1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pattern matching instruction selector for PowerPC, 10 // converting from a legalized dag to a PPC dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/PPCMCTargetDesc.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCISelLowering.h" 18 #include "PPCMachineFunctionInfo.h" 19 #include "PPCSubtarget.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/ISDOpcodes.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGISel.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CodeGen.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/KnownBits.h" 54 #include "llvm/Support/MachineValueType.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <new> 64 #include <tuple> 65 #include <utility> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "ppc-codegen" 70 71 STATISTIC(NumSextSetcc, 72 "Number of (sext(setcc)) nodes expanded into GPR sequence."); 73 STATISTIC(NumZextSetcc, 74 "Number of (zext(setcc)) nodes expanded into GPR sequence."); 75 STATISTIC(SignExtensionsAdded, 76 "Number of sign extensions for compare inputs added."); 77 STATISTIC(ZeroExtensionsAdded, 78 "Number of zero extensions for compare inputs added."); 79 STATISTIC(NumLogicOpsOnComparison, 80 "Number of logical ops on i1 values calculated in GPR."); 81 STATISTIC(OmittedForNonExtendUses, 82 "Number of compares not eliminated as they have non-extending uses."); 83 STATISTIC(NumP9Setb, 84 "Number of compares lowered to setb."); 85 86 // FIXME: Remove this once the bug has been fixed! 87 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 88 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 89 90 static cl::opt<bool> 91 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 92 cl::desc("use aggressive ppc isel for bit permutations"), 93 cl::Hidden); 94 static cl::opt<bool> BPermRewriterNoMasking( 95 "ppc-bit-perm-rewriter-stress-rotates", 96 cl::desc("stress rotate selection in aggressive ppc isel for " 97 "bit permutations"), 98 cl::Hidden); 99 100 static cl::opt<bool> EnableBranchHint( 101 "ppc-use-branch-hint", cl::init(true), 102 cl::desc("Enable static hinting of branches on ppc"), 103 cl::Hidden); 104 105 static cl::opt<bool> EnableTLSOpt( 106 "ppc-tls-opt", cl::init(true), 107 cl::desc("Enable tls optimization peephole"), 108 cl::Hidden); 109 110 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, 111 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, 112 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; 113 114 static cl::opt<ICmpInGPRType> CmpInGPR( 115 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), 116 cl::desc("Specify the types of comparisons to emit GPR-only code for."), 117 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), 118 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), 119 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), 120 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), 121 clEnumValN(ICGPR_NonExtIn, "nonextin", 122 "Only comparisons where inputs don't need [sz]ext."), 123 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), 124 clEnumValN(ICGPR_ZextI32, "zexti32", 125 "Only i32 comparisons with zext result."), 126 clEnumValN(ICGPR_ZextI64, "zexti64", 127 "Only i64 comparisons with zext result."), 128 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), 129 clEnumValN(ICGPR_SextI32, "sexti32", 130 "Only i32 comparisons with sext result."), 131 clEnumValN(ICGPR_SextI64, "sexti64", 132 "Only i64 comparisons with sext result."))); 133 namespace { 134 135 //===--------------------------------------------------------------------===// 136 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 137 /// instructions for SelectionDAG operations. 138 /// 139 class PPCDAGToDAGISel : public SelectionDAGISel { 140 const PPCTargetMachine &TM; 141 const PPCSubtarget *PPCSubTarget; 142 const PPCTargetLowering *PPCLowering; 143 unsigned GlobalBaseReg; 144 145 public: 146 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) 147 : SelectionDAGISel(tm, OptLevel), TM(tm) {} 148 149 bool runOnMachineFunction(MachineFunction &MF) override { 150 // Make sure we re-emit a set of the global base reg if necessary 151 GlobalBaseReg = 0; 152 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); 153 PPCLowering = PPCSubTarget->getTargetLowering(); 154 SelectionDAGISel::runOnMachineFunction(MF); 155 156 if (!PPCSubTarget->isSVR4ABI()) 157 InsertVRSaveCode(MF); 158 159 return true; 160 } 161 162 void PreprocessISelDAG() override; 163 void PostprocessISelDAG() override; 164 165 /// getI16Imm - Return a target constant with the specified value, of type 166 /// i16. 167 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { 168 return CurDAG->getTargetConstant(Imm, dl, MVT::i16); 169 } 170 171 /// getI32Imm - Return a target constant with the specified value, of type 172 /// i32. 173 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 174 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 175 } 176 177 /// getI64Imm - Return a target constant with the specified value, of type 178 /// i64. 179 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 180 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 181 } 182 183 /// getSmallIPtrImm - Return a target constant of pointer type. 184 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { 185 return CurDAG->getTargetConstant( 186 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 187 } 188 189 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 190 /// rotate and mask opcode and mask operation. 191 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 192 unsigned &SH, unsigned &MB, unsigned &ME); 193 194 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 195 /// base register. Return the virtual register that holds this value. 196 SDNode *getGlobalBaseReg(); 197 198 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); 199 200 // Select - Convert the specified operand from a target-independent to a 201 // target-specific node if it hasn't already been changed. 202 void Select(SDNode *N) override; 203 204 bool tryBitfieldInsert(SDNode *N); 205 bool tryBitPermutation(SDNode *N); 206 bool tryIntCompareInGPR(SDNode *N); 207 208 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into 209 // an X-Form load instruction with the offset being a relocation coming from 210 // the PPCISD::ADD_TLS. 211 bool tryTLSXFormLoad(LoadSDNode *N); 212 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into 213 // an X-Form store instruction with the offset being a relocation coming from 214 // the PPCISD::ADD_TLS. 215 bool tryTLSXFormStore(StoreSDNode *N); 216 /// SelectCC - Select a comparison of the specified values with the 217 /// specified condition code, returning the CR# of the expression. 218 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 219 const SDLoc &dl); 220 221 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 222 /// immediate field. Note that the operand at this point is already the 223 /// result of a prior SelectAddressRegImm call. 224 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 225 if (N.getOpcode() == ISD::TargetConstant || 226 N.getOpcode() == ISD::TargetGlobalAddress) { 227 Out = N; 228 return true; 229 } 230 231 return false; 232 } 233 234 /// SelectAddrIdx - Given the specified address, check to see if it can be 235 /// represented as an indexed [r+r] operation. 236 /// This is for xform instructions whose associated displacement form is D. 237 /// The last parameter \p 0 means associated D form has no requirment for 16 238 /// bit signed displacement. 239 /// Returns false if it can be represented by [r+imm], which are preferred. 240 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 241 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0); 242 } 243 244 /// SelectAddrIdx4 - Given the specified address, check to see if it can be 245 /// represented as an indexed [r+r] operation. 246 /// This is for xform instructions whose associated displacement form is DS. 247 /// The last parameter \p 4 means associated DS form 16 bit signed 248 /// displacement must be a multiple of 4. 249 /// Returns false if it can be represented by [r+imm], which are preferred. 250 bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { 251 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4); 252 } 253 254 /// SelectAddrIdx16 - Given the specified address, check to see if it can be 255 /// represented as an indexed [r+r] operation. 256 /// This is for xform instructions whose associated displacement form is DQ. 257 /// The last parameter \p 16 means associated DQ form 16 bit signed 258 /// displacement must be a multiple of 16. 259 /// Returns false if it can be represented by [r+imm], which are preferred. 260 bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { 261 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16); 262 } 263 264 /// SelectAddrIdxOnly - Given the specified address, force it to be 265 /// represented as an indexed [r+r] operation. 266 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 267 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 268 } 269 270 /// SelectAddrImm - Returns true if the address N can be represented by 271 /// a base register plus a signed 16-bit displacement [r+imm]. 272 /// The last parameter \p 0 means D form has no requirment for 16 bit signed 273 /// displacement. 274 bool SelectAddrImm(SDValue N, SDValue &Disp, 275 SDValue &Base) { 276 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0); 277 } 278 279 /// SelectAddrImmX4 - Returns true if the address N can be represented by 280 /// a base register plus a signed 16-bit displacement that is a multiple of 281 /// 4 (last parameter). Suitable for use by STD and friends. 282 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 283 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4); 284 } 285 286 /// SelectAddrImmX16 - Returns true if the address N can be represented by 287 /// a base register plus a signed 16-bit displacement that is a multiple of 288 /// 16(last parameter). Suitable for use by STXV and friends. 289 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { 290 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16); 291 } 292 293 // Select an address into a single register. 294 bool SelectAddr(SDValue N, SDValue &Base) { 295 Base = N; 296 return true; 297 } 298 299 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 300 /// inline asm expressions. It is always correct to compute the value into 301 /// a register. The case of adding a (possibly relocatable) constant to a 302 /// register can be improved, but it is wrong to substitute Reg+Reg for 303 /// Reg in an asm, because the load or store opcode would have to change. 304 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 305 unsigned ConstraintID, 306 std::vector<SDValue> &OutOps) override { 307 switch(ConstraintID) { 308 default: 309 errs() << "ConstraintID: " << ConstraintID << "\n"; 310 llvm_unreachable("Unexpected asm memory constraint"); 311 case InlineAsm::Constraint_es: 312 case InlineAsm::Constraint_i: 313 case InlineAsm::Constraint_m: 314 case InlineAsm::Constraint_o: 315 case InlineAsm::Constraint_Q: 316 case InlineAsm::Constraint_Z: 317 case InlineAsm::Constraint_Zy: 318 // We need to make sure that this one operand does not end up in r0 319 // (because we might end up lowering this as 0(%op)). 320 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); 321 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 322 SDLoc dl(Op); 323 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 324 SDValue NewOp = 325 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 326 dl, Op.getValueType(), 327 Op, RC), 0); 328 329 OutOps.push_back(NewOp); 330 return false; 331 } 332 return true; 333 } 334 335 void InsertVRSaveCode(MachineFunction &MF); 336 337 StringRef getPassName() const override { 338 return "PowerPC DAG->DAG Pattern Instruction Selection"; 339 } 340 341 // Include the pieces autogenerated from the target description. 342 #include "PPCGenDAGISel.inc" 343 344 private: 345 bool trySETCC(SDNode *N); 346 347 void PeepholePPC64(); 348 void PeepholePPC64ZExt(); 349 void PeepholeCROps(); 350 351 SDValue combineToCMPB(SDNode *N); 352 void foldBoolExts(SDValue &Res, SDNode *&N); 353 354 bool AllUsersSelectZero(SDNode *N); 355 void SwapAllSelectUsers(SDNode *N); 356 357 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; 358 void transferMemOperands(SDNode *N, SDNode *Result); 359 }; 360 361 } // end anonymous namespace 362 363 /// InsertVRSaveCode - Once the entire function has been instruction selected, 364 /// all virtual registers are created and all machine instructions are built, 365 /// check to see if we need to save/restore VRSAVE. If so, do it. 366 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 367 // Check to see if this function uses vector registers, which means we have to 368 // save and restore the VRSAVE register and update it with the regs we use. 369 // 370 // In this case, there will be virtual registers of vector type created 371 // by the scheduler. Detect them now. 372 bool HasVectorVReg = false; 373 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 374 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 375 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 376 HasVectorVReg = true; 377 break; 378 } 379 } 380 if (!HasVectorVReg) return; // nothing to do. 381 382 // If we have a vector register, we want to emit code into the entry and exit 383 // blocks to save and restore the VRSAVE register. We do this here (instead 384 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 385 // 386 // 1. This (trivially) reduces the load on the register allocator, by not 387 // having to represent the live range of the VRSAVE register. 388 // 2. This (more significantly) allows us to create a temporary virtual 389 // register to hold the saved VRSAVE value, allowing this temporary to be 390 // register allocated, instead of forcing it to be spilled to the stack. 391 392 // Create two vregs - one to hold the VRSAVE register that is live-in to the 393 // function and one for the value after having bits or'd into it. 394 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 395 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 396 397 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 398 MachineBasicBlock &EntryBB = *Fn.begin(); 399 DebugLoc dl; 400 // Emit the following code into the entry block: 401 // InVRSAVE = MFVRSAVE 402 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 403 // MTVRSAVE UpdatedVRSAVE 404 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 405 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 406 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 407 UpdatedVRSAVE).addReg(InVRSAVE); 408 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 409 410 // Find all return blocks, outputting a restore in each epilog. 411 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 412 if (BB->isReturnBlock()) { 413 IP = BB->end(); --IP; 414 415 // Skip over all terminator instructions, which are part of the return 416 // sequence. 417 MachineBasicBlock::iterator I2 = IP; 418 while (I2 != BB->begin() && (--I2)->isTerminator()) 419 IP = I2; 420 421 // Emit: MTVRSAVE InVRSave 422 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 423 } 424 } 425 } 426 427 /// getGlobalBaseReg - Output the instructions required to put the 428 /// base address to use for accessing globals into a register. 429 /// 430 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 431 if (!GlobalBaseReg) { 432 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 433 // Insert the set of GlobalBaseReg into the first MBB of the function 434 MachineBasicBlock &FirstMBB = MF->front(); 435 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 436 const Module *M = MF->getFunction().getParent(); 437 DebugLoc dl; 438 439 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 440 if (PPCSubTarget->isTargetELF()) { 441 GlobalBaseReg = PPC::R30; 442 if (M->getPICLevel() == PICLevel::SmallPIC) { 443 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 444 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 445 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 446 } else { 447 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 448 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 449 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 450 BuildMI(FirstMBB, MBBI, dl, 451 TII.get(PPC::UpdateGBR), GlobalBaseReg) 452 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 453 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 454 } 455 } else { 456 GlobalBaseReg = 457 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); 458 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 459 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 460 } 461 } else { 462 // We must ensure that this sequence is dominated by the prologue. 463 // FIXME: This is a bit of a big hammer since we don't get the benefits 464 // of shrink-wrapping whenever we emit this instruction. Considering 465 // this is used in any function where we emit a jump table, this may be 466 // a significant limitation. We should consider inserting this in the 467 // block where it is used and then commoning this sequence up if it 468 // appears in multiple places. 469 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of 470 // MovePCtoLR8. 471 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); 472 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); 473 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 474 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 475 } 476 } 477 return CurDAG->getRegister(GlobalBaseReg, 478 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 479 .getNode(); 480 } 481 482 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 483 /// operand. If so Imm will receive the 32-bit value. 484 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 485 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 486 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 487 return true; 488 } 489 return false; 490 } 491 492 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 493 /// operand. If so Imm will receive the 64-bit value. 494 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 495 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 496 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 497 return true; 498 } 499 return false; 500 } 501 502 // isInt32Immediate - This method tests to see if a constant operand. 503 // If so Imm will receive the 32 bit value. 504 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 505 return isInt32Immediate(N.getNode(), Imm); 506 } 507 508 /// isInt64Immediate - This method tests to see if the value is a 64-bit 509 /// constant operand. If so Imm will receive the 64-bit value. 510 static bool isInt64Immediate(SDValue N, uint64_t &Imm) { 511 return isInt64Immediate(N.getNode(), Imm); 512 } 513 514 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo, 515 const SDValue &DestMBB) { 516 assert(isa<BasicBlockSDNode>(DestMBB)); 517 518 if (!FuncInfo->BPI) return PPC::BR_NO_HINT; 519 520 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 521 const Instruction *BBTerm = BB->getTerminator(); 522 523 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 524 525 const BasicBlock *TBB = BBTerm->getSuccessor(0); 526 const BasicBlock *FBB = BBTerm->getSuccessor(1); 527 528 auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB); 529 auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB); 530 531 // We only want to handle cases which are easy to predict at static time, e.g. 532 // C++ throw statement, that is very likely not taken, or calling never 533 // returned function, e.g. stdlib exit(). So we set Threshold to filter 534 // unwanted cases. 535 // 536 // Below is LLVM branch weight table, we only want to handle case 1, 2 537 // 538 // Case Taken:Nontaken Example 539 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 540 // 2. Invoke-terminating 1:1048575 541 // 3. Coldblock 4:64 __builtin_expect 542 // 4. Loop Branch 124:4 For loop 543 // 5. PH/ZH/FPH 20:12 544 const uint32_t Threshold = 10000; 545 546 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 547 return PPC::BR_NO_HINT; 548 549 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() 550 << "::" << BB->getName() << "'\n" 551 << " -> " << TBB->getName() << ": " << TProb << "\n" 552 << " -> " << FBB->getName() << ": " << FProb << "\n"); 553 554 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 555 556 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 557 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 558 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 559 std::swap(TProb, FProb); 560 561 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 562 } 563 564 // isOpcWithIntImmediate - This method tests to see if the node is a specific 565 // opcode and that it has a immediate integer right operand. 566 // If so Imm will receive the 32 bit value. 567 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 568 return N->getOpcode() == Opc 569 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 570 } 571 572 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { 573 SDLoc dl(SN); 574 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 575 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 576 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 577 if (SN->hasOneUse()) 578 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 579 getSmallIPtrImm(Offset, dl)); 580 else 581 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 582 getSmallIPtrImm(Offset, dl))); 583 } 584 585 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 586 bool isShiftMask, unsigned &SH, 587 unsigned &MB, unsigned &ME) { 588 // Don't even go down this path for i64, since different logic will be 589 // necessary for rldicl/rldicr/rldimi. 590 if (N->getValueType(0) != MVT::i32) 591 return false; 592 593 unsigned Shift = 32; 594 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 595 unsigned Opcode = N->getOpcode(); 596 if (N->getNumOperands() != 2 || 597 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 598 return false; 599 600 if (Opcode == ISD::SHL) { 601 // apply shift left to mask if it comes first 602 if (isShiftMask) Mask = Mask << Shift; 603 // determine which bits are made indeterminant by shift 604 Indeterminant = ~(0xFFFFFFFFu << Shift); 605 } else if (Opcode == ISD::SRL) { 606 // apply shift right to mask if it comes first 607 if (isShiftMask) Mask = Mask >> Shift; 608 // determine which bits are made indeterminant by shift 609 Indeterminant = ~(0xFFFFFFFFu >> Shift); 610 // adjust for the left rotate 611 Shift = 32 - Shift; 612 } else if (Opcode == ISD::ROTL) { 613 Indeterminant = 0; 614 } else { 615 return false; 616 } 617 618 // if the mask doesn't intersect any Indeterminant bits 619 if (Mask && !(Mask & Indeterminant)) { 620 SH = Shift & 31; 621 // make sure the mask is still a mask (wrap arounds may not be) 622 return isRunOfOnes(Mask, MB, ME); 623 } 624 return false; 625 } 626 627 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { 628 SDValue Base = ST->getBasePtr(); 629 if (Base.getOpcode() != PPCISD::ADD_TLS) 630 return false; 631 SDValue Offset = ST->getOffset(); 632 if (!Offset.isUndef()) 633 return false; 634 635 SDLoc dl(ST); 636 EVT MemVT = ST->getMemoryVT(); 637 EVT RegVT = ST->getValue().getValueType(); 638 639 unsigned Opcode; 640 switch (MemVT.getSimpleVT().SimpleTy) { 641 default: 642 return false; 643 case MVT::i8: { 644 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; 645 break; 646 } 647 case MVT::i16: { 648 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; 649 break; 650 } 651 case MVT::i32: { 652 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; 653 break; 654 } 655 case MVT::i64: { 656 Opcode = PPC::STDXTLS; 657 break; 658 } 659 } 660 SDValue Chain = ST->getChain(); 661 SDVTList VTs = ST->getVTList(); 662 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), 663 Chain}; 664 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 665 transferMemOperands(ST, MN); 666 ReplaceNode(ST, MN); 667 return true; 668 } 669 670 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { 671 SDValue Base = LD->getBasePtr(); 672 if (Base.getOpcode() != PPCISD::ADD_TLS) 673 return false; 674 SDValue Offset = LD->getOffset(); 675 if (!Offset.isUndef()) 676 return false; 677 678 SDLoc dl(LD); 679 EVT MemVT = LD->getMemoryVT(); 680 EVT RegVT = LD->getValueType(0); 681 unsigned Opcode; 682 switch (MemVT.getSimpleVT().SimpleTy) { 683 default: 684 return false; 685 case MVT::i8: { 686 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; 687 break; 688 } 689 case MVT::i16: { 690 Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; 691 break; 692 } 693 case MVT::i32: { 694 Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; 695 break; 696 } 697 case MVT::i64: { 698 Opcode = PPC::LDXTLS; 699 break; 700 } 701 } 702 SDValue Chain = LD->getChain(); 703 SDVTList VTs = LD->getVTList(); 704 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; 705 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 706 transferMemOperands(LD, MN); 707 ReplaceNode(LD, MN); 708 return true; 709 } 710 711 /// Turn an or of two masked values into the rotate left word immediate then 712 /// mask insert (rlwimi) instruction. 713 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 714 SDValue Op0 = N->getOperand(0); 715 SDValue Op1 = N->getOperand(1); 716 SDLoc dl(N); 717 718 KnownBits LKnown = CurDAG->computeKnownBits(Op0); 719 KnownBits RKnown = CurDAG->computeKnownBits(Op1); 720 721 unsigned TargetMask = LKnown.Zero.getZExtValue(); 722 unsigned InsertMask = RKnown.Zero.getZExtValue(); 723 724 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 725 unsigned Op0Opc = Op0.getOpcode(); 726 unsigned Op1Opc = Op1.getOpcode(); 727 unsigned Value, SH = 0; 728 TargetMask = ~TargetMask; 729 InsertMask = ~InsertMask; 730 731 // If the LHS has a foldable shift and the RHS does not, then swap it to the 732 // RHS so that we can fold the shift into the insert. 733 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 734 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 735 Op0.getOperand(0).getOpcode() == ISD::SRL) { 736 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 737 Op1.getOperand(0).getOpcode() != ISD::SRL) { 738 std::swap(Op0, Op1); 739 std::swap(Op0Opc, Op1Opc); 740 std::swap(TargetMask, InsertMask); 741 } 742 } 743 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 744 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 745 Op1.getOperand(0).getOpcode() != ISD::SRL) { 746 std::swap(Op0, Op1); 747 std::swap(Op0Opc, Op1Opc); 748 std::swap(TargetMask, InsertMask); 749 } 750 } 751 752 unsigned MB, ME; 753 if (isRunOfOnes(InsertMask, MB, ME)) { 754 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 755 isInt32Immediate(Op1.getOperand(1), Value)) { 756 Op1 = Op1.getOperand(0); 757 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 758 } 759 if (Op1Opc == ISD::AND) { 760 // The AND mask might not be a constant, and we need to make sure that 761 // if we're going to fold the masking with the insert, all bits not 762 // know to be zero in the mask are known to be one. 763 KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); 764 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); 765 766 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 767 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 768 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 769 // Note that Value must be in range here (less than 32) because 770 // otherwise there would not be any bits set in InsertMask. 771 Op1 = Op1.getOperand(0).getOperand(0); 772 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 773 } 774 } 775 776 SH &= 31; 777 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 778 getI32Imm(ME, dl) }; 779 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 780 return true; 781 } 782 } 783 return false; 784 } 785 786 // Predict the number of instructions that would be generated by calling 787 // selectI64Imm(N). 788 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) { 789 // Assume no remaining bits. 790 unsigned Remainder = 0; 791 // Assume no shift required. 792 unsigned Shift = 0; 793 794 // If it can't be represented as a 32 bit value. 795 if (!isInt<32>(Imm)) { 796 Shift = countTrailingZeros<uint64_t>(Imm); 797 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 798 799 // If the shifted value fits 32 bits. 800 if (isInt<32>(ImmSh)) { 801 // Go with the shifted value. 802 Imm = ImmSh; 803 } else { 804 // Still stuck with a 64 bit value. 805 Remainder = Imm; 806 Shift = 32; 807 Imm >>= 32; 808 } 809 } 810 811 // Intermediate operand. 