLoad2 = 10584 DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 10585 LD->getPointerInfo().getWithOffset(4), false, 10586 LD->isNonTemporal(), LD->isInvariant(), 10587 MinAlign(LD->getAlignment(), 4), LD->getAAInfo()); 10588 10589 if (LD->isIndexed()) { 10590 // Note that DAGCombine should re-form any pre-increment load(s) from 10591 // what is produced here if that makes sense. 10592 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 10593 } 10594 10595 DCI.CombineTo(Bitcast2, FloatLoad); 10596 DCI.CombineTo(Bitcast, FloatLoad2); 10597 10598 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 10599 SDValue(FloatLoad2.getNode(), 1)); 10600 return true; 10601 }; 10602 10603 if (ReplaceTwoFloatLoad()) 10604 return SDValue(N, 0); 10605 10606 EVT MemVT = LD->getMemoryVT(); 10607 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 10608 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 10609 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 10610 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 10611 if (LD->isUnindexed() && VT.isVector() && 10612 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 10613 // P8 and later hardware should just use LOAD. 10614 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 10615 VT == MVT::v4i32 || VT == MVT::v4f32)) || 10616 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 10617 LD->getAlignment() >= ScalarABIAlignment)) && 10618 LD->getAlignment() < ABIAlignment) { 10619 // This is a type-legal unaligned Altivec or QPX load. 10620 SDValue Chain = LD->getChain(); 10621 SDValue Ptr = LD->getBasePtr(); 10622 bool isLittleEndian = Subtarget.isLittleEndian(); 10623 10624 // This implements the loading of unaligned vectors as described in 10625 // the venerable Apple Velocity Engine overview. Specifically: 10626 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 10627 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 10628 // 10629 // The general idea is to expand a sequence of one or more unaligned 10630 // loads into an alignment-based permutation-control instruction (lvsl 10631 // or lvsr), a series of regular vector loads (which always truncate 10632 // their input address to an aligned address), and a series of 10633 // permutations. The results of these permutations are the requested 10634 // loaded values. The trick is that the last "extra" load is not taken 10635 // from the address you might suspect (sizeof(vector) bytes after the 10636 // last requested load), but rather sizeof(vector) - 1 bytes after the 10637 // last requested vector. The point of this is to avoid a page fault if 10638 // the base address happened to be aligned. This works because if the 10639 // base address is aligned, then adding less than a full vector length 10640 // will cause the last vector in the sequence to be (re)loaded. 10641 // Otherwise, the next vector will be fetched as you might suspect was 10642 // necessary. 10643 10644 // We might be able to reuse the permutation generation from 10645 // a different base address offset from this one by an aligned amount. 10646 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 10647 // optimization later. 10648 Intrinsic::ID Intr, IntrLD, IntrPerm; 10649 MVT PermCntlTy, PermTy, LDTy; 10650 if (Subtarget.hasAltivec()) { 10651 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 10652 Intrinsic::ppc_altivec_lvsl; 10653 IntrLD = Intrinsic::ppc_altivec_lvx; 10654 IntrPerm = Intrinsic::ppc_altivec_vperm; 10655 PermCntlTy = MVT::v16i8; 10656 PermTy = MVT::v4i32; 10657 LDTy = MVT::v4i32; 10658 } else { 10659 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 10660 Intrinsic::ppc_qpx_qvlpcls; 10661 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 10662 Intrinsic::ppc_qpx_qvlfs; 10663 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 10664 PermCntlTy = MVT::v4f64; 10665 PermTy = MVT::v4f64; 10666 LDTy = MemVT.getSimpleVT(); 10667 } 10668 10669 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 10670 10671 // Create the new MMO for the new base load. It is like the original MMO, 10672 // but represents an area in memory almost twice the vector size centered 10673 // on the original address. If the address is unaligned, we might start 10674 // reading up to (sizeof(vector)-1) bytes below the address of the 10675 // original unaligned load. 10676 MachineFunction &MF = DAG.getMachineFunction(); 10677 MachineMemOperand *BaseMMO = 10678 MF.getMachineMemOperand(LD->getMemOperand(), 10679 -(long)MemVT.getStoreSize()+1, 10680 2*MemVT.getStoreSize()-1); 10681 10682 // Create the new base load. 10683 SDValue LDXIntID = 10684 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 10685 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 10686 SDValue BaseLoad = 10687 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10688 DAG.getVTList(PermTy, MVT::Other), 10689 BaseLoadOps, LDTy, BaseMMO); 10690 10691 // Note that the value of IncOffset (which is provided to the next 10692 // load's pointer info offset value, and thus used to calculate the 10693 // alignment), and the value of IncValue (which is actually used to 10694 // increment the pointer value) are different! This is because we 10695 // require the next load to appear to be aligned, even though it 10696 // is actually offset from the base pointer by a lesser amount. 10697 int IncOffset = VT.getSizeInBits() / 8; 10698 int IncValue = IncOffset; 10699 10700 // Walk (both up and down) the chain looking for another load at the real 10701 // (aligned) offset (the alignment of the other load does not matter in 10702 // this case). If found, then do not use the offset reduction trick, as 10703 // that will prevent the loads from being later combined (as they would 10704 // otherwise be duplicates). 