1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGISel.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/KnownBits.h"
54 #include "llvm/Support/MachineValueType.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <memory>
63 #include <new>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "ppc-codegen"
70 
71 STATISTIC(NumSextSetcc,
72           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
73 STATISTIC(NumZextSetcc,
74           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
75 STATISTIC(SignExtensionsAdded,
76           "Number of sign extensions for compare inputs added.");
77 STATISTIC(ZeroExtensionsAdded,
78           "Number of zero extensions for compare inputs added.");
79 STATISTIC(NumLogicOpsOnComparison,
80           "Number of logical ops on i1 values calculated in GPR.");
81 STATISTIC(OmittedForNonExtendUses,
82           "Number of compares not eliminated as they have non-extending uses.");
83 STATISTIC(NumP9Setb,
84           "Number of compares lowered to setb.");
85 
86 // FIXME: Remove this once the bug has been fixed!
87 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
88 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
89 
90 static cl::opt<bool>
91     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
92                        cl::desc("use aggressive ppc isel for bit permutations"),
93                        cl::Hidden);
94 static cl::opt<bool> BPermRewriterNoMasking(
95     "ppc-bit-perm-rewriter-stress-rotates",
96     cl::desc("stress rotate selection in aggressive ppc isel for "
97              "bit permutations"),
98     cl::Hidden);
99 
100 static cl::opt<bool> EnableBranchHint(
101   "ppc-use-branch-hint", cl::init(true),
102     cl::desc("Enable static hinting of branches on ppc"),
103     cl::Hidden);
104 
105 static cl::opt<bool> EnableTLSOpt(
106   "ppc-tls-opt", cl::init(true),
107     cl::desc("Enable tls optimization peephole"),
108     cl::Hidden);
109 
110 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
111   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
112   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
113 
114 static cl::opt<ICmpInGPRType> CmpInGPR(
115   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
116   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
117   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
118              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
119              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
120              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
121              clEnumValN(ICGPR_NonExtIn, "nonextin",
122                         "Only comparisons where inputs don't need [sz]ext."),
123              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
124              clEnumValN(ICGPR_ZextI32, "zexti32",
125                         "Only i32 comparisons with zext result."),
126              clEnumValN(ICGPR_ZextI64, "zexti64",
127                         "Only i64 comparisons with zext result."),
128              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
129              clEnumValN(ICGPR_SextI32, "sexti32",
130                         "Only i32 comparisons with sext result."),
131              clEnumValN(ICGPR_SextI64, "sexti64",
132                         "Only i64 comparisons with sext result.")));
133 namespace {
134 
135   //===--------------------------------------------------------------------===//
136   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
137   /// instructions for SelectionDAG operations.
138   ///
139   class PPCDAGToDAGISel : public SelectionDAGISel {
140     const PPCTargetMachine &TM;
141     const PPCSubtarget *PPCSubTarget = nullptr;
142     const PPCTargetLowering *PPCLowering = nullptr;
143     unsigned GlobalBaseReg = 0;
144 
145   public:
146     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
147         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
148 
149     bool runOnMachineFunction(MachineFunction &MF) override {
150       // Make sure we re-emit a set of the global base reg if necessary
151       GlobalBaseReg = 0;
152       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
153       PPCLowering = PPCSubTarget->getTargetLowering();
154       SelectionDAGISel::runOnMachineFunction(MF);
155 
156       if (!PPCSubTarget->isSVR4ABI())
157         InsertVRSaveCode(MF);
158 
159       return true;
160     }
161 
162     void PreprocessISelDAG() override;
163     void PostprocessISelDAG() override;
164 
165     /// getI16Imm - Return a target constant with the specified value, of type
166     /// i16.
167     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
168       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
169     }
170 
171     /// getI32Imm - Return a target constant with the specified value, of type
172     /// i32.
173     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
174       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
175     }
176 
177     /// getI64Imm - Return a target constant with the specified value, of type
178     /// i64.
179     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
180       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
181     }
182 
183     /// getSmallIPtrImm - Return a target constant of pointer type.
184     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
185       return CurDAG->getTargetConstant(
186           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
187     }
188 
189     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
190     /// rotate and mask opcode and mask operation.
191     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
192                                 unsigned &SH, unsigned &MB, unsigned &ME);
193 
194     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
195     /// base register.  Return the virtual register that holds this value.
196     SDNode *getGlobalBaseReg();
197 
198     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
199 
200     // Select - Convert the specified operand from a target-independent to a
201     // target-specific node if it hasn't already been changed.
202     void Select(SDNode *N) override;
203 
204     bool tryBitfieldInsert(SDNode *N);
205     bool tryBitPermutation(SDNode *N);
206     bool tryIntCompareInGPR(SDNode *N);
207 
208     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
209     // an X-Form load instruction with the offset being a relocation coming from
210     // the PPCISD::ADD_TLS.
211     bool tryTLSXFormLoad(LoadSDNode *N);
212     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
213     // an X-Form store instruction with the offset being a relocation coming from
214     // the PPCISD::ADD_TLS.
215     bool tryTLSXFormStore(StoreSDNode *N);
216     /// SelectCC - Select a comparison of the specified values with the
217     /// specified condition code, returning the CR# of the expression.
218     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
219                      const SDLoc &dl);
220 
221     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
222     /// immediate field.  Note that the operand at this point is already the
223     /// result of a prior SelectAddressRegImm call.
224     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
225       if (N.getOpcode() == ISD::TargetConstant ||
226           N.getOpcode() == ISD::TargetGlobalAddress) {
227         Out = N;
228         return true;
229       }
230 
231       return false;
232     }
233 
234     /// SelectAddrIdx - Given the specified address, check to see if it can be
235     /// represented as an indexed [r+r] operation.
236     /// This is for xform instructions whose associated displacement form is D.
237     /// The last parameter \p 0 means associated D form has no requirment for 16
238     /// bit signed displacement.
239     /// Returns false if it can be represented by [r+imm], which are preferred.
240     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
241       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0);
242     }
243 
244     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
245     /// represented as an indexed [r+r] operation.
246     /// This is for xform instructions whose associated displacement form is DS.
247     /// The last parameter \p 4 means associated DS form 16 bit signed
248     /// displacement must be a multiple of 4.
249     /// Returns false if it can be represented by [r+imm], which are preferred.
250     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
251       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4);
252     }
253 
254     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
255     /// represented as an indexed [r+r] operation.
256     /// This is for xform instructions whose associated displacement form is DQ.
257     /// The last parameter \p 16 means associated DQ form 16 bit signed
258     /// displacement must be a multiple of 16.
259     /// Returns false if it can be represented by [r+imm], which are preferred.
260     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
261       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16);
262     }
263 
264     /// SelectAddrIdxOnly - Given the specified address, force it to be
265     /// represented as an indexed [r+r] operation.
266     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
267       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
268     }
269 
270     /// SelectAddrImm - Returns true if the address N can be represented by
271     /// a base register plus a signed 16-bit displacement [r+imm].
272     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
273     /// displacement.
274     bool SelectAddrImm(SDValue N, SDValue &Disp,
275                        SDValue &Base) {
276       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
277     }
278 
279     /// SelectAddrImmX4 - Returns true if the address N can be represented by
280     /// a base register plus a signed 16-bit displacement that is a multiple of
281     /// 4 (last parameter). Suitable for use by STD and friends.
282     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
283       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
284     }
285 
286     /// SelectAddrImmX16 - Returns true if the address N can be represented by
287     /// a base register plus a signed 16-bit displacement that is a multiple of
288     /// 16(last parameter). Suitable for use by STXV and friends.
289     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
290       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
291     }
292 
293     // Select an address into a single register.
294     bool SelectAddr(SDValue N, SDValue &Base) {
295       Base = N;
296       return true;
297     }
298 
299     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
300       return PPCLowering->SelectAddressPCRel(N, Base);
301     }
302 
303     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
304     /// inline asm expressions.  It is always correct to compute the value into
305     /// a register.  The case of adding a (possibly relocatable) constant to a
306     /// register can be improved, but it is wrong to substitute Reg+Reg for
307     /// Reg in an asm, because the load or store opcode would have to change.
308     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
309                                       unsigned ConstraintID,
310                                       std::vector<SDValue> &OutOps) override {
311       switch(ConstraintID) {
312       default:
313         errs() << "ConstraintID: " << ConstraintID << "\n";
314         llvm_unreachable("Unexpected asm memory constraint");
315       case InlineAsm::Constraint_es:
316       case InlineAsm::Constraint_m:
317       case InlineAsm::Constraint_o:
318       case InlineAsm::Constraint_Q:
319       case InlineAsm::Constraint_Z:
320       case InlineAsm::Constraint_Zy:
321         // We need to make sure that this one operand does not end up in r0
322         // (because we might end up lowering this as 0(%op)).
323         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
324         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
325         SDLoc dl(Op);
326         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
327         SDValue NewOp =
328           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
329                                          dl, Op.getValueType(),
330                                          Op, RC), 0);
331 
332         OutOps.push_back(NewOp);
333         return false;
334       }
335       return true;
336     }
337 
338     void InsertVRSaveCode(MachineFunction &MF);
339 
340     StringRef getPassName() const override {
341       return "PowerPC DAG->DAG Pattern Instruction Selection";
342     }
343 
344 // Include the pieces autogenerated from the target description.
345 #include "PPCGenDAGISel.inc"
346 
347 private:
348     bool trySETCC(SDNode *N);
349     bool tryAsSingleRLDICL(SDNode *N);
350     bool tryAsSingleRLDICR(SDNode *N);
351     bool tryAsSingleRLWINM(SDNode *N);
352     bool tryAsSingleRLWINM8(SDNode *N);
353     bool tryAsSingleRLWIMI(SDNode *N);
354     bool tryAsPairOfRLDICL(SDNode *N);
355     bool tryAsSingleRLDIMI(SDNode *N);
356 
357     void PeepholePPC64();
358     void PeepholePPC64ZExt();
359     void PeepholeCROps();
360 
361     SDValue combineToCMPB(SDNode *N);
362     void foldBoolExts(SDValue &Res, SDNode *&N);
363 
364     bool AllUsersSelectZero(SDNode *N);
365     void SwapAllSelectUsers(SDNode *N);
366 
367     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
368     void transferMemOperands(SDNode *N, SDNode *Result);
369   };
370 
371 } // end anonymous namespace
372 
373 /// InsertVRSaveCode - Once the entire function has been instruction selected,
374 /// all virtual registers are created and all machine instructions are built,
375 /// check to see if we need to save/restore VRSAVE.  If so, do it.
376 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
377   // Check to see if this function uses vector registers, which means we have to
378   // save and restore the VRSAVE register and update it with the regs we use.
379   //
380   // In this case, there will be virtual registers of vector type created
381   // by the scheduler.  Detect them now.
382   bool HasVectorVReg = false;
383   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
384     unsigned Reg = Register::index2VirtReg(i);
385     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
386       HasVectorVReg = true;
387       break;
388     }
389   }
390   if (!HasVectorVReg) return;  // nothing to do.
391 
392   // If we have a vector register, we want to emit code into the entry and exit
393   // blocks to save and restore the VRSAVE register.  We do this here (instead
394   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
395   //
396   // 1. This (trivially) reduces the load on the register allocator, by not
397   //    having to represent the live range of the VRSAVE register.
398   // 2. This (more significantly) allows us to create a temporary virtual
399   //    register to hold the saved VRSAVE value, allowing this temporary to be
400   //    register allocated, instead of forcing it to be spilled to the stack.
401 
402   // Create two vregs - one to hold the VRSAVE register that is live-in to the
403   // function and one for the value after having bits or'd into it.
404   Register InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
405   Register UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
406 
407   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
408   MachineBasicBlock &EntryBB = *Fn.begin();
409   DebugLoc dl;
410   // Emit the following code into the entry block:
411   // InVRSAVE = MFVRSAVE
412   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
413   // MTVRSAVE UpdatedVRSAVE
414   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
415   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
416   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
417           UpdatedVRSAVE).addReg(InVRSAVE);
418   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
419 
420   // Find all return blocks, outputting a restore in each epilog.
421   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
422     if (BB->isReturnBlock()) {
423       IP = BB->end(); --IP;
424 
425       // Skip over all terminator instructions, which are part of the return
426       // sequence.
427       MachineBasicBlock::iterator I2 = IP;
428       while (I2 != BB->begin() && (--I2)->isTerminator())
429         IP = I2;
430 
431       // Emit: MTVRSAVE InVRSave
432       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
433     }
434   }
435 }
436 
437 /// getGlobalBaseReg - Output the instructions required to put the
438 /// base address to use for accessing globals into a register.
439 ///
440 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
441   if (!GlobalBaseReg) {
442     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
443     // Insert the set of GlobalBaseReg into the first MBB of the function
444     MachineBasicBlock &FirstMBB = MF->front();
445     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
446     const Module *M = MF->getFunction().getParent();
447     DebugLoc dl;
448 
449     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
450       if (PPCSubTarget->isTargetELF()) {
451         GlobalBaseReg = PPC::R30;
452         if (!PPCSubTarget->isSecurePlt() &&
453             M->getPICLevel() == PICLevel::SmallPIC) {
454           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
455           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
456           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
457         } else {
458           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
459           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
460           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
461           BuildMI(FirstMBB, MBBI, dl,
462                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
463                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
464           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
465         }
466       } else {
467         GlobalBaseReg =
468           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
469         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
470         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
471       }
472     } else {
473       // We must ensure that this sequence is dominated by the prologue.
474       // FIXME: This is a bit of a big hammer since we don't get the benefits
475       // of shrink-wrapping whenever we emit this instruction. Considering
476       // this is used in any function where we emit a jump table, this may be
477       // a significant limitation. We should consider inserting this in the
478       // block where it is used and then commoning this sequence up if it
479       // appears in multiple places.
480       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
481       // MovePCtoLR8.
482       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
483       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
484       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
485       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
486     }
487   }
488   return CurDAG->getRegister(GlobalBaseReg,
489                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
490       .getNode();
491 }
492 
493 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
494 /// operand. If so Imm will receive the 32-bit value.
495 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
496   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
497     Imm = cast<ConstantSDNode>(N)->getZExtValue();
498     return true;
499   }
500   return false;
501 }
502 
503 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
504 /// operand.  If so Imm will receive the 64-bit value.
505 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
506   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
507     Imm = cast<ConstantSDNode>(N)->getZExtValue();
508     return true;
509   }
510   return false;
511 }
512 
513 // isInt32Immediate - This method tests to see if a constant operand.
514 // If so Imm will receive the 32 bit value.
515 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
516   return isInt32Immediate(N.getNode(), Imm);
517 }
518 
519 /// isInt64Immediate - This method tests to see if the value is a 64-bit
520 /// constant operand. If so Imm will receive the 64-bit value.
521 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
522   return isInt64Immediate(N.getNode(), Imm);
523 }
524 
525 static unsigned getBranchHint(unsigned PCC,
526                               const FunctionLoweringInfo &FuncInfo,
527                               const SDValue &DestMBB) {
528   assert(isa<BasicBlockSDNode>(DestMBB));
529 
530   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
531 
532   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
533   const Instruction *BBTerm = BB->getTerminator();
534 
535   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
536 
537   const BasicBlock *TBB = BBTerm->getSuccessor(0);
538   const BasicBlock *FBB = BBTerm->getSuccessor(1);
539 
540   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
541   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
542 
543   // We only want to handle cases which are easy to predict at static time, e.g.
544   // C++ throw statement, that is very likely not taken, or calling never
545   // returned function, e.g. stdlib exit(). So we set Threshold to filter
546   // unwanted cases.
547   //
548   // Below is LLVM branch weight table, we only want to handle case 1, 2
549   //
550   // Case                  Taken:Nontaken  Example
551   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
552   // 2. Invoke-terminating 1:1048575
553   // 3. Coldblock          4:64            __builtin_expect
554   // 4. Loop Branch        124:4           For loop
555   // 5. PH/ZH/FPH          20:12
556   const uint32_t Threshold = 10000;
557 
558   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
559     return PPC::BR_NO_HINT;
560 
561   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
562                     << "::" << BB->getName() << "'\n"
563                     << " -> " << TBB->getName() << ": " << TProb << "\n"
564                     << " -> " << FBB->getName() << ": " << FProb << "\n");
565 
566   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
567 
568   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
569   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
570   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
571     std::swap(TProb, FProb);
572 
573   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
574 }
575 
576 // isOpcWithIntImmediate - This method tests to see if the node is a specific
577 // opcode and that it has a immediate integer right operand.
578 // If so Imm will receive the 32 bit value.
579 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
580   return N->getOpcode() == Opc
581          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
582 }
583 
584 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
585   SDLoc dl(SN);
586   int FI = cast<FrameIndexSDNode>(N)->getIndex();
587   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
588   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
589   if (SN->hasOneUse())
590     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
591                          getSmallIPtrImm(Offset, dl));
592   else
593     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
594                                            getSmallIPtrImm(Offset, dl)));
595 }
596 
597 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
598                                       bool isShiftMask, unsigned &SH,
599                                       unsigned &MB, unsigned &ME) {
600   // Don't even go down this path for i64, since different logic will be
601   // necessary for rldicl/rldicr/rldimi.
602   if (N->getValueType(0) != MVT::i32)
603     return false;
604 
605   unsigned Shift  = 32;
606   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
607   unsigned Opcode = N->getOpcode();
608   if (N->getNumOperands() != 2 ||
609       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
610     return false;
611 
612   if (Opcode == ISD::SHL) {
613     // apply shift left to mask if it comes first
614     if (isShiftMask) Mask = Mask << Shift;
615     // determine which bits are made indeterminant by shift
616     Indeterminant = ~(0xFFFFFFFFu << Shift);
617   } else if (Opcode == ISD::SRL) {
618     // apply shift right to mask if it comes first
619     if (isShiftMask) Mask = Mask >> Shift;
620     // determine which bits are made indeterminant by shift
621     Indeterminant = ~(0xFFFFFFFFu >> Shift);
622     // adjust for the left rotate
623     Shift = 32 - Shift;
624   } else if (Opcode == ISD::ROTL) {
625     Indeterminant = 0;
626   } else {
627     return false;
628   }
629 
630   // if the mask doesn't intersect any Indeterminant bits
631   if (Mask && !(Mask & Indeterminant)) {
632     SH = Shift & 31;
633     // make sure the mask is still a mask (wrap arounds may not be)
634     return isRunOfOnes(Mask, MB, ME);
635   }
636   return false;
637 }
638 
639 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
640   SDValue Base = ST->getBasePtr();
641   if (Base.getOpcode() != PPCISD::ADD_TLS)
642     return false;
643   SDValue Offset = ST->getOffset();
644   if (!Offset.isUndef())
645     return false;
646 
647   SDLoc dl(ST);
648   EVT MemVT = ST->getMemoryVT();
649   EVT RegVT = ST->getValue().getValueType();
650 
651   unsigned Opcode;
652   switch (MemVT.getSimpleVT().SimpleTy) {
653     default:
654       return false;
655     case MVT::i8: {
656       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
657       break;
658     }
659     case MVT::i16: {
660       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
661       break;
662     }
663     case MVT::i32: {
664       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
665       break;
666     }
667     case MVT::i64: {
668       Opcode = PPC::STDXTLS;
669       break;
670     }
671   }
672   SDValue Chain = ST->getChain();
673   SDVTList VTs = ST->getVTList();
674   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
675                    Chain};
676   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
677   transferMemOperands(ST, MN);
678   ReplaceNode(ST, MN);
679   return true;
680 }
681 
682 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
683   SDValue Base = LD->getBasePtr();
684   if (Base.getOpcode() != PPCISD::ADD_TLS)
685     return false;
686   SDValue Offset = LD->getOffset();
687   if (!Offset.isUndef())
688     return false;
689 
690   SDLoc dl(LD);
691   EVT MemVT = LD->getMemoryVT();
692   EVT RegVT = LD->getValueType(0);
693   unsigned Opcode;
694   switch (MemVT.getSimpleVT().SimpleTy) {
695     default:
696       return false;
697     case MVT::i8: {
698       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
699       break;
700     }
701     case MVT::i16: {
702       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
703       break;
704     }
705     case MVT::i32: {
706       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
707       break;
708     }
709     case MVT::i64: {
710       Opcode = PPC::LDXTLS;
711       break;
712     }
713   }
714   SDValue Chain = LD->getChain();
715   SDVTList VTs = LD->getVTList();
716   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
717   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
718   transferMemOperands(LD, MN);
719   ReplaceNode(LD, MN);
720   return true;
721 }
722 
723 /// Turn an or of two masked values into the rotate left word immediate then
724 /// mask insert (rlwimi) instruction.
725 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
726   SDValue Op0 = N->getOperand(0);
727   SDValue Op1 = N->getOperand(1);
728   SDLoc dl(N);
729 
730   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
731   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
732 
733   unsigned TargetMask = LKnown.Zero.getZExtValue();
734   unsigned InsertMask = RKnown.Zero.getZExtValue();
735 
736   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
737     unsigned Op0Opc = Op0.getOpcode();
738     unsigned Op1Opc = Op1.getOpcode();
739     unsigned Value, SH = 0;
740     TargetMask = ~TargetMask;
741     InsertMask = ~InsertMask;
742 
743     // If the LHS has a foldable shift and the RHS does not, then swap it to the
744     // RHS so that we can fold the shift into the insert.