812 unsigned Result = 0; 813 814 // Handle first 32 bits. 815 unsigned Lo = Imm & 0xFFFF; 816 817 // Simple value. 818 if (isInt<16>(Imm)) { 819 // Just the Lo bits. 820 ++Result; 821 } else if (Lo) { 822 // Handle the Hi bits and Lo bits. 823 Result += 2; 824 } else { 825 // Just the Hi bits. 826 ++Result; 827 } 828 829 // If no shift, we're done. 830 if (!Shift) return Result; 831 832 // If Hi word == Lo word, 833 // we can use rldimi to insert the Lo word into Hi word. 834 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { 835 ++Result; 836 return Result; 837 } 838 839 // Shift for next step if the upper 32-bits were not zero. 840 if (Imm) 841 ++Result; 842 843 // Add in the last bits as required. 844 if ((Remainder >> 16) & 0xFFFF) 845 ++Result; 846 if (Remainder & 0xFFFF) 847 ++Result; 848 849 return Result; 850 } 851 852 static uint64_t Rot64(uint64_t Imm, unsigned R) { 853 return (Imm << R) | (Imm >> (64 - R)); 854 } 855 856 static unsigned selectI64ImmInstrCount(int64_t Imm) { 857 unsigned Count = selectI64ImmInstrCountDirect(Imm); 858 859 // If the instruction count is 1 or 2, we do not need further analysis 860 // since rotate + load constant requires at least 2 instructions. 861 if (Count <= 2) 862 return Count; 863 864 for (unsigned r = 1; r < 63; ++r) { 865 uint64_t RImm = Rot64(Imm, r); 866 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; 867 Count = std::min(Count, RCount); 868 869 // See comments in selectI64Imm for an explanation of the logic below. 870 unsigned LS = findLastSet(RImm); 871 if (LS != r-1) 872 continue; 873 874 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 875 uint64_t RImmWithOnes = RImm | OnesMask; 876 877 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; 878 Count = std::min(Count, RCount); 879 } 880 881 return Count; 882 } 883 884 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount 885 // (above) needs to be kept in sync with this function. 886 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, 887 int64_t Imm) { 888 // Assume no remaining bits. 889 unsigned Remainder = 0; 890 // Assume no shift required. 891 unsigned Shift = 0; 892 893 // If it can't be represented as a 32 bit value. 894 if (!isInt<32>(Imm)) { 895 Shift = countTrailingZeros<uint64_t>(Imm); 896 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 897 898 // If the shifted value fits 32 bits. 899 if (isInt<32>(ImmSh)) { 900 // Go with the shifted value. 901 Imm = ImmSh; 902 } else { 903 // Still stuck with a 64 bit value. 904 Remainder = Imm; 905 Shift = 32; 906 Imm >>= 32; 907 } 908 } 909 910 // Intermediate operand. 911 SDNode *Result; 912 913 // Handle first 32 bits. 914 unsigned Lo = Imm & 0xFFFF; 915 unsigned Hi = (Imm >> 16) & 0xFFFF; 916 917 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 918 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 919 }; 920 921 // Simple value. 922 if (isInt<16>(Imm)) { 923 uint64_t SextImm = SignExtend64(Lo, 16); 924 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 925 // Just the Lo bits. 926 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 927 } else if (Lo) { 928 // Handle the Hi bits. 929 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 930 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 931 // And Lo bits. 932 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 933 SDValue(Result, 0), getI32Imm(Lo)); 934 } else { 935 // Just the Hi bits. 936 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 937 } 938 939 // If no shift, we're done. 940 if (!Shift) return Result; 941 942 // If Hi word == Lo word, 943 // we can use rldimi to insert the Lo word into Hi word. 944 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { 945 SDValue Ops[] = 946 { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)}; 947 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); 948 } 949 950 // Shift for next step if the upper 32-bits were not zero. 951 if (Imm) { 952 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 953 SDValue(Result, 0), 954 getI32Imm(Shift), 955 getI32Imm(63 - Shift)); 956 } 957 958 // Add in the last bits as required. 959 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 960 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 961 SDValue(Result, 0), getI32Imm(Hi)); 962 } 963 if ((Lo = Remainder & 0xFFFF)) { 964 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 965 SDValue(Result, 0), getI32Imm(Lo)); 966 } 967 968 return Result; 969 } 970 971 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, 972 int64_t Imm) { 973 unsigned Count = selectI64ImmInstrCountDirect(Imm); 974 975 // If the instruction count is 1 or 2, we do not need further analysis 976 // since rotate + load constant requires at least 2 instructions. 977 if (Count <= 2) 978 return selectI64ImmDirect(CurDAG, dl, Imm); 979 980 unsigned RMin = 0; 981 982 int64_t MatImm; 983 unsigned MaskEnd; 984 985 for (unsigned r = 1; r < 63; ++r) { 986 uint64_t RImm = Rot64(Imm, r); 987 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; 988 if (RCount < Count) { 989 Count = RCount; 990 RMin = r; 991 MatImm = RImm; 992 MaskEnd = 63; 993 } 994 995 // If the immediate to generate has many trailing zeros, it might be 996 // worthwhile to generate a rotated value with too many leading ones 997 // (because that's free with li/lis's sign-extension semantics), and then 998 // mask them off after rotation. 999 1000 unsigned LS = findLastSet(RImm); 1001 // We're adding (63-LS) higher-order ones, and we expect to mask them off 1002 // after performing the inverse rotation by (64-r). So we need that: 1003 // 63-LS == 64-r => LS == r-1 1004 if (LS != r-1) 1005 continue; 1006 1007 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 1008 uint64_t RImmWithOnes = RImm | OnesMask; 1009 1010 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; 1011 if (RCount < Count) { 1012 Count = RCount; 1013 RMin = r; 1014 MatImm = RImmWithOnes; 1015 MaskEnd = LS; 1016 } 1017 } 1018 1019 if (!RMin) 1020 return selectI64ImmDirect(CurDAG, dl, Imm); 1021 1022 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 1023 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1024 }; 1025 1026 SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0); 1027 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, 1028 getI32Imm(64 - RMin), getI32Imm(MaskEnd)); 1029 } 1030 1031 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { 1032 unsigned MaxTruncation = 0; 1033 // Cannot use range-based for loop here as we need the actual use (i.e. we 1034 // need the operand number corresponding to the use). A range-based for 1035 // will unbox the use and provide an SDNode*. 1036 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); 1037 Use != UseEnd; ++Use) { 1038 unsigned Opc = 1039 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); 1040 switch (Opc) { 1041 default: return 0; 1042 case ISD::TRUNCATE: 1043 if (Use->isMachineOpcode()) 1044 return 0; 1045 MaxTruncation = 1046 std::max(MaxTruncation, Use->getValueType(0).getSizeInBits()); 1047 continue; 1048 case ISD::STORE: { 1049 if (Use->isMachineOpcode()) 1050 return 0; 1051 StoreSDNode *STN = cast<StoreSDNode>(*Use); 1052 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); 1053 if (MemVTSize == 64 || Use.getOperandNo() != 0) 1054 return 0; 1055 MaxTruncation = std::max(MaxTruncation, MemVTSize); 1056 continue; 1057 } 1058 case PPC::STW8: 1059 case PPC::STWX8: 1060 case PPC::STWU8: 1061 case PPC::STWUX8: 1062 if (Use.getOperandNo() != 0) 1063 return 0; 1064 MaxTruncation = std::max(MaxTruncation, 32u); 1065 continue; 1066 case PPC::STH8: 1067 case PPC::STHX8: 1068 case PPC::STHU8: 1069 case PPC::STHUX8: 1070 if (Use.getOperandNo() != 0) 1071 return 0; 1072 MaxTruncation = std::max(MaxTruncation, 16u); 1073 continue; 1074 case PPC::STB8: 1075 case PPC::STBX8: 1076 case PPC::STBU8: 1077 case PPC::STBUX8: 1078 if (Use.getOperandNo() != 0) 1079 return 0; 1080 MaxTruncation = std::max(MaxTruncation, 8u); 1081 continue; 1082 } 1083 } 1084 return MaxTruncation; 1085 } 1086 1087 // Select a 64-bit constant. 1088 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { 1089 SDLoc dl(N); 1090 1091 // Get 64 bit value. 1092 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 1093 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { 1094 uint64_t SextImm = SignExtend64(Imm, MinSize); 1095 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); 1096 if (isInt<16>(SextImm)) 1097 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); 1098 } 1099 return selectI64Imm(CurDAG, dl, Imm); 1100 } 1101 1102 namespace { 1103 1104 class BitPermutationSelector { 1105 struct ValueBit { 1106 SDValue V; 1107 1108 // The bit number in the value, using a convention where bit 0 is the 1109 // lowest-order bit. 1110 unsigned Idx; 1111 1112 // ConstZero means a bit we need to mask off. 1113 // Variable is a bit comes from an input variable. 1114 // VariableKnownToBeZero is also a bit comes from an input variable, 1115 // but it is known to be already zero. So we do not need to mask them. 1116 enum Kind { 1117 ConstZero, 1118 Variable, 1119 VariableKnownToBeZero 1120 } K; 1121 1122 ValueBit(SDValue V, unsigned I, Kind K = Variable) 1123 : V(V), Idx(I), K(K) {} 1124 ValueBit(Kind K = Variable) 1125 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} 1126 1127 bool isZero() const { 1128 return K == ConstZero || K == VariableKnownToBeZero; 1129 } 1130 1131 bool hasValue() const { 1132 return K == Variable || K == VariableKnownToBeZero; 1133 } 1134 1135 SDValue getValue() const { 1136 assert(hasValue() && "Cannot get the value of a constant bit"); 1137 return V; 1138 } 1139 1140 unsigned getValueBitIndex() const { 1141 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 1142 return Idx; 1143 } 1144 }; 1145 1146 // A bit group has the same underlying value and the same rotate factor. 1147 struct BitGroup { 1148 SDValue V; 1149 unsigned RLAmt; 1150 unsigned StartIdx, EndIdx; 1151 1152 // This rotation amount assumes that the lower 32 bits of the quantity are 1153 // replicated in the high 32 bits by the rotation operator (which is done 1154 // by rlwinm and friends in 64-bit mode). 1155 bool Repl32; 1156 // Did converting to Repl32 == true change the rotation factor? If it did, 1157 // it decreased it by 32. 1158 bool Repl32CR; 1159 // Was this group coalesced after setting Repl32 to true? 1160 bool Repl32Coalesced; 1161 1162 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 1163 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 1164 Repl32Coalesced(false) { 1165 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R 1166 << " [" << S << ", " << E << "]\n"); 1167 } 1168 }; 1169 1170 // Information on each (Value, RLAmt) pair (like the number of groups 1171 // associated with each) used to choose the lowering method. 1172 struct ValueRotInfo { 1173 SDValue V; 1174 unsigned RLAmt = std::numeric_limits<unsigned>::max(); 1175 unsigned NumGroups = 0; 1176 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); 1177 bool Repl32 = false; 1178 1179 ValueRotInfo() = default; 1180 1181 // For sorting (in reverse order) by NumGroups, and then by 1182 // FirstGroupStartIdx. 1183 bool operator < (const ValueRotInfo &Other) const { 1184 // We need to sort so that the non-Repl32 come first because, when we're 1185 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 1186 // masking operation. 1187 if (Repl32 < Other.Repl32) 1188 return true; 1189 else if (Repl32 > Other.Repl32) 1190 return false; 1191 else if (NumGroups > Other.NumGroups) 1192 return true; 1193 else if (NumGroups < Other.NumGroups) 1194 return false; 1195 else if (RLAmt == 0 && Other.RLAmt != 0) 1196 return true; 1197 else if (RLAmt != 0 && Other.RLAmt == 0) 1198 return false; 1199 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 1200 return true; 1201 return false; 1202 } 1203 }; 1204 1205 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 1206 using ValueBitsMemoizer = 1207 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 1208 ValueBitsMemoizer Memoizer; 1209 1210 // Return a pair of bool and a SmallVector pointer to a memoization entry. 1211 // The bool is true if something interesting was deduced, otherwise if we're 1212 // providing only a generic representation of V (or something else likewise 1213 // uninteresting for instruction selection) through the SmallVector. 1214 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 1215 unsigned NumBits) { 1216 auto &ValueEntry = Memoizer[V]; 1217 if (ValueEntry) 1218 return std::make_pair(ValueEntry->first, &ValueEntry->second); 1219 ValueEntry.reset(new ValueBitsMemoizedValue()); 1220 bool &Interesting = ValueEntry->first; 1221 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 1222 Bits.resize(NumBits); 1223 1224 switch (V.getOpcode()) { 1225 default: break; 1226 case ISD::ROTL: 1227 if (isa<ConstantSDNode>(V.getOperand(1))) { 1228 unsigned RotAmt = V.getConstantOperandVal(1); 1229 1230 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1231 1232 for (unsigned i = 0; i < NumBits; ++i) 1233 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 1234 1235 return std::make_pair(Interesting = true, &Bits); 1236 } 1237 break; 1238 case ISD::SHL: 1239 if (isa<ConstantSDNode>(V.getOperand(1))) { 1240 unsigned ShiftAmt = V.getConstantOperandVal(1); 1241 1242 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1243 1244 for (unsigned i = ShiftAmt; i < NumBits; ++i) 1245 Bits[i] = LHSBits[i - ShiftAmt]; 1246 1247 for (unsigned i = 0; i < ShiftAmt; ++i) 1248 Bits[i] = ValueBit(ValueBit::ConstZero); 1249 1250 return std::make_pair(Interesting = true, &Bits); 1251 } 1252 break; 1253 case ISD::SRL: 1254 if (isa<ConstantSDNode>(V.getOperand(1))) { 1255 unsigned ShiftAmt = V.getConstantOperandVal(1); 1256 1257 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1258 1259 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 1260 Bits[i] = LHSBits[i + ShiftAmt]; 1261 1262 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 1263 Bits[i] = ValueBit(ValueBit::ConstZero); 1264 1265 return std::make_pair(Interesting = true, &Bits); 1266 } 1267 break; 1268 case ISD::AND: 1269 if (isa<ConstantSDNode>(V.getOperand(1))) { 1270 uint64_t Mask = V.getConstantOperandVal(1); 1271 1272 const SmallVector<ValueBit, 64> *LHSBits; 1273 // Mark this as interesting, only if the LHS was also interesting. This 1274 // prevents the overall procedure from matching a single immediate 'and' 1275 // (which is non-optimal because such an and might be folded with other 1276 // things if we don't select it here). 1277 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 1278 1279 for (unsigned i = 0; i < NumBits; ++i) 1280 if (((Mask >> i) & 1) == 1) 1281 Bits[i] = (*LHSBits)[i]; 1282 else { 1283 // AND instruction masks this bit. If the input is already zero, 1284 // we have nothing to do here. Otherwise, make the bit ConstZero. 1285 if ((*LHSBits)[i].isZero()) 1286 Bits[i] = (*LHSBits)[i]; 1287 else 1288 Bits[i] = ValueBit(ValueBit::ConstZero); 1289 } 1290 1291 return std::make_pair(Interesting, &Bits); 1292 } 1293 break; 1294 case ISD::OR: { 1295 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1296 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1297 1298 bool AllDisjoint = true; 1299 SDValue LastVal = SDValue(); 1300 unsigned LastIdx = 0; 1301 for (unsigned i = 0; i < NumBits; ++i) { 1302 if (LHSBits[i].isZero() && RHSBits[i].isZero()) { 1303 // If both inputs are known to be zero and one is ConstZero and 1304 // another is VariableKnownToBeZero, we can select whichever 1305 // we like. To minimize the number of bit groups, we select 1306 // VariableKnownToBeZero if this bit is the next bit of the same 1307 // input variable from the previous bit. Otherwise, we select 1308 // ConstZero. 1309 if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && 1310 LHSBits[i].getValueBitIndex() == LastIdx + 1) 1311 Bits[i] = LHSBits[i]; 1312 else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && 1313 RHSBits[i].getValueBitIndex() == LastIdx + 1) 1314 Bits[i] = RHSBits[i]; 1315 else 1316 Bits[i] = ValueBit(ValueBit::ConstZero); 1317 } 1318 else if (LHSBits[i].isZero()) 1319 Bits[i] = RHSBits[i]; 1320 else if (RHSBits[i].isZero()) 1321 Bits[i] = LHSBits[i]; 1322 else { 1323 AllDisjoint = false; 1324 break; 1325 } 1326 // We remember the value and bit index of this bit. 1327 if (Bits[i].hasValue()) { 1328 LastVal = Bits[i].getValue(); 1329 LastIdx = Bits[i].getValueBitIndex(); 1330 } 1331 else { 1332 if (LastVal) LastVal = SDValue(); 1333 LastIdx = 0; 1334 } 1335 } 1336 1337 if (!AllDisjoint) 1338 break; 1339 1340 return std::make_pair(Interesting = true, &Bits); 1341 } 1342 case ISD::ZERO_EXTEND: { 1343 // We support only the case with zero extension from i32 to i64 so far. 1344 if (V.getValueType() != MVT::i64 || 1345 V.getOperand(0).getValueType() != MVT::i32) 1346 break; 1347 1348 const SmallVector<ValueBit, 64> *LHSBits; 1349 const unsigned NumOperandBits = 32; 1350 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1351 NumOperandBits); 1352 1353 for (unsigned i = 0; i < NumOperandBits; ++i) 1354 Bits[i] = (*LHSBits)[i]; 1355 1356 for (unsigned i = NumOperandBits; i < NumBits; ++i) 1357 Bits[i] = ValueBit(ValueBit::ConstZero); 1358 1359 return std::make_pair(Interesting, &Bits); 1360 } 1361 case ISD::TRUNCATE: { 1362 EVT FromType = V.getOperand(0).getValueType(); 1363 EVT ToType = V.getValueType(); 1364 // We support only the case with truncate from i64 to i32. 1365 if (FromType != MVT::i64 || ToType != MVT::i32) 1366 break; 1367 const unsigned NumAllBits = FromType.getSizeInBits(); 1368 SmallVector<ValueBit, 64> *InBits; 1369 std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), 1370 NumAllBits); 1371 const unsigned NumValidBits = ToType.getSizeInBits(); 1372 1373 // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. 1374 // So, we cannot include this truncate. 1375 bool UseUpper32bit = false; 1376 for (unsigned i = 0; i < NumValidBits; ++i) 1377 if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { 1378 UseUpper32bit = true; 1379 break; 1380 } 1381 if (UseUpper32bit) 1382 break; 1383 1384 for (unsigned i = 0; i < NumValidBits; ++i) 1385 Bits[i] = (*InBits)[i]; 1386 1387 return std::make_pair(Interesting, &Bits); 1388 } 1389 case ISD::AssertZext: { 1390 // For AssertZext, we look through the operand and 1391 // mark the bits known to be zero. 1392 const SmallVector<ValueBit, 64> *LHSBits; 1393 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), 1394 NumBits); 1395 1396 EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); 1397 const unsigned NumValidBits = FromType.getSizeInBits(); 1398 for (unsigned i = 0; i < NumValidBits; ++i) 1399 Bits[i] = (*LHSBits)[i]; 1400 1401 // These bits are known to be zero. 1402 for (unsigned i = NumValidBits; i < NumBits; ++i) 1403 Bits[i] = ValueBit((*LHSBits)[i].getValue(), 1404 (*LHSBits)[i].getValueBitIndex(), 1405 ValueBit::VariableKnownToBeZero); 1406 1407 return std::make_pair(Interesting, &Bits); 1408 } 1409 case ISD::LOAD: 1410 LoadSDNode *LD = cast<LoadSDNode>(V); 1411 if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { 1412 EVT VT = LD->getMemoryVT(); 1413 const unsigned NumValidBits = VT.getSizeInBits(); 1414 1415 for (unsigned i = 0; i < NumValidBits; ++i) 1416 Bits[i] = ValueBit(V, i); 1417 1418 // These bits are known to be zero. 1419 for (unsigned i = NumValidBits; i < NumBits; ++i) 1420 Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); 1421 1422 // Zero-extending load itself cannot be optimized. So, it is not 1423 // interesting by itself though it gives useful information. 1424 return std::make_pair(Interesting = false, &Bits); 1425 } 1426 break; 1427 } 1428 1429 for (unsigned i = 0; i < NumBits; ++i) 1430 Bits[i] = ValueBit(V, i); 1431 1432 return std::make_pair(Interesting = false, &Bits); 1433 } 1434 1435 // For each value (except the constant ones), compute the left-rotate amount 1436 // to get it from its original to final position. 1437 void computeRotationAmounts() { 1438 NeedMask = false; 1439 RLAmt.resize(Bits.size()); 1440 for (unsigned i = 0; i < Bits.size(); ++i) 1441 if (Bits[i].hasValue()) { 1442 unsigned VBI = Bits[i].getValueBitIndex(); 1443 if (i >= VBI) 1444 RLAmt[i] = i - VBI; 1445 else 1446 RLAmt[i] = Bits.size() - (VBI - i); 1447 } else if (Bits[i].isZero()) { 1448 NeedMask = true; 1449 RLAmt[i] = UINT32_MAX; 1450 } else { 1451 llvm_unreachable("Unknown value bit type"); 1452 } 1453 } 1454 1455 // Collect groups of consecutive bits with the same underlying value and 1456 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1457 // they break up groups. 1458 void collectBitGroups(bool LateMask) { 1459 BitGroups.clear(); 1460 1461 unsigned LastRLAmt = RLAmt[0]; 1462 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1463 unsigned LastGroupStartIdx = 0; 1464 bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1465 for (unsigned i = 1; i < Bits.size(); ++i) { 1466 unsigned ThisRLAmt = RLAmt[i]; 1467 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1468 if (LateMask && !ThisValue) { 1469 ThisValue = LastValue; 1470 ThisRLAmt = LastRLAmt; 1471 // If we're doing late masking, then the first bit group always starts 1472 // at zero (even if the first bits were zero). 1473 if (BitGroups.empty()) 1474 LastGroupStartIdx = 0; 1475 } 1476 1477 // If this bit is known to be zero and the current group is a bit group 1478 // of zeros, we do not need to terminate the current bit group even the 1479 // Value or RLAmt does not match here. Instead, we terminate this group 1480 // when the first non-zero bit appears later. 1481 if (IsGroupOfZeros && Bits[i].isZero()) 1482 continue; 1483 1484 // If this bit has the same underlying value and the same rotate factor as 1485 // the last one, then they're part of the same group. 1486 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1487 // We cannot continue the current group if this bits is not known to 1488 // be zero in a bit group of zeros. 1489 if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) 1490 continue; 1491 1492 if (LastValue.getNode()) 1493 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1494 i-1)); 1495 LastRLAmt = ThisRLAmt; 1496 LastValue = ThisValue; 1497 LastGroupStartIdx = i; 1498 IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); 1499 } 1500 if (LastValue.getNode()) 1501 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1502 Bits.size()-1)); 1503 1504 if (BitGroups.empty()) 1505 return; 1506 1507 // We might be able to combine the first and last groups. 1508 if (BitGroups.size() > 1) { 1509 // If the first and last groups are the same, then remove the first group 1510 // in favor of the last group, making the ending index of the last group 1511 // equal to the ending index of the to-be-removed first group. 1512 if (BitGroups[0].StartIdx == 0 && 1513 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1514 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1515 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1516 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1517 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1518 BitGroups.erase(BitGroups.begin()); 1519 } 1520 } 1521 } 1522 1523 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1524 // associated with each. If the number of groups are same, we prefer a group 1525 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate 1526 // instruction. If there is a degeneracy, pick the one that occurs 1527 // first (in the final value). 1528 void collectValueRotInfo() { 1529 ValueRots.clear(); 1530 1531 for (auto &BG : BitGroups) { 1532 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1533 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1534 VRI.V = BG.V; 1535 VRI.RLAmt = BG.RLAmt; 1536 VRI.Repl32 = BG.Repl32; 1537 VRI.NumGroups += 1; 1538 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1539 } 1540 1541 // Now that we've collected the various ValueRotInfo instances, we need to 1542 // sort them. 1543 ValueRotsVec.clear(); 1544 for (auto &I : ValueRots) { 1545 ValueRotsVec.push_back(I.second); 1546 } 1547 llvm::sort(ValueRotsVec); 1548 } 1549 1550 // In 64-bit mode, rlwinm and friends have a rotation operator that 1551 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1552 // indices of these instructions can only be in the lower 32 bits, so they 1553 // can only represent some 64-bit bit groups. However, when they can be used, 1554 // the 32-bit replication can be used to represent, as a single bit group, 1555 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1556 // groups when possible. Returns true if any of the bit groups were 1557 // converted. 1558 void assignRepl32BitGroups() { 1559 // If we have bits like this: 1560 // 1561 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1562 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1563 // Groups: | RLAmt = 8 | RLAmt = 40 | 1564 // 1565 // But, making use of a 32-bit operation that replicates the low-order 32 1566 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1567 // of 8. 1568 1569 auto IsAllLow32 = [this](BitGroup & BG) { 1570 if (BG.StartIdx <= BG.EndIdx) { 1571 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1572 if (!Bits[i].hasValue()) 1573 continue; 1574 if (Bits[i].getValueBitIndex() >= 32) 1575 return false; 1576 } 1577 } else { 1578 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1579 if (!Bits[i].hasValue()) 1580 continue; 1581 if (Bits[i].getValueBitIndex() >= 32) 1582 return false; 1583 } 1584 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1585 if (!Bits[i].hasValue()) 1586 continue; 1587 if (Bits[i].getValueBitIndex() >= 32) 1588 return false; 1589 } 1590 } 1591 1592 return true; 1593 }; 1594 1595 for (auto &BG : BitGroups) { 1596 // If this bit group has RLAmt of 0 and will not be merged with 1597 // another bit group, we don't benefit from Repl32. We don't mark 1598 // such group to give more freedom for later instruction selection. 1599 if (BG.RLAmt == 0) { 1600 auto PotentiallyMerged = [this](BitGroup & BG) { 1601 for (auto &BG2 : BitGroups) 1602 if (&BG != &BG2 && BG.V == BG2.V && 1603 (BG2.RLAmt == 0 || BG2.RLAmt == 32)) 1604 return true; 1605 return false; 1606 }; 1607 if (!PotentiallyMerged(BG)) 1608 continue; 1609 } 1610 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 1611 if (IsAllLow32(BG)) { 1612 if (BG.RLAmt >= 32) { 1613 BG.RLAmt -= 32; 1614 BG.Repl32CR = true; 1615 } 1616 1617 BG.Repl32 = true; 1618 1619 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " 1620 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" 1621 << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 1622 } 1623 } 1624 } 1625 1626 // Now walk through the bit groups, consolidating where possible. 1627 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1628 // We might want to remove this bit group by merging it with the previous 1629 // group (which might be the ending group). 1630 auto IP = (I == BitGroups.begin()) ? 1631 std::prev(BitGroups.end()) : std::prev(I); 1632 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 1633 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 1634 1635 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " 1636 << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" 1637 << I->StartIdx << ", " << I->EndIdx 1638 << "] with group with range [" << IP->StartIdx << ", " 1639 << IP->EndIdx << "]\n"); 1640 1641 IP->EndIdx = I->EndIdx; 1642 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 1643 IP->Repl32Coalesced = true; 1644 I = BitGroups.erase(I); 1645 continue; 1646 } else { 1647 // There is a special case worth handling: If there is a single group 1648 // covering the entire upper 32 bits, and it can be merged with both 1649 // the next and previous groups (which might be the same group), then 1650 // do so. If it is the same group (so there will be only one group in 1651 // total), then we need to reverse the order of the range so that it 1652 // covers the entire 64 bits. 1653 if (I->StartIdx == 32 && I->EndIdx == 63) { 1654 assert(std::next(I) == BitGroups.end() && 1655 "bit group ends at index 63 but there is another?"); 1656 auto IN = BitGroups.begin(); 1657 1658 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 1659 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 1660 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 1661 IsAllLow32(*I)) { 1662 1663 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() 1664 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx 1665 << ", " << I->EndIdx 1666 << "] with 32-bit replicated groups with ranges [" 1667 << IP->StartIdx << ", " << IP->EndIdx << "] and [" 1668 << IN->StartIdx << ", " << IN->EndIdx << "]\n"); 1669 1670 if (IP == IN) { 1671 // There is only one other group; change it to cover the whole 1672 // range (backward, so that it can still be Repl32 but cover the 1673 // whole 64-bit range). 