10705 if (!findConsecutiveLoad(LD, DAG)) 10706 --IncValue; 10707 10708 SDValue Increment = 10709 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 10710 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 10711 10712 MachineMemOperand *ExtraMMO = 10713 MF.getMachineMemOperand(LD->getMemOperand(), 10714 1, 2*MemVT.getStoreSize()-1); 10715 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 10716 SDValue ExtraLoad = 10717 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 10718 DAG.getVTList(PermTy, MVT::Other), 10719 ExtraLoadOps, LDTy, ExtraMMO); 10720 10721 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 10722 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 10723 10724 // Because vperm has a big-endian bias, we must reverse the order 10725 // of the input vectors and complement the permute control vector 10726 // when generating little endian code. We have already handled the 10727 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 10728 // and ExtraLoad here. 10729 SDValue Perm; 10730 if (isLittleEndian) 10731 Perm = BuildIntrinsicOp(IntrPerm, 10732 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 10733 else 10734 Perm = BuildIntrinsicOp(IntrPerm, 10735 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 10736 10737 if (VT != PermTy) 10738 Perm = Subtarget.hasAltivec() ? 10739 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 10740 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 10741 DAG.getTargetConstant(1, dl, MVT::i64)); 10742 // second argument is 1 because this rounding 10743 // is always exact. 10744 10745 // The output of the permutation is our loaded result, the TokenFactor is 10746 // our new chain. 10747 DCI.CombineTo(N, Perm, TF); 10748 return SDValue(N, 0); 10749 } 10750 } 10751 break; 10752 case ISD::INTRINSIC_WO_CHAIN: { 10753 bool isLittleEndian = Subtarget.isLittleEndian(); 10754 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10755 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 10756 : Intrinsic::ppc_altivec_lvsl); 10757 if ((IID == Intr || 10758 IID == Intrinsic::ppc_qpx_qvlpcld || 10759 IID == Intrinsic::ppc_qpx_qvlpcls) && 10760 N->getOperand(1)->getOpcode() == ISD::ADD) { 10761 SDValue Add = N->getOperand(1); 10762 10763 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 10764 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 10765 10766 if (DAG.MaskedValueIsZero( 10767 Add->getOperand(1), 10768 APInt::getAllOnesValue(Bits /* alignment */) 10769 .zext( 10770 Add.getValueType().getScalarType().getSizeInBits()))) { 10771 SDNode *BasePtr = Add->getOperand(0).getNode(); 10772 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10773 UE = BasePtr->use_end(); 10774 UI != UE; ++UI) { 10775 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10776 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 10777 // We've found another LVSL/LVSR, and this address is an aligned 10778 // multiple of that one. The results will be the same, so use the 10779 // one we've just found instead. 10780 10781 return SDValue(*UI, 0); 10782 } 10783 } 10784 } 10785 10786 if (isa<ConstantSDNode>(Add->getOperand(1))) { 10787 SDNode *BasePtr = Add->getOperand(0).getNode(); 10788 for (SDNode::use_iterator UI = BasePtr->use_begin(), 10789 UE = BasePtr->use_end(); UI != UE; ++UI) { 10790 if (UI->getOpcode() == ISD::ADD && 10791 isa<ConstantSDNode>(UI->getOperand(1)) && 10792 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 10793 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 10794 (1ULL << Bits) == 0) { 10795 SDNode *OtherAdd = *UI; 10796 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 10797 VE = OtherAdd->use_end(); VI != VE; ++VI) { 10798 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10799 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 10800 return SDValue(*VI, 0); 10801 } 10802 } 10803 } 10804 } 10805 } 10806 } 10807 } 10808 10809 break; 10810 case ISD::INTRINSIC_W_CHAIN: { 10811 // For little endian, VSX loads require generating lxvd2x/xxswapd. 10812 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10813 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10814 default: 10815 break; 10816 case Intrinsic::ppc_vsx_lxvw4x: 10817 case Intrinsic::ppc_vsx_lxvd2x: 10818 return expandVSXLoadForLE(N, DCI); 10819 } 10820 } 10821 break; 10822 } 10823 case ISD::INTRINSIC_VOID: { 10824 // For little endian, VSX stores require generating xxswapd/stxvd2x. 10825 if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) { 10826 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10827 default: 10828 break; 10829 case Intrinsic::ppc_vsx_stxvw4x: 10830 case Intrinsic::ppc_vsx_stxvd2x: 10831 return expandVSXStoreForLE(N, DCI); 10832 } 10833 } 10834 break; 10835 } 10836 case ISD::BSWAP: 10837 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 10838 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 10839 N->getOperand(0).hasOneUse() && 10840 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 10841 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 10842 N->getValueType(0) == MVT::i64))) { 10843 SDValue Load = N->getOperand(0); 10844 LoadSDNode *LD = cast<LoadSDNode>(Load); 10845 // Create the byte-swapping load. 10846 SDValue Ops[] = { 10847 LD->getChain(), // Chain 10848 LD->getBasePtr(), // Ptr 10849 DAG.getValueType(N->getValueType(0)) // VT 10850 }; 10851 SDValue BSLoad = 10852 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 10853 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 10854 MVT::i64 : MVT::i32, MVT::Other), 10855 Ops, LD->getMemoryVT(), LD->getMemOperand()); 10856 10857 // If this is an i16 load, insert the truncate. 10858 SDValue ResVal = BSLoad; 10859 if (N->getValueType(0) == MVT::i16) 10860 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 10861 10862 // First, combine the bswap away. This makes the value produced by the 10863 // load dead. 10864 DCI.CombineTo(N, ResVal); 10865 10866 // Next, combine the load away, we give it a bogus result value but a real 10867 // chain result. The result value is dead because the bswap is dead. 10868 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 10869 10870 // Return N so it doesn't get rechecked! 10871 return SDValue(N, 0); 10872 } 10873 10874 break; 10875 case PPCISD::VCMP: { 10876 // If a VCMPo node already exists with exactly the same operands as this 10877 // node, use its result instead of this node (VCMPo computes both a CR6 and 10878 // a normal output). 10879 // 10880 if (!N->getOperand(0).hasOneUse() && 10881 !N->getOperand(1).hasOneUse() && 10882 !N->getOperand(2).hasOneUse()) { 10883 10884 // Scan all of the users of the LHS, looking for VCMPo's that match. 