745     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
746       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
747           Op0.getOperand(0).getOpcode() == ISD::SRL) {
748         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
749             Op1.getOperand(0).getOpcode() != ISD::SRL) {
750           std::swap(Op0, Op1);
751           std::swap(Op0Opc, Op1Opc);
752           std::swap(TargetMask, InsertMask);
753         }
754       }
755     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
756       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
757           Op1.getOperand(0).getOpcode() != ISD::SRL) {
758         std::swap(Op0, Op1);
759         std::swap(Op0Opc, Op1Opc);
760         std::swap(TargetMask, InsertMask);
761       }
762     }
763 
764     unsigned MB, ME;
765     if (isRunOfOnes(InsertMask, MB, ME)) {
766       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
767           isInt32Immediate(Op1.getOperand(1), Value)) {
768         Op1 = Op1.getOperand(0);
769         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
770       }
771       if (Op1Opc == ISD::AND) {
772        // The AND mask might not be a constant, and we need to make sure that
773        // if we're going to fold the masking with the insert, all bits not
774        // know to be zero in the mask are known to be one.
775         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
776         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
777 
778         unsigned SHOpc = Op1.getOperand(0).getOpcode();
779         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
780             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
781           // Note that Value must be in range here (less than 32) because
782           // otherwise there would not be any bits set in InsertMask.
783           Op1 = Op1.getOperand(0).getOperand(0);
784           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
785         }
786       }
787 
788       SH &= 31;
789       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
790                           getI32Imm(ME, dl) };
791       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
792       return true;
793     }
794   }
795   return false;
796 }
797 
798 // Predict the number of instructions that would be generated by calling
799 // selectI64Imm(N).
800 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
801   // Assume no remaining bits.
802   unsigned Remainder = 0;
803   // Assume no shift required.
804   unsigned Shift = 0;
805 
806   // If it can't be represented as a 32 bit value.
807   if (!isInt<32>(Imm)) {
808     Shift = countTrailingZeros<uint64_t>(Imm);
809     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
810 
811     // If the shifted value fits 32 bits.
812     if (isInt<32>(ImmSh)) {
813       // Go with the shifted value.
814       Imm = ImmSh;
815     } else {
816       // Still stuck with a 64 bit value.
817       Remainder = Imm;
818       Shift = 32;
819       Imm >>= 32;
820     }
821   }
822 
823   // Intermediate operand.
824   unsigned Result = 0;
825 
826   // Handle first 32 bits.
827   unsigned Lo = Imm & 0xFFFF;
828 
829   // Simple value.
830   if (isInt<16>(Imm)) {
831     // Just the Lo bits.
832     ++Result;
833   } else if (Lo) {
834     // Handle the Hi bits and Lo bits.
835     Result += 2;
836   } else {
837     // Just the Hi bits.
838     ++Result;
839   }
840 
841   // If no shift, we're done.
842   if (!Shift) return Result;
843 
844   // If Hi word == Lo word,
845   // we can use rldimi to insert the Lo word into Hi word.
846   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
847     ++Result;
848     return Result;
849   }
850 
851   // Shift for next step if the upper 32-bits were not zero.
852   if (Imm)
853     ++Result;
854 
855   // Add in the last bits as required.
856   if ((Remainder >> 16) & 0xFFFF)
857     ++Result;
858   if (Remainder & 0xFFFF)
859     ++Result;
860 
861   return Result;
862 }
863 
864 static uint64_t Rot64(uint64_t Imm, unsigned R) {
865   return (Imm << R) | (Imm >> (64 - R));
866 }
867 
868 static unsigned selectI64ImmInstrCount(int64_t Imm) {
869   unsigned Count = selectI64ImmInstrCountDirect(Imm);
870 
871   // If the instruction count is 1 or 2, we do not need further analysis
872   // since rotate + load constant requires at least 2 instructions.
873   if (Count <= 2)
874     return Count;
875 
876   for (unsigned r = 1; r < 63; ++r) {
877     uint64_t RImm = Rot64(Imm, r);
878     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
879     Count = std::min(Count, RCount);
880 
881     // See comments in selectI64Imm for an explanation of the logic below.
882     unsigned LS = findLastSet(RImm);
883     if (LS != r-1)
884       continue;
885 
886     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
887     uint64_t RImmWithOnes = RImm | OnesMask;
888 
889     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
890     Count = std::min(Count, RCount);
891   }
892 
893   return Count;
894 }
895 
896 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
897 // (above) needs to be kept in sync with this function.
898 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
899                                   int64_t Imm) {
900   // Assume no remaining bits.
901   unsigned Remainder = 0;
902   // Assume no shift required.
903   unsigned Shift = 0;
904 
905   // If it can't be represented as a 32 bit value.
906   if (!isInt<32>(Imm)) {
907     Shift = countTrailingZeros<uint64_t>(Imm);
908     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
909 
910     // If the shifted value fits 32 bits.
911     if (isInt<32>(ImmSh)) {
912       // Go with the shifted value.
913       Imm = ImmSh;
914     } else {
915       // Still stuck with a 64 bit value.
916       Remainder = Imm;
917       Shift = 32;
918       Imm >>= 32;
919     }
920   }
921 
922   // Intermediate operand.
923   SDNode *Result;
924 
925   // Handle first 32 bits.
926   unsigned Lo = Imm & 0xFFFF;
927   unsigned Hi = (Imm >> 16) & 0xFFFF;
928 
929   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
930       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
931   };
932 
933   // Simple value.
934   if (isInt<16>(Imm)) {
935     uint64_t SextImm = SignExtend64(Lo, 16);
936     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
937     // Just the Lo bits.
938     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
939   } else if (Lo) {
940     // Handle the Hi bits.
941     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
942     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
943     // And Lo bits.
944     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
945                                     SDValue(Result, 0), getI32Imm(Lo));
946   } else {
947     // Just the Hi bits.
948     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
949   }
950 
951   // If no shift, we're done.
952   if (!Shift) return Result;
953 
954   // If Hi word == Lo word,
955   // we can use rldimi to insert the Lo word into Hi word.
956   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
957     SDValue Ops[] =
958       { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
959     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
960   }
961 
962   // Shift for next step if the upper 32-bits were not zero.
963   if (Imm) {
964     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
965                                     SDValue(Result, 0),
966                                     getI32Imm(Shift),
967                                     getI32Imm(63 - Shift));
968   }
969 
970   // Add in the last bits as required.
971   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
972     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
973                                     SDValue(Result, 0), getI32Imm(Hi));
974   }
975   if ((Lo = Remainder & 0xFFFF)) {
976     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
977                                     SDValue(Result, 0), getI32Imm(Lo));
978   }
979 
980   return Result;
981 }
982 
983 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
984                             int64_t Imm) {
985   unsigned Count = selectI64ImmInstrCountDirect(Imm);
986 
987   // If the instruction count is 1 or 2, we do not need further analysis
988   // since rotate + load constant requires at least 2 instructions.
989   if (Count <= 2)
990     return selectI64ImmDirect(CurDAG, dl, Imm);
991 
992   unsigned RMin = 0;
993 
994   int64_t MatImm;
995   unsigned MaskEnd;
996 
997   for (unsigned r = 1; r < 63; ++r) {
998     uint64_t RImm = Rot64(Imm, r);
999     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
1000     if (RCount < Count) {
1001       Count = RCount;
1002       RMin = r;
1003       MatImm = RImm;
1004       MaskEnd = 63;
1005     }
1006 
1007     // If the immediate to generate has many trailing zeros, it might be
1008     // worthwhile to generate a rotated value with too many leading ones
1009     // (because that's free with li/lis's sign-extension semantics), and then
1010     // mask them off after rotation.
1011 
1012     unsigned LS = findLastSet(RImm);
1013     // We're adding (63-LS) higher-order ones, and we expect to mask them off
1014     // after performing the inverse rotation by (64-r). So we need that:
1015     //   63-LS == 64-r => LS == r-1
1016     if (LS != r-1)
1017       continue;
1018 
1019     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
1020     uint64_t RImmWithOnes = RImm | OnesMask;
1021 
1022     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
1023     if (RCount < Count) {
1024       Count = RCount;
1025       RMin = r;
1026       MatImm = RImmWithOnes;
1027       MaskEnd = LS;
1028     }
1029   }
1030 
1031   if (!RMin)
1032     return selectI64ImmDirect(CurDAG, dl, Imm);
1033 
1034   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1035       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1036   };
1037 
1038   SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
1039   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
1040                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
1041 }
1042 
1043 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
1044   unsigned MaxTruncation = 0;
1045   // Cannot use range-based for loop here as we need the actual use (i.e. we
1046   // need the operand number corresponding to the use). A range-based for
1047   // will unbox the use and provide an SDNode*.
1048   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
1049        Use != UseEnd; ++Use) {
1050     unsigned Opc =
1051       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
1052     switch (Opc) {
1053     default: return 0;
1054     case ISD::TRUNCATE:
1055       if (Use->isMachineOpcode())
1056         return 0;
1057       MaxTruncation =
1058         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
1059       continue;
1060     case ISD::STORE: {
1061       if (Use->isMachineOpcode())
1062         return 0;
1063       StoreSDNode *STN = cast<StoreSDNode>(*Use);
1064       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
1065       if (MemVTSize == 64 || Use.getOperandNo() != 0)
1066         return 0;
1067       MaxTruncation = std::max(MaxTruncation, MemVTSize);
1068       continue;
1069     }
1070     case PPC::STW8:
1071     case PPC::STWX8:
1072     case PPC::STWU8:
1073     case PPC::STWUX8:
1074       if (Use.getOperandNo() != 0)
1075         return 0;
1076       MaxTruncation = std::max(MaxTruncation, 32u);
1077       continue;
1078     case PPC::STH8:
1079     case PPC::STHX8:
1080     case PPC::STHU8:
1081     case PPC::STHUX8:
1082       if (Use.getOperandNo() != 0)
1083         return 0;
1084       MaxTruncation = std::max(MaxTruncation, 16u);
1085       continue;
1086     case PPC::STB8:
1087     case PPC::STBX8:
1088     case PPC::STBU8:
1089     case PPC::STBUX8:
1090       if (Use.getOperandNo() != 0)
1091         return 0;
1092       MaxTruncation = std::max(MaxTruncation, 8u);
1093       continue;
1094     }
1095   }
1096   return MaxTruncation;
1097 }
1098 
1099 // Select a 64-bit constant.
1100 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1101   SDLoc dl(N);
1102 
1103   // Get 64 bit value.
1104   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1105   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1106     uint64_t SextImm = SignExtend64(Imm, MinSize);
1107     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1108     if (isInt<16>(SextImm))
1109       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1110   }
1111   return selectI64Imm(CurDAG, dl, Imm);
1112 }
1113 
1114 namespace {
1115 
1116 class BitPermutationSelector {
1117   struct ValueBit {
1118     SDValue V;
1119 
1120     // The bit number in the value, using a convention where bit 0 is the
1121     // lowest-order bit.
1122     unsigned Idx;
1123 
1124     // ConstZero means a bit we need to mask off.
1125     // Variable is a bit comes from an input variable.
1126     // VariableKnownToBeZero is also a bit comes from an input variable,
1127     // but it is known to be already zero. So we do not need to mask them.
1128     enum Kind {
1129       ConstZero,
1130       Variable,
1131       VariableKnownToBeZero
1132     } K;
1133 
1134     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1135       : V(V), Idx(I), K(K) {}
1136     ValueBit(Kind K = Variable)
1137       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
1138 
1139     bool isZero() const {
1140       return K == ConstZero || K == VariableKnownToBeZero;
1141     }
1142 
1143     bool hasValue() const {
1144       return K == Variable || K == VariableKnownToBeZero;
1145     }
1146 
1147     SDValue getValue() const {
1148       assert(hasValue() && "Cannot get the value of a constant bit");
1149       return V;
1150     }
1151 
1152     unsigned getValueBitIndex() const {
1153       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1154       return Idx;
1155     }
1156   };
1157 
1158   // A bit group has the same underlying value and the same rotate factor.
1159   struct BitGroup {
1160     SDValue V;
1161     unsigned RLAmt;
1162     unsigned StartIdx, EndIdx;
1163 
1164     // This rotation amount assumes that the lower 32 bits of the quantity are
1165     // replicated in the high 32 bits by the rotation operator (which is done
1166     // by rlwinm and friends in 64-bit mode).
1167     bool Repl32;
1168     // Did converting to Repl32 == true change the rotation factor? If it did,
1169     // it decreased it by 32.
1170     bool Repl32CR;
1171     // Was this group coalesced after setting Repl32 to true?
1172     bool Repl32Coalesced;
1173 
1174     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1175       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1176         Repl32Coalesced(false) {
1177       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1178                         << " [" << S << ", " << E << "]\n");
1179     }
1180   };
1181 
1182   // Information on each (Value, RLAmt) pair (like the number of groups
1183   // associated with each) used to choose the lowering method.
1184   struct ValueRotInfo {
1185     SDValue V;
1186     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1187     unsigned NumGroups = 0;
1188     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1189     bool Repl32 = false;
1190 
1191     ValueRotInfo() = default;
1192 
1193     // For sorting (in reverse order) by NumGroups, and then by
1194     // FirstGroupStartIdx.
1195     bool operator < (const ValueRotInfo &Other) const {
1196       // We need to sort so that the non-Repl32 come first because, when we're
1197       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1198       // masking operation.
1199       if (Repl32 < Other.Repl32)
1200         return true;
1201       else if (Repl32 > Other.Repl32)
1202         return false;
1203       else if (NumGroups > Other.NumGroups)
1204         return true;
1205       else if (NumGroups < Other.NumGroups)
1206         return false;
1207       else if (RLAmt == 0 && Other.RLAmt != 0)
1208         return true;
1209       else if (RLAmt != 0 && Other.RLAmt == 0)
1210         return false;
1211       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1212         return true;
1213       return false;
1214     }
1215   };
1216 
1217   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1218   using ValueBitsMemoizer =
1219       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1220   ValueBitsMemoizer Memoizer;
1221 
1222   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1223   // The bool is true if something interesting was deduced, otherwise if we're
1224   // providing only a generic representation of V (or something else likewise
1225   // uninteresting for instruction selection) through the SmallVector.
1226   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1227                                                             unsigned NumBits) {
1228     auto &ValueEntry = Memoizer[V];
1229     if (ValueEntry)
1230       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1231     ValueEntry.reset(new ValueBitsMemoizedValue());
1232     bool &Interesting = ValueEntry->first;
1233     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1234     Bits.resize(NumBits);
1235 
1236     switch (V.getOpcode()) {
1237     default: break;
1238     case ISD::ROTL:
1239       if (isa<ConstantSDNode>(V.getOperand(1))) {
1240         unsigned RotAmt = V.getConstantOperandVal(1);
1241 
1242         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1243 
1244         for (unsigned i = 0; i < NumBits; ++i)
1245           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1246 
1247         return std::make_pair(Interesting = true, &Bits);
1248       }
1249       break;
1250     case ISD::SHL:
1251       if (isa<ConstantSDNode>(V.getOperand(1))) {
1252         unsigned ShiftAmt = V.getConstantOperandVal(1);
1253 
1254         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1255 
1256         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1257           Bits[i] = LHSBits[i - ShiftAmt];
1258 
1259         for (unsigned i = 0; i < ShiftAmt; ++i)
1260           Bits[i] = ValueBit(ValueBit::ConstZero);
1261 
1262         return std::make_pair(Interesting = true, &Bits);
1263       }
1264       break;
1265     case ISD::SRL:
1266       if (isa<ConstantSDNode>(V.getOperand(1))) {
1267         unsigned ShiftAmt = V.getConstantOperandVal(1);
1268 
1269         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1270 
1271         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1272           Bits[i] = LHSBits[i + ShiftAmt];
1273 
1274         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1275           Bits[i] = ValueBit(ValueBit::ConstZero);
1276 
1277         return std::make_pair(Interesting = true, &Bits);
1278       }
1279       break;
1280     case ISD::AND:
1281       if (isa<ConstantSDNode>(V.getOperand(1))) {
1282         uint64_t Mask = V.getConstantOperandVal(1);
1283 
1284         const SmallVector<ValueBit, 64> *LHSBits;
1285         // Mark this as interesting, only if the LHS was also interesting. This
1286         // prevents the overall procedure from matching a single immediate 'and'
1287         // (which is non-optimal because such an and might be folded with other
1288         // things if we don't select it here).
1289         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1290 
1291         for (unsigned i = 0; i < NumBits; ++i)
1292           if (((Mask >> i) & 1) == 1)
1293             Bits[i] = (*LHSBits)[i];
1294           else {
1295             // AND instruction masks this bit. If the input is already zero,
1296             // we have nothing to do here. Otherwise, make the bit ConstZero.
1297             if ((*LHSBits)[i].isZero())
1298               Bits[i] = (*LHSBits)[i];
1299             else
1300               Bits[i] = ValueBit(ValueBit::ConstZero);
1301           }
1302 
1303         return std::make_pair(Interesting, &Bits);
1304       }
1305       break;
1306     case ISD::OR: {
1307       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1308       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1309 
1310       bool AllDisjoint = true;
1311       SDValue LastVal = SDValue();
1312       unsigned LastIdx = 0;
1313       for (unsigned i = 0; i < NumBits; ++i) {
1314         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1315           // If both inputs are known to be zero and one is ConstZero and
1316           // another is VariableKnownToBeZero, we can select whichever
1317           // we like. To minimize the number of bit groups, we select
1318           // VariableKnownToBeZero if this bit is the next bit of the same
1319           // input variable from the previous bit. Otherwise, we select
1320           // ConstZero.
1321           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1322               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1323             Bits[i] = LHSBits[i];
1324           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1325                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1326             Bits[i] = RHSBits[i];
1327           else
1328             Bits[i] = ValueBit(ValueBit::ConstZero);
1329         }
1330         else if (LHSBits[i].isZero())
1331           Bits[i] = RHSBits[i];
1332         else if (RHSBits[i].isZero())
1333           Bits[i] = LHSBits[i];
1334         else {
1335           AllDisjoint = false;
1336           break;
1337         }
1338         // We remember the value and bit index of this bit.
1339         if (Bits[i].hasValue()) {
1340           LastVal = Bits[i].getValue();
1341           LastIdx = Bits[i].getValueBitIndex();
1342         }
1343         else {
1344           if (LastVal) LastVal = SDValue();
1345           LastIdx = 0;
1346         }
1347       }
1348 
1349       if (!AllDisjoint)
1350         break;
1351 
1352       return std::make_pair(Interesting = true, &Bits);
1353     }
1354     case ISD::ZERO_EXTEND: {
1355       // We support only the case with zero extension from i32 to i64 so far.
1356       if (V.getValueType() != MVT::i64 ||
1357           V.getOperand(0).getValueType() != MVT::i32)
1358         break;
1359 
1360       const SmallVector<ValueBit, 64> *LHSBits;
1361       const unsigned NumOperandBits = 32;
1362       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1363                                                     NumOperandBits);
1364 
1365       for (unsigned i = 0; i < NumOperandBits; ++i)
1366         Bits[i] = (*LHSBits)[i];
1367 
1368       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1369         Bits[i] = ValueBit(ValueBit::ConstZero);
1370 
1371       return std::make_pair(Interesting, &Bits);
1372     }
1373     case ISD::TRUNCATE: {
1374       EVT FromType = V.getOperand(0).getValueType();
1375       EVT ToType = V.getValueType();
1376       // We support only the case with truncate from i64 to i32.
1377       if (FromType != MVT::i64 || ToType != MVT::i32)
1378         break;
1379       const unsigned NumAllBits = FromType.getSizeInBits();
1380       SmallVector<ValueBit, 64> *InBits;
1381       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1382                                                     NumAllBits);
1383       const unsigned NumValidBits = ToType.getSizeInBits();
1384 
1385       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1386       // So, we cannot include this truncate.
1387       bool UseUpper32bit = false;
1388       for (unsigned i = 0; i < NumValidBits; ++i)
1389         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1390           UseUpper32bit = true;
1391           break;
1392         }
1393       if (UseUpper32bit)
1394         break;
1395 
1396       for (unsigned i = 0; i < NumValidBits; ++i)
1397         Bits[i] = (*InBits)[i];
1398 
1399       return std::make_pair(Interesting, &Bits);
1400     }
1401     case ISD::AssertZext: {
1402       // For AssertZext, we look through the operand and
1403       // mark the bits known to be zero.
1404       const SmallVector<ValueBit, 64> *LHSBits;
1405       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1406                                                     NumBits);
1407 
1408       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1409       const unsigned NumValidBits = FromType.getSizeInBits();
1410       for (unsigned i = 0; i < NumValidBits; ++i)
1411         Bits[i] = (*LHSBits)[i];
1412 
1413       // These bits are known to be zero but the AssertZext may be from a value
1414       // that already has some constant zero bits (i.e. from a masking and).
1415       for (unsigned i = NumValidBits; i < NumBits; ++i)
1416         Bits[i] = (*LHSBits)[i].hasValue()
1417                       ? ValueBit((*LHSBits)[i].getValue(),
1418                                  (*LHSBits)[i].getValueBitIndex(),
1419                                  ValueBit::VariableKnownToBeZero)
1420                       : ValueBit(ValueBit::ConstZero);
1421 
1422       return std::make_pair(Interesting, &Bits);
1423     }
1424     case ISD::LOAD:
1425       LoadSDNode *LD = cast<LoadSDNode>(V);
1426       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1427         EVT VT = LD->getMemoryVT();
1428         const unsigned NumValidBits = VT.getSizeInBits();
1429 
1430         for (unsigned i = 0; i < NumValidBits; ++i)
1431           Bits[i] = ValueBit(V, i);
1432 
1433         // These bits are known to be zero.
1434         for (unsigned i = NumValidBits; i < NumBits; ++i)
1435           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1436 
1437         // Zero-extending load itself cannot be optimized. So, it is not
1438         // interesting by itself though it gives useful information.
