1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "MCTargetDesc/PPCMCTargetDesc.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPC.h"
18 #include "PPCISelLowering.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCSubtarget.h"
21 #include "PPCTargetMachine.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGISel.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MachineValueType.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <new>
65 #include <tuple>
66 #include <utility>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "ppc-codegen"
71 
72 STATISTIC(NumSextSetcc,
73           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
74 STATISTIC(NumZextSetcc,
75           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(SignExtensionsAdded,
77           "Number of sign extensions for compare inputs added.");
78 STATISTIC(ZeroExtensionsAdded,
79           "Number of zero extensions for compare inputs added.");
80 STATISTIC(NumLogicOpsOnComparison,
81           "Number of logical ops on i1 values calculated in GPR.");
82 STATISTIC(OmittedForNonExtendUses,
83           "Number of compares not eliminated as they have non-extending uses.");
84 
85 // FIXME: Remove this once the bug has been fixed!
86 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
87 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
88 
89 static cl::opt<bool>
90     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
91                        cl::desc("use aggressive ppc isel for bit permutations"),
92                        cl::Hidden);
93 static cl::opt<bool> BPermRewriterNoMasking(
94     "ppc-bit-perm-rewriter-stress-rotates",
95     cl::desc("stress rotate selection in aggressive ppc isel for "
96              "bit permutations"),
97     cl::Hidden);
98 
99 static cl::opt<bool> EnableBranchHint(
100   "ppc-use-branch-hint", cl::init(true),
101     cl::desc("Enable static hinting of branches on ppc"),
102     cl::Hidden);
103 
104 static cl::opt<bool> EnableTLSOpt(
105   "ppc-tls-opt", cl::init(true),
106     cl::desc("Enable tls optimization peephole"),
107     cl::Hidden);
108 
109 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
110   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
111   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
112 
113 static cl::opt<ICmpInGPRType> CmpInGPR(
114   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
115   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
116   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
117              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
118              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
119              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
120              clEnumValN(ICGPR_NonExtIn, "nonextin",
121                         "Only comparisons where inputs don't need [sz]ext."),
122              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
123              clEnumValN(ICGPR_ZextI32, "zexti32",
124                         "Only i32 comparisons with zext result."),
125              clEnumValN(ICGPR_ZextI64, "zexti64",
126                         "Only i64 comparisons with zext result."),
127              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
128              clEnumValN(ICGPR_SextI32, "sexti32",
129                         "Only i32 comparisons with sext result."),
130              clEnumValN(ICGPR_SextI64, "sexti64",
131                         "Only i64 comparisons with sext result.")));
132 namespace {
133 
134   //===--------------------------------------------------------------------===//
135   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
136   /// instructions for SelectionDAG operations.
137   ///
138   class PPCDAGToDAGISel : public SelectionDAGISel {
139     const PPCTargetMachine &TM;
140     const PPCSubtarget *PPCSubTarget;
141     const PPCTargetLowering *PPCLowering;
142     unsigned GlobalBaseReg;
143 
144   public:
145     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
146         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
147 
148     bool runOnMachineFunction(MachineFunction &MF) override {
149       // Make sure we re-emit a set of the global base reg if necessary
150       GlobalBaseReg = 0;
151       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
152       PPCLowering = PPCSubTarget->getTargetLowering();
153       SelectionDAGISel::runOnMachineFunction(MF);
154 
155       if (!PPCSubTarget->isSVR4ABI())
156         InsertVRSaveCode(MF);
157 
158       return true;
159     }
160 
161     void PreprocessISelDAG() override;
162     void PostprocessISelDAG() override;
163 
164     /// getI16Imm - Return a target constant with the specified value, of type
165     /// i16.
166     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
167       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
168     }
169 
170     /// getI32Imm - Return a target constant with the specified value, of type
171     /// i32.
172     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
173       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
174     }
175 
176     /// getI64Imm - Return a target constant with the specified value, of type
177     /// i64.
178     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
179       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
180     }
181 
182     /// getSmallIPtrImm - Return a target constant of pointer type.
183     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
184       return CurDAG->getTargetConstant(
185           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
186     }
187 
188     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
189     /// rotate and mask opcode and mask operation.
190     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
191                                 unsigned &SH, unsigned &MB, unsigned &ME);
192 
193     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
194     /// base register.  Return the virtual register that holds this value.
195     SDNode *getGlobalBaseReg();
196 
197     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
198 
199     // Select - Convert the specified operand from a target-independent to a
200     // target-specific node if it hasn't already been changed.
201     void Select(SDNode *N) override;
202 
203     bool tryBitfieldInsert(SDNode *N);
204     bool tryBitPermutation(SDNode *N);
205     bool tryIntCompareInGPR(SDNode *N);
206 
207     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
208     // an X-Form load instruction with the offset being a relocation coming from
209     // the PPCISD::ADD_TLS.
210     bool tryTLSXFormLoad(LoadSDNode *N);
211     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
212     // an X-Form store instruction with the offset being a relocation coming from
213     // the PPCISD::ADD_TLS.
214     bool tryTLSXFormStore(StoreSDNode *N);
215     /// SelectCC - Select a comparison of the specified values with the
216     /// specified condition code, returning the CR# of the expression.
217     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
218                      const SDLoc &dl);
219 
220     /// SelectAddrImm - Returns true if the address N can be represented by
221     /// a base register plus a signed 16-bit displacement [r+imm].
222     bool SelectAddrImm(SDValue N, SDValue &Disp,
223                        SDValue &Base) {
224       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
225     }
226 
227     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
228     /// immediate field.  Note that the operand at this point is already the
229     /// result of a prior SelectAddressRegImm call.
230     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
231       if (N.getOpcode() == ISD::TargetConstant ||
232           N.getOpcode() == ISD::TargetGlobalAddress) {
233         Out = N;
234         return true;
235       }
236 
237       return false;
238     }
239 
240     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
241     /// represented as an indexed [r+r] operation.  Returns false if it can
242     /// be represented by [r+imm], which are preferred.
243     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
244       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
245     }
246 
247     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
248     /// represented as an indexed [r+r] operation.
249     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
250       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
251     }
252 
253     /// SelectAddrImmX4 - Returns true if the address N can be represented by
254     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
255     /// Suitable for use by STD and friends.
256     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
257       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
258     }
259 
260     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
261       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
262     }
263 
264     // Select an address into a single register.
265     bool SelectAddr(SDValue N, SDValue &Base) {
266       Base = N;
267       return true;
268     }
269 
270     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
271     /// inline asm expressions.  It is always correct to compute the value into
272     /// a register.  The case of adding a (possibly relocatable) constant to a
273     /// register can be improved, but it is wrong to substitute Reg+Reg for
274     /// Reg in an asm, because the load or store opcode would have to change.
275     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
276                                       unsigned ConstraintID,
277                                       std::vector<SDValue> &OutOps) override {
278       switch(ConstraintID) {
279       default:
280         errs() << "ConstraintID: " << ConstraintID << "\n";
281         llvm_unreachable("Unexpected asm memory constraint");
282       case InlineAsm::Constraint_es:
283       case InlineAsm::Constraint_i:
284       case InlineAsm::Constraint_m:
285       case InlineAsm::Constraint_o:
286       case InlineAsm::Constraint_Q:
287       case InlineAsm::Constraint_Z:
288       case InlineAsm::Constraint_Zy:
289         // We need to make sure that this one operand does not end up in r0
290         // (because we might end up lowering this as 0(%op)).
291         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
292         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
293         SDLoc dl(Op);
294         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
295         SDValue NewOp =
296           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
297                                          dl, Op.getValueType(),
298                                          Op, RC), 0);
299 
300         OutOps.push_back(NewOp);
301         return false;
302       }
303       return true;
304     }
305 
306     void InsertVRSaveCode(MachineFunction &MF);
307 
308     StringRef getPassName() const override {
309       return "PowerPC DAG->DAG Pattern Instruction Selection";
310     }
311 
312 // Include the pieces autogenerated from the target description.
313 #include "PPCGenDAGISel.inc"
314 
315 private:
316     bool trySETCC(SDNode *N);
317 
318     void PeepholePPC64();
319     void PeepholePPC64ZExt();
320     void PeepholeCROps();
321 
322     SDValue combineToCMPB(SDNode *N);
323     void foldBoolExts(SDValue &Res, SDNode *&N);
324 
325     bool AllUsersSelectZero(SDNode *N);
326     void SwapAllSelectUsers(SDNode *N);
327 
328     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
329     void transferMemOperands(SDNode *N, SDNode *Result);
330     MachineSDNode *flipSignBit(const SDValue &N, SDNode **SignBit = nullptr);
331   };
332 
333 } // end anonymous namespace
334 
335 /// InsertVRSaveCode - Once the entire function has been instruction selected,
336 /// all virtual registers are created and all machine instructions are built,
337 /// check to see if we need to save/restore VRSAVE.  If so, do it.
338 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
339   // Check to see if this function uses vector registers, which means we have to
340   // save and restore the VRSAVE register and update it with the regs we use.
341   //
342   // In this case, there will be virtual registers of vector type created
343   // by the scheduler.  Detect them now.
344   bool HasVectorVReg = false;
345   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
346     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
347     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
348       HasVectorVReg = true;
349       break;
350     }
351   }
352   if (!HasVectorVReg) return;  // nothing to do.
353 
354   // If we have a vector register, we want to emit code into the entry and exit
355   // blocks to save and restore the VRSAVE register.  We do this here (instead
356   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
357   //
358   // 1. This (trivially) reduces the load on the register allocator, by not
359   //    having to represent the live range of the VRSAVE register.
360   // 2. This (more significantly) allows us to create a temporary virtual
361   //    register to hold the saved VRSAVE value, allowing this temporary to be
362   //    register allocated, instead of forcing it to be spilled to the stack.
363 
364   // Create two vregs - one to hold the VRSAVE register that is live-in to the
365   // function and one for the value after having bits or'd into it.
366   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
367   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
368 
369   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
370   MachineBasicBlock &EntryBB = *Fn.begin();
371   DebugLoc dl;
372   // Emit the following code into the entry block:
373   // InVRSAVE = MFVRSAVE
374   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
375   // MTVRSAVE UpdatedVRSAVE
376   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
377   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
378   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
379           UpdatedVRSAVE).addReg(InVRSAVE);
380   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
381 
382   // Find all return blocks, outputting a restore in each epilog.
383   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
384     if (BB->isReturnBlock()) {
385       IP = BB->end(); --IP;
386 
387       // Skip over all terminator instructions, which are part of the return
388       // sequence.
389       MachineBasicBlock::iterator I2 = IP;
390       while (I2 != BB->begin() && (--I2)->isTerminator())
391         IP = I2;
392 
393       // Emit: MTVRSAVE InVRSave
394       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
395     }
396   }
397 }
398 
399 /// getGlobalBaseReg - Output the instructions required to put the
400 /// base address to use for accessing globals into a register.
401 ///
402 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
403   if (!GlobalBaseReg) {
404     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
405     // Insert the set of GlobalBaseReg into the first MBB of the function
406     MachineBasicBlock &FirstMBB = MF->front();
407     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
408     const Module *M = MF->getFunction().getParent();
409     DebugLoc dl;
410 
411     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
412       if (PPCSubTarget->isTargetELF()) {
413         GlobalBaseReg = PPC::R30;
414         if (M->getPICLevel() == PICLevel::SmallPIC) {
415           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
416           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
417           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
418         } else {
419           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
420           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
421           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
422           BuildMI(FirstMBB, MBBI, dl,
423                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
424                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
425           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
426         }
427       } else {
428         GlobalBaseReg =
429           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
430         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
431         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
432       }
433     } else {
434       // We must ensure that this sequence is dominated by the prologue.
435       // FIXME: This is a bit of a big hammer since we don't get the benefits
436       // of shrink-wrapping whenever we emit this instruction. Considering
437       // this is used in any function where we emit a jump table, this may be
438       // a significant limitation. We should consider inserting this in the
439       // block where it is used and then commoning this sequence up if it
440       // appears in multiple places.
441       // Note: on ISA 3.0 cores, we can use lnia (addpcis) insteand of
442       // MovePCtoLR8.
443       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
444       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
445       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
446       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
447     }
448   }
449   return CurDAG->getRegister(GlobalBaseReg,
450                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
451       .getNode();
452 }
453 
454 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
455 /// operand. If so Imm will receive the 32-bit value.
456 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
457   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
458     Imm = cast<ConstantSDNode>(N)->getZExtValue();
459     return true;
460   }
461   return false;
462 }
463 
464 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
465 /// operand.  If so Imm will receive the 64-bit value.
466 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
467   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
468     Imm = cast<ConstantSDNode>(N)->getZExtValue();
469     return true;
470   }
471   return false;
472 }
473 
474 // isInt32Immediate - This method tests to see if a constant operand.
475 // If so Imm will receive the 32 bit value.
476 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
477   return isInt32Immediate(N.getNode(), Imm);
478 }
479 
480 /// isInt64Immediate - This method tests to see if the value is a 64-bit
481 /// constant operand. If so Imm will receive the 64-bit value.
482 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
483   return isInt64Immediate(N.getNode(), Imm);
484 }
485 
486 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
487                               const SDValue &DestMBB) {
488   assert(isa<BasicBlockSDNode>(DestMBB));
489 
490   if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
491 
492   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
493   const TerminatorInst *BBTerm = BB->getTerminator();
494 
495   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
496 
497   const BasicBlock *TBB = BBTerm->getSuccessor(0);
498   const BasicBlock *FBB = BBTerm->getSuccessor(1);
499 
500   auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
501   auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
502 
503   // We only want to handle cases which are easy to predict at static time, e.g.
504   // C++ throw statement, that is very likely not taken, or calling never
505   // returned function, e.g. stdlib exit(). So we set Threshold to filter
506   // unwanted cases.
507   //
508   // Below is LLVM branch weight table, we only want to handle case 1, 2
509   //
510   // Case                  Taken:Nontaken  Example
511   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
512   // 2. Invoke-terminating 1:1048575
513   // 3. Coldblock          4:64            __builtin_expect
514   // 4. Loop Branch        124:4           For loop
515   // 5. PH/ZH/FPH          20:12
516   const uint32_t Threshold = 10000;
517 
518   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
519     return PPC::BR_NO_HINT;
520 
521   DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
522                << BB->getName() << "'\n"
523                << " -> " << TBB->getName() << ": " << TProb << "\n"
524                << " -> " << FBB->getName() << ": " << FProb << "\n");
525 
526   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
527 
528   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
529   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
530   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
531     std::swap(TProb, FProb);
532 
533   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
534 }
535 
536 // isOpcWithIntImmediate - This method tests to see if the node is a specific
537 // opcode and that it has a immediate integer right operand.
538 // If so Imm will receive the 32 bit value.
539 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
540   return N->getOpcode() == Opc
541          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
542 }
543 
544 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
545   SDLoc dl(SN);
546   int FI = cast<FrameIndexSDNode>(N)->getIndex();
547   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
548   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
549   if (SN->hasOneUse())
550     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
551                          getSmallIPtrImm(Offset, dl));
552   else
553     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
554                                            getSmallIPtrImm(Offset, dl)));
555 }
556 
557 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
558                                       bool isShiftMask, unsigned &SH,
559                                       unsigned &MB, unsigned &ME) {
560   // Don't even go down this path for i64, since different logic will be
561   // necessary for rldicl/rldicr/rldimi.
562   if (N->getValueType(0) != MVT::i32)
563     return false;
564 
565   unsigned Shift  = 32;
566   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
567   unsigned Opcode = N->getOpcode();
568   if (N->getNumOperands() != 2 ||
569       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
570     return false;
571 
572   if (Opcode == ISD::SHL) {
573     // apply shift left to mask if it comes first
574     if (isShiftMask) Mask = Mask << Shift;
575     // determine which bits are made indeterminant by shift
576     Indeterminant = ~(0xFFFFFFFFu << Shift);
577   } else if (Opcode == ISD::SRL) {
578     // apply shift right to mask if it comes first
579     if (isShiftMask) Mask = Mask >> Shift;
580     // determine which bits are made indeterminant by shift
581     Indeterminant = ~(0xFFFFFFFFu >> Shift);
582     // adjust for the left rotate
583     Shift = 32 - Shift;
584   } else if (Opcode == ISD::ROTL) {
585     Indeterminant = 0;
586   } else {
587     return false;
588   }
589 
590   // if the mask doesn't intersect any Indeterminant bits
591   if (Mask && !(Mask & Indeterminant)) {
592     SH = Shift & 31;
593     // make sure the mask is still a mask (wrap arounds may not be)
594     return isRunOfOnes(Mask, MB, ME);
595   }
596   return false;
597 }
598 
599 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
600   SDValue Base = ST->getBasePtr();
601   if (Base.getOpcode() != PPCISD::ADD_TLS)
602     return false;
603   SDValue Offset = ST->getOffset();
604   if (!Offset.isUndef())
605     return false;
606 
607   SDLoc dl(ST);
608   EVT MemVT = ST->getMemoryVT();
609   EVT RegVT = ST->getValue().getValueType();
610 
611   unsigned Opcode;
612   switch (MemVT.getSimpleVT().SimpleTy) {
613     default:
614       return false;
615     case MVT::i8: {
616       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
617       break;
618     }
619     case MVT::i16: {
620       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
621       break;
622     }
623     case MVT::i32: {
624       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
625       break;
626     }
627     case MVT::i64: {
628       Opcode = PPC::STDXTLS;
629       break;
630     }
631   }
632   SDValue Chain = ST->getChain();
633   SDVTList VTs = ST->getVTList();
634   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
635                    Chain};
636   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
637   transferMemOperands(ST, MN);
638   ReplaceNode(ST, MN);
639   return true;
640 }
641 
642 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
643   SDValue Base = LD->getBasePtr();
644   if (Base.getOpcode() != PPCISD::ADD_TLS)
645     return false;
646   SDValue Offset = LD->getOffset();
647   if (!Offset.isUndef())
648     return false;
649 
650   SDLoc dl(LD);
651   EVT MemVT = LD->getMemoryVT();
652   EVT RegVT = LD->getValueType(0);
653   unsigned Opcode;
654   switch (MemVT.getSimpleVT().SimpleTy) {
655     default:
656       return false;
657     case MVT::i8: {
658       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
659       break;
660     }
661     case MVT::i16: {
662       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
663       break;
664     }
665     case MVT::i32: {
666       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
667       break;
668     }
669     case MVT::i64: {
670       Opcode = PPC::LDXTLS;
671       break;
672     }
673   }
674   SDValue Chain = LD->getChain();
675   SDVTList VTs = LD->getVTList();
676   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
677   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
678   transferMemOperands(LD, MN);
679   ReplaceNode(LD, MN);
680   return true;
681 }
682 
683 /// Turn an or of two masked values into the rotate left word immediate then
684 /// mask insert (rlwimi) instruction.
685 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
686   SDValue Op0 = N->getOperand(0);
687   SDValue Op1 = N->getOperand(1);
688   SDLoc dl(N);
689 
690   KnownBits LKnown, RKnown;
691   CurDAG->computeKnownBits(Op0, LKnown);
692   CurDAG->computeKnownBits(Op1, RKnown);
693 
694   unsigned TargetMask = LKnown.Zero.getZExtValue();
695   unsigned InsertMask = RKnown.Zero.getZExtValue();
696 
697   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
698     unsigned Op0Opc = Op0.getOpcode();
699     unsigned Op1Opc = Op1.getOpcode();
700     unsigned Value, SH = 0;
701     TargetMask = ~TargetMask;
702     InsertMask = ~InsertMask;
703 
704     // If the LHS has a foldable shift and the RHS does not, then swap it to the
705     // RHS so that we can fold the shift into the insert.
706     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
707       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
708           Op0.getOperand(0).getOpcode() == ISD::SRL) {
709         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
710             Op1.getOperand(0).getOpcode() != ISD::SRL) {
711           std::swap(Op0, Op1);
712           std::swap(Op0Opc, Op1Opc);
713           std::swap(TargetMask, InsertMask);
714         }
715       }
716     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
717       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
718           Op1.getOperand(0).getOpcode() != ISD::SRL) {
719         std::swap(Op0, Op1);
720         std::swap(Op0Opc, Op1Opc);
721         std::swap(TargetMask, InsertMask);
722       }
723     }
724 
725     unsigned MB, ME;
726     if (isRunOfOnes(InsertMask, MB, ME)) {
727       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
728           isInt32Immediate(Op1.getOperand(1), Value)) {
729         Op1 = Op1.getOperand(0);
730         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
731       }
732       if (Op1Opc == ISD::AND) {
733        // The AND mask might not be a constant, and we need to make sure that
734        // if we're going to fold the masking with the insert, all bits not
735        // know to be zero in the mask are known to be one.
736         KnownBits MKnown;
737         CurDAG->computeKnownBits(Op1.getOperand(1), MKnown);
738         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
739 
740         unsigned SHOpc = Op1.getOperand(0).getOpcode();
741         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
742             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
743           // Note that Value must be in range here (less than 32) because
744           // otherwise there would not be any bits set in InsertMask.
745           Op1 = Op1.getOperand(0).getOperand(0);
746           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
747         }
748       }
749 
750       SH &= 31;
751       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
752                           getI32Imm(ME, dl) };
753       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
754       return true;
755     }
756   }
757   return false;
758 }
759 
760 // Predict the number of instructions that would be generated by calling
761 // selectI64Imm(N).
762 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
763   // Assume no remaining bits.
764   unsigned Remainder = 0;
765   // Assume no shift required.
766   unsigned Shift = 0;
767 
768   // If it can't be represented as a 32 bit value.
769   if (!isInt<32>(Imm)) {
770     Shift = countTrailingZeros<uint64_t>(Imm);
771     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
772 
773     // If the shifted value fits 32 bits.
774     if (isInt<32>(ImmSh)) {
775       // Go with the shifted value.
776       Imm = ImmSh;
777     } else {
778       // Still stuck with a 64 bit value.
779       Remainder = Imm;
780       Shift = 32;
781       Imm >>= 32;
782     }
783   }
784 
785   // Intermediate operand.
786   unsigned Result = 0;
787 
788   // Handle first 32 bits.
789   unsigned Lo = Imm & 0xFFFF;
790 
791   // Simple value.
792   if (isInt<16>(Imm)) {
793     // Just the Lo bits.
794     ++Result;
795   } else if (Lo) {
796     // Handle the Hi bits and Lo bits.
797     Result += 2;
798   } else {
799     // Just the Hi bits.
800     ++Result;
801   }
802 
803   // If no shift, we're done.
804   if (!Shift) return Result;
805 
806   // If Hi word == Lo word,
807   // we can use rldimi to insert the Lo word into Hi word.
808   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
809     ++Result;
810     return Result;
811   }
812 
813   // Shift for next step if the upper 32-bits were not zero.
814   if (Imm)
815     ++Result;
816 
817   // Add in the last bits as required.
818   if ((Remainder >> 16) & 0xFFFF)
819     ++Result;
820   if (Remainder & 0xFFFF)
821     ++Result;
822 
823   return Result;
824 }
825 
826 static uint64_t Rot64(uint64_t Imm, unsigned R) {
827   return (Imm << R) | (Imm >> (64 - R));
828 }
829 
830 static unsigned selectI64ImmInstrCount(int64_t Imm) {
831   unsigned Count = selectI64ImmInstrCountDirect(Imm);
832 
833   // If the instruction count is 1 or 2, we do not need further analysis
834   // since rotate + load constant requires at least 2 instructions.
835   if (Count <= 2)
836     return Count;
837 
838   for (unsigned r = 1; r < 63; ++r) {
839     uint64_t RImm = Rot64(Imm, r);
840     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
841     Count = std::min(Count, RCount);
842 
843     // See comments in selectI64Imm for an explanation of the logic below.
844     unsigned LS = findLastSet(RImm);
845     if (LS != r-1)
846       continue;
847 
848     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
849     uint64_t RImmWithOnes = RImm | OnesMask;
850 
851     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
852     Count = std::min(Count, RCount);
853   }
854 
855   return Count;
856 }
857 
858 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
859 // (above) needs to be kept in sync with this function.
860 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
861                                   int64_t Imm) {
862   // Assume no remaining bits.
863   unsigned Remainder = 0;
864   // Assume no shift required.
865   unsigned Shift = 0;
866 
867   // If it can't be represented as a 32 bit value.
868   if (!isInt<32>(Imm)) {
869     Shift = countTrailingZeros<uint64_t>(Imm);
870     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
871 
872     // If the shifted value fits 32 bits.
873     if (isInt<32>(ImmSh)) {
874       // Go with the shifted value.
875       Imm = ImmSh;
876     } else {
877       // Still stuck with a 64 bit value.
878       Remainder = Imm;
879       Shift = 32;
880       Imm >>= 32;
881     }
882   }
883 
884   // Intermediate operand.
885   SDNode *Result;
886 
887   // Handle first 32 bits.
888   unsigned Lo = Imm & 0xFFFF;
889   unsigned Hi = (Imm >> 16) & 0xFFFF;
890 
891   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
892       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
893   };
894 
895   // Simple value.