10885 SDNode *VCMPoNode = nullptr; 10886 10887 SDNode *LHSN = N->getOperand(0).getNode(); 10888 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 10889 UI != E; ++UI) 10890 if (UI->getOpcode() == PPCISD::VCMPo && 10891 UI->getOperand(1) == N->getOperand(1) && 10892 UI->getOperand(2) == N->getOperand(2) && 10893 UI->getOperand(0) == N->getOperand(0)) { 10894 VCMPoNode = *UI; 10895 break; 10896 } 10897 10898 // If there is no VCMPo node, or if the flag value has a single use, don't 10899 // transform this. 10900 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 10901 break; 10902 10903 // Look at the (necessarily single) use of the flag value. If it has a 10904 // chain, this transformation is more complex. Note that multiple things 10905 // could use the value result, which we should ignore. 10906 SDNode *FlagUser = nullptr; 10907 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 10908 FlagUser == nullptr; ++UI) { 10909 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 10910 SDNode *User = *UI; 10911 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 10912 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 10913 FlagUser = User; 10914 break; 10915 } 10916 } 10917 } 10918 10919 // If the user is a MFOCRF instruction, we know this is safe. 10920 // Otherwise we give up for right now. 10921 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 10922 return SDValue(VCMPoNode, 0); 10923 } 10924 break; 10925 } 10926 case ISD::BRCOND: { 10927 SDValue Cond = N->getOperand(1); 10928 SDValue Target = N->getOperand(2); 10929 10930 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10931 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 10932 Intrinsic::ppc_is_decremented_ctr_nonzero) { 10933 10934 // We now need to make the intrinsic dead (it cannot be instruction 10935 // selected). 10936 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 10937 assert(Cond.getNode()->hasOneUse() && 10938 "Counter decrement has more than one use"); 10939 10940 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 10941 N->getOperand(0), Target); 10942 } 10943 } 10944 break; 10945 case ISD::BR_CC: { 10946 // If this is a branch on an altivec predicate comparison, lower this so 10947 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 10948 // lowering is done pre-legalize, because the legalizer lowers the predicate 10949 // compare down to code that is difficult to reassemble. 10950 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 10951 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 10952 10953 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 10954 // value. If so, pass-through the AND to get to the intrinsic. 10955 if (LHS.getOpcode() == ISD::AND && 10956 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 10957 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 10958 Intrinsic::ppc_is_decremented_ctr_nonzero && 10959 isa<ConstantSDNode>(LHS.getOperand(1)) && 10960 !isNullConstant(LHS.getOperand(1))) 10961 LHS = LHS.getOperand(0); 10962 10963 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 10964 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 10965 Intrinsic::ppc_is_decremented_ctr_nonzero && 10966 isa<ConstantSDNode>(RHS)) { 10967 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 10968 "Counter decrement comparison is not EQ or NE"); 10969 10970 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10971 bool isBDNZ = (CC == ISD::SETEQ && Val) || 10972 (CC == ISD::SETNE && !Val); 10973 10974 // We now need to make the intrinsic dead (it cannot be instruction 10975 // selected). 10976 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 10977 assert(LHS.getNode()->hasOneUse() && 10978 "Counter decrement has more than one use"); 10979 10980 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 10981 N->getOperand(0), N->getOperand(4)); 10982 } 10983 10984 int CompareOpc; 10985 bool isDot; 10986 10987 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 10988 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 10989 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 10990 assert(isDot && "Can't compare against a vector result!"); 10991 10992 // If this is a comparison against something other than 0/1, then we know 10993 // that the condition is never/always true. 10994 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 10995 if (Val != 0 && Val != 1) { 10996 if (CC == ISD::SETEQ) // Cond never true, remove branch. 10997 return N->getOperand(0); 10998 // Always !=, turn it into an unconditional branch. 10999 return DAG.getNode(ISD::BR, dl, MVT::Other, 11000 N->getOperand(0), N->getOperand(4)); 11001 } 11002 11003 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 11004 11005 // Create the PPCISD altivec 'dot' comparison node. 11006 SDValue Ops[] = { 11007 LHS.getOperand(2), // LHS of compare 11008 LHS.getOperand(3), // RHS of compare 11009 DAG.getConstant(CompareOpc, dl, MVT::i32) 11010 }; 11011 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 11012 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 11013 11014 // Unpack the result based on how the target uses it. 11015 PPC::Predicate CompOpc; 11016 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 11017 default: // Can't happen, don't crash on invalid number though. 11018 case 0: // Branch on the value of the EQ bit of CR6. 11019 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 11020 break; 11021 case 1: // Branch on the inverted value of the EQ bit of CR6. 11022 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 11023 break; 11024 case 2: // Branch on the value of the LT bit of CR6. 11025 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 11026 break; 11027 case 3: // Branch on the inverted value of the LT bit of CR6. 