1439         return std::make_pair(Interesting = false, &Bits);
1440       }
1441       break;
1442     }
1443 
1444     for (unsigned i = 0; i < NumBits; ++i)
1445       Bits[i] = ValueBit(V, i);
1446 
1447     return std::make_pair(Interesting = false, &Bits);
1448   }
1449 
1450   // For each value (except the constant ones), compute the left-rotate amount
1451   // to get it from its original to final position.
1452   void computeRotationAmounts() {
1453     NeedMask = false;
1454     RLAmt.resize(Bits.size());
1455     for (unsigned i = 0; i < Bits.size(); ++i)
1456       if (Bits[i].hasValue()) {
1457         unsigned VBI = Bits[i].getValueBitIndex();
1458         if (i >= VBI)
1459           RLAmt[i] = i - VBI;
1460         else
1461           RLAmt[i] = Bits.size() - (VBI - i);
1462       } else if (Bits[i].isZero()) {
1463         NeedMask = true;
1464         RLAmt[i] = UINT32_MAX;
1465       } else {
1466         llvm_unreachable("Unknown value bit type");
1467       }
1468   }
1469 
1470   // Collect groups of consecutive bits with the same underlying value and
1471   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1472   // they break up groups.
1473   void collectBitGroups(bool LateMask) {
1474     BitGroups.clear();
1475 
1476     unsigned LastRLAmt = RLAmt[0];
1477     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1478     unsigned LastGroupStartIdx = 0;
1479     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1480     for (unsigned i = 1; i < Bits.size(); ++i) {
1481       unsigned ThisRLAmt = RLAmt[i];
1482       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1483       if (LateMask && !ThisValue) {
1484         ThisValue = LastValue;
1485         ThisRLAmt = LastRLAmt;
1486         // If we're doing late masking, then the first bit group always starts
1487         // at zero (even if the first bits were zero).
1488         if (BitGroups.empty())
1489           LastGroupStartIdx = 0;
1490       }
1491 
1492       // If this bit is known to be zero and the current group is a bit group
1493       // of zeros, we do not need to terminate the current bit group even the
1494       // Value or RLAmt does not match here. Instead, we terminate this group
1495       // when the first non-zero bit appears later.
1496       if (IsGroupOfZeros && Bits[i].isZero())
1497         continue;
1498 
1499       // If this bit has the same underlying value and the same rotate factor as
1500       // the last one, then they're part of the same group.
1501       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1502         // We cannot continue the current group if this bits is not known to
1503         // be zero in a bit group of zeros.
1504         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1505           continue;
1506 
1507       if (LastValue.getNode())
1508         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1509                                      i-1));
1510       LastRLAmt = ThisRLAmt;
1511       LastValue = ThisValue;
1512       LastGroupStartIdx = i;
1513       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1514     }
1515     if (LastValue.getNode())
1516       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1517                                    Bits.size()-1));
1518 
1519     if (BitGroups.empty())
1520       return;
1521 
1522     // We might be able to combine the first and last groups.
1523     if (BitGroups.size() > 1) {
1524       // If the first and last groups are the same, then remove the first group
1525       // in favor of the last group, making the ending index of the last group
1526       // equal to the ending index of the to-be-removed first group.
1527       if (BitGroups[0].StartIdx == 0 &&
1528           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1529           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1530           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1531         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1532         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1533         BitGroups.erase(BitGroups.begin());
1534       }
1535     }
1536   }
1537 
1538   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1539   // associated with each. If the number of groups are same, we prefer a group
1540   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1541   // instruction. If there is a degeneracy, pick the one that occurs
1542   // first (in the final value).
1543   void collectValueRotInfo() {
1544     ValueRots.clear();
1545 
1546     for (auto &BG : BitGroups) {
1547       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1548       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1549       VRI.V = BG.V;
1550       VRI.RLAmt = BG.RLAmt;
1551       VRI.Repl32 = BG.Repl32;
1552       VRI.NumGroups += 1;
1553       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1554     }
1555 
1556     // Now that we've collected the various ValueRotInfo instances, we need to
1557     // sort them.
1558     ValueRotsVec.clear();
1559     for (auto &I : ValueRots) {
1560       ValueRotsVec.push_back(I.second);
1561     }
1562     llvm::sort(ValueRotsVec);
1563   }
1564 
1565   // In 64-bit mode, rlwinm and friends have a rotation operator that
1566   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1567   // indices of these instructions can only be in the lower 32 bits, so they
1568   // can only represent some 64-bit bit groups. However, when they can be used,
1569   // the 32-bit replication can be used to represent, as a single bit group,
1570   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1571   // groups when possible. Returns true if any of the bit groups were
1572   // converted.
1573   void assignRepl32BitGroups() {
1574     // If we have bits like this:
1575     //
1576     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1577     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1578     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1579     //
1580     // But, making use of a 32-bit operation that replicates the low-order 32
1581     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1582     // of 8.
1583 
1584     auto IsAllLow32 = [this](BitGroup & BG) {
1585       if (BG.StartIdx <= BG.EndIdx) {
1586         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1587           if (!Bits[i].hasValue())
1588             continue;
1589           if (Bits[i].getValueBitIndex() >= 32)
1590             return false;
1591         }
1592       } else {
1593         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1594           if (!Bits[i].hasValue())
1595             continue;
1596           if (Bits[i].getValueBitIndex() >= 32)
1597             return false;
1598         }
1599         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1600           if (!Bits[i].hasValue())
1601             continue;
1602           if (Bits[i].getValueBitIndex() >= 32)
1603             return false;
1604         }
1605       }
1606 
1607       return true;
1608     };
1609 
1610     for (auto &BG : BitGroups) {
1611       // If this bit group has RLAmt of 0 and will not be merged with
1612       // another bit group, we don't benefit from Repl32. We don't mark
1613       // such group to give more freedom for later instruction selection.
1614       if (BG.RLAmt == 0) {
1615         auto PotentiallyMerged = [this](BitGroup & BG) {
1616           for (auto &BG2 : BitGroups)
1617             if (&BG != &BG2 && BG.V == BG2.V &&
1618                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1619               return true;
1620           return false;
1621         };
1622         if (!PotentiallyMerged(BG))
1623           continue;
1624       }
1625       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1626         if (IsAllLow32(BG)) {
1627           if (BG.RLAmt >= 32) {
1628             BG.RLAmt -= 32;
1629             BG.Repl32CR = true;
1630           }
1631 
1632           BG.Repl32 = true;
1633 
1634           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1635                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1636                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1637         }
1638       }
1639     }
1640 
1641     // Now walk through the bit groups, consolidating where possible.
1642     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1643       // We might want to remove this bit group by merging it with the previous
1644       // group (which might be the ending group).
1645       auto IP = (I == BitGroups.begin()) ?
1646                 std::prev(BitGroups.end()) : std::prev(I);
1647       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1648           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1649 
1650         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1651                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1652                           << I->StartIdx << ", " << I->EndIdx
1653                           << "] with group with range [" << IP->StartIdx << ", "
1654                           << IP->EndIdx << "]\n");
1655 
1656         IP->EndIdx = I->EndIdx;
1657         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1658         IP->Repl32Coalesced = true;
1659         I = BitGroups.erase(I);
1660         continue;
1661       } else {
1662         // There is a special case worth handling: If there is a single group
1663         // covering the entire upper 32 bits, and it can be merged with both
1664         // the next and previous groups (which might be the same group), then
1665         // do so. If it is the same group (so there will be only one group in
1666         // total), then we need to reverse the order of the range so that it
1667         // covers the entire 64 bits.
1668         if (I->StartIdx == 32 && I->EndIdx == 63) {
1669           assert(std::next(I) == BitGroups.end() &&
1670                  "bit group ends at index 63 but there is another?");
1671           auto IN = BitGroups.begin();
1672 
1673           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1674               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1675               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1676               IsAllLow32(*I)) {
1677 
1678             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1679                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1680                               << ", " << I->EndIdx
1681                               << "] with 32-bit replicated groups with ranges ["
1682                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1683                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1684 
1685             if (IP == IN) {
1686               // There is only one other group; change it to cover the whole
1687               // range (backward, so that it can still be Repl32 but cover the
1688               // whole 64-bit range).
1689               IP->StartIdx = 31;
1690               IP->EndIdx = 30;
1691               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1692               IP->Repl32Coalesced = true;
1693               I = BitGroups.erase(I);
1694             } else {
1695               // There are two separate groups, one before this group and one
1696               // after us (at the beginning). We're going to remove this group,
1697               // but also the group at the very beginning.
1698               IP->EndIdx = IN->EndIdx;
1699               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1700               IP->Repl32Coalesced = true;
1701               I = BitGroups.erase(I);
1702               BitGroups.erase(BitGroups.begin());
1703             }
1704 
1705             // This must be the last group in the vector (and we might have
1706             // just invalidated the iterator above), so break here.
1707             break;
1708           }
1709         }
1710       }
1711 
1712       ++I;
1713     }
1714   }
1715 
1716   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1717     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1718   }
1719 
1720   uint64_t getZerosMask() {
1721     uint64_t Mask = 0;
1722     for (unsigned i = 0; i < Bits.size(); ++i) {
1723       if (Bits[i].hasValue())
1724         continue;
1725       Mask |= (UINT64_C(1) << i);
1726     }
1727 
1728     return ~Mask;
1729   }
1730 
1731   // This method extends an input value to 64 bit if input is 32-bit integer.
1732   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1733   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1734   // In such case, we extend it to 64 bit to be consistent with other values.
1735   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1736     if (V.getValueSizeInBits() == 64)
1737       return V;
1738 
1739     assert(V.getValueSizeInBits() == 32);
1740     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1741     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1742                                                    MVT::i64), 0);
1743     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1744                                                     MVT::i64, ImDef, V,
1745                                                     SubRegIdx), 0);
1746     return ExtVal;
1747   }
1748 
1749   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1750     if (V.getValueSizeInBits() == 32)
1751       return V;
1752 
1753     assert(V.getValueSizeInBits() == 64);
1754     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1755     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1756                                                     MVT::i32, V, SubRegIdx), 0);
1757     return SubVal;
1758   }
1759 
1760   // Depending on the number of groups for a particular value, it might be
1761   // better to rotate, mask explicitly (using andi/andis), and then or the
1762   // result. Select this part of the result first.
1763   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1764     if (BPermRewriterNoMasking)
1765       return;
1766 
1767     for (ValueRotInfo &VRI : ValueRotsVec) {
1768       unsigned Mask = 0;
1769       for (unsigned i = 0; i < Bits.size(); ++i) {
1770         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1771           continue;
1772         if (RLAmt[i] != VRI.RLAmt)
1773           continue;
1774         Mask |= (1u << i);
1775       }
1776 
1777       // Compute the masks for andi/andis that would be necessary.
1778       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1779       assert((ANDIMask != 0 || ANDISMask != 0) &&
1780              "No set bits in mask for value bit groups");
1781       bool NeedsRotate = VRI.RLAmt != 0;
1782 
1783       // We're trying to minimize the number of instructions. If we have one
1784       // group, using one of andi/andis can break even.  If we have three
1785       // groups, we can use both andi and andis and break even (to use both
1786       // andi and andis we also need to or the results together). We need four
1787       // groups if we also need to rotate. To use andi/andis we need to do more
1788       // than break even because rotate-and-mask instructions tend to be easier
1789       // to schedule.
1790 
1791       // FIXME: We've biased here against using andi/andis, which is right for
1792       // POWER cores, but not optimal everywhere. For example, on the A2,
1793       // andi/andis have single-cycle latency whereas the rotate-and-mask
1794       // instructions take two cycles, and it would be better to bias toward
1795       // andi/andis in break-even cases.
1796 
1797       unsigned NumAndInsts = (unsigned) NeedsRotate +
1798                              (unsigned) (ANDIMask != 0) +
1799                              (unsigned) (ANDISMask != 0) +
1800                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1801                              (unsigned) (bool) Res;
1802 
1803       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
1804                         << " RL: " << VRI.RLAmt << ":"
1805                         << "\n\t\t\tisel using masking: " << NumAndInsts
1806                         << " using rotates: " << VRI.NumGroups << "\n");
1807 
1808       if (NumAndInsts >= VRI.NumGroups)
1809         continue;
1810 
1811       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1812 
1813       if (InstCnt) *InstCnt += NumAndInsts;
1814 
1815       SDValue VRot;
1816       if (VRI.RLAmt) {
1817         SDValue Ops[] =
1818           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
1819             getI32Imm(0, dl), getI32Imm(31, dl) };
1820         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1821                                               Ops), 0);
1822       } else {
1823         VRot = TruncateToInt32(VRI.V, dl);
1824       }
1825 
1826       SDValue ANDIVal, ANDISVal;
1827       if (ANDIMask != 0)
1828         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
1829                                                  VRot, getI32Imm(ANDIMask, dl)),
1830                           0);
1831       if (ANDISMask != 0)
1832         ANDISVal =
1833             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
1834                                            getI32Imm(ANDISMask, dl)),
1835                     0);
1836 
1837       SDValue TotalVal;
1838       if (!ANDIVal)
1839         TotalVal = ANDISVal;
1840       else if (!ANDISVal)
1841         TotalVal = ANDIVal;
1842       else
1843         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1844                              ANDIVal, ANDISVal), 0);
1845 
1846       if (!Res)
1847         Res = TotalVal;
1848       else
1849         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1850                         Res, TotalVal), 0);
1851 
1852       // Now, remove all groups with this underlying value and rotation
1853       // factor.
1854       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1855         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1856       });
1857     }
1858   }
1859 
1860   // Instruction selection for the 32-bit case.
1861   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1862     SDLoc dl(N);
1863     SDValue Res;
1864 
1865     if (InstCnt) *InstCnt = 0;
1866 
1867     // Take care of cases that should use andi/andis first.
1868     SelectAndParts32(dl, Res, InstCnt);
1869 
1870     // If we've not yet selected a 'starting' instruction, and we have no zeros
1871     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1872     // number of groups), and start with this rotated value.
1873     if ((!NeedMask || LateMask) && !Res) {
1874       ValueRotInfo &VRI = ValueRotsVec[0];
1875       if (VRI.RLAmt) {
1876         if (InstCnt) *InstCnt += 1;
1877         SDValue Ops[] =
1878           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
1879             getI32Imm(0, dl), getI32Imm(31, dl) };
1880         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1881                       0);
1882       } else {
1883         Res = TruncateToInt32(VRI.V, dl);
1884       }
1885 
1886       // Now, remove all groups with this underlying value and rotation factor.
1887       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1888         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1889       });
1890     }
1891 
1892     if (InstCnt) *InstCnt += BitGroups.size();
1893 
1894     // Insert the other groups (one at a time).
1895     for (auto &BG : BitGroups) {
1896       if (!Res) {
1897         SDValue Ops[] =
1898           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
1899             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1900             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1901         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1902       } else {
1903         SDValue Ops[] =
1904           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
1905               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1906             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1907         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1908       }
1909     }
1910 
1911     if (LateMask) {
1912       unsigned Mask = (unsigned) getZerosMask();
1913 
1914       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1915       assert((ANDIMask != 0 || ANDISMask != 0) &&
1916              "No set bits in zeros mask?");
1917 
1918       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1919                                (unsigned) (ANDISMask != 0) +
1920                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1921 
1922       SDValue ANDIVal, ANDISVal;
1923       if (ANDIMask != 0)
1924         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
1925                                                  Res, getI32Imm(ANDIMask, dl)),
1926                           0);
1927       if (ANDISMask != 0)
1928         ANDISVal =
1929             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
1930                                            getI32Imm(ANDISMask, dl)),
1931                     0);
1932 
1933       if (!ANDIVal)
1934         Res = ANDISVal;
1935       else if (!ANDISVal)
1936         Res = ANDIVal;
1937       else
1938         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1939                         ANDIVal, ANDISVal), 0);
1940     }
1941 
1942     return Res.getNode();
1943   }
1944 
1945   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1946                                 unsigned MaskStart, unsigned MaskEnd,
1947                                 bool IsIns) {
1948     // In the notation used by the instructions, 'start' and 'end' are reversed
1949     // because bits are counted from high to low order.
1950     unsigned InstMaskStart = 64 - MaskEnd - 1,
1951              InstMaskEnd   = 64 - MaskStart - 1;
1952 
1953     if (Repl32)
1954       return 1;
1955 
1956     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1957         InstMaskEnd == 63 - RLAmt)
1958       return 1;
1959 
1960     return 2;
1961   }
1962 
1963   // For 64-bit values, not all combinations of rotates and masks are
1964   // available. Produce one if it is available.
1965   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1966                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1967                           unsigned *InstCnt = nullptr) {
1968     // In the notation used by the instructions, 'start' and 'end' are reversed
1969     // because bits are counted from high to low order.
1970     unsigned InstMaskStart = 64 - MaskEnd - 1,
1971              InstMaskEnd   = 64 - MaskStart - 1;
1972 
1973     if (InstCnt) *InstCnt += 1;
1974 
1975     if (Repl32) {
1976       // This rotation amount assumes that the lower 32 bits of the quantity
1977       // are replicated in the high 32 bits by the rotation operator (which is
1978       // done by rlwinm and friends).
1979       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1980       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1981       SDValue Ops[] =
1982         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1983           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
1984       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1985                                             Ops), 0);
1986     }
1987 
1988     if (InstMaskEnd == 63) {
1989       SDValue Ops[] =
1990         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1991           getI32Imm(InstMaskStart, dl) };
1992       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1993     }
1994 
1995     if (InstMaskStart == 0) {
1996       SDValue Ops[] =
1997         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1998           getI32Imm(InstMaskEnd, dl) };
1999       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2000     }
2001 
2002     if (InstMaskEnd == 63 - RLAmt) {
2003       SDValue Ops[] =
2004         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2005           getI32Imm(InstMaskStart, dl) };
2006       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2007     }
2008 
2009     // We cannot do this with a single instruction, so we'll use two. The
2010     // problem is that we're not free to choose both a rotation amount and mask
2011     // start and end independently. We can choose an arbitrary mask start and
2012     // end, but then the rotation amount is fixed. Rotation, however, can be
2013     // inverted, and so by applying an "inverse" rotation first, we can get the
2014     // desired result.
2015     if (InstCnt) *InstCnt += 1;
2016 
2017     // The rotation mask for the second instruction must be MaskStart.
2018     unsigned RLAmt2 = MaskStart;
2019     // The first instruction must rotate V so that the overall rotation amount
2020     // is RLAmt.
2021     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2022     if (RLAmt1)
2023       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2024     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2025   }
2026 
2027   // For 64-bit values, not all combinations of rotates and masks are
2028   // available. Produce a rotate-mask-and-insert if one is available.
2029   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2030                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2031                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2032     // In the notation used by the instructions, 'start' and 'end' are reversed
2033     // because bits are counted from high to low order.
2034     unsigned InstMaskStart = 64 - MaskEnd - 1,
2035              InstMaskEnd   = 64 - MaskStart - 1;
2036 
2037     if (InstCnt) *InstCnt += 1;
2038 
2039     if (Repl32) {
2040       // This rotation amount assumes that the lower 32 bits of the quantity
2041       // are replicated in the high 32 bits by the rotation operator (which is
2042       // done by rlwinm and friends).
2043       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2044       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2045       SDValue Ops[] =
2046         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2047           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2048       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2049                                             Ops), 0);
2050     }
2051 
2052     if (InstMaskEnd == 63 - RLAmt) {
2053       SDValue Ops[] =
2054         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2055           getI32Imm(InstMaskStart, dl) };
2056       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2057     }
2058 
2059     // We cannot do this with a single instruction, so we'll use two. The
2060     // problem is that we're not free to choose both a rotation amount and mask
2061     // start and end independently. We can choose an arbitrary mask start and
2062     // end, but then the rotation amount is fixed. Rotation, however, can be
2063     // inverted, and so by applying an "inverse" rotation first, we can get the
2064     // desired result.
2065     if (InstCnt) *InstCnt += 1;
2066 
2067     // The rotation mask for the second instruction must be MaskStart.
2068     unsigned RLAmt2 = MaskStart;
2069     // The first instruction must rotate V so that the overall rotation amount
2070     // is RLAmt.
2071     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2072     if (RLAmt1)
2073       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2074     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2075   }
2076 
2077   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2078     if (BPermRewriterNoMasking)
2079       return;
2080 
2081     // The idea here is the same as in the 32-bit version, but with additional
2082     // complications from the fact that Repl32 might be true. Because we
2083     // aggressively convert bit groups to Repl32 form (which, for small
2084     // rotation factors, involves no other change), and then coalesce, it might
2085     // be the case that a single 64-bit masking operation could handle both
2086     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2087     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2088     // completely capture the new combined bit group.
2089 
2090     for (ValueRotInfo &VRI : ValueRotsVec) {
2091       uint64_t Mask = 0;
2092 
2093       // We need to add to the mask all bits from the associated bit groups.
2094       // If Repl32 is false, we need to add bits from bit groups that have
2095       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2096       // group is trivially convertable if it overlaps only with the lower 32
2097       // bits, and the group has not been coalesced.
2098       auto MatchingBG = [VRI](const BitGroup &BG) {
2099         if (VRI.V != BG.V)
2100           return false;
2101 
2102         unsigned EffRLAmt = BG.RLAmt;
2103         if (!VRI.Repl32 && BG.Repl32) {
2104           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2105               !BG.Repl32Coalesced) {
2106             if (BG.Repl32CR)
2107               EffRLAmt += 32;
2108           } else {
2109             return false;
2110           }
2111         } else if (VRI.Repl32 != BG.Repl32) {
2112           return false;
2113         }
2114 
2115         return VRI.RLAmt == EffRLAmt;
2116       };
2117 
2118       for (auto &BG : BitGroups) {
2119         if (!MatchingBG(BG))
2120           continue;
2121 
2122         if (BG.StartIdx <= BG.EndIdx) {
2123           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2124             Mask |= (UINT64_C(1) << i);
2125         } else {
2126           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2127             Mask |= (UINT64_C(1) << i);
2128           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2129             Mask |= (UINT64_C(1) << i);
2130         }
2131       }
2132 
2133       // We can use the 32-bit andi/andis technique if the mask does not
2134       // require any higher-order bits. This can save an instruction compared
2135       // to always using the general 64-bit technique.