896   if (isInt<16>(Imm)) {
897     uint64_t SextImm = SignExtend64(Lo, 16);
898     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
899     // Just the Lo bits.
900     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
901   } else if (Lo) {
902     // Handle the Hi bits.
903     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
904     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
905     // And Lo bits.
906     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
907                                     SDValue(Result, 0), getI32Imm(Lo));
908   } else {
909     // Just the Hi bits.
910     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
911   }
912 
913   // If no shift, we're done.
914   if (!Shift) return Result;
915 
916   // If Hi word == Lo word,
917   // we can use rldimi to insert the Lo word into Hi word.
918   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
919     SDValue Ops[] =
920       { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
921     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
922   }
923 
924   // Shift for next step if the upper 32-bits were not zero.
925   if (Imm) {
926     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
927                                     SDValue(Result, 0),
928                                     getI32Imm(Shift),
929                                     getI32Imm(63 - Shift));
930   }
931 
932   // Add in the last bits as required.
933   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
934     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
935                                     SDValue(Result, 0), getI32Imm(Hi));
936   }
937   if ((Lo = Remainder & 0xFFFF)) {
938     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
939                                     SDValue(Result, 0), getI32Imm(Lo));
940   }
941 
942   return Result;
943 }
944 
945 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
946                             int64_t Imm) {
947   unsigned Count = selectI64ImmInstrCountDirect(Imm);
948 
949   // If the instruction count is 1 or 2, we do not need further analysis
950   // since rotate + load constant requires at least 2 instructions.
951   if (Count <= 2)
952     return selectI64ImmDirect(CurDAG, dl, Imm);
953 
954   unsigned RMin = 0;
955 
956   int64_t MatImm;
957   unsigned MaskEnd;
958 
959   for (unsigned r = 1; r < 63; ++r) {
960     uint64_t RImm = Rot64(Imm, r);
961     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
962     if (RCount < Count) {
963       Count = RCount;
964       RMin = r;
965       MatImm = RImm;
966       MaskEnd = 63;
967     }
968 
969     // If the immediate to generate has many trailing zeros, it might be
970     // worthwhile to generate a rotated value with too many leading ones
971     // (because that's free with li/lis's sign-extension semantics), and then
972     // mask them off after rotation.
973 
974     unsigned LS = findLastSet(RImm);
975     // We're adding (63-LS) higher-order ones, and we expect to mask them off
976     // after performing the inverse rotation by (64-r). So we need that:
977     //   63-LS == 64-r => LS == r-1
978     if (LS != r-1)
979       continue;
980 
981     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
982     uint64_t RImmWithOnes = RImm | OnesMask;
983 
984     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
985     if (RCount < Count) {
986       Count = RCount;
987       RMin = r;
988       MatImm = RImmWithOnes;
989       MaskEnd = LS;
990     }
991   }
992 
993   if (!RMin)
994     return selectI64ImmDirect(CurDAG, dl, Imm);
995 
996   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
997       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
998   };
999 
1000   SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
1001   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
1002                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
1003 }
1004 
1005 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
1006   unsigned MaxTruncation = 0;
1007   // Cannot use range-based for loop here as we need the actual use (i.e. we
1008   // need the operand number corresponding to the use). A range-based for
1009   // will unbox the use and provide an SDNode*.
1010   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
1011        Use != UseEnd; ++Use) {
1012     unsigned Opc =
1013       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
1014     switch (Opc) {
1015     default: return 0;
1016     case ISD::TRUNCATE:
1017       if (Use->isMachineOpcode())
1018         return 0;
1019       MaxTruncation =
1020         std::max(MaxTruncation, Use->getValueType(0).getSizeInBits());
1021       continue;
1022     case ISD::STORE: {
1023       if (Use->isMachineOpcode())
1024         return 0;
1025       StoreSDNode *STN = cast<StoreSDNode>(*Use);
1026       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
1027       if (MemVTSize == 64 || Use.getOperandNo() != 0)
1028         return 0;
1029       MaxTruncation = std::max(MaxTruncation, MemVTSize);
1030       continue;
1031     }
1032     case PPC::STW8:
1033     case PPC::STWX8:
1034     case PPC::STWU8:
1035     case PPC::STWUX8:
1036       if (Use.getOperandNo() != 0)
1037         return 0;
1038       MaxTruncation = std::max(MaxTruncation, 32u);
1039       continue;
1040     case PPC::STH8:
1041     case PPC::STHX8:
1042     case PPC::STHU8:
1043     case PPC::STHUX8:
1044       if (Use.getOperandNo() != 0)
1045         return 0;
1046       MaxTruncation = std::max(MaxTruncation, 16u);
1047       continue;
1048     case PPC::STB8:
1049     case PPC::STBX8:
1050     case PPC::STBU8:
1051     case PPC::STBUX8:
1052       if (Use.getOperandNo() != 0)
1053         return 0;
1054       MaxTruncation = std::max(MaxTruncation, 8u);
1055       continue;
1056     }
1057   }
1058   return MaxTruncation;
1059 }
1060 
1061 // Select a 64-bit constant.
1062 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1063   SDLoc dl(N);
1064 
1065   // Get 64 bit value.
1066   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1067   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1068     uint64_t SextImm = SignExtend64(Imm, MinSize);
1069     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1070     if (isInt<16>(SextImm))
1071       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1072   }
1073   return selectI64Imm(CurDAG, dl, Imm);
1074 }
1075 
1076 namespace {
1077 
1078 class BitPermutationSelector {
1079   struct ValueBit {
1080     SDValue V;
1081 
1082     // The bit number in the value, using a convention where bit 0 is the
1083     // lowest-order bit.
1084     unsigned Idx;
1085 
1086     enum Kind {
1087       ConstZero,
1088       Variable
1089     } K;
1090 
1091     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1092       : V(V), Idx(I), K(K) {}
1093     ValueBit(Kind K = Variable)
1094       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
1095 
1096     bool isZero() const {
1097       return K == ConstZero;
1098     }
1099 
1100     bool hasValue() const {
1101       return K == Variable;
1102     }
1103 
1104     SDValue getValue() const {
1105       assert(hasValue() && "Cannot get the value of a constant bit");
1106       return V;
1107     }
1108 
1109     unsigned getValueBitIndex() const {
1110       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1111       return Idx;
1112     }
1113   };
1114 
1115   // A bit group has the same underlying value and the same rotate factor.
1116   struct BitGroup {
1117     SDValue V;
1118     unsigned RLAmt;
1119     unsigned StartIdx, EndIdx;
1120 
1121     // This rotation amount assumes that the lower 32 bits of the quantity are
1122     // replicated in the high 32 bits by the rotation operator (which is done
1123     // by rlwinm and friends in 64-bit mode).
1124     bool Repl32;
1125     // Did converting to Repl32 == true change the rotation factor? If it did,
1126     // it decreased it by 32.
1127     bool Repl32CR;
1128     // Was this group coalesced after setting Repl32 to true?
1129     bool Repl32Coalesced;
1130 
1131     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1132       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1133         Repl32Coalesced(false) {
1134       DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
1135                       " [" << S << ", " << E << "]\n");
1136     }
1137   };
1138 
1139   // Information on each (Value, RLAmt) pair (like the number of groups
1140   // associated with each) used to choose the lowering method.
1141   struct ValueRotInfo {
1142     SDValue V;
1143     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1144     unsigned NumGroups = 0;
1145     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1146     bool Repl32 = false;
1147 
1148     ValueRotInfo() = default;
1149 
1150     // For sorting (in reverse order) by NumGroups, and then by
1151     // FirstGroupStartIdx.
1152     bool operator < (const ValueRotInfo &Other) const {
1153       // We need to sort so that the non-Repl32 come first because, when we're
1154       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1155       // masking operation.
1156       if (Repl32 < Other.Repl32)
1157         return true;
1158       else if (Repl32 > Other.Repl32)
1159         return false;
1160       else if (NumGroups > Other.NumGroups)
1161         return true;
1162       else if (NumGroups < Other.NumGroups)
1163         return false;
1164       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1165         return true;
1166       return false;
1167     }
1168   };
1169 
1170   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1171   using ValueBitsMemoizer =
1172       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1173   ValueBitsMemoizer Memoizer;
1174 
1175   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1176   // The bool is true if something interesting was deduced, otherwise if we're
1177   // providing only a generic representation of V (or something else likewise
1178   // uninteresting for instruction selection) through the SmallVector.
1179   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1180                                                             unsigned NumBits) {
1181     auto &ValueEntry = Memoizer[V];
1182     if (ValueEntry)
1183       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1184     ValueEntry.reset(new ValueBitsMemoizedValue());
1185     bool &Interesting = ValueEntry->first;
1186     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1187     Bits.resize(NumBits);
1188 
1189     switch (V.getOpcode()) {
1190     default: break;
1191     case ISD::ROTL:
1192       if (isa<ConstantSDNode>(V.getOperand(1))) {
1193         unsigned RotAmt = V.getConstantOperandVal(1);
1194 
1195         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1196 
1197         for (unsigned i = 0; i < NumBits; ++i)
1198           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1199 
1200         return std::make_pair(Interesting = true, &Bits);
1201       }
1202       break;
1203     case ISD::SHL:
1204       if (isa<ConstantSDNode>(V.getOperand(1))) {
1205         unsigned ShiftAmt = V.getConstantOperandVal(1);
1206 
1207         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1208 
1209         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1210           Bits[i] = LHSBits[i - ShiftAmt];
1211 
1212         for (unsigned i = 0; i < ShiftAmt; ++i)
1213           Bits[i] = ValueBit(ValueBit::ConstZero);
1214 
1215         return std::make_pair(Interesting = true, &Bits);
1216       }
1217       break;
1218     case ISD::SRL:
1219       if (isa<ConstantSDNode>(V.getOperand(1))) {
1220         unsigned ShiftAmt = V.getConstantOperandVal(1);
1221 
1222         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1223 
1224         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1225           Bits[i] = LHSBits[i + ShiftAmt];
1226 
1227         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1228           Bits[i] = ValueBit(ValueBit::ConstZero);
1229 
1230         return std::make_pair(Interesting = true, &Bits);
1231       }
1232       break;
1233     case ISD::AND:
1234       if (isa<ConstantSDNode>(V.getOperand(1))) {
1235         uint64_t Mask = V.getConstantOperandVal(1);
1236 
1237         const SmallVector<ValueBit, 64> *LHSBits;
1238         // Mark this as interesting, only if the LHS was also interesting. This
1239         // prevents the overall procedure from matching a single immediate 'and'
1240         // (which is non-optimal because such an and might be folded with other
1241         // things if we don't select it here).
1242         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1243 
1244         for (unsigned i = 0; i < NumBits; ++i)
1245           if (((Mask >> i) & 1) == 1)
1246             Bits[i] = (*LHSBits)[i];
1247           else
1248             Bits[i] = ValueBit(ValueBit::ConstZero);
1249 
1250         return std::make_pair(Interesting, &Bits);
1251       }
1252       break;
1253     case ISD::OR: {
1254       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1255       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1256 
1257       bool AllDisjoint = true;
1258       for (unsigned i = 0; i < NumBits; ++i)
1259         if (LHSBits[i].isZero())
1260           Bits[i] = RHSBits[i];
1261         else if (RHSBits[i].isZero())
1262           Bits[i] = LHSBits[i];
1263         else {
1264           AllDisjoint = false;
1265           break;
1266         }
1267 
1268       if (!AllDisjoint)
1269         break;
1270 
1271       return std::make_pair(Interesting = true, &Bits);
1272     }
1273     case ISD::ZERO_EXTEND: {
1274       // We support only the case with zero extension from i32 to i64 so far.
1275       if (V.getValueType() != MVT::i64 ||
1276           V.getOperand(0).getValueType() != MVT::i32)
1277         break;
1278 
1279       const SmallVector<ValueBit, 64> *LHSBits;
1280       const unsigned NumOperandBits = 32;
1281       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1282                                                     NumOperandBits);
1283 
1284       for (unsigned i = 0; i < NumOperandBits; ++i)
1285         Bits[i] = (*LHSBits)[i];
1286 
1287       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1288         Bits[i] = ValueBit(ValueBit::ConstZero);
1289 
1290       return std::make_pair(Interesting, &Bits);
1291       }
1292     }
1293 
1294     for (unsigned i = 0; i < NumBits; ++i)
1295       Bits[i] = ValueBit(V, i);
1296 
1297     return std::make_pair(Interesting = false, &Bits);
1298   }
1299 
1300   // For each value (except the constant ones), compute the left-rotate amount
1301   // to get it from its original to final position.
1302   void computeRotationAmounts() {
1303     HasZeros = false;
1304     RLAmt.resize(Bits.size());
1305     for (unsigned i = 0; i < Bits.size(); ++i)
1306       if (Bits[i].hasValue()) {
1307         unsigned VBI = Bits[i].getValueBitIndex();
1308         if (i >= VBI)
1309           RLAmt[i] = i - VBI;
1310         else
1311           RLAmt[i] = Bits.size() - (VBI - i);
1312       } else if (Bits[i].isZero()) {
1313         HasZeros = true;
1314         RLAmt[i] = UINT32_MAX;
1315       } else {
1316         llvm_unreachable("Unknown value bit type");
1317       }
1318   }
1319 
1320   // Collect groups of consecutive bits with the same underlying value and
1321   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1322   // they break up groups.
1323   void collectBitGroups(bool LateMask) {
1324     BitGroups.clear();
1325 
1326     unsigned LastRLAmt = RLAmt[0];
1327     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1328     unsigned LastGroupStartIdx = 0;
1329     for (unsigned i = 1; i < Bits.size(); ++i) {
1330       unsigned ThisRLAmt = RLAmt[i];
1331       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1332       if (LateMask && !ThisValue) {
1333         ThisValue = LastValue;
1334         ThisRLAmt = LastRLAmt;
1335         // If we're doing late masking, then the first bit group always starts
1336         // at zero (even if the first bits were zero).
1337         if (BitGroups.empty())
1338           LastGroupStartIdx = 0;
1339       }
1340 
1341       // If this bit has the same underlying value and the same rotate factor as
1342       // the last one, then they're part of the same group.
1343       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1344         continue;
1345 
1346       if (LastValue.getNode())
1347         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1348                                      i-1));
1349       LastRLAmt = ThisRLAmt;
1350       LastValue = ThisValue;
1351       LastGroupStartIdx = i;
1352     }
1353     if (LastValue.getNode())
1354       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1355                                    Bits.size()-1));
1356 
1357     if (BitGroups.empty())
1358       return;
1359 
1360     // We might be able to combine the first and last groups.
1361     if (BitGroups.size() > 1) {
1362       // If the first and last groups are the same, then remove the first group
1363       // in favor of the last group, making the ending index of the last group
1364       // equal to the ending index of the to-be-removed first group.
1365       if (BitGroups[0].StartIdx == 0 &&
1366           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1367           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1368           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1369         DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1370         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1371         BitGroups.erase(BitGroups.begin());
1372       }
1373     }
1374   }
1375 
1376   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1377   // associated with each. If there is a degeneracy, pick the one that occurs
1378   // first (in the final value).
1379   void collectValueRotInfo() {
1380     ValueRots.clear();
1381 
1382     for (auto &BG : BitGroups) {
1383       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1384       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1385       VRI.V = BG.V;
1386       VRI.RLAmt = BG.RLAmt;
1387       VRI.Repl32 = BG.Repl32;
1388       VRI.NumGroups += 1;
1389       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1390     }
1391 
1392     // Now that we've collected the various ValueRotInfo instances, we need to
1393     // sort them.
1394     ValueRotsVec.clear();
1395     for (auto &I : ValueRots) {
1396       ValueRotsVec.push_back(I.second);
1397     }
1398     llvm::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1399   }
1400 
1401   // In 64-bit mode, rlwinm and friends have a rotation operator that
1402   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1403   // indices of these instructions can only be in the lower 32 bits, so they
1404   // can only represent some 64-bit bit groups. However, when they can be used,
1405   // the 32-bit replication can be used to represent, as a single bit group,
1406   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1407   // groups when possible. Returns true if any of the bit groups were
1408   // converted.
1409   void assignRepl32BitGroups() {
1410     // If we have bits like this:
1411     //
1412     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1413     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1414     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1415     //
1416     // But, making use of a 32-bit operation that replicates the low-order 32
1417     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1418     // of 8.
1419 
1420     auto IsAllLow32 = [this](BitGroup & BG) {
1421       if (BG.StartIdx <= BG.EndIdx) {
1422         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1423           if (!Bits[i].hasValue())
1424             continue;
1425           if (Bits[i].getValueBitIndex() >= 32)
1426             return false;
1427         }
1428       } else {
1429         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1430           if (!Bits[i].hasValue())
1431             continue;
1432           if (Bits[i].getValueBitIndex() >= 32)
1433             return false;
1434         }
1435         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1436           if (!Bits[i].hasValue())
1437             continue;
1438           if (Bits[i].getValueBitIndex() >= 32)
1439             return false;
1440         }
1441       }
1442 
1443       return true;
1444     };
1445 
1446     for (auto &BG : BitGroups) {
1447       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1448         if (IsAllLow32(BG)) {
1449           if (BG.RLAmt >= 32) {
1450             BG.RLAmt -= 32;
1451             BG.Repl32CR = true;
1452           }
1453 
1454           BG.Repl32 = true;
1455 
1456           DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1457                           BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1458                           " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1459         }
1460       }
1461     }
1462 
1463     // Now walk through the bit groups, consolidating where possible.
1464     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1465       // We might want to remove this bit group by merging it with the previous
1466       // group (which might be the ending group).
1467       auto IP = (I == BitGroups.begin()) ?
1468                 std::prev(BitGroups.end()) : std::prev(I);
1469       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1470           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1471 
1472         DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1473                         I->V.getNode() << " RLAmt = " << I->RLAmt <<
1474                         " [" << I->StartIdx << ", " << I->EndIdx <<
1475                         "] with group with range [" <<
1476                         IP->StartIdx << ", " << IP->EndIdx << "]\n");
1477 
1478         IP->EndIdx = I->EndIdx;
1479         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1480         IP->Repl32Coalesced = true;
1481         I = BitGroups.erase(I);
1482         continue;
1483       } else {
1484         // There is a special case worth handling: If there is a single group
1485         // covering the entire upper 32 bits, and it can be merged with both
1486         // the next and previous groups (which might be the same group), then
1487         // do so. If it is the same group (so there will be only one group in
1488         // total), then we need to reverse the order of the range so that it
1489         // covers the entire 64 bits.
1490         if (I->StartIdx == 32 && I->EndIdx == 63) {
1491           assert(std::next(I) == BitGroups.end() &&
1492                  "bit group ends at index 63 but there is another?");
1493           auto IN = BitGroups.begin();
1494 
1495           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1496               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1497               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1498               IsAllLow32(*I)) {
1499 
1500             DEBUG(dbgs() << "\tcombining bit group for " <<
1501                             I->V.getNode() << " RLAmt = " << I->RLAmt <<
1502                             " [" << I->StartIdx << ", " << I->EndIdx <<
1503                             "] with 32-bit replicated groups with ranges [" <<
1504                             IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1505                             IN->StartIdx << ", " << IN->EndIdx << "]\n");
1506 
1507             if (IP == IN) {
1508               // There is only one other group; change it to cover the whole
1509               // range (backward, so that it can still be Repl32 but cover the
1510               // whole 64-bit range).
1511               IP->StartIdx = 31;
1512               IP->EndIdx = 30;
1513               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1514               IP->Repl32Coalesced = true;
1515               I = BitGroups.erase(I);
1516             } else {
1517               // There are two separate groups, one before this group and one
1518               // after us (at the beginning). We're going to remove this group,
1519               // but also the group at the very beginning.
1520               IP->EndIdx = IN->EndIdx;
1521               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1522               IP->Repl32Coalesced = true;
1523               I = BitGroups.erase(I);
1524               BitGroups.erase(BitGroups.begin());
1525             }
1526 
1527             // This must be the last group in the vector (and we might have
1528             // just invalidated the iterator above), so break here.
1529             break;
1530           }
1531         }
1532       }
1533 
1534       ++I;
1535     }
1536   }
1537 
1538   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1539     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1540   }
1541 
1542   uint64_t getZerosMask() {
1543     uint64_t Mask = 0;
1544     for (unsigned i = 0; i < Bits.size(); ++i) {
1545       if (Bits[i].hasValue())
1546         continue;
1547       Mask |= (UINT64_C(1) << i);
1548     }
1549 
1550     return ~Mask;
1551   }
1552 
1553   // This method extends an input value to 64 bit if input is 32-bit integer.
1554   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1555   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1556   // In such case, we extend it to 64 bit to be consistent with other values.
1557   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1558     if (V.getValueSizeInBits() == 64)
1559       return V;
1560 
1561     assert(V.getValueSizeInBits() == 32);
1562     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1563     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1564                                                    MVT::i64), 0);
1565     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1566                                                     MVT::i64, ImDef, V,
1567                                                     SubRegIdx), 0);
1568     return ExtVal;
1569   }
1570 
1571   // Depending on the number of groups for a particular value, it might be
1572   // better to rotate, mask explicitly (using andi/andis), and then or the
1573   // result. Select this part of the result first.
1574   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1575     if (BPermRewriterNoMasking)
1576       return;
1577 
1578     for (ValueRotInfo &VRI : ValueRotsVec) {
1579       unsigned Mask = 0;
1580       for (unsigned i = 0; i < Bits.size(); ++i) {
1581         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1582           continue;
1583         if (RLAmt[i] != VRI.RLAmt)
1584           continue;
1585         Mask |= (1u << i);
1586       }
1587 
1588       // Compute the masks for andi/andis that would be necessary.
1589       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1590       assert((ANDIMask != 0 || ANDISMask != 0) &&
1591              "No set bits in mask for value bit groups");
1592       bool NeedsRotate = VRI.RLAmt != 0;
1593 
1594       // We're trying to minimize the number of instructions. If we have one
1595       // group, using one of andi/andis can break even.  If we have three
1596       // groups, we can use both andi and andis and break even (to use both
1597       // andi and andis we also need to or the results together). We need four
1598       // groups if we also need to rotate. To use andi/andis we need to do more
1599       // than break even because rotate-and-mask instructions tend to be easier
1600       // to schedule.
1601 
1602       // FIXME: We've biased here against using andi/andis, which is right for
1603       // POWER cores, but not optimal everywhere. For example, on the A2,
1604       // andi/andis have single-cycle latency whereas the rotate-and-mask
1605       // instructions take two cycles, and it would be better to bias toward
1606       // andi/andis in break-even cases.
1607 
1608       unsigned NumAndInsts = (unsigned) NeedsRotate +
1609                              (unsigned) (ANDIMask != 0) +
1610                              (unsigned) (ANDISMask != 0) +
1611                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1612                              (unsigned) (bool) Res;
1613 
1614       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1615                       " RL: " << VRI.RLAmt << ":" <<
1616                       "\n\t\t\tisel using masking: " << NumAndInsts <<
1617                       " using rotates: " << VRI.NumGroups << "\n");
1618 
1619       if (NumAndInsts >= VRI.NumGroups)
1620         continue;
1621 
1622       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1623 
1624       if (InstCnt) *InstCnt += NumAndInsts;
1625 
1626       SDValue VRot;
1627       if (VRI.RLAmt) {
1628         SDValue Ops[] =
1629           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1630             getI32Imm(31, dl) };
1631         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1632                                               Ops), 0);
1633       } else {
1634         VRot = VRI.V;
1635       }
1636 
1637       SDValue ANDIVal, ANDISVal;
1638       if (ANDIMask != 0)
1639         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1640                             VRot, getI32Imm(ANDIMask, dl)), 0);
1641       if (ANDISMask != 0)
1642         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1643                              VRot, getI32Imm(ANDISMask, dl)), 0);
1644 
1645       SDValue TotalVal;
1646       if (!ANDIVal)
1647         TotalVal = ANDISVal;
1648       else if (!ANDISVal)
1649         TotalVal = ANDIVal;
1650       else
1651         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1652                              ANDIVal, ANDISVal), 0);
1653 
1654       if (!Res)
1655         Res = TotalVal;
1656       else
1657         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1658                         Res, TotalVal), 0);
1659 
1660       // Now, remove all groups with this underlying value and rotation
1661       // factor.
1662       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1663         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1664       });
1665     }
1666   }
1667 
1668   // Instruction selection for the 32-bit case.
1669   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1670     SDLoc dl(N);
1671     SDValue Res;
1672 
1673     if (InstCnt) *InstCnt = 0;
1674 
1675     // Take care of cases that should use andi/andis first.
1676     SelectAndParts32(dl, Res, InstCnt);
1677 
1678     // If we've not yet selected a 'starting' instruction, and we have no zeros
1679     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1680     // number of groups), and start with this rotated value.
1681     if ((!HasZeros || LateMask) && !Res) {
1682       ValueRotInfo &VRI = ValueRotsVec[0];
1683       if (VRI.RLAmt) {
1684         if (InstCnt) *InstCnt += 1;
1685         SDValue Ops[] =
1686           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1687             getI32Imm(31, dl) };
1688         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1689                       0);
1690       } else {
1691         Res = VRI.V;
1692       }
1693 
1694       // Now, remove all groups with this underlying value and rotation factor.