1674 IP->StartIdx = 31; 1675 IP->EndIdx = 30; 1676 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 1677 IP->Repl32Coalesced = true; 1678 I = BitGroups.erase(I); 1679 } else { 1680 // There are two separate groups, one before this group and one 1681 // after us (at the beginning). We're going to remove this group, 1682 // but also the group at the very beginning. 1683 IP->EndIdx = IN->EndIdx; 1684 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 1685 IP->Repl32Coalesced = true; 1686 I = BitGroups.erase(I); 1687 BitGroups.erase(BitGroups.begin()); 1688 } 1689 1690 // This must be the last group in the vector (and we might have 1691 // just invalidated the iterator above), so break here. 1692 break; 1693 } 1694 } 1695 } 1696 1697 ++I; 1698 } 1699 } 1700 1701 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 1702 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1703 } 1704 1705 uint64_t getZerosMask() { 1706 uint64_t Mask = 0; 1707 for (unsigned i = 0; i < Bits.size(); ++i) { 1708 if (Bits[i].hasValue()) 1709 continue; 1710 Mask |= (UINT64_C(1) << i); 1711 } 1712 1713 return ~Mask; 1714 } 1715 1716 // This method extends an input value to 64 bit if input is 32-bit integer. 1717 // While selecting instructions in BitPermutationSelector in 64-bit mode, 1718 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. 1719 // In such case, we extend it to 64 bit to be consistent with other values. 1720 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { 1721 if (V.getValueSizeInBits() == 64) 1722 return V; 1723 1724 assert(V.getValueSizeInBits() == 32); 1725 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1726 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 1727 MVT::i64), 0); 1728 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 1729 MVT::i64, ImDef, V, 1730 SubRegIdx), 0); 1731 return ExtVal; 1732 } 1733 1734 SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { 1735 if (V.getValueSizeInBits() == 32) 1736 return V; 1737 1738 assert(V.getValueSizeInBits() == 64); 1739 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 1740 SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, 1741 MVT::i32, V, SubRegIdx), 0); 1742 return SubVal; 1743 } 1744 1745 // Depending on the number of groups for a particular value, it might be 1746 // better to rotate, mask explicitly (using andi/andis), and then or the 1747 // result. Select this part of the result first. 1748 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 1749 if (BPermRewriterNoMasking) 1750 return; 1751 1752 for (ValueRotInfo &VRI : ValueRotsVec) { 1753 unsigned Mask = 0; 1754 for (unsigned i = 0; i < Bits.size(); ++i) { 1755 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 1756 continue; 1757 if (RLAmt[i] != VRI.RLAmt) 1758 continue; 1759 Mask |= (1u << i); 1760 } 1761 1762 // Compute the masks for andi/andis that would be necessary. 1763 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1764 assert((ANDIMask != 0 || ANDISMask != 0) && 1765 "No set bits in mask for value bit groups"); 1766 bool NeedsRotate = VRI.RLAmt != 0; 1767 1768 // We're trying to minimize the number of instructions. If we have one 1769 // group, using one of andi/andis can break even. If we have three 1770 // groups, we can use both andi and andis and break even (to use both 1771 // andi and andis we also need to or the results together). We need four 1772 // groups if we also need to rotate. To use andi/andis we need to do more 1773 // than break even because rotate-and-mask instructions tend to be easier 1774 // to schedule. 1775 1776 // FIXME: We've biased here against using andi/andis, which is right for 1777 // POWER cores, but not optimal everywhere. For example, on the A2, 1778 // andi/andis have single-cycle latency whereas the rotate-and-mask 1779 // instructions take two cycles, and it would be better to bias toward 1780 // andi/andis in break-even cases. 1781 1782 unsigned NumAndInsts = (unsigned) NeedsRotate + 1783 (unsigned) (ANDIMask != 0) + 1784 (unsigned) (ANDISMask != 0) + 1785 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 1786 (unsigned) (bool) Res; 1787 1788 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 1789 << " RL: " << VRI.RLAmt << ":" 1790 << "\n\t\t\tisel using masking: " << NumAndInsts 1791 << " using rotates: " << VRI.NumGroups << "\n"); 1792 1793 if (NumAndInsts >= VRI.NumGroups) 1794 continue; 1795 1796 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1797 1798 if (InstCnt) *InstCnt += NumAndInsts; 1799 1800 SDValue VRot; 1801 if (VRI.RLAmt) { 1802 SDValue Ops[] = 1803 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 1804 getI32Imm(0, dl), getI32Imm(31, dl) }; 1805 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 1806 Ops), 0); 1807 } else { 1808 VRot = TruncateToInt32(VRI.V, dl); 1809 } 1810 1811 SDValue ANDIVal, ANDISVal; 1812 if (ANDIMask != 0) 1813 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1814 VRot, getI32Imm(ANDIMask, dl)), 0); 1815 if (ANDISMask != 0) 1816 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1817 VRot, getI32Imm(ANDISMask, dl)), 0); 1818 1819 SDValue TotalVal; 1820 if (!ANDIVal) 1821 TotalVal = ANDISVal; 1822 else if (!ANDISVal) 1823 TotalVal = ANDIVal; 1824 else 1825 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1826 ANDIVal, ANDISVal), 0); 1827 1828 if (!Res) 1829 Res = TotalVal; 1830 else 1831 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1832 Res, TotalVal), 0); 1833 1834 // Now, remove all groups with this underlying value and rotation 1835 // factor. 1836 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1837 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1838 }); 1839 } 1840 } 1841 1842 // Instruction selection for the 32-bit case. 1843 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 1844 SDLoc dl(N); 1845 SDValue Res; 1846 1847 if (InstCnt) *InstCnt = 0; 1848 1849 // Take care of cases that should use andi/andis first. 1850 SelectAndParts32(dl, Res, InstCnt); 1851 1852 // If we've not yet selected a 'starting' instruction, and we have no zeros 1853 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1854 // number of groups), and start with this rotated value. 1855 if ((!NeedMask || LateMask) && !Res) { 1856 ValueRotInfo &VRI = ValueRotsVec[0]; 1857 if (VRI.RLAmt) { 1858 if (InstCnt) *InstCnt += 1; 1859 SDValue Ops[] = 1860 { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), 1861 getI32Imm(0, dl), getI32Imm(31, dl) }; 1862 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 1863 0); 1864 } else { 1865 Res = TruncateToInt32(VRI.V, dl); 1866 } 1867 1868 // Now, remove all groups with this underlying value and rotation factor. 1869 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1870 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1871 }); 1872 } 1873 1874 if (InstCnt) *InstCnt += BitGroups.size(); 1875 1876 // Insert the other groups (one at a time). 1877 for (auto &BG : BitGroups) { 1878 if (!Res) { 1879 SDValue Ops[] = 1880 { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 1881 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1882 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1883 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 1884 } else { 1885 SDValue Ops[] = 1886 { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), 1887 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1888 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1889 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 1890 } 1891 } 1892 1893 if (LateMask) { 1894 unsigned Mask = (unsigned) getZerosMask(); 1895 1896 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1897 assert((ANDIMask != 0 || ANDISMask != 0) && 1898 "No set bits in zeros mask?"); 1899 1900 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1901 (unsigned) (ANDISMask != 0) + 1902 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1903 1904 SDValue ANDIVal, ANDISVal; 1905 if (ANDIMask != 0) 1906 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1907 Res, getI32Imm(ANDIMask, dl)), 0); 1908 if (ANDISMask != 0) 1909 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1910 Res, getI32Imm(ANDISMask, dl)), 0); 1911 1912 if (!ANDIVal) 1913 Res = ANDISVal; 1914 else if (!ANDISVal) 1915 Res = ANDIVal; 1916 else 1917 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1918 ANDIVal, ANDISVal), 0); 1919 } 1920 1921 return Res.getNode(); 1922 } 1923 1924 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 1925 unsigned MaskStart, unsigned MaskEnd, 1926 bool IsIns) { 1927 // In the notation used by the instructions, 'start' and 'end' are reversed 1928 // because bits are counted from high to low order. 1929 unsigned InstMaskStart = 64 - MaskEnd - 1, 1930 InstMaskEnd = 64 - MaskStart - 1; 1931 1932 if (Repl32) 1933 return 1; 1934 1935 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 1936 InstMaskEnd == 63 - RLAmt) 1937 return 1; 1938 1939 return 2; 1940 } 1941 1942 // For 64-bit values, not all combinations of rotates and masks are 1943 // available. Produce one if it is available. 1944 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 1945 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 1946 unsigned *InstCnt = nullptr) { 1947 // In the notation used by the instructions, 'start' and 'end' are reversed 1948 // because bits are counted from high to low order. 1949 unsigned InstMaskStart = 64 - MaskEnd - 1, 1950 InstMaskEnd = 64 - MaskStart - 1; 1951 1952 if (InstCnt) *InstCnt += 1; 1953 1954 if (Repl32) { 1955 // This rotation amount assumes that the lower 32 bits of the quantity 1956 // are replicated in the high 32 bits by the rotation operator (which is 1957 // done by rlwinm and friends). 1958 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1959 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1960 SDValue Ops[] = 1961 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1962 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 1963 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 1964 Ops), 0); 1965 } 1966 1967 if (InstMaskEnd == 63) { 1968 SDValue Ops[] = 1969 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1970 getI32Imm(InstMaskStart, dl) }; 1971 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 1972 } 1973 1974 if (InstMaskStart == 0) { 1975 SDValue Ops[] = 1976 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1977 getI32Imm(InstMaskEnd, dl) }; 1978 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 1979 } 1980 1981 if (InstMaskEnd == 63 - RLAmt) { 1982 SDValue Ops[] = 1983 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 1984 getI32Imm(InstMaskStart, dl) }; 1985 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 1986 } 1987 1988 // We cannot do this with a single instruction, so we'll use two. The 1989 // problem is that we're not free to choose both a rotation amount and mask 1990 // start and end independently. We can choose an arbitrary mask start and 1991 // end, but then the rotation amount is fixed. Rotation, however, can be 1992 // inverted, and so by applying an "inverse" rotation first, we can get the 1993 // desired result. 1994 if (InstCnt) *InstCnt += 1; 1995 1996 // The rotation mask for the second instruction must be MaskStart. 1997 unsigned RLAmt2 = MaskStart; 1998 // The first instruction must rotate V so that the overall rotation amount 1999 // is RLAmt. 2000 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2001 if (RLAmt1) 2002 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2003 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 2004 } 2005 2006 // For 64-bit values, not all combinations of rotates and masks are 2007 // available. Produce a rotate-mask-and-insert if one is available. 2008 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 2009 unsigned RLAmt, bool Repl32, unsigned MaskStart, 2010 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 2011 // In the notation used by the instructions, 'start' and 'end' are reversed 2012 // because bits are counted from high to low order. 2013 unsigned InstMaskStart = 64 - MaskEnd - 1, 2014 InstMaskEnd = 64 - MaskStart - 1; 2015 2016 if (InstCnt) *InstCnt += 1; 2017 2018 if (Repl32) { 2019 // This rotation amount assumes that the lower 32 bits of the quantity 2020 // are replicated in the high 32 bits by the rotation operator (which is 2021 // done by rlwinm and friends). 2022 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 2023 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 2024 SDValue Ops[] = 2025 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2026 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; 2027 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 2028 Ops), 0); 2029 } 2030 2031 if (InstMaskEnd == 63 - RLAmt) { 2032 SDValue Ops[] = 2033 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), 2034 getI32Imm(InstMaskStart, dl) }; 2035 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 2036 } 2037 2038 // We cannot do this with a single instruction, so we'll use two. The 2039 // problem is that we're not free to choose both a rotation amount and mask 2040 // start and end independently. We can choose an arbitrary mask start and 2041 // end, but then the rotation amount is fixed. Rotation, however, can be 2042 // inverted, and so by applying an "inverse" rotation first, we can get the 2043 // desired result. 2044 if (InstCnt) *InstCnt += 1; 2045 2046 // The rotation mask for the second instruction must be MaskStart. 2047 unsigned RLAmt2 = MaskStart; 2048 // The first instruction must rotate V so that the overall rotation amount 2049 // is RLAmt. 2050 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 2051 if (RLAmt1) 2052 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 2053 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 2054 } 2055 2056 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 2057 if (BPermRewriterNoMasking) 2058 return; 2059 2060 // The idea here is the same as in the 32-bit version, but with additional 2061 // complications from the fact that Repl32 might be true. Because we 2062 // aggressively convert bit groups to Repl32 form (which, for small 2063 // rotation factors, involves no other change), and then coalesce, it might 2064 // be the case that a single 64-bit masking operation could handle both 2065 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 2066 // form allowed coalescing, then we must use a 32-bit rotaton in order to 2067 // completely capture the new combined bit group. 2068 2069 for (ValueRotInfo &VRI : ValueRotsVec) { 2070 uint64_t Mask = 0; 2071 2072 // We need to add to the mask all bits from the associated bit groups. 2073 // If Repl32 is false, we need to add bits from bit groups that have 2074 // Repl32 true, but are trivially convertable to Repl32 false. Such a 2075 // group is trivially convertable if it overlaps only with the lower 32 2076 // bits, and the group has not been coalesced. 2077 auto MatchingBG = [VRI](const BitGroup &BG) { 2078 if (VRI.V != BG.V) 2079 return false; 2080 2081 unsigned EffRLAmt = BG.RLAmt; 2082 if (!VRI.Repl32 && BG.Repl32) { 2083 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 2084 !BG.Repl32Coalesced) { 2085 if (BG.Repl32CR) 2086 EffRLAmt += 32; 2087 } else { 2088 return false; 2089 } 2090 } else if (VRI.Repl32 != BG.Repl32) { 2091 return false; 2092 } 2093 2094 return VRI.RLAmt == EffRLAmt; 2095 }; 2096 2097 for (auto &BG : BitGroups) { 2098 if (!MatchingBG(BG)) 2099 continue; 2100 2101 if (BG.StartIdx <= BG.EndIdx) { 2102 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 2103 Mask |= (UINT64_C(1) << i); 2104 } else { 2105 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 2106 Mask |= (UINT64_C(1) << i); 2107 for (unsigned i = 0; i <= BG.EndIdx; ++i) 2108 Mask |= (UINT64_C(1) << i); 2109 } 2110 } 2111 2112 // We can use the 32-bit andi/andis technique if the mask does not 2113 // require any higher-order bits. This can save an instruction compared 2114 // to always using the general 64-bit technique. 2115 bool Use32BitInsts = isUInt<32>(Mask); 2116 // Compute the masks for andi/andis that would be necessary. 2117 unsigned ANDIMask = (Mask & UINT16_MAX), 2118 ANDISMask = (Mask >> 16) & UINT16_MAX; 2119 2120 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 2121 2122 unsigned NumAndInsts = (unsigned) NeedsRotate + 2123 (unsigned) (bool) Res; 2124 if (Use32BitInsts) 2125 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 2126 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2127 else 2128 NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1; 2129 2130 unsigned NumRLInsts = 0; 2131 bool FirstBG = true; 2132 bool MoreBG = false; 2133 for (auto &BG : BitGroups) { 2134 if (!MatchingBG(BG)) { 2135 MoreBG = true; 2136 continue; 2137 } 2138 NumRLInsts += 2139 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 2140 !FirstBG); 2141 FirstBG = false; 2142 } 2143 2144 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() 2145 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") 2146 << "\n\t\t\tisel using masking: " << NumAndInsts 2147 << " using rotates: " << NumRLInsts << "\n"); 2148 2149 // When we'd use andi/andis, we bias toward using the rotates (andi only 2150 // has a record form, and is cracked on POWER cores). However, when using 2151 // general 64-bit constant formation, bias toward the constant form, 2152 // because that exposes more opportunities for CSE. 2153 if (NumAndInsts > NumRLInsts) 2154 continue; 2155 // When merging multiple bit groups, instruction or is used. 2156 // But when rotate is used, rldimi can inert the rotated value into any 2157 // register, so instruction or can be avoided. 2158 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) 2159 continue; 2160 2161 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 2162 2163 if (InstCnt) *InstCnt += NumAndInsts; 2164 2165 SDValue VRot; 2166 // We actually need to generate a rotation if we have a non-zero rotation 2167 // factor or, in the Repl32 case, if we care about any of the 2168 // higher-order replicated bits. In the latter case, we generate a mask 2169 // backward so that it actually includes the entire 64 bits. 2170 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 2171 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2172 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 2173 else 2174 VRot = VRI.V; 2175 2176 SDValue TotalVal; 2177 if (Use32BitInsts) { 2178 assert((ANDIMask != 0 || ANDISMask != 0) && 2179 "No set bits in mask when using 32-bit ands for 64-bit value"); 2180 2181 SDValue ANDIVal, ANDISVal; 2182 if (ANDIMask != 0) 2183 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 2184 ExtendToInt64(VRot, dl), 2185 getI32Imm(ANDIMask, dl)), 2186 0); 2187 if (ANDISMask != 0) 2188 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 2189 ExtendToInt64(VRot, dl), 2190 getI32Imm(ANDISMask, dl)), 2191 0); 2192 2193 if (!ANDIVal) 2194 TotalVal = ANDISVal; 2195 else if (!ANDISVal) 2196 TotalVal = ANDIVal; 2197 else 2198 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2199 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2200 } else { 2201 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2202 TotalVal = 2203 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2204 ExtendToInt64(VRot, dl), TotalVal), 2205 0); 2206 } 2207 2208 if (!Res) 2209 Res = TotalVal; 2210 else 2211 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2212 ExtendToInt64(Res, dl), TotalVal), 2213 0); 2214 2215 // Now, remove all groups with this underlying value and rotation 2216 // factor. 2217 eraseMatchingBitGroups(MatchingBG); 2218 } 2219 } 2220 2221 // Instruction selection for the 64-bit case. 2222 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 2223 SDLoc dl(N); 2224 SDValue Res; 2225 2226 if (InstCnt) *InstCnt = 0; 2227 2228 // Take care of cases that should use andi/andis first. 2229 SelectAndParts64(dl, Res, InstCnt); 2230 2231 // If we've not yet selected a 'starting' instruction, and we have no zeros 2232 // to fill in, select the (Value, RLAmt) with the highest priority (largest 2233 // number of groups), and start with this rotated value. 2234 if ((!NeedMask || LateMask) && !Res) { 2235 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 2236 // groups will come first, and so the VRI representing the largest number 2237 // of groups might not be first (it might be the first Repl32 groups). 2238 unsigned MaxGroupsIdx = 0; 2239 if (!ValueRotsVec[0].Repl32) { 2240 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 2241 if (ValueRotsVec[i].Repl32) { 2242 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 2243 MaxGroupsIdx = i; 2244 break; 2245 } 2246 } 2247 2248 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 2249 bool NeedsRotate = false; 2250 if (VRI.RLAmt) { 2251 NeedsRotate = true; 2252 } else if (VRI.Repl32) { 2253 for (auto &BG : BitGroups) { 2254 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 2255 BG.Repl32 != VRI.Repl32) 2256 continue; 2257 2258 // We don't need a rotate if the bit group is confined to the lower 2259 // 32 bits. 2260 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 2261 continue; 2262 2263 NeedsRotate = true; 2264 break; 2265 } 2266 } 2267 2268 if (NeedsRotate) 2269 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 2270 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 2271 InstCnt); 2272 else 2273 Res = VRI.V; 2274 2275 // Now, remove all groups with this underlying value and rotation factor. 2276 if (Res) 2277 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 2278 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 2279 BG.Repl32 == VRI.Repl32; 2280 }); 2281 } 2282 2283 // Because 64-bit rotates are more flexible than inserts, we might have a 2284 // preference regarding which one we do first (to save one instruction). 2285 if (!Res) 2286 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 2287 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2288 false) < 2289 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 2290 true)) { 2291 if (I != BitGroups.begin()) { 2292 BitGroup BG = *I; 2293 BitGroups.erase(I); 2294 BitGroups.insert(BitGroups.begin(), BG); 2295 } 2296 2297 break; 2298 } 2299 } 2300 2301 // Insert the other groups (one at a time). 2302 for (auto &BG : BitGroups) { 2303 if (!Res) 2304 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 2305 BG.EndIdx, InstCnt); 2306 else 2307 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 2308 BG.StartIdx, BG.EndIdx, InstCnt); 2309 } 2310 2311 if (LateMask) { 2312 uint64_t Mask = getZerosMask(); 2313 2314 // We can use the 32-bit andi/andis technique if the mask does not 2315 // require any higher-order bits. This can save an instruction compared 2316 // to always using the general 64-bit technique. 2317 bool Use32BitInsts = isUInt<32>(Mask); 2318 // Compute the masks for andi/andis that would be necessary. 2319 unsigned ANDIMask = (Mask & UINT16_MAX), 2320 ANDISMask = (Mask >> 16) & UINT16_MAX; 2321 2322 if (Use32BitInsts) { 2323 assert((ANDIMask != 0 || ANDISMask != 0) && 2324 "No set bits in mask when using 32-bit ands for 64-bit value"); 2325 2326 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 2327 (unsigned) (ANDISMask != 0) + 2328 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 2329 2330 SDValue ANDIVal, ANDISVal; 2331 if (ANDIMask != 0) 2332 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 2333 ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0); 2334 if (ANDISMask != 0) 2335 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 2336 ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0); 2337 2338 if (!ANDIVal) 2339 Res = ANDISVal; 2340 else if (!ANDISVal) 2341 Res = ANDIVal; 2342 else 2343 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2344 ExtendToInt64(ANDIVal, dl), ANDISVal), 0); 2345 } else { 2346 if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1; 2347 2348 SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); 2349 Res = 2350 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 2351 ExtendToInt64(Res, dl), MaskVal), 0); 2352 } 2353 } 2354 2355 return Res.getNode(); 2356 } 2357 2358 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 2359 // Fill in BitGroups. 2360 collectBitGroups(LateMask); 2361 if (BitGroups.empty()) 2362 return nullptr; 2363 2364 // For 64-bit values, figure out when we can use 32-bit instructions. 2365 if (Bits.size() == 64) 2366 assignRepl32BitGroups(); 2367 2368 // Fill in ValueRotsVec. 2369 collectValueRotInfo(); 2370 2371 if (Bits.size() == 32) { 2372 return Select32(N, LateMask, InstCnt); 2373 } else { 2374 assert(Bits.size() == 64 && "Not 64 bits here?"); 2375 return Select64(N, LateMask, InstCnt); 2376 } 2377 2378 return nullptr; 2379 } 2380 2381 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 2382 BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); 2383 } 2384 2385 SmallVector<ValueBit, 64> Bits; 2386 2387 bool NeedMask; 2388 SmallVector<unsigned, 64> RLAmt; 2389 2390 SmallVector<BitGroup, 16> BitGroups; 2391 2392 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 2393 SmallVector<ValueRotInfo, 16> ValueRotsVec; 2394 2395 SelectionDAG *CurDAG; 2396 2397 public: 2398 BitPermutationSelector(SelectionDAG *DAG) 2399 : CurDAG(DAG) {} 2400 2401 // Here we try to match complex bit permutations into a set of 2402 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 2403 // known to produce optimal code for common cases (like i32 byte swapping). 2404 SDNode *Select(SDNode *N) { 2405 Memoizer.clear(); 2406 auto Result = 2407 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 2408 if (!Result.first) 2409 return nullptr; 2410 Bits = std::move(*Result.second); 2411 2412 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" 2413 " selection for: "); 2414 LLVM_DEBUG(N->dump(CurDAG)); 2415 2416 // Fill it RLAmt and set NeedMask. 2417 computeRotationAmounts(); 2418 2419 if (!NeedMask) 2420 return Select(N, false); 2421 2422 // We currently have two techniques for handling results with zeros: early 2423 // masking (the default) and late masking. Late masking is sometimes more 2424 // efficient, but because the structure of the bit groups is different, it 2425 // is hard to tell without generating both and comparing the results. With 2426 // late masking, we ignore zeros in the resulting value when inserting each 2427 // set of bit groups, and then mask in the zeros at the end. With early 2428 // masking, we only insert the non-zero parts of the result at every step. 2429 2430 unsigned InstCnt = 0, InstCntLateMask = 0; 2431 LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); 2432 SDNode *RN = Select(N, false, &InstCnt); 2433 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 2434 2435 LLVM_DEBUG(dbgs() << "\tLate masking:\n"); 2436 SDNode *RNLM = Select(N, true, &InstCntLateMask); 2437 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask 2438 << " instructions\n"); 2439 2440 if (InstCnt <= InstCntLateMask) { 2441 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 2442 return RN; 2443 } 2444 2445 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 2446 return RNLM; 2447 } 2448 }; 2449 2450 class IntegerCompareEliminator { 2451 SelectionDAG *CurDAG; 2452 PPCDAGToDAGISel *S; 2453 // Conversion type for interpreting results of a 32-bit instruction as 2454 // a 64-bit value or vice versa. 2455 enum ExtOrTruncConversion { Ext, Trunc }; 2456 2457 // Modifiers to guide how an ISD::SETCC node's result is to be computed 2458 // in a GPR. 2459 // ZExtOrig - use the original condition code, zero-extend value 2460 // ZExtInvert - invert the condition code, zero-extend value 2461 // SExtOrig - use the original condition code, sign-extend value 2462 // SExtInvert - invert the condition code, sign-extend value 2463 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; 2464 2465 // Comparisons against zero to emit GPR code sequences for. Each of these 2466 // sequences may need to be emitted for two or more equivalent patterns. 2467 // For example (a >= 0) == (a > -1). The direction of the comparison (</>) 2468 // matters as well as the extension type: sext (-1/0), zext (1/0). 