2136       bool Use32BitInsts = isUInt<32>(Mask);
2137       // Compute the masks for andi/andis that would be necessary.
2138       unsigned ANDIMask = (Mask & UINT16_MAX),
2139                ANDISMask = (Mask >> 16) & UINT16_MAX;
2140 
2141       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2142 
2143       unsigned NumAndInsts = (unsigned) NeedsRotate +
2144                              (unsigned) (bool) Res;
2145       if (Use32BitInsts)
2146         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2147                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2148       else
2149         NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
2150 
2151       unsigned NumRLInsts = 0;
2152       bool FirstBG = true;
2153       bool MoreBG = false;
2154       for (auto &BG : BitGroups) {
2155         if (!MatchingBG(BG)) {
2156           MoreBG = true;
2157           continue;
2158         }
2159         NumRLInsts +=
2160           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2161                                !FirstBG);
2162         FirstBG = false;
2163       }
2164 
2165       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2166                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2167                         << "\n\t\t\tisel using masking: " << NumAndInsts
2168                         << " using rotates: " << NumRLInsts << "\n");
2169 
2170       // When we'd use andi/andis, we bias toward using the rotates (andi only
2171       // has a record form, and is cracked on POWER cores). However, when using
2172       // general 64-bit constant formation, bias toward the constant form,
2173       // because that exposes more opportunities for CSE.
2174       if (NumAndInsts > NumRLInsts)
2175         continue;
2176       // When merging multiple bit groups, instruction or is used.
2177       // But when rotate is used, rldimi can inert the rotated value into any
2178       // register, so instruction or can be avoided.
2179       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2180         continue;
2181 
2182       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2183 
2184       if (InstCnt) *InstCnt += NumAndInsts;
2185 
2186       SDValue VRot;
2187       // We actually need to generate a rotation if we have a non-zero rotation
2188       // factor or, in the Repl32 case, if we care about any of the
2189       // higher-order replicated bits. In the latter case, we generate a mask
2190       // backward so that it actually includes the entire 64 bits.
2191       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2192         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2193                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2194       else
2195         VRot = VRI.V;
2196 
2197       SDValue TotalVal;
2198       if (Use32BitInsts) {
2199         assert((ANDIMask != 0 || ANDISMask != 0) &&
2200                "No set bits in mask when using 32-bit ands for 64-bit value");
2201 
2202         SDValue ANDIVal, ANDISVal;
2203         if (ANDIMask != 0)
2204           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2205                                                    ExtendToInt64(VRot, dl),
2206                                                    getI32Imm(ANDIMask, dl)),
2207                             0);
2208         if (ANDISMask != 0)
2209           ANDISVal =
2210               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2211                                              ExtendToInt64(VRot, dl),
2212                                              getI32Imm(ANDISMask, dl)),
2213                       0);
2214 
2215         if (!ANDIVal)
2216           TotalVal = ANDISVal;
2217         else if (!ANDISVal)
2218           TotalVal = ANDIVal;
2219         else
2220           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2221                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2222       } else {
2223         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2224         TotalVal =
2225           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2226                                          ExtendToInt64(VRot, dl), TotalVal),
2227                   0);
2228      }
2229 
2230       if (!Res)
2231         Res = TotalVal;
2232       else
2233         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2234                                              ExtendToInt64(Res, dl), TotalVal),
2235                       0);
2236 
2237       // Now, remove all groups with this underlying value and rotation
2238       // factor.
2239       eraseMatchingBitGroups(MatchingBG);
2240     }
2241   }
2242 
2243   // Instruction selection for the 64-bit case.
2244   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2245     SDLoc dl(N);
2246     SDValue Res;
2247 
2248     if (InstCnt) *InstCnt = 0;
2249 
2250     // Take care of cases that should use andi/andis first.
2251     SelectAndParts64(dl, Res, InstCnt);
2252 
2253     // If we've not yet selected a 'starting' instruction, and we have no zeros
2254     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2255     // number of groups), and start with this rotated value.
2256     if ((!NeedMask || LateMask) && !Res) {
2257       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2258       // groups will come first, and so the VRI representing the largest number
2259       // of groups might not be first (it might be the first Repl32 groups).
2260       unsigned MaxGroupsIdx = 0;
2261       if (!ValueRotsVec[0].Repl32) {
2262         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2263           if (ValueRotsVec[i].Repl32) {
2264             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2265               MaxGroupsIdx = i;
2266             break;
2267           }
2268       }
2269 
2270       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2271       bool NeedsRotate = false;
2272       if (VRI.RLAmt) {
2273         NeedsRotate = true;
2274       } else if (VRI.Repl32) {
2275         for (auto &BG : BitGroups) {
2276           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2277               BG.Repl32 != VRI.Repl32)
2278             continue;
2279 
2280           // We don't need a rotate if the bit group is confined to the lower
2281           // 32 bits.
2282           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2283             continue;
2284 
2285           NeedsRotate = true;
2286           break;
2287         }
2288       }
2289 
2290       if (NeedsRotate)
2291         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2292                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2293                               InstCnt);
2294       else
2295         Res = VRI.V;
2296 
2297       // Now, remove all groups with this underlying value and rotation factor.
2298       if (Res)
2299         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2300           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2301                  BG.Repl32 == VRI.Repl32;
2302         });
2303     }
2304 
2305     // Because 64-bit rotates are more flexible than inserts, we might have a
2306     // preference regarding which one we do first (to save one instruction).
2307     if (!Res)
2308       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2309         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2310                                 false) <
2311             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2312                                 true)) {
2313           if (I != BitGroups.begin()) {
2314             BitGroup BG = *I;
2315             BitGroups.erase(I);
2316             BitGroups.insert(BitGroups.begin(), BG);
2317           }
2318 
2319           break;
2320         }
2321       }
2322 
2323     // Insert the other groups (one at a time).
2324     for (auto &BG : BitGroups) {
2325       if (!Res)
2326         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2327                               BG.EndIdx, InstCnt);
2328       else
2329         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2330                                  BG.StartIdx, BG.EndIdx, InstCnt);
2331     }
2332 
2333     if (LateMask) {
2334       uint64_t Mask = getZerosMask();
2335 
2336       // We can use the 32-bit andi/andis technique if the mask does not
2337       // require any higher-order bits. This can save an instruction compared
2338       // to always using the general 64-bit technique.
2339       bool Use32BitInsts = isUInt<32>(Mask);
2340       // Compute the masks for andi/andis that would be necessary.
2341       unsigned ANDIMask = (Mask & UINT16_MAX),
2342                ANDISMask = (Mask >> 16) & UINT16_MAX;
2343 
2344       if (Use32BitInsts) {
2345         assert((ANDIMask != 0 || ANDISMask != 0) &&
2346                "No set bits in mask when using 32-bit ands for 64-bit value");
2347 
2348         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2349                                  (unsigned) (ANDISMask != 0) +
2350                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2351 
2352         SDValue ANDIVal, ANDISVal;
2353         if (ANDIMask != 0)
2354           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2355                                                    ExtendToInt64(Res, dl),
2356                                                    getI32Imm(ANDIMask, dl)),
2357                             0);
2358         if (ANDISMask != 0)
2359           ANDISVal =
2360               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2361                                              ExtendToInt64(Res, dl),
2362                                              getI32Imm(ANDISMask, dl)),
2363                       0);
2364 
2365         if (!ANDIVal)
2366           Res = ANDISVal;
2367         else if (!ANDISVal)
2368           Res = ANDIVal;
2369         else
2370           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2371                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2372       } else {
2373         if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
2374 
2375         SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2376         Res =
2377           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2378                                          ExtendToInt64(Res, dl), MaskVal), 0);
2379       }
2380     }
2381 
2382     return Res.getNode();
2383   }
2384 
2385   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2386     // Fill in BitGroups.
2387     collectBitGroups(LateMask);
2388     if (BitGroups.empty())
2389       return nullptr;
2390 
2391     // For 64-bit values, figure out when we can use 32-bit instructions.
2392     if (Bits.size() == 64)
2393       assignRepl32BitGroups();
2394 
2395     // Fill in ValueRotsVec.
2396     collectValueRotInfo();
2397 
2398     if (Bits.size() == 32) {
2399       return Select32(N, LateMask, InstCnt);
2400     } else {
2401       assert(Bits.size() == 64 && "Not 64 bits here?");
2402       return Select64(N, LateMask, InstCnt);
2403     }
2404 
2405     return nullptr;
2406   }
2407 
2408   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2409     BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
2410   }
2411 
2412   SmallVector<ValueBit, 64> Bits;
2413 
2414   bool NeedMask = false;
2415   SmallVector<unsigned, 64> RLAmt;
2416 
2417   SmallVector<BitGroup, 16> BitGroups;
2418 
2419   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2420   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2421 
2422   SelectionDAG *CurDAG = nullptr;
2423 
2424 public:
2425   BitPermutationSelector(SelectionDAG *DAG)
2426     : CurDAG(DAG) {}
2427 
2428   // Here we try to match complex bit permutations into a set of
2429   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2430   // known to produce optimal code for common cases (like i32 byte swapping).
2431   SDNode *Select(SDNode *N) {
2432     Memoizer.clear();
2433     auto Result =
2434         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2435     if (!Result.first)
2436       return nullptr;
2437     Bits = std::move(*Result.second);
2438 
2439     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2440                          " selection for:    ");
2441     LLVM_DEBUG(N->dump(CurDAG));
2442 
2443     // Fill it RLAmt and set NeedMask.
2444     computeRotationAmounts();
2445 
2446     if (!NeedMask)
2447       return Select(N, false);
2448 
2449     // We currently have two techniques for handling results with zeros: early
2450     // masking (the default) and late masking. Late masking is sometimes more
2451     // efficient, but because the structure of the bit groups is different, it
2452     // is hard to tell without generating both and comparing the results. With
2453     // late masking, we ignore zeros in the resulting value when inserting each
2454     // set of bit groups, and then mask in the zeros at the end. With early
2455     // masking, we only insert the non-zero parts of the result at every step.
2456 
2457     unsigned InstCnt = 0, InstCntLateMask = 0;
2458     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2459     SDNode *RN = Select(N, false, &InstCnt);
2460     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2461 
2462     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2463     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2464     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2465                       << " instructions\n");
2466 
2467     if (InstCnt <= InstCntLateMask) {
2468       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2469       return RN;
2470     }
2471 
2472     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2473     return RNLM;
2474   }
2475 };
2476 
2477 class IntegerCompareEliminator {
2478   SelectionDAG *CurDAG;
2479   PPCDAGToDAGISel *S;
2480   // Conversion type for interpreting results of a 32-bit instruction as
2481   // a 64-bit value or vice versa.
2482   enum ExtOrTruncConversion { Ext, Trunc };
2483 
2484   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2485   // in a GPR.
2486   // ZExtOrig - use the original condition code, zero-extend value
2487   // ZExtInvert - invert the condition code, zero-extend value
2488   // SExtOrig - use the original condition code, sign-extend value
2489   // SExtInvert - invert the condition code, sign-extend value
2490   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2491 
2492   // Comparisons against zero to emit GPR code sequences for. Each of these
2493   // sequences may need to be emitted for two or more equivalent patterns.
2494   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2495   // matters as well as the extension type: sext (-1/0), zext (1/0).
2496   // GEZExt - (zext (LHS >= 0))
2497   // GESExt - (sext (LHS >= 0))
2498   // LEZExt - (zext (LHS <= 0))
2499   // LESExt - (sext (LHS <= 0))
2500   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2501 
2502   SDNode *tryEXTEND(SDNode *N);
2503   SDNode *tryLogicOpOfCompares(SDNode *N);
2504   SDValue computeLogicOpInGPR(SDValue LogicOp);
2505   SDValue signExtendInputIfNeeded(SDValue Input);
2506   SDValue zeroExtendInputIfNeeded(SDValue Input);
2507   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2508   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2509                                         ZeroCompare CmpTy);
2510   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2511                               int64_t RHSValue, SDLoc dl);
2512  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2513                               int64_t RHSValue, SDLoc dl);
2514   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2515                               int64_t RHSValue, SDLoc dl);
2516   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2517                               int64_t RHSValue, SDLoc dl);
2518   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2519 
2520 public:
2521   IntegerCompareEliminator(SelectionDAG *DAG,
2522                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2523     assert(CurDAG->getTargetLoweringInfo()
2524            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2525            "Only expecting to use this on 64 bit targets.");
2526   }
2527   SDNode *Select(SDNode *N) {
2528     if (CmpInGPR == ICGPR_None)
2529       return nullptr;
2530     switch (N->getOpcode()) {
2531     default: break;
2532     case ISD::ZERO_EXTEND:
2533       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2534           CmpInGPR == ICGPR_SextI64)
2535         return nullptr;
2536       LLVM_FALLTHROUGH;
2537     case ISD::SIGN_EXTEND:
2538       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2539           CmpInGPR == ICGPR_ZextI64)
2540         return nullptr;
2541       return tryEXTEND(N);
2542     case ISD::AND:
2543     case ISD::OR:
2544     case ISD::XOR:
2545       return tryLogicOpOfCompares(N);
2546     }
2547     return nullptr;
2548   }
2549 };
2550 
2551 static bool isLogicOp(unsigned Opc) {
2552   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2553 }
2554 // The obvious case for wanting to keep the value in a GPR. Namely, the
2555 // result of the comparison is actually needed in a GPR.
2556 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2557   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2558           N->getOpcode() == ISD::SIGN_EXTEND) &&
2559          "Expecting a zero/sign extend node!");
2560   SDValue WideRes;
2561   // If we are zero-extending the result of a logical operation on i1
2562   // values, we can keep the values in GPRs.
2563   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2564       N->getOperand(0).getValueType() == MVT::i1 &&
2565       N->getOpcode() == ISD::ZERO_EXTEND)
2566     WideRes = computeLogicOpInGPR(N->getOperand(0));
2567   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2568     return nullptr;
2569   else
2570     WideRes =
2571       getSETCCInGPR(N->getOperand(0),
2572                     N->getOpcode() == ISD::SIGN_EXTEND ?
2573                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2574 
2575   if (!WideRes)
2576     return nullptr;
2577 
2578   SDLoc dl(N);
2579   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2580   bool Output32Bit = N->getValueType(0) == MVT::i32;
2581 
2582   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2583   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2584 
2585   SDValue ConvOp = WideRes;
2586   if (Input32Bit != Output32Bit)
2587     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2588                            ExtOrTruncConversion::Trunc);
2589   return ConvOp.getNode();
2590 }
2591 
2592 // Attempt to perform logical operations on the results of comparisons while
2593 // keeping the values in GPRs. Without doing so, these would end up being
2594 // lowered to CR-logical operations which suffer from significant latency and
2595 // low ILP.
2596 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2597   if (N->getValueType(0) != MVT::i1)
2598     return nullptr;
2599   assert(isLogicOp(N->getOpcode()) &&
2600          "Expected a logic operation on setcc results.");
2601   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2602   if (!LoweredLogical)
2603     return nullptr;
2604 
2605   SDLoc dl(N);
2606   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2607   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2608   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2609   SDValue LHS = LoweredLogical.getOperand(0);
2610   SDValue RHS = LoweredLogical.getOperand(1);
2611   SDValue WideOp;
2612   SDValue OpToConvToRecForm;
2613 
2614   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2615   // opcode that is input to the XORI.
2616   if (IsBitwiseNegate &&
2617       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2618     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2619   else if (IsBitwiseNegate)
2620     // If the input to the XORI isn't an extension, that's what we're after.
2621     OpToConvToRecForm = LoweredLogical.getOperand(0);
2622   else
2623     // If this is not an XORI, it is a reg-reg logical op and we can convert
2624     // it to record-form.
2625     OpToConvToRecForm = LoweredLogical;
2626 
2627   // Get the record-form version of the node we're looking to use to get the
2628   // CR result from.
2629   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2630   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2631 
2632   // Convert the right node to record-form. This is either the logical we're
2633   // looking at or it is the input node to the negation (if we're looking at
2634   // a bitwise negation).
2635   if (NewOpc != -1 && IsBitwiseNegate) {
2636     // The input to the XORI has a record-form. Use it.
2637     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2638            "Expected a PPC::XORI8 only for bitwise negation.");
2639     // Emit the record-form instruction.
2640     std::vector<SDValue> Ops;
2641     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2642       Ops.push_back(OpToConvToRecForm.getOperand(i));
2643 
2644     WideOp =
2645       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2646                                      OpToConvToRecForm.getValueType(),
2647                                      MVT::Glue, Ops), 0);
2648   } else {
2649     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2650            "No record form available for AND8/OR8/XOR8?");
2651     WideOp =
2652         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2653                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
2654                 0);
2655   }
2656 
2657   // Select this node to a single bit from CR0 set by the record-form node
2658   // just created. For bitwise negation, use the EQ bit which is the equivalent
2659   // of negating the result (i.e. it is a bit set when the result of the
2660   // operation is zero).
2661   SDValue SRIdxVal =
2662     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2663   SDValue CRBit =
2664     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2665                                    MVT::i1, CR0Reg, SRIdxVal,
2666                                    WideOp.getValue(1)), 0);
2667   return CRBit.getNode();
2668 }
2669 
2670 // Lower a logical operation on i1 values into a GPR sequence if possible.
2671 // The result can be kept in a GPR if requested.
2672 // Three types of inputs can be handled:
2673 // - SETCC
2674 // - TRUNCATE
2675 // - Logical operation (AND/OR/XOR)
2676 // There is also a special case that is handled (namely a complement operation
2677 // achieved with xor %a, -1).
2678 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2679   assert(isLogicOp(LogicOp.getOpcode()) &&
2680         "Can only handle logic operations here.");
2681   assert(LogicOp.getValueType() == MVT::i1 &&
2682          "Can only handle logic operations on i1 values here.");
2683   SDLoc dl(LogicOp);
2684   SDValue LHS, RHS;
2685 
2686  // Special case: xor %a, -1
2687   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2688 
2689   // Produces a GPR sequence for each operand of the binary logic operation.
2690   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2691   // the value in a GPR and for logic operations, it will recursively produce
2692   // a GPR sequence for the operation.
2693  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2694     unsigned OperandOpcode = Operand.getOpcode();
2695     if (OperandOpcode == ISD::SETCC)
2696       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2697     else if (OperandOpcode == ISD::TRUNCATE) {
2698       SDValue InputOp = Operand.getOperand(0);
2699      EVT InVT = InputOp.getValueType();
2700       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2701                                             PPC::RLDICL, dl, InVT, InputOp,
2702                                             S->getI64Imm(0, dl),
2703                                             S->getI64Imm(63, dl)), 0);
2704     } else if (isLogicOp(OperandOpcode))
2705       return computeLogicOpInGPR(Operand);
2706     return SDValue();
2707   };
2708   LHS = getLogicOperand(LogicOp.getOperand(0));
2709   RHS = getLogicOperand(LogicOp.getOperand(1));
2710 
2711   // If a GPR sequence can't be produced for the LHS we can't proceed.
2712   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2713   // a bitwise negation operation.
2714   if (!LHS || (!RHS && !IsBitwiseNegation))
2715     return SDValue();
2716 
2717   NumLogicOpsOnComparison++;
2718 
2719   // We will use the inputs as 64-bit values.
2720   if (LHS.getValueType() == MVT::i32)
2721     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2722   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2723     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2724 
2725   unsigned NewOpc;
2726   switch (LogicOp.getOpcode()) {
2727   default: llvm_unreachable("Unknown logic operation.");
2728   case ISD::AND: NewOpc = PPC::AND8; break;
2729   case ISD::OR:  NewOpc = PPC::OR8;  break;
2730   case ISD::XOR: NewOpc = PPC::XOR8; break;
2731   }
2732 
2733   if (IsBitwiseNegation) {
2734     RHS = S->getI64Imm(1, dl);
2735     NewOpc = PPC::XORI8;
2736   }
2737 
2738   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2739 
2740 }
2741 
2742 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2743 /// Otherwise just reinterpret it as a 64-bit value.
2744 /// Useful when emitting comparison code for 32-bit values without using
2745 /// the compare instruction (which only considers the lower 32-bits).
2746 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2747   assert(Input.getValueType() == MVT::i32 &&
2748          "Can only sign-extend 32-bit values here.");
2749   unsigned Opc = Input.getOpcode();
2750 
2751   // The value was sign extended and then truncated to 32-bits. No need to
2752   // sign extend it again.
2753   if (Opc == ISD::TRUNCATE &&
2754       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2755        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2756     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2757 
2758   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2759   // The input is a sign-extending load. All ppc sign-extending loads
2760   // sign-extend to the full 64-bits.
2761   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
2762     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2763 
2764   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2765   // We don't sign-extend constants.
2766   if (InputConst)
2767     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2768 
2769   SDLoc dl(Input);
2770   SignExtensionsAdded++;
2771   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
2772                                         MVT::i64, Input), 0);
2773 }
2774 
2775 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
2776 /// Otherwise just reinterpret it as a 64-bit value.
2777 /// Useful when emitting comparison code for 32-bit values without using
2778 /// the compare instruction (which only considers the lower 32-bits).