1695       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1696         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1697       });
1698     }
1699 
1700     if (InstCnt) *InstCnt += BitGroups.size();
1701 
1702     // Insert the other groups (one at a time).
1703     for (auto &BG : BitGroups) {
1704       if (!Res) {
1705         SDValue Ops[] =
1706           { BG.V, getI32Imm(BG.RLAmt, dl),
1707             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1708             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1709         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1710       } else {
1711         SDValue Ops[] =
1712           { Res, BG.V, getI32Imm(BG.RLAmt, dl),
1713               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1714             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1715         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1716       }
1717     }
1718 
1719     if (LateMask) {
1720       unsigned Mask = (unsigned) getZerosMask();
1721 
1722       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1723       assert((ANDIMask != 0 || ANDISMask != 0) &&
1724              "No set bits in zeros mask?");
1725 
1726       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1727                                (unsigned) (ANDISMask != 0) +
1728                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1729 
1730       SDValue ANDIVal, ANDISVal;
1731       if (ANDIMask != 0)
1732         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1733                             Res, getI32Imm(ANDIMask, dl)), 0);
1734       if (ANDISMask != 0)
1735         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1736                              Res, getI32Imm(ANDISMask, dl)), 0);
1737 
1738       if (!ANDIVal)
1739         Res = ANDISVal;
1740       else if (!ANDISVal)
1741         Res = ANDIVal;
1742       else
1743         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1744                         ANDIVal, ANDISVal), 0);
1745     }
1746 
1747     return Res.getNode();
1748   }
1749 
1750   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1751                                 unsigned MaskStart, unsigned MaskEnd,
1752                                 bool IsIns) {
1753     // In the notation used by the instructions, 'start' and 'end' are reversed
1754     // because bits are counted from high to low order.
1755     unsigned InstMaskStart = 64 - MaskEnd - 1,
1756              InstMaskEnd   = 64 - MaskStart - 1;
1757 
1758     if (Repl32)
1759       return 1;
1760 
1761     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1762         InstMaskEnd == 63 - RLAmt)
1763       return 1;
1764 
1765     return 2;
1766   }
1767 
1768   // For 64-bit values, not all combinations of rotates and masks are
1769   // available. Produce one if it is available.
1770   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1771                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1772                           unsigned *InstCnt = nullptr) {
1773     // In the notation used by the instructions, 'start' and 'end' are reversed
1774     // because bits are counted from high to low order.
1775     unsigned InstMaskStart = 64 - MaskEnd - 1,
1776              InstMaskEnd   = 64 - MaskStart - 1;
1777 
1778     if (InstCnt) *InstCnt += 1;
1779 
1780     if (Repl32) {
1781       // This rotation amount assumes that the lower 32 bits of the quantity
1782       // are replicated in the high 32 bits by the rotation operator (which is
1783       // done by rlwinm and friends).
1784       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1785       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1786       SDValue Ops[] =
1787         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1788           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
1789       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1790                                             Ops), 0);
1791     }
1792 
1793     if (InstMaskEnd == 63) {
1794       SDValue Ops[] =
1795         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1796           getI32Imm(InstMaskStart, dl) };
1797       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1798     }
1799 
1800     if (InstMaskStart == 0) {
1801       SDValue Ops[] =
1802         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1803           getI32Imm(InstMaskEnd, dl) };
1804       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1805     }
1806 
1807     if (InstMaskEnd == 63 - RLAmt) {
1808       SDValue Ops[] =
1809         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1810           getI32Imm(InstMaskStart, dl) };
1811       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1812     }
1813 
1814     // We cannot do this with a single instruction, so we'll use two. The
1815     // problem is that we're not free to choose both a rotation amount and mask
1816     // start and end independently. We can choose an arbitrary mask start and
1817     // end, but then the rotation amount is fixed. Rotation, however, can be
1818     // inverted, and so by applying an "inverse" rotation first, we can get the
1819     // desired result.
1820     if (InstCnt) *InstCnt += 1;
1821 
1822     // The rotation mask for the second instruction must be MaskStart.
1823     unsigned RLAmt2 = MaskStart;
1824     // The first instruction must rotate V so that the overall rotation amount
1825     // is RLAmt.
1826     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1827     if (RLAmt1)
1828       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1829     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1830   }
1831 
1832   // For 64-bit values, not all combinations of rotates and masks are
1833   // available. Produce a rotate-mask-and-insert if one is available.
1834   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
1835                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
1836                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1837     // In the notation used by the instructions, 'start' and 'end' are reversed
1838     // because bits are counted from high to low order.
1839     unsigned InstMaskStart = 64 - MaskEnd - 1,
1840              InstMaskEnd   = 64 - MaskStart - 1;
1841 
1842     if (InstCnt) *InstCnt += 1;
1843 
1844     if (Repl32) {
1845       // This rotation amount assumes that the lower 32 bits of the quantity
1846       // are replicated in the high 32 bits by the rotation operator (which is
1847       // done by rlwinm and friends).
1848       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1849       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1850       SDValue Ops[] =
1851         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1852           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
1853       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1854                                             Ops), 0);
1855     }
1856 
1857     if (InstMaskEnd == 63 - RLAmt) {
1858       SDValue Ops[] =
1859         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1860           getI32Imm(InstMaskStart, dl) };
1861       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1862     }
1863 
1864     // We cannot do this with a single instruction, so we'll use two. The
1865     // problem is that we're not free to choose both a rotation amount and mask
1866     // start and end independently. We can choose an arbitrary mask start and
1867     // end, but then the rotation amount is fixed. Rotation, however, can be
1868     // inverted, and so by applying an "inverse" rotation first, we can get the
1869     // desired result.
1870     if (InstCnt) *InstCnt += 1;
1871 
1872     // The rotation mask for the second instruction must be MaskStart.
1873     unsigned RLAmt2 = MaskStart;
1874     // The first instruction must rotate V so that the overall rotation amount
1875     // is RLAmt.
1876     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1877     if (RLAmt1)
1878       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1879     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1880   }
1881 
1882   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1883     if (BPermRewriterNoMasking)
1884       return;
1885 
1886     // The idea here is the same as in the 32-bit version, but with additional
1887     // complications from the fact that Repl32 might be true. Because we
1888     // aggressively convert bit groups to Repl32 form (which, for small
1889     // rotation factors, involves no other change), and then coalesce, it might
1890     // be the case that a single 64-bit masking operation could handle both
1891     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1892     // form allowed coalescing, then we must use a 32-bit rotaton in order to
1893     // completely capture the new combined bit group.
1894 
1895     for (ValueRotInfo &VRI : ValueRotsVec) {
1896       uint64_t Mask = 0;
1897 
1898       // We need to add to the mask all bits from the associated bit groups.
1899       // If Repl32 is false, we need to add bits from bit groups that have
1900       // Repl32 true, but are trivially convertable to Repl32 false. Such a
1901       // group is trivially convertable if it overlaps only with the lower 32
1902       // bits, and the group has not been coalesced.
1903       auto MatchingBG = [VRI](const BitGroup &BG) {
1904         if (VRI.V != BG.V)
1905           return false;
1906 
1907         unsigned EffRLAmt = BG.RLAmt;
1908         if (!VRI.Repl32 && BG.Repl32) {
1909           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1910               !BG.Repl32Coalesced) {
1911             if (BG.Repl32CR)
1912               EffRLAmt += 32;
1913           } else {
1914             return false;
1915           }
1916         } else if (VRI.Repl32 != BG.Repl32) {
1917           return false;
1918         }
1919 
1920         return VRI.RLAmt == EffRLAmt;
1921       };
1922 
1923       for (auto &BG : BitGroups) {
1924         if (!MatchingBG(BG))
1925           continue;
1926 
1927         if (BG.StartIdx <= BG.EndIdx) {
1928           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1929             Mask |= (UINT64_C(1) << i);
1930         } else {
1931           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1932             Mask |= (UINT64_C(1) << i);
1933           for (unsigned i = 0; i <= BG.EndIdx; ++i)
1934             Mask |= (UINT64_C(1) << i);
1935         }
1936       }
1937 
1938       // We can use the 32-bit andi/andis technique if the mask does not
1939       // require any higher-order bits. This can save an instruction compared
1940       // to always using the general 64-bit technique.
1941       bool Use32BitInsts = isUInt<32>(Mask);
1942       // Compute the masks for andi/andis that would be necessary.
1943       unsigned ANDIMask = (Mask & UINT16_MAX),
1944                ANDISMask = (Mask >> 16) & UINT16_MAX;
1945 
1946       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1947 
1948       unsigned NumAndInsts = (unsigned) NeedsRotate +
1949                              (unsigned) (bool) Res;
1950       if (Use32BitInsts)
1951         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1952                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1953       else
1954         NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
1955 
1956       unsigned NumRLInsts = 0;
1957       bool FirstBG = true;
1958       bool MoreBG = false;
1959       for (auto &BG : BitGroups) {
1960         if (!MatchingBG(BG)) {
1961           MoreBG = true;
1962           continue;
1963         }
1964         NumRLInsts +=
1965           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1966                                !FirstBG);
1967         FirstBG = false;
1968       }
1969 
1970       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1971                       " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1972                       "\n\t\t\tisel using masking: " << NumAndInsts <<
1973                       " using rotates: " << NumRLInsts << "\n");
1974 
1975       // When we'd use andi/andis, we bias toward using the rotates (andi only
1976       // has a record form, and is cracked on POWER cores). However, when using
1977       // general 64-bit constant formation, bias toward the constant form,
1978       // because that exposes more opportunities for CSE.
1979       if (NumAndInsts > NumRLInsts)
1980         continue;
1981       // When merging multiple bit groups, instruction or is used.
1982       // But when rotate is used, rldimi can inert the rotated value into any
1983       // register, so instruction or can be avoided.
1984       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
1985         continue;
1986 
1987       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1988 
1989       if (InstCnt) *InstCnt += NumAndInsts;
1990 
1991       SDValue VRot;
1992       // We actually need to generate a rotation if we have a non-zero rotation
1993       // factor or, in the Repl32 case, if we care about any of the
1994       // higher-order replicated bits. In the latter case, we generate a mask
1995       // backward so that it actually includes the entire 64 bits.
1996       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1997         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1998                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1999       else
2000         VRot = VRI.V;
2001 
2002       SDValue TotalVal;
2003       if (Use32BitInsts) {
2004         assert((ANDIMask != 0 || ANDISMask != 0) &&
2005                "No set bits in mask when using 32-bit ands for 64-bit value");
2006 
2007         SDValue ANDIVal, ANDISVal;
2008         if (ANDIMask != 0)
2009           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
2010                                                    ExtendToInt64(VRot, dl),
2011                                                    getI32Imm(ANDIMask, dl)),
2012                             0);
2013         if (ANDISMask != 0)
2014           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
2015                                                     ExtendToInt64(VRot, dl),
2016                                                     getI32Imm(ANDISMask, dl)),
2017                              0);
2018 
2019         if (!ANDIVal)
2020           TotalVal = ANDISVal;
2021         else if (!ANDISVal)
2022           TotalVal = ANDIVal;
2023         else
2024           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2025                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2026       } else {
2027         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2028         TotalVal =
2029           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2030                                          ExtendToInt64(VRot, dl), TotalVal),
2031                   0);
2032      }
2033 
2034       if (!Res)
2035         Res = TotalVal;
2036       else
2037         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2038                                              ExtendToInt64(Res, dl), TotalVal),
2039                       0);
2040 
2041       // Now, remove all groups with this underlying value and rotation
2042       // factor.
2043       eraseMatchingBitGroups(MatchingBG);
2044     }
2045   }
2046 
2047   // Instruction selection for the 64-bit case.
2048   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2049     SDLoc dl(N);
2050     SDValue Res;
2051 
2052     if (InstCnt) *InstCnt = 0;
2053 
2054     // Take care of cases that should use andi/andis first.
2055     SelectAndParts64(dl, Res, InstCnt);
2056 
2057     // If we've not yet selected a 'starting' instruction, and we have no zeros
2058     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2059     // number of groups), and start with this rotated value.
2060     if ((!HasZeros || LateMask) && !Res) {
2061       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2062       // groups will come first, and so the VRI representing the largest number
2063       // of groups might not be first (it might be the first Repl32 groups).
2064       unsigned MaxGroupsIdx = 0;
2065       if (!ValueRotsVec[0].Repl32) {
2066         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2067           if (ValueRotsVec[i].Repl32) {
2068             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2069               MaxGroupsIdx = i;
2070             break;
2071           }
2072       }
2073 
2074       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2075       bool NeedsRotate = false;
2076       if (VRI.RLAmt) {
2077         NeedsRotate = true;
2078       } else if (VRI.Repl32) {
2079         for (auto &BG : BitGroups) {
2080           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2081               BG.Repl32 != VRI.Repl32)
2082             continue;
2083 
2084           // We don't need a rotate if the bit group is confined to the lower
2085           // 32 bits.
2086           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2087             continue;
2088 
2089           NeedsRotate = true;
2090           break;
2091         }
2092       }
2093 
2094       if (NeedsRotate)
2095         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2096                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2097                               InstCnt);
2098       else
2099         Res = VRI.V;
2100 
2101       // Now, remove all groups with this underlying value and rotation factor.
2102       if (Res)
2103         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2104           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2105                  BG.Repl32 == VRI.Repl32;
2106         });
2107     }
2108 
2109     // Because 64-bit rotates are more flexible than inserts, we might have a
2110     // preference regarding which one we do first (to save one instruction).
2111     if (!Res)
2112       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2113         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2114                                 false) <
2115             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2116                                 true)) {
2117           if (I != BitGroups.begin()) {
2118             BitGroup BG = *I;
2119             BitGroups.erase(I);
2120             BitGroups.insert(BitGroups.begin(), BG);
2121           }
2122 
2123           break;
2124         }
2125       }
2126 
2127     // Insert the other groups (one at a time).
2128     for (auto &BG : BitGroups) {
2129       if (!Res)
2130         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2131                               BG.EndIdx, InstCnt);
2132       else
2133         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2134                                  BG.StartIdx, BG.EndIdx, InstCnt);
2135     }
2136 
2137     if (LateMask) {
2138       uint64_t Mask = getZerosMask();
2139 
2140       // We can use the 32-bit andi/andis technique if the mask does not
2141       // require any higher-order bits. This can save an instruction compared
2142       // to always using the general 64-bit technique.
2143       bool Use32BitInsts = isUInt<32>(Mask);
2144       // Compute the masks for andi/andis that would be necessary.
2145       unsigned ANDIMask = (Mask & UINT16_MAX),
2146                ANDISMask = (Mask >> 16) & UINT16_MAX;
2147 
2148       if (Use32BitInsts) {
2149         assert((ANDIMask != 0 || ANDISMask != 0) &&
2150                "No set bits in mask when using 32-bit ands for 64-bit value");
2151 
2152         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2153                                  (unsigned) (ANDISMask != 0) +
2154                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2155 
2156         SDValue ANDIVal, ANDISVal;
2157         if (ANDIMask != 0)
2158           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
2159                               ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0);
2160         if (ANDISMask != 0)
2161           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
2162                                ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0);
2163 
2164         if (!ANDIVal)
2165           Res = ANDISVal;
2166         else if (!ANDISVal)
2167           Res = ANDIVal;
2168         else
2169           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2170                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2171       } else {
2172         if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
2173 
2174         SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2175         Res =
2176           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2177                                          ExtendToInt64(Res, dl), MaskVal), 0);
2178       }
2179     }
2180 
2181     return Res.getNode();
2182   }
2183 
2184   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2185     // Fill in BitGroups.
2186     collectBitGroups(LateMask);
2187     if (BitGroups.empty())
2188       return nullptr;
2189 
2190     // For 64-bit values, figure out when we can use 32-bit instructions.
2191     if (Bits.size() == 64)
2192       assignRepl32BitGroups();
2193 
2194     // Fill in ValueRotsVec.
2195     collectValueRotInfo();
2196 
2197     if (Bits.size() == 32) {
2198       return Select32(N, LateMask, InstCnt);
2199     } else {
2200       assert(Bits.size() == 64 && "Not 64 bits here?");
2201       return Select64(N, LateMask, InstCnt);
2202     }
2203 
2204     return nullptr;
2205   }
2206 
2207   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2208     BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
2209   }
2210 
2211   SmallVector<ValueBit, 64> Bits;
2212 
2213   bool HasZeros;
2214   SmallVector<unsigned, 64> RLAmt;
2215 
2216   SmallVector<BitGroup, 16> BitGroups;
2217 
2218   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2219   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2220 
2221   SelectionDAG *CurDAG;
2222 
2223 public:
2224   BitPermutationSelector(SelectionDAG *DAG)
2225     : CurDAG(DAG) {}
2226 
2227   // Here we try to match complex bit permutations into a set of
2228   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2229   // known to produce optimial code for common cases (like i32 byte swapping).
2230   SDNode *Select(SDNode *N) {
2231     Memoizer.clear();
2232     auto Result =
2233         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2234     if (!Result.first)
2235       return nullptr;
2236     Bits = std::move(*Result.second);
2237 
2238     DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2239                     " selection for:    ");
2240     DEBUG(N->dump(CurDAG));
2241 
2242     // Fill it RLAmt and set HasZeros.
2243     computeRotationAmounts();
2244 
2245     if (!HasZeros)
2246       return Select(N, false);
2247 
2248     // We currently have two techniques for handling results with zeros: early
2249     // masking (the default) and late masking. Late masking is sometimes more
2250     // efficient, but because the structure of the bit groups is different, it
2251     // is hard to tell without generating both and comparing the results. With
2252     // late masking, we ignore zeros in the resulting value when inserting each
2253     // set of bit groups, and then mask in the zeros at the end. With early
2254     // masking, we only insert the non-zero parts of the result at every step.
2255 
2256     unsigned InstCnt, InstCntLateMask;
2257     DEBUG(dbgs() << "\tEarly masking:\n");
2258     SDNode *RN = Select(N, false, &InstCnt);
2259     DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2260 
2261     DEBUG(dbgs() << "\tLate masking:\n");
2262     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2263     DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
2264                     " instructions\n");
2265 
2266     if (InstCnt <= InstCntLateMask) {
2267       DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2268       return RN;
2269     }
2270 
2271     DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2272     return RNLM;
2273   }
2274 };
2275 
2276 class IntegerCompareEliminator {
2277   SelectionDAG *CurDAG;
2278   PPCDAGToDAGISel *S;
2279   // Conversion type for interpreting results of a 32-bit instruction as
2280   // a 64-bit value or vice versa.
2281   enum ExtOrTruncConversion { Ext, Trunc };
2282 
2283   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2284   // in a GPR.
2285   // ZExtOrig - use the original condition code, zero-extend value
2286   // ZExtInvert - invert the condition code, zero-extend value
2287   // SExtOrig - use the original condition code, sign-extend value
2288   // SExtInvert - invert the condition code, sign-extend value
2289   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2290 
2291   // Comparisons against zero to emit GPR code sequences for. Each of these
2292   // sequences may need to be emitted for two or more equivalent patterns.
2293   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2294   // matters as well as the extension type: sext (-1/0), zext (1/0).
2295   // GEZExt - (zext (LHS >= 0))
2296   // GESExt - (sext (LHS >= 0))
2297   // LEZExt - (zext (LHS <= 0))
2298   // LESExt - (sext (LHS <= 0))
2299   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2300 
2301   SDNode *tryEXTEND(SDNode *N);
2302   SDNode *tryLogicOpOfCompares(SDNode *N);
2303   SDValue computeLogicOpInGPR(SDValue LogicOp);
2304   SDValue signExtendInputIfNeeded(SDValue Input);
2305   SDValue zeroExtendInputIfNeeded(SDValue Input);
2306   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2307   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2308                                         ZeroCompare CmpTy);
2309   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2310                               int64_t RHSValue, SDLoc dl);
2311  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2312                               int64_t RHSValue, SDLoc dl);
2313   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2314                               int64_t RHSValue, SDLoc dl);
2315   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2316                               int64_t RHSValue, SDLoc dl);
2317   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2318 
2319 public:
2320   IntegerCompareEliminator(SelectionDAG *DAG,
2321                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2322     assert(CurDAG->getTargetLoweringInfo()
2323            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2324            "Only expecting to use this on 64 bit targets.");
2325   }
2326   SDNode *Select(SDNode *N) {
2327     if (CmpInGPR == ICGPR_None)
2328       return nullptr;
2329     switch (N->getOpcode()) {
2330     default: break;
2331     case ISD::ZERO_EXTEND:
2332       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2333           CmpInGPR == ICGPR_SextI64)
2334         return nullptr;
2335       LLVM_FALLTHROUGH;
2336     case ISD::SIGN_EXTEND:
2337       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2338           CmpInGPR == ICGPR_ZextI64)
2339         return nullptr;
2340       return tryEXTEND(N);
2341     case ISD::AND:
2342     case ISD::OR:
2343     case ISD::XOR:
2344       return tryLogicOpOfCompares(N);
2345     }
2346     return nullptr;
2347   }
2348 };
2349 
2350 static bool isLogicOp(unsigned Opc) {
2351   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2352 }
2353 // The obvious case for wanting to keep the value in a GPR. Namely, the
2354 // result of the comparison is actually needed in a GPR.
2355 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2356   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2357           N->getOpcode() == ISD::SIGN_EXTEND) &&
2358          "Expecting a zero/sign extend node!");
2359   SDValue WideRes;
2360   // If we are zero-extending the result of a logical operation on i1
2361   // values, we can keep the values in GPRs.
2362   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2363       N->getOperand(0).getValueType() == MVT::i1 &&
2364       N->getOpcode() == ISD::ZERO_EXTEND)
2365     WideRes = computeLogicOpInGPR(N->getOperand(0));
2366   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2367     return nullptr;
2368   else
2369     WideRes =
2370       getSETCCInGPR(N->getOperand(0),
2371                     N->getOpcode() == ISD::SIGN_EXTEND ?
2372                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2373 
2374   if (!WideRes)
2375     return nullptr;
2376 
2377   SDLoc dl(N);
2378   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2379   bool Output32Bit = N->getValueType(0) == MVT::i32;
2380 
2381   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2382   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2383 
2384   SDValue ConvOp = WideRes;
2385   if (Input32Bit != Output32Bit)
2386     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2387                            ExtOrTruncConversion::Trunc);
2388   return ConvOp.getNode();
2389 }
2390 
2391 // Attempt to perform logical operations on the results of comparisons while
2392 // keeping the values in GPRs. Without doing so, these would end up being
2393 // lowered to CR-logical operations which suffer from significant latency and
2394 // low ILP.
2395 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2396   if (N->getValueType(0) != MVT::i1)
2397     return nullptr;
2398   assert(isLogicOp(N->getOpcode()) &&
2399          "Expected a logic operation on setcc results.");
2400   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2401   if (!LoweredLogical)
2402     return nullptr;
2403 
2404   SDLoc dl(N);
2405   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2406   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2407   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2408   SDValue LHS = LoweredLogical.getOperand(0);
2409   SDValue RHS = LoweredLogical.getOperand(1);
2410   SDValue WideOp;
2411   SDValue OpToConvToRecForm;
2412 
2413   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2414   // opcode that is input to the XORI.
2415   if (IsBitwiseNegate &&
2416       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2417     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2418   else if (IsBitwiseNegate)
2419     // If the input to the XORI isn't an extension, that's what we're after.
2420     OpToConvToRecForm = LoweredLogical.getOperand(0);
2421   else
2422     // If this is not an XORI, it is a reg-reg logical op and we can convert
2423     // it to record-form.
2424     OpToConvToRecForm = LoweredLogical;
2425 
2426   // Get the record-form version of the node we're looking to use to get the
2427   // CR result from.
2428   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2429   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2430 
2431   // Convert the right node to record-form. This is either the logical we're
2432   // looking at or it is the input node to the negation (if we're looking at
2433   // a bitwise negation).
2434   if (NewOpc != -1 && IsBitwiseNegate) {
2435     // The input to the XORI has a record-form. Use it.
2436     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2437            "Expected a PPC::XORI8 only for bitwise negation.");
2438     // Emit the record-form instruction.
2439     std::vector<SDValue> Ops;
2440     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2441       Ops.push_back(OpToConvToRecForm.getOperand(i));
2442 
2443     WideOp =
2444       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2445                                      OpToConvToRecForm.getValueType(),
2446                                      MVT::Glue, Ops), 0);
2447   } else {
2448     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2449            "No record form available for AND8/OR8/XOR8?");
2450     WideOp =
2451       SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl,
2452                                      MVT::i64, MVT::Glue, LHS, RHS), 0);
2453   }
2454 
2455   // Select this node to a single bit from CR0 set by the record-form node
2456   // just created. For bitwise negation, use the EQ bit which is the equivalent
2457   // of negating the result (i.e. it is a bit set when the result of the
2458   // operation is zero).