11028 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 11029 break; 11030 } 11031 11032 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 11033 DAG.getConstant(CompOpc, dl, MVT::i32), 11034 DAG.getRegister(PPC::CR6, MVT::i32), 11035 N->getOperand(4), CompNode.getValue(1)); 11036 } 11037 break; 11038 } 11039 } 11040 11041 return SDValue(); 11042 } 11043 11044 SDValue 11045 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 11046 SelectionDAG &DAG, 11047 std::vector<SDNode *> *Created) const { 11048 // fold (sdiv X, pow2) 11049 EVT VT = N->getValueType(0); 11050 if (VT == MVT::i64 && !Subtarget.isPPC64()) 11051 return SDValue(); 11052 if ((VT != MVT::i32 && VT != MVT::i64) || 11053 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 11054 return SDValue(); 11055 11056 SDLoc DL(N); 11057 SDValue N0 = N->getOperand(0); 11058 11059 bool IsNegPow2 = (-Divisor).isPowerOf2(); 11060 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 11061 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 11062 11063 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 11064 if (Created) 11065 Created->push_back(Op.getNode()); 11066 11067 if (IsNegPow2) { 11068 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 11069 if (Created) 11070 Created->push_back(Op.getNode()); 11071 } 11072 11073 return Op; 11074 } 11075 11076 //===----------------------------------------------------------------------===// 11077 // Inline Assembly Support 11078 //===----------------------------------------------------------------------===// 11079 11080 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 11081 APInt &KnownZero, 11082 APInt &KnownOne, 11083 const SelectionDAG &DAG, 11084 unsigned Depth) const { 11085 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 11086 switch (Op.getOpcode()) { 11087 default: break; 11088 case PPCISD::LBRX: { 11089 // lhbrx is known to have the top bits cleared out. 11090 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 11091 KnownZero = 0xFFFF0000; 11092 break; 11093 } 11094 case ISD::INTRINSIC_WO_CHAIN: { 11095 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 11096 default: break; 11097 case Intrinsic::ppc_altivec_vcmpbfp_p: 11098 case Intrinsic::ppc_altivec_vcmpeqfp_p: 11099 case Intrinsic::ppc_altivec_vcmpequb_p: 11100 case Intrinsic::ppc_altivec_vcmpequh_p: 11101 case Intrinsic::ppc_altivec_vcmpequw_p: 11102 case Intrinsic::ppc_altivec_vcmpequd_p: 11103 case Intrinsic::ppc_altivec_vcmpgefp_p: 11104 case Intrinsic::ppc_altivec_vcmpgtfp_p: 11105 case Intrinsic::ppc_altivec_vcmpgtsb_p: 11106 case Intrinsic::ppc_altivec_vcmpgtsh_p: 11107 case Intrinsic::ppc_altivec_vcmpgtsw_p: 11108 case Intrinsic::ppc_altivec_vcmpgtsd_p: 11109 case Intrinsic::ppc_altivec_vcmpgtub_p: 11110 case Intrinsic::ppc_altivec_vcmpgtuh_p: 11111 case Intrinsic::ppc_altivec_vcmpgtuw_p: 11112 case Intrinsic::ppc_altivec_vcmpgtud_p: 11113 KnownZero = ~1U; // All bits but the low one are known to be zero. 11114 break; 11115 } 11116 } 11117 } 11118 } 11119 11120 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 11121 switch (Subtarget.getDarwinDirective()) { 11122 default: break; 11123 case PPC::DIR_970: 11124 case PPC::DIR_PWR4: 11125 case PPC::DIR_PWR5: 11126 case PPC::DIR_PWR5X: 11127 case PPC::DIR_PWR6: 11128 case PPC::DIR_PWR6X: 11129 case PPC::DIR_PWR7: 11130 case PPC::DIR_PWR8: 11131 case PPC::DIR_PWR9: { 11132 if (!ML) 11133 break; 11134 11135 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11136 11137 // For small loops (between 5 and 8 instructions), align to a 32-byte 11138 // boundary so that the entire loop fits in one instruction-cache line. 11139 uint64_t LoopSize = 0; 11140 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 11141 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 11142 LoopSize += TII->GetInstSizeInBytes(J); 11143 if (LoopSize > 32) 11144 break; 11145 } 11146 11147 if (LoopSize > 16 && LoopSize <= 32) 11148 return 5; 11149 11150 break; 11151 } 11152 } 11153 11154 return TargetLowering::getPrefLoopAlignment(ML); 11155 } 11156 11157 /// getConstraintType - Given a constraint, return the type of 11158 /// constraint it is for this target. 11159 PPCTargetLowering::ConstraintType 11160 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 11161 if (Constraint.size() == 1) { 11162 switch (Constraint[0]) { 11163 default: break; 11164 case 'b': 11165 case 'r': 11166 case 'f': 11167 case 'd': 11168 case 'v': 11169 case 'y': 11170 return C_RegisterClass; 11171 case 'Z': 11172 // FIXME: While Z does indicate a memory constraint, it specifically 11173 // indicates an r+r address (used in conjunction with the 'y' modifier 11174 // in the replacement string). Currently, we're forcing the base 11175 // register to be r0 in the asm printer (which is interpreted as zero) 11176 // and forming the complete address in the second register. This is 11177 // suboptimal. 11178 return C_Memory; 11179 } 11180 } else if (Constraint == "wc") { // individual CR bits. 11181 return C_RegisterClass; 11182 } else if (Constraint == "wa" || Constraint == "wd" || 11183 Constraint == "wf" || Constraint == "ws") { 11184 return C_RegisterClass; // VSX registers. 11185 } 11186 return TargetLowering::getConstraintType(Constraint); 11187 } 11188 11189 /// Examine constraint type and operand type and determine a weight value. 11190 /// This object must already have been set up with the operand type 11191 /// and the current alternative constraint selected. 11192 TargetLowering::ConstraintWeight 11193 PPCTargetLowering::getSingleConstraintMatchWeight( 11194 AsmOperandInfo &info, const char *constraint) const { 11195 ConstraintWeight weight = CW_Invalid; 11196 Value *CallOperandVal = info.CallOperandVal; 11197 // If we don't have a value, we can't do a match, 11198 // but allow it at the lowest weight. 11199 if (!CallOperandVal) 11200 return CW_Default; 11201 Type *type = CallOperandVal->getType(); 11202 11203 // Look at the constraint type. 11204 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 11205 return CW_Register; // an individual CR bit. 11206 else if ((StringRef(constraint) == "wa" || 11207 StringRef(constraint) == "wd" || 11208 StringRef(constraint) == "wf") && 11209 type->isVectorTy()) 11210 return CW_Register; 11211 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 11212 return CW_Register; 11213 11214 switch (*constraint) { 11215 default: 11216 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11217 break; 11218 case 'b': 11219 if (type->isIntegerTy()) 11220 weight = CW_Register; 11221 break; 11222 case 'f': 11223 if (type->isFloatTy()) 11224 weight = CW_Register; 11225 break; 11226 case 'd': 11227 if (type->isDoubleTy()) 11228 weight = CW_Register; 11229 break; 11230 case 'v': 11231 if (type->isVectorTy()) 11232 weight = CW_Register; 11233 break; 11234 case 'y': 11235 weight = CW_Register; 11236 break; 11237 case 'Z': 11238 weight = CW_Memory; 11239 break; 11240 } 11241 return weight; 11242 } 11243 11244 std::pair<unsigned, const TargetRegisterClass *> 11245 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 11246 StringRef Constraint, 11247 MVT VT) const { 11248 if (Constraint.size() == 1) { 11249 // GCC RS6000 Constraint Letters 11250 switch (Constraint[0]) { 11251 case 'b': // R1-R31 11252 if (VT == MVT::i64 && Subtarget.isPPC64()) 11253 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 11254 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 11255 case 'r': // R0-R31 11256 if (VT == MVT::i64 && Subtarget.isPPC64()) 11257 return std::make_pair(0U, &PPC::G8RCRegClass); 11258 return std::make_pair(0U, &PPC::GPRCRegClass); 11259 // 'd' and 'f' constraints are both defined to be "the floating point 11260 // registers", where one is for 32-bit and the other for 64-bit. We don't 11261 // really care overly much here so just give them all the same reg classes. 