2779 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
2780   assert(Input.getValueType() == MVT::i32 &&
2781          "Can only zero-extend 32-bit values here.");
2782   unsigned Opc = Input.getOpcode();
2783 
2784   // The only condition under which we can omit the actual extend instruction:
2785   // - The value is a positive constant
2786   // - The value comes from a load that isn't a sign-extending load
2787   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
2788   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
2789     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
2790      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
2791   if (IsTruncateOfZExt)
2792     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2793 
2794   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2795   if (InputConst && InputConst->getSExtValue() >= 0)
2796     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2797 
2798   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2799   // The input is a load that doesn't sign-extend (it will be zero-extended).
2800   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
2801     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2802 
2803   // None of the above, need to zero-extend.
2804   SDLoc dl(Input);
2805   ZeroExtensionsAdded++;
2806   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
2807                                         S->getI64Imm(0, dl),
2808                                         S->getI64Imm(32, dl)), 0);
2809 }
2810 
2811 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
2812 // course not actual zero/sign extensions that will generate machine code,
2813 // they're just a way to reinterpret a 32 bit value in a register as a
2814 // 64 bit value and vice-versa.
2815 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
2816                                                 ExtOrTruncConversion Conv) {
2817   SDLoc dl(NatWidthRes);
2818 
2819   // For reinterpreting 32-bit values as 64 bit values, we generate
2820   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
2821   if (Conv == ExtOrTruncConversion::Ext) {
2822     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
2823     SDValue SubRegIdx =
2824       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2825     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
2826                                           ImDef, NatWidthRes, SubRegIdx), 0);
2827   }
2828 
2829   assert(Conv == ExtOrTruncConversion::Trunc &&
2830          "Unknown convertion between 32 and 64 bit values.");
2831   // For reinterpreting 64-bit values as 32-bit values, we just need to
2832   // EXTRACT_SUBREG (i.e. extract the low word).
2833   SDValue SubRegIdx =
2834     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2835   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
2836                                         NatWidthRes, SubRegIdx), 0);
2837 }
2838 
2839 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
2840 // Handle both zero-extensions and sign-extensions.
2841 SDValue
2842 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2843                                                          ZeroCompare CmpTy) {
2844   EVT InVT = LHS.getValueType();
2845   bool Is32Bit = InVT == MVT::i32;
2846   SDValue ToExtend;
2847 
2848   // Produce the value that needs to be either zero or sign extended.
2849   switch (CmpTy) {
2850   case ZeroCompare::GEZExt:
2851   case ZeroCompare::GESExt:
2852     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
2853                                               dl, InVT, LHS, LHS), 0);
2854     break;
2855   case ZeroCompare::LEZExt:
2856   case ZeroCompare::LESExt: {
2857     if (Is32Bit) {
2858       // Upper 32 bits cannot be undefined for this sequence.
2859       LHS = signExtendInputIfNeeded(LHS);
2860       SDValue Neg =
2861         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2862       ToExtend =
2863         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2864                                        Neg, S->getI64Imm(1, dl),
2865                                        S->getI64Imm(63, dl)), 0);
2866     } else {
2867       SDValue Addi =
2868         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
2869                                        S->getI64Imm(~0ULL, dl)), 0);
2870       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2871                                                 Addi, LHS), 0);
2872     }
2873     break;
2874   }
2875   }
2876 
2877   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
2878   if (!Is32Bit &&
2879       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
2880     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2881                                           ToExtend, S->getI64Imm(1, dl),
2882                                           S->getI64Imm(63, dl)), 0);
2883   if (!Is32Bit &&
2884       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
2885     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
2886                                           S->getI64Imm(63, dl)), 0);
2887 
2888   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
2889   // For 32-bit sequences, the extensions differ between GE/LE cases.
2890   switch (CmpTy) {
2891   case ZeroCompare::GEZExt: {
2892     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
2893                            S->getI32Imm(31, dl) };
2894     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2895                                           ShiftOps), 0);
2896   }
2897   case ZeroCompare::GESExt:
2898     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
2899                                           S->getI32Imm(31, dl)), 0);
2900   case ZeroCompare::LEZExt:
2901     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
2902                                           S->getI32Imm(1, dl)), 0);
2903   case ZeroCompare::LESExt:
2904     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
2905                                           S->getI32Imm(-1, dl)), 0);
2906   }
2907 
2908   // The above case covers all the enumerators so it can't have a default clause
2909   // to avoid compiler warnings.
2910   llvm_unreachable("Unknown zero-comparison type.");
2911 }
2912 
2913 /// Produces a zero-extended result of comparing two 32-bit values according to
2914 /// the passed condition code.
2915 SDValue
2916 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
2917                                               ISD::CondCode CC,
2918                                               int64_t RHSValue, SDLoc dl) {
2919   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
2920       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
2921     return SDValue();
2922   bool IsRHSZero = RHSValue == 0;
2923   bool IsRHSOne = RHSValue == 1;
2924   bool IsRHSNegOne = RHSValue == -1LL;
2925   switch (CC) {
2926   default: return SDValue();
2927   case ISD::SETEQ: {
2928     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
2929     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
2930     SDValue Xor = IsRHSZero ? LHS :
2931       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2932     SDValue Clz =
2933       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2934     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2935       S->getI32Imm(31, dl) };
2936     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2937                                           ShiftOps), 0);
2938   }
2939   case ISD::SETNE: {
2940     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
2941     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
2942     SDValue Xor = IsRHSZero ? LHS :
2943       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2944     SDValue Clz =
2945       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2946     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2947       S->getI32Imm(31, dl) };
2948     SDValue Shift =
2949       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2950     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2951                                           S->getI32Imm(1, dl)), 0);
2952   }
2953   case ISD::SETGE: {
2954     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
2955     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
2956     if(IsRHSZero)
2957       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2958 
2959     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2960     // by swapping inputs and falling through.
2961     std::swap(LHS, RHS);
2962     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2963     IsRHSZero = RHSConst && RHSConst->isNullValue();
2964     LLVM_FALLTHROUGH;
2965   }
2966   case ISD::SETLE: {
2967     if (CmpInGPR == ICGPR_NonExtIn)
2968       return SDValue();
2969     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
2970     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
2971     if(IsRHSZero) {
2972       if (CmpInGPR == ICGPR_NonExtIn)
2973         return SDValue();
2974       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2975     }
2976 
2977     // The upper 32-bits of the register can't be undefined for this sequence.
2978     LHS = signExtendInputIfNeeded(LHS);
2979     RHS = signExtendInputIfNeeded(RHS);
2980     SDValue Sub =
2981       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2982     SDValue Shift =
2983       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
2984                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
2985               0);
2986     return
2987       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
2988                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
2989   }
2990   case ISD::SETGT: {
2991     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
2992     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
2993     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
2994     // Handle SETLT -1 (which is equivalent to SETGE 0).
2995     if (IsRHSNegOne)
2996       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2997 
2998     if (IsRHSZero) {
2999       if (CmpInGPR == ICGPR_NonExtIn)
3000         return SDValue();
3001       // The upper 32-bits of the register can't be undefined for this sequence.
3002       LHS = signExtendInputIfNeeded(LHS);
3003       RHS = signExtendInputIfNeeded(RHS);
3004       SDValue Neg =
3005         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3006       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3007                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3008     }
3009     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3010     // (%b < %a) by swapping inputs and falling through.
3011     std::swap(LHS, RHS);
3012     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3013     IsRHSZero = RHSConst && RHSConst->isNullValue();
3014     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3015     LLVM_FALLTHROUGH;
3016   }
3017   case ISD::SETLT: {
3018     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3019     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3020     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3021     // Handle SETLT 1 (which is equivalent to SETLE 0).
3022     if (IsRHSOne) {
3023       if (CmpInGPR == ICGPR_NonExtIn)
3024         return SDValue();
3025       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3026     }
3027 
3028     if (IsRHSZero) {
3029       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3030                              S->getI32Imm(31, dl) };
3031       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3032                                             ShiftOps), 0);
3033     }
3034 
3035     if (CmpInGPR == ICGPR_NonExtIn)
3036       return SDValue();
3037     // The upper 32-bits of the register can't be undefined for this sequence.
3038     LHS = signExtendInputIfNeeded(LHS);
3039     RHS = signExtendInputIfNeeded(RHS);
3040     SDValue SUBFNode =
3041       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3042     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3043                                     SUBFNode, S->getI64Imm(1, dl),
3044                                     S->getI64Imm(63, dl)), 0);
3045   }
3046   case ISD::SETUGE:
3047     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3048     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3049     std::swap(LHS, RHS);
3050     LLVM_FALLTHROUGH;
3051   case ISD::SETULE: {
3052     if (CmpInGPR == ICGPR_NonExtIn)
3053       return SDValue();
3054     // The upper 32-bits of the register can't be undefined for this sequence.
3055     LHS = zeroExtendInputIfNeeded(LHS);
3056     RHS = zeroExtendInputIfNeeded(RHS);
3057     SDValue Subtract =
3058       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3059     SDValue SrdiNode =
3060       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3061                                           Subtract, S->getI64Imm(1, dl),
3062                                           S->getI64Imm(63, dl)), 0);
3063     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3064                                             S->getI32Imm(1, dl)), 0);
3065   }
3066   case ISD::SETUGT:
3067     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3068     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3069     std::swap(LHS, RHS);
3070     LLVM_FALLTHROUGH;
3071   case ISD::SETULT: {
3072     if (CmpInGPR == ICGPR_NonExtIn)
3073       return SDValue();
3074     // The upper 32-bits of the register can't be undefined for this sequence.
3075     LHS = zeroExtendInputIfNeeded(LHS);
3076     RHS = zeroExtendInputIfNeeded(RHS);
3077     SDValue Subtract =
3078       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3079     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3080                                           Subtract, S->getI64Imm(1, dl),
3081                                           S->getI64Imm(63, dl)), 0);
3082   }
3083   }
3084 }
3085 
3086 /// Produces a sign-extended result of comparing two 32-bit values according to
3087 /// the passed condition code.
3088 SDValue
3089 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3090                                               ISD::CondCode CC,
3091                                               int64_t RHSValue, SDLoc dl) {
3092   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3093       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3094     return SDValue();
3095   bool IsRHSZero = RHSValue == 0;
3096   bool IsRHSOne = RHSValue == 1;
3097   bool IsRHSNegOne = RHSValue == -1LL;
3098 
3099   switch (CC) {
3100   default: return SDValue();
3101   case ISD::SETEQ: {
3102     // (sext (setcc %a, %b, seteq)) ->
3103     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3104     // (sext (setcc %a, 0, seteq)) ->
3105     //   (ashr (shl (ctlz %a), 58), 63)
3106     SDValue CountInput = IsRHSZero ? LHS :
3107       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3108     SDValue Cntlzw =
3109       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3110     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3111                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3112     SDValue Slwi =
3113       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3114     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3115   }
3116   case ISD::SETNE: {
3117     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3118     // flip the bit, finally take 2's complement.
3119     // (sext (setcc %a, %b, setne)) ->
3120     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3121     // Same as above, but the first xor is not needed.
3122     // (sext (setcc %a, 0, setne)) ->
3123     //   (neg (xor (lshr (ctlz %a), 5), 1))
3124     SDValue Xor = IsRHSZero ? LHS :
3125       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3126     SDValue Clz =
3127       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3128     SDValue ShiftOps[] =
3129       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3130     SDValue Shift =
3131       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3132     SDValue Xori =
3133       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3134                                      S->getI32Imm(1, dl)), 0);
3135     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3136   }
3137   case ISD::SETGE: {
3138     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3139     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3140     if (IsRHSZero)
3141       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3142 
3143     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3144     // by swapping inputs and falling through.
3145     std::swap(LHS, RHS);
3146     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3147     IsRHSZero = RHSConst && RHSConst->isNullValue();
3148     LLVM_FALLTHROUGH;
3149   }
3150   case ISD::SETLE: {
3151     if (CmpInGPR == ICGPR_NonExtIn)
3152       return SDValue();
3153     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3154     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3155     if (IsRHSZero)
3156       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3157 
3158     // The upper 32-bits of the register can't be undefined for this sequence.
3159     LHS = signExtendInputIfNeeded(LHS);
3160     RHS = signExtendInputIfNeeded(RHS);
3161     SDValue SUBFNode =
3162       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3163                                      LHS, RHS), 0);
3164     SDValue Srdi =
3165       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3166                                      SUBFNode, S->getI64Imm(1, dl),
3167                                      S->getI64Imm(63, dl)), 0);
3168     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3169                                           S->getI32Imm(-1, dl)), 0);
3170   }
3171   case ISD::SETGT: {
3172     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3173     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3174     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3175     if (IsRHSNegOne)
3176       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3177     if (IsRHSZero) {
3178       if (CmpInGPR == ICGPR_NonExtIn)
3179         return SDValue();
3180       // The upper 32-bits of the register can't be undefined for this sequence.
3181       LHS = signExtendInputIfNeeded(LHS);
3182       RHS = signExtendInputIfNeeded(RHS);
3183       SDValue Neg =
3184         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3185         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3186                                               S->getI64Imm(63, dl)), 0);
3187     }
3188     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3189     // (%b < %a) by swapping inputs and falling through.
3190     std::swap(LHS, RHS);
3191     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3192     IsRHSZero = RHSConst && RHSConst->isNullValue();
3193     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3194     LLVM_FALLTHROUGH;
3195   }
3196   case ISD::SETLT: {
3197     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3198     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3199     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3200     if (IsRHSOne) {
3201       if (CmpInGPR == ICGPR_NonExtIn)
3202         return SDValue();
3203       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3204     }
3205     if (IsRHSZero)
3206       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3207                                             S->getI32Imm(31, dl)), 0);
3208 
3209     if (CmpInGPR == ICGPR_NonExtIn)
3210       return SDValue();
3211     // The upper 32-bits of the register can't be undefined for this sequence.
3212     LHS = signExtendInputIfNeeded(LHS);
3213     RHS = signExtendInputIfNeeded(RHS);
3214     SDValue SUBFNode =
3215       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3216     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3217                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3218   }
3219   case ISD::SETUGE:
3220     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3221     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3222     std::swap(LHS, RHS);
3223     LLVM_FALLTHROUGH;
3224   case ISD::SETULE: {
3225     if (CmpInGPR == ICGPR_NonExtIn)
3226       return SDValue();
3227     // The upper 32-bits of the register can't be undefined for this sequence.
3228     LHS = zeroExtendInputIfNeeded(LHS);
3229     RHS = zeroExtendInputIfNeeded(RHS);
3230     SDValue Subtract =
3231       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3232     SDValue Shift =
3233       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3234                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3235               0);
3236     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3237                                           S->getI32Imm(-1, dl)), 0);
3238   }
3239   case ISD::SETUGT:
3240     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3241     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3242     std::swap(LHS, RHS);
3243     LLVM_FALLTHROUGH;
3244   case ISD::SETULT: {
3245     if (CmpInGPR == ICGPR_NonExtIn)
3246       return SDValue();
3247     // The upper 32-bits of the register can't be undefined for this sequence.
3248     LHS = zeroExtendInputIfNeeded(LHS);
3249     RHS = zeroExtendInputIfNeeded(RHS);
3250     SDValue Subtract =
3251       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3252     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3253                                           Subtract, S->getI64Imm(63, dl)), 0);
3254   }
3255   }
3256 }
3257 
3258 /// Produces a zero-extended result of comparing two 64-bit values according to
3259 /// the passed condition code.
3260 SDValue
3261 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3262                                               ISD::CondCode CC,
3263                                               int64_t RHSValue, SDLoc dl) {
3264   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3265       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3266     return SDValue();
3267   bool IsRHSZero = RHSValue == 0;
3268   bool IsRHSOne = RHSValue == 1;
3269   bool IsRHSNegOne = RHSValue == -1LL;
3270   switch (CC) {
3271   default: return SDValue();
3272   case ISD::SETEQ: {
3273     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3274     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3275     SDValue Xor = IsRHSZero ? LHS :
3276       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3277     SDValue Clz =
3278       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3279     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3280                                           S->getI64Imm(58, dl),
3281                                           S->getI64Imm(63, dl)), 0);
3282   }
3283   case ISD::SETNE: {
3284     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3285     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3286     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3287     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3288     SDValue Xor = IsRHSZero ? LHS :
3289       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3290     SDValue AC =
3291       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3292                                      Xor, S->getI32Imm(~0U, dl)), 0);
3293     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3294                                           Xor, AC.getValue(1)), 0);
3295   }
3296   case ISD::SETGE: {
3297     // {subc.reg, subc.CA} = (subcarry %a, %b)
3298     // (zext (setcc %a, %b, setge)) ->
3299     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3300     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3301     if (IsRHSZero)
3302       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3303     std::swap(LHS, RHS);
3304     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3305     IsRHSZero = RHSConst && RHSConst->isNullValue();
3306     LLVM_FALLTHROUGH;
3307   }
3308   case ISD::SETLE: {
3309     // {subc.reg, subc.CA} = (subcarry %b, %a)
3310     // (zext (setcc %a, %b, setge)) ->
3311     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3312     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3313     if (IsRHSZero)
3314       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3315     SDValue ShiftL =
3316       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3317                                      S->getI64Imm(1, dl),
3318                                      S->getI64Imm(63, dl)), 0);
3319     SDValue ShiftR =
3320       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3321                                      S->getI64Imm(63, dl)), 0);
3322     SDValue SubtractCarry =
3323       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3324                                      LHS, RHS), 1);
3325     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3326                                           ShiftR, ShiftL, SubtractCarry), 0);
3327   }
3328   case ISD::SETGT: {
3329     // {subc.reg, subc.CA} = (subcarry %b, %a)
3330     // (zext (setcc %a, %b, setgt)) ->
3331     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3332     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3333     if (IsRHSNegOne)
3334       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3335     if (IsRHSZero) {
3336       SDValue Addi =
3337         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3338                                        S->getI64Imm(~0ULL, dl)), 0);
3339       SDValue Nor =
3340         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3341       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3342                                             S->getI64Imm(1, dl),
3343                                             S->getI64Imm(63, dl)), 0);
3344     }
3345     std::swap(LHS, RHS);
3346     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3347     IsRHSZero = RHSConst && RHSConst->isNullValue();
3348     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3349     LLVM_FALLTHROUGH;
3350   }
3351   case ISD::SETLT: {
3352     // {subc.reg, subc.CA} = (subcarry %a, %b)
3353     // (zext (setcc %a, %b, setlt)) ->
3354     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3355     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3356     if (IsRHSOne)
3357       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3358     if (IsRHSZero)
3359       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3360                                             S->getI64Imm(1, dl),
3361                                             S->getI64Imm(63, dl)), 0);
3362     SDValue SRADINode =
3363       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3364                                      LHS, S->getI64Imm(63, dl)), 0);
3365     SDValue SRDINode =
3366       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3367                                      RHS, S->getI64Imm(1, dl),
3368                                      S->getI64Imm(63, dl)), 0);
3369     SDValue SUBFC8Carry =
3370       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3371                                      RHS, LHS), 1);
3372     SDValue ADDE8Node =
3373       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3374                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3375     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3376                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3377   }
3378   case ISD::SETUGE:
3379     // {subc.reg, subc.CA} = (subcarry %a, %b)
3380     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3381     std::swap(LHS, RHS);
3382     LLVM_FALLTHROUGH;
3383   case ISD::SETULE: {
3384     // {subc.reg, subc.CA} = (subcarry %b, %a)
3385     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3386     SDValue SUBFC8Carry =
3387       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3388                                      LHS, RHS), 1);
3389     SDValue SUBFE8Node =
3390       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3391                                      LHS, LHS, SUBFC8Carry), 0);
3392     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3393                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3394   }
3395   case ISD::SETUGT:
3396     // {subc.reg, subc.CA} = (subcarry %b, %a)
3397     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3398     std::swap(LHS, RHS);
3399     LLVM_FALLTHROUGH;
3400   case ISD::SETULT: {
3401     // {subc.reg, subc.CA} = (subcarry %a, %b)
3402     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3403     SDValue SubtractCarry =
3404       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3405                                      RHS, LHS), 1);
3406     SDValue ExtSub =
3407       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3408                                      LHS, LHS, SubtractCarry), 0);
3409     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3410                                           ExtSub), 0);
3411   }
3412   }
3413 }
3414 
3415 /// Produces a sign-extended result of comparing two 64-bit values according to
3416 /// the passed condition code.