2459   SDValue SRIdxVal =
2460     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2461   SDValue CRBit =
2462     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2463                                    MVT::i1, CR0Reg, SRIdxVal,
2464                                    WideOp.getValue(1)), 0);
2465   return CRBit.getNode();
2466 }
2467 
2468 // Lower a logical operation on i1 values into a GPR sequence if possible.
2469 // The result can be kept in a GPR if requested.
2470 // Three types of inputs can be handled:
2471 // - SETCC
2472 // - TRUNCATE
2473 // - Logical operation (AND/OR/XOR)
2474 // There is also a special case that is handled (namely a complement operation
2475 // achieved with xor %a, -1).
2476 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2477   assert(isLogicOp(LogicOp.getOpcode()) &&
2478         "Can only handle logic operations here.");
2479   assert(LogicOp.getValueType() == MVT::i1 &&
2480          "Can only handle logic operations on i1 values here.");
2481   SDLoc dl(LogicOp);
2482   SDValue LHS, RHS;
2483 
2484  // Special case: xor %a, -1
2485   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2486 
2487   // Produces a GPR sequence for each operand of the binary logic operation.
2488   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2489   // the value in a GPR and for logic operations, it will recursively produce
2490   // a GPR sequence for the operation.
2491  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2492     unsigned OperandOpcode = Operand.getOpcode();
2493     if (OperandOpcode == ISD::SETCC)
2494       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2495     else if (OperandOpcode == ISD::TRUNCATE) {
2496       SDValue InputOp = Operand.getOperand(0);
2497      EVT InVT = InputOp.getValueType();
2498       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2499                                             PPC::RLDICL, dl, InVT, InputOp,
2500                                             S->getI64Imm(0, dl),
2501                                             S->getI64Imm(63, dl)), 0);
2502     } else if (isLogicOp(OperandOpcode))
2503       return computeLogicOpInGPR(Operand);
2504     return SDValue();
2505   };
2506   LHS = getLogicOperand(LogicOp.getOperand(0));
2507   RHS = getLogicOperand(LogicOp.getOperand(1));
2508 
2509   // If a GPR sequence can't be produced for the LHS we can't proceed.
2510   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2511   // a bitwise negation operation.
2512   if (!LHS || (!RHS && !IsBitwiseNegation))
2513     return SDValue();
2514 
2515   NumLogicOpsOnComparison++;
2516 
2517   // We will use the inputs as 64-bit values.
2518   if (LHS.getValueType() == MVT::i32)
2519     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2520   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2521     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2522 
2523   unsigned NewOpc;
2524   switch (LogicOp.getOpcode()) {
2525   default: llvm_unreachable("Unknown logic operation.");
2526   case ISD::AND: NewOpc = PPC::AND8; break;
2527   case ISD::OR:  NewOpc = PPC::OR8;  break;
2528   case ISD::XOR: NewOpc = PPC::XOR8; break;
2529   }
2530 
2531   if (IsBitwiseNegation) {
2532     RHS = S->getI64Imm(1, dl);
2533     NewOpc = PPC::XORI8;
2534   }
2535 
2536   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2537 
2538 }
2539 
2540 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2541 /// Otherwise just reinterpret it as a 64-bit value.
2542 /// Useful when emitting comparison code for 32-bit values without using
2543 /// the compare instruction (which only considers the lower 32-bits).
2544 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2545   assert(Input.getValueType() == MVT::i32 &&
2546          "Can only sign-extend 32-bit values here.");
2547   unsigned Opc = Input.getOpcode();
2548 
2549   // The value was sign extended and then truncated to 32-bits. No need to
2550   // sign extend it again.
2551   if (Opc == ISD::TRUNCATE &&
2552       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2553        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2554     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2555 
2556   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2557   // The input is a sign-extending load. All ppc sign-extending loads
2558   // sign-extend to the full 64-bits.
2559   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
2560     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2561 
2562   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2563   // We don't sign-extend constants.
2564   if (InputConst)
2565     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2566 
2567   SDLoc dl(Input);
2568   SignExtensionsAdded++;
2569   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
2570                                         MVT::i64, Input), 0);
2571 }
2572 
2573 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
2574 /// Otherwise just reinterpret it as a 64-bit value.
2575 /// Useful when emitting comparison code for 32-bit values without using
2576 /// the compare instruction (which only considers the lower 32-bits).
2577 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
2578   assert(Input.getValueType() == MVT::i32 &&
2579          "Can only zero-extend 32-bit values here.");
2580   unsigned Opc = Input.getOpcode();
2581 
2582   // The only condition under which we can omit the actual extend instruction:
2583   // - The value is a positive constant
2584   // - The value comes from a load that isn't a sign-extending load
2585   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
2586   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
2587     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
2588      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
2589   if (IsTruncateOfZExt)
2590     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2591 
2592   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2593   if (InputConst && InputConst->getSExtValue() >= 0)
2594     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2595 
2596   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2597   // The input is a load that doesn't sign-extend (it will be zero-extended).
2598   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
2599     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2600 
2601   // None of the above, need to zero-extend.
2602   SDLoc dl(Input);
2603   ZeroExtensionsAdded++;
2604   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
2605                                         S->getI64Imm(0, dl),
2606                                         S->getI64Imm(32, dl)), 0);
2607 }
2608 
2609 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
2610 // course not actual zero/sign extensions that will generate machine code,
2611 // they're just a way to reinterpret a 32 bit value in a register as a
2612 // 64 bit value and vice-versa.
2613 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
2614                                                 ExtOrTruncConversion Conv) {
2615   SDLoc dl(NatWidthRes);
2616 
2617   // For reinterpreting 32-bit values as 64 bit values, we generate
2618   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
2619   if (Conv == ExtOrTruncConversion::Ext) {
2620     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
2621     SDValue SubRegIdx =
2622       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2623     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
2624                                           ImDef, NatWidthRes, SubRegIdx), 0);
2625   }
2626 
2627   assert(Conv == ExtOrTruncConversion::Trunc &&
2628          "Unknown convertion between 32 and 64 bit values.");
2629   // For reinterpreting 64-bit values as 32-bit values, we just need to
2630   // EXTRACT_SUBREG (i.e. extract the low word).
2631   SDValue SubRegIdx =
2632     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2633   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
2634                                         NatWidthRes, SubRegIdx), 0);
2635 }
2636 
2637 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
2638 // Handle both zero-extensions and sign-extensions.
2639 SDValue
2640 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2641                                                          ZeroCompare CmpTy) {
2642   EVT InVT = LHS.getValueType();
2643   bool Is32Bit = InVT == MVT::i32;
2644   SDValue ToExtend;
2645 
2646   // Produce the value that needs to be either zero or sign extended.
2647   switch (CmpTy) {
2648   case ZeroCompare::GEZExt:
2649   case ZeroCompare::GESExt:
2650     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
2651                                               dl, InVT, LHS, LHS), 0);
2652     break;
2653   case ZeroCompare::LEZExt:
2654   case ZeroCompare::LESExt: {
2655     if (Is32Bit) {
2656       // Upper 32 bits cannot be undefined for this sequence.
2657       LHS = signExtendInputIfNeeded(LHS);
2658       SDValue Neg =
2659         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2660       ToExtend =
2661         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2662                                        Neg, S->getI64Imm(1, dl),
2663                                        S->getI64Imm(63, dl)), 0);
2664     } else {
2665       SDValue Addi =
2666         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
2667                                        S->getI64Imm(~0ULL, dl)), 0);
2668       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2669                                                 Addi, LHS), 0);
2670     }
2671     break;
2672   }
2673   }
2674 
2675   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
2676   if (!Is32Bit &&
2677       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
2678     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2679                                           ToExtend, S->getI64Imm(1, dl),
2680                                           S->getI64Imm(63, dl)), 0);
2681   if (!Is32Bit &&
2682       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
2683     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
2684                                           S->getI64Imm(63, dl)), 0);
2685 
2686   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
2687   // For 32-bit sequences, the extensions differ between GE/LE cases.
2688   switch (CmpTy) {
2689   case ZeroCompare::GEZExt: {
2690     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
2691                            S->getI32Imm(31, dl) };
2692     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2693                                           ShiftOps), 0);
2694   }
2695   case ZeroCompare::GESExt:
2696     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
2697                                           S->getI32Imm(31, dl)), 0);
2698   case ZeroCompare::LEZExt:
2699     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
2700                                           S->getI32Imm(1, dl)), 0);
2701   case ZeroCompare::LESExt:
2702     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
2703                                           S->getI32Imm(-1, dl)), 0);
2704   }
2705 
2706   // The above case covers all the enumerators so it can't have a default clause
2707   // to avoid compiler warnings.
2708   llvm_unreachable("Unknown zero-comparison type.");
2709 }
2710 
2711 /// Produces a zero-extended result of comparing two 32-bit values according to
2712 /// the passed condition code.
2713 SDValue
2714 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
2715                                               ISD::CondCode CC,
2716                                               int64_t RHSValue, SDLoc dl) {
2717   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
2718       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
2719     return SDValue();
2720   bool IsRHSZero = RHSValue == 0;
2721   bool IsRHSOne = RHSValue == 1;
2722   bool IsRHSNegOne = RHSValue == -1LL;
2723   switch (CC) {
2724   default: return SDValue();
2725   case ISD::SETEQ: {
2726     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
2727     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
2728     SDValue Xor = IsRHSZero ? LHS :
2729       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2730     SDValue Clz =
2731       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2732     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2733       S->getI32Imm(31, dl) };
2734     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2735                                           ShiftOps), 0);
2736   }
2737   case ISD::SETNE: {
2738     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
2739     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
2740     SDValue Xor = IsRHSZero ? LHS :
2741       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2742     SDValue Clz =
2743       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2744     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2745       S->getI32Imm(31, dl) };
2746     SDValue Shift =
2747       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2748     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2749                                           S->getI32Imm(1, dl)), 0);
2750   }
2751   case ISD::SETGE: {
2752     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
2753     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
2754     if(IsRHSZero)
2755       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2756 
2757     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2758     // by swapping inputs and falling through.
2759     std::swap(LHS, RHS);
2760     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2761     IsRHSZero = RHSConst && RHSConst->isNullValue();
2762     LLVM_FALLTHROUGH;
2763   }
2764   case ISD::SETLE: {
2765     if (CmpInGPR == ICGPR_NonExtIn)
2766       return SDValue();
2767     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
2768     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
2769     if(IsRHSZero) {
2770       if (CmpInGPR == ICGPR_NonExtIn)
2771         return SDValue();
2772       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2773     }
2774 
2775     // The upper 32-bits of the register can't be undefined for this sequence.
2776     LHS = signExtendInputIfNeeded(LHS);
2777     RHS = signExtendInputIfNeeded(RHS);
2778     SDValue Sub =
2779       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2780     SDValue Shift =
2781       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
2782                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
2783               0);
2784     return
2785       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
2786                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
2787   }
2788   case ISD::SETGT: {
2789     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
2790     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
2791     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
2792     // Handle SETLT -1 (which is equivalent to SETGE 0).
2793     if (IsRHSNegOne)
2794       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2795 
2796     if (IsRHSZero) {
2797       if (CmpInGPR == ICGPR_NonExtIn)
2798         return SDValue();
2799       // The upper 32-bits of the register can't be undefined for this sequence.
2800       LHS = signExtendInputIfNeeded(LHS);
2801       RHS = signExtendInputIfNeeded(RHS);
2802       SDValue Neg =
2803         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2804       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2805                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
2806     }
2807     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
2808     // (%b < %a) by swapping inputs and falling through.
2809     std::swap(LHS, RHS);
2810     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2811     IsRHSZero = RHSConst && RHSConst->isNullValue();
2812     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
2813     LLVM_FALLTHROUGH;
2814   }
2815   case ISD::SETLT: {
2816     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
2817     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
2818     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
2819     // Handle SETLT 1 (which is equivalent to SETLE 0).
2820     if (IsRHSOne) {
2821       if (CmpInGPR == ICGPR_NonExtIn)
2822         return SDValue();
2823       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2824     }
2825 
2826     if (IsRHSZero) {
2827       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
2828                              S->getI32Imm(31, dl) };
2829       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2830                                             ShiftOps), 0);
2831     }
2832 
2833     if (CmpInGPR == ICGPR_NonExtIn)
2834       return SDValue();
2835     // The upper 32-bits of the register can't be undefined for this sequence.
2836     LHS = signExtendInputIfNeeded(LHS);
2837     RHS = signExtendInputIfNeeded(RHS);
2838     SDValue SUBFNode =
2839       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
2840     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2841                                     SUBFNode, S->getI64Imm(1, dl),
2842                                     S->getI64Imm(63, dl)), 0);
2843   }
2844   case ISD::SETUGE:
2845     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
2846     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
2847     std::swap(LHS, RHS);
2848     LLVM_FALLTHROUGH;
2849   case ISD::SETULE: {
2850     if (CmpInGPR == ICGPR_NonExtIn)
2851       return SDValue();
2852     // The upper 32-bits of the register can't be undefined for this sequence.
2853     LHS = zeroExtendInputIfNeeded(LHS);
2854     RHS = zeroExtendInputIfNeeded(RHS);
2855     SDValue Subtract =
2856       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2857     SDValue SrdiNode =
2858       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2859                                           Subtract, S->getI64Imm(1, dl),
2860                                           S->getI64Imm(63, dl)), 0);
2861     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
2862                                             S->getI32Imm(1, dl)), 0);
2863   }
2864   case ISD::SETUGT:
2865     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
2866     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
2867     std::swap(LHS, RHS);
2868     LLVM_FALLTHROUGH;
2869   case ISD::SETULT: {
2870     if (CmpInGPR == ICGPR_NonExtIn)
2871       return SDValue();
2872     // The upper 32-bits of the register can't be undefined for this sequence.
2873     LHS = zeroExtendInputIfNeeded(LHS);
2874     RHS = zeroExtendInputIfNeeded(RHS);
2875     SDValue Subtract =
2876       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
2877     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2878                                           Subtract, S->getI64Imm(1, dl),
2879                                           S->getI64Imm(63, dl)), 0);
2880   }
2881   }
2882 }
2883 
2884 /// Produces a sign-extended result of comparing two 32-bit values according to
2885 /// the passed condition code.
2886 SDValue
2887 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
2888                                               ISD::CondCode CC,
2889                                               int64_t RHSValue, SDLoc dl) {
2890   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
2891       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
2892     return SDValue();
2893   bool IsRHSZero = RHSValue == 0;
2894   bool IsRHSOne = RHSValue == 1;
2895   bool IsRHSNegOne = RHSValue == -1LL;
2896 
2897   switch (CC) {
2898   default: return SDValue();
2899   case ISD::SETEQ: {
2900     // (sext (setcc %a, %b, seteq)) ->
2901     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
2902     // (sext (setcc %a, 0, seteq)) ->
2903     //   (ashr (shl (ctlz %a), 58), 63)
2904     SDValue CountInput = IsRHSZero ? LHS :
2905       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2906     SDValue Cntlzw =
2907       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
2908     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
2909                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
2910     SDValue Slwi =
2911       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
2912     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
2913   }
2914   case ISD::SETNE: {
2915     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
2916     // flip the bit, finally take 2's complement.
2917     // (sext (setcc %a, %b, setne)) ->
2918     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
2919     // Same as above, but the first xor is not needed.
2920     // (sext (setcc %a, 0, setne)) ->
2921     //   (neg (xor (lshr (ctlz %a), 5), 1))
2922     SDValue Xor = IsRHSZero ? LHS :
2923       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2924     SDValue Clz =
2925       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2926     SDValue ShiftOps[] =
2927       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
2928     SDValue Shift =
2929       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2930     SDValue Xori =
2931       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2932                                      S->getI32Imm(1, dl)), 0);
2933     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
2934   }
2935   case ISD::SETGE: {
2936     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
2937     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
2938     if (IsRHSZero)
2939       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
2940 
2941     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2942     // by swapping inputs and falling through.
2943     std::swap(LHS, RHS);
2944     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2945     IsRHSZero = RHSConst && RHSConst->isNullValue();
2946     LLVM_FALLTHROUGH;
2947   }
2948   case ISD::SETLE: {
2949     if (CmpInGPR == ICGPR_NonExtIn)
2950       return SDValue();
2951     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
2952     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
2953     if (IsRHSZero)
2954       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
2955 
2956     // The upper 32-bits of the register can't be undefined for this sequence.
2957     LHS = signExtendInputIfNeeded(LHS);
2958     RHS = signExtendInputIfNeeded(RHS);
2959     SDValue SUBFNode =
2960       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
2961                                      LHS, RHS), 0);
2962     SDValue Srdi =
2963       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2964                                      SUBFNode, S->getI64Imm(1, dl),
2965                                      S->getI64Imm(63, dl)), 0);
2966     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
2967                                           S->getI32Imm(-1, dl)), 0);
2968   }
2969   case ISD::SETGT: {
2970     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
2971     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
2972     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
2973     if (IsRHSNegOne)
2974       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
2975     if (IsRHSZero) {
2976       if (CmpInGPR == ICGPR_NonExtIn)
2977         return SDValue();
2978       // The upper 32-bits of the register can't be undefined for this sequence.
2979       LHS = signExtendInputIfNeeded(LHS);
2980       RHS = signExtendInputIfNeeded(RHS);
2981       SDValue Neg =
2982         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2983         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
2984                                               S->getI64Imm(63, dl)), 0);
2985     }
2986     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
2987     // (%b < %a) by swapping inputs and falling through.
2988     std::swap(LHS, RHS);
2989     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2990     IsRHSZero = RHSConst && RHSConst->isNullValue();
2991     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
2992     LLVM_FALLTHROUGH;
2993   }
2994   case ISD::SETLT: {
2995     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
2996     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
2997     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
2998     if (IsRHSOne) {
2999       if (CmpInGPR == ICGPR_NonExtIn)
3000         return SDValue();
3001       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3002     }
3003     if (IsRHSZero)
3004       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3005                                             S->getI32Imm(31, dl)), 0);
3006 
3007     if (CmpInGPR == ICGPR_NonExtIn)
3008       return SDValue();
3009     // The upper 32-bits of the register can't be undefined for this sequence.
3010     LHS = signExtendInputIfNeeded(LHS);
3011     RHS = signExtendInputIfNeeded(RHS);
3012     SDValue SUBFNode =
3013       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3014     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3015                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3016   }
3017   case ISD::SETUGE:
3018     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3019     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3020     std::swap(LHS, RHS);
3021     LLVM_FALLTHROUGH;
3022   case ISD::SETULE: {
3023     if (CmpInGPR == ICGPR_NonExtIn)
3024       return SDValue();
3025     // The upper 32-bits of the register can't be undefined for this sequence.
3026     LHS = zeroExtendInputIfNeeded(LHS);
3027     RHS = zeroExtendInputIfNeeded(RHS);
3028     SDValue Subtract =
3029       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3030     SDValue Shift =
3031       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3032                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3033               0);
3034     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3035                                           S->getI32Imm(-1, dl)), 0);
3036   }
3037   case ISD::SETUGT:
3038     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3039     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3040     std::swap(LHS, RHS);
3041     LLVM_FALLTHROUGH;
3042   case ISD::SETULT: {
3043     if (CmpInGPR == ICGPR_NonExtIn)
3044       return SDValue();
3045     // The upper 32-bits of the register can't be undefined for this sequence.
3046     LHS = zeroExtendInputIfNeeded(LHS);
3047     RHS = zeroExtendInputIfNeeded(RHS);
3048     SDValue Subtract =
3049       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3050     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3051                                           Subtract, S->getI64Imm(63, dl)), 0);
3052   }
3053   }
3054 }
3055 
3056 /// Produces a zero-extended result of comparing two 64-bit values according to
3057 /// the passed condition code.
3058 SDValue
3059 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3060                                               ISD::CondCode CC,
3061                                               int64_t RHSValue, SDLoc dl) {
3062   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3063       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3064     return SDValue();
3065   bool IsRHSZero = RHSValue == 0;
3066   bool IsRHSOne = RHSValue == 1;
3067   bool IsRHSNegOne = RHSValue == -1LL;
3068   switch (CC) {
3069   default: return SDValue();
3070   case ISD::SETEQ: {
3071     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3072     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3073     SDValue Xor = IsRHSZero ? LHS :
3074       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3075     SDValue Clz =
3076       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3077     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3078                                           S->getI64Imm(58, dl),
3079                                           S->getI64Imm(63, dl)), 0);
3080   }
3081   case ISD::SETNE: {
3082     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3083     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3084     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3085     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3086     SDValue Xor = IsRHSZero ? LHS :
3087       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3088     SDValue AC =
3089       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3090                                      Xor, S->getI32Imm(~0U, dl)), 0);
3091     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3092                                           Xor, AC.getValue(1)), 0);
3093   }
3094   case ISD::SETGE: {
3095     // {subc.reg, subc.CA} = (subcarry %a, %b)
3096     // (zext (setcc %a, %b, setge)) ->
3097     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3098     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3099     if (IsRHSZero)
3100       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3101     std::swap(LHS, RHS);
3102     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3103     IsRHSZero = RHSConst && RHSConst->isNullValue();
3104     LLVM_FALLTHROUGH;
3105   }
3106   case ISD::SETLE: {
3107     // {subc.reg, subc.CA} = (subcarry %b, %a)
3108     // (zext (setcc %a, %b, setge)) ->
3109     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3110     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3111     if (IsRHSZero)
3112       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3113     SDValue ShiftL =
3114       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3115                                      S->getI64Imm(1, dl),
3116                                      S->getI64Imm(63, dl)), 0);
3117     SDValue ShiftR =
3118       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3119                                      S->getI64Imm(63, dl)), 0);
3120     SDValue SubtractCarry =
3121       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3122                                      LHS, RHS), 1);
3123     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3124                                           ShiftR, ShiftL, SubtractCarry), 0);
3125   }
3126   case ISD::SETGT: {
3127     // {subc.reg, subc.CA} = (subcarry %b, %a)
3128     // (zext (setcc %a, %b, setgt)) ->
3129     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3130     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3131     if (IsRHSNegOne)
3132       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3133     if (IsRHSZero) {
3134       SDValue Addi =
3135         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3136                                        S->getI64Imm(~0ULL, dl)), 0);
3137       SDValue Nor =
3138         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3139       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3140                                             S->getI64Imm(1, dl),
3141                                             S->getI64Imm(63, dl)), 0);
3142     }
3143     std::swap(LHS, RHS);
3144     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3145     IsRHSZero = RHSConst && RHSConst->isNullValue();
3146     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3147     LLVM_FALLTHROUGH;
3148   }
3149   case ISD::SETLT: {
3150     // {subc.reg, subc.CA} = (subcarry %a, %b)
3151     // (zext (setcc %a, %b, setlt)) ->
3152     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3153     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3154     if (IsRHSOne)
3155       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3156     if (IsRHSZero)
3157       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3158                                             S->getI64Imm(1, dl),
3159                                             S->getI64Imm(63, dl)), 0);
3160     SDValue SRADINode =
3161       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3162                                      LHS, S->getI64Imm(63, dl)), 0);
3163     SDValue SRDINode =
3164       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3165                                      RHS, S->getI64Imm(1, dl),
3166                                      S->getI64Imm(63, dl)), 0);
3167     SDValue SUBFC8Carry =
3168       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3169                                      RHS, LHS), 1);
3170     SDValue ADDE8Node =
3171       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3172                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3173     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3174                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3175   }
3176   case ISD::SETUGE:
3177     // {subc.reg, subc.CA} = (subcarry %a, %b)
3178     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3179     std::swap(LHS, RHS);
3180     LLVM_FALLTHROUGH;
3181   case ISD::SETULE: {
3182     // {subc.reg, subc.CA} = (subcarry %b, %a)
3183     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3184     SDValue SUBFC8Carry =
3185       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3186                                      LHS, RHS), 1);
3187     SDValue SUBFE8Node =
3188       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3189                                      LHS, LHS, SUBFC8Carry), 0);
3190     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3191                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3192   }
3193   case ISD::SETUGT:
3194     // {subc.reg, subc.CA} = (subcarry %b, %a)
3195     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3196     std::swap(LHS, RHS);
3197     LLVM_FALLTHROUGH;
3198   case ISD::SETULT: {
3199     // {subc.reg, subc.CA} = (subcarry %a, %b)
3200     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3201     SDValue SubtractCarry =
3202       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3203                                      RHS, LHS), 1);
3204     SDValue ExtSub =
3205       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3206                                      LHS, LHS, SubtractCarry), 0);
3207     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3208                                           ExtSub), 0);
3209   }
3210   }
3211 }
3212 
3213 /// Produces a sign-extended result of comparing two 64-bit values according to
3214 /// the passed condition code.