11262 case 'd': 11263 case 'f': 11264 if (VT == MVT::f32 || VT == MVT::i32) 11265 return std::make_pair(0U, &PPC::F4RCRegClass); 11266 if (VT == MVT::f64 || VT == MVT::i64) 11267 return std::make_pair(0U, &PPC::F8RCRegClass); 11268 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11269 return std::make_pair(0U, &PPC::QFRCRegClass); 11270 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11271 return std::make_pair(0U, &PPC::QSRCRegClass); 11272 break; 11273 case 'v': 11274 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 11275 return std::make_pair(0U, &PPC::QFRCRegClass); 11276 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 11277 return std::make_pair(0U, &PPC::QSRCRegClass); 11278 if (Subtarget.hasAltivec()) 11279 return std::make_pair(0U, &PPC::VRRCRegClass); 11280 case 'y': // crrc 11281 return std::make_pair(0U, &PPC::CRRCRegClass); 11282 } 11283 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 11284 // An individual CR bit. 11285 return std::make_pair(0U, &PPC::CRBITRCRegClass); 11286 } else if ((Constraint == "wa" || Constraint == "wd" || 11287 Constraint == "wf") && Subtarget.hasVSX()) { 11288 return std::make_pair(0U, &PPC::VSRCRegClass); 11289 } else if (Constraint == "ws" && Subtarget.hasVSX()) { 11290 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 11291 return std::make_pair(0U, &PPC::VSSRCRegClass); 11292 else 11293 return std::make_pair(0U, &PPC::VSFRCRegClass); 11294 } 11295 11296 std::pair<unsigned, const TargetRegisterClass *> R = 11297 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11298 11299 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 11300 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 11301 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 11302 // register. 11303 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 11304 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 11305 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 11306 PPC::GPRCRegClass.contains(R.first)) 11307 return std::make_pair(TRI->getMatchingSuperReg(R.first, 11308 PPC::sub_32, &PPC::G8RCRegClass), 11309 &PPC::G8RCRegClass); 11310 11311 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 11312 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 11313 R.first = PPC::CR0; 11314 R.second = &PPC::CRRCRegClass; 11315 } 11316 11317 return R; 11318 } 11319 11320 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 11321 /// vector. If it is invalid, don't add anything to Ops. 11322 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11323 std::string &Constraint, 11324 std::vector<SDValue>&Ops, 11325 SelectionDAG &DAG) const { 11326 SDValue Result; 11327 11328 // Only support length 1 constraints. 11329 if (Constraint.length() > 1) return; 11330 11331 char Letter = Constraint[0]; 11332 switch (Letter) { 11333 default: break; 11334 case 'I': 11335 case 'J': 11336 case 'K': 11337 case 'L': 11338 case 'M': 11339 case 'N': 11340 case 'O': 11341 case 'P': { 11342 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 11343 if (!CST) return; // Must be an immediate to match. 11344 SDLoc dl(Op); 11345 int64_t Value = CST->getSExtValue(); 11346 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 11347 // numbers are printed as such. 11348 switch (Letter) { 11349 default: llvm_unreachable("Unknown constraint letter!"); 11350 case 'I': // "I" is a signed 16-bit constant. 11351 if (isInt<16>(Value)) 11352 Result = DAG.getTargetConstant(Value, dl, TCVT); 11353 break; 11354 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 11355 if (isShiftedUInt<16, 16>(Value)) 11356 Result = DAG.getTargetConstant(Value, dl, TCVT); 11357 break; 11358 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 11359 if (isShiftedInt<16, 16>(Value)) 11360 Result = DAG.getTargetConstant(Value, dl, TCVT); 11361 break; 11362 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 11363 if (isUInt<16>(Value)) 11364 Result = DAG.getTargetConstant(Value, dl, TCVT); 11365 break; 11366 case 'M': // "M" is a constant that is greater than 31. 11367 if (Value > 31) 11368 Result = DAG.getTargetConstant(Value, dl, TCVT); 11369 break; 11370 case 'N': // "N" is a positive constant that is an exact power of two. 11371 if (Value > 0 && isPowerOf2_64(Value)) 11372 Result = DAG.getTargetConstant(Value, dl, TCVT); 11373 break; 11374 case 'O': // "O" is the constant zero. 11375 if (Value == 0) 11376 Result = DAG.getTargetConstant(Value, dl, TCVT); 11377 break; 11378 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 11379 if (isInt<16>(-Value)) 11380 Result = DAG.getTargetConstant(Value, dl, TCVT); 11381 break; 11382 } 11383 break; 11384 } 11385 } 11386 11387 if (Result.getNode()) { 11388 Ops.push_back(Result); 11389 return; 11390 } 11391 11392 // Handle standard constraint letters. 11393 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11394 } 11395 11396 // isLegalAddressingMode - Return true if the addressing mode represented 11397 // by AM is legal for this target, for a load/store of the specified type. 11398 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 11399 const AddrMode &AM, Type *Ty, 11400 unsigned AS) const { 11401 // PPC does not allow r+i addressing modes for vectors! 11402 if (Ty->isVectorTy() && AM.BaseOffs != 0) 11403 return false; 11404 11405 // PPC allows a sign-extended 16-bit immediate field. 