3417 SDValue
3418 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3419                                               ISD::CondCode CC,
3420                                               int64_t RHSValue, SDLoc dl) {
3421   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3422       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3423     return SDValue();
3424   bool IsRHSZero = RHSValue == 0;
3425   bool IsRHSOne = RHSValue == 1;
3426   bool IsRHSNegOne = RHSValue == -1LL;
3427   switch (CC) {
3428   default: return SDValue();
3429   case ISD::SETEQ: {
3430     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3431     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3432     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3433     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3434     SDValue AddInput = IsRHSZero ? LHS :
3435       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3436     SDValue Addic =
3437       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3438                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3439     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3440                                           Addic, Addic.getValue(1)), 0);
3441   }
3442   case ISD::SETNE: {
3443     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3444     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3445     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3446     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3447     SDValue Xor = IsRHSZero ? LHS :
3448       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3449     SDValue SC =
3450       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3451                                      Xor, S->getI32Imm(0, dl)), 0);
3452     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3453                                           SC, SC.getValue(1)), 0);
3454   }
3455   case ISD::SETGE: {
3456     // {subc.reg, subc.CA} = (subcarry %a, %b)
3457     // (zext (setcc %a, %b, setge)) ->
3458     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3459     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3460     if (IsRHSZero)
3461       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3462     std::swap(LHS, RHS);
3463     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3464     IsRHSZero = RHSConst && RHSConst->isNullValue();
3465     LLVM_FALLTHROUGH;
3466   }
3467   case ISD::SETLE: {
3468     // {subc.reg, subc.CA} = (subcarry %b, %a)
3469     // (zext (setcc %a, %b, setge)) ->
3470     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3471     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3472     if (IsRHSZero)
3473       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3474     SDValue ShiftR =
3475       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3476                                      S->getI64Imm(63, dl)), 0);
3477     SDValue ShiftL =
3478       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3479                                      S->getI64Imm(1, dl),
3480                                      S->getI64Imm(63, dl)), 0);
3481     SDValue SubtractCarry =
3482       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3483                                      LHS, RHS), 1);
3484     SDValue Adde =
3485       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3486                                      ShiftR, ShiftL, SubtractCarry), 0);
3487     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3488   }
3489   case ISD::SETGT: {
3490     // {subc.reg, subc.CA} = (subcarry %b, %a)
3491     // (zext (setcc %a, %b, setgt)) ->
3492     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3493     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3494     if (IsRHSNegOne)
3495       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3496     if (IsRHSZero) {
3497       SDValue Add =
3498         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3499                                        S->getI64Imm(-1, dl)), 0);
3500       SDValue Nor =
3501         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3502       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3503                                             S->getI64Imm(63, dl)), 0);
3504     }
3505     std::swap(LHS, RHS);
3506     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3507     IsRHSZero = RHSConst && RHSConst->isNullValue();
3508     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3509     LLVM_FALLTHROUGH;
3510   }
3511   case ISD::SETLT: {
3512     // {subc.reg, subc.CA} = (subcarry %a, %b)
3513     // (zext (setcc %a, %b, setlt)) ->
3514     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3515     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3516     if (IsRHSOne)
3517       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3518     if (IsRHSZero) {
3519       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3520                                             S->getI64Imm(63, dl)), 0);
3521     }
3522     SDValue SRADINode =
3523       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3524                                      LHS, S->getI64Imm(63, dl)), 0);
3525     SDValue SRDINode =
3526       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3527                                      RHS, S->getI64Imm(1, dl),
3528                                      S->getI64Imm(63, dl)), 0);
3529     SDValue SUBFC8Carry =
3530       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3531                                      RHS, LHS), 1);
3532     SDValue ADDE8Node =
3533       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3534                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3535     SDValue XORI8Node =
3536       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3537                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3538     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3539                                           XORI8Node), 0);
3540   }
3541   case ISD::SETUGE:
3542     // {subc.reg, subc.CA} = (subcarry %a, %b)
3543     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3544     std::swap(LHS, RHS);
3545     LLVM_FALLTHROUGH;
3546   case ISD::SETULE: {
3547     // {subc.reg, subc.CA} = (subcarry %b, %a)
3548     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3549     SDValue SubtractCarry =
3550       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3551                                      LHS, RHS), 1);
3552     SDValue ExtSub =
3553       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3554                                      LHS, SubtractCarry), 0);
3555     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3556                                           ExtSub, ExtSub), 0);
3557   }
3558   case ISD::SETUGT:
3559     // {subc.reg, subc.CA} = (subcarry %b, %a)
3560     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3561     std::swap(LHS, RHS);
3562     LLVM_FALLTHROUGH;
3563   case ISD::SETULT: {
3564     // {subc.reg, subc.CA} = (subcarry %a, %b)
3565     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3566     SDValue SubCarry =
3567       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3568                                      RHS, LHS), 1);
3569     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3570                                      LHS, LHS, SubCarry), 0);
3571   }
3572   }
3573 }
3574 
3575 /// Do all uses of this SDValue need the result in a GPR?
3576 /// This is meant to be used on values that have type i1 since
3577 /// it is somewhat meaningless to ask if values of other types
3578 /// should be kept in GPR's.
3579 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3580   assert(Compare.getOpcode() == ISD::SETCC &&
3581          "An ISD::SETCC node required here.");
3582 
3583   // For values that have a single use, the caller should obviously already have
3584   // checked if that use is an extending use. We check the other uses here.
3585   if (Compare.hasOneUse())
3586     return true;
3587   // We want the value in a GPR if it is being extended, used for a select, or
3588   // used in logical operations.
3589   for (auto CompareUse : Compare.getNode()->uses())
3590     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3591         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3592         CompareUse->getOpcode() != ISD::SELECT &&
3593         !isLogicOp(CompareUse->getOpcode())) {
3594       OmittedForNonExtendUses++;
3595       return false;
3596     }
3597   return true;
3598 }
3599 
3600 /// Returns an equivalent of a SETCC node but with the result the same width as
3601 /// the inputs. This can also be used for SELECT_CC if either the true or false
3602 /// values is a power of two while the other is zero.
3603 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3604                                                 SetccInGPROpts ConvOpts) {
3605   assert((Compare.getOpcode() == ISD::SETCC ||
3606           Compare.getOpcode() == ISD::SELECT_CC) &&
3607          "An ISD::SETCC node required here.");
3608 
3609   // Don't convert this comparison to a GPR sequence because there are uses
3610   // of the i1 result (i.e. uses that require the result in the CR).
3611   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3612     return SDValue();
3613 
3614   SDValue LHS = Compare.getOperand(0);
3615   SDValue RHS = Compare.getOperand(1);
3616 
3617   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3618   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3619   ISD::CondCode CC =
3620     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3621   EVT InputVT = LHS.getValueType();
3622   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3623     return SDValue();
3624 
3625   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3626       ConvOpts == SetccInGPROpts::SExtInvert)
3627     CC = ISD::getSetCCInverse(CC, InputVT);
3628 
3629   bool Inputs32Bit = InputVT == MVT::i32;
3630 
3631   SDLoc dl(Compare);
3632   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3633   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3634   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3635     ConvOpts == SetccInGPROpts::SExtInvert;
3636 
3637   if (IsSext && Inputs32Bit)
3638     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3639   else if (Inputs32Bit)
3640     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3641   else if (IsSext)
3642     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3643   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3644 }
3645 
3646 } // end anonymous namespace
3647 
3648 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3649   if (N->getValueType(0) != MVT::i32 &&
3650       N->getValueType(0) != MVT::i64)
3651     return false;
3652 
3653   // This optimization will emit code that assumes 64-bit registers
3654   // so we don't want to run it in 32-bit mode. Also don't run it
3655   // on functions that are not to be optimized.
3656   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3657     return false;
3658 
3659   switch (N->getOpcode()) {
3660   default: break;
3661   case ISD::ZERO_EXTEND:
3662   case ISD::SIGN_EXTEND:
3663   case ISD::AND:
3664   case ISD::OR:
3665   case ISD::XOR: {
3666     IntegerCompareEliminator ICmpElim(CurDAG, this);
3667     if (SDNode *New = ICmpElim.Select(N)) {
3668       ReplaceNode(N, New);
3669       return true;
3670     }
3671   }
3672   }
3673   return false;
3674 }
3675 
3676 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3677   if (N->getValueType(0) != MVT::i32 &&
3678       N->getValueType(0) != MVT::i64)
3679     return false;
3680 
3681   if (!UseBitPermRewriter)
3682     return false;
3683 
3684   switch (N->getOpcode()) {
3685   default: break;
3686   case ISD::ROTL:
3687   case ISD::SHL:
3688   case ISD::SRL:
3689   case ISD::AND:
3690   case ISD::OR: {
3691     BitPermutationSelector BPS(CurDAG);
3692     if (SDNode *New = BPS.Select(N)) {
3693       ReplaceNode(N, New);
3694       return true;
3695     }
3696     return false;
3697   }
3698   }
3699 
3700   return false;
3701 }
3702 
3703 /// SelectCC - Select a comparison of the specified values with the specified
3704 /// condition code, returning the CR# of the expression.
3705 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3706                                   const SDLoc &dl) {
3707   // Always select the LHS.
3708   unsigned Opc;
3709 
3710   if (LHS.getValueType() == MVT::i32) {
3711     unsigned Imm;
3712     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3713       if (isInt32Immediate(RHS, Imm)) {
3714         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3715         if (isUInt<16>(Imm))
3716           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3717                                                 getI32Imm(Imm & 0xFFFF, dl)),
3718                          0);
3719         // If this is a 16-bit signed immediate, fold it.
3720         if (isInt<16>((int)Imm))
3721           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3722                                                 getI32Imm(Imm & 0xFFFF, dl)),
3723                          0);
3724 
3725         // For non-equality comparisons, the default code would materialize the
3726         // constant, then compare against it, like this:
3727         //   lis r2, 4660
3728         //   ori r2, r2, 22136
3729         //   cmpw cr0, r3, r2
3730         // Since we are just comparing for equality, we can emit this instead:
3731         //   xoris r0,r3,0x1234
3732         //   cmplwi cr0,r0,0x5678
3733         //   beq cr0,L6
3734         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3735                                            getI32Imm(Imm >> 16, dl)), 0);
3736         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3737                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3738       }
3739       Opc = PPC::CMPLW;
3740     } else if (ISD::isUnsignedIntSetCC(CC)) {
3741       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3742         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3743                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3744       Opc = PPC::CMPLW;
3745     } else {
3746       int16_t SImm;
3747       if (isIntS16Immediate(RHS, SImm))
3748         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3749                                               getI32Imm((int)SImm & 0xFFFF,
3750                                                         dl)),
3751                          0);
3752       Opc = PPC::CMPW;
3753     }
3754   } else if (LHS.getValueType() == MVT::i64) {
3755     uint64_t Imm;
3756     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3757       if (isInt64Immediate(RHS.getNode(), Imm)) {
3758         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3759         if (isUInt<16>(Imm))
3760           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3761                                                 getI32Imm(Imm & 0xFFFF, dl)),
3762                          0);
3763         // If this is a 16-bit signed immediate, fold it.
3764         if (isInt<16>(Imm))
3765           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3766                                                 getI32Imm(Imm & 0xFFFF, dl)),
3767                          0);
3768 
3769         // For non-equality comparisons, the default code would materialize the
3770         // constant, then compare against it, like this:
3771         //   lis r2, 4660
3772         //   ori r2, r2, 22136
3773         //   cmpd cr0, r3, r2
3774         // Since we are just comparing for equality, we can emit this instead:
3775         //   xoris r0,r3,0x1234
3776         //   cmpldi cr0,r0,0x5678
3777         //   beq cr0,L6
3778         if (isUInt<32>(Imm)) {
3779           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
3780                                              getI64Imm(Imm >> 16, dl)), 0);
3781           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
3782                                                 getI64Imm(Imm & 0xFFFF, dl)),
3783                          0);
3784         }
3785       }
3786       Opc = PPC::CMPLD;
3787     } else if (ISD::isUnsignedIntSetCC(CC)) {
3788       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
3789         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3790                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
3791       Opc = PPC::CMPLD;
3792     } else {
3793       int16_t SImm;
3794       if (isIntS16Immediate(RHS, SImm))
3795         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3796                                               getI64Imm(SImm & 0xFFFF, dl)),
3797                          0);
3798       Opc = PPC::CMPD;
3799     }
3800   } else if (LHS.getValueType() == MVT::f32) {
3801     if (PPCSubTarget->hasSPE()) {
3802       switch (CC) {
3803         default:
3804         case ISD::SETEQ:
3805         case ISD::SETNE:
3806           Opc = PPC::EFSCMPEQ;
3807           break;
3808         case ISD::SETLT:
3809         case ISD::SETGE:
3810         case ISD::SETOLT:
3811         case ISD::SETOGE:
3812         case ISD::SETULT:
3813         case ISD::SETUGE:
3814           Opc = PPC::EFSCMPLT;
3815           break;
3816         case ISD::SETGT:
3817         case ISD::SETLE:
3818         case ISD::SETOGT:
3819         case ISD::SETOLE:
3820         case ISD::SETUGT:
3821         case ISD::SETULE:
3822           Opc = PPC::EFSCMPGT;
3823           break;
3824       }
3825     } else
3826       Opc = PPC::FCMPUS;
3827   } else if (LHS.getValueType() == MVT::f64) {
3828     if (PPCSubTarget->hasSPE()) {
3829       switch (CC) {
3830         default:
3831         case ISD::SETEQ:
3832         case ISD::SETNE:
3833           Opc = PPC::EFDCMPEQ;
3834           break;
3835         case ISD::SETLT:
3836         case ISD::SETGE:
3837         case ISD::SETOLT:
3838         case ISD::SETOGE:
3839         case ISD::SETULT:
3840         case ISD::SETUGE:
3841           Opc = PPC::EFDCMPLT;
3842           break;
3843         case ISD::SETGT:
3844         case ISD::SETLE:
3845         case ISD::SETOGT:
3846         case ISD::SETOLE:
3847         case ISD::SETUGT:
3848         case ISD::SETULE:
3849           Opc = PPC::EFDCMPGT;
3850           break;
3851       }
3852     } else
3853       Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
3854   } else {
3855     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
3856     assert(PPCSubTarget->hasVSX() && "__float128 requires VSX");
3857     Opc = PPC::XSCMPUQP;
3858   }
3859   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
3860 }
3861 
3862 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
3863                                            const PPCSubtarget *Subtarget) {
3864   // For SPE instructions, the result is in GT bit of the CR
3865   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
3866 
3867   switch (CC) {
3868   case ISD::SETUEQ:
3869   case ISD::SETONE:
3870   case ISD::SETOLE:
3871   case ISD::SETOGE:
3872     llvm_unreachable("Should be lowered by legalize!");
3873   default: llvm_unreachable("Unknown condition!");
3874   case ISD::SETOEQ:
3875   case ISD::SETEQ:
3876     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
3877   case ISD::SETUNE:
3878   case ISD::SETNE:
3879     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
3880   case ISD::SETOLT:
3881   case ISD::SETLT:
3882     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
3883   case ISD::SETULE:
3884   case ISD::SETLE:
3885     return PPC::PRED_LE;
3886   case ISD::SETOGT:
3887   case ISD::SETGT:
3888     return PPC::PRED_GT;
3889   case ISD::SETUGE:
3890   case ISD::SETGE:
3891     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
3892   case ISD::SETO:   return PPC::PRED_NU;
3893   case ISD::SETUO:  return PPC::PRED_UN;
3894     // These two are invalid for floating point.  Assume we have int.
3895   case ISD::SETULT: return PPC::PRED_LT;
3896   case ISD::SETUGT: return PPC::PRED_GT;
3897   }
3898 }
3899 
3900 /// getCRIdxForSetCC - Return the index of the condition register field
3901 /// associated with the SetCC condition, and whether or not the field is
3902 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
3903 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
3904   Invert = false;
3905   switch (CC) {
3906   default: llvm_unreachable("Unknown condition!");
3907   case ISD::SETOLT:
3908   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
3909   case ISD::SETOGT:
3910   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
3911   case ISD::SETOEQ:
3912   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
3913   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
3914   case ISD::SETUGE:
3915   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
3916   case ISD::SETULE:
3917   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
3918   case ISD::SETUNE:
3919   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
3920   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
3921   case ISD::SETUEQ:
3922   case ISD::SETOGE:
3923   case ISD::SETOLE:
3924   case ISD::SETONE:
3925     llvm_unreachable("Invalid branch code: should be expanded by legalize");
3926   // These are invalid for floating point.  Assume integer.
3927   case ISD::SETULT: return 0;
3928   case ISD::SETUGT: return 1;
3929   }
3930 }
3931 
3932 // getVCmpInst: return the vector compare instruction for the specified
3933 // vector type and condition code. Since this is for altivec specific code,
3934 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
3935 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
3936                                 bool HasVSX, bool &Swap, bool &Negate) {
3937   Swap = false;
3938   Negate = false;
3939 
3940   if (VecVT.isFloatingPoint()) {
3941     /* Handle some cases by swapping input operands.  */
3942     switch (CC) {
3943       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
3944       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3945       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
3946       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
3947       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3948       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
3949       default: break;
3950     }
3951     /* Handle some cases by negating the result.  */
3952     switch (CC) {
3953       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3954       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
3955       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
3956       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
3957       default: break;
3958     }
3959     /* We have instructions implementing the remaining cases.  */
3960     switch (CC) {
3961       case ISD::SETEQ:
3962       case ISD::SETOEQ:
3963         if (VecVT == MVT::v4f32)
3964           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
3965         else if (VecVT == MVT::v2f64)
3966           return PPC::XVCMPEQDP;
3967         break;
3968       case ISD::SETGT:
3969       case ISD::SETOGT:
3970         if (VecVT == MVT::v4f32)
3971           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
3972         else if (VecVT == MVT::v2f64)
3973           return PPC::XVCMPGTDP;
3974         break;
3975       case ISD::SETGE:
3976       case ISD::SETOGE:
3977         if (VecVT == MVT::v4f32)
3978           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
3979         else if (VecVT == MVT::v2f64)
3980           return PPC::XVCMPGEDP;
3981         break;
3982       default:
3983         break;
3984     }
3985     llvm_unreachable("Invalid floating-point vector compare condition");
3986   } else {
3987     /* Handle some cases by swapping input operands.  */
3988     switch (CC) {
3989       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
3990       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3991       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3992       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
3993       default: break;
3994     }
3995     /* Handle some cases by negating the result.  */
3996     switch (CC) {
3997       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3998       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
3999       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4000       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4001       default: break;
4002     }
4003     /* We have instructions implementing the remaining cases.  */
4004     switch (CC) {
4005       case ISD::SETEQ:
4006       case ISD::SETUEQ:
4007         if (VecVT == MVT::v16i8)
4008           return PPC::VCMPEQUB;
4009         else if (VecVT == MVT::v8i16)
4010           return PPC::VCMPEQUH;
4011         else if (VecVT == MVT::v4i32)
4012           return PPC::VCMPEQUW;
4013         else if (VecVT == MVT::v2i64)
4014           return PPC::VCMPEQUD;
4015         break;
4016       case ISD::SETGT:
4017         if (VecVT == MVT::v16i8)
4018           return PPC::VCMPGTSB;
4019         else if (VecVT == MVT::v8i16)
4020           return PPC::VCMPGTSH;
4021         else if (VecVT == MVT::v4i32)
4022           return PPC::VCMPGTSW;
4023         else if (VecVT == MVT::v2i64)
4024           return PPC::VCMPGTSD;
4025         break;
4026       case ISD::SETUGT:
4027         if (VecVT == MVT::v16i8)
4028           return PPC::VCMPGTUB;
4029         else if (VecVT == MVT::v8i16)
4030           return PPC::VCMPGTUH;
4031         else if (VecVT == MVT::v4i32)
4032           return PPC::VCMPGTUW;
4033         else if (VecVT == MVT::v2i64)
4034           return PPC::VCMPGTUD;
4035         break;
4036       default:
4037         break;
4038     }
4039     llvm_unreachable("Invalid integer vector compare condition");
4040   }
4041 }
4042 
4043 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4044   SDLoc dl(N);
4045   unsigned Imm;
4046   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
4047   EVT PtrVT =
4048       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4049   bool isPPC64 = (PtrVT == MVT::i64);
4050 
4051   if (!PPCSubTarget->useCRBits() &&
4052       isInt32Immediate(N->getOperand(1), Imm)) {
4053     // We can codegen setcc op, imm very efficiently compared to a brcond.
4054     // Check for those cases here.
4055     // setcc op, 0
4056     if (Imm == 0) {
4057       SDValue Op = N->getOperand(0);
4058       switch (CC) {
4059       default: break;
4060       case ISD::SETEQ: {
4061         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4062         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4063                           getI32Imm(31, dl) };
4064         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4065         return true;
4066       }
4067       case ISD::SETNE: {
4068         if (isPPC64) break;
4069         SDValue AD =
4070           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4071                                          Op, getI32Imm(~0U, dl)), 0);
4072         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4073         return true;
4074       }
4075       case ISD::SETLT: {
4076         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4077                           getI32Imm(31, dl) };
4078         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4079         return true;
4080       }
4081       case ISD::SETGT: {
4082         SDValue T =
4083           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4084         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4085         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4086                           getI32Imm(31, dl) };
4087         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4088         return true;
4089       }
4090       }
4091     } else if (Imm == ~0U) {        // setcc op, -1
4092       SDValue Op = N->getOperand(0);
4093       switch (CC) {
4094       default: break;
4095       case ISD::SETEQ:
4096         if (isPPC64) break;
4097         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4098                                             Op, getI32Imm(1, dl)), 0);
4099         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4100                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4101                                                             MVT::i32,
4102                                                             getI32Imm(0, dl)),
4103                                      0), Op.getValue(1));
4104         return true;
4105       case ISD::SETNE: {
4106         if (isPPC64) break;
4107         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4108         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4109                                             Op, getI32Imm(~0U, dl));
4110         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4111                              SDValue(AD, 1));
4112         return true;
4113       }
4114       case ISD::SETLT: {
4115         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4116                                                     getI32Imm(1, dl)), 0);
4117         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4118                                                     Op), 0);
4119         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4120                           getI32Imm(31, dl) };
4121         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4122         return true;
4123       }
4124       case ISD::SETGT: {
4125         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4126                           getI32Imm(31, dl) };
4127         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4128         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4129         return true;
4130       }
4131       }
4132     }
4133   }
4134 
4135   SDValue LHS = N->getOperand(0);
4136   SDValue RHS = N->getOperand(1);
4137 
4138   // Altivec Vector compare instructions do not set any CR register by default and
4139   // vector compare operations return the same type as the operands.
4140   if (LHS.getValueType().isVector()) {
4141     if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE())
4142       return false;
4143 
4144     EVT VecVT = LHS.getValueType();
4145     bool Swap, Negate;
4146     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
4147                                         PPCSubTarget->hasVSX(), Swap, Negate);
4148     if (Swap)
4149       std::swap(LHS, RHS);
4150 
4151     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4152     if (Negate) {
4153       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4154       CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4155                            ResVT, VCmp, VCmp);
4156       return true;
4157     }
4158 
4159     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4160     return true;
4161   }
4162 
4163   if (PPCSubTarget->useCRBits())
4164     return false;
4165 
4166   bool Inv;
4167   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4168   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
4169   SDValue IntCR;
4170 
4171   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4172   // The correct compare instruction is already set by SelectCC()
4173   if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4174     Idx = 1;
4175   }
4176 
4177   // Force the ccreg into CR7.