3215 SDValue
3216 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3217                                               ISD::CondCode CC,
3218                                               int64_t RHSValue, SDLoc dl) {
3219   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3220       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3221     return SDValue();
3222   bool IsRHSZero = RHSValue == 0;
3223   bool IsRHSOne = RHSValue == 1;
3224   bool IsRHSNegOne = RHSValue == -1LL;
3225   switch (CC) {
3226   default: return SDValue();
3227   case ISD::SETEQ: {
3228     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3229     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3230     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3231     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3232     SDValue AddInput = IsRHSZero ? LHS :
3233       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3234     SDValue Addic =
3235       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3236                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3237     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3238                                           Addic, Addic.getValue(1)), 0);
3239   }
3240   case ISD::SETNE: {
3241     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3242     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3243     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3244     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3245     SDValue Xor = IsRHSZero ? LHS :
3246       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3247     SDValue SC =
3248       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3249                                      Xor, S->getI32Imm(0, dl)), 0);
3250     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3251                                           SC, SC.getValue(1)), 0);
3252   }
3253   case ISD::SETGE: {
3254     // {subc.reg, subc.CA} = (subcarry %a, %b)
3255     // (zext (setcc %a, %b, setge)) ->
3256     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3257     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3258     if (IsRHSZero)
3259       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3260     std::swap(LHS, RHS);
3261     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3262     IsRHSZero = RHSConst && RHSConst->isNullValue();
3263     LLVM_FALLTHROUGH;
3264   }
3265   case ISD::SETLE: {
3266     // {subc.reg, subc.CA} = (subcarry %b, %a)
3267     // (zext (setcc %a, %b, setge)) ->
3268     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3269     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3270     if (IsRHSZero)
3271       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3272     SDValue ShiftR =
3273       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3274                                      S->getI64Imm(63, dl)), 0);
3275     SDValue ShiftL =
3276       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3277                                      S->getI64Imm(1, dl),
3278                                      S->getI64Imm(63, dl)), 0);
3279     SDValue SubtractCarry =
3280       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3281                                      LHS, RHS), 1);
3282     SDValue Adde =
3283       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3284                                      ShiftR, ShiftL, SubtractCarry), 0);
3285     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3286   }
3287   case ISD::SETGT: {
3288     // {subc.reg, subc.CA} = (subcarry %b, %a)
3289     // (zext (setcc %a, %b, setgt)) ->
3290     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3291     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3292     if (IsRHSNegOne)
3293       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3294     if (IsRHSZero) {
3295       SDValue Add =
3296         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3297                                        S->getI64Imm(-1, dl)), 0);
3298       SDValue Nor =
3299         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3300       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3301                                             S->getI64Imm(63, dl)), 0);
3302     }
3303     std::swap(LHS, RHS);
3304     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3305     IsRHSZero = RHSConst && RHSConst->isNullValue();
3306     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3307     LLVM_FALLTHROUGH;
3308   }
3309   case ISD::SETLT: {
3310     // {subc.reg, subc.CA} = (subcarry %a, %b)
3311     // (zext (setcc %a, %b, setlt)) ->
3312     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3313     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3314     if (IsRHSOne)
3315       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3316     if (IsRHSZero) {
3317       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3318                                             S->getI64Imm(63, dl)), 0);
3319     }
3320     SDValue SRADINode =
3321       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3322                                      LHS, S->getI64Imm(63, dl)), 0);
3323     SDValue SRDINode =
3324       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3325                                      RHS, S->getI64Imm(1, dl),
3326                                      S->getI64Imm(63, dl)), 0);
3327     SDValue SUBFC8Carry =
3328       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3329                                      RHS, LHS), 1);
3330     SDValue ADDE8Node =
3331       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3332                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3333     SDValue XORI8Node =
3334       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3335                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3336     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3337                                           XORI8Node), 0);
3338   }
3339   case ISD::SETUGE:
3340     // {subc.reg, subc.CA} = (subcarry %a, %b)
3341     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3342     std::swap(LHS, RHS);
3343     LLVM_FALLTHROUGH;
3344   case ISD::SETULE: {
3345     // {subc.reg, subc.CA} = (subcarry %b, %a)
3346     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3347     SDValue SubtractCarry =
3348       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3349                                      LHS, RHS), 1);
3350     SDValue ExtSub =
3351       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3352                                      LHS, SubtractCarry), 0);
3353     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3354                                           ExtSub, ExtSub), 0);
3355   }
3356   case ISD::SETUGT:
3357     // {subc.reg, subc.CA} = (subcarry %b, %a)
3358     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3359     std::swap(LHS, RHS);
3360     LLVM_FALLTHROUGH;
3361   case ISD::SETULT: {
3362     // {subc.reg, subc.CA} = (subcarry %a, %b)
3363     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3364     SDValue SubCarry =
3365       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3366                                      RHS, LHS), 1);
3367     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3368                                      LHS, LHS, SubCarry), 0);
3369   }
3370   }
3371 }
3372 
3373 /// Do all uses of this SDValue need the result in a GPR?
3374 /// This is meant to be used on values that have type i1 since
3375 /// it is somewhat meaningless to ask if values of other types
3376 /// should be kept in GPR's.
3377 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3378   assert(Compare.getOpcode() == ISD::SETCC &&
3379          "An ISD::SETCC node required here.");
3380 
3381   // For values that have a single use, the caller should obviously already have
3382   // checked if that use is an extending use. We check the other uses here.
3383   if (Compare.hasOneUse())
3384     return true;
3385   // We want the value in a GPR if it is being extended, used for a select, or
3386   // used in logical operations.
3387   for (auto CompareUse : Compare.getNode()->uses())
3388     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3389         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3390         CompareUse->getOpcode() != ISD::SELECT &&
3391         !isLogicOp(CompareUse->getOpcode())) {
3392       OmittedForNonExtendUses++;
3393       return false;
3394     }
3395   return true;
3396 }
3397 
3398 /// Returns an equivalent of a SETCC node but with the result the same width as
3399 /// the inputs. This can nalso be used for SELECT_CC if either the true or false
3400 /// values is a power of two while the other is zero.
3401 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3402                                                 SetccInGPROpts ConvOpts) {
3403   assert((Compare.getOpcode() == ISD::SETCC ||
3404           Compare.getOpcode() == ISD::SELECT_CC) &&
3405          "An ISD::SETCC node required here.");
3406 
3407   // Don't convert this comparison to a GPR sequence because there are uses
3408   // of the i1 result (i.e. uses that require the result in the CR).
3409   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3410     return SDValue();
3411 
3412   SDValue LHS = Compare.getOperand(0);
3413   SDValue RHS = Compare.getOperand(1);
3414 
3415   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3416   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3417   ISD::CondCode CC =
3418     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3419   EVT InputVT = LHS.getValueType();
3420   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3421     return SDValue();
3422 
3423   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3424       ConvOpts == SetccInGPROpts::SExtInvert)
3425     CC = ISD::getSetCCInverse(CC, true);
3426 
3427   bool Inputs32Bit = InputVT == MVT::i32;
3428 
3429   SDLoc dl(Compare);
3430   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3431   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3432   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3433     ConvOpts == SetccInGPROpts::SExtInvert;
3434 
3435   if (IsSext && Inputs32Bit)
3436     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3437   else if (Inputs32Bit)
3438     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3439   else if (IsSext)
3440     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3441   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3442 }
3443 
3444 } // end anonymous namespace
3445 
3446 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3447   if (N->getValueType(0) != MVT::i32 &&
3448       N->getValueType(0) != MVT::i64)
3449     return false;
3450 
3451   // This optimization will emit code that assumes 64-bit registers
3452   // so we don't want to run it in 32-bit mode. Also don't run it
3453   // on functions that are not to be optimized.
3454   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3455     return false;
3456 
3457   switch (N->getOpcode()) {
3458   default: break;
3459   case ISD::ZERO_EXTEND:
3460   case ISD::SIGN_EXTEND:
3461   case ISD::AND:
3462   case ISD::OR:
3463   case ISD::XOR: {
3464     IntegerCompareEliminator ICmpElim(CurDAG, this);
3465     if (SDNode *New = ICmpElim.Select(N)) {
3466       ReplaceNode(N, New);
3467       return true;
3468     }
3469   }
3470   }
3471   return false;
3472 }
3473 
3474 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3475   if (N->getValueType(0) != MVT::i32 &&
3476       N->getValueType(0) != MVT::i64)
3477     return false;
3478 
3479   if (!UseBitPermRewriter)
3480     return false;
3481 
3482   switch (N->getOpcode()) {
3483   default: break;
3484   case ISD::ROTL:
3485   case ISD::SHL:
3486   case ISD::SRL:
3487   case ISD::AND:
3488   case ISD::OR: {
3489     BitPermutationSelector BPS(CurDAG);
3490     if (SDNode *New = BPS.Select(N)) {
3491       ReplaceNode(N, New);
3492       return true;
3493     }
3494     return false;
3495   }
3496   }
3497 
3498   return false;
3499 }
3500 
3501 /// SelectCC - Select a comparison of the specified values with the specified
3502 /// condition code, returning the CR# of the expression.
3503 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3504                                   const SDLoc &dl) {
3505   // Always select the LHS.
3506   unsigned Opc;
3507 
3508   if (LHS.getValueType() == MVT::i32) {
3509     unsigned Imm;
3510     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3511       if (isInt32Immediate(RHS, Imm)) {
3512         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3513         if (isUInt<16>(Imm))
3514           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3515                                                 getI32Imm(Imm & 0xFFFF, dl)),
3516                          0);
3517         // If this is a 16-bit signed immediate, fold it.
3518         if (isInt<16>((int)Imm))
3519           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3520                                                 getI32Imm(Imm & 0xFFFF, dl)),
3521                          0);
3522 
3523         // For non-equality comparisons, the default code would materialize the
3524         // constant, then compare against it, like this:
3525         //   lis r2, 4660
3526         //   ori r2, r2, 22136
3527         //   cmpw cr0, r3, r2
3528         // Since we are just comparing for equality, we can emit this instead:
3529         //   xoris r0,r3,0x1234
3530         //   cmplwi cr0,r0,0x5678
3531         //   beq cr0,L6
3532         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3533                                            getI32Imm(Imm >> 16, dl)), 0);
3534         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3535                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3536       }
3537       Opc = PPC::CMPLW;
3538     } else if (ISD::isUnsignedIntSetCC(CC)) {
3539       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3540         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3541                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3542       Opc = PPC::CMPLW;
3543     } else {
3544       int16_t SImm;
3545       if (isIntS16Immediate(RHS, SImm))
3546         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3547                                               getI32Imm((int)SImm & 0xFFFF,
3548                                                         dl)),
3549                          0);
3550       Opc = PPC::CMPW;
3551     }
3552   } else if (LHS.getValueType() == MVT::i64) {
3553     uint64_t Imm;
3554     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3555       if (isInt64Immediate(RHS.getNode(), Imm)) {
3556         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3557         if (isUInt<16>(Imm))
3558           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3559                                                 getI32Imm(Imm & 0xFFFF, dl)),
3560                          0);
3561         // If this is a 16-bit signed immediate, fold it.
3562         if (isInt<16>(Imm))
3563           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3564                                                 getI32Imm(Imm & 0xFFFF, dl)),
3565                          0);
3566 
3567         // For non-equality comparisons, the default code would materialize the
3568         // constant, then compare against it, like this:
3569         //   lis r2, 4660
3570         //   ori r2, r2, 22136
3571         //   cmpd cr0, r3, r2
3572         // Since we are just comparing for equality, we can emit this instead:
3573         //   xoris r0,r3,0x1234
3574         //   cmpldi cr0,r0,0x5678
3575         //   beq cr0,L6
3576         if (isUInt<32>(Imm)) {
3577           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
3578                                              getI64Imm(Imm >> 16, dl)), 0);
3579           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
3580                                                 getI64Imm(Imm & 0xFFFF, dl)),
3581                          0);
3582         }
3583       }
3584       Opc = PPC::CMPLD;
3585     } else if (ISD::isUnsignedIntSetCC(CC)) {
3586       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
3587         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3588                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
3589       Opc = PPC::CMPLD;
3590     } else {
3591       int16_t SImm;
3592       if (isIntS16Immediate(RHS, SImm))
3593         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3594                                               getI64Imm(SImm & 0xFFFF, dl)),
3595                          0);
3596       Opc = PPC::CMPD;
3597     }
3598   } else if (LHS.getValueType() == MVT::f32) {
3599     Opc = PPC::FCMPUS;
3600   } else {
3601     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
3602     Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
3603   }
3604   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
3605 }
3606 
3607 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
3608   switch (CC) {
3609   case ISD::SETUEQ:
3610   case ISD::SETONE:
3611   case ISD::SETOLE:
3612   case ISD::SETOGE:
3613     llvm_unreachable("Should be lowered by legalize!");
3614   default: llvm_unreachable("Unknown condition!");
3615   case ISD::SETOEQ:
3616   case ISD::SETEQ:  return PPC::PRED_EQ;
3617   case ISD::SETUNE:
3618   case ISD::SETNE:  return PPC::PRED_NE;
3619   case ISD::SETOLT:
3620   case ISD::SETLT:  return PPC::PRED_LT;
3621   case ISD::SETULE:
3622   case ISD::SETLE:  return PPC::PRED_LE;
3623   case ISD::SETOGT:
3624   case ISD::SETGT:  return PPC::PRED_GT;
3625   case ISD::SETUGE:
3626   case ISD::SETGE:  return PPC::PRED_GE;
3627   case ISD::SETO:   return PPC::PRED_NU;
3628   case ISD::SETUO:  return PPC::PRED_UN;
3629     // These two are invalid for floating point.  Assume we have int.
3630   case ISD::SETULT: return PPC::PRED_LT;
3631   case ISD::SETUGT: return PPC::PRED_GT;
3632   }
3633 }
3634 
3635 /// getCRIdxForSetCC - Return the index of the condition register field
3636 /// associated with the SetCC condition, and whether or not the field is
3637 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
3638 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
3639   Invert = false;
3640   switch (CC) {
3641   default: llvm_unreachable("Unknown condition!");
3642   case ISD::SETOLT:
3643   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
3644   case ISD::SETOGT:
3645   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
3646   case ISD::SETOEQ:
3647   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
3648   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
3649   case ISD::SETUGE:
3650   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
3651   case ISD::SETULE:
3652   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
3653   case ISD::SETUNE:
3654   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
3655   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
3656   case ISD::SETUEQ:
3657   case ISD::SETOGE:
3658   case ISD::SETOLE:
3659   case ISD::SETONE:
3660     llvm_unreachable("Invalid branch code: should be expanded by legalize");
3661   // These are invalid for floating point.  Assume integer.
3662   case ISD::SETULT: return 0;
3663   case ISD::SETUGT: return 1;
3664   }
3665 }
3666 
3667 // getVCmpInst: return the vector compare instruction for the specified
3668 // vector type and condition code. Since this is for altivec specific code,
3669 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
3670 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
3671                                 bool HasVSX, bool &Swap, bool &Negate) {
3672   Swap = false;
3673   Negate = false;
3674 
3675   if (VecVT.isFloatingPoint()) {
3676     /* Handle some cases by swapping input operands.  */
3677     switch (CC) {
3678       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
3679       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3680       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
3681       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
3682       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3683       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
3684       default: break;
3685     }
3686     /* Handle some cases by negating the result.  */
3687     switch (CC) {
3688       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3689       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
3690       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
3691       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
3692       default: break;
3693     }
3694     /* We have instructions implementing the remaining cases.  */
3695     switch (CC) {
3696       case ISD::SETEQ:
3697       case ISD::SETOEQ:
3698         if (VecVT == MVT::v4f32)
3699           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
3700         else if (VecVT == MVT::v2f64)
3701           return PPC::XVCMPEQDP;
3702         break;
3703       case ISD::SETGT:
3704       case ISD::SETOGT:
3705         if (VecVT == MVT::v4f32)
3706           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
3707         else if (VecVT == MVT::v2f64)
3708           return PPC::XVCMPGTDP;
3709         break;
3710       case ISD::SETGE:
3711       case ISD::SETOGE:
3712         if (VecVT == MVT::v4f32)
3713           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
3714         else if (VecVT == MVT::v2f64)
3715           return PPC::XVCMPGEDP;
3716         break;
3717       default:
3718         break;
3719     }
3720     llvm_unreachable("Invalid floating-point vector compare condition");
3721   } else {
3722     /* Handle some cases by swapping input operands.  */
3723     switch (CC) {
3724       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
3725       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3726       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3727       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
3728       default: break;
3729     }
3730     /* Handle some cases by negating the result.  */
3731     switch (CC) {
3732       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3733       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
3734       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
3735       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
3736       default: break;
3737     }
3738     /* We have instructions implementing the remaining cases.  */
3739     switch (CC) {
3740       case ISD::SETEQ:
3741       case ISD::SETUEQ:
3742         if (VecVT == MVT::v16i8)
3743           return PPC::VCMPEQUB;
3744         else if (VecVT == MVT::v8i16)
3745           return PPC::VCMPEQUH;
3746         else if (VecVT == MVT::v4i32)
3747           return PPC::VCMPEQUW;
3748         else if (VecVT == MVT::v2i64)
3749           return PPC::VCMPEQUD;
3750         break;
3751       case ISD::SETGT:
3752         if (VecVT == MVT::v16i8)
3753           return PPC::VCMPGTSB;
3754         else if (VecVT == MVT::v8i16)
3755           return PPC::VCMPGTSH;
3756         else if (VecVT == MVT::v4i32)
3757           return PPC::VCMPGTSW;
3758         else if (VecVT == MVT::v2i64)
3759           return PPC::VCMPGTSD;
3760         break;
3761       case ISD::SETUGT:
3762         if (VecVT == MVT::v16i8)
3763           return PPC::VCMPGTUB;
3764         else if (VecVT == MVT::v8i16)
3765           return PPC::VCMPGTUH;
3766         else if (VecVT == MVT::v4i32)
3767           return PPC::VCMPGTUW;
3768         else if (VecVT == MVT::v2i64)
3769           return PPC::VCMPGTUD;
3770         break;
3771       default:
3772         break;
3773     }
3774     llvm_unreachable("Invalid integer vector compare condition");
3775   }
3776 }
3777 
3778 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
3779   SDLoc dl(N);
3780   unsigned Imm;
3781   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
3782   EVT PtrVT =
3783       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
3784   bool isPPC64 = (PtrVT == MVT::i64);
3785 
3786   if (!PPCSubTarget->useCRBits() &&
3787       isInt32Immediate(N->getOperand(1), Imm)) {
3788     // We can codegen setcc op, imm very efficiently compared to a brcond.
3789     // Check for those cases here.
3790     // setcc op, 0
3791     if (Imm == 0) {
3792       SDValue Op = N->getOperand(0);
3793       switch (CC) {
3794       default: break;
3795       case ISD::SETEQ: {
3796         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
3797         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
3798                           getI32Imm(31, dl) };
3799         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3800         return true;
3801       }
3802       case ISD::SETNE: {
3803         if (isPPC64) break;
3804         SDValue AD =
3805           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
3806                                          Op, getI32Imm(~0U, dl)), 0);
3807         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
3808         return true;
3809       }
3810       case ISD::SETLT: {
3811         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
3812                           getI32Imm(31, dl) };
3813         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3814         return true;
3815       }
3816       case ISD::SETGT: {
3817         SDValue T =
3818           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
3819         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
3820         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
3821                           getI32Imm(31, dl) };
3822         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3823         return true;
3824       }
3825       }
3826     } else if (Imm == ~0U) {        // setcc op, -1
3827       SDValue Op = N->getOperand(0);
3828       switch (CC) {
3829       default: break;
3830       case ISD::SETEQ:
3831         if (isPPC64) break;
3832         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
3833                                             Op, getI32Imm(1, dl)), 0);
3834         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
3835                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
3836                                                             MVT::i32,
3837                                                             getI32Imm(0, dl)),
3838                                      0), Op.getValue(1));
3839         return true;
3840       case ISD::SETNE: {
3841         if (isPPC64) break;
3842         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
3843         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
3844                                             Op, getI32Imm(~0U, dl));
3845         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
3846                              SDValue(AD, 1));
3847         return true;
3848       }
3849       case ISD::SETLT: {
3850         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
3851                                                     getI32Imm(1, dl)), 0);
3852         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
3853                                                     Op), 0);
3854         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
3855                           getI32Imm(31, dl) };
3856         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3857         return true;
3858       }
3859       case ISD::SETGT: {
3860         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
3861                           getI32Imm(31, dl) };
3862         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
3863         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
3864         return true;
3865       }
3866       }
3867     }
3868   }
3869 
3870   SDValue LHS = N->getOperand(0);
3871   SDValue RHS = N->getOperand(1);
3872 
3873   // Altivec Vector compare instructions do not set any CR register by default and
3874   // vector compare operations return the same type as the operands.
3875   if (LHS.getValueType().isVector()) {
3876     if (PPCSubTarget->hasQPX())
3877       return false;
3878 
3879     EVT VecVT = LHS.getValueType();
3880     bool Swap, Negate;
3881     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
3882                                         PPCSubTarget->hasVSX(), Swap, Negate);
3883     if (Swap)
3884       std::swap(LHS, RHS);
3885 
3886     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
3887     if (Negate) {
3888       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
3889       CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
3890                            ResVT, VCmp, VCmp);
3891       return true;
3892     }
3893 
3894     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
3895     return true;
3896   }
3897 
3898   if (PPCSubTarget->useCRBits())
3899     return false;
3900 
3901   bool Inv;
3902   unsigned Idx = getCRIdxForSetCC(CC, Inv);
3903   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
3904   SDValue IntCR;
3905 
3906   // Force the ccreg into CR7.
3907   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
3908 
3909   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
3910   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
3911                                InFlag).getValue(1);
3912 
3913   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
3914                                          CCReg), 0);
3915 
3916   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
3917                       getI32Imm(31, dl), getI32Imm(31, dl) };
3918   if (!Inv) {
3919     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3920     return true;
3921   }
3922 
3923   // Get the specified bit.
3924   SDValue Tmp =
3925     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
3926   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
3927   return true;
3928 }
3929 
3930 /// Does this node represent a load/store node whose address can be represented
3931 /// with a register plus an immediate that's a multiple of \p Val:
3932 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
3933   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
3934   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
3935   SDValue AddrOp;
3936   if (LDN)
3937     AddrOp = LDN->getOperand(1);
3938   else if (STN)
3939     AddrOp = STN->getOperand(2);
3940 
3941   // If the address points a frame object or a frame object with an offset,
3942   // we need to check the object alignment.
3943   short Imm = 0;
3944   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
3945           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
3946                                            AddrOp)) {
3947     // If op0 is a frame index that is under aligned, we can't do it either,
3948     // because it is translated to r31 or r1 + slot + offset. We won't know the
3949     // slot number until the stack frame is finalized.
3950     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
3951     unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
3952     if ((SlotAlign % Val) != 0)
3953       return false;
3954 
3955     // If we have an offset, we need further check on the offset.
3956     if (AddrOp.getOpcode() != ISD::ADD)
3957       return true;
3958   }
3959 
3960   if (AddrOp.getOpcode() == ISD::ADD)
3961     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
3962 
3963   // If the address comes from the outside, the offset will be zero.
3964   return AddrOp.getOpcode() == ISD::CopyFromReg;
3965 }
3966 
3967 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
3968   // Transfer memoperands.
3969   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3970   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
3971   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
3972 }
3973 
3974 /// This method returns a node after flipping the MSB of each element
3975 /// of vector integer type. Additionally, if SignBitVec is non-null,
3976 /// this method sets a node with one at MSB of all elements
3977 /// and zero at other bits in SignBitVec.
3978 MachineSDNode *
3979 PPCDAGToDAGISel::flipSignBit(const SDValue &N, SDNode **SignBitVec) {
3980   SDLoc dl(N);
3981   EVT VecVT = N.getValueType();
3982   if (VecVT == MVT::v4i32) {
3983     if (SignBitVec) {
3984       SDNode *ZV = CurDAG->getMachineNode(PPC::V_SET0, dl, MVT::v4i32);
3985       *SignBitVec = CurDAG->getMachineNode(PPC::XVNEGSP, dl, VecVT,
3986                                         SDValue(ZV, 0));
3987     }
3988     return CurDAG->getMachineNode(PPC::XVNEGSP, dl, VecVT, N);
3989   }
3990   else if (VecVT == MVT::v8i16) {
3991     SDNode *Hi = CurDAG->getMachineNode(PPC::LIS, dl, MVT::i32,
3992                                      getI32Imm(0x8000, dl));
3993     SDNode *ScaImm = CurDAG->getMachineNode(PPC::ORI, dl, MVT::i32,
3994                                          SDValue(Hi, 0),
3995                                          getI32Imm(0x8000, dl));
3996     SDNode *VecImm = CurDAG->getMachineNode(PPC::MTVSRWS, dl, VecVT,
3997                                          SDValue(ScaImm, 0));
3998     /*
3999     Alternatively, we can do this as follow to use VRF instead of GPR.
4000       vspltish 5, 1
4001       vspltish 6, 15
4002       vslh 5, 6, 5
4003     */
4004     if (SignBitVec) *SignBitVec = VecImm;
4005     return CurDAG->getMachineNode(PPC::VADDUHM, dl, VecVT, N,
4006                                   SDValue(VecImm, 0));
4007   }
4008   else if (VecVT == MVT::v16i8) {
4009     SDNode *VecImm = CurDAG->getMachineNode(PPC::XXSPLTIB, dl, MVT::i32,
4010                                          getI32Imm(0x80, dl));
4011     if (SignBitVec) *SignBitVec = VecImm;
4012     return CurDAG->getMachineNode(PPC::VADDUBM, dl, VecVT, N,
4013                                   SDValue(VecImm, 0));
4014   }
4015   else
4016     llvm_unreachable("Unsupported vector data type for flipSignBit");
4017 }
4018 
4019 // Select - Convert the specified operand from a target-independent to a
4020 // target-specific node if it hasn't already been changed.