11406 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 11407 return false; 11408 11409 // No global is ever allowed as a base. 11410 if (AM.BaseGV) 11411 return false; 11412 11413 // PPC only support r+r, 11414 switch (AM.Scale) { 11415 case 0: // "r+i" or just "i", depending on HasBaseReg. 11416 break; 11417 case 1: 11418 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 11419 return false; 11420 // Otherwise we have r+r or r+i. 11421 break; 11422 case 2: 11423 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 11424 return false; 11425 // Allow 2*r as r+r. 11426 break; 11427 default: 11428 // No other scales are supported. 11429 return false; 11430 } 11431 11432 return true; 11433 } 11434 11435 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 11436 SelectionDAG &DAG) const { 11437 MachineFunction &MF = DAG.getMachineFunction(); 11438 MachineFrameInfo *MFI = MF.getFrameInfo(); 11439 MFI->setReturnAddressIsTaken(true); 11440 11441 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 11442 return SDValue(); 11443 11444 SDLoc dl(Op); 11445 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11446 11447 // Make sure the function does not optimize away the store of the RA to 11448 // the stack. 11449 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 11450 FuncInfo->setLRStoreRequired(); 11451 bool isPPC64 = Subtarget.isPPC64(); 11452 auto PtrVT = getPointerTy(MF.getDataLayout()); 11453 11454 if (Depth > 0) { 11455 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 11456 SDValue Offset = 11457 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 11458 isPPC64 ? MVT::i64 : MVT::i32); 11459 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 11460 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 11461 MachinePointerInfo(), false, false, false, 0); 11462 } 11463 11464 // Just load the return address off the stack. 11465 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 11466 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 11467 MachinePointerInfo(), false, false, false, 0); 11468 } 11469 11470 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 11471 SelectionDAG &DAG) const { 11472 SDLoc dl(Op); 11473 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 11474 11475 MachineFunction &MF = DAG.getMachineFunction(); 11476 MachineFrameInfo *MFI = MF.getFrameInfo(); 11477 MFI->setFrameAddressIsTaken(true); 11478 11479 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout()); 11480 bool isPPC64 = PtrVT == MVT::i64; 11481 11482 // Naked functions never have a frame pointer, and so we use r1. For all 11483 // other functions, this decision must be delayed until during PEI. 11484 unsigned FrameReg; 11485 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 11486 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 11487 else 11488 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 11489 11490 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 11491 PtrVT); 11492 while (Depth--) 11493 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 11494 FrameAddr, MachinePointerInfo(), false, false, 11495 false, 0); 11496 return FrameAddr; 11497 } 11498 11499 // FIXME? Maybe this could be a TableGen attribute on some registers and 11500 // this table could be generated automatically from RegInfo. 11501 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT, 11502 SelectionDAG &DAG) const { 11503 bool isPPC64 = Subtarget.isPPC64(); 11504 bool isDarwinABI = Subtarget.isDarwinABI(); 11505 11506 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) || 11507 (!isPPC64 && VT != MVT::i32)) 11508 report_fatal_error("Invalid register global variable type"); 11509 11510 bool is64Bit = isPPC64 && VT == MVT::i64; 11511 unsigned Reg = StringSwitch<unsigned>(RegName) 11512 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 11513 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2) 11514 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 : 11515 (is64Bit ? PPC::X13 : PPC::R13)) 11516 .Default(0); 11517 11518 if (Reg) 11519 return Reg; 11520 report_fatal_error("Invalid register name global variable"); 11521 } 11522 11523 bool 11524 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11525 // The PowerPC target isn't yet aware of offsets. 11526 return false; 11527 } 11528 11529 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11530 const CallInst &I, 11531 unsigned Intrinsic) const { 11532 11533 switch (Intrinsic) { 11534 case Intrinsic::ppc_qpx_qvlfd: 11535 case Intrinsic::ppc_qpx_qvlfs: 11536 case Intrinsic::ppc_qpx_qvlfcd: 11537 case Intrinsic::ppc_qpx_qvlfcs: 11538 case Intrinsic::ppc_qpx_qvlfiwa: 11539 case Intrinsic::ppc_qpx_qvlfiwz: 11540 case Intrinsic::ppc_altivec_lvx: 11541 case Intrinsic::ppc_altivec_lvxl: 11542 case Intrinsic::ppc_altivec_lvebx: 11543 case Intrinsic::ppc_altivec_lvehx: 11544 case Intrinsic::ppc_altivec_lvewx: 11545 case Intrinsic::ppc_vsx_lxvd2x: 11546 case Intrinsic::ppc_vsx_lxvw4x: { 11547 EVT VT; 11548 switch (Intrinsic) { 11549 case Intrinsic::ppc_altivec_lvebx: 11550 VT = MVT::i8; 11551 break; 11552 case Intrinsic::ppc_altivec_lvehx: 11553 VT = MVT::i16; 11554 break; 11555 case Intrinsic::ppc_altivec_lvewx: 11556 VT = MVT::i32; 11557 break; 11558 case Intrinsic::ppc_vsx_lxvd2x: 11559 VT = MVT::v2f64; 11560 break; 11561 case Intrinsic::ppc_qpx_qvlfd: 11562 VT = MVT::v4f64; 11563 break; 11564 case Intrinsic::ppc_qpx_qvlfs: 11565 VT = MVT::v4f32; 11566 break; 11567 case Intrinsic::ppc_qpx_qvlfcd: 11568 VT = MVT::v2f64; 11569 break; 11570 case Intrinsic::ppc_qpx_qvlfcs: 11571 VT = MVT::v2f32; 11572 break; 11573 default: 11574 VT = MVT::v4i32; 11575 break; 11576 } 11577 11578 Info.opc = ISD::INTRINSIC_W_CHAIN; 11579 Info.memVT = VT; 11580 Info.ptrVal = I.getArgOperand(0); 11581 Info.offset = -VT.getStoreSize()+1; 11582 Info.size = 2*VT.getStoreSize()-1; 11583 Info.align = 1; 11584 Info.vol = false; 11585 Info.readMem = true; 11586 Info.writeMem = false; 11587 return true; 11588 } 11589 case Intrinsic::ppc_qpx_qvlfda: 11590 case Intrinsic::ppc_qpx_qvlfsa: 11591 case Intrinsic::ppc_qpx_qvlfcda: 11592 case Intrinsic::ppc_qpx_qvlfcsa: 11593 case Intrinsic::ppc_qpx_qvlfiwaa: 11594 case Intrinsic::ppc_qpx_qvlfiwza: { 11595 EVT VT; 11596 switch (Intrinsic) { 11597 case Intrinsic::ppc_qpx_qvlfda: 11598 VT = MVT::v4f64; 11599 break; 11600 case Intrinsic::ppc_qpx_qvlfsa: 11601 VT = MVT::v4f32; 11602 break; 11603 case Intrinsic::ppc_qpx_qvlfcda: 11604 VT = MVT::v2f64; 11605 break; 11606 case Intrinsic::ppc_qpx_qvlfcsa: 11607 VT = MVT::v2f32; 11608 break; 11609 default: 11610 VT = MVT::v4i32; 11611 break; 11612 } 11613 11614 Info.opc = ISD::INTRINSIC_W_CHAIN; 11615 Info.memVT = VT; 11616 Info.ptrVal = I.getArgOperand(0); 11617 Info.offset = 0; 11618 Info.size = VT.getStoreSize(); 11619 Info.align = 1; 11620 Info.vol = false; 11621 Info.readMem = true; 11622 Info.writeMem = false; 11623 return true; 11624 } 11625 case Intrinsic::ppc_qpx_qvstfd: 11626 case Intrinsic::ppc_qpx_qvstfs: 11627 case Intrinsic::ppc_qpx_qvstfcd: 11628 case Intrinsic::ppc_qpx_qvstfcs: 11629 case Intrinsic::ppc_qpx_qvstfiw: 11630 case Intrinsic::ppc_altivec_stvx: 11631 case Intrinsic::ppc_altivec_stvxl: 11632 case Intrinsic::ppc_altivec_stvebx: 11633 case Intrinsic::ppc_altivec_stvehx: 11634 case Intrinsic::ppc_altivec_stvewx: 11635 case Intrinsic::ppc_vsx_stxvd2x: 11636 case Intrinsic::ppc_vsx_stxvw4x: { 11637 EVT VT; 11638 switch (Intrinsic) { 11639 case Intrinsic::ppc_altivec_stvebx: 11640 VT = MVT::i8; 11641 break; 11642 case Intrinsic::ppc_altivec_stvehx: 11643 VT = MVT::i16; 11644 break; 11645 case Intrinsic::ppc_altivec_stvewx: 11646 VT = MVT::i32; 11647 break; 11648 case Intrinsic::ppc_vsx_stxvd2x: 11649 VT = MVT::v2f64; 11650 break; 11651 case Intrinsic::ppc_qpx_qvstfd: 11652 VT = MVT::v4f64; 11653 break; 11654 case Intrinsic::ppc_qpx_qvstfs: 11655 VT = MVT::v4f32; 11656 break; 11657 case Intrinsic::ppc_qpx_qvstfcd: 11658 VT = MVT::v2f64; 11659 break; 11660 case Intrinsic::ppc_qpx_qvstfcs: 11661 VT = MVT::v2f32; 11662 break; 11663 default: 11664 VT = MVT::v4i32; 11665 break; 11666 } 11667 11668 Info.opc = ISD::INTRINSIC_VOID; 11669 Info.memVT = VT; 11670 Info.ptrVal = I.getArgOperand(1); 11671 Info.offset = -VT.getStoreSize()+1; 11672 Info.size = 2*VT.getStoreSize()-1; 11673 Info.align = 1; 11674 Info.vol = false; 11675 Info.readMem = false; 11676 Info.writeMem = true; 11677 return true; 11678 } 11679 case Intrinsic::ppc_qpx_qvstfda: 11680 case Intrinsic::ppc_qpx_qvstfsa: 11681 case Intrinsic::ppc_qpx_qvstfcda: 11682 case Intrinsic::ppc_qpx_qvstfcsa: 11683 case Intrinsic::ppc_qpx_qvstfiwa: { 11684 EVT VT; 11685 switch (Intrinsic) { 11686 case Intrinsic::ppc_qpx_qvstfda: 11687 VT = MVT::v4f64; 11688 break; 11689 case Intrinsic::ppc_qpx_qvstfsa: 11690 VT = MVT::v4f32; 11691 break; 11692 case Intrinsic::ppc_qpx_qvstfcda: 11693 VT = MVT::v2f64; 11694 break; 11695 case Intrinsic::ppc_qpx_qvstfcsa: 11696 VT = MVT::v2f32; 11697 break; 11698 default: 11699 VT = MVT::v4i32; 11700 break; 11701 } 11702 11703 Info.opc = ISD::INTRINSIC_VOID; 11704 Info.memVT = VT; 11705 Info.ptrVal = I.getArgOperand(1); 11706 Info.offset = 0; 11707 Info.size = VT.getStoreSize(); 11708 Info.align = 1; 11709 Info.vol = false; 11710 Info.readMem = false; 11711 Info.writeMem = true; 11712 return true; 11713 } 11714 default: 11715 break; 11716 } 11717 11718 return false; 11719 } 11720 11721 /// getOptimalMemOpType - Returns the target specific optimal type for load 11722 /// and store operations as a result of memset, memcpy, and memmove 11723 /// lowering. If DstAlign is zero that means it's safe to destination 11724 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 11725 /// means there isn't a need to check it against alignment requirement, 11726 /// probably because the source does not need to be loaded. If 'IsMemset' is 11727 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 11728 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 11729 /// source is constant so it does not need to be loaded. 11730 /// It returns EVT::Other if the type should be determined using generic 11731 /// target-independent logic. 11732 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 11733 unsigned DstAlign, unsigned SrcAlign, 11734 bool IsMemset, bool ZeroMemset, 11735 bool MemcpyStrSrc, 11736 MachineFunction &MF) const { 11737 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 11738 const Function *F = MF.getFunction(); 11739 // When expanding a memset, require at least two QPX instructions to cover 11740 // the cost of loading the value to be stored from the constant pool. 11741 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 11742 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 11743 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 11744 return MVT::v4f64; 11745 } 11746 11747 // We should use Altivec/VSX loads and stores when available. For unaligned 11748 // addresses, unaligned VSX loads are only fast starting with the P8. 11749 if (Subtarget.hasAltivec() && Size >= 16 && 11750 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 11751 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 11752 return MVT::v4i32; 11753 } 11754 11755 if (Subtarget.isPPC64()) { 11756 return MVT::i64; 11757 } 11758 11759 return MVT::i32; 11760 } 11761 11762 /// \brief Returns true if it is beneficial to convert a load of a constant 11763 /// to just the constant itself. 11764 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11765 Type *Ty) const { 11766 assert(Ty->isIntegerTy()); 11767 11768 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 11769 return !(BitSize == 0 || BitSize > 64); 11770 } 11771 11772 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 11773 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 11774 return false; 11775 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 11776 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 11777 return NumBits1 == 64 && NumBits2 == 32; 11778 } 11779 11780 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 11781 if (!VT1.isInteger() || !VT2.isInteger()) 11782 return false; 11783 unsigned NumBits1 = VT1.getSizeInBits(); 11784 unsigned NumBits2 = VT2.getSizeInBits(); 11785 return NumBits1 == 64 && NumBits2 == 32; 11786 } 11787 11788 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 11789 // Generally speaking, zexts are not free, but they are free when they can be 11790 // folded with other operations. 11791 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 11792 EVT MemVT = LD->getMemoryVT(); 11793 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 11794 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 11795 (LD->getExtensionType() == ISD::NON_EXTLOAD || 11796 LD->getExtensionType() == ISD::ZEXTLOAD)) 11797 return true; 11798 } 11799 11800 // FIXME: Add other cases... 11801 // - 32-bit shifts with a zext to i64 11802 // - zext after ctlz, bswap, etc. 11803 // - zext after and by a constant mask 11804 11805 return TargetLowering::isZExtFree(Val, VT2); 11806 } 11807 11808 bool PPCTargetLowering::isFPExtFree(EVT VT) const { 11809 assert(VT.isFloatingPoint()); 11810 return true; 11811 } 11812 11813 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 11814 return isInt<16>(Imm) || isUInt<16>(Imm); 11815 } 11816 11817 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 11818 return isInt<16>(Imm) || isUInt<16>(Imm); 11819 } 11820 11821 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 11822 unsigned, 11823 unsigned, 11824 bool *Fast) const { 11825 if (DisablePPCUnaligned) 11826 return false; 11827 11828 // PowerPC supports unaligned memory access for simple non-vector types. 11829 // Although accessing unaligned addresses is not as efficient as accessing 11830 // aligned addresses, it is generally more efficient than manual expansion, 11831 // and generally only traps for software emulation when crossing page 11832 // boundaries. 11833 11834 if (!VT.isSimple()) 11835 return false; 11836 11837 if (VT.getSimpleVT().isVector()) { 11838 if (Subtarget.hasVSX()) { 11839 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 11840 VT != MVT::v4f32 && VT != MVT::v4i32) 11841 return false; 11842 } else { 11843 return false; 11844 } 11845 } 11846 11847 if (VT == MVT::ppcf128) 11848 return false; 11849 11850 if (Fast) 11851 *Fast = true; 11852 11853 return true; 11854 } 11855 11856 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 11857 VT = VT.getScalarType(); 11858 11859 if (!VT.isSimple()) 11860 return false; 11861 11862 switch (VT.getSimpleVT().SimpleTy) { 11863 case MVT::f32: 11864 case MVT::f64: 11865 return true; 11866 default: 11867 break; 11868 } 11869 11870 return false; 11871 } 11872 11873 const MCPhysReg * 11874 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 11875 // LR is a callee-save register, but we must treat it as clobbered by any call 11876 // site. Hence we include LR in the scratch registers, which are in turn added 11877 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 11878 // to CTR, which is used by any indirect call. 11879 static const MCPhysReg ScratchRegs[] = { 11880 PPC::X12, PPC::LR8, PPC::CTR8, 0 11881 }; 11882 11883 return ScratchRegs; 11884 } 11885 11886 unsigned PPCTargetLowering::getExceptionPointerRegister( 11887 const Constant *PersonalityFn) const { 11888 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 11889 } 11890 11891 unsigned PPCTargetLowering::getExceptionSelectorRegister( 11892 const Constant *PersonalityFn) const { 11893 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 11894 } 11895 11896 bool 11897 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 11898 EVT VT , unsigned DefinedValues) const { 11899 if (VT == MVT::v2i64) 11900 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 11901 11902 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 11903 return true; 11904 11905 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 11906 } 11907 11908 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 11909 if (DisableILPPref || Subtarget.enableMachineScheduler()) 11910 return TargetLowering::getSchedulingPreference(N); 11911 11912 return Sched::ILP; 11913 } 11914 11915 // Create a fast isel object. 11916 FastISel * 11917 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 11918 const TargetLibraryInfo *LibInfo) const { 11919 return PPC::createFastISel(FuncInfo, LibInfo); 11920 } 11921 11922 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 11923 if (Subtarget.isDarwinABI()) return; 11924 if (!Subtarget.isPPC64()) return; 11925 11926 // Update IsSplitCSR in PPCFunctionInfo 11927 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 11928 PFI->setIsSplitCSR(true); 11929 } 11930 11931 void PPCTargetLowering::insertCopiesSplitCSR( 11932 MachineBasicBlock *Entry, 11933 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 11934 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11935 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 11936 if (!IStart) 11937 return; 11938 11939 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11940 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 11941 MachineBasicBlock::iterator MBBI = Entry->begin(); 11942 for (const MCPhysReg *I = IStart; *I; ++I) { 11943 const TargetRegisterClass *RC = nullptr; 11944 if (PPC::G8RCRegClass.contains(*I)) 11945 RC = &PPC::G8RCRegClass; 11946 else if (PPC::F8RCRegClass.contains(*I)) 11947 RC = &PPC::F8RCRegClass; 11948 else if (PPC::CRRCRegClass.contains(*I)) 11949 RC = &PPC::CRRCRegClass; 11950 else if (PPC::VRRCRegClass.contains(*I)) 11951 RC = &PPC::VRRCRegClass; 11952 else 11953 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 11954 11955 unsigned NewVR = MRI->createVirtualRegister(RC); 11956 // Create copy from CSR to a virtual register. 11957 // FIXME: this currently does not emit CFI pseudo-instructions, it works 11958 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 11959 // nounwind. If we want to generalize this later, we may need to emit 11960 // CFI pseudo-instructions. 11961 assert(Entry->getParent()->getFunction()->hasFnAttribute( 11962 Attribute::NoUnwind) && 11963 "Function should be nounwind in insertCopiesSplitCSR!"); 11964 Entry->addLiveIn(*I); 11965 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 11966 .addReg(*I); 11967 11968 // Insert the copy-back instructions right before the terminator 11969 for (auto *Exit : Exits) 11970 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 11971 TII->get(TargetOpcode::COPY), *I) 11972 .addReg(NewVR); 11973 } 11974 } 11975 11976 // Override to enable LOAD_STACK_GUARD lowering on Linux. 11977 bool PPCTargetLowering::useLoadStackGuardNode() const { 11978 if (!Subtarget.isTargetLinux()) 11979 return TargetLowering::useLoadStackGuardNode(); 11980 return true; 11981 } 11982 11983 // Override to disable global variable loading on Linux. 11984 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 11985 if (!Subtarget.isTargetLinux()) 11986 return TargetLowering::insertSSPDeclarations(M); 11987 } 11988