4178   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4179 
4180   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
4181   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4182                                InFlag).getValue(1);
4183 
4184   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4185                                          CCReg), 0);
4186 
4187   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4188                       getI32Imm(31, dl), getI32Imm(31, dl) };
4189   if (!Inv) {
4190     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4191     return true;
4192   }
4193 
4194   // Get the specified bit.
4195   SDValue Tmp =
4196     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4197   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4198   return true;
4199 }
4200 
4201 /// Does this node represent a load/store node whose address can be represented
4202 /// with a register plus an immediate that's a multiple of \p Val:
4203 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4204   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4205   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4206   SDValue AddrOp;
4207   if (LDN)
4208     AddrOp = LDN->getOperand(1);
4209   else if (STN)
4210     AddrOp = STN->getOperand(2);
4211 
4212   // If the address points a frame object or a frame object with an offset,
4213   // we need to check the object alignment.
4214   short Imm = 0;
4215   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4216           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4217                                            AddrOp)) {
4218     // If op0 is a frame index that is under aligned, we can't do it either,
4219     // because it is translated to r31 or r1 + slot + offset. We won't know the
4220     // slot number until the stack frame is finalized.
4221     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4222     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4223     if ((SlotAlign % Val) != 0)
4224       return false;
4225 
4226     // If we have an offset, we need further check on the offset.
4227     if (AddrOp.getOpcode() != ISD::ADD)
4228       return true;
4229   }
4230 
4231   if (AddrOp.getOpcode() == ISD::ADD)
4232     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4233 
4234   // If the address comes from the outside, the offset will be zero.
4235   return AddrOp.getOpcode() == ISD::CopyFromReg;
4236 }
4237 
4238 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4239   // Transfer memoperands.
4240   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4241   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4242 }
4243 
4244 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4245                          bool &NeedSwapOps, bool &IsUnCmp) {
4246 
4247   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4248 
4249   SDValue LHS = N->getOperand(0);
4250   SDValue RHS = N->getOperand(1);
4251   SDValue TrueRes = N->getOperand(2);
4252   SDValue FalseRes = N->getOperand(3);
4253   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4254   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4255                      N->getSimpleValueType(0) != MVT::i32))
4256     return false;
4257 
4258   // We are looking for any of:
4259   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4260   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4261   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4262   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4263   int64_t TrueResVal = TrueConst->getSExtValue();
4264   if ((TrueResVal < -1 || TrueResVal > 1) ||
4265       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4266       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4267       (TrueResVal == 0 &&
4268        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4269     return false;
4270 
4271   bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC;
4272   SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0);
4273   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4274       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4275     return false;
4276 
4277   // Without this setb optimization, the outer SELECT_CC will be manually
4278   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4279   // transforms pseudo instruction to isel instruction. When there are more than
4280   // one use for result like zext/sext, with current optimization we only see
4281   // isel is replaced by setb but can't see any significant gain. Since
4282   // setb has longer latency than original isel, we should avoid this. Another
4283   // point is that setb requires comparison always kept, it can break the
4284   // opportunity to get the comparison away if we have in future.
4285   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4286     return false;
4287 
4288   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4289   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4290   ISD::CondCode InnerCC =
4291       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4292   // If the inner comparison is a select_cc, make sure the true/false values are
4293   // 1/-1 and canonicalize it if needed.
4294   if (InnerIsSel) {
4295     ConstantSDNode *SelCCTrueConst =
4296         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4297     ConstantSDNode *SelCCFalseConst =
4298         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4299     if (!SelCCTrueConst || !SelCCFalseConst)
4300       return false;
4301     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4302     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4303     // The values must be -1/1 (requiring a swap) or 1/-1.
4304     if (SelCCTVal == -1 && SelCCFVal == 1) {
4305       std::swap(InnerLHS, InnerRHS);
4306     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4307       return false;
4308   }
4309 
4310   // Canonicalize unsigned case
4311   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4312     IsUnCmp = true;
4313     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4314   }
4315 
4316   bool InnerSwapped = false;
4317   if (LHS == InnerRHS && RHS == InnerLHS)
4318     InnerSwapped = true;
4319   else if (LHS != InnerLHS || RHS != InnerRHS)
4320     return false;
4321 
4322   switch (CC) {
4323   // (select_cc lhs, rhs,  0, \
4324   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4325   case ISD::SETEQ:
4326     if (!InnerIsSel)
4327       return false;
4328     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4329       return false;
4330     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4331     break;
4332 
4333   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4334   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4335   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4336   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4337   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4338   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4339   case ISD::SETULT:
4340     if (!IsUnCmp && InnerCC != ISD::SETNE)
4341       return false;
4342     IsUnCmp = true;
4343     LLVM_FALLTHROUGH;
4344   case ISD::SETLT:
4345     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4346         (InnerCC == ISD::SETLT && InnerSwapped))
4347       NeedSwapOps = (TrueResVal == 1);
4348     else
4349       return false;
4350     break;
4351 
4352   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4353   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4354   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4355   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4356   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4357   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4358   case ISD::SETUGT:
4359     if (!IsUnCmp && InnerCC != ISD::SETNE)
4360       return false;
4361     IsUnCmp = true;
4362     LLVM_FALLTHROUGH;
4363   case ISD::SETGT:
4364     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4365         (InnerCC == ISD::SETGT && InnerSwapped))
4366       NeedSwapOps = (TrueResVal == -1);
4367     else
4368       return false;
4369     break;
4370 
4371   default:
4372     return false;
4373   }
4374 
4375   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4376   LLVM_DEBUG(N->dump());
4377 
4378   return true;
4379 }
4380 
4381 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4382   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4383   unsigned Imm;
4384   if (!isInt32Immediate(N->getOperand(1), Imm))
4385     return false;
4386 
4387   SDLoc dl(N);
4388   SDValue Val = N->getOperand(0);
4389   unsigned SH, MB, ME;
4390   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4391   // with a mask, emit rlwinm
4392   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4393     Val = Val.getOperand(0);
4394     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4395                      getI32Imm(ME, dl)};
4396     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4397     return true;
4398   }
4399 
4400   // If this is just a masked value where the input is not handled, and
4401   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4402   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4403     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4404                      getI32Imm(ME, dl)};
4405     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4406     return true;
4407   }
4408 
4409   // AND X, 0 -> 0, not "rlwinm 32".
4410   if (Imm == 0) {
4411     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4412     return true;
4413   }
4414 
4415   return false;
4416 }
4417 
4418 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4419   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4420   uint64_t Imm64;
4421   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4422     return false;
4423 
4424   unsigned MB, ME;
4425   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4426     //                MB  ME
4427     // +----------------------+
4428     // |xxxxxxxxxxx00011111000|
4429     // +----------------------+
4430     //  0         32         64
4431     // We can only do it if the MB is larger than 32 and MB <= ME
4432     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4433     // we didn't rotate it.
4434     SDLoc dl(N);
4435     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4436                      getI64Imm(ME - 32, dl)};
4437     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4438     return true;
4439   }
4440 
4441   return false;
4442 }
4443 
4444 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4445   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4446   uint64_t Imm64;
4447   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4448     return false;
4449 
4450   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
4451   // it well with "andi.".
4452   if (isUInt<16>(Imm64))
4453     return false;
4454 
4455   SDLoc Loc(N);
4456   SDValue Val = N->getOperand(0);
4457 
4458   // Optimized with two rldicl's as follows:
4459   // Add missing bits on left to the mask and check that the mask is a
4460   // wrapped run of ones, i.e.
4461   // Change pattern |0001111100000011111111|
4462   //             to |1111111100000011111111|.
4463   unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
4464   if (NumOfLeadingZeros != 0)
4465     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
4466 
4467   unsigned MB, ME;
4468   if (!isRunOfOnes64(Imm64, MB, ME))
4469     return false;
4470 
4471   //         ME     MB                   MB-ME+63
4472   // +----------------------+     +----------------------+
4473   // |1111111100000011111111| ->  |0000001111111111111111|
4474   // +----------------------+     +----------------------+
4475   //  0                    63      0                    63
4476   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
4477   unsigned OnesOnLeft = ME + 1;
4478   unsigned ZerosInBetween = (MB - ME + 63) & 63;
4479   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
4480   // on the left the bits that are already zeros in the mask.
4481   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
4482                                        getI64Imm(OnesOnLeft, Loc),
4483                                        getI64Imm(ZerosInBetween, Loc)),
4484                 0);
4485   //        MB-ME+63                      ME     MB
4486   // +----------------------+     +----------------------+
4487   // |0000001111111111111111| ->  |0001111100000011111111|
4488   // +----------------------+     +----------------------+
4489   //  0                    63      0                    63
4490   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
4491   // left the number of ones we previously added.
4492   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
4493                    getI64Imm(NumOfLeadingZeros, Loc)};
4494   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4495   return true;
4496 }
4497 
4498 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
4499   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4500   unsigned Imm;
4501   if (!isInt32Immediate(N->getOperand(1), Imm))
4502     return false;
4503 
4504   SDValue Val = N->getOperand(0);
4505   unsigned Imm2;
4506   // ISD::OR doesn't get all the bitfield insertion fun.
4507   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4508   // bitfield insert.
4509   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
4510     return false;
4511 
4512   // The idea here is to check whether this is equivalent to:
4513   //   (c1 & m) | (x & ~m)
4514   // where m is a run-of-ones mask. The logic here is that, for each bit in
4515   // c1 and c2:
4516   //  - if both are 1, then the output will be 1.
4517   //  - if both are 0, then the output will be 0.
4518   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4519   //    come from x.
4520   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4521   //    be 0.
4522   //  If that last condition is never the case, then we can form m from the
4523   //  bits that are the same between c1 and c2.
4524   unsigned MB, ME;
4525   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
4526     SDLoc dl(N);
4527     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
4528                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
4529     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4530     return true;
4531   }
4532 
4533   return false;
4534 }
4535 
4536 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
4537   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4538   uint64_t Imm64;
4539   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
4540     return false;
4541 
4542   // If this is a 64-bit zero-extension mask, emit rldicl.
4543   unsigned MB = 64 - countTrailingOnes(Imm64);
4544   unsigned SH = 0;
4545   unsigned Imm;
4546   SDValue Val = N->getOperand(0);
4547   SDLoc dl(N);
4548 
4549   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4550     auto Op0 = Val.getOperand(0);
4551     if (Op0.getOpcode() == ISD::SRL &&
4552         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4553 
4554       auto ResultType = Val.getNode()->getValueType(0);
4555       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
4556       SDValue IDVal(ImDef, 0);
4557 
4558       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
4559                                            IDVal, Op0.getOperand(0),
4560                                            getI32Imm(1, dl)),
4561                     0);
4562       SH = 64 - Imm;
4563     }
4564   }
4565 
4566   // If the operand is a logical right shift, we can fold it into this
4567   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4568   // for n <= mb. The right shift is really a left rotate followed by a
4569   // mask, and this mask is a more-restrictive sub-mask of the mask implied
4570   // by the shift.
4571   if (Val.getOpcode() == ISD::SRL &&
4572       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4573     assert(Imm < 64 && "Illegal shift amount");
4574     Val = Val.getOperand(0);
4575     SH = 64 - Imm;
4576   }
4577 
4578   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
4579   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4580   return true;
4581 }
4582 
4583 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
4584   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4585   uint64_t Imm64;
4586   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4587       !isMask_64(~Imm64))
4588     return false;
4589 
4590   // If this is a negated 64-bit zero-extension mask,
4591   // i.e. the immediate is a sequence of ones from most significant side
4592   // and all zero for reminder, we should use rldicr.
4593   unsigned MB = 63 - countTrailingOnes(~Imm64);
4594   unsigned SH = 0;
4595   SDLoc dl(N);
4596   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
4597   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4598   return true;
4599 }
4600 
4601 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
4602   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
4603   uint64_t Imm64;
4604   unsigned MB, ME;
4605   SDValue N0 = N->getOperand(0);
4606 
4607   // We won't get fewer instructions if the imm is 32-bit integer.
4608   // rldimi requires the imm to have consecutive ones with both sides zero.
4609   // Also, make sure the first Op has only one use, otherwise this may increase
4610   // register pressure since rldimi is destructive.
4611   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4612       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
4613     return false;
4614 
4615   unsigned SH = 63 - ME;
4616   SDLoc Dl(N);
4617   // Use select64Imm for making LI instr instead of directly putting Imm64
4618   SDValue Ops[] = {
4619       N->getOperand(0),
4620       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
4621       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
4622   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
4623   return true;
4624 }
4625 
4626 // Select - Convert the specified operand from a target-independent to a
4627 // target-specific node if it hasn't already been changed.
4628 void PPCDAGToDAGISel::Select(SDNode *N) {
4629   SDLoc dl(N);
4630   if (N->isMachineOpcode()) {
4631     N->setNodeId(-1);
4632     return;   // Already selected.
4633   }
4634 
4635   // In case any misguided DAG-level optimizations form an ADD with a
4636   // TargetConstant operand, crash here instead of miscompiling (by selecting
4637   // an r+r add instead of some kind of r+i add).
4638   if (N->getOpcode() == ISD::ADD &&
4639       N->getOperand(1).getOpcode() == ISD::TargetConstant)
4640     llvm_unreachable("Invalid ADD with TargetConstant operand");
4641 
4642   // Try matching complex bit permutations before doing anything else.
4643   if (tryBitPermutation(N))
4644     return;
4645 
4646   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4647   if (tryIntCompareInGPR(N))
4648     return;
4649 
4650   switch (N->getOpcode()) {
4651   default: break;
4652 
4653   case ISD::Constant:
4654     if (N->getValueType(0) == MVT::i64) {
4655       ReplaceNode(N, selectI64Imm(CurDAG, N));
4656       return;
4657     }
4658     break;
4659 
4660   case ISD::SETCC:
4661     if (trySETCC(N))
4662       return;
4663     break;
4664   // These nodes will be transformed into GETtlsADDR32 node, which
4665   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
4666   case PPCISD::ADDI_TLSLD_L_ADDR:
4667   case PPCISD::ADDI_TLSGD_L_ADDR: {
4668     const Module *Mod = MF->getFunction().getParent();
4669     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4670         !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() ||
4671         Mod->getPICLevel() == PICLevel::SmallPIC)
4672       break;
4673     // Attach global base pointer on GETtlsADDR32 node in order to
4674     // generate secure plt code for TLS symbols.
4675     getGlobalBaseReg();
4676   } break;
4677   case PPCISD::CALL: {
4678     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4679         !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() ||
4680         !PPCSubTarget->isTargetELF())
4681       break;
4682 
4683     SDValue Op = N->getOperand(1);
4684 
4685     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4686       if (GA->getTargetFlags() == PPCII::MO_PLT)
4687         getGlobalBaseReg();
4688     }
4689     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
4690       if (ES->getTargetFlags() == PPCII::MO_PLT)
4691         getGlobalBaseReg();
4692     }
4693   }
4694     break;
4695 
4696   case PPCISD::GlobalBaseReg:
4697     ReplaceNode(N, getGlobalBaseReg());
4698     return;
4699 
4700   case ISD::FrameIndex:
4701     selectFrameIndex(N, N);
4702     return;
4703 
4704   case PPCISD::MFOCRF: {
4705     SDValue InFlag = N->getOperand(1);
4706     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
4707                                           N->getOperand(0), InFlag));
4708     return;
4709   }
4710 
4711   case PPCISD::READ_TIME_BASE:
4712     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
4713                                           MVT::Other, N->getOperand(0)));
4714     return;
4715 
4716   case PPCISD::SRA_ADDZE: {
4717     SDValue N0 = N->getOperand(0);
4718     SDValue ShiftAmt =
4719       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
4720                                   getConstantIntValue(), dl,
4721                                   N->getValueType(0));
4722     if (N->getValueType(0) == MVT::i64) {
4723       SDNode *Op =
4724         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
4725                                N0, ShiftAmt);
4726       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
4727                            SDValue(Op, 1));
4728       return;
4729     } else {
4730       assert(N->getValueType(0) == MVT::i32 &&
4731              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
4732       SDNode *Op =
4733         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
4734                                N0, ShiftAmt);
4735       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
4736                            SDValue(Op, 1));
4737       return;
4738     }
4739   }
4740 
4741   case ISD::STORE: {
4742     // Change TLS initial-exec D-form stores to X-form stores.
4743     StoreSDNode *ST = cast<StoreSDNode>(N);
4744     if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
4745         ST->getAddressingMode() != ISD::PRE_INC)
4746       if (tryTLSXFormStore(ST))
4747         return;
4748     break;
4749   }
4750   case ISD::LOAD: {
4751     // Handle preincrement loads.
4752     LoadSDNode *LD = cast<LoadSDNode>(N);
4753     EVT LoadedVT = LD->getMemoryVT();
4754 
4755     // Normal loads are handled by code generated from the .td file.
4756     if (LD->getAddressingMode() != ISD::PRE_INC) {
4757       // Change TLS initial-exec D-form loads to X-form loads.
4758       if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
4759         if (tryTLSXFormLoad(LD))
4760           return;
4761       break;
4762     }
4763 
4764     SDValue Offset = LD->getOffset();
4765     if (Offset.getOpcode() == ISD::TargetConstant ||
4766         Offset.getOpcode() == ISD::TargetGlobalAddress) {
4767 
4768       unsigned Opcode;
4769       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4770       if (LD->getValueType(0) != MVT::i64) {
4771         // Handle PPC32 integer and normal FP loads.
4772         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4773         switch (LoadedVT.getSimpleVT().SimpleTy) {
4774           default: llvm_unreachable("Invalid PPC load type!");
4775           case MVT::f64: Opcode = PPC::LFDU; break;
4776           case MVT::f32: Opcode = PPC::LFSU; break;
4777           case MVT::i32: Opcode = PPC::LWZU; break;
4778           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
4779           case MVT::i1:
4780           case MVT::i8:  Opcode = PPC::LBZU; break;
4781         }
4782       } else {
4783         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4784         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4785         switch (LoadedVT.getSimpleVT().SimpleTy) {
4786           default: llvm_unreachable("Invalid PPC load type!");
4787           case MVT::i64: Opcode = PPC::LDU; break;
4788           case MVT::i32: Opcode = PPC::LWZU8; break;
4789           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
4790           case MVT::i1:
4791           case MVT::i8:  Opcode = PPC::LBZU8; break;
4792         }
4793       }
4794 
4795       SDValue Chain = LD->getChain();
4796       SDValue Base = LD->getBasePtr();
4797       SDValue Ops[] = { Offset, Base, Chain };
4798       SDNode *MN = CurDAG->getMachineNode(
4799           Opcode, dl, LD->getValueType(0),
4800           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4801       transferMemOperands(N, MN);
4802       ReplaceNode(N, MN);
4803       return;
4804     } else {
4805       unsigned Opcode;
4806       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4807       if (LD->getValueType(0) != MVT::i64) {
4808         // Handle PPC32 integer and normal FP loads.
4809         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4810         switch (LoadedVT.getSimpleVT().SimpleTy) {
4811           default: llvm_unreachable("Invalid PPC load type!");
4812           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
4813           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
4814           case MVT::f64: Opcode = PPC::LFDUX; break;
4815           case MVT::f32: Opcode = PPC::LFSUX; break;
4816           case MVT::i32: Opcode = PPC::LWZUX; break;
4817           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
4818           case MVT::i1:
4819           case MVT::i8:  Opcode = PPC::LBZUX; break;
4820         }
4821       } else {
4822         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4823         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
4824                "Invalid sext update load");
4825         switch (LoadedVT.getSimpleVT().SimpleTy) {
4826           default: llvm_unreachable("Invalid PPC load type!");
4827           case MVT::i64: Opcode = PPC::LDUX; break;
4828           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
4829           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
4830           case MVT::i1:
4831           case MVT::i8:  Opcode = PPC::LBZUX8; break;
4832         }
4833       }
4834 
4835       SDValue Chain = LD->getChain();
4836       SDValue Base = LD->getBasePtr();
4837       SDValue Ops[] = { Base, Offset, Chain };
4838       SDNode *MN = CurDAG->getMachineNode(
4839           Opcode, dl, LD->getValueType(0),
4840           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4841       transferMemOperands(N, MN);
4842       ReplaceNode(N, MN);
4843       return;
4844     }
4845   }
4846 
4847   case ISD::AND:
4848     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
4849     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
4850         tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
4851       return;
4852 
4853     // Other cases are autogenerated.
4854     break;
4855   case ISD::OR: {
4856     if (N->getValueType(0) == MVT::i32)
4857       if (tryBitfieldInsert(N))
4858         return;
4859 
4860     int16_t Imm;
4861     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4862         isIntS16Immediate(N->getOperand(1), Imm)) {
4863       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
4864 
4865       // If this is equivalent to an add, then we can fold it with the
4866       // FrameIndex calculation.
4867       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
4868         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4869         return;
4870       }
4871     }
4872 
4873     // If this is 'or' against an imm with consecutive ones and both sides zero,
4874     // try to emit rldimi
4875     if (tryAsSingleRLDIMI(N))
4876       return;
4877 
4878     // OR with a 32-bit immediate can be handled by ori + oris
4879     // without creating an immediate in a GPR.