4021 void PPCDAGToDAGISel::Select(SDNode *N) {
4022   SDLoc dl(N);
4023   if (N->isMachineOpcode()) {
4024     N->setNodeId(-1);
4025     return;   // Already selected.
4026   }
4027 
4028   // In case any misguided DAG-level optimizations form an ADD with a
4029   // TargetConstant operand, crash here instead of miscompiling (by selecting
4030   // an r+r add instead of some kind of r+i add).
4031   if (N->getOpcode() == ISD::ADD &&
4032       N->getOperand(1).getOpcode() == ISD::TargetConstant)
4033     llvm_unreachable("Invalid ADD with TargetConstant operand");
4034 
4035   // Try matching complex bit permutations before doing anything else.
4036   if (tryBitPermutation(N))
4037     return;
4038 
4039   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4040   if (tryIntCompareInGPR(N))
4041     return;
4042 
4043   switch (N->getOpcode()) {
4044   default: break;
4045 
4046   case ISD::Constant:
4047     if (N->getValueType(0) == MVT::i64) {
4048       ReplaceNode(N, selectI64Imm(CurDAG, N));
4049       return;
4050     }
4051     break;
4052 
4053   case ISD::SETCC:
4054     if (trySETCC(N))
4055       return;
4056     break;
4057 
4058   case PPCISD::CALL: {
4059     const Module *M = MF->getFunction().getParent();
4060 
4061     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4062         !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() ||
4063         M->getPICLevel() == PICLevel::SmallPIC)
4064       break;
4065 
4066     SDValue Op = N->getOperand(1);
4067 
4068     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4069       if (GA->getTargetFlags() == PPCII::MO_PLT)
4070         getGlobalBaseReg();
4071     }
4072     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
4073       if (ES->getTargetFlags() == PPCII::MO_PLT)
4074         getGlobalBaseReg();
4075     }
4076   }
4077     break;
4078 
4079   case PPCISD::GlobalBaseReg:
4080     ReplaceNode(N, getGlobalBaseReg());
4081     return;
4082 
4083   case ISD::FrameIndex:
4084     selectFrameIndex(N, N);
4085     return;
4086 
4087   case PPCISD::MFOCRF: {
4088     SDValue InFlag = N->getOperand(1);
4089     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
4090                                           N->getOperand(0), InFlag));
4091     return;
4092   }
4093 
4094   case PPCISD::READ_TIME_BASE:
4095     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
4096                                           MVT::Other, N->getOperand(0)));
4097     return;
4098 
4099   case PPCISD::SRA_ADDZE: {
4100     SDValue N0 = N->getOperand(0);
4101     SDValue ShiftAmt =
4102       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
4103                                   getConstantIntValue(), dl,
4104                                   N->getValueType(0));
4105     if (N->getValueType(0) == MVT::i64) {
4106       SDNode *Op =
4107         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
4108                                N0, ShiftAmt);
4109       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
4110                            SDValue(Op, 1));
4111       return;
4112     } else {
4113       assert(N->getValueType(0) == MVT::i32 &&
4114              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
4115       SDNode *Op =
4116         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
4117                                N0, ShiftAmt);
4118       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
4119                            SDValue(Op, 1));
4120       return;
4121     }
4122   }
4123 
4124   case ISD::STORE: {
4125     // Change TLS initial-exec D-form stores to X-form stores.
4126     StoreSDNode *ST = cast<StoreSDNode>(N);
4127     if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
4128         ST->getAddressingMode() != ISD::PRE_INC)
4129       if (tryTLSXFormStore(ST))
4130         return;
4131     break;
4132   }
4133   case ISD::LOAD: {
4134     // Handle preincrement loads.
4135     LoadSDNode *LD = cast<LoadSDNode>(N);
4136     EVT LoadedVT = LD->getMemoryVT();
4137 
4138     // Normal loads are handled by code generated from the .td file.
4139     if (LD->getAddressingMode() != ISD::PRE_INC) {
4140       // Change TLS initial-exec D-form loads to X-form loads.
4141       if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
4142         if (tryTLSXFormLoad(LD))
4143           return;
4144       break;
4145     }
4146 
4147     SDValue Offset = LD->getOffset();
4148     if (Offset.getOpcode() == ISD::TargetConstant ||
4149         Offset.getOpcode() == ISD::TargetGlobalAddress) {
4150 
4151       unsigned Opcode;
4152       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4153       if (LD->getValueType(0) != MVT::i64) {
4154         // Handle PPC32 integer and normal FP loads.
4155         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4156         switch (LoadedVT.getSimpleVT().SimpleTy) {
4157           default: llvm_unreachable("Invalid PPC load type!");
4158           case MVT::f64: Opcode = PPC::LFDU; break;
4159           case MVT::f32: Opcode = PPC::LFSU; break;
4160           case MVT::i32: Opcode = PPC::LWZU; break;
4161           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
4162           case MVT::i1:
4163           case MVT::i8:  Opcode = PPC::LBZU; break;
4164         }
4165       } else {
4166         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4167         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4168         switch (LoadedVT.getSimpleVT().SimpleTy) {
4169           default: llvm_unreachable("Invalid PPC load type!");
4170           case MVT::i64: Opcode = PPC::LDU; break;
4171           case MVT::i32: Opcode = PPC::LWZU8; break;
4172           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
4173           case MVT::i1:
4174           case MVT::i8:  Opcode = PPC::LBZU8; break;
4175         }
4176       }
4177 
4178       SDValue Chain = LD->getChain();
4179       SDValue Base = LD->getBasePtr();
4180       SDValue Ops[] = { Offset, Base, Chain };
4181       SDNode *MN = CurDAG->getMachineNode(
4182           Opcode, dl, LD->getValueType(0),
4183           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4184       transferMemOperands(N, MN);
4185       ReplaceNode(N, MN);
4186       return;
4187     } else {
4188       unsigned Opcode;
4189       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4190       if (LD->getValueType(0) != MVT::i64) {
4191         // Handle PPC32 integer and normal FP loads.
4192         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4193         switch (LoadedVT.getSimpleVT().SimpleTy) {
4194           default: llvm_unreachable("Invalid PPC load type!");
4195           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
4196           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
4197           case MVT::f64: Opcode = PPC::LFDUX; break;
4198           case MVT::f32: Opcode = PPC::LFSUX; break;
4199           case MVT::i32: Opcode = PPC::LWZUX; break;
4200           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
4201           case MVT::i1:
4202           case MVT::i8:  Opcode = PPC::LBZUX; break;
4203         }
4204       } else {
4205         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4206         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
4207                "Invalid sext update load");
4208         switch (LoadedVT.getSimpleVT().SimpleTy) {
4209           default: llvm_unreachable("Invalid PPC load type!");
4210           case MVT::i64: Opcode = PPC::LDUX; break;
4211           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
4212           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
4213           case MVT::i1:
4214           case MVT::i8:  Opcode = PPC::LBZUX8; break;
4215         }
4216       }
4217 
4218       SDValue Chain = LD->getChain();
4219       SDValue Base = LD->getBasePtr();
4220       SDValue Ops[] = { Base, Offset, Chain };
4221       SDNode *MN = CurDAG->getMachineNode(
4222           Opcode, dl, LD->getValueType(0),
4223           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4224       transferMemOperands(N, MN);
4225       ReplaceNode(N, MN);
4226       return;
4227     }
4228   }
4229 
4230   case ISD::AND: {
4231     unsigned Imm, Imm2, SH, MB, ME;
4232     uint64_t Imm64;
4233 
4234     // If this is an and of a value rotated between 0 and 31 bits and then and'd
4235     // with a mask, emit rlwinm
4236     if (isInt32Immediate(N->getOperand(1), Imm) &&
4237         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
4238       SDValue Val = N->getOperand(0).getOperand(0);
4239       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4240                         getI32Imm(ME, dl) };
4241       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4242       return;
4243     }
4244     // If this is just a masked value where the input is not handled above, and
4245     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4246     if (isInt32Immediate(N->getOperand(1), Imm) &&
4247         isRunOfOnes(Imm, MB, ME) &&
4248         N->getOperand(0).getOpcode() != ISD::ROTL) {
4249       SDValue Val = N->getOperand(0);
4250       SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4251                         getI32Imm(ME, dl) };
4252       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4253       return;
4254     }
4255     // If this is a 64-bit zero-extension mask, emit rldicl.
4256     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
4257         isMask_64(Imm64)) {
4258       SDValue Val = N->getOperand(0);
4259       MB = 64 - countTrailingOnes(Imm64);
4260       SH = 0;
4261 
4262       if (Val.getOpcode() == ISD::ANY_EXTEND) {
4263         auto Op0 = Val.getOperand(0);
4264         if ( Op0.getOpcode() == ISD::SRL &&
4265            isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4266 
4267            auto ResultType = Val.getNode()->getValueType(0);
4268            auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
4269                                                ResultType);
4270            SDValue IDVal (ImDef, 0);
4271 
4272            Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
4273                          ResultType, IDVal, Op0.getOperand(0),
4274                          getI32Imm(1, dl)), 0);
4275            SH = 64 - Imm;
4276         }
4277       }
4278 
4279       // If the operand is a logical right shift, we can fold it into this
4280       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4281       // for n <= mb. The right shift is really a left rotate followed by a
4282       // mask, and this mask is a more-restrictive sub-mask of the mask implied
4283       // by the shift.
4284       if (Val.getOpcode() == ISD::SRL &&
4285           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4286         assert(Imm < 64 && "Illegal shift amount");
4287         Val = Val.getOperand(0);
4288         SH = 64 - Imm;
4289       }
4290 
4291       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4292       CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4293       return;
4294     }
4295     // If this is a negated 64-bit zero-extension mask,
4296     // i.e. the immediate is a sequence of ones from most significant side
4297     // and all zero for reminder, we should use rldicr.
4298     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
4299         isMask_64(~Imm64)) {
4300       SDValue Val = N->getOperand(0);
4301       MB = 63 - countTrailingOnes(~Imm64);
4302       SH = 0;
4303       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4304       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4305       return;
4306     }
4307 
4308     // AND X, 0 -> 0, not "rlwinm 32".
4309     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
4310       ReplaceUses(SDValue(N, 0), N->getOperand(1));
4311       return;
4312     }
4313     // ISD::OR doesn't get all the bitfield insertion fun.
4314     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4315     // bitfield insert.
4316     if (isInt32Immediate(N->getOperand(1), Imm) &&
4317         N->getOperand(0).getOpcode() == ISD::OR &&
4318         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
4319       // The idea here is to check whether this is equivalent to:
4320       //   (c1 & m) | (x & ~m)
4321       // where m is a run-of-ones mask. The logic here is that, for each bit in
4322       // c1 and c2:
4323       //  - if both are 1, then the output will be 1.
4324       //  - if both are 0, then the output will be 0.
4325       //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4326       //    come from x.
4327       //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4328       //    be 0.
4329       //  If that last condition is never the case, then we can form m from the
4330       //  bits that are the same between c1 and c2.
4331       unsigned MB, ME;
4332       if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
4333         SDValue Ops[] = { N->getOperand(0).getOperand(0),
4334                             N->getOperand(0).getOperand(1),
4335                             getI32Imm(0, dl), getI32Imm(MB, dl),
4336                             getI32Imm(ME, dl) };
4337         ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4338         return;
4339       }
4340     }
4341 
4342     // Other cases are autogenerated.
4343     break;
4344   }
4345   case ISD::OR: {
4346     if (N->getValueType(0) == MVT::i32)
4347       if (tryBitfieldInsert(N))
4348         return;
4349 
4350     int16_t Imm;
4351     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4352         isIntS16Immediate(N->getOperand(1), Imm)) {
4353       KnownBits LHSKnown;
4354       CurDAG->computeKnownBits(N->getOperand(0), LHSKnown);
4355 
4356       // If this is equivalent to an add, then we can fold it with the
4357       // FrameIndex calculation.
4358       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
4359         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4360         return;
4361       }
4362     }
4363 
4364     // OR with a 32-bit immediate can be handled by ori + oris
4365     // without creating an immediate in a GPR.
4366     uint64_t Imm64 = 0;
4367     bool IsPPC64 = PPCSubTarget->isPPC64();
4368     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4369         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4370       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
4371       uint64_t ImmHi = Imm64 >> 16;
4372       uint64_t ImmLo = Imm64 & 0xFFFF;
4373       if (ImmHi != 0 && ImmLo != 0) {
4374         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
4375                                             N->getOperand(0),
4376                                             getI16Imm(ImmLo, dl));
4377         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4378         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
4379         return;
4380       }
4381     }
4382 
4383     // Other cases are autogenerated.
4384     break;
4385   }
4386   case ISD::XOR: {
4387     // XOR with a 32-bit immediate can be handled by xori + xoris
4388     // without creating an immediate in a GPR.
4389     uint64_t Imm64 = 0;
4390     bool IsPPC64 = PPCSubTarget->isPPC64();
4391     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4392         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4393       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
4394       uint64_t ImmHi = Imm64 >> 16;
4395       uint64_t ImmLo = Imm64 & 0xFFFF;
4396       if (ImmHi != 0 && ImmLo != 0) {
4397         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
4398                                             N->getOperand(0),
4399                                             getI16Imm(ImmLo, dl));
4400         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4401         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
4402         return;
4403       }
4404     }
4405 
4406     break;
4407   }
4408   case ISD::ADD: {
4409     int16_t Imm;
4410     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4411         isIntS16Immediate(N->getOperand(1), Imm)) {
4412       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4413       return;
4414     }
4415 
4416     break;
4417   }
4418   case ISD::SHL: {
4419     unsigned Imm, SH, MB, ME;
4420     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4421         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4422       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4423                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4424                           getI32Imm(ME, dl) };
4425       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4426       return;
4427     }
4428 
4429     // Other cases are autogenerated.
4430     break;
4431   }
4432   case ISD::SRL: {
4433     unsigned Imm, SH, MB, ME;
4434     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4435         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4436       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4437                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4438                           getI32Imm(ME, dl) };
4439       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4440       return;
4441     }
4442 
4443     // Other cases are autogenerated.
4444     break;
4445   }
4446   // FIXME: Remove this once the ANDI glue bug is fixed:
4447   case PPCISD::ANDIo_1_EQ_BIT:
4448   case PPCISD::ANDIo_1_GT_BIT: {
4449     if (!ANDIGlueBug)
4450       break;
4451 
4452     EVT InVT = N->getOperand(0).getValueType();
4453     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
4454            "Invalid input type for ANDIo_1_EQ_BIT");
4455 
4456     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
4457     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
4458                                         N->getOperand(0),
4459                                         CurDAG->getTargetConstant(1, dl, InVT)),
4460                  0);
4461     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
4462     SDValue SRIdxVal =
4463       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
4464                                 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
4465 
4466     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
4467                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
4468     return;
4469   }
4470   case ISD::SELECT_CC: {
4471     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4472     EVT PtrVT =
4473         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4474     bool isPPC64 = (PtrVT == MVT::i64);
4475 
4476     // If this is a select of i1 operands, we'll pattern match it.
4477     if (PPCSubTarget->useCRBits() &&
4478         N->getOperand(0).getValueType() == MVT::i1)
4479       break;
4480 
4481     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
4482     if (!isPPC64)
4483       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
4484         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
4485           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
4486             if (N1C->isNullValue() && N3C->isNullValue() &&
4487                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
4488                 // FIXME: Implement this optzn for PPC64.
4489                 N->getValueType(0) == MVT::i32) {
4490               SDNode *Tmp =
4491                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4492                                        N->getOperand(0), getI32Imm(~0U, dl));
4493               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
4494                                    N->getOperand(0), SDValue(Tmp, 1));
4495               return;
4496             }
4497 
4498     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
4499 
4500     if (N->getValueType(0) == MVT::i1) {
4501       // An i1 select is: (c & t) | (!c & f).
4502       bool Inv;
4503       unsigned Idx = getCRIdxForSetCC(CC, Inv);
4504 
4505       unsigned SRI;
4506       switch (Idx) {
4507       default: llvm_unreachable("Invalid CC index");
4508       case 0: SRI = PPC::sub_lt; break;
4509       case 1: SRI = PPC::sub_gt; break;
4510       case 2: SRI = PPC::sub_eq; break;
4511       case 3: SRI = PPC::sub_un; break;
4512       }
4513 
4514       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
4515 
4516       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
4517                                               CCBit, CCBit), 0);
4518       SDValue C =    Inv ? NotCCBit : CCBit,
4519               NotC = Inv ? CCBit    : NotCCBit;
4520 
4521       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4522                                            C, N->getOperand(2)), 0);
4523       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4524                                               NotC, N->getOperand(3)), 0);
4525 
4526       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
4527       return;
4528     }
4529 
4530     unsigned BROpc = getPredicateForSetCC(CC);
4531 
4532     unsigned SelectCCOp;
4533     if (N->getValueType(0) == MVT::i32)
4534       SelectCCOp = PPC::SELECT_CC_I4;
4535     else if (N->getValueType(0) == MVT::i64)
4536       SelectCCOp = PPC::SELECT_CC_I8;
4537     else if (N->getValueType(0) == MVT::f32)
4538       if (PPCSubTarget->hasP8Vector())
4539         SelectCCOp = PPC::SELECT_CC_VSSRC;
4540       else
4541         SelectCCOp = PPC::SELECT_CC_F4;
4542     else if (N->getValueType(0) == MVT::f64)
4543       if (PPCSubTarget->hasVSX())
4544         SelectCCOp = PPC::SELECT_CC_VSFRC;
4545       else
4546         SelectCCOp = PPC::SELECT_CC_F8;
4547     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
4548       SelectCCOp = PPC::SELECT_CC_QFRC;
4549     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
4550       SelectCCOp = PPC::SELECT_CC_QSRC;
4551     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
4552       SelectCCOp = PPC::SELECT_CC_QBRC;
4553     else if (N->getValueType(0) == MVT::v2f64 ||
4554              N->getValueType(0) == MVT::v2i64)
4555       SelectCCOp = PPC::SELECT_CC_VSRC;
4556     else
4557       SelectCCOp = PPC::SELECT_CC_VRRC;
4558 
4559     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
4560                         getI32Imm(BROpc, dl) };
4561     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
4562     return;
4563   }
4564   case ISD::VSELECT:
4565     if (PPCSubTarget->hasVSX()) {
4566       SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
4567       CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
4568       return;
4569     }
4570     break;
4571 
4572   case ISD::VECTOR_SHUFFLE:
4573     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
4574                                   N->getValueType(0) == MVT::v2i64)) {
4575       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4576 
4577       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
4578               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
4579       unsigned DM[2];
4580 
4581       for (int i = 0; i < 2; ++i)
4582         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
4583           DM[i] = 0;
4584         else
4585           DM[i] = 1;
4586 
4587       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
4588           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4589           isa<LoadSDNode>(Op1.getOperand(0))) {
4590         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
4591         SDValue Base, Offset;
4592 
4593         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
4594             (LD->getMemoryVT() == MVT::f64 ||
4595              LD->getMemoryVT() == MVT::i64) &&
4596             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
4597           SDValue Chain = LD->getChain();
4598           SDValue Ops[] = { Base, Offset, Chain };
4599           MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
4600           MemOp[0] = LD->getMemOperand();
4601           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
4602                                               N->getValueType(0), Ops);
4603           cast<MachineSDNode>(NewN)->setMemRefs(MemOp, MemOp + 1);
4604           return;
4605         }
4606       }
4607 
4608       // For little endian, we must swap the input operands and adjust
4609       // the mask elements (reverse and invert them).
4610       if (PPCSubTarget->isLittleEndian()) {
4611         std::swap(Op1, Op2);
4612         unsigned tmp = DM[0];
4613         DM[0] = 1 - DM[1];
4614         DM[1] = 1 - tmp;
4615       }
4616 
4617       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
4618                                               MVT::i32);
4619       SDValue Ops[] = { Op1, Op2, DMV };
4620       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
4621       return;
4622     }
4623 
4624     break;
4625   case PPCISD::BDNZ:
4626   case PPCISD::BDZ: {
4627     bool IsPPC64 = PPCSubTarget->isPPC64();
4628     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
4629     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
4630                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
4631                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
4632                          MVT::Other, Ops);
4633     return;
4634   }
4635   case PPCISD::COND_BRANCH: {
4636     // Op #0 is the Chain.
4637     // Op #1 is the PPC::PRED_* number.
4638     // Op #2 is the CR#
4639     // Op #3 is the Dest MBB
4640     // Op #4 is the Flag.
4641     // Prevent PPC::PRED_* from being selected into LI.
4642     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
4643     if (EnableBranchHint)
4644       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
4645 
4646     SDValue Pred = getI32Imm(PCC, dl);
4647     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
4648       N->getOperand(0), N->getOperand(4) };
4649     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4650     return;
4651   }
4652   case ISD::BR_CC: {
4653     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4654     unsigned PCC = getPredicateForSetCC(CC);
4655 
4656     if (N->getOperand(2).getValueType() == MVT::i1) {
4657       unsigned Opc;
4658       bool Swap;
4659       switch (PCC) {
4660       default: llvm_unreachable("Unexpected Boolean-operand predicate");
4661       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
4662       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
4663       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
4664       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
4665       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
4666       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
4667       }
4668 
4669       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
4670                                              N->getOperand(Swap ? 3 : 2),
4671                                              N->getOperand(Swap ? 2 : 3)), 0);
4672       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
4673                            N->getOperand(0));
4674       return;
4675     }
4676 
4677     if (EnableBranchHint)
4678       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
4679 
4680     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
4681     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
4682                         N->getOperand(4), N->getOperand(0) };
4683     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4684     return;
4685   }
4686   case ISD::BRIND: {
4687     // FIXME: Should custom lower this.
4688     SDValue Chain = N->getOperand(0);
4689     SDValue Target = N->getOperand(1);
4690     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
4691     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
4692     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
4693                                            Chain), 0);
4694     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
4695     return;
4696   }
4697   case PPCISD::TOC_ENTRY: {
4698     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
4699             "Only supported for 64-bit ABI and 32-bit SVR4");
4700     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
4701       SDValue GA = N->getOperand(0);
4702       SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
4703                                           N->getOperand(1));
4704       transferMemOperands(N, MN);
4705       ReplaceNode(N, MN);
4706       return;
4707     }
4708 
4709     // For medium and large code model, we generate two instructions as
4710     // described below.  Otherwise we allow SelectCodeCommon to handle this,
4711     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
4712     CodeModel::Model CModel = TM.getCodeModel();
4713     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
4714       break;
4715 
4716     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
4717     // If it must be toc-referenced according to PPCSubTarget, we generate:
4718     //   LDtocL(@sym, ADDIStocHA(%x2, @sym))
4719     // Otherwise we generate:
4720     //   ADDItocL(ADDIStocHA(%x2, @sym), @sym)
4721     SDValue GA = N->getOperand(0);
4722     SDValue TOCbase = N->getOperand(1);
4723     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
4724                                          TOCbase, GA);
4725 
4726     if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
4727         CModel == CodeModel::Large) {
4728       SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
4729                                           SDValue(Tmp, 0));
4730       transferMemOperands(N, MN);
4731       ReplaceNode(N, MN);
4732       return;
4733     }
4734 
4735     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
4736       const GlobalValue *GV = G->getGlobal();
4737       unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
4738       if (GVFlags & PPCII::MO_NLP_FLAG) {
4739         SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
4740                                             SDValue(Tmp, 0));
4741         transferMemOperands(N, MN);
4742         ReplaceNode(N, MN);
4743         return;
4744       }
4745     }
4746 
4747     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
4748                                           SDValue(Tmp, 0), GA));
4749     return;
4750   }
4751   case PPCISD::PPC32_PICGOT:
4752     // Generate a PIC-safe GOT reference.
4753     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
4754       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
4755     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
4756                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
4757                          MVT::i32);
4758     return;
4759 
4760   case PPCISD::VADD_SPLAT: {
4761     // This expands into one of three sequences, depending on whether
4762     // the first operand is odd or even, positive or negative.
4763     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
4764            isa<ConstantSDNode>(N->getOperand(1)) &&
4765            "Invalid operand on VADD_SPLAT!");
4766 
4767     int Elt     = N->getConstantOperandVal(0);
4768     int EltSize = N->getConstantOperandVal(1);
4769     unsigned Opc1, Opc2, Opc3;
4770     EVT VT;
4771 
4772     if (EltSize == 1) {
4773       Opc1 = PPC::VSPLTISB;
4774       Opc2 = PPC::VADDUBM;
4775       Opc3 = PPC::VSUBUBM;
4776       VT = MVT::v16i8;
4777     } else if (EltSize == 2) {
4778       Opc1 = PPC::VSPLTISH;
4779       Opc2 = PPC::VADDUHM;
4780       Opc3 = PPC::VSUBUHM;
4781       VT = MVT::v8i16;
4782     } else {
4783       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
4784       Opc1 = PPC::VSPLTISW;
4785       Opc2 = PPC::VADDUWM;
4786       Opc3 = PPC::VSUBUWM;
4787       VT = MVT::v4i32;
4788     }
4789 
4790     if ((Elt & 1) == 0) {
4791       // Elt is even, in the range [-32,-18] + [16,30].