2469 // GEZExt - (zext (LHS >= 0)) 2470 // GESExt - (sext (LHS >= 0)) 2471 // LEZExt - (zext (LHS <= 0)) 2472 // LESExt - (sext (LHS <= 0)) 2473 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; 2474 2475 SDNode *tryEXTEND(SDNode *N); 2476 SDNode *tryLogicOpOfCompares(SDNode *N); 2477 SDValue computeLogicOpInGPR(SDValue LogicOp); 2478 SDValue signExtendInputIfNeeded(SDValue Input); 2479 SDValue zeroExtendInputIfNeeded(SDValue Input); 2480 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); 2481 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2482 ZeroCompare CmpTy); 2483 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2484 int64_t RHSValue, SDLoc dl); 2485 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2486 int64_t RHSValue, SDLoc dl); 2487 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2488 int64_t RHSValue, SDLoc dl); 2489 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2490 int64_t RHSValue, SDLoc dl); 2491 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); 2492 2493 public: 2494 IntegerCompareEliminator(SelectionDAG *DAG, 2495 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { 2496 assert(CurDAG->getTargetLoweringInfo() 2497 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && 2498 "Only expecting to use this on 64 bit targets."); 2499 } 2500 SDNode *Select(SDNode *N) { 2501 if (CmpInGPR == ICGPR_None) 2502 return nullptr; 2503 switch (N->getOpcode()) { 2504 default: break; 2505 case ISD::ZERO_EXTEND: 2506 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || 2507 CmpInGPR == ICGPR_SextI64) 2508 return nullptr; 2509 LLVM_FALLTHROUGH; 2510 case ISD::SIGN_EXTEND: 2511 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || 2512 CmpInGPR == ICGPR_ZextI64) 2513 return nullptr; 2514 return tryEXTEND(N); 2515 case ISD::AND: 2516 case ISD::OR: 2517 case ISD::XOR: 2518 return tryLogicOpOfCompares(N); 2519 } 2520 return nullptr; 2521 } 2522 }; 2523 2524 static bool isLogicOp(unsigned Opc) { 2525 return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; 2526 } 2527 // The obvious case for wanting to keep the value in a GPR. Namely, the 2528 // result of the comparison is actually needed in a GPR. 2529 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { 2530 assert((N->getOpcode() == ISD::ZERO_EXTEND || 2531 N->getOpcode() == ISD::SIGN_EXTEND) && 2532 "Expecting a zero/sign extend node!"); 2533 SDValue WideRes; 2534 // If we are zero-extending the result of a logical operation on i1 2535 // values, we can keep the values in GPRs. 2536 if (isLogicOp(N->getOperand(0).getOpcode()) && 2537 N->getOperand(0).getValueType() == MVT::i1 && 2538 N->getOpcode() == ISD::ZERO_EXTEND) 2539 WideRes = computeLogicOpInGPR(N->getOperand(0)); 2540 else if (N->getOperand(0).getOpcode() != ISD::SETCC) 2541 return nullptr; 2542 else 2543 WideRes = 2544 getSETCCInGPR(N->getOperand(0), 2545 N->getOpcode() == ISD::SIGN_EXTEND ? 2546 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); 2547 2548 if (!WideRes) 2549 return nullptr; 2550 2551 SDLoc dl(N); 2552 bool Input32Bit = WideRes.getValueType() == MVT::i32; 2553 bool Output32Bit = N->getValueType(0) == MVT::i32; 2554 2555 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; 2556 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; 2557 2558 SDValue ConvOp = WideRes; 2559 if (Input32Bit != Output32Bit) 2560 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : 2561 ExtOrTruncConversion::Trunc); 2562 return ConvOp.getNode(); 2563 } 2564 2565 // Attempt to perform logical operations on the results of comparisons while 2566 // keeping the values in GPRs. Without doing so, these would end up being 2567 // lowered to CR-logical operations which suffer from significant latency and 2568 // low ILP. 2569 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { 2570 if (N->getValueType(0) != MVT::i1) 2571 return nullptr; 2572 assert(isLogicOp(N->getOpcode()) && 2573 "Expected a logic operation on setcc results."); 2574 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); 2575 if (!LoweredLogical) 2576 return nullptr; 2577 2578 SDLoc dl(N); 2579 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; 2580 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; 2581 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2582 SDValue LHS = LoweredLogical.getOperand(0); 2583 SDValue RHS = LoweredLogical.getOperand(1); 2584 SDValue WideOp; 2585 SDValue OpToConvToRecForm; 2586 2587 // Look through any 32-bit to 64-bit implicit extend nodes to find the 2588 // opcode that is input to the XORI. 2589 if (IsBitwiseNegate && 2590 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) 2591 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); 2592 else if (IsBitwiseNegate) 2593 // If the input to the XORI isn't an extension, that's what we're after. 2594 OpToConvToRecForm = LoweredLogical.getOperand(0); 2595 else 2596 // If this is not an XORI, it is a reg-reg logical op and we can convert 2597 // it to record-form. 2598 OpToConvToRecForm = LoweredLogical; 2599 2600 // Get the record-form version of the node we're looking to use to get the 2601 // CR result from. 2602 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); 2603 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); 2604 2605 // Convert the right node to record-form. This is either the logical we're 2606 // looking at or it is the input node to the negation (if we're looking at 2607 // a bitwise negation). 2608 if (NewOpc != -1 && IsBitwiseNegate) { 2609 // The input to the XORI has a record-form. Use it. 2610 assert(LoweredLogical.getConstantOperandVal(1) == 1 && 2611 "Expected a PPC::XORI8 only for bitwise negation."); 2612 // Emit the record-form instruction. 2613 std::vector<SDValue> Ops; 2614 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) 2615 Ops.push_back(OpToConvToRecForm.getOperand(i)); 2616 2617 WideOp = 2618 SDValue(CurDAG->getMachineNode(NewOpc, dl, 2619 OpToConvToRecForm.getValueType(), 2620 MVT::Glue, Ops), 0); 2621 } else { 2622 assert((NewOpc != -1 || !IsBitwiseNegate) && 2623 "No record form available for AND8/OR8/XOR8?"); 2624 WideOp = 2625 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl, 2626 MVT::i64, MVT::Glue, LHS, RHS), 0); 2627 } 2628 2629 // Select this node to a single bit from CR0 set by the record-form node 2630 // just created. For bitwise negation, use the EQ bit which is the equivalent 2631 // of negating the result (i.e. it is a bit set when the result of the 2632 // operation is zero). 2633 SDValue SRIdxVal = 2634 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); 2635 SDValue CRBit = 2636 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 2637 MVT::i1, CR0Reg, SRIdxVal, 2638 WideOp.getValue(1)), 0); 2639 return CRBit.getNode(); 2640 } 2641 2642 // Lower a logical operation on i1 values into a GPR sequence if possible. 2643 // The result can be kept in a GPR if requested. 2644 // Three types of inputs can be handled: 2645 // - SETCC 2646 // - TRUNCATE 2647 // - Logical operation (AND/OR/XOR) 2648 // There is also a special case that is handled (namely a complement operation 2649 // achieved with xor %a, -1). 2650 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { 2651 assert(isLogicOp(LogicOp.getOpcode()) && 2652 "Can only handle logic operations here."); 2653 assert(LogicOp.getValueType() == MVT::i1 && 2654 "Can only handle logic operations on i1 values here."); 2655 SDLoc dl(LogicOp); 2656 SDValue LHS, RHS; 2657 2658 // Special case: xor %a, -1 2659 bool IsBitwiseNegation = isBitwiseNot(LogicOp); 2660 2661 // Produces a GPR sequence for each operand of the binary logic operation. 2662 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates 2663 // the value in a GPR and for logic operations, it will recursively produce 2664 // a GPR sequence for the operation. 2665 auto getLogicOperand = [&] (SDValue Operand) -> SDValue { 2666 unsigned OperandOpcode = Operand.getOpcode(); 2667 if (OperandOpcode == ISD::SETCC) 2668 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); 2669 else if (OperandOpcode == ISD::TRUNCATE) { 2670 SDValue InputOp = Operand.getOperand(0); 2671 EVT InVT = InputOp.getValueType(); 2672 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : 2673 PPC::RLDICL, dl, InVT, InputOp, 2674 S->getI64Imm(0, dl), 2675 S->getI64Imm(63, dl)), 0); 2676 } else if (isLogicOp(OperandOpcode)) 2677 return computeLogicOpInGPR(Operand); 2678 return SDValue(); 2679 }; 2680 LHS = getLogicOperand(LogicOp.getOperand(0)); 2681 RHS = getLogicOperand(LogicOp.getOperand(1)); 2682 2683 // If a GPR sequence can't be produced for the LHS we can't proceed. 2684 // Not producing a GPR sequence for the RHS is only a problem if this isn't 2685 // a bitwise negation operation. 2686 if (!LHS || (!RHS && !IsBitwiseNegation)) 2687 return SDValue(); 2688 2689 NumLogicOpsOnComparison++; 2690 2691 // We will use the inputs as 64-bit values. 2692 if (LHS.getValueType() == MVT::i32) 2693 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); 2694 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) 2695 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); 2696 2697 unsigned NewOpc; 2698 switch (LogicOp.getOpcode()) { 2699 default: llvm_unreachable("Unknown logic operation."); 2700 case ISD::AND: NewOpc = PPC::AND8; break; 2701 case ISD::OR: NewOpc = PPC::OR8; break; 2702 case ISD::XOR: NewOpc = PPC::XOR8; break; 2703 } 2704 2705 if (IsBitwiseNegation) { 2706 RHS = S->getI64Imm(1, dl); 2707 NewOpc = PPC::XORI8; 2708 } 2709 2710 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); 2711 2712 } 2713 2714 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. 2715 /// Otherwise just reinterpret it as a 64-bit value. 2716 /// Useful when emitting comparison code for 32-bit values without using 2717 /// the compare instruction (which only considers the lower 32-bits). 2718 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { 2719 assert(Input.getValueType() == MVT::i32 && 2720 "Can only sign-extend 32-bit values here."); 2721 unsigned Opc = Input.getOpcode(); 2722 2723 // The value was sign extended and then truncated to 32-bits. No need to 2724 // sign extend it again. 2725 if (Opc == ISD::TRUNCATE && 2726 (Input.getOperand(0).getOpcode() == ISD::AssertSext || 2727 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) 2728 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2729 2730 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 2731 // The input is a sign-extending load. All ppc sign-extending loads 2732 // sign-extend to the full 64-bits. 2733 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) 2734 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2735 2736 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 2737 // We don't sign-extend constants. 2738 if (InputConst) 2739 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2740 2741 SDLoc dl(Input); 2742 SignExtensionsAdded++; 2743 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, 2744 MVT::i64, Input), 0); 2745 } 2746 2747 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. 2748 /// Otherwise just reinterpret it as a 64-bit value. 2749 /// Useful when emitting comparison code for 32-bit values without using 2750 /// the compare instruction (which only considers the lower 32-bits). 2751 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { 2752 assert(Input.getValueType() == MVT::i32 && 2753 "Can only zero-extend 32-bit values here."); 2754 unsigned Opc = Input.getOpcode(); 2755 2756 // The only condition under which we can omit the actual extend instruction: 2757 // - The value is a positive constant 2758 // - The value comes from a load that isn't a sign-extending load 2759 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. 2760 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && 2761 (Input.getOperand(0).getOpcode() == ISD::AssertZext || 2762 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); 2763 if (IsTruncateOfZExt) 2764 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2765 2766 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); 2767 if (InputConst && InputConst->getSExtValue() >= 0) 2768 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2769 2770 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); 2771 // The input is a load that doesn't sign-extend (it will be zero-extended). 2772 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) 2773 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); 2774 2775 // None of the above, need to zero-extend. 2776 SDLoc dl(Input); 2777 ZeroExtensionsAdded++; 2778 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, 2779 S->getI64Imm(0, dl), 2780 S->getI64Imm(32, dl)), 0); 2781 } 2782 2783 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of 2784 // course not actual zero/sign extensions that will generate machine code, 2785 // they're just a way to reinterpret a 32 bit value in a register as a 2786 // 64 bit value and vice-versa. 2787 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, 2788 ExtOrTruncConversion Conv) { 2789 SDLoc dl(NatWidthRes); 2790 2791 // For reinterpreting 32-bit values as 64 bit values, we generate 2792 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> 2793 if (Conv == ExtOrTruncConversion::Ext) { 2794 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); 2795 SDValue SubRegIdx = 2796 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2797 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, 2798 ImDef, NatWidthRes, SubRegIdx), 0); 2799 } 2800 2801 assert(Conv == ExtOrTruncConversion::Trunc && 2802 "Unknown convertion between 32 and 64 bit values."); 2803 // For reinterpreting 64-bit values as 32-bit values, we just need to 2804 // EXTRACT_SUBREG (i.e. extract the low word). 2805 SDValue SubRegIdx = 2806 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); 2807 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, 2808 NatWidthRes, SubRegIdx), 0); 2809 } 2810 2811 // Produce a GPR sequence for compound comparisons (<=, >=) against zero. 2812 // Handle both zero-extensions and sign-extensions. 2813 SDValue 2814 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, 2815 ZeroCompare CmpTy) { 2816 EVT InVT = LHS.getValueType(); 2817 bool Is32Bit = InVT == MVT::i32; 2818 SDValue ToExtend; 2819 2820 // Produce the value that needs to be either zero or sign extended. 2821 switch (CmpTy) { 2822 case ZeroCompare::GEZExt: 2823 case ZeroCompare::GESExt: 2824 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, 2825 dl, InVT, LHS, LHS), 0); 2826 break; 2827 case ZeroCompare::LEZExt: 2828 case ZeroCompare::LESExt: { 2829 if (Is32Bit) { 2830 // Upper 32 bits cannot be undefined for this sequence. 2831 LHS = signExtendInputIfNeeded(LHS); 2832 SDValue Neg = 2833 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 2834 ToExtend = 2835 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 2836 Neg, S->getI64Imm(1, dl), 2837 S->getI64Imm(63, dl)), 0); 2838 } else { 2839 SDValue Addi = 2840 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 2841 S->getI64Imm(~0ULL, dl)), 0); 2842 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 2843 Addi, LHS), 0); 2844 } 2845 break; 2846 } 2847 } 2848 2849 // For 64-bit sequences, the extensions are the same for the GE/LE cases. 2850 if (!Is32Bit && 2851 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) 2852 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 2853 ToExtend, S->getI64Imm(1, dl), 2854 S->getI64Imm(63, dl)), 0); 2855 if (!Is32Bit && 2856 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) 2857 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, 2858 S->getI64Imm(63, dl)), 0); 2859 2860 assert(Is32Bit && "Should have handled the 32-bit sequences above."); 2861 // For 32-bit sequences, the extensions differ between GE/LE cases. 2862 switch (CmpTy) { 2863 case ZeroCompare::GEZExt: { 2864 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 2865 S->getI32Imm(31, dl) }; 2866 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2867 ShiftOps), 0); 2868 } 2869 case ZeroCompare::GESExt: 2870 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, 2871 S->getI32Imm(31, dl)), 0); 2872 case ZeroCompare::LEZExt: 2873 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, 2874 S->getI32Imm(1, dl)), 0); 2875 case ZeroCompare::LESExt: 2876 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, 2877 S->getI32Imm(-1, dl)), 0); 2878 } 2879 2880 // The above case covers all the enumerators so it can't have a default clause 2881 // to avoid compiler warnings. 2882 llvm_unreachable("Unknown zero-comparison type."); 2883 } 2884 2885 /// Produces a zero-extended result of comparing two 32-bit values according to 2886 /// the passed condition code. 2887 SDValue 2888 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, 2889 ISD::CondCode CC, 2890 int64_t RHSValue, SDLoc dl) { 2891 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 2892 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) 2893 return SDValue(); 2894 bool IsRHSZero = RHSValue == 0; 2895 bool IsRHSOne = RHSValue == 1; 2896 bool IsRHSNegOne = RHSValue == -1LL; 2897 switch (CC) { 2898 default: return SDValue(); 2899 case ISD::SETEQ: { 2900 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) 2901 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) 2902 SDValue Xor = IsRHSZero ? LHS : 2903 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 2904 SDValue Clz = 2905 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 2906 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 2907 S->getI32Imm(31, dl) }; 2908 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 2909 ShiftOps), 0); 2910 } 2911 case ISD::SETNE: { 2912 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) 2913 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) 2914 SDValue Xor = IsRHSZero ? LHS : 2915 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 2916 SDValue Clz = 2917 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 2918 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), 2919 S->getI32Imm(31, dl) }; 2920 SDValue Shift = 2921 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 2922 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 2923 S->getI32Imm(1, dl)), 0); 2924 } 2925 case ISD::SETGE: { 2926 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) 2927 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) 2928 if(IsRHSZero) 2929 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 2930 2931 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 2932 // by swapping inputs and falling through. 2933 std::swap(LHS, RHS); 2934 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 2935 IsRHSZero = RHSConst && RHSConst->isNullValue(); 2936 LLVM_FALLTHROUGH; 2937 } 2938 case ISD::SETLE: { 2939 if (CmpInGPR == ICGPR_NonExtIn) 2940 return SDValue(); 2941 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) 2942 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) 2943 if(IsRHSZero) { 2944 if (CmpInGPR == ICGPR_NonExtIn) 2945 return SDValue(); 2946 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 2947 } 2948 2949 // The upper 32-bits of the register can't be undefined for this sequence. 2950 LHS = signExtendInputIfNeeded(LHS); 2951 RHS = signExtendInputIfNeeded(RHS); 2952 SDValue Sub = 2953 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 2954 SDValue Shift = 2955 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, 2956 S->getI64Imm(1, dl), S->getI64Imm(63, dl)), 2957 0); 2958 return 2959 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, 2960 MVT::i64, Shift, S->getI32Imm(1, dl)), 0); 2961 } 2962 case ISD::SETGT: { 2963 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) 2964 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) 2965 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) 2966 // Handle SETLT -1 (which is equivalent to SETGE 0). 2967 if (IsRHSNegOne) 2968 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 2969 2970 if (IsRHSZero) { 2971 if (CmpInGPR == ICGPR_NonExtIn) 2972 return SDValue(); 2973 // The upper 32-bits of the register can't be undefined for this sequence. 2974 LHS = signExtendInputIfNeeded(LHS); 2975 RHS = signExtendInputIfNeeded(RHS); 2976 SDValue Neg = 2977 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 2978 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 2979 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); 2980 } 2981 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 2982 // (%b < %a) by swapping inputs and falling through. 2983 std::swap(LHS, RHS); 2984 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 2985 IsRHSZero = RHSConst && RHSConst->isNullValue(); 2986 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 2987 LLVM_FALLTHROUGH; 2988 } 2989 case ISD::SETLT: { 2990 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) 2991 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) 2992 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) 2993 // Handle SETLT 1 (which is equivalent to SETLE 0). 2994 if (IsRHSOne) { 2995 if (CmpInGPR == ICGPR_NonExtIn) 2996 return SDValue(); 2997 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 2998 } 2999 3000 if (IsRHSZero) { 3001 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), 3002 S->getI32Imm(31, dl) }; 3003 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 3004 ShiftOps), 0); 3005 } 3006 3007 if (CmpInGPR == ICGPR_NonExtIn) 3008 return SDValue(); 3009 // The upper 32-bits of the register can't be undefined for this sequence. 3010 LHS = signExtendInputIfNeeded(LHS); 3011 RHS = signExtendInputIfNeeded(RHS); 3012 SDValue SUBFNode = 3013 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3014 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3015 SUBFNode, S->getI64Imm(1, dl), 3016 S->getI64Imm(63, dl)), 0); 3017 } 3018 case ISD::SETUGE: 3019 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) 3020 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) 3021 std::swap(LHS, RHS); 3022 LLVM_FALLTHROUGH; 3023 case ISD::SETULE: { 3024 if (CmpInGPR == ICGPR_NonExtIn) 3025 return SDValue(); 3026 // The upper 32-bits of the register can't be undefined for this sequence. 3027 LHS = zeroExtendInputIfNeeded(LHS); 3028 RHS = zeroExtendInputIfNeeded(RHS); 3029 SDValue Subtract = 3030 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3031 SDValue SrdiNode = 3032 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3033 Subtract, S->getI64Imm(1, dl), 3034 S->getI64Imm(63, dl)), 0); 3035 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, 3036 S->getI32Imm(1, dl)), 0); 3037 } 3038 case ISD::SETUGT: 3039 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) 3040 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) 3041 std::swap(LHS, RHS); 3042 LLVM_FALLTHROUGH; 3043 case ISD::SETULT: { 3044 if (CmpInGPR == ICGPR_NonExtIn) 3045 return SDValue(); 3046 // The upper 32-bits of the register can't be undefined for this sequence. 3047 LHS = zeroExtendInputIfNeeded(LHS); 3048 RHS = zeroExtendInputIfNeeded(RHS); 3049 SDValue Subtract = 3050 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3051 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3052 Subtract, S->getI64Imm(1, dl), 3053 S->getI64Imm(63, dl)), 0); 3054 } 3055 } 3056 } 3057 3058 /// Produces a sign-extended result of comparing two 32-bit values according to 3059 /// the passed condition code. 3060 SDValue 3061 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, 3062 ISD::CondCode CC, 3063 int64_t RHSValue, SDLoc dl) { 3064 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || 3065 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) 3066 return SDValue(); 3067 bool IsRHSZero = RHSValue == 0; 3068 bool IsRHSOne = RHSValue == 1; 3069 bool IsRHSNegOne = RHSValue == -1LL; 3070 3071 switch (CC) { 3072 default: return SDValue(); 3073 case ISD::SETEQ: { 3074 // (sext (setcc %a, %b, seteq)) -> 3075 // (ashr (shl (ctlz (xor %a, %b)), 58), 63) 3076 // (sext (setcc %a, 0, seteq)) -> 3077 // (ashr (shl (ctlz %a), 58), 63) 3078 SDValue CountInput = IsRHSZero ? LHS : 3079 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3080 SDValue Cntlzw = 3081 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); 3082 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), 3083 S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3084 SDValue Slwi = 3085 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); 3086 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); 3087 } 3088 case ISD::SETNE: { 3089 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and 3090 // flip the bit, finally take 2's complement. 3091 // (sext (setcc %a, %b, setne)) -> 3092 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) 3093 // Same as above, but the first xor is not needed. 3094 // (sext (setcc %a, 0, setne)) -> 3095 // (neg (xor (lshr (ctlz %a), 5), 1)) 3096 SDValue Xor = IsRHSZero ? LHS : 3097 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); 3098 SDValue Clz = 3099 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); 3100 SDValue ShiftOps[] = 3101 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; 3102 SDValue Shift = 3103 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); 3104 SDValue Xori = 3105 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, 3106 S->getI32Imm(1, dl)), 0); 3107 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); 3108 } 3109 case ISD::SETGE: { 3110 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) 3111 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) 3112 if (IsRHSZero) 3113 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3114 3115 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) 3116 // by swapping inputs and falling through. 3117 std::swap(LHS, RHS); 3118 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3119 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3120 LLVM_FALLTHROUGH; 3121 } 3122 case ISD::SETLE: { 3123 if (CmpInGPR == ICGPR_NonExtIn) 3124 return SDValue(); 3125 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) 3126 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) 3127 if (IsRHSZero) 3128 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3129 3130 // The upper 32-bits of the register can't be undefined for this sequence. 3131 LHS = signExtendInputIfNeeded(LHS); 3132 RHS = signExtendInputIfNeeded(RHS); 3133 SDValue SUBFNode = 3134 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, 3135 LHS, RHS), 0); 3136 SDValue Srdi = 3137 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3138 SUBFNode, S->getI64Imm(1, dl), 3139 S->getI64Imm(63, dl)), 0); 3140 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, 3141 S->getI32Imm(-1, dl)), 0); 3142 } 3143 case ISD::SETGT: { 3144 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) 3145 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) 3146 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) 3147 if (IsRHSNegOne) 3148 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3149 if (IsRHSZero) { 3150 if (CmpInGPR == ICGPR_NonExtIn) 3151 return SDValue(); 3152 // The upper 32-bits of the register can't be undefined for this sequence. 3153 LHS = signExtendInputIfNeeded(LHS); 3154 RHS = signExtendInputIfNeeded(RHS); 3155 SDValue Neg = 3156 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); 3157 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, 3158 S->getI64Imm(63, dl)), 0); 3159 } 3160 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as 3161 // (%b < %a) by swapping inputs and falling through. 3162 std::swap(LHS, RHS); 3163 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3164 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3165 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3166 LLVM_FALLTHROUGH; 3167 } 3168 case ISD::SETLT: { 3169 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) 3170 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) 3171 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) 3172 if (IsRHSOne) { 3173 if (CmpInGPR == ICGPR_NonExtIn) 3174 return SDValue(); 3175 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3176 } 3177 if (IsRHSZero) 3178 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, 3179 S->getI32Imm(31, dl)), 0); 3180 3181 if (CmpInGPR == ICGPR_NonExtIn) 3182 return SDValue(); 3183 // The upper 32-bits of the register can't be undefined for this sequence. 3184 LHS = signExtendInputIfNeeded(LHS); 3185 RHS = signExtendInputIfNeeded(RHS); 3186 SDValue SUBFNode = 3187 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3188 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3189 SUBFNode, S->getI64Imm(63, dl)), 0); 3190 } 3191 case ISD::SETUGE: 3192 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) 3193 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) 3194 std::swap(LHS, RHS); 3195 LLVM_FALLTHROUGH; 3196 case ISD::SETULE: { 3197 if (CmpInGPR == ICGPR_NonExtIn) 3198 return SDValue(); 3199 // The upper 32-bits of the register can't be undefined for this sequence. 3200 LHS = zeroExtendInputIfNeeded(LHS); 3201 RHS = zeroExtendInputIfNeeded(RHS); 3202 SDValue Subtract = 3203 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); 3204 SDValue Shift = 3205 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, 3206 S->getI32Imm(1, dl), S->getI32Imm(63,dl)), 3207 0); 3208 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, 3209 S->getI32Imm(-1, dl)), 0); 3210 } 3211 case ISD::SETUGT: 3212 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) 3213 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) 3214 std::swap(LHS, RHS); 3215 LLVM_FALLTHROUGH; 3216 case ISD::SETULT: { 3217 if (CmpInGPR == ICGPR_NonExtIn) 3218 return SDValue(); 3219 // The upper 32-bits of the register can't be undefined for this sequence. 3220 LHS = zeroExtendInputIfNeeded(LHS); 3221 RHS = zeroExtendInputIfNeeded(RHS); 3222 SDValue Subtract = 3223 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); 3224 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3225 Subtract, S->getI64Imm(63, dl)), 0); 3226 } 3227 } 3228 } 3229 3230 /// Produces a zero-extended result of comparing two 64-bit values according to 3231 /// the passed condition code. 3232 SDValue 3233 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, 3234 ISD::CondCode CC, 3235 int64_t RHSValue, SDLoc dl) { 3236 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3237 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) 3238 return SDValue(); 3239 bool IsRHSZero = RHSValue == 0; 3240 bool IsRHSOne = RHSValue == 1; 3241 bool IsRHSNegOne = RHSValue == -1LL; 3242 switch (CC) { 3243 default: return SDValue(); 3244 case ISD::SETEQ: { 3245 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) 3246 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) 3247 SDValue Xor = IsRHSZero ? LHS : 3248 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3249 SDValue Clz = 3250 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); 3251 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, 3252 S->getI64Imm(58, dl), 3253 S->getI64Imm(63, dl)), 0); 3254 } 3255 case ISD::SETNE: { 3256 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3257 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) 3258 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3259 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3260 SDValue Xor = IsRHSZero ? LHS : 3261 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3262 SDValue AC = 3263 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3264 Xor, S->getI32Imm(~0U, dl)), 0); 3265 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, 3266 Xor, AC.getValue(1)), 0); 3267 } 3268 case ISD::SETGE: { 3269 // {subc.reg, subc.CA} = (subcarry %a, %b) 3270 // (zext (setcc %a, %b, setge)) -> 3271 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) 3272 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) 3273 if (IsRHSZero) 3274 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3275 std::swap(LHS, RHS); 3276 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3277 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3278 LLVM_FALLTHROUGH; 3279 } 3280 case ISD::SETLE: { 3281 // {subc.reg, subc.CA} = (subcarry %b, %a) 3282 // (zext (setcc %a, %b, setge)) -> 3283 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) 3284 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) 3285 if (IsRHSZero) 3286 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3287 SDValue ShiftL = 3288 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3289 S->getI64Imm(1, dl), 3290 S->getI64Imm(63, dl)), 0); 3291 SDValue ShiftR = 3292 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3293 S->getI64Imm(63, dl)), 0); 3294 SDValue SubtractCarry = 3295 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3296 LHS, RHS), 1); 3297 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3298 ShiftR, ShiftL, SubtractCarry), 0); 3299 } 3300 case ISD::SETGT: { 3301 // {subc.reg, subc.CA} = (subcarry %b, %a) 3302 // (zext (setcc %a, %b, setgt)) -> 3303 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3304 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) 3305 if (IsRHSNegOne) 3306 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); 3307 if (IsRHSZero) { 3308 SDValue Addi = 3309 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3310 S->getI64Imm(~0ULL, dl)), 0); 3311 SDValue Nor = 3312 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); 3313 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, 3314 S->getI64Imm(1, dl), 3315 S->getI64Imm(63, dl)), 0); 3316 } 3317 std::swap(LHS, RHS); 3318 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3319 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3320 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3321 LLVM_FALLTHROUGH; 3322 } 3323 case ISD::SETLT: { 3324 // {subc.reg, subc.CA} = (subcarry %a, %b) 3325 // (zext (setcc %a, %b, setlt)) -> 3326 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3327 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) 3328 if (IsRHSOne) 3329 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); 3330 if (IsRHSZero) 3331 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3332 S->getI64Imm(1, dl), 3333 S->getI64Imm(63, dl)), 0); 3334 SDValue SRADINode = 3335 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3336 LHS, S->getI64Imm(63, dl)), 0); 3337 SDValue SRDINode = 3338 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3339 RHS, S->getI64Imm(1, dl), 3340 S->getI64Imm(63, dl)), 0); 3341 SDValue SUBFC8Carry = 3342 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3343 RHS, LHS), 1); 3344 SDValue ADDE8Node = 3345 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3346 SRDINode, SRADINode, SUBFC8Carry), 0); 3347 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3348 ADDE8Node, S->getI64Imm(1, dl)), 0); 3349 } 3350 case ISD::SETUGE: 3351 // {subc.reg, subc.CA} = (subcarry %a, %b) 3352 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) 3353 std::swap(LHS, RHS); 3354 LLVM_FALLTHROUGH; 3355 case ISD::SETULE: { 3356 // {subc.reg, subc.CA} = (subcarry %b, %a) 3357 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) 3358 SDValue SUBFC8Carry = 3359 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3360 LHS, RHS), 1); 3361 SDValue SUBFE8Node = 3362 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, 3363 LHS, LHS, SUBFC8Carry), 0); 3364 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, 3365 SUBFE8Node, S->getI64Imm(1, dl)), 0); 3366 } 3367 case ISD::SETUGT: 3368 // {subc.reg, subc.CA} = (subcarry %b, %a) 3369 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) 3370 std::swap(LHS, RHS); 3371 LLVM_FALLTHROUGH; 3372 case ISD::SETULT: { 3373 // {subc.reg, subc.CA} = (subcarry %a, %b) 3374 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) 3375 SDValue SubtractCarry = 3376 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3377 RHS, LHS), 1); 3378 SDValue ExtSub = 3379 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3380 LHS, LHS, SubtractCarry), 0); 3381 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3382 ExtSub), 0); 3383 } 3384 } 3385 } 3386 3387 /// Produces a sign-extended result of comparing two 64-bit values according to 3388 /// the passed condition code. 3389 SDValue 3390 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, 3391 ISD::CondCode CC, 3392 int64_t RHSValue, SDLoc dl) { 3393 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || 3394 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) 3395 return SDValue(); 3396 bool IsRHSZero = RHSValue == 0; 3397 bool IsRHSOne = RHSValue == 1; 3398 bool IsRHSNegOne = RHSValue == -1LL; 3399 switch (CC) { 3400 default: return SDValue(); 3401 case ISD::SETEQ: { 3402 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) 3403 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) 3404 // {addcz.reg, addcz.CA} = (addcarry %a, -1) 3405 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) 3406 SDValue AddInput = IsRHSZero ? LHS : 3407 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3408 SDValue Addic = 3409 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, 3410 AddInput, S->getI32Imm(~0U, dl)), 0); 3411 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, 3412 Addic, Addic.getValue(1)), 0); 3413 } 3414 case ISD::SETNE: { 3415 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) 3416 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) 3417 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) 3418 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) 3419 SDValue Xor = IsRHSZero ? LHS : 3420 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); 3421 SDValue SC = 3422 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, 3423 Xor, S->getI32Imm(0, dl)), 0); 3424 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, 3425 SC, SC.getValue(1)), 0); 3426 } 3427 case ISD::SETGE: { 3428 // {subc.reg, subc.CA} = (subcarry %a, %b) 3429 // (zext (setcc %a, %b, setge)) -> 3430 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) 3431 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) 3432 if (IsRHSZero) 3433 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3434 std::swap(LHS, RHS); 3435 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3436 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3437 LLVM_FALLTHROUGH; 3438 } 3439 case ISD::SETLE: { 3440 // {subc.reg, subc.CA} = (subcarry %b, %a) 3441 // (zext (setcc %a, %b, setge)) -> 3442 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) 3443 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) 3444 if (IsRHSZero) 3445 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3446 SDValue ShiftR = 3447 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, 3448 S->getI64Imm(63, dl)), 0); 3449 SDValue ShiftL = 3450 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, 3451 S->getI64Imm(1, dl), 3452 S->getI64Imm(63, dl)), 0); 3453 SDValue SubtractCarry = 3454 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3455 LHS, RHS), 1); 3456 SDValue Adde = 3457 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, 3458 ShiftR, ShiftL, SubtractCarry), 0); 3459 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); 3460 } 3461 case ISD::SETGT: { 3462 // {subc.reg, subc.CA} = (subcarry %b, %a) 3463 // (zext (setcc %a, %b, setgt)) -> 3464 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) 3465 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) 3466 if (IsRHSNegOne) 3467 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); 3468 if (IsRHSZero) { 3469 SDValue Add = 3470 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, 3471 S->getI64Imm(-1, dl)), 0); 3472 SDValue Nor = 3473 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); 3474 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, 3475 S->getI64Imm(63, dl)), 0); 3476 } 3477 std::swap(LHS, RHS); 3478 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3479 IsRHSZero = RHSConst && RHSConst->isNullValue(); 3480 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; 3481 LLVM_FALLTHROUGH; 3482 } 3483 case ISD::SETLT: { 3484 // {subc.reg, subc.CA} = (subcarry %a, %b) 3485 // (zext (setcc %a, %b, setlt)) -> 3486 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) 3487 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) 3488 if (IsRHSOne) 3489 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); 3490 if (IsRHSZero) { 3491 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, 3492 S->getI64Imm(63, dl)), 0); 3493 } 3494 SDValue SRADINode = 3495 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, 3496 LHS, S->getI64Imm(63, dl)), 0); 3497 SDValue SRDINode = 3498 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, 3499 RHS, S->getI64Imm(1, dl), 3500 S->getI64Imm(63, dl)), 0); 3501 SDValue SUBFC8Carry = 3502 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3503 RHS, LHS), 1); 3504 SDValue ADDE8Node = 3505 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, 3506 SRDINode, SRADINode, SUBFC8Carry), 0); 3507 SDValue XORI8Node = 3508 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 3509 ADDE8Node, S->getI64Imm(1, dl)), 0); 3510 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, 3511 XORI8Node), 0); 3512 } 3513 case ISD::SETUGE: 3514 // {subc.reg, subc.CA} = (subcarry %a, %b) 3515 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) 3516 std::swap(LHS, RHS); 3517 LLVM_FALLTHROUGH; 3518 case ISD::SETULE: { 3519 // {subc.reg, subc.CA} = (subcarry %b, %a) 3520 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) 3521 SDValue SubtractCarry = 3522 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3523 LHS, RHS), 1); 3524 SDValue ExtSub = 3525 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, 3526 LHS, SubtractCarry), 0); 3527 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, 3528 ExtSub, ExtSub), 0); 3529 } 3530 case ISD::SETUGT: 3531 // {subc.reg, subc.CA} = (subcarry %b, %a) 3532 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) 3533 std::swap(LHS, RHS); 3534 LLVM_FALLTHROUGH; 3535 case ISD::SETULT: { 3536 // {subc.reg, subc.CA} = (subcarry %a, %b) 3537 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) 3538 SDValue SubCarry = 3539 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, 3540 RHS, LHS), 1); 3541 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, 3542 LHS, LHS, SubCarry), 0); 3543 } 3544 } 3545 } 3546 3547 /// Do all uses of this SDValue need the result in a GPR? 3548 /// This is meant to be used on values that have type i1 since 3549 /// it is somewhat meaningless to ask if values of other types 3550 /// should be kept in GPR's. 3551 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { 3552 assert(Compare.getOpcode() == ISD::SETCC && 3553 "An ISD::SETCC node required here."); 3554 3555 // For values that have a single use, the caller should obviously already have 3556 // checked if that use is an extending use. We check the other uses here. 3557 if (Compare.hasOneUse()) 3558 return true; 3559 // We want the value in a GPR if it is being extended, used for a select, or 3560 // used in logical operations. 3561 for (auto CompareUse : Compare.getNode()->uses()) 3562 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && 3563 CompareUse->getOpcode() != ISD::ZERO_EXTEND && 3564 CompareUse->getOpcode() != ISD::SELECT && 3565 !isLogicOp(CompareUse->getOpcode())) { 3566 OmittedForNonExtendUses++; 3567 return false; 3568 } 3569 return true; 3570 } 3571 3572 /// Returns an equivalent of a SETCC node but with the result the same width as 3573 /// the inputs. This can also be used for SELECT_CC if either the true or false 3574 /// values is a power of two while the other is zero. 3575 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, 3576 SetccInGPROpts ConvOpts) { 3577 assert((Compare.getOpcode() == ISD::SETCC || 3578 Compare.getOpcode() == ISD::SELECT_CC) && 3579 "An ISD::SETCC node required here."); 3580 3581 // Don't convert this comparison to a GPR sequence because there are uses 3582 // of the i1 result (i.e. uses that require the result in the CR). 3583 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) 3584 return SDValue(); 3585 3586 SDValue LHS = Compare.getOperand(0); 3587 SDValue RHS = Compare.getOperand(1); 3588 3589 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. 3590 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; 3591 ISD::CondCode CC = 3592 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); 3593 EVT InputVT = LHS.getValueType(); 3594 if (InputVT != MVT::i32 && InputVT != MVT::i64) 3595 return SDValue(); 3596 3597 if (ConvOpts == SetccInGPROpts::ZExtInvert || 3598 ConvOpts == SetccInGPROpts::SExtInvert) 3599 CC = ISD::getSetCCInverse(CC, true); 3600 3601 bool Inputs32Bit = InputVT == MVT::i32; 3602 3603 SDLoc dl(Compare); 3604 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); 3605 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; 3606 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || 3607 ConvOpts == SetccInGPROpts::SExtInvert; 3608 3609 if (IsSext && Inputs32Bit) 3610 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3611 else if (Inputs32Bit) 3612 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3613 else if (IsSext) 3614 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); 3615 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); 3616 } 3617 3618 } // end anonymous namespace 3619 3620 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { 3621 if (N->getValueType(0) != MVT::i32 && 3622 N->getValueType(0) != MVT::i64) 3623 return false; 3624 3625 // This optimization will emit code that assumes 64-bit registers 3626 // so we don't want to run it in 32-bit mode. Also don't run it 3627 // on functions that are not to be optimized. 3628 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) 3629 return false; 3630 3631 switch (N->getOpcode()) { 3632 default: break; 3633 case ISD::ZERO_EXTEND: 3634 case ISD::SIGN_EXTEND: 3635 case ISD::AND: 3636 case ISD::OR: 3637 case ISD::XOR: { 3638 IntegerCompareEliminator ICmpElim(CurDAG, this); 3639 if (SDNode *New = ICmpElim.Select(N)) { 3640 ReplaceNode(N, New); 3641 return true; 3642 } 3643 } 3644 } 3645 return false; 3646 } 3647 3648 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 3649 if (N->getValueType(0) != MVT::i32 && 3650 N->getValueType(0) != MVT::i64) 3651 return false; 3652 3653 if (!UseBitPermRewriter) 3654 return false; 3655 3656 switch (N->getOpcode()) { 3657 default: break; 3658 case ISD::ROTL: 3659 case ISD::SHL: 3660 case ISD::SRL: 3661 case ISD::AND: 3662 case ISD::OR: { 3663 BitPermutationSelector BPS(CurDAG); 3664 if (SDNode *New = BPS.Select(N)) { 3665 ReplaceNode(N, New); 3666 return true; 3667 } 3668 return false; 3669 } 3670 } 3671 3672 return false; 3673 } 3674 3675 /// SelectCC - Select a comparison of the specified values with the specified 3676 /// condition code, returning the CR# of the expression. 3677 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 3678 const SDLoc &dl) { 3679 // Always select the LHS. 3680 unsigned Opc; 3681 3682 if (LHS.getValueType() == MVT::i32) { 3683 unsigned Imm; 3684 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3685 if (isInt32Immediate(RHS, Imm)) { 3686 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 3687 if (isUInt<16>(Imm)) 3688 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3689 getI32Imm(Imm & 0xFFFF, dl)), 3690 0); 3691 // If this is a 16-bit signed immediate, fold it. 3692 if (isInt<16>((int)Imm)) 3693 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3694 getI32Imm(Imm & 0xFFFF, dl)), 3695 0); 3696 3697 // For non-equality comparisons, the default code would materialize the 3698 // constant, then compare against it, like this: 3699 // lis r2, 4660 3700 // ori r2, r2, 22136 3701 // cmpw cr0, r3, r2 3702 // Since we are just comparing for equality, we can emit this instead: 3703 // xoris r0,r3,0x1234 3704 // cmplwi cr0,r0,0x5678 3705 // beq cr0,L6 3706 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 3707 getI32Imm(Imm >> 16, dl)), 0); 3708 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 3709 getI32Imm(Imm & 0xFFFF, dl)), 0); 3710 } 3711 Opc = PPC::CMPLW; 3712 } else if (ISD::isUnsignedIntSetCC(CC)) { 3713 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 3714 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 3715 getI32Imm(Imm & 0xFFFF, dl)), 0); 3716 Opc = PPC::CMPLW; 3717 } else { 3718 int16_t SImm; 3719 if (isIntS16Immediate(RHS, SImm)) 3720 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 3721 getI32Imm((int)SImm & 0xFFFF, 3722 dl)), 3723 0); 3724 Opc = PPC::CMPW; 3725 } 3726 } else if (LHS.getValueType() == MVT::i64) { 3727 uint64_t Imm; 3728 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3729 if (isInt64Immediate(RHS.getNode(), Imm)) { 3730 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 3731 if (isUInt<16>(Imm)) 3732 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 3733 getI32Imm(Imm & 0xFFFF, dl)), 3734 0); 3735 // If this is a 16-bit signed immediate, fold it. 3736 if (isInt<16>(Imm)) 3737 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 3738 getI32Imm(Imm & 0xFFFF, dl)), 3739 0); 3740 3741 // For non-equality comparisons, the default code would materialize the 3742 // constant, then compare against it, like this: 3743 // lis r2, 4660 3744 // ori r2, r2, 22136 3745 // cmpd cr0, r3, r2 3746 // Since we are just comparing for equality, we can emit this instead: 3747 // xoris r0,r3,0x1234 3748 // cmpldi cr0,r0,0x5678 3749 // beq cr0,L6 3750 if (isUInt<32>(Imm)) { 3751 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 3752 getI64Imm(Imm >> 16, dl)), 0); 3753 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 3754 getI64Imm(Imm & 0xFFFF, dl)), 3755 0); 3756 } 3757 } 3758 Opc = PPC::CMPLD; 3759 } else if (ISD::isUnsignedIntSetCC(CC)) { 3760 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 3761 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 3762 getI64Imm(Imm & 0xFFFF, dl)), 0); 3763 Opc = PPC::CMPLD; 3764 } else { 3765 int16_t SImm; 3766 if (isIntS16Immediate(RHS, SImm)) 3767 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 3768 getI64Imm(SImm & 0xFFFF, dl)), 3769 0); 3770 Opc = PPC::CMPD; 3771 } 3772 } else if (LHS.getValueType() == MVT::f32) { 3773 if (PPCSubTarget->hasSPE()) { 3774 switch (CC) { 3775 default: 3776 case ISD::SETEQ: 3777 case ISD::SETNE: 3778 Opc = PPC::EFSCMPEQ; 3779 break; 3780 case ISD::SETLT: 3781 case ISD::SETGE: 3782 case ISD::SETOLT: 3783 case ISD::SETOGE: 3784 case ISD::SETULT: 3785 case ISD::SETUGE: 3786 Opc = PPC::EFSCMPLT; 3787 break; 3788 case ISD::SETGT: 3789 case ISD::SETLE: 3790 case ISD::SETOGT: 3791 case ISD::SETOLE: 3792 case ISD::SETUGT: 3793 case ISD::SETULE: 3794 Opc = PPC::EFSCMPGT; 3795 break; 3796 } 3797 } else 3798 Opc = PPC::FCMPUS; 3799 } else if (LHS.getValueType() == MVT::f64) { 3800 if (PPCSubTarget->hasSPE()) { 3801 switch (CC) { 3802 default: 3803 case ISD::SETEQ: 3804 case ISD::SETNE: 3805 Opc = PPC::EFDCMPEQ; 3806 break; 3807 case ISD::SETLT: 3808 case ISD::SETGE: 3809 case ISD::SETOLT: 3810 case ISD::SETOGE: 3811 case ISD::SETULT: 3812 case ISD::SETUGE: 3813 Opc = PPC::EFDCMPLT; 3814 break; 3815 case ISD::SETGT: 3816 case ISD::SETLE: 3817 case ISD::SETOGT: 3818 case ISD::SETOLE: 3819 case ISD::SETUGT: 3820 case ISD::SETULE: 3821 Opc = PPC::EFDCMPGT; 3822 break; 3823 } 3824 } else 3825 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 3826 } else { 3827 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); 3828 assert(PPCSubTarget->hasVSX() && "__float128 requires VSX"); 3829 Opc = PPC::XSCMPUQP; 3830 } 3831 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 3832 } 3833 3834 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 3835 switch (CC) { 3836 case ISD::SETUEQ: 3837 case ISD::SETONE: 3838 case ISD::SETOLE: 3839 case ISD::SETOGE: 3840 llvm_unreachable("Should be lowered by legalize!"); 3841 default: llvm_unreachable("Unknown condition!"); 3842 case ISD::SETOEQ: 3843 case ISD::SETEQ: return PPC::PRED_EQ; 3844 case ISD::SETUNE: 3845 case ISD::SETNE: return PPC::PRED_NE; 3846 case ISD::SETOLT: 3847 case ISD::SETLT: return PPC::PRED_LT; 3848 case ISD::SETULE: 3849 case ISD::SETLE: return PPC::PRED_LE; 3850 case ISD::SETOGT: 3851 case ISD::SETGT: return PPC::PRED_GT; 3852 case ISD::SETUGE: 3853 case ISD::SETGE: return PPC::PRED_GE; 3854 case ISD::SETO: return PPC::PRED_NU; 3855 case ISD::SETUO: return PPC::PRED_UN; 3856 // These two are invalid for floating point. Assume we have int. 3857 case ISD::SETULT: return PPC::PRED_LT; 3858 case ISD::SETUGT: return PPC::PRED_GT; 3859 } 3860 } 3861 3862 /// getCRIdxForSetCC - Return the index of the condition register field 3863 /// associated with the SetCC condition, and whether or not the field is 3864 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 3865 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 3866 Invert = false; 3867 switch (CC) { 3868 default: llvm_unreachable("Unknown condition!"); 3869 case ISD::SETOLT: 3870 case ISD::SETLT: return 0; // Bit #0 = SETOLT 3871 case ISD::SETOGT: 3872 case ISD::SETGT: return 1; // Bit #1 = SETOGT 3873 case ISD::SETOEQ: 3874 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 3875 case ISD::SETUO: return 3; // Bit #3 = SETUO 3876 case ISD::SETUGE: 3877 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 3878 case ISD::SETULE: 3879 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 3880 case ISD::SETUNE: 3881 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 3882 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 3883 case ISD::SETUEQ: 3884 case ISD::SETOGE: 3885 case ISD::SETOLE: 3886 case ISD::SETONE: 3887 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 3888 // These are invalid for floating point. Assume integer. 3889 case ISD::SETULT: return 0; 3890 case ISD::SETUGT: return 1; 3891 } 3892 } 3893 3894 // getVCmpInst: return the vector compare instruction for the specified 3895 // vector type and condition code. Since this is for altivec specific code, 3896 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). 3897 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 3898 bool HasVSX, bool &Swap, bool &Negate) { 3899 Swap = false; 3900 Negate = false; 3901 3902 if (VecVT.isFloatingPoint()) { 3903 /* Handle some cases by swapping input operands. */ 3904 switch (CC) { 3905 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 3906 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 3907 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 3908 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 3909 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 3910 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 3911 default: break; 3912 } 3913 /* Handle some cases by negating the result. */ 3914 switch (CC) { 3915 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 3916 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 3917 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 3918 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 3919 default: break; 3920 } 3921 /* We have instructions implementing the remaining cases. */ 3922 switch (CC) { 3923 case ISD::SETEQ: 3924 case ISD::SETOEQ: 3925 if (VecVT == MVT::v4f32) 3926 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 3927 else if (VecVT == MVT::v2f64) 3928 return PPC::XVCMPEQDP; 3929 break; 3930 case ISD::SETGT: 3931 case ISD::SETOGT: 3932 if (VecVT == MVT::v4f32) 3933 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 3934 else if (VecVT == MVT::v2f64) 3935 return PPC::XVCMPGTDP; 3936 break; 3937 case ISD::SETGE: 3938 case ISD::SETOGE: 3939 if (VecVT == MVT::v4f32) 3940 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 3941 else if (VecVT == MVT::v2f64) 3942 return PPC::XVCMPGEDP; 3943 break; 3944 default: 3945 break; 3946 } 3947 llvm_unreachable("Invalid floating-point vector compare condition"); 3948 } else { 3949 /* Handle some cases by swapping input operands. */ 3950 switch (CC) { 3951 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 3952 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 3953 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 3954 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 3955 default: break; 3956 } 3957 /* Handle some cases by negating the result. */ 3958 switch (CC) { 3959 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 3960 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 3961 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 3962 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 3963 default: break; 3964 } 3965 /* We have instructions implementing the remaining cases. */ 3966 switch (CC) { 3967 case ISD::SETEQ: 3968 case ISD::SETUEQ: 3969 if (VecVT == MVT::v16i8) 3970 return PPC::VCMPEQUB; 3971 else if (VecVT == MVT::v8i16) 3972 return PPC::VCMPEQUH; 3973 else if (VecVT == MVT::v4i32) 3974 return PPC::VCMPEQUW; 3975 else if (VecVT == MVT::v2i64) 3976 return PPC::VCMPEQUD; 3977 break; 3978 case ISD::SETGT: 3979 if (VecVT == MVT::v16i8) 3980 return PPC::VCMPGTSB; 3981 else if (VecVT == MVT::v8i16) 3982 return PPC::VCMPGTSH; 3983 else if (VecVT == MVT::v4i32) 3984 return PPC::VCMPGTSW; 3985 else if (VecVT == MVT::v2i64) 3986 return PPC::VCMPGTSD; 3987 break; 3988 case ISD::SETUGT: 3989 if (VecVT == MVT::v16i8) 3990 return PPC::VCMPGTUB; 3991 else if (VecVT == MVT::v8i16) 3992 return PPC::VCMPGTUH; 3993 else if (VecVT == MVT::v4i32) 3994 return PPC::VCMPGTUW; 3995 else if (VecVT == MVT::v2i64) 3996 return PPC::VCMPGTUD; 3997 break; 3998 default: 3999 break; 4000 } 4001 llvm_unreachable("Invalid integer vector compare condition"); 4002 } 4003 } 4004 4005 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 4006 SDLoc dl(N); 4007 unsigned Imm; 4008 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 4009 EVT PtrVT = 4010 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4011 bool isPPC64 = (PtrVT == MVT::i64); 4012 4013 if (!PPCSubTarget->useCRBits() && 4014 isInt32Immediate(N->getOperand(1), Imm)) { 4015 // We can codegen setcc op, imm very efficiently compared to a brcond. 4016 // Check for those cases here. 4017 // setcc op, 0 4018 if (Imm == 0) { 4019 SDValue Op = N->getOperand(0); 4020 switch (CC) { 4021 default: break; 4022 case ISD::SETEQ: { 4023 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 4024 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 4025 getI32Imm(31, dl) }; 4026 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4027 return true; 4028 } 4029 case ISD::SETNE: { 4030 if (isPPC64) break; 4031 SDValue AD = 4032 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4033 Op, getI32Imm(~0U, dl)), 0); 4034 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 4035 return true; 4036 } 4037 case ISD::SETLT: { 4038 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4039 getI32Imm(31, dl) }; 4040 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4041 return true; 4042 } 4043 case ISD::SETGT: { 4044 SDValue T = 4045 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 4046 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 4047 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 4048 getI32Imm(31, dl) }; 4049 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4050 return true; 4051 } 4052 } 4053 } else if (Imm == ~0U) { // setcc op, -1 4054 SDValue Op = N->getOperand(0); 4055 switch (CC) { 4056 default: break; 4057 case ISD::SETEQ: 4058 if (isPPC64) break; 4059 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4060 Op, getI32Imm(1, dl)), 0); 4061 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 4062 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 4063 MVT::i32, 4064 getI32Imm(0, dl)), 4065 0), Op.getValue(1)); 4066 return true; 4067 case ISD::SETNE: { 4068 if (isPPC64) break; 4069 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 4070 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4071 Op, getI32Imm(~0U, dl)); 4072 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 4073 SDValue(AD, 1)); 4074 return true; 4075 } 4076 case ISD::SETLT: { 4077 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 4078 getI32Imm(1, dl)), 0); 4079 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 4080 Op), 0); 4081 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 4082 getI32Imm(31, dl) }; 4083 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4084 return true; 4085 } 4086 case ISD::SETGT: { 4087 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 4088 getI32Imm(31, dl) }; 4089 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4090 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 4091 return true; 4092 } 4093 } 4094 } 4095 } 4096 4097 SDValue LHS = N->getOperand(0); 4098 SDValue RHS = N->getOperand(1); 4099 4100 // Altivec Vector compare instructions do not set any CR register by default and 4101 // vector compare operations return the same type as the operands. 4102 if (LHS.getValueType().isVector()) { 4103 if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE()) 4104 return false; 4105 4106 EVT VecVT = LHS.getValueType(); 4107 bool Swap, Negate; 4108 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, 4109 PPCSubTarget->hasVSX(), Swap, Negate); 4110 if (Swap) 4111 std::swap(LHS, RHS); 4112 4113 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 4114 if (Negate) { 4115 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 4116 CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 4117 ResVT, VCmp, VCmp); 4118 return true; 4119 } 4120 4121 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 4122 return true; 4123 } 4124 4125 if (PPCSubTarget->useCRBits()) 4126 return false; 4127 4128 bool Inv; 4129 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4130 SDValue CCReg = SelectCC(LHS, RHS, CC, dl); 4131 SDValue IntCR; 4132 4133 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that 4134 // The correct compare instruction is already set by SelectCC() 4135 if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { 4136 Idx = 1; 4137 } 4138 4139 // Force the ccreg into CR7. 4140 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 4141 4142 SDValue InFlag(nullptr, 0); // Null incoming flag value. 4143 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 4144 InFlag).getValue(1); 4145 4146 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 4147 CCReg), 0); 4148 4149 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 4150 getI32Imm(31, dl), getI32Imm(31, dl) }; 4151 if (!Inv) { 4152 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4153 return true; 4154 } 4155 4156 // Get the specified bit. 4157 SDValue Tmp = 4158 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 4159 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 4160 return true; 4161 } 4162 4163 /// Does this node represent a load/store node whose address can be represented 4164 /// with a register plus an immediate that's a multiple of \p Val: 4165 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { 4166 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); 4167 StoreSDNode *STN = dyn_cast<StoreSDNode>(N); 4168 SDValue AddrOp; 4169 if (LDN) 4170 AddrOp = LDN->getOperand(1); 4171 else if (STN) 4172 AddrOp = STN->getOperand(2); 4173 4174 // If the address points a frame object or a frame object with an offset, 4175 // we need to check the object alignment. 4176 short Imm = 0; 4177 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( 4178 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : 4179 AddrOp)) { 4180 // If op0 is a frame index that is under aligned, we can't do it either, 4181 // because it is translated to r31 or r1 + slot + offset. We won't know the 4182 // slot number until the stack frame is finalized. 4183 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); 4184 unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex()); 4185 if ((SlotAlign % Val) != 0) 4186 return false; 4187 4188 // If we have an offset, we need further check on the offset. 4189 if (AddrOp.getOpcode() != ISD::ADD) 4190 return true; 4191 } 4192 4193 if (AddrOp.getOpcode() == ISD::ADD) 4194 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); 4195 4196 // If the address comes from the outside, the offset will be zero. 4197 return AddrOp.getOpcode() == ISD::CopyFromReg; 4198 } 4199 4200 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 4201 // Transfer memoperands. 4202 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 4203 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 4204 } 4205 4206 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, 4207 bool &NeedSwapOps, bool &IsUnCmp) { 4208 4209 assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); 4210 4211 SDValue LHS = N->getOperand(0); 4212 SDValue RHS = N->getOperand(1); 4213 SDValue TrueRes = N->getOperand(2); 4214 SDValue FalseRes = N->getOperand(3); 4215 ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); 4216 if (!TrueConst) 4217 return false; 4218 4219 assert((N->getSimpleValueType(0) == MVT::i64 || 4220 N->getSimpleValueType(0) == MVT::i32) && 4221 "Expecting either i64 or i32 here."); 4222 4223 // We are looking for any of: 4224 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4225 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) 4226 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) 4227 // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) 4228 int64_t TrueResVal = TrueConst->getSExtValue(); 4229 if ((TrueResVal < -1 || TrueResVal > 1) || 4230 (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || 4231 (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || 4232 (TrueResVal == 0 && 4233 (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) 4234 return false; 4235 4236 bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC; 4237 SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0); 4238 if (SetOrSelCC.getOpcode() != ISD::SETCC && 4239 SetOrSelCC.getOpcode() != ISD::SELECT_CC) 4240 return false; 4241 4242 // Without this setb optimization, the outer SELECT_CC will be manually 4243 // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass 4244 // transforms pseudo instruction to isel instruction. When there are more than 4245 // one use for result like zext/sext, with current optimization we only see 4246 // isel is replaced by setb but can't see any significant gain. Since 4247 // setb has longer latency than original isel, we should avoid this. Another 4248 // point is that setb requires comparison always kept, it can break the 4249 // opportunity to get the comparison away if we have in future. 4250 if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) 4251 return false; 4252 4253 SDValue InnerLHS = SetOrSelCC.getOperand(0); 4254 SDValue InnerRHS = SetOrSelCC.getOperand(1); 4255 ISD::CondCode InnerCC = 4256 cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); 4257 // If the inner comparison is a select_cc, make sure the true/false values are 4258 // 1/-1 and canonicalize it if needed. 4259 if (InnerIsSel) { 4260 ConstantSDNode *SelCCTrueConst = 4261 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); 4262 ConstantSDNode *SelCCFalseConst = 4263 dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); 4264 if (!SelCCTrueConst || !SelCCFalseConst) 4265 return false; 4266 int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); 4267 int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); 4268 // The values must be -1/1 (requiring a swap) or 1/-1. 4269 if (SelCCTVal == -1 && SelCCFVal == 1) { 4270 std::swap(InnerLHS, InnerRHS); 4271 } else if (SelCCTVal != 1 || SelCCFVal != -1) 4272 return false; 4273 } 4274 4275 // Canonicalize unsigned case 4276 if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { 4277 IsUnCmp = true; 4278 InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; 4279 } 4280 4281 bool InnerSwapped = false; 4282 if (LHS == InnerRHS && RHS == InnerLHS) 4283 InnerSwapped = true; 4284 else if (LHS != InnerLHS || RHS != InnerRHS) 4285 return false; 4286 4287 switch (CC) { 4288 // (select_cc lhs, rhs, 0, \ 4289 // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) 4290 case ISD::SETEQ: 4291 if (!InnerIsSel) 4292 return false; 4293 if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) 4294 return false; 4295 NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; 4296 break; 4297 4298 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4299 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) 4300 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) 4301 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) 4302 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) 4303 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) 4304 case ISD::SETULT: 4305 if (!IsUnCmp && InnerCC != ISD::SETNE) 4306 return false; 4307 IsUnCmp = true; 4308 LLVM_FALLTHROUGH; 4309 case ISD::SETLT: 4310 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || 4311 (InnerCC == ISD::SETLT && InnerSwapped)) 4312 NeedSwapOps = (TrueResVal == 1); 4313 else 4314 return false; 4315 break; 4316 4317 // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4318 // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) 4319 // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) 4320 // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) 4321 // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) 4322 // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) 4323 case ISD::SETUGT: 4324 if (!IsUnCmp && InnerCC != ISD::SETNE) 4325 return false; 4326 IsUnCmp = true; 4327 LLVM_FALLTHROUGH; 4328 case ISD::SETGT: 4329 if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || 4330 (InnerCC == ISD::SETGT && InnerSwapped)) 4331 NeedSwapOps = (TrueResVal == -1); 4332 else 4333 return false; 4334 break; 4335 4336 default: 4337 return false; 4338 } 4339 4340 LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); 4341 LLVM_DEBUG(N->dump()); 4342 4343 return true; 4344 } 4345 4346 // Select - Convert the specified operand from a target-independent to a 4347 // target-specific node if it hasn't already been changed. 4348 void PPCDAGToDAGISel::Select(SDNode *N) { 4349 SDLoc dl(N); 4350 if (N->isMachineOpcode()) { 4351 N->setNodeId(-1); 4352 return; // Already selected. 4353 } 4354 4355 // In case any misguided DAG-level optimizations form an ADD with a 4356 // TargetConstant operand, crash here instead of miscompiling (by selecting 4357 // an r+r add instead of some kind of r+i add). 4358 if (N->getOpcode() == ISD::ADD && 4359 N->getOperand(1).getOpcode() == ISD::TargetConstant) 4360 llvm_unreachable("Invalid ADD with TargetConstant operand"); 4361 4362 // Try matching complex bit permutations before doing anything else. 4363 if (tryBitPermutation(N)) 4364 return; 4365 4366 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). 4367 if (tryIntCompareInGPR(N)) 4368 return; 4369 4370 switch (N->getOpcode()) { 4371 default: break; 4372 4373 case ISD::Constant: 4374 if (N->getValueType(0) == MVT::i64) { 4375 ReplaceNode(N, selectI64Imm(CurDAG, N)); 4376 return; 4377 } 4378 break; 4379 4380 case ISD::SETCC: 4381 if (trySETCC(N)) 4382 return; 4383 break; 4384 // These nodes will be transformed into GETtlsADDR32 node, which 4385 // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT 4386 case PPCISD::ADDI_TLSLD_L_ADDR: 4387 case PPCISD::ADDI_TLSGD_L_ADDR: { 4388 const Module *Mod = MF->getFunction().getParent(); 4389 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 4390 !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() || 4391 Mod->getPICLevel() == PICLevel::SmallPIC) 4392 break; 4393 // Attach global base pointer on GETtlsADDR32 node in order to 4394 // generate secure plt code for TLS symbols. 4395 getGlobalBaseReg(); 4396 } break; 4397 case PPCISD::CALL: { 4398 const Module *M = MF->getFunction().getParent(); 4399 4400 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || 4401 (!TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt()) || 4402 !PPCSubTarget->isTargetELF() || M->getPICLevel() == PICLevel::SmallPIC) 4403 break; 4404 4405 SDValue Op = N->getOperand(1); 4406 4407 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4408 if (GA->getTargetFlags() == PPCII::MO_PLT) 4409 getGlobalBaseReg(); 4410 } 4411 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 4412 if (ES->getTargetFlags() == PPCII::MO_PLT) 4413 getGlobalBaseReg(); 4414 } 4415 } 4416 break; 4417 4418 case PPCISD::GlobalBaseReg: 4419 ReplaceNode(N, getGlobalBaseReg()); 4420 return; 4421 4422 case ISD::FrameIndex: 4423 selectFrameIndex(N, N); 4424 return; 4425 4426 case PPCISD::MFOCRF: { 4427 SDValue InFlag = N->getOperand(1); 4428 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 4429 N->getOperand(0), InFlag)); 4430 return; 4431 } 4432 4433 case PPCISD::READ_TIME_BASE: 4434 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 4435 MVT::Other, N->getOperand(0))); 4436 return; 4437 4438 case PPCISD::SRA_ADDZE: { 4439 SDValue N0 = N->getOperand(0); 4440 SDValue ShiftAmt = 4441 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 4442 getConstantIntValue(), dl, 4443 N->getValueType(0)); 4444 if (N->getValueType(0) == MVT::i64) { 4445 SDNode *Op = 4446 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 4447 N0, ShiftAmt); 4448 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 4449 SDValue(Op, 1)); 4450 return; 4451 } else { 4452 assert(N->getValueType(0) == MVT::i32 && 4453 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 4454 SDNode *Op = 4455 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 4456 N0, ShiftAmt); 4457 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 4458 SDValue(Op, 1)); 4459 return; 4460 } 4461 } 4462 4463 case ISD::STORE: { 4464 // Change TLS initial-exec D-form stores to X-form stores. 4465 StoreSDNode *ST = cast<StoreSDNode>(N); 4466 if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() && 4467 ST->getAddressingMode() != ISD::PRE_INC) 4468 if (tryTLSXFormStore(ST)) 4469 return; 4470 break; 4471 } 4472 case ISD::LOAD: { 4473 // Handle preincrement loads. 4474 LoadSDNode *LD = cast<LoadSDNode>(N); 4475 EVT LoadedVT = LD->getMemoryVT(); 4476 4477 // Normal loads are handled by code generated from the .td file. 4478 if (LD->getAddressingMode() != ISD::PRE_INC) { 4479 // Change TLS initial-exec D-form loads to X-form loads. 4480 if (EnableTLSOpt && PPCSubTarget->isELFv2ABI()) 4481 if (tryTLSXFormLoad(LD)) 4482 return; 4483 break; 4484 } 4485 4486 SDValue Offset = LD->getOffset(); 4487 if (Offset.getOpcode() == ISD::TargetConstant || 4488 Offset.getOpcode() == ISD::TargetGlobalAddress) { 4489 4490 unsigned Opcode; 4491 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 4492 if (LD->getValueType(0) != MVT::i64) { 4493 // Handle PPC32 integer and normal FP loads. 4494 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 4495 switch (LoadedVT.getSimpleVT().SimpleTy) { 4496 default: llvm_unreachable("Invalid PPC load type!"); 4497 case MVT::f64: Opcode = PPC::LFDU; break; 4498 case MVT::f32: Opcode = PPC::LFSU; break; 4499 case MVT::i32: Opcode = PPC::LWZU; break; 4500 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 4501 case MVT::i1: 4502 case MVT::i8: Opcode = PPC::LBZU; break; 4503 } 4504 } else { 4505 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 4506 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 4507 switch (LoadedVT.getSimpleVT().SimpleTy) { 4508 default: llvm_unreachable("Invalid PPC load type!"); 4509 case MVT::i64: Opcode = PPC::LDU; break; 4510 case MVT::i32: Opcode = PPC::LWZU8; break; 4511 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 4512 case MVT::i1: 4513 case MVT::i8: Opcode = PPC::LBZU8; break; 4514 } 4515 } 4516 4517 SDValue Chain = LD->getChain(); 4518 SDValue Base = LD->getBasePtr(); 4519 SDValue Ops[] = { Offset, Base, Chain }; 4520 SDNode *MN = CurDAG->getMachineNode( 4521 Opcode, dl, LD->getValueType(0), 4522 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 4523 transferMemOperands(N, MN); 4524 ReplaceNode(N, MN); 4525 return; 4526 } else { 4527 unsigned Opcode; 4528 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 4529 if (LD->getValueType(0) != MVT::i64) { 4530 // Handle PPC32 integer and normal FP loads. 4531 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 4532 switch (LoadedVT.getSimpleVT().SimpleTy) { 4533 default: llvm_unreachable("Invalid PPC load type!"); 4534 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX 4535 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX 4536 case MVT::f64: Opcode = PPC::LFDUX; break; 4537 case MVT::f32: Opcode = PPC::LFSUX; break; 4538 case MVT::i32: Opcode = PPC::LWZUX; break; 4539 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 4540 case MVT::i1: 4541 case MVT::i8: Opcode = PPC::LBZUX; break; 4542 } 4543 } else { 4544 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 4545 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 4546 "Invalid sext update load"); 4547 switch (LoadedVT.getSimpleVT().SimpleTy) { 4548 default: llvm_unreachable("Invalid PPC load type!"); 4549 case MVT::i64: Opcode = PPC::LDUX; break; 4550 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 4551 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 4552 case MVT::i1: 4553 case MVT::i8: Opcode = PPC::LBZUX8; break; 4554 } 4555 } 4556 4557 SDValue Chain = LD->getChain(); 4558 SDValue Base = LD->getBasePtr(); 4559 SDValue Ops[] = { Base, Offset, Chain }; 4560 SDNode *MN = CurDAG->getMachineNode( 4561 Opcode, dl, LD->getValueType(0), 4562 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 4563 transferMemOperands(N, MN); 4564 ReplaceNode(N, MN); 4565 return; 4566 } 4567 } 4568 4569 case ISD::AND: { 4570 unsigned Imm, Imm2, SH, MB, ME; 4571 uint64_t Imm64; 4572 4573 // If this is an and of a value rotated between 0 and 31 bits and then and'd 4574 // with a mask, emit rlwinm 4575 if (isInt32Immediate(N->getOperand(1), Imm) && 4576 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 4577 SDValue Val = N->getOperand(0).getOperand(0); 4578 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 4579 getI32Imm(ME, dl) }; 4580 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4581 return; 4582 } 4583 // If this is just a masked value where the input is not handled above, and 4584 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 4585 if (isInt32Immediate(N->getOperand(1), Imm) && 4586 isRunOfOnes(Imm, MB, ME) && 4587 N->getOperand(0).getOpcode() != ISD::ROTL) { 4588 SDValue Val = N->getOperand(0); 4589 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), 4590 getI32Imm(ME, dl) }; 4591 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4592 return; 4593 } 4594 // If this is a 64-bit zero-extension mask, emit rldicl. 4595 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && 4596 isMask_64(Imm64)) { 4597 SDValue Val = N->getOperand(0); 4598 MB = 64 - countTrailingOnes(Imm64); 4599 SH = 0; 4600 4601 if (Val.getOpcode() == ISD::ANY_EXTEND) { 4602 auto Op0 = Val.getOperand(0); 4603 if ( Op0.getOpcode() == ISD::SRL && 4604 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { 4605 4606 auto ResultType = Val.getNode()->getValueType(0); 4607 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, 4608 ResultType); 4609 SDValue IDVal (ImDef, 0); 4610 4611 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, 4612 ResultType, IDVal, Op0.getOperand(0), 4613 getI32Imm(1, dl)), 0); 4614 SH = 64 - Imm; 4615 } 4616 } 4617 4618 // If the operand is a logical right shift, we can fold it into this 4619 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 4620 // for n <= mb. The right shift is really a left rotate followed by a 4621 // mask, and this mask is a more-restrictive sub-mask of the mask implied 4622 // by the shift. 4623 if (Val.getOpcode() == ISD::SRL && 4624 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 4625 assert(Imm < 64 && "Illegal shift amount"); 4626 Val = Val.getOperand(0); 4627 SH = 64 - Imm; 4628 } 4629 4630 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; 4631 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 4632 return; 4633 } 4634 // If this is a negated 64-bit zero-extension mask, 4635 // i.e. the immediate is a sequence of ones from most significant side 4636 // and all zero for reminder, we should use rldicr. 4637 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && 4638 isMask_64(~Imm64)) { 4639 SDValue Val = N->getOperand(0); 4640 MB = 63 - countTrailingOnes(~Imm64); 4641 SH = 0; 4642 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; 4643 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); 4644 return; 4645 } 4646 4647 // AND X, 0 -> 0, not "rlwinm 32". 4648 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 4649 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 4650 return; 4651 } 4652 // ISD::OR doesn't get all the bitfield insertion fun. 4653 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 4654 // bitfield insert. 4655 if (isInt32Immediate(N->getOperand(1), Imm) && 4656 N->getOperand(0).getOpcode() == ISD::OR && 4657 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 4658 // The idea here is to check whether this is equivalent to: 4659 // (c1 & m) | (x & ~m) 4660 // where m is a run-of-ones mask. The logic here is that, for each bit in 4661 // c1 and c2: 4662 // - if both are 1, then the output will be 1. 4663 // - if both are 0, then the output will be 0. 4664 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 4665 // come from x. 4666 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 4667 // be 0. 4668 // If that last condition is never the case, then we can form m from the 4669 // bits that are the same between c1 and c2. 4670 unsigned MB, ME; 4671 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { 4672 SDValue Ops[] = { N->getOperand(0).getOperand(0), 4673 N->getOperand(0).getOperand(1), 4674 getI32Imm(0, dl), getI32Imm(MB, dl), 4675 getI32Imm(ME, dl) }; 4676 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 4677 return; 4678 } 4679 } 4680 4681 // Other cases are autogenerated. 4682 break; 4683 } 4684 case ISD::OR: { 4685 if (N->getValueType(0) == MVT::i32) 4686 if (tryBitfieldInsert(N)) 4687 return; 4688 4689 int16_t Imm; 4690 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 4691 isIntS16Immediate(N->getOperand(1), Imm)) { 4692 KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); 4693 4694 // If this is equivalent to an add, then we can fold it with the 4695 // FrameIndex calculation. 4696 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 4697 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 4698 return; 4699 } 4700 } 4701 4702 // OR with a 32-bit immediate can be handled by ori + oris 4703 // without creating an immediate in a GPR. 4704 uint64_t Imm64 = 0; 4705 bool IsPPC64 = PPCSubTarget->isPPC64(); 4706 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 4707 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 4708 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. 4709 uint64_t ImmHi = Imm64 >> 16; 4710 uint64_t ImmLo = Imm64 & 0xFFFF; 4711 if (ImmHi != 0 && ImmLo != 0) { 4712 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 4713 N->getOperand(0), 4714 getI16Imm(ImmLo, dl)); 4715 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 4716 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); 4717 return; 4718 } 4719 } 4720 4721 // Other cases are autogenerated. 4722 break; 4723 } 4724 case ISD::XOR: { 4725 // XOR with a 32-bit immediate can be handled by xori + xoris 4726 // without creating an immediate in a GPR. 4727 uint64_t Imm64 = 0; 4728 bool IsPPC64 = PPCSubTarget->isPPC64(); 4729 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && 4730 (Imm64 & ~0xFFFFFFFFuLL) == 0) { 4731 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. 4732 uint64_t ImmHi = Imm64 >> 16; 4733 uint64_t ImmLo = Imm64 & 0xFFFF; 4734 if (ImmHi != 0 && ImmLo != 0) { 4735 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, 4736 N->getOperand(0), 4737 getI16Imm(ImmLo, dl)); 4738 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; 4739 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); 4740 return; 4741 } 4742 } 4743 4744 break; 4745 } 4746 case ISD::ADD: { 4747 int16_t Imm; 4748 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 4749 isIntS16Immediate(N->getOperand(1), Imm)) { 4750 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 4751 return; 4752 } 4753 4754 break; 4755 } 4756 case ISD::SHL: { 4757 unsigned Imm, SH, MB, ME; 4758 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 4759 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 4760 SDValue Ops[] = { N->getOperand(0).getOperand(0), 4761 getI32Imm(SH, dl), getI32Imm(MB, dl), 4762 getI32Imm(ME, dl) }; 4763 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4764 return; 4765 } 4766 4767 // Other cases are autogenerated. 4768 break; 4769 } 4770 case ISD::SRL: { 4771 unsigned Imm, SH, MB, ME; 4772 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 4773 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 4774 SDValue Ops[] = { N->getOperand(0).getOperand(0), 4775 getI32Imm(SH, dl), getI32Imm(MB, dl), 4776 getI32Imm(ME, dl) }; 4777 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 4778 return; 4779 } 4780 4781 // Other cases are autogenerated. 4782 break; 4783 } 4784 // FIXME: Remove this once the ANDI glue bug is fixed: 4785 case PPCISD::ANDIo_1_EQ_BIT: 4786 case PPCISD::ANDIo_1_GT_BIT: { 4787 if (!ANDIGlueBug) 4788 break; 4789 4790 EVT InVT = N->getOperand(0).getValueType(); 4791 assert((InVT == MVT::i64 || InVT == MVT::i32) && 4792 "Invalid input type for ANDIo_1_EQ_BIT"); 4793 4794 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; 4795 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 4796 N->getOperand(0), 4797 CurDAG->getTargetConstant(1, dl, InVT)), 4798 0); 4799 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 4800 SDValue SRIdxVal = 4801 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? 4802 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32); 4803 4804 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 4805 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 4806 return; 4807 } 4808 case ISD::SELECT_CC: { 4809 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 4810 EVT PtrVT = 4811 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 4812 bool isPPC64 = (PtrVT == MVT::i64); 4813 4814 // If this is a select of i1 operands, we'll pattern match it. 4815 if (PPCSubTarget->useCRBits() && 4816 N->getOperand(0).getValueType() == MVT::i1) 4817 break; 4818 4819 if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) { 4820 bool NeedSwapOps = false; 4821 bool IsUnCmp = false; 4822 if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { 4823 SDValue LHS = N->getOperand(0); 4824 SDValue RHS = N->getOperand(1); 4825 if (NeedSwapOps) 4826 std::swap(LHS, RHS); 4827 4828 // Make use of SelectCC to generate the comparison to set CR bits, for 4829 // equality comparisons having one literal operand, SelectCC probably 4830 // doesn't need to materialize the whole literal and just use xoris to 4831 // check it first, it leads the following comparison result can't 4832 // exactly represent GT/LT relationship. So to avoid this we specify 4833 // SETGT/SETUGT here instead of SETEQ. 4834 SDValue GenCC = 4835 SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); 4836 CurDAG->SelectNodeTo( 4837 N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, 4838 N->getValueType(0), GenCC); 4839 NumP9Setb++; 4840 return; 4841 } 4842 } 4843 4844 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 4845 if (!isPPC64) 4846 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 4847 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 4848 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 4849 if (N1C->isNullValue() && N3C->isNullValue() && 4850 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 4851 // FIXME: Implement this optzn for PPC64. 4852 N->getValueType(0) == MVT::i32) { 4853 SDNode *Tmp = 4854 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 4855 N->getOperand(0), getI32Imm(~0U, dl)); 4856 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 4857 N->getOperand(0), SDValue(Tmp, 1)); 4858 return; 4859 } 4860 4861 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 4862 4863 if (N->getValueType(0) == MVT::i1) { 4864 // An i1 select is: (c & t) | (!c & f). 4865 bool Inv; 4866 unsigned Idx = getCRIdxForSetCC(CC, Inv); 4867 4868 unsigned SRI; 4869 switch (Idx) { 4870 default: llvm_unreachable("Invalid CC index"); 4871 case 0: SRI = PPC::sub_lt; break; 4872 case 1: SRI = PPC::sub_gt; break; 4873 case 2: SRI = PPC::sub_eq; break; 4874 case 3: SRI = PPC::sub_un; break; 4875 } 4876 4877 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 4878 4879 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 4880 CCBit, CCBit), 0); 4881 SDValue C = Inv ? NotCCBit : CCBit, 4882 NotC = Inv ? CCBit : NotCCBit; 4883 4884 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 4885 C, N->getOperand(2)), 0); 4886 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 4887 NotC, N->getOperand(3)), 0); 4888 4889 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 4890 return; 4891 } 4892 4893 unsigned BROpc = getPredicateForSetCC(CC); 4894 4895 unsigned SelectCCOp; 4896 if (N->getValueType(0) == MVT::i32) 4897 SelectCCOp = PPC::SELECT_CC_I4; 4898 else if (N->getValueType(0) == MVT::i64) 4899 SelectCCOp = PPC::SELECT_CC_I8; 4900 else if (N->getValueType(0) == MVT::f32) { 4901 if (PPCSubTarget->hasP8Vector()) 4902 SelectCCOp = PPC::SELECT_CC_VSSRC; 4903 else if (PPCSubTarget->hasSPE()) 4904 SelectCCOp = PPC::SELECT_CC_SPE4; 4905 else 4906 SelectCCOp = PPC::SELECT_CC_F4; 4907 } else if (N->getValueType(0) == MVT::f64) { 4908 if (PPCSubTarget->hasVSX()) 4909 SelectCCOp = PPC::SELECT_CC_VSFRC; 4910 else if (PPCSubTarget->hasSPE()) 4911 SelectCCOp = PPC::SELECT_CC_SPE; 4912 else 4913 SelectCCOp = PPC::SELECT_CC_F8; 4914 } else if (N->getValueType(0) == MVT::f128) 4915 SelectCCOp = PPC::SELECT_CC_F16; 4916 else if (PPCSubTarget->hasSPE()) 4917 SelectCCOp = PPC::SELECT_CC_SPE; 4918 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) 4919 SelectCCOp = PPC::SELECT_CC_QFRC; 4920 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) 4921 SelectCCOp = PPC::SELECT_CC_QSRC; 4922 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) 4923 SelectCCOp = PPC::SELECT_CC_QBRC; 4924 else if (N->getValueType(0) == MVT::v2f64 || 4925 N->getValueType(0) == MVT::v2i64) 4926 SelectCCOp = PPC::SELECT_CC_VSRC; 4927 else 4928 SelectCCOp = PPC::SELECT_CC_VRRC; 4929 4930 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 4931 getI32Imm(BROpc, dl) }; 4932 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 4933 return; 4934 } 4935 case ISD::VECTOR_SHUFFLE: 4936 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 4937 N->getValueType(0) == MVT::v2i64)) { 4938 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 4939 4940 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 4941 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 4942 unsigned DM[2]; 4943 4944 for (int i = 0; i < 2; ++i) 4945 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 4946 DM[i] = 0; 4947 else 4948 DM[i] = 1; 4949 4950 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 4951 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 4952 isa<LoadSDNode>(Op1.getOperand(0))) { 4953 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 4954 SDValue Base, Offset; 4955 4956 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 4957 (LD->getMemoryVT() == MVT::f64 || 4958 LD->getMemoryVT() == MVT::i64) && 4959 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 4960 SDValue Chain = LD->getChain(); 4961 SDValue Ops[] = { Base, Offset, Chain }; 4962 MachineMemOperand *MemOp = LD->getMemOperand(); 4963 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, 4964 N->getValueType(0), Ops); 4965 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); 4966 return; 4967 } 4968 } 4969 4970 // For little endian, we must swap the input operands and adjust 4971 // the mask elements (reverse and invert them). 4972 if (PPCSubTarget->isLittleEndian()) { 4973 std::swap(Op1, Op2); 4974 unsigned tmp = DM[0]; 4975 DM[0] = 1 - DM[1]; 4976 DM[1] = 1 - tmp; 4977 } 4978 4979 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 4980 MVT::i32); 4981 SDValue Ops[] = { Op1, Op2, DMV }; 4982 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 4983 return; 4984 } 4985 4986 break; 4987 case PPCISD::BDNZ: 4988 case PPCISD::BDZ: { 4989 bool IsPPC64 = PPCSubTarget->isPPC64(); 4990 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 4991 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 4992 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 4993 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 4994 MVT::Other, Ops); 4995 return; 4996 } 4997 case PPCISD::COND_BRANCH: { 4998 // Op #0 is the Chain. 4999 // Op #1 is the PPC::PRED_* number. 5000 // Op #2 is the CR# 5001 // Op #3 is the Dest MBB 5002 // Op #4 is the Flag. 5003 // Prevent PPC::PRED_* from being selected into LI. 5004 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 5005 if (EnableBranchHint) 5006 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3)); 5007 5008 SDValue Pred = getI32Imm(PCC, dl); 5009 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 5010 N->getOperand(0), N->getOperand(4) }; 5011 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5012 return; 5013 } 5014 case ISD::BR_CC: { 5015 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5016 unsigned PCC = getPredicateForSetCC(CC); 5017 5018 if (N->getOperand(2).getValueType() == MVT::i1) { 5019 unsigned Opc; 5020 bool Swap; 5021 switch (PCC) { 5022 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 5023 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 5024 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 5025 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 5026 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 5027 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 5028 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 5029 } 5030 5031 // A signed comparison of i1 values produces the opposite result to an 5032 // unsigned one if the condition code includes less-than or greater-than. 5033 // This is because 1 is the most negative signed i1 number and the most 5034 // positive unsigned i1 number. The CR-logical operations used for such 5035 // comparisons are non-commutative so for signed comparisons vs. unsigned 5036 // ones, the input operands just need to be swapped. 5037 if (ISD::isSignedIntSetCC(CC)) 5038 Swap = !Swap; 5039 5040 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 5041 N->getOperand(Swap ? 3 : 2), 5042 N->getOperand(Swap ? 2 : 3)), 0); 5043 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 5044 N->getOperand(0)); 5045 return; 5046 } 5047 5048 if (EnableBranchHint) 5049 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4)); 5050 5051 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 5052 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 5053 N->getOperand(4), N->getOperand(0) }; 5054 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 5055 return; 5056 } 5057 case ISD::BRIND: { 5058 // FIXME: Should custom lower this. 5059 SDValue Chain = N->getOperand(0); 5060 SDValue Target = N->getOperand(1); 5061 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 5062 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 5063 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 5064 Chain), 0); 5065 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 5066 return; 5067 } 5068 case PPCISD::TOC_ENTRY: { 5069 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && 5070 "Only supported for 64-bit ABI and 32-bit SVR4"); 5071 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { 5072 SDValue GA = N->getOperand(0); 5073 SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, 5074 N->getOperand(1)); 5075 transferMemOperands(N, MN); 5076 ReplaceNode(N, MN); 5077 return; 5078 } 5079 5080 // For medium and large code model, we generate two instructions as 5081 // described below. Otherwise we allow SelectCodeCommon to handle this, 5082 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. 5083 CodeModel::Model CModel = TM.getCodeModel(); 5084 if (CModel != CodeModel::Medium && CModel != CodeModel::Large) 5085 break; 5086 5087 // The first source operand is a TargetGlobalAddress or a TargetJumpTable. 5088 // If it must be toc-referenced according to PPCSubTarget, we generate: 5089 // LDtocL(@sym, ADDIStocHA(%x2, @sym)) 5090 // Otherwise we generate: 5091 // ADDItocL(ADDIStocHA(%x2, @sym), @sym) 5092 SDValue GA = N->getOperand(0); 5093 SDValue TOCbase = N->getOperand(1); 5094 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, 5095 TOCbase, GA); 5096 if (PPCLowering->isAccessedAsGotIndirect(GA)) { 5097 // If it is access as got-indirect, we need an extra LD to load 5098 // the address. 5099 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, 5100 SDValue(Tmp, 0)); 5101 transferMemOperands(N, MN); 5102 ReplaceNode(N, MN); 5103 return; 5104 } 5105 5106 // Build the address relative to the TOC-pointer.. 5107 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 5108 SDValue(Tmp, 0), GA)); 5109 return; 5110 } 5111 case PPCISD::PPC32_PICGOT: 5112 // Generate a PIC-safe GOT reference. 5113 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && 5114 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 5115 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 5116 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 5117 MVT::i32); 5118 return; 5119 5120 case PPCISD::VADD_SPLAT: { 5121 // This expands into one of three sequences, depending on whether 5122 // the first operand is odd or even, positive or negative. 5123 assert(isa<ConstantSDNode>(N->getOperand(0)) && 5124 isa<ConstantSDNode>(N->getOperand(1)) && 5125 "Invalid operand on VADD_SPLAT!"); 5126 5127 int Elt = N->getConstantOperandVal(0); 5128 int EltSize = N->getConstantOperandVal(1); 5129 unsigned Opc1, Opc2, Opc3; 5130 EVT VT; 5131 5132 if (EltSize == 1) { 5133 Opc1 = PPC::VSPLTISB; 5134 Opc2 = PPC::VADDUBM; 5135 Opc3 = PPC::VSUBUBM; 5136 VT = MVT::v16i8; 5137 } else if (EltSize == 2) { 5138 Opc1 = PPC::VSPLTISH; 5139 Opc2 = PPC::VADDUHM; 5140 Opc3 = PPC::VSUBUHM; 5141 VT = MVT::v8i16; 5142 } else { 5143 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 5144 Opc1 = PPC::VSPLTISW; 5145 Opc2 = PPC::VADDUWM; 5146 Opc3 = PPC::VSUBUWM; 5147 VT = MVT::v4i32; 5148 } 5149 5150 if ((Elt & 1) == 0) { 5151 // Elt is even, in the range [-32,-18] + [16,30]. 5152 // 5153 // Convert: VADD_SPLAT elt, size 5154 // Into: tmp = VSPLTIS[BHW] elt 5155 // VADDU[BHW]M tmp, tmp 5156 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 5157 SDValue EltVal = getI32Imm(Elt >> 1, dl); 5158 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5159 SDValue TmpVal = SDValue(Tmp, 0); 5160 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 5161 return; 5162 } else if (Elt > 0) { 5163 // Elt is odd and positive, in the range [17,31]. 5164 // 5165 // Convert: VADD_SPLAT elt, size 5166 // Into: tmp1 = VSPLTIS[BHW] elt-16 5167 // tmp2 = VSPLTIS[BHW] -16 5168 // VSUBU[BHW]M tmp1, tmp2 5169 SDValue EltVal = getI32Imm(Elt - 16, dl); 5170 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5171 EltVal = getI32Imm(-16, dl); 5172 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5173 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 5174 SDValue(Tmp2, 0))); 5175 return; 5176 } else { 5177 // Elt is odd and negative, in the range [-31,-17]. 5178 // 5179 // Convert: VADD_SPLAT elt, size 5180 // Into: tmp1 = VSPLTIS[BHW] elt+16 5181 // tmp2 = VSPLTIS[BHW] -16 5182 // VADDU[BHW]M tmp1, tmp2 5183 SDValue EltVal = getI32Imm(Elt + 16, dl); 5184 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5185 EltVal = getI32Imm(-16, dl); 5186 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 5187 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 5188 SDValue(Tmp2, 0))); 5189 return; 5190 } 5191 } 5192 } 5193 5194 SelectCode(N); 5195 } 5196 5197 // If the target supports the cmpb instruction, do the idiom recognition here. 5198 // We don't do this as a DAG combine because we don't want to do it as nodes 5199 // are being combined (because we might miss part of the eventual idiom). We 5200 // don't want to do it during instruction selection because we want to reuse 5201 // the logic for lowering the masking operations already part of the 5202 // instruction selector. 5203 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 5204 SDLoc dl(N); 5205 5206 assert(N->getOpcode() == ISD::OR && 5207 "Only OR nodes are supported for CMPB"); 5208 5209 SDValue Res; 5210 if (!PPCSubTarget->hasCMPB()) 5211 return Res; 5212 5213 if (N->getValueType(0) != MVT::i32 && 5214 N->getValueType(0) != MVT::i64) 5215 return Res; 5216 5217 EVT VT = N->getValueType(0); 5218 5219 SDValue RHS, LHS; 5220 bool BytesFound[8] = {false, false, false, false, false, false, false, false}; 5221 uint64_t Mask = 0, Alt = 0; 5222 5223 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 5224 uint64_t &Mask, uint64_t &Alt, 5225 SDValue &LHS, SDValue &RHS) { 5226 if (O.getOpcode() != ISD::SELECT_CC) 5227 return false; 5228 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 5229 5230 if (!isa<ConstantSDNode>(O.getOperand(2)) || 5231 !isa<ConstantSDNode>(O.getOperand(3))) 5232 return false; 5233 5234 uint64_t PM = O.getConstantOperandVal(2); 5235 uint64_t PAlt = O.getConstantOperandVal(3); 5236 for (b = 0; b < 8; ++b) { 5237 uint64_t Mask = UINT64_C(0xFF) << (8*b); 5238 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 5239 break; 5240 } 5241 5242 if (b == 8) 5243 return false; 5244 Mask |= PM; 5245 Alt |= PAlt; 5246 5247 if (!isa<ConstantSDNode>(O.getOperand(1)) || 5248 O.getConstantOperandVal(1) != 0) { 5249 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 5250 if (Op0.getOpcode() == ISD::TRUNCATE) 5251 Op0 = Op0.getOperand(0); 5252 if (Op1.getOpcode() == ISD::TRUNCATE) 5253 Op1 = Op1.getOperand(0); 5254 5255 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 5256 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 5257 isa<ConstantSDNode>(Op0.getOperand(1))) { 5258 5259 unsigned Bits = Op0.getValueSizeInBits(); 5260 if (b != Bits/8-1) 5261 return false; 5262 if (Op0.getConstantOperandVal(1) != Bits-8) 5263 return false; 5264 5265 LHS = Op0.getOperand(0); 5266 RHS = Op1.getOperand(0); 5267 return true; 5268 } 5269 5270 // When we have small integers (i16 to be specific), the form present 5271 // post-legalization uses SETULT in the SELECT_CC for the 5272 // higher-order byte, depending on the fact that the 5273 // even-higher-order bytes are known to all be zero, for example: 5274 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 5275 // (so when the second byte is the same, because all higher-order 5276 // bits from bytes 3 and 4 are known to be zero, the result of the 5277 // xor can be at most 255) 5278 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 5279 isa<ConstantSDNode>(O.getOperand(1))) { 5280 5281 uint64_t ULim = O.getConstantOperandVal(1); 5282 if (ULim != (UINT64_C(1) << b*8)) 5283 return false; 5284 5285 // Now we need to make sure that the upper bytes are known to be 5286 // zero. 5287 unsigned Bits = Op0.getValueSizeInBits(); 5288 if (!CurDAG->MaskedValueIsZero( 5289 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 5290 return false; 5291 5292 LHS = Op0.getOperand(0); 5293 RHS = Op0.getOperand(1); 5294 return true; 5295 } 5296 5297 return false; 5298 } 5299 5300 if (CC != ISD::SETEQ) 5301 return false; 5302 5303 SDValue Op = O.getOperand(0); 5304 if (Op.getOpcode() == ISD::AND) { 5305 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5306 return false; 5307 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 5308 return false; 5309 5310 SDValue XOR = Op.getOperand(0); 5311 if (XOR.getOpcode() == ISD::TRUNCATE) 5312 XOR = XOR.getOperand(0); 5313 if (XOR.getOpcode() != ISD::XOR) 5314 return false; 5315 5316 LHS = XOR.getOperand(0); 5317 RHS = XOR.getOperand(1); 5318 return true; 5319 } else if (Op.getOpcode() == ISD::SRL) { 5320 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5321 return false; 5322 unsigned Bits = Op.getValueSizeInBits(); 5323 if (b != Bits/8-1) 5324 return false; 5325 if (Op.getConstantOperandVal(1) != Bits-8) 5326 return false; 5327 5328 SDValue XOR = Op.getOperand(0); 5329 if (XOR.getOpcode() == ISD::TRUNCATE) 5330 XOR = XOR.getOperand(0); 5331 if (XOR.getOpcode() != ISD::XOR) 5332 return false; 5333 5334 LHS = XOR.getOperand(0); 5335 RHS = XOR.getOperand(1); 5336 return true; 5337 } 5338 5339 return false; 5340 }; 5341 5342 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 5343 while (!Queue.empty()) { 5344 SDValue V = Queue.pop_back_val(); 5345 5346 for (const SDValue &O : V.getNode()->ops()) { 5347 unsigned b = 0; 5348 uint64_t M = 0, A = 0; 5349 SDValue OLHS, ORHS; 5350 if (O.getOpcode() == ISD::OR) { 5351 Queue.push_back(O); 5352 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 5353 if (!LHS) { 5354 LHS = OLHS; 5355 RHS = ORHS; 5356 BytesFound[b] = true; 5357 Mask |= M; 5358 Alt |= A; 5359 } else if ((LHS == ORHS && RHS == OLHS) || 5360 (RHS == ORHS && LHS == OLHS)) { 5361 BytesFound[b] = true; 5362 Mask |= M; 5363 Alt |= A; 5364 } else { 5365 return Res; 5366 } 5367 } else { 5368 return Res; 5369 } 5370 } 5371 } 5372 5373 unsigned LastB = 0, BCnt = 0; 5374 for (unsigned i = 0; i < 8; ++i) 5375 if (BytesFound[LastB]) { 5376 ++BCnt; 5377 LastB = i; 5378 } 5379 5380 if (!LastB || BCnt < 2) 5381 return Res; 5382 5383 // Because we'll be zero-extending the output anyway if don't have a specific 5384 // value for each input byte (via the Mask), we can 'anyext' the inputs. 5385 if (LHS.getValueType() != VT) { 5386 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 5387 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 5388 } 5389 5390 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 5391 5392 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 5393 if (NonTrivialMask && !Alt) { 5394 // Res = Mask & CMPB 5395 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 5396 CurDAG->getConstant(Mask, dl, VT)); 5397 } else if (Alt) { 5398 // Res = (CMPB & Mask) | (~CMPB & Alt) 5399 // Which, as suggested here: 5400 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 5401 // can be written as: 5402 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 5403 // useful because the (Alt ^ Mask) can be pre-computed. 5404 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 5405 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 5406 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 5407 CurDAG->getConstant(Alt, dl, VT)); 5408 } 5409 5410 return Res; 5411 } 5412 5413 // When CR bit registers are enabled, an extension of an i1 variable to a i32 5414 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 5415 // involves constant materialization of a 0 or a 1 or both. If the result of 5416 // the extension is then operated upon by some operator that can be constant 5417 // folded with a constant 0 or 1, and that constant can be materialized using 5418 // only one instruction (like a zero or one), then we should fold in those 5419 // operations with the select. 5420 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 5421 if (!PPCSubTarget->useCRBits()) 5422 return; 5423 5424 if (N->getOpcode() != ISD::ZERO_EXTEND && 5425 N->getOpcode() != ISD::SIGN_EXTEND && 5426 N->getOpcode() != ISD::ANY_EXTEND) 5427 return; 5428 5429 if (N->getOperand(0).getValueType() != MVT::i1) 5430 return; 5431 5432 if (!N->hasOneUse()) 5433 return; 5434 5435 SDLoc dl(N); 5436 EVT VT = N->getValueType(0); 5437 SDValue Cond = N->getOperand(0); 5438 SDValue ConstTrue = 5439 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 5440 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 5441 5442 do { 5443 SDNode *User = *N->use_begin(); 5444 if (User->getNumOperands() != 2) 5445 break; 5446 5447 auto TryFold = [this, N, User, dl](SDValue Val) { 5448 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 5449 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 5450 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 5451 5452 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 5453 User->getValueType(0), 5454 O0.getNode(), O1.getNode()); 5455 }; 5456 5457 // FIXME: When the semantics of the interaction between select and undef 5458 // are clearly defined, it may turn out to be unnecessary to break here. 5459 SDValue TrueRes = TryFold(ConstTrue); 5460 if (!TrueRes || TrueRes.isUndef()) 5461 break; 5462 SDValue FalseRes = TryFold(ConstFalse); 5463 if (!FalseRes || FalseRes.isUndef()) 5464 break; 5465 5466 // For us to materialize these using one instruction, we must be able to 5467 // represent them as signed 16-bit integers. 5468 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 5469 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 5470 if (!isInt<16>(True) || !isInt<16>(False)) 5471 break; 5472 5473 // We can replace User with a new SELECT node, and try again to see if we 5474 // can fold the select with its user. 5475 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 5476 N = User; 5477 ConstTrue = TrueRes; 5478 ConstFalse = FalseRes; 5479 } while (N->hasOneUse()); 5480 } 5481 5482 void PPCDAGToDAGISel::PreprocessISelDAG() { 5483 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 5484 5485 bool MadeChange = false; 5486 while (Position != CurDAG->allnodes_begin()) { 5487 SDNode *N = &*--Position; 5488 if (N->use_empty()) 5489 continue; 5490 5491 SDValue Res; 5492 switch (N->getOpcode()) { 5493 default: break; 5494 case ISD::OR: 5495 Res = combineToCMPB(N); 5496 break; 5497 } 5498 5499 if (!Res) 5500 foldBoolExts(Res, N); 5501 5502 if (Res) { 5503 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 5504 LLVM_DEBUG(N->dump(CurDAG)); 5505 LLVM_DEBUG(dbgs() << "\nNew: "); 5506 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 5507 LLVM_DEBUG(dbgs() << "\n"); 5508 5509 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 5510 MadeChange = true; 5511 } 5512 } 5513 5514 if (MadeChange) 5515 CurDAG->RemoveDeadNodes(); 5516 } 5517 5518 /// PostprocessISelDAG - Perform some late peephole optimizations 5519 /// on the DAG representation. 5520 void PPCDAGToDAGISel::PostprocessISelDAG() { 5521 // Skip peepholes at -O0. 5522 if (TM.getOptLevel() == CodeGenOpt::None) 5523 return; 5524 5525 PeepholePPC64(); 5526 PeepholeCROps(); 5527 PeepholePPC64ZExt(); 5528 } 5529 5530 // Check if all users of this node will become isel where the second operand 5531 // is the constant zero. If this is so, and if we can negate the condition, 5532 // then we can flip the true and false operands. This will allow the zero to 5533 // be folded with the isel so that we don't need to materialize a register 5534 // containing zero. 5535 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 5536 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5537 UI != UE; ++UI) { 5538 SDNode *User = *UI; 5539 if (!User->isMachineOpcode()) 5540 return false; 5541 if (User->getMachineOpcode() != PPC::SELECT_I4 && 5542 User->getMachineOpcode() != PPC::SELECT_I8) 5543 return false; 5544 5545 SDNode *Op2 = User->getOperand(2).getNode(); 5546 if (!Op2->isMachineOpcode()) 5547 return false; 5548 5549 if (Op2->getMachineOpcode() != PPC::LI && 5550 Op2->getMachineOpcode() != PPC::LI8) 5551 return false; 5552 5553 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 5554 if (!C) 5555 return false; 5556 5557 if (!C->isNullValue()) 5558 return false; 5559 } 5560 5561 return true; 5562 } 5563 5564 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 5565 SmallVector<SDNode *, 4> ToReplace; 5566 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5567 UI != UE; ++UI) { 5568 SDNode *User = *UI; 5569 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 5570 User->getMachineOpcode() == PPC::SELECT_I8) && 5571 "Must have all select users"); 5572 ToReplace.push_back(User); 5573 } 5574 5575 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), 5576 UE = ToReplace.end(); UI != UE; ++UI) { 5577 SDNode *User = *UI; 5578 SDNode *ResNode = 5579 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 5580 User->getValueType(0), User->getOperand(0), 5581 User->getOperand(2), 5582 User->getOperand(1)); 5583 5584 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 5585 LLVM_DEBUG(User->dump(CurDAG)); 5586 LLVM_DEBUG(dbgs() << "\nNew: "); 5587 LLVM_DEBUG(ResNode->dump(CurDAG)); 5588 LLVM_DEBUG(dbgs() << "\n"); 5589 5590 ReplaceUses(User, ResNode); 5591 } 5592 } 5593 5594 void PPCDAGToDAGISel::PeepholeCROps() { 5595 bool IsModified; 5596 do { 5597 IsModified = false; 5598 for (SDNode &Node : CurDAG->allnodes()) { 5599 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 5600 if (!MachineNode || MachineNode->use_empty()) 5601 continue; 5602 SDNode *ResNode = MachineNode; 5603 5604 bool Op1Set = false, Op1Unset = false, 5605 Op1Not = false, 5606 Op2Set = false, Op2Unset = false, 5607 Op2Not = false; 5608 5609 unsigned Opcode = MachineNode->getMachineOpcode(); 5610 switch (Opcode) { 5611 default: break; 5612 case PPC::CRAND: 5613 case PPC::CRNAND: 5614 case PPC::CROR: 5615 case PPC::CRXOR: 5616 case PPC::CRNOR: 5617 case PPC::CREQV: 5618 case PPC::CRANDC: 5619 case PPC::CRORC: { 5620 SDValue Op = MachineNode->getOperand(1); 5621 if (Op.isMachineOpcode()) { 5622 if (Op.getMachineOpcode() == PPC::CRSET) 5623 Op2Set = true; 5624 else if (Op.getMachineOpcode() == PPC::CRUNSET) 5625 Op2Unset = true; 5626 else if (Op.getMachineOpcode() == PPC::CRNOR && 5627 Op.getOperand(0) == Op.getOperand(1)) 5628 Op2Not = true; 5629 } 5630 LLVM_FALLTHROUGH; 5631 } 5632 case PPC::BC: 5633 case PPC::BCn: 5634 case PPC::SELECT_I4: 5635 case PPC::SELECT_I8: 5636 case PPC::SELECT_F4: 5637 case PPC::SELECT_F8: 5638 case PPC::SELECT_QFRC: 5639 case PPC::SELECT_QSRC: 5640 case PPC::SELECT_QBRC: 5641 case PPC::SELECT_SPE: 5642 case PPC::SELECT_SPE4: 5643 case PPC::SELECT_VRRC: 5644 case PPC::SELECT_VSFRC: 5645 case PPC::SELECT_VSSRC: 5646 case PPC::SELECT_VSRC: { 5647 SDValue Op = MachineNode->getOperand(0); 5648 if (Op.isMachineOpcode()) { 5649 if (Op.getMachineOpcode() == PPC::CRSET) 5650 Op1Set = true; 5651 else if (Op.getMachineOpcode() == PPC::CRUNSET) 5652 Op1Unset = true; 5653 else if (Op.getMachineOpcode() == PPC::CRNOR && 5654 Op.getOperand(0) == Op.getOperand(1)) 5655 Op1Not = true; 5656 } 5657 } 5658 break; 5659 } 5660 5661 bool SelectSwap = false; 5662 switch (Opcode) { 5663 default: break; 5664 case PPC::CRAND: 5665 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5666 // x & x = x 5667 ResNode = MachineNode->getOperand(0).getNode(); 5668 else if (Op1Set) 5669 // 1 & y = y 5670 ResNode = MachineNode->getOperand(1).getNode(); 5671 else if (Op2Set) 5672 // x & 1 = x 5673 ResNode = MachineNode->getOperand(0).getNode(); 5674 else if (Op1Unset || Op2Unset) 5675 // x & 0 = 0 & y = 0 5676 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5677 MVT::i1); 5678 else if (Op1Not) 5679 // ~x & y = andc(y, x) 5680 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5681 MVT::i1, MachineNode->getOperand(1), 5682 MachineNode->getOperand(0). 5683 getOperand(0)); 5684 else if (Op2Not) 5685 // x & ~y = andc(x, y) 5686 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5687 MVT::i1, MachineNode->getOperand(0), 5688 MachineNode->getOperand(1). 5689 getOperand(0)); 5690 else if (AllUsersSelectZero(MachineNode)) { 5691 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 5692 MVT::i1, MachineNode->getOperand(0), 5693 MachineNode->getOperand(1)); 5694 SelectSwap = true; 5695 } 5696 break; 5697 case PPC::CRNAND: 5698 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5699 // nand(x, x) -> nor(x, x) 5700 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5701 MVT::i1, MachineNode->getOperand(0), 5702 MachineNode->getOperand(0)); 5703 else if (Op1Set) 5704 // nand(1, y) -> nor(y, y) 5705 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5706 MVT::i1, MachineNode->getOperand(1), 5707 MachineNode->getOperand(1)); 5708 else if (Op2Set) 5709 // nand(x, 1) -> nor(x, x) 5710 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5711 MVT::i1, MachineNode->getOperand(0), 5712 MachineNode->getOperand(0)); 5713 else if (Op1Unset || Op2Unset) 5714 // nand(x, 0) = nand(0, y) = 1 5715 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5716 MVT::i1); 5717 else if (Op1Not) 5718 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 5719 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5720 MVT::i1, MachineNode->getOperand(0). 5721 getOperand(0), 5722 MachineNode->getOperand(1)); 5723 else if (Op2Not) 5724 // nand(x, ~y) = ~x | y = orc(y, x) 5725 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5726 MVT::i1, MachineNode->getOperand(1). 5727 getOperand(0), 5728 MachineNode->getOperand(0)); 5729 else if (AllUsersSelectZero(MachineNode)) { 5730 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 5731 MVT::i1, MachineNode->getOperand(0), 5732 MachineNode->getOperand(1)); 5733 SelectSwap = true; 5734 } 5735 break; 5736 case PPC::CROR: 5737 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5738 // x | x = x 5739 ResNode = MachineNode->getOperand(0).getNode(); 5740 else if (Op1Set || Op2Set) 5741 // x | 1 = 1 | y = 1 5742 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5743 MVT::i1); 5744 else if (Op1Unset) 5745 // 0 | y = y 5746 ResNode = MachineNode->getOperand(1).getNode(); 5747 else if (Op2Unset) 5748 // x | 0 = x 5749 ResNode = MachineNode->getOperand(0).getNode(); 5750 else if (Op1Not) 5751 // ~x | y = orc(y, x) 5752 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5753 MVT::i1, MachineNode->getOperand(1), 5754 MachineNode->getOperand(0). 5755 getOperand(0)); 5756 else if (Op2Not) 5757 // x | ~y = orc(x, y) 5758 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5759 MVT::i1, MachineNode->getOperand(0), 5760 MachineNode->getOperand(1). 5761 getOperand(0)); 5762 else if (AllUsersSelectZero(MachineNode)) { 5763 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5764 MVT::i1, MachineNode->getOperand(0), 5765 MachineNode->getOperand(1)); 5766 SelectSwap = true; 5767 } 5768 break; 5769 case PPC::CRXOR: 5770 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5771 // xor(x, x) = 0 5772 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5773 MVT::i1); 5774 else if (Op1Set) 5775 // xor(1, y) -> nor(y, y) 5776 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5777 MVT::i1, MachineNode->getOperand(1), 5778 MachineNode->getOperand(1)); 5779 else if (Op2Set) 5780 // xor(x, 1) -> nor(x, x) 5781 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5782 MVT::i1, MachineNode->getOperand(0), 5783 MachineNode->getOperand(0)); 5784 else if (Op1Unset) 5785 // xor(0, y) = y 5786 ResNode = MachineNode->getOperand(1).getNode(); 5787 else if (Op2Unset) 5788 // xor(x, 0) = x 5789 ResNode = MachineNode->getOperand(0).getNode(); 5790 else if (Op1Not) 5791 // xor(~x, y) = eqv(x, y) 5792 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 5793 MVT::i1, MachineNode->getOperand(0). 5794 getOperand(0), 5795 MachineNode->getOperand(1)); 5796 else if (Op2Not) 5797 // xor(x, ~y) = eqv(x, y) 5798 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 5799 MVT::i1, MachineNode->getOperand(0), 5800 MachineNode->getOperand(1). 5801 getOperand(0)); 5802 else if (AllUsersSelectZero(MachineNode)) { 5803 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 5804 MVT::i1, MachineNode->getOperand(0), 5805 MachineNode->getOperand(1)); 5806 SelectSwap = true; 5807 } 5808 break; 5809 case PPC::CRNOR: 5810 if (Op1Set || Op2Set) 5811 // nor(1, y) -> 0 5812 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5813 MVT::i1); 5814 else if (Op1Unset) 5815 // nor(0, y) = ~y -> nor(y, y) 5816 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5817 MVT::i1, MachineNode->getOperand(1), 5818 MachineNode->getOperand(1)); 5819 else if (Op2Unset) 5820 // nor(x, 0) = ~x 5821 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5822 MVT::i1, MachineNode->getOperand(0), 5823 MachineNode->getOperand(0)); 5824 else if (Op1Not) 5825 // nor(~x, y) = andc(x, y) 5826 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5827 MVT::i1, MachineNode->getOperand(0). 5828 getOperand(0), 5829 MachineNode->getOperand(1)); 5830 else if (Op2Not) 5831 // nor(x, ~y) = andc(y, x) 5832 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5833 MVT::i1, MachineNode->getOperand(1). 5834 getOperand(0), 5835 MachineNode->getOperand(0)); 5836 else if (AllUsersSelectZero(MachineNode)) { 5837 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 5838 MVT::i1, MachineNode->getOperand(0), 5839 MachineNode->getOperand(1)); 5840 SelectSwap = true; 5841 } 5842 break; 5843 case PPC::CREQV: 5844 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5845 // eqv(x, x) = 1 5846 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5847 MVT::i1); 5848 else if (Op1Set) 5849 // eqv(1, y) = y 5850 ResNode = MachineNode->getOperand(1).getNode(); 5851 else if (Op2Set) 5852 // eqv(x, 1) = x 5853 ResNode = MachineNode->getOperand(0).getNode(); 5854 else if (Op1Unset) 5855 // eqv(0, y) = ~y -> nor(y, y) 5856 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5857 MVT::i1, MachineNode->getOperand(1), 5858 MachineNode->getOperand(1)); 5859 else if (Op2Unset) 5860 // eqv(x, 0) = ~x 5861 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5862 MVT::i1, MachineNode->getOperand(0), 5863 MachineNode->getOperand(0)); 5864 else if (Op1Not) 5865 // eqv(~x, y) = xor(x, y) 5866 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 5867 MVT::i1, MachineNode->getOperand(0). 5868 getOperand(0), 5869 MachineNode->getOperand(1)); 5870 else if (Op2Not) 5871 // eqv(x, ~y) = xor(x, y) 5872 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 5873 MVT::i1, MachineNode->getOperand(0), 5874 MachineNode->getOperand(1). 5875 getOperand(0)); 5876 else if (AllUsersSelectZero(MachineNode)) { 5877 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 5878 MVT::i1, MachineNode->getOperand(0), 5879 MachineNode->getOperand(1)); 5880 SelectSwap = true; 5881 } 5882 break; 5883 case PPC::CRANDC: 5884 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5885 // andc(x, x) = 0 5886 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5887 MVT::i1); 5888 else if (Op1Set) 5889 // andc(1, y) = ~y 5890 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5891 MVT::i1, MachineNode->getOperand(1), 5892 MachineNode->getOperand(1)); 5893 else if (Op1Unset || Op2Set) 5894 // andc(0, y) = andc(x, 1) = 0 5895 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 5896 MVT::i1); 5897 else if (Op2Unset) 5898 // andc(x, 0) = x 5899 ResNode = MachineNode->getOperand(0).getNode(); 5900 else if (Op1Not) 5901 // andc(~x, y) = ~(x | y) = nor(x, y) 5902 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5903 MVT::i1, MachineNode->getOperand(0). 5904 getOperand(0), 5905 MachineNode->getOperand(1)); 5906 else if (Op2Not) 5907 // andc(x, ~y) = x & y 5908 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 5909 MVT::i1, MachineNode->getOperand(0), 5910 MachineNode->getOperand(1). 5911 getOperand(0)); 5912 else if (AllUsersSelectZero(MachineNode)) { 5913 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 5914 MVT::i1, MachineNode->getOperand(1), 5915 MachineNode->getOperand(0)); 5916 SelectSwap = true; 5917 } 5918 break; 5919 case PPC::CRORC: 5920 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 5921 // orc(x, x) = 1 5922 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5923 MVT::i1); 5924 else if (Op1Set || Op2Unset) 5925 // orc(1, y) = orc(x, 0) = 1 5926 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 5927 MVT::i1); 5928 else if (Op2Set) 5929 // orc(x, 1) = x 5930 ResNode = MachineNode->getOperand(0).getNode(); 5931 else if (Op1Unset) 5932 // orc(0, y) = ~y 5933 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 5934 MVT::i1, MachineNode->getOperand(1), 5935 MachineNode->getOperand(1)); 5936 else if (Op1Not) 5937 // orc(~x, y) = ~(x & y) = nand(x, y) 5938 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 5939 MVT::i1, MachineNode->getOperand(0). 5940 getOperand(0), 5941 MachineNode->getOperand(1)); 5942 else if (Op2Not) 5943 // orc(x, ~y) = x | y 5944 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 5945 MVT::i1, MachineNode->getOperand(0), 5946 MachineNode->getOperand(1). 5947 getOperand(0)); 5948 else if (AllUsersSelectZero(MachineNode)) { 5949 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 5950 MVT::i1, MachineNode->getOperand(1), 5951 MachineNode->getOperand(0)); 5952 SelectSwap = true; 5953 } 5954 break; 5955 case PPC::SELECT_I4: 5956 case PPC::SELECT_I8: 5957 case PPC::SELECT_F4: 5958 case PPC::SELECT_F8: 5959 case PPC::SELECT_QFRC: 5960 case PPC::SELECT_QSRC: 5961 case PPC::SELECT_QBRC: 5962 case PPC::SELECT_SPE: 5963 case PPC::SELECT_SPE4: 5964 case PPC::SELECT_VRRC: 5965 case PPC::SELECT_VSFRC: 5966 case PPC::SELECT_VSSRC: 5967 case PPC::SELECT_VSRC: 5968 if (Op1Set) 5969 ResNode = MachineNode->getOperand(1).getNode(); 5970 else if (Op1Unset) 5971 ResNode = MachineNode->getOperand(2).getNode(); 5972 else if (Op1Not) 5973 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 5974 SDLoc(MachineNode), 5975 MachineNode->getValueType(0), 5976 MachineNode->getOperand(0). 5977 getOperand(0), 5978 MachineNode->getOperand(2), 5979 MachineNode->getOperand(1)); 5980 break; 5981 case PPC::BC: 5982 case PPC::BCn: 5983 if (Op1Not) 5984 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 5985 PPC::BC, 5986 SDLoc(MachineNode), 5987 MVT::Other, 5988 MachineNode->getOperand(0). 5989 getOperand(0), 5990 MachineNode->getOperand(1), 5991 MachineNode->getOperand(2)); 5992 // FIXME: Handle Op1Set, Op1Unset here too. 5993 break; 5994 } 5995 5996 // If we're inverting this node because it is used only by selects that 5997 // we'd like to swap, then swap the selects before the node replacement. 5998 if (SelectSwap) 5999 SwapAllSelectUsers(MachineNode); 6000 6001 if (ResNode != MachineNode) { 6002 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 6003 LLVM_DEBUG(MachineNode->dump(CurDAG)); 6004 LLVM_DEBUG(dbgs() << "\nNew: "); 6005 LLVM_DEBUG(ResNode->dump(CurDAG)); 6006 LLVM_DEBUG(dbgs() << "\n"); 6007 6008 ReplaceUses(MachineNode, ResNode); 6009 IsModified = true; 6010 } 6011 } 6012 if (IsModified) 6013 CurDAG->RemoveDeadNodes(); 6014 } while (IsModified); 6015 } 6016 6017 // Gather the set of 32-bit operations that are known to have their 6018 // higher-order 32 bits zero, where ToPromote contains all such operations. 6019 static bool PeepholePPC64ZExtGather(SDValue Op32, 6020 SmallPtrSetImpl<SDNode *> &ToPromote) { 6021 if (!Op32.isMachineOpcode()) 6022 return false; 6023 6024 // First, check for the "frontier" instructions (those that will clear the 6025 // higher-order 32 bits. 6026 6027 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 6028 // around. If it does not, then these instructions will clear the 6029 // higher-order bits. 6030 if ((Op32.getMachineOpcode() == PPC::RLWINM || 6031 Op32.getMachineOpcode() == PPC::RLWNM) && 6032 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 6033 ToPromote.insert(Op32.getNode()); 6034 return true; 6035 } 6036 6037 // SLW and SRW always clear the higher-order bits. 6038 if (Op32.getMachineOpcode() == PPC::SLW || 6039 Op32.getMachineOpcode() == PPC::SRW) { 6040 ToPromote.insert(Op32.getNode()); 6041 return true; 6042 } 6043 6044 // For LI and LIS, we need the immediate to be positive (so that it is not 6045 // sign extended). 6046 if (Op32.getMachineOpcode() == PPC::LI || 6047 Op32.getMachineOpcode() == PPC::LIS) { 6048 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 6049 return false; 6050 6051 ToPromote.insert(Op32.getNode()); 6052 return true; 6053 } 6054 6055 // LHBRX and LWBRX always clear the higher-order bits. 6056 if (Op32.getMachineOpcode() == PPC::LHBRX || 6057 Op32.getMachineOpcode() == PPC::LWBRX) { 6058 ToPromote.insert(Op32.getNode()); 6059 return true; 6060 } 6061 6062 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. 6063 if (Op32.getMachineOpcode() == PPC::CNTLZW || 6064 Op32.getMachineOpcode() == PPC::CNTTZW) { 6065 ToPromote.insert(Op32.getNode()); 6066 return true; 6067 } 6068 6069 // Next, check for those instructions we can look through. 6070 6071 // Assuming the mask does not wrap around, then the higher-order bits are 6072 // taken directly from the first operand. 6073 if (Op32.getMachineOpcode() == PPC::RLWIMI && 6074 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 6075 SmallPtrSet<SDNode *, 16> ToPromote1; 6076 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6077 return false; 6078 6079 ToPromote.insert(Op32.getNode()); 6080 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6081 return true; 6082 } 6083 6084 // For OR, the higher-order bits are zero if that is true for both operands. 6085 // For SELECT_I4, the same is true (but the relevant operand numbers are 6086 // shifted by 1). 6087 if (Op32.getMachineOpcode() == PPC::OR || 6088 Op32.getMachineOpcode() == PPC::SELECT_I4) { 6089 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 6090 SmallPtrSet<SDNode *, 16> ToPromote1; 6091 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 6092 return false; 6093 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 6094 return false; 6095 6096 ToPromote.insert(Op32.getNode()); 6097 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6098 return true; 6099 } 6100 6101 // For ORI and ORIS, we need the higher-order bits of the first operand to be 6102 // zero, and also for the constant to be positive (so that it is not sign 6103 // extended). 6104 if (Op32.getMachineOpcode() == PPC::ORI || 6105 Op32.getMachineOpcode() == PPC::ORIS) { 6106 SmallPtrSet<SDNode *, 16> ToPromote1; 6107 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 6108 return false; 6109 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 6110 return false; 6111 6112 ToPromote.insert(Op32.getNode()); 6113 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6114 return true; 6115 } 6116 6117 // The higher-order bits of AND are zero if that is true for at least one of 6118 // the operands. 6119 if (Op32.getMachineOpcode() == PPC::AND) { 6120 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 6121 bool Op0OK = 6122 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6123 bool Op1OK = 6124 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 6125 if (!Op0OK && !Op1OK) 6126 return false; 6127 6128 ToPromote.insert(Op32.getNode()); 6129 6130 if (Op0OK) 6131 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6132 6133 if (Op1OK) 6134 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 6135 6136 return true; 6137 } 6138 6139 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 6140 // of the first operand, or if the second operand is positive (so that it is 6141 // not sign extended). 6142 if (Op32.getMachineOpcode() == PPC::ANDIo || 6143 Op32.getMachineOpcode() == PPC::ANDISo) { 6144 SmallPtrSet<SDNode *, 16> ToPromote1; 6145 bool Op0OK = 6146 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 6147 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 6148 if (!Op0OK && !Op1OK) 6149 return false; 6150 6151 ToPromote.insert(Op32.getNode()); 6152 6153 if (Op0OK) 6154 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 6155 6156 return true; 6157 } 6158 6159 return false; 6160 } 6161 6162 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 6163 if (!PPCSubTarget->isPPC64()) 6164 return; 6165 6166 // When we zero-extend from i32 to i64, we use a pattern like this: 6167 // def : Pat<(i64 (zext i32:$in)), 6168 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 6169 // 0, 32)>; 6170 // There are several 32-bit shift/rotate instructions, however, that will 6171 // clear the higher-order bits of their output, rendering the RLDICL 6172 // unnecessary. When that happens, we remove it here, and redefine the 6173 // relevant 32-bit operation to be a 64-bit operation. 6174 6175 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6176 6177 bool MadeChange = false; 6178 while (Position != CurDAG->allnodes_begin()) { 6179 SDNode *N = &*--Position; 6180 // Skip dead nodes and any non-machine opcodes. 6181 if (N->use_empty() || !N->isMachineOpcode()) 6182 continue; 6183 6184 if (N->getMachineOpcode() != PPC::RLDICL) 6185 continue; 6186 6187 if (N->getConstantOperandVal(1) != 0 || 6188 N->getConstantOperandVal(2) != 32) 6189 continue; 6190 6191 SDValue ISR = N->getOperand(0); 6192 if (!ISR.isMachineOpcode() || 6193 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 6194 continue; 6195 6196 if (!ISR.hasOneUse()) 6197 continue; 6198 6199 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 6200 continue; 6201 6202 SDValue IDef = ISR.getOperand(0); 6203 if (!IDef.isMachineOpcode() || 6204 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 6205 continue; 6206 6207 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 6208 // can get rid of it. 6209 6210 SDValue Op32 = ISR->getOperand(1); 6211 if (!Op32.isMachineOpcode()) 6212 continue; 6213 6214 // There are some 32-bit instructions that always clear the high-order 32 6215 // bits, there are also some instructions (like AND) that we can look 6216 // through. 6217 SmallPtrSet<SDNode *, 16> ToPromote; 6218 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 6219 continue; 6220 6221 // If the ToPromote set contains nodes that have uses outside of the set 6222 // (except for the original INSERT_SUBREG), then abort the transformation. 6223 bool OutsideUse = false; 6224 for (SDNode *PN : ToPromote) { 6225 for (SDNode *UN : PN->uses()) { 6226 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 6227 OutsideUse = true; 6228 break; 6229 } 6230 } 6231 6232 if (OutsideUse) 6233 break; 6234 } 6235 if (OutsideUse) 6236 continue; 6237 6238 MadeChange = true; 6239 6240 // We now know that this zero extension can be removed by promoting to 6241 // nodes in ToPromote to 64-bit operations, where for operations in the 6242 // frontier of the set, we need to insert INSERT_SUBREGs for their 6243 // operands. 6244 for (SDNode *PN : ToPromote) { 6245 unsigned NewOpcode; 6246 switch (PN->getMachineOpcode()) { 6247 default: 6248 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 6249 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 6250 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 6251 case PPC::SLW: NewOpcode = PPC::SLW8; break; 6252 case PPC::SRW: NewOpcode = PPC::SRW8; break; 6253 case PPC::LI: NewOpcode = PPC::LI8; break; 6254 case PPC::LIS: NewOpcode = PPC::LIS8; break; 6255 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 6256 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 6257 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 6258 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; 6259 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 6260 case PPC::OR: NewOpcode = PPC::OR8; break; 6261 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 6262 case PPC::ORI: NewOpcode = PPC::ORI8; break; 6263 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 6264 case PPC::AND: NewOpcode = PPC::AND8; break; 6265 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break; 6266 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break; 6267 } 6268 6269 // Note: During the replacement process, the nodes will be in an 6270 // inconsistent state (some instructions will have operands with values 6271 // of the wrong type). Once done, however, everything should be right 6272 // again. 6273 6274 SmallVector<SDValue, 4> Ops; 6275 for (const SDValue &V : PN->ops()) { 6276 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 6277 !isa<ConstantSDNode>(V)) { 6278 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 6279 SDNode *ReplOp = 6280 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 6281 ISR.getNode()->getVTList(), ReplOpOps); 6282 Ops.push_back(SDValue(ReplOp, 0)); 6283 } else { 6284 Ops.push_back(V); 6285 } 6286 } 6287 6288 // Because all to-be-promoted nodes only have users that are other 6289 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 6290 // the i32 result value type with i64. 6291 6292 SmallVector<EVT, 2> NewVTs; 6293 SDVTList VTs = PN->getVTList(); 6294 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 6295 if (VTs.VTs[i] == MVT::i32) 6296 NewVTs.push_back(MVT::i64); 6297 else 6298 NewVTs.push_back(VTs.VTs[i]); 6299 6300 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 6301 LLVM_DEBUG(PN->dump(CurDAG)); 6302 6303 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 6304 6305 LLVM_DEBUG(dbgs() << "\nNew: "); 6306 LLVM_DEBUG(PN->dump(CurDAG)); 6307 LLVM_DEBUG(dbgs() << "\n"); 6308 } 6309 6310 // Now we replace the original zero extend and its associated INSERT_SUBREG 6311 // with the value feeding the INSERT_SUBREG (which has now been promoted to 6312 // return an i64). 6313 6314 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 6315 LLVM_DEBUG(N->dump(CurDAG)); 6316 LLVM_DEBUG(dbgs() << "\nNew: "); 6317 LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); 6318 LLVM_DEBUG(dbgs() << "\n"); 6319 6320 ReplaceUses(N, Op32.getNode()); 6321 } 6322 6323 if (MadeChange) 6324 CurDAG->RemoveDeadNodes(); 6325 } 6326 6327 void PPCDAGToDAGISel::PeepholePPC64() { 6328 // These optimizations are currently supported only for 64-bit SVR4. 6329 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) 6330 return; 6331 6332 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 6333 6334 while (Position != CurDAG->allnodes_begin()) { 6335 SDNode *N = &*--Position; 6336 // Skip dead nodes and any non-machine opcodes. 6337 if (N->use_empty() || !N->isMachineOpcode()) 6338 continue; 6339 6340 unsigned FirstOp; 6341 unsigned StorageOpcode = N->getMachineOpcode(); 6342 bool RequiresMod4Offset = false; 6343 6344 switch (StorageOpcode) { 6345 default: continue; 6346 6347 case PPC::LWA: 6348 case PPC::LD: 6349 case PPC::DFLOADf64: 6350 case PPC::DFLOADf32: 6351 RequiresMod4Offset = true; 6352 LLVM_FALLTHROUGH; 6353 case PPC::LBZ: 6354 case PPC::LBZ8: 6355 case PPC::LFD: 6356 case PPC::LFS: 6357 case PPC::LHA: 6358 case PPC::LHA8: 6359 case PPC::LHZ: 6360 case PPC::LHZ8: 6361 case PPC::LWZ: 6362 case PPC::LWZ8: 6363 FirstOp = 0; 6364 break; 6365 6366 case PPC::STD: 6367 case PPC::DFSTOREf64: 6368 case PPC::DFSTOREf32: 6369 RequiresMod4Offset = true; 6370 LLVM_FALLTHROUGH; 6371 case PPC::STB: 6372 case PPC::STB8: 6373 case PPC::STFD: 6374 case PPC::STFS: 6375 case PPC::STH: 6376 case PPC::STH8: 6377 case PPC::STW: 6378 case PPC::STW8: 6379 FirstOp = 1; 6380 break; 6381 } 6382 6383 // If this is a load or store with a zero offset, or within the alignment, 6384 // we may be able to fold an add-immediate into the memory operation. 6385 // The check against alignment is below, as it can't occur until we check 6386 // the arguments to N 6387 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 6388 continue; 6389 6390 SDValue Base = N->getOperand(FirstOp + 1); 6391 if (!Base.isMachineOpcode()) 6392 continue; 6393 6394 unsigned Flags = 0; 6395 bool ReplaceFlags = true; 6396 6397 // When the feeding operation is an add-immediate of some sort, 6398 // determine whether we need to add relocation information to the 6399 // target flags on the immediate operand when we fold it into the 6400 // load instruction. 6401 // 6402 // For something like ADDItocL, the relocation information is 6403 // inferred from the opcode; when we process it in the AsmPrinter, 6404 // we add the necessary relocation there. A load, though, can receive 6405 // relocation from various flavors of ADDIxxx, so we need to carry 6406 // the relocation information in the target flags. 6407 switch (Base.getMachineOpcode()) { 6408 default: continue; 6409 6410 case PPC::ADDI8: 6411 case PPC::ADDI: 6412 // In some cases (such as TLS) the relocation information 6413 // is already in place on the operand, so copying the operand 6414 // is sufficient. 6415 ReplaceFlags = false; 6416 // For these cases, the immediate may not be divisible by 4, in 6417 // which case the fold is illegal for DS-form instructions. (The 6418 // other cases provide aligned addresses and are always safe.) 6419 if (RequiresMod4Offset && 6420 (!isa<ConstantSDNode>(Base.getOperand(1)) || 6421 Base.getConstantOperandVal(1) % 4 != 0)) 6422 continue; 6423 break; 6424 case PPC::ADDIdtprelL: 6425 Flags = PPCII::MO_DTPREL_LO; 6426 break; 6427 case PPC::ADDItlsldL: 6428 Flags = PPCII::MO_TLSLD_LO; 6429 break; 6430 case PPC::ADDItocL: 6431 Flags = PPCII::MO_TOC_LO; 6432 break; 6433 } 6434 6435 SDValue ImmOpnd = Base.getOperand(1); 6436 6437 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 6438 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 6439 // we might have needed different @ha relocation values for the offset 6440 // pointers). 6441 int MaxDisplacement = 7; 6442 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 6443 const GlobalValue *GV = GA->getGlobal(); 6444 MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement); 6445 } 6446 6447 bool UpdateHBase = false; 6448 SDValue HBase = Base.getOperand(0); 6449 6450 int Offset = N->getConstantOperandVal(FirstOp); 6451 if (ReplaceFlags) { 6452 if (Offset < 0 || Offset > MaxDisplacement) { 6453 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 6454 // one use, then we can do this for any offset, we just need to also 6455 // update the offset (i.e. the symbol addend) on the addis also. 6456 if (Base.getMachineOpcode() != PPC::ADDItocL) 6457 continue; 6458 6459 if (!HBase.isMachineOpcode() || 6460 HBase.getMachineOpcode() != PPC::ADDIStocHA) 6461 continue; 6462 6463 if (!Base.hasOneUse() || !HBase.hasOneUse()) 6464 continue; 6465 6466 SDValue HImmOpnd = HBase.getOperand(1); 6467 if (HImmOpnd != ImmOpnd) 6468 continue; 6469 6470 UpdateHBase = true; 6471 } 6472 } else { 6473 // If we're directly folding the addend from an addi instruction, then: 6474 // 1. In general, the offset on the memory access must be zero. 6475 // 2. If the addend is a constant, then it can be combined with a 6476 // non-zero offset, but only if the result meets the encoding 6477 // requirements. 6478 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 6479 Offset += C->getSExtValue(); 6480 6481 if (RequiresMod4Offset && (Offset % 4) != 0) 6482 continue; 6483 6484 if (!isInt<16>(Offset)) 6485 continue; 6486 6487 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 6488 ImmOpnd.getValueType()); 6489 } else if (Offset != 0) { 6490 continue; 6491 } 6492 } 6493 6494 // We found an opportunity. Reverse the operands from the add 6495 // immediate and substitute them into the load or store. If 6496 // needed, update the target flags for the immediate operand to 6497 // reflect the necessary relocation information. 6498 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 6499 LLVM_DEBUG(Base->dump(CurDAG)); 6500 LLVM_DEBUG(dbgs() << "\nN: "); 6501 LLVM_DEBUG(N->dump(CurDAG)); 6502 LLVM_DEBUG(dbgs() << "\n"); 6503 6504 // If the relocation information isn't already present on the 6505 // immediate operand, add it now. 6506 if (ReplaceFlags) { 6507 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 6508 SDLoc dl(GA); 6509 const GlobalValue *GV = GA->getGlobal(); 6510 // We can't perform this optimization for data whose alignment 6511 // is insufficient for the instruction encoding. 6512 if (GV->getAlignment() < 4 && 6513 (RequiresMod4Offset || (Offset % 4) != 0)) { 6514 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 6515 continue; 6516 } 6517 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 6518 } else if (ConstantPoolSDNode *CP = 6519 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 6520 const Constant *C = CP->getConstVal(); 6521 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, 6522 CP->getAlignment(), 6523 Offset, Flags); 6524 } 6525 } 6526 6527 if (FirstOp == 1) // Store 6528 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 6529 Base.getOperand(0), N->getOperand(3)); 6530 else // Load 6531 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 6532 N->getOperand(2)); 6533 6534 if (UpdateHBase) 6535 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 6536 ImmOpnd); 6537 6538 // The add-immediate may now be dead, in which case remove it. 6539 if (Base.getNode()->use_empty()) 6540 CurDAG->RemoveDeadNode(Base.getNode()); 6541 } 6542 } 6543 6544 /// createPPCISelDag - This pass converts a legalized DAG into a 6545 /// PowerPC-specific DAG, ready for instruction scheduling. 6546 /// 6547 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, 6548 CodeGenOpt::Level OptLevel) { 6549 return new PPCDAGToDAGISel(TM, OptLevel); 6550 } 6551