4880     uint64_t Imm64 = 0;
4881     bool IsPPC64 = PPCSubTarget->isPPC64();
4882     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4883         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4884       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
4885       uint64_t ImmHi = Imm64 >> 16;
4886       uint64_t ImmLo = Imm64 & 0xFFFF;
4887       if (ImmHi != 0 && ImmLo != 0) {
4888         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
4889                                             N->getOperand(0),
4890                                             getI16Imm(ImmLo, dl));
4891         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4892         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
4893         return;
4894       }
4895     }
4896 
4897     // Other cases are autogenerated.
4898     break;
4899   }
4900   case ISD::XOR: {
4901     // XOR with a 32-bit immediate can be handled by xori + xoris
4902     // without creating an immediate in a GPR.
4903     uint64_t Imm64 = 0;
4904     bool IsPPC64 = PPCSubTarget->isPPC64();
4905     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4906         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4907       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
4908       uint64_t ImmHi = Imm64 >> 16;
4909       uint64_t ImmLo = Imm64 & 0xFFFF;
4910       if (ImmHi != 0 && ImmLo != 0) {
4911         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
4912                                             N->getOperand(0),
4913                                             getI16Imm(ImmLo, dl));
4914         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4915         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
4916         return;
4917       }
4918     }
4919 
4920     break;
4921   }
4922   case ISD::ADD: {
4923     int16_t Imm;
4924     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4925         isIntS16Immediate(N->getOperand(1), Imm)) {
4926       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4927       return;
4928     }
4929 
4930     break;
4931   }
4932   case ISD::SHL: {
4933     unsigned Imm, SH, MB, ME;
4934     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4935         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4936       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4937                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4938                           getI32Imm(ME, dl) };
4939       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4940       return;
4941     }
4942 
4943     // Other cases are autogenerated.
4944     break;
4945   }
4946   case ISD::SRL: {
4947     unsigned Imm, SH, MB, ME;
4948     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4949         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4950       SDValue Ops[] = { N->getOperand(0).getOperand(0),
4951                           getI32Imm(SH, dl), getI32Imm(MB, dl),
4952                           getI32Imm(ME, dl) };
4953       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4954       return;
4955     }
4956 
4957     // Other cases are autogenerated.
4958     break;
4959   }
4960   // FIXME: Remove this once the ANDI glue bug is fixed:
4961   case PPCISD::ANDI_rec_1_EQ_BIT:
4962   case PPCISD::ANDI_rec_1_GT_BIT: {
4963     if (!ANDIGlueBug)
4964       break;
4965 
4966     EVT InVT = N->getOperand(0).getValueType();
4967     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
4968            "Invalid input type for ANDI_rec_1_EQ_BIT");
4969 
4970     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
4971     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
4972                                         N->getOperand(0),
4973                                         CurDAG->getTargetConstant(1, dl, InVT)),
4974                  0);
4975     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
4976     SDValue SRIdxVal = CurDAG->getTargetConstant(
4977         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
4978         dl, MVT::i32);
4979 
4980     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
4981                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
4982     return;
4983   }
4984   case ISD::SELECT_CC: {
4985     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4986     EVT PtrVT =
4987         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4988     bool isPPC64 = (PtrVT == MVT::i64);
4989 
4990     // If this is a select of i1 operands, we'll pattern match it.
4991     if (PPCSubTarget->useCRBits() &&
4992         N->getOperand(0).getValueType() == MVT::i1)
4993       break;
4994 
4995     if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) {
4996       bool NeedSwapOps = false;
4997       bool IsUnCmp = false;
4998       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
4999         SDValue LHS = N->getOperand(0);
5000         SDValue RHS = N->getOperand(1);
5001         if (NeedSwapOps)
5002           std::swap(LHS, RHS);
5003 
5004         // Make use of SelectCC to generate the comparison to set CR bits, for
5005         // equality comparisons having one literal operand, SelectCC probably
5006         // doesn't need to materialize the whole literal and just use xoris to
5007         // check it first, it leads the following comparison result can't
5008         // exactly represent GT/LT relationship. So to avoid this we specify
5009         // SETGT/SETUGT here instead of SETEQ.
5010         SDValue GenCC =
5011             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5012         CurDAG->SelectNodeTo(
5013             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5014             N->getValueType(0), GenCC);
5015         NumP9Setb++;
5016         return;
5017       }
5018     }
5019 
5020     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5021     if (!isPPC64)
5022       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
5023         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
5024           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
5025             if (N1C->isNullValue() && N3C->isNullValue() &&
5026                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
5027                 // FIXME: Implement this optzn for PPC64.
5028                 N->getValueType(0) == MVT::i32) {
5029               SDNode *Tmp =
5030                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5031                                        N->getOperand(0), getI32Imm(~0U, dl));
5032               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5033                                    N->getOperand(0), SDValue(Tmp, 1));
5034               return;
5035             }
5036 
5037     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5038 
5039     if (N->getValueType(0) == MVT::i1) {
5040       // An i1 select is: (c & t) | (!c & f).
5041       bool Inv;
5042       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5043 
5044       unsigned SRI;
5045       switch (Idx) {
5046       default: llvm_unreachable("Invalid CC index");
5047       case 0: SRI = PPC::sub_lt; break;
5048       case 1: SRI = PPC::sub_gt; break;
5049       case 2: SRI = PPC::sub_eq; break;
5050       case 3: SRI = PPC::sub_un; break;
5051       }
5052 
5053       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5054 
5055       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5056                                               CCBit, CCBit), 0);
5057       SDValue C =    Inv ? NotCCBit : CCBit,
5058               NotC = Inv ? CCBit    : NotCCBit;
5059 
5060       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5061                                            C, N->getOperand(2)), 0);
5062       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5063                                               NotC, N->getOperand(3)), 0);
5064 
5065       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5066       return;
5067     }
5068 
5069     unsigned BROpc =
5070         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), PPCSubTarget);
5071 
5072     unsigned SelectCCOp;
5073     if (N->getValueType(0) == MVT::i32)
5074       SelectCCOp = PPC::SELECT_CC_I4;
5075     else if (N->getValueType(0) == MVT::i64)
5076       SelectCCOp = PPC::SELECT_CC_I8;
5077     else if (N->getValueType(0) == MVT::f32) {
5078       if (PPCSubTarget->hasP8Vector())
5079         SelectCCOp = PPC::SELECT_CC_VSSRC;
5080       else if (PPCSubTarget->hasSPE())
5081         SelectCCOp = PPC::SELECT_CC_SPE4;
5082       else
5083         SelectCCOp = PPC::SELECT_CC_F4;
5084     } else if (N->getValueType(0) == MVT::f64) {
5085       if (PPCSubTarget->hasVSX())
5086         SelectCCOp = PPC::SELECT_CC_VSFRC;
5087       else if (PPCSubTarget->hasSPE())
5088         SelectCCOp = PPC::SELECT_CC_SPE;
5089       else
5090         SelectCCOp = PPC::SELECT_CC_F8;
5091     } else if (N->getValueType(0) == MVT::f128)
5092       SelectCCOp = PPC::SELECT_CC_F16;
5093     else if (PPCSubTarget->hasSPE())
5094       SelectCCOp = PPC::SELECT_CC_SPE;
5095     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
5096       SelectCCOp = PPC::SELECT_CC_QFRC;
5097     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
5098       SelectCCOp = PPC::SELECT_CC_QSRC;
5099     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
5100       SelectCCOp = PPC::SELECT_CC_QBRC;
5101     else if (N->getValueType(0) == MVT::v2f64 ||
5102              N->getValueType(0) == MVT::v2i64)
5103       SelectCCOp = PPC::SELECT_CC_VSRC;
5104     else
5105       SelectCCOp = PPC::SELECT_CC_VRRC;
5106 
5107     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5108                         getI32Imm(BROpc, dl) };
5109     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5110     return;
5111   }
5112   case ISD::VECTOR_SHUFFLE:
5113     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5114                                   N->getValueType(0) == MVT::v2i64)) {
5115       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5116 
5117       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5118               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5119       unsigned DM[2];
5120 
5121       for (int i = 0; i < 2; ++i)
5122         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5123           DM[i] = 0;
5124         else
5125           DM[i] = 1;
5126 
5127       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5128           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5129           isa<LoadSDNode>(Op1.getOperand(0))) {
5130         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5131         SDValue Base, Offset;
5132 
5133         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5134             (LD->getMemoryVT() == MVT::f64 ||
5135              LD->getMemoryVT() == MVT::i64) &&
5136             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5137           SDValue Chain = LD->getChain();
5138           SDValue Ops[] = { Base, Offset, Chain };
5139           MachineMemOperand *MemOp = LD->getMemOperand();
5140           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5141                                               N->getValueType(0), Ops);
5142           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5143           return;
5144         }
5145       }
5146 
5147       // For little endian, we must swap the input operands and adjust
5148       // the mask elements (reverse and invert them).
5149       if (PPCSubTarget->isLittleEndian()) {
5150         std::swap(Op1, Op2);
5151         unsigned tmp = DM[0];
5152         DM[0] = 1 - DM[1];
5153         DM[1] = 1 - tmp;
5154       }
5155 
5156       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5157                                               MVT::i32);
5158       SDValue Ops[] = { Op1, Op2, DMV };
5159       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5160       return;
5161     }
5162 
5163     break;
5164   case PPCISD::BDNZ:
5165   case PPCISD::BDZ: {
5166     bool IsPPC64 = PPCSubTarget->isPPC64();
5167     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5168     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5169                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5170                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5171                          MVT::Other, Ops);
5172     return;
5173   }
5174   case PPCISD::COND_BRANCH: {
5175     // Op #0 is the Chain.
5176     // Op #1 is the PPC::PRED_* number.
5177     // Op #2 is the CR#
5178     // Op #3 is the Dest MBB
5179     // Op #4 is the Flag.
5180     // Prevent PPC::PRED_* from being selected into LI.
5181     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5182     if (EnableBranchHint)
5183       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5184 
5185     SDValue Pred = getI32Imm(PCC, dl);
5186     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5187       N->getOperand(0), N->getOperand(4) };
5188     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5189     return;
5190   }
5191   case ISD::BR_CC: {
5192     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5193     unsigned PCC =
5194         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), PPCSubTarget);
5195 
5196     if (N->getOperand(2).getValueType() == MVT::i1) {
5197       unsigned Opc;
5198       bool Swap;
5199       switch (PCC) {
5200       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5201       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5202       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5203       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5204       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5205       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5206       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
5207       }
5208 
5209       // A signed comparison of i1 values produces the opposite result to an
5210       // unsigned one if the condition code includes less-than or greater-than.
5211       // This is because 1 is the most negative signed i1 number and the most
5212       // positive unsigned i1 number. The CR-logical operations used for such
5213       // comparisons are non-commutative so for signed comparisons vs. unsigned
5214       // ones, the input operands just need to be swapped.
5215       if (ISD::isSignedIntSetCC(CC))
5216         Swap = !Swap;
5217 
5218       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5219                                              N->getOperand(Swap ? 3 : 2),
5220                                              N->getOperand(Swap ? 2 : 3)), 0);
5221       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5222                            N->getOperand(0));
5223       return;
5224     }
5225 
5226     if (EnableBranchHint)
5227       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
5228 
5229     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5230     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5231                         N->getOperand(4), N->getOperand(0) };
5232     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5233     return;
5234   }
5235   case ISD::BRIND: {
5236     // FIXME: Should custom lower this.
5237     SDValue Chain = N->getOperand(0);
5238     SDValue Target = N->getOperand(1);
5239     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5240     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5241     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5242                                            Chain), 0);
5243     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5244     return;
5245   }
5246   case PPCISD::TOC_ENTRY: {
5247     const bool isPPC64 = PPCSubTarget->isPPC64();
5248     const bool isELFABI = PPCSubTarget->isSVR4ABI();
5249     const bool isAIXABI = PPCSubTarget->isAIXABI();
5250 
5251     // PowerPC only support small, medium and large code model.
5252     const CodeModel::Model CModel = TM.getCodeModel();
5253     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
5254            "PowerPC doesn't support tiny or kernel code models.");
5255 
5256     if (isAIXABI && CModel == CodeModel::Medium)
5257       report_fatal_error("Medium code model is not supported on AIX.");
5258 
5259     // For 64-bit small code model, we allow SelectCodeCommon to handle this,
5260     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
5261     if (isPPC64 && CModel == CodeModel::Small)
5262       break;
5263 
5264     // Handle 32-bit small code model.
5265     if (!isPPC64) {
5266       // Transforms the ISD::TOC_ENTRY node to a PPCISD::LWZtoc.
5267       auto replaceWithLWZtoc = [this, &dl](SDNode *TocEntry) {
5268         SDValue GA = TocEntry->getOperand(0);
5269         SDValue TocBase = TocEntry->getOperand(1);
5270         SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
5271                                             TocBase);
5272         transferMemOperands(TocEntry, MN);
5273         ReplaceNode(TocEntry, MN);
5274       };
5275 
5276       if (isELFABI) {
5277         assert(TM.isPositionIndependent() &&
5278                "32-bit ELF can only have TOC entries in position independent"
5279                " code.");
5280         // 32-bit ELF always uses a small code model toc access.
5281         replaceWithLWZtoc(N);
5282         return;
5283       }
5284 
5285       if (isAIXABI && CModel == CodeModel::Small) {
5286         replaceWithLWZtoc(N);
5287         return;
5288       }
5289     }
5290 
5291     assert(CModel != CodeModel::Small && "All small code models handled.");
5292 
5293     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
5294            " ELF/AIX or 32-bit AIX in the following.");
5295 
5296     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
5297     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
5298     // generate two instructions as described below. The first source operand
5299     // is a symbol reference. If it must be toc-referenced according to
5300     // PPCSubTarget, we generate:
5301     // [32-bit AIX]
5302     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
5303     // [64-bit ELF/AIX]
5304     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
5305     // Otherwise we generate:
5306     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
5307     SDValue GA = N->getOperand(0);
5308     SDValue TOCbase = N->getOperand(1);
5309 
5310     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5311     SDNode *Tmp = CurDAG->getMachineNode(
5312         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
5313 
5314     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5315       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
5316       // the address.
5317       SDNode *MN = CurDAG->getMachineNode(
5318           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
5319 
5320       transferMemOperands(N, MN);
5321       ReplaceNode(N, MN);
5322       return;
5323     }
5324 
5325     // Build the address relative to the TOC-pointer.
5326     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
5327                                           SDValue(Tmp, 0), GA));
5328     return;
5329   }
5330   case PPCISD::PPC32_PICGOT:
5331     // Generate a PIC-safe GOT reference.
5332     assert(PPCSubTarget->is32BitELFABI() &&
5333            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
5334     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
5335                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
5336                          MVT::i32);
5337     return;
5338 
5339   case PPCISD::VADD_SPLAT: {
5340     // This expands into one of three sequences, depending on whether
5341     // the first operand is odd or even, positive or negative.
5342     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
5343            isa<ConstantSDNode>(N->getOperand(1)) &&
5344            "Invalid operand on VADD_SPLAT!");
5345 
5346     int Elt     = N->getConstantOperandVal(0);
5347     int EltSize = N->getConstantOperandVal(1);
5348     unsigned Opc1, Opc2, Opc3;
5349     EVT VT;
5350 
5351     if (EltSize == 1) {
5352       Opc1 = PPC::VSPLTISB;
5353       Opc2 = PPC::VADDUBM;
5354       Opc3 = PPC::VSUBUBM;
5355       VT = MVT::v16i8;
5356     } else if (EltSize == 2) {
5357       Opc1 = PPC::VSPLTISH;
5358       Opc2 = PPC::VADDUHM;
5359       Opc3 = PPC::VSUBUHM;
5360       VT = MVT::v8i16;
5361     } else {
5362       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
5363       Opc1 = PPC::VSPLTISW;
5364       Opc2 = PPC::VADDUWM;
5365       Opc3 = PPC::VSUBUWM;
5366       VT = MVT::v4i32;
5367     }
5368 
5369     if ((Elt & 1) == 0) {
5370       // Elt is even, in the range [-32,-18] + [16,30].
5371       //
5372       // Convert: VADD_SPLAT elt, size
5373       // Into:    tmp = VSPLTIS[BHW] elt
5374       //          VADDU[BHW]M tmp, tmp
5375       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
5376       SDValue EltVal = getI32Imm(Elt >> 1, dl);
5377       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5378       SDValue TmpVal = SDValue(Tmp, 0);
5379       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
5380       return;
5381     } else if (Elt > 0) {
5382       // Elt is odd and positive, in the range [17,31].
5383       //
5384       // Convert: VADD_SPLAT elt, size
5385       // Into:    tmp1 = VSPLTIS[BHW] elt-16
5386       //          tmp2 = VSPLTIS[BHW] -16
5387       //          VSUBU[BHW]M tmp1, tmp2
5388       SDValue EltVal = getI32Imm(Elt - 16, dl);
5389       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5390       EltVal = getI32Imm(-16, dl);
5391       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5392       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
5393                                             SDValue(Tmp2, 0)));
5394       return;
5395     } else {
5396       // Elt is odd and negative, in the range [-31,-17].
5397       //
5398       // Convert: VADD_SPLAT elt, size
5399       // Into:    tmp1 = VSPLTIS[BHW] elt+16
5400       //          tmp2 = VSPLTIS[BHW] -16
5401       //          VADDU[BHW]M tmp1, tmp2
5402       SDValue EltVal = getI32Imm(Elt + 16, dl);
5403       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5404       EltVal = getI32Imm(-16, dl);
5405       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5406       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
5407                                             SDValue(Tmp2, 0)));
5408       return;
5409     }
5410   }
5411   }
5412 
5413   SelectCode(N);
5414 }
5415 
5416 // If the target supports the cmpb instruction, do the idiom recognition here.
5417 // We don't do this as a DAG combine because we don't want to do it as nodes
5418 // are being combined (because we might miss part of the eventual idiom). We
5419 // don't want to do it during instruction selection because we want to reuse
5420 // the logic for lowering the masking operations already part of the
5421 // instruction selector.
5422 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
5423   SDLoc dl(N);
5424 
5425   assert(N->getOpcode() == ISD::OR &&
5426          "Only OR nodes are supported for CMPB");
5427 
5428   SDValue Res;
5429   if (!PPCSubTarget->hasCMPB())
5430     return Res;
5431 
5432   if (N->getValueType(0) != MVT::i32 &&
5433       N->getValueType(0) != MVT::i64)
5434     return Res;
5435 
5436   EVT VT = N->getValueType(0);
5437 
5438   SDValue RHS, LHS;
5439   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
5440   uint64_t Mask = 0, Alt = 0;
5441 
5442   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
5443                                uint64_t &Mask, uint64_t &Alt,
5444                                SDValue &LHS, SDValue &RHS) {
5445     if (O.getOpcode() != ISD::SELECT_CC)
5446       return false;
5447     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
5448 
5449     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
5450         !isa<ConstantSDNode>(O.getOperand(3)))
5451       return false;
5452 
5453     uint64_t PM = O.getConstantOperandVal(2);
5454     uint64_t PAlt = O.getConstantOperandVal(3);
5455     for (b = 0; b < 8; ++b) {
5456       uint64_t Mask = UINT64_C(0xFF) << (8*b);
5457       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
5458         break;
5459     }
5460 
5461     if (b == 8)
5462       return false;
5463     Mask |= PM;
5464     Alt  |= PAlt;
5465 
5466     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
5467         O.getConstantOperandVal(1) != 0) {
5468       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
5469       if (Op0.getOpcode() == ISD::TRUNCATE)
5470         Op0 = Op0.getOperand(0);
5471       if (Op1.getOpcode() == ISD::TRUNCATE)
5472         Op1 = Op1.getOperand(0);
5473 
5474       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
5475           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
5476           isa<ConstantSDNode>(Op0.getOperand(1))) {
5477 
5478         unsigned Bits = Op0.getValueSizeInBits();
5479         if (b != Bits/8-1)
5480           return false;
5481         if (Op0.getConstantOperandVal(1) != Bits-8)
5482           return false;
5483 
5484         LHS = Op0.getOperand(0);
5485         RHS = Op1.getOperand(0);
5486         return true;
5487       }
5488 
5489       // When we have small integers (i16 to be specific), the form present
5490       // post-legalization uses SETULT in the SELECT_CC for the
5491       // higher-order byte, depending on the fact that the
5492       // even-higher-order bytes are known to all be zero, for example:
5493       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
5494       // (so when the second byte is the same, because all higher-order
5495       // bits from bytes 3 and 4 are known to be zero, the result of the
5496       // xor can be at most 255)
5497       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
5498           isa<ConstantSDNode>(O.getOperand(1))) {
5499 
5500         uint64_t ULim = O.getConstantOperandVal(1);
5501         if (ULim != (UINT64_C(1) << b*8))
5502           return false;
5503 
5504         // Now we need to make sure that the upper bytes are known to be
5505         // zero.
5506         unsigned Bits = Op0.getValueSizeInBits();
5507         if (!CurDAG->MaskedValueIsZero(
5508                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
5509           return false;
5510 
5511         LHS = Op0.getOperand(0);
5512         RHS = Op0.getOperand(1);
5513         return true;
5514       }
5515 
5516       return false;
5517     }
5518 
5519     if (CC != ISD::SETEQ)
5520       return false;
5521 
5522     SDValue Op = O.getOperand(0);
5523     if (Op.getOpcode() == ISD::AND) {
5524       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5525         return false;
5526       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
5527         return false;
5528 
5529       SDValue XOR = Op.getOperand(0);
5530       if (XOR.getOpcode() == ISD::TRUNCATE)
5531         XOR = XOR.getOperand(0);
5532       if (XOR.getOpcode() != ISD::XOR)
5533         return false;
5534 
5535       LHS = XOR.getOperand(0);
5536       RHS = XOR.getOperand(1);
5537       return true;
5538     } else if (Op.getOpcode() == ISD::SRL) {
5539       if (!