4792       //
4793       // Convert: VADD_SPLAT elt, size
4794       // Into:    tmp = VSPLTIS[BHW] elt
4795       //          VADDU[BHW]M tmp, tmp
4796       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
4797       SDValue EltVal = getI32Imm(Elt >> 1, dl);
4798       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4799       SDValue TmpVal = SDValue(Tmp, 0);
4800       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
4801       return;
4802     } else if (Elt > 0) {
4803       // Elt is odd and positive, in the range [17,31].
4804       //
4805       // Convert: VADD_SPLAT elt, size
4806       // Into:    tmp1 = VSPLTIS[BHW] elt-16
4807       //          tmp2 = VSPLTIS[BHW] -16
4808       //          VSUBU[BHW]M tmp1, tmp2
4809       SDValue EltVal = getI32Imm(Elt - 16, dl);
4810       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4811       EltVal = getI32Imm(-16, dl);
4812       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4813       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
4814                                             SDValue(Tmp2, 0)));
4815       return;
4816     } else {
4817       // Elt is odd and negative, in the range [-31,-17].
4818       //
4819       // Convert: VADD_SPLAT elt, size
4820       // Into:    tmp1 = VSPLTIS[BHW] elt+16
4821       //          tmp2 = VSPLTIS[BHW] -16
4822       //          VADDU[BHW]M tmp1, tmp2
4823       SDValue EltVal = getI32Imm(Elt + 16, dl);
4824       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4825       EltVal = getI32Imm(-16, dl);
4826       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4827       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
4828                                             SDValue(Tmp2, 0)));
4829       return;
4830     }
4831   }
4832   case ISD::ABS: {
4833     assert(PPCSubTarget->hasP9Vector() && "ABS is supported with P9 Vector");
4834 
4835     // For vector absolute difference, we use VABSDUW instruction of POWER9.
4836     // Since VABSDU instructions are for unsigned integers, we need adjustment
4837     // for signed integers.
4838     // For abs(sub(a, b)), we generate VABSDUW(a+0x80000000, b+0x80000000).
4839     // Otherwise, abs(sub(-1, 0)) returns 0xFFFFFFFF(=-1) instead of 1.
4840     // For abs(a), we generate VABSDUW(a+0x80000000, 0x80000000).
4841     EVT VecVT = N->getOperand(0).getValueType();
4842     SDNode *AbsOp = nullptr;
4843     unsigned AbsOpcode;
4844 
4845     if (VecVT == MVT::v4i32)
4846       AbsOpcode = PPC::VABSDUW;
4847     else if (VecVT == MVT::v8i16)
4848       AbsOpcode = PPC::VABSDUH;
4849     else if (VecVT == MVT::v16i8)
4850       AbsOpcode = PPC::VABSDUB;
4851     else
4852       llvm_unreachable("Unsupported vector data type for ISD::ABS");
4853 
4854     // Even for signed integers, we can skip adjustment if all values are
4855     // known to be positive (as signed integer) due to zero-extended inputs.
4856     if (N->getOperand(0).getOpcode() == ISD::SUB &&
4857         N->getOperand(0)->getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4858         N->getOperand(0)->getOperand(1).getOpcode() == ISD::ZERO_EXTEND) {
4859       AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT,
4860                                      SDValue(N->getOperand(0)->getOperand(0)),
4861                                      SDValue(N->getOperand(0)->getOperand(1)));
4862       ReplaceNode(N, AbsOp);
4863       return;
4864     }
4865     if (N->getOperand(0).getOpcode() == ISD::SUB) {
4866       SDValue SubVal = N->getOperand(0);
4867       SDNode *Op0 = flipSignBit(SubVal->getOperand(0));
4868       SDNode *Op1 = flipSignBit(SubVal->getOperand(1));
4869       AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT,
4870                                      SDValue(Op0, 0), SDValue(Op1, 0));
4871     }
4872     else {
4873       SDNode *Op1 = nullptr;
4874       SDNode *Op0 = flipSignBit(N->getOperand(0), &Op1);
4875       AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT, SDValue(Op0, 0),
4876                                      SDValue(Op1, 0));
4877     }
4878     ReplaceNode(N, AbsOp);
4879     return;
4880   }
4881   }
4882 
4883   SelectCode(N);
4884 }
4885 
4886 // If the target supports the cmpb instruction, do the idiom recognition here.
4887 // We don't do this as a DAG combine because we don't want to do it as nodes
4888 // are being combined (because we might miss part of the eventual idiom). We
4889 // don't want to do it during instruction selection because we want to reuse
4890 // the logic for lowering the masking operations already part of the
4891 // instruction selector.
4892 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
4893   SDLoc dl(N);
4894 
4895   assert(N->getOpcode() == ISD::OR &&
4896          "Only OR nodes are supported for CMPB");
4897 
4898   SDValue Res;
4899   if (!PPCSubTarget->hasCMPB())
4900     return Res;
4901 
4902   if (N->getValueType(0) != MVT::i32 &&
4903       N->getValueType(0) != MVT::i64)
4904     return Res;
4905 
4906   EVT VT = N->getValueType(0);
4907 
4908   SDValue RHS, LHS;
4909   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
4910   uint64_t Mask = 0, Alt = 0;
4911 
4912   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
4913                                uint64_t &Mask, uint64_t &Alt,
4914                                SDValue &LHS, SDValue &RHS) {
4915     if (O.getOpcode() != ISD::SELECT_CC)
4916       return false;
4917     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
4918 
4919     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
4920         !isa<ConstantSDNode>(O.getOperand(3)))
4921       return false;
4922 
4923     uint64_t PM = O.getConstantOperandVal(2);
4924     uint64_t PAlt = O.getConstantOperandVal(3);
4925     for (b = 0; b < 8; ++b) {
4926       uint64_t Mask = UINT64_C(0xFF) << (8*b);
4927       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
4928         break;
4929     }
4930 
4931     if (b == 8)
4932       return false;
4933     Mask |= PM;
4934     Alt  |= PAlt;
4935 
4936     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
4937         O.getConstantOperandVal(1) != 0) {
4938       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
4939       if (Op0.getOpcode() == ISD::TRUNCATE)
4940         Op0 = Op0.getOperand(0);
4941       if (Op1.getOpcode() == ISD::TRUNCATE)
4942         Op1 = Op1.getOperand(0);
4943 
4944       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
4945           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
4946           isa<ConstantSDNode>(Op0.getOperand(1))) {
4947 
4948         unsigned Bits = Op0.getValueSizeInBits();
4949         if (b != Bits/8-1)
4950           return false;
4951         if (Op0.getConstantOperandVal(1) != Bits-8)
4952           return false;
4953 
4954         LHS = Op0.getOperand(0);
4955         RHS = Op1.getOperand(0);
4956         return true;
4957       }
4958 
4959       // When we have small integers (i16 to be specific), the form present
4960       // post-legalization uses SETULT in the SELECT_CC for the
4961       // higher-order byte, depending on the fact that the
4962       // even-higher-order bytes are known to all be zero, for example:
4963       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
4964       // (so when the second byte is the same, because all higher-order
4965       // bits from bytes 3 and 4 are known to be zero, the result of the
4966       // xor can be at most 255)
4967       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
4968           isa<ConstantSDNode>(O.getOperand(1))) {
4969 
4970         uint64_t ULim = O.getConstantOperandVal(1);
4971         if (ULim != (UINT64_C(1) << b*8))
4972           return false;
4973 
4974         // Now we need to make sure that the upper bytes are known to be
4975         // zero.
4976         unsigned Bits = Op0.getValueSizeInBits();
4977         if (!CurDAG->MaskedValueIsZero(
4978                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
4979           return false;
4980 
4981         LHS = Op0.getOperand(0);
4982         RHS = Op0.getOperand(1);
4983         return true;
4984       }
4985 
4986       return false;
4987     }
4988 
4989     if (CC != ISD::SETEQ)
4990       return false;
4991 
4992     SDValue Op = O.getOperand(0);
4993     if (Op.getOpcode() == ISD::AND) {
4994       if (!isa<ConstantSDNode>(Op.getOperand(1)))
4995         return false;
4996       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
4997         return false;
4998 
4999       SDValue XOR = Op.getOperand(0);
5000       if (XOR.getOpcode() == ISD::TRUNCATE)
5001         XOR = XOR.getOperand(0);
5002       if (XOR.getOpcode() != ISD::XOR)
5003         return false;
5004 
5005       LHS = XOR.getOperand(0);
5006       RHS = XOR.getOperand(1);
5007       return true;
5008     } else if (Op.getOpcode() == ISD::SRL) {
5009       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5010         return false;
5011       unsigned Bits = Op.getValueSizeInBits();
5012       if (b != Bits/8-1)
5013         return false;
5014       if (Op.getConstantOperandVal(1) != Bits-8)
5015         return false;
5016 
5017       SDValue XOR = Op.getOperand(0);
5018       if (XOR.getOpcode() == ISD::TRUNCATE)
5019         XOR = XOR.getOperand(0);
5020       if (XOR.getOpcode() != ISD::XOR)
5021         return false;
5022 
5023       LHS = XOR.getOperand(0);
5024       RHS = XOR.getOperand(1);
5025       return true;
5026     }
5027 
5028     return false;
5029   };
5030 
5031   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
5032   while (!Queue.empty()) {
5033     SDValue V = Queue.pop_back_val();
5034 
5035     for (const SDValue &O : V.getNode()->ops()) {
5036       unsigned b;
5037       uint64_t M = 0, A = 0;
5038       SDValue OLHS, ORHS;
5039       if (O.getOpcode() == ISD::OR) {
5040         Queue.push_back(O);
5041       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
5042         if (!LHS) {
5043           LHS = OLHS;
5044           RHS = ORHS;
5045           BytesFound[b] = true;
5046           Mask |= M;
5047           Alt  |= A;
5048         } else if ((LHS == ORHS && RHS == OLHS) ||
5049                    (RHS == ORHS && LHS == OLHS)) {
5050           BytesFound[b] = true;
5051           Mask |= M;
5052           Alt  |= A;
5053         } else {
5054           return Res;
5055         }
5056       } else {
5057         return Res;
5058       }
5059     }
5060   }
5061 
5062   unsigned LastB = 0, BCnt = 0;
5063   for (unsigned i = 0; i < 8; ++i)
5064     if (BytesFound[LastB]) {
5065       ++BCnt;
5066       LastB = i;
5067     }
5068 
5069   if (!LastB || BCnt < 2)
5070     return Res;
5071 
5072   // Because we'll be zero-extending the output anyway if don't have a specific
5073   // value for each input byte (via the Mask), we can 'anyext' the inputs.
5074   if (LHS.getValueType() != VT) {
5075     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
5076     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
5077   }
5078 
5079   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
5080 
5081   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
5082   if (NonTrivialMask && !Alt) {
5083     // Res = Mask & CMPB
5084     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5085                           CurDAG->getConstant(Mask, dl, VT));
5086   } else if (Alt) {
5087     // Res = (CMPB & Mask) | (~CMPB & Alt)
5088     // Which, as suggested here:
5089     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
5090     // can be written as:
5091     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
5092     // useful because the (Alt ^ Mask) can be pre-computed.
5093     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5094                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
5095     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
5096                           CurDAG->getConstant(Alt, dl, VT));
5097   }
5098 
5099   return Res;
5100 }
5101 
5102 // When CR bit registers are enabled, an extension of an i1 variable to a i32
5103 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
5104 // involves constant materialization of a 0 or a 1 or both. If the result of
5105 // the extension is then operated upon by some operator that can be constant
5106 // folded with a constant 0 or 1, and that constant can be materialized using
5107 // only one instruction (like a zero or one), then we should fold in those
5108 // operations with the select.
5109 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
5110   if (!PPCSubTarget->useCRBits())
5111     return;
5112 
5113   if (N->getOpcode() != ISD::ZERO_EXTEND &&
5114       N->getOpcode() != ISD::SIGN_EXTEND &&
5115       N->getOpcode() != ISD::ANY_EXTEND)
5116     return;
5117 
5118   if (N->getOperand(0).getValueType() != MVT::i1)
5119     return;
5120 
5121   if (!N->hasOneUse())
5122     return;
5123 
5124   SDLoc dl(N);
5125   EVT VT = N->getValueType(0);
5126   SDValue Cond = N->getOperand(0);
5127   SDValue ConstTrue =
5128     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
5129   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
5130 
5131   do {
5132     SDNode *User = *N->use_begin();
5133     if (User->getNumOperands() != 2)
5134       break;
5135 
5136     auto TryFold = [this, N, User, dl](SDValue Val) {
5137       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
5138       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
5139       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
5140 
5141       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
5142                                             User->getValueType(0),
5143                                             O0.getNode(), O1.getNode());
5144     };
5145 
5146     // FIXME: When the semantics of the interaction between select and undef
5147     // are clearly defined, it may turn out to be unnecessary to break here.
5148     SDValue TrueRes = TryFold(ConstTrue);
5149     if (!TrueRes || TrueRes.isUndef())
5150       break;
5151     SDValue FalseRes = TryFold(ConstFalse);
5152     if (!FalseRes || FalseRes.isUndef())
5153       break;
5154 
5155     // For us to materialize these using one instruction, we must be able to
5156     // represent them as signed 16-bit integers.
5157     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
5158              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
5159     if (!isInt<16>(True) || !isInt<16>(False))
5160       break;
5161 
5162     // We can replace User with a new SELECT node, and try again to see if we
5163     // can fold the select with its user.
5164     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
5165     N = User;
5166     ConstTrue = TrueRes;
5167     ConstFalse = FalseRes;
5168   } while (N->hasOneUse());
5169 }
5170 
5171 void PPCDAGToDAGISel::PreprocessISelDAG() {
5172   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
5173   ++Position;
5174 
5175   bool MadeChange = false;
5176   while (Position != CurDAG->allnodes_begin()) {
5177     SDNode *N = &*--Position;
5178     if (N->use_empty())
5179       continue;
5180 
5181     SDValue Res;
5182     switch (N->getOpcode()) {
5183     default: break;
5184     case ISD::OR:
5185       Res = combineToCMPB(N);
5186       break;
5187     }
5188 
5189     if (!Res)
5190       foldBoolExts(Res, N);
5191 
5192     if (Res) {
5193       DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
5194       DEBUG(N->dump(CurDAG));
5195       DEBUG(dbgs() << "\nNew: ");
5196       DEBUG(Res.getNode()->dump(CurDAG));
5197       DEBUG(dbgs() << "\n");
5198 
5199       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
5200       MadeChange = true;
5201     }
5202   }
5203 
5204   if (MadeChange)
5205     CurDAG->RemoveDeadNodes();
5206 }
5207 
5208 /// PostprocessISelDAG - Perform some late peephole optimizations
5209 /// on the DAG representation.
5210 void PPCDAGToDAGISel::PostprocessISelDAG() {
5211   // Skip peepholes at -O0.
5212   if (TM.getOptLevel() == CodeGenOpt::None)
5213     return;
5214 
5215   PeepholePPC64();
5216   PeepholeCROps();
5217   PeepholePPC64ZExt();
5218 }
5219 
5220 // Check if all users of this node will become isel where the second operand
5221 // is the constant zero. If this is so, and if we can negate the condition,
5222 // then we can flip the true and false operands. This will allow the zero to
5223 // be folded with the isel so that we don't need to materialize a register
5224 // containing zero.
5225 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
5226   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5227        UI != UE; ++UI) {
5228     SDNode *User = *UI;
5229     if (!User->isMachineOpcode())
5230       return false;
5231     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
5232         User->getMachineOpcode() != PPC::SELECT_I8)
5233       return false;
5234 
5235     SDNode *Op2 = User->getOperand(2).getNode();
5236     if (!Op2->isMachineOpcode())
5237       return false;
5238 
5239     if (Op2->getMachineOpcode() != PPC::LI &&
5240         Op2->getMachineOpcode() != PPC::LI8)
5241       return false;
5242 
5243     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
5244     if (!C)
5245       return false;
5246 
5247     if (!C->isNullValue())
5248       return false;
5249   }
5250 
5251   return true;
5252 }
5253 
5254 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
5255   SmallVector<SDNode *, 4> ToReplace;
5256   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5257        UI != UE; ++UI) {
5258     SDNode *User = *UI;
5259     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
5260             User->getMachineOpcode() == PPC::SELECT_I8) &&
5261            "Must have all select users");
5262     ToReplace.push_back(User);
5263   }
5264 
5265   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
5266        UE = ToReplace.end(); UI != UE; ++UI) {
5267     SDNode *User = *UI;
5268     SDNode *ResNode =
5269       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
5270                              User->getValueType(0), User->getOperand(0),
5271                              User->getOperand(2),
5272                              User->getOperand(1));
5273 
5274       DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
5275       DEBUG(User->dump(CurDAG));
5276       DEBUG(dbgs() << "\nNew: ");
5277       DEBUG(ResNode->dump(CurDAG));
5278       DEBUG(dbgs() << "\n");
5279 
5280       ReplaceUses(User, ResNode);
5281   }
5282 }
5283 
5284 void PPCDAGToDAGISel::PeepholeCROps() {
5285   bool IsModified;
5286   do {
5287     IsModified = false;
5288     for (SDNode &Node : CurDAG->allnodes()) {
5289       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
5290       if (!MachineNode || MachineNode->use_empty())
5291         continue;
5292       SDNode *ResNode = MachineNode;
5293 
5294       bool Op1Set   = false, Op1Unset = false,
5295            Op1Not   = false,
5296            Op2Set   = false, Op2Unset = false,
5297            Op2Not   = false;
5298 
5299       unsigned Opcode = MachineNode->getMachineOpcode();
5300       switch (Opcode) {
5301       default: break;
5302       case PPC::CRAND:
5303       case PPC::CRNAND:
5304       case PPC::CROR:
5305       case PPC::CRXOR:
5306       case PPC::CRNOR:
5307       case PPC::CREQV:
5308       case PPC::CRANDC:
5309       case PPC::CRORC: {
5310         SDValue Op = MachineNode->getOperand(1);
5311         if (Op.isMachineOpcode()) {
5312           if (Op.getMachineOpcode() == PPC::CRSET)
5313             Op2Set = true;
5314           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5315             Op2Unset = true;
5316           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5317                    Op.getOperand(0) == Op.getOperand(1))
5318             Op2Not = true;
5319         }
5320         LLVM_FALLTHROUGH;
5321       }
5322       case PPC::BC:
5323       case PPC::BCn:
5324       case PPC::SELECT_I4:
5325       case PPC::SELECT_I8:
5326       case PPC::SELECT_F4:
5327       case PPC::SELECT_F8:
5328       case PPC::SELECT_QFRC:
5329       case PPC::SELECT_QSRC:
5330       case PPC::SELECT_QBRC:
5331       case PPC::SELECT_VRRC:
5332       case PPC::SELECT_VSFRC:
5333       case PPC::SELECT_VSSRC:
5334       case PPC::SELECT_VSRC: {
5335         SDValue Op = MachineNode->getOperand(0);
5336         if (Op.isMachineOpcode()) {
5337           if (Op.getMachineOpcode() == PPC::CRSET)
5338             Op1Set = true;
5339           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5340             Op1Unset = true;
5341           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5342                    Op.getOperand(0) == Op.getOperand(1))
5343             Op1Not = true;
5344         }
5345         }
5346         break;
5347       }
5348 
5349       bool SelectSwap = false;
5350       switch (Opcode) {
5351       default: break;
5352       case PPC::CRAND:
5353         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5354           // x & x = x
5355           ResNode = MachineNode->getOperand(0).getNode();
5356         else if (Op1Set)
5357           // 1 & y = y
5358           ResNode = MachineNode->getOperand(1).getNode();
5359         else if (Op2Set)
5360           // x & 1 = x
5361           ResNode = MachineNode->getOperand(0).getNode();
5362         else if (Op1Unset || Op2Unset)
5363           // x & 0 = 0 & y = 0
5364           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5365                                            MVT::i1);
5366         else if (Op1Not)
5367           // ~x & y = andc(y, x)
5368           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5369                                            MVT::i1, MachineNode->getOperand(1),
5370                                            MachineNode->getOperand(0).
5371                                              getOperand(0));
5372         else if (Op2Not)
5373           // x & ~y = andc(x, y)
5374           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5375                                            MVT::i1, MachineNode->getOperand(0),
5376                                            MachineNode->getOperand(1).
5377                                              getOperand(0));
5378         else if (AllUsersSelectZero(MachineNode)) {
5379           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5380                                            MVT::i1, MachineNode->getOperand(0),
5381                                            MachineNode->getOperand(1));
5382           SelectSwap = true;
5383         }
5384         break;
5385       case PPC::CRNAND:
5386         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5387           // nand(x, x) -> nor(x, x)
5388           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5389                                            MVT::i1, MachineNode->getOperand(0),
5390                                            MachineNode->getOperand(0));
5391         else if (Op1Set)
5392           // nand(1, y) -> nor(y, y)
5393           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5394                                            MVT::i1, MachineNode->getOperand(1),
5395                                            MachineNode->getOperand(1));
5396         else if (Op2Set)
5397           // nand(x, 1) -> nor(x, x)
5398           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5399                                            MVT::i1, MachineNode->getOperand(0),
5400                                            MachineNode->getOperand(0));
5401         else if (Op1Unset || Op2Unset)
5402           // nand(x, 0) = nand(0, y) = 1
5403           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5404                                            MVT::i1);
5405         else if (Op1Not)
5406           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
5407           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5408                                            MVT::i1, MachineNode->getOperand(0).
5409                                                       getOperand(0),
5410                                            MachineNode->getOperand(1));
5411         else if (Op2Not)
5412           // nand(x, ~y) = ~x | y = orc(y, x)
5413           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5414                                            MVT::i1, MachineNode->getOperand(1).
5415                                                       getOperand(0),
5416                                            MachineNode->getOperand(0));
5417         else if (AllUsersSelectZero(MachineNode)) {
5418           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5419                                            MVT::i1, MachineNode->getOperand(0),
5420                                            MachineNode->getOperand(1));
5421           SelectSwap = true;
5422         }
5423         break;
5424       case PPC::CROR:
5425         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5426           // x | x = x
5427           ResNode = MachineNode->getOperand(0).getNode();
5428         else if (Op1Set || Op2Set)
5429           // x | 1 = 1 | y = 1
5430           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5431                                            MVT::i1);
5432         else if (Op1Unset)
5433           // 0 | y = y
5434           ResNode = MachineNode->getOperand(1).getNode();
5435         else if (Op2Unset)
5436           // x | 0 = x
5437           ResNode = MachineNode->getOperand(0).getNode();
5438         else if (Op1Not)
5439           // ~x | y = orc(y, x)
5440           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5441                                            MVT::i1, MachineNode->getOperand(1),
5442                                            MachineNode->getOperand(0).
5443                                              getOperand(0));
5444         else if (Op2Not)
5445           // x | ~y = orc(x, y)
5446           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5447                                            MVT::i1, MachineNode->getOperand(0),
5448                                            MachineNode->getOperand(1).
5449                                              getOperand(0));
5450         else if (AllUsersSelectZero(MachineNode)) {
5451           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5452                                            MVT::i1, MachineNode->getOperand(0),
5453                                            MachineNode->getOperand(1));
5454           SelectSwap = true;
5455         }
5456         break;
5457       case PPC::CRXOR:
5458         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5459           // xor(x, x) = 0
5460           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5461                                            MVT::i1);
5462         else if (Op1Set)
5463           // xor(1, y) -> nor(y, y)
5464           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5465                                            MVT::i1, MachineNode->getOperand(1),
5466                                            MachineNode->getOperand(1));
5467         else if (Op2Set)
5468           // xor(x, 1) -> nor(x, x)
5469           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5470                                            MVT::i1, MachineNode->getOperand(0),
5471                                            MachineNode->getOperand(0));
5472         else if (Op1Unset)
5473           // xor(0, y) = y
5474           ResNode = MachineNode->getOperand(1).getNode();
5475         else if (Op2Unset)
5476           // xor(x, 0) = x
5477           ResNode = MachineNode->getOperand(0).getNode();
5478         else if (Op1Not)
5479           // xor(~x, y) = eqv(x, y)
5480           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5481                                            MVT::i1, MachineNode->getOperand(0).
5482                                                       getOperand(0),
5483                                            MachineNode->getOperand(1));
5484         else if (Op2Not)
5485           // xor(x, ~y) = eqv(x, y)
5486           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5487                                            MVT::i1, MachineNode->getOperand(0),
5488                                            MachineNode->getOperand(1).
5489                                              getOperand(0));
5490         else if (AllUsersSelectZero(MachineNode)) {
5491           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5492                                            MVT::i1, MachineNode->getOperand(0),
5493                                            MachineNode->getOperand(1));
5494           SelectSwap = true;
5495         }
5496         break;
5497       case PPC::CRNOR:
5498         if (Op1Set || Op2Set)
5499           // nor(1, y) -> 0
5500           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5501                                            MVT::i1);
5502         else if (Op1Unset)
5503           // nor(0, y) = ~y -> nor(y, y)
5504           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5505                                            MVT::i1, MachineNode->getOperand(1),
5506                                            MachineNode->getOperand(1));
5507         else if (Op2Unset)
5508           // nor(x, 0) = ~x
5509           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5510                                            MVT::i1, MachineNode->getOperand(0),
5511                                            MachineNode->getOperand(0));
5512         else if (Op1Not)
5513           // nor(~x, y) = andc(x, y)
5514           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5515                                            MVT::i1, MachineNode->getOperand(0).
5516                                                       getOperand(0),
5517                                            MachineNode->getOperand(1));
5518         else if (Op2Not)
5519           // nor(x, ~y) = andc(y, x)
5520           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5521                                            MVT::i1, MachineNode->getOperand(1).
5522                                                       getOperand(0),
5523                                            MachineNode->getOperand(0));
5524         else if (AllUsersSelectZero(MachineNode)) {
5525           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
5526                                            MVT::i1, MachineNode->getOperand(0),
5527                                            MachineNode->getOperand(1));
5528           SelectSwap = true;
5529         }
5530         break;
5531       case PPC::CREQV:
5532         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5533           // eqv(x, x) = 1
5534           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5535                                            MVT::i1);
5536         else if (Op1Set)
5537           // eqv(1, y) = y
5538           ResNode = MachineNode->getOperand(1).getNode();
5539         else if (Op2Set)
5540           // eqv(x, 1) = x
5541           ResNode = MachineNode->getOperand(0).getNode();
5542         else if (Op1Unset)
5543           // eqv(0, y) = ~y -> nor(y, y)
5544           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5545                                            MVT::i1, MachineNode->getOperand(1),
5546                                            MachineNode->getOperand(1));
5547         else if (Op2Unset)
5548           // eqv(x, 0) = ~x
5549           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5550                                            MVT::i1, MachineNode->getOperand(0),
5551                                            MachineNode->getOperand(0));
5552         else if (Op1Not)
5553           // eqv(~x, y) = xor(x, y)
5554           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5555                                            MVT::i1, MachineNode->getOperand(0).
5556                                                       getOperand(0),
5557                                            MachineNode->getOperand(1));
5558         else if (Op2Not)
5559           // eqv(x, ~y) = xor(x, y)
5560           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5561                                            MVT::i1, MachineNode->getOperand(0),
5562                                            MachineNode->getOperand(1).
5563                                              getOperand(0));
5564         else if (AllUsersSelectZero(MachineNode)) {
5565           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5566                                            MVT::i1, MachineNode->getOperand(0),
5567                                            MachineNode->getOperand(1));
5568           SelectSwap = true;
5569         }
5570         break;
5571       case PPC::CRANDC:
5572         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5573           // andc(x, x) = 0
5574           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5575                                            MVT::i1);
5576         else if (Op1Set)
5577           // andc(1, y) = ~y
5578           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5579                                            MVT::i1, MachineNode->getOperand(1),
5580                                            MachineNode->getOperand(1));
5581         else if (Op1Unset || Op2Set)
5582           // andc(0, y) = andc(x, 1) = 0
5583           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5584                                            MVT::i1);
5585         else if (Op2Unset)
5586           // andc(x, 0) = x
5587           ResNode = MachineNode->getOperand(0).getNode();
5588         else if (Op1Not)
5589           // andc(~x, y) = ~(x | y) = nor(x, y)
5590           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5591                                            MVT::i1, MachineNode->getOperand(0).
5592                                                       getOperand(0),
5593                                            MachineNode->getOperand(1));
5594         else if (Op2Not)
5595           // andc(x, ~y) = x & y
5596           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5597                                            MVT::i1, MachineNode->getOperand(0),
5598                                            MachineNode->getOperand(1).
5599                                              getOperand(0));
5600         else if (AllUsersSelectZero(MachineNode)) {
5601           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5602                                            MVT::i1, MachineNode->getOperand(1),
5603                                            MachineNode->getOperand(0));
5604           SelectSwap = true;
5605         }
5606         break;
5607       case PPC::CRORC:
5608         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5609           // orc(x, x) = 1
5610           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5611                                            MVT::i1);
5612         else if (Op1Set || Op2Unset)
5613           // orc(1, y) = orc(x, 0) = 1
5614           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5615                                            MVT::i1);
5616         else if (Op2Set)
5617           // orc(x, 1) = x
5618           ResNode = MachineNode->getOperand(0).getNode();
5619         else if (Op1Unset)
5620           // orc(0, y) = ~y
5621           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5622                                            MVT::i1, MachineNode->getOperand(1),
5623                                            MachineNode->getOperand(1));
5624         else if (Op1Not)
5625           // orc(~x, y) = ~(x & y) = nand(x, y)
5626           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5627                                            MVT::i1, MachineNode->getOperand(0).
5628                                                       getOperand(0),
5629                                            MachineNode->getOperand(1));
5630         else if (Op2Not)
5631           // orc(x, ~y) = x | y
5632           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
5633                                            MVT::i1, MachineNode->getOperand(0),
5634                                            MachineNode->getOperand(1).
5635                                              getOperand(0));
5636         else if (AllUsersSelectZero(MachineNode)) {
5637           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5638                                            MVT::i1, MachineNode->getOperand(1),
5639                                            MachineNode->getOperand(0));
5640           SelectSwap = true;
5641         }
5642         break;
5643       case PPC::SELECT_I4:
5644       case PPC::SELECT_I8:
5645       case PPC::SELECT_F4:
5646       case PPC::SELECT_F8:
5647       case PPC::SELECT_QFRC:
5648       case PPC::SELECT_QSRC:
5649       case PPC::SELECT_QBRC:
5650       case PPC::SELECT_VRRC:
5651       case PPC::SELECT_VSFRC:
5652       case PPC::SELECT_VSSRC:
5653       case PPC::SELECT_VSRC:
5654         if (Op1Set)
5655           ResNode = MachineNode->getOperand(1).getNode();
5656         else if (Op1Unset)
5657           ResNode = MachineNode->getOperand(2).getNode();
5658         else if (Op1Not)
5659           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
5660                                            SDLoc(MachineNode),
5661                                            MachineNode->getValueType(0),
5662                                            MachineNode->getOperand(0).
5663                                              getOperand(0),
5664                                            MachineNode->getOperand(2),
5665                                            MachineNode->getOperand(1));
5666         break;
5667       case PPC::BC:
5668       case PPC::BCn:
5669         if (Op1Not)
5670           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
5671                                                                PPC::BC,
5672                                            SDLoc(MachineNode),
5673                                            MVT::Other,
5674                                            MachineNode->getOperand(0).
5675                                              getOperand(0),
5676                                            MachineNode->getOperand(1),
5677                                            MachineNode->getOperand(2));
5678         // FIXME: Handle Op1Set, Op1Unset here too.
5679         break;
5680       }
5681 
5682       // If we're inverting this node because it is used only by selects that
5683       // we'd like to swap, then swap the selects before the node replacement.
5684       if (SelectSwap)
5685         SwapAllSelectUsers(MachineNode);
5686 
5687       if (ResNode != MachineNode) {
5688         DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
5689         DEBUG(MachineNode->dump(CurDAG));
5690         DEBUG(dbgs() << "\nNew: ");
5691         DEBUG(ResNode->dump(CurDAG));
5692         DEBUG(dbgs() << "\n");
5693 
5694         ReplaceUses(MachineNode, ResNode);
5695         IsModified = true;
5696       }
5697     }
5698     if (IsModified)
5699       CurDAG->RemoveDeadNodes();
5700   } while (IsModified);
5701 }
5702 
5703 // Gather the set of 32-bit operations that are known to have their
5704 // higher-order 32 bits zero, where ToPromote contains all such operations.
5705 static bool PeepholePPC64ZExtGather(SDValue Op32,
5706                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
5707   if (!Op32.isMachineOpcode())
5708     return false;
5709 
5710   // First, check for the "frontier" instructions (those that will clear the
5711   // higher-order 32 bits.
5712 
5713   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
5714   // around. If it does not, then these instructions will clear the
5715   // higher-order bits.
5716   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
5717        Op32.getMachineOpcode() == PPC::RLWNM) &&
5718       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
5719     ToPromote.insert(Op32.getNode());
5720     return true;
5721   }
5722 
5723   // SLW and SRW always clear the higher-order bits.
5724   if (Op32.getMachineOpcode() == PPC::SLW ||
5725       Op32.getMachineOpcode() == PPC::SRW) {
5726     ToPromote.insert(Op32.getNode());
5727     return true;
5728   }
5729 
5730   // For LI and LIS, we need the immediate to be positive (so that it is not
5731   // sign extended).
5732   if (Op32.getMachineOpcode() == PPC::LI ||
5733       Op32.getMachineOpcode() == PPC::LIS) {
5734     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
5735       return false;
5736 
5737     ToPromote.insert(Op32.getNode());
5738     return true;
5739   }
5740 
5741   // LHBRX and LWBRX always clear the higher-order bits.
5742   if (Op32.getMachineOpcode() == PPC::LHBRX ||
5743       Op32.getMachineOpcode() == PPC::LWBRX) {
5744     ToPromote.insert(Op32.getNode());
5745     return true;
5746   }
5747 
5748   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
5749   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
5750       Op32.getMachineOpcode() == PPC::CNTTZW) {
5751     ToPromote.insert(Op32.getNode());
5752     return true;
5753   }
5754 
5755   // Next, check for those instructions we can look through.
5756 
5757   // Assuming the mask does not wrap around, then the higher-order bits are
5758   // taken directly from the first operand.
5759   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
5760       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
5761     SmallPtrSet<SDNode *, 16> ToPromote1;
5762     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
5763       return false;
5764 
5765     ToPromote.insert(Op32.getNode());
5766     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5767     return true;
5768   }
5769 
5770   // For OR, the higher-order bits are zero if that is true for both operands.
5771   // For SELECT_I4, the same is true (but the relevant operand numbers are
5772   // shifted by 1).
5773   if (Op32.getMachineOpcode() == PPC::OR ||
5774       Op32.getMachineOpcode() == PPC::SELECT_I4) {
5775     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
5776     SmallPtrSet<SDNode *, 16> ToPromote1;
5777     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
5778       return false;
5779     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
5780       return false;
5781 
5782     ToPromote.insert(Op32.getNode());
5783     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5784     return true;
5785   }
5786 
5787   // For ORI and ORIS, we need the higher-order bits of the first operand to be
5788   // zero, and also for the constant to be positive (so that it is not sign
5789   // extended).
5790   if (Op32.getMachineOpcode() == PPC::ORI ||
5791       Op32.getMachineOpcode() == PPC::ORIS) {
5792     SmallPtrSet<SDNode *, 16> ToPromote1;
5793     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
5794       return false;
5795     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
5796       return false;
5797 
5798     ToPromote.insert(Op32.getNode());
5799     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5800     return true;
5801   }
5802 
5803   // The higher-order bits of AND are zero if that is true for at least one of
5804   // the operands.
5805   if (Op32.getMachineOpcode() == PPC::AND) {
5806     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
5807     bool Op0OK =
5808       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
5809     bool Op1OK =
5810       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
5811     if (!Op0OK && !Op1OK)
5812       return false;
5813 
5814     ToPromote.insert(Op32.getNode());
5815 
5816     if (Op0OK)
5817       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5818 
5819     if (Op1OK)
5820       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
5821 
5822     return true;
5823   }
5824 
5825   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
5826   // of the first operand, or if the second operand is positive (so that it is
5827   // not sign extended).
5828   if (Op32.getMachineOpcode() == PPC::ANDIo ||
5829       Op32.getMachineOpcode() == PPC::ANDISo) {
5830     SmallPtrSet<SDNode *, 16> ToPromote1;
5831     bool Op0OK =
5832       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
5833     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
5834     if (!Op0OK && !Op1OK)
5835       return false;
5836 
5837     ToPromote.insert(Op32.getNode());
5838 
5839     if (Op0OK)
5840       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5841 
5842     return true;
5843   }
5844 
5845   return false;
5846 }
5847 
5848 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
5849   if (!PPCSubTarget->isPPC64())
5850     return;
5851 
5852   // When we zero-extend from i32 to i64, we use a pattern like this:
5853   // def : Pat<(i64 (zext i32:$in)),
5854   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
5855   //                   0, 32)>;
5856   // There are several 32-bit shift/rotate instructions, however, that will
5857   // clear the higher-order bits of their output, rendering the RLDICL
5858   // unnecessary. When that happens, we remove it here, and redefine the
5859   // relevant 32-bit operation to be a 64-bit operation.
5860 
5861   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
5862   ++Position;
5863 
5864   bool MadeChange = false;
5865   while (Position != CurDAG->allnodes_begin()) {
5866     SDNode *N = &*--Position;
5867     // Skip dead nodes and any non-machine opcodes.
5868     if (N->use_empty() || !N->isMachineOpcode())
5869       continue;
5870 
5871     if (N->getMachineOpcode() != PPC::RLDICL)
5872       continue;
5873 
5874     if (N->getConstantOperandVal(1) != 0 ||
5875         N->getConstantOperandVal(2) != 32)
5876       continue;
5877 
5878     SDValue ISR = N->getOperand(0);
5879     if (!ISR.isMachineOpcode() ||
5880         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
5881       continue;
5882 
5883     if (!ISR.hasOneUse())
5884       continue;
5885 
5886     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
5887       continue;
5888 
5889     SDValue IDef = ISR.getOperand(0);
5890     if (!IDef.isMachineOpcode() ||
5891         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
5892       continue;
5893 
5894     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
5895     // can get rid of it.
5896 
5897     SDValue Op32 = ISR->getOperand(1);
5898     if (!Op32.isMachineOpcode())
5899       continue;
5900 
5901     // There are some 32-bit instructions that always clear the high-order 32
5902     // bits, there are also some instructions (like AND) that we can look
5903     // through.
5904     SmallPtrSet<SDNode *, 16> ToPromote;
5905     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
5906       continue;
5907 
5908     // If the ToPromote set contains nodes that have uses outside of the set
5909     // (except for the original INSERT_SUBREG), then abort the transformation.
5910     bool OutsideUse = false;
5911     for (SDNode *PN : ToPromote) {
5912       for (SDNode *UN : PN->uses()) {
5913         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
5914           OutsideUse = true;
5915           break;
5916         }
5917       }
5918 
5919       if (OutsideUse)
5920         break;
5921     }
5922     if (OutsideUse)
5923       continue;
5924 
5925     MadeChange = true;
5926 
5927     // We now know that this zero extension can be removed by promoting to
5928     // nodes in ToPromote to 64-bit operations, where for operations in the
5929     // frontier of the set, we need to insert INSERT_SUBREGs for their
5930     // operands.
5931     for (SDNode *PN : ToPromote) {
5932       unsigned NewOpcode;
5933       switch (PN->getMachineOpcode()) {
5934       default:
5935         llvm_unreachable("Don't know the 64-bit variant of this instruction");
5936       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
5937       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
5938       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
5939       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
5940       case PPC::LI:        NewOpcode = PPC::LI8; break;
5941       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
5942       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
5943       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
5944       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
5945       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
5946       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
5947       case PPC::OR:        NewOpcode = PPC::OR8; break;
5948       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
5949       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
5950       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
5951       case PPC::AND:       NewOpcode = PPC::AND8; break;
5952       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
5953       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
5954       }
5955 
5956       // Note: During the replacement process, the nodes will be in an
5957       // inconsistent state (some instructions will have operands with values
5958       // of the wrong type). Once done, however, everything should be right
5959       // again.
5960 
5961       SmallVector<SDValue, 4> Ops;
5962       for (const SDValue &V : PN->ops()) {
5963         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
5964             !isa<ConstantSDNode>(V)) {
5965           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
5966           SDNode *ReplOp =
5967             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
5968                                    ISR.getNode()->getVTList(), ReplOpOps);
5969           Ops.push_back(SDValue(ReplOp, 0));
5970         } else {
5971           Ops.push_back(V);
5972         }
5973       }
5974 
5975       // Because all to-be-promoted nodes only have users that are other
5976       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
5977       // the i32 result value type with i64.
5978 
5979       SmallVector<EVT, 2> NewVTs;
5980       SDVTList VTs = PN->getVTList();
5981       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
5982         if (VTs.VTs[i] == MVT::i32)
5983           NewVTs.push_back(MVT::i64);
5984         else
5985           NewVTs.push_back(VTs.VTs[i]);
5986 
5987       DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
5988       DEBUG(PN->dump(CurDAG));
5989 
5990       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
5991 
5992       DEBUG(dbgs() << "\nNew: ");
5993       DEBUG(PN->dump(CurDAG));
5994       DEBUG(dbgs() << "\n");
5995     }
5996 
5997     // Now we replace the original zero extend and its associated INSERT_SUBREG
5998     // with the value feeding the INSERT_SUBREG (which has now been promoted to
5999     // return an i64).
6000 
6001     DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
6002     DEBUG(N->dump(CurDAG));
6003     DEBUG(dbgs() << "\nNew: ");
6004     DEBUG(Op32.getNode()->dump(CurDAG));
6005     DEBUG(dbgs() << "\n");
6006 
6007     ReplaceUses(N, Op32.getNode());
6008   }
6009 
6010   if (MadeChange)
6011     CurDAG->RemoveDeadNodes();
6012 }
6013 
6014 void PPCDAGToDAGISel::PeepholePPC64() {
6015   // These optimizations are currently supported only for 64-bit SVR4.
6016   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
6017     return;
6018 
6019   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
6020   ++Position;
6021 
6022   while (Position != CurDAG->allnodes_begin()) {
6023     SDNode *N = &*--Position;
6024     // Skip dead nodes and any non-machine opcodes.
6025     if (N->use_empty() || !N->isMachineOpcode())
6026       continue;
6027 
6028     unsigned FirstOp;
6029     unsigned StorageOpcode = N->getMachineOpcode();
6030 
6031     switch (StorageOpcode) {
6032     default: continue;
6033 
6034     case PPC::LBZ:
6035     case PPC::LBZ8:
6036     case PPC::LD:
6037     case PPC::LFD:
6038     case PPC::LFS:
6039     case PPC::LHA:
6040     case PPC::LHA8:
6041     case PPC::LHZ:
6042     case PPC::LHZ8:
6043     case PPC::LWA:
6044     case PPC::LWZ:
6045     case PPC::LWZ8:
6046       FirstOp = 0;
6047       break;
6048 
6049     case PPC::STB:
6050     case PPC::STB8:
6051     case PPC::STD:
6052     case PPC::STFD:
6053     case PPC::STFS:
6054     case PPC::STH:
6055     case PPC::STH8:
6056     case PPC::STW:
6057     case PPC::STW8:
6058       FirstOp = 1;
6059       break;
6060     }
6061 
6062     // If this is a load or store with a zero offset, or within the alignment,
6063     // we may be able to fold an add-immediate into the memory operation.
6064     // The check against alignment is below, as it can't occur until we check
6065     // the arguments to N
6066     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
6067       continue;
6068 
6069     SDValue Base = N->getOperand(FirstOp + 1);
6070     if (!Base.isMachineOpcode())
6071       continue;
6072 
6073     unsigned Flags = 0;
6074     bool ReplaceFlags = true;
6075 
6076     // When the feeding operation is an add-immediate of some sort,
6077     // determine whether we need to add relocation information to the
6078     // target flags on the immediate operand when we fold it into the
6079     // load instruction.
6080     //
6081     // For something like ADDItocL, the relocation information is
6082     // inferred from the opcode; when we process it in the AsmPrinter,
6083     // we add the necessary relocation there.  A load, though, can receive
6084     // relocation from various flavors of ADDIxxx, so we need to carry
6085     // the relocation information in the target flags.
6086     switch (Base.getMachineOpcode()) {
6087     default: continue;
6088 
6089     case PPC::ADDI8:
6090     case PPC::ADDI:
6091       // In some cases (such as TLS) the relocation information
6092       // is already in place on the operand, so copying the operand
6093       // is sufficient.
6094       ReplaceFlags = false;
6095       // For these cases, the immediate may not be divisible by 4, in
6096       // which case the fold is illegal for DS-form instructions.  (The
6097       // other cases provide aligned addresses and are always safe.)
6098       if ((StorageOpcode == PPC::LWA ||
6099            StorageOpcode == PPC::LD  ||
6100            StorageOpcode == PPC::STD) &&
6101           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
6102            Base.getConstantOperandVal(1) % 4 != 0))
6103         continue;
6104       break;
6105     case PPC::ADDIdtprelL:
6106       Flags = PPCII::MO_DTPREL_LO;
6107       break;
6108     case PPC::ADDItlsldL:
6109       Flags = PPCII::MO_TLSLD_LO;
6110       break;
6111     case PPC::ADDItocL:
6112       Flags = PPCII::MO_TOC_LO;
6113       break;
6114     }
6115 
6116     SDValue ImmOpnd = Base.getOperand(1);
6117 
6118     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
6119     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
6120     // we might have needed different @ha relocation values for the offset
6121     // pointers).
6122     int MaxDisplacement = 7;
6123     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6124       const GlobalValue *GV = GA->getGlobal();
6125       MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
6126     }
6127 
6128     bool UpdateHBase = false;
6129     SDValue HBase = Base.getOperand(0);
6130 
6131     int Offset = N->getConstantOperandVal(FirstOp);
6132     if (ReplaceFlags) {
6133       if (Offset < 0 || Offset > MaxDisplacement) {
6134         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
6135         // one use, then we can do this for any offset, we just need to also
6136         // update the offset (i.e. the symbol addend) on the addis also.
6137         if (Base.getMachineOpcode() != PPC::ADDItocL)
6138           continue;
6139 
6140         if (!HBase.isMachineOpcode() ||
6141             HBase.getMachineOpcode() != PPC::ADDIStocHA)
6142           continue;
6143 
6144         if (!Base.hasOneUse() || !HBase.hasOneUse())
6145           continue;
6146 
6147         SDValue HImmOpnd = HBase.getOperand(1);
6148         if (HImmOpnd != ImmOpnd)
6149           continue;
6150 
6151         UpdateHBase = true;
6152       }
6153     } else {
6154       // If we're directly folding the addend from an addi instruction, then:
6155       //  1. In general, the offset on the memory access must be zero.
6156       //  2. If the addend is a constant, then it can be combined with a
6157       //     non-zero offset, but only if the result meets the encoding
6158       //     requirements.
6159       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
6160         Offset += C->getSExtValue();
6161 
6162         if ((StorageOpcode == PPC::LWA || StorageOpcode == PPC::LD ||
6163              StorageOpcode == PPC::STD) && (Offset % 4) != 0)
6164           continue;
6165 
6166         if (!isInt<16>(Offset))
6167           continue;
6168 
6169         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
6170                                             ImmOpnd.getValueType());
6171       } else if (Offset != 0) {
6172         continue;
6173       }
6174     }
6175 
6176     // We found an opportunity.  Reverse the operands from the add
6177     // immediate and substitute them into the load or store.  If
6178     // needed, update the target flags for the immediate operand to
6179     // reflect the necessary relocation information.
6180     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
6181     DEBUG(Base->dump(CurDAG));
6182     DEBUG(dbgs() << "\nN: ");
6183     DEBUG(N->dump(CurDAG));
6184     DEBUG(dbgs() << "\n");
6185 
6186     // If the relocation information isn't already present on the
6187     // immediate operand, add it now.
6188     if (ReplaceFlags) {
6189       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6190         SDLoc dl(GA);
6191         const GlobalValue *GV = GA->getGlobal();
6192         // We can't perform this optimization for data whose alignment
6193         // is insufficient for the instruction encoding.
6194         if (GV->getAlignment() < 4 &&
6195             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
6196              StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
6197           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
6198           continue;
6199         }
6200         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
6201       } else if (ConstantPoolSDNode *CP =
6202                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
6203         const Constant *C = CP->getConstVal();
6204         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
6205                                                 CP->getAlignment(),
6206                                                 Offset, Flags);
6207       }
6208     }
6209 
6210     if (FirstOp == 1) // Store
6211       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
6212                                        Base.getOperand(0), N->getOperand(3));
6213     else // Load
6214       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
6215                                        N->getOperand(2));
6216 
6217     if (UpdateHBase)
6218       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
6219                                        ImmOpnd);
6220 
6221     // The add-immediate may now be dead, in which case remove it.
6222     if (Base.getNode()->use_empty())
6223       CurDAG->RemoveDeadNode(Base.getNode());
6224   }
6225 }
6226 
6227 /// createPPCISelDag - This pass converts a legalized DAG into a
6228 /// PowerPC-specific DAG, ready for instruction scheduling.
6229 ///
6230 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
6231                                      CodeGenOpt::Level OptLevel) {
6232   return new PPCDAGToDAGISel(TM, OptLevel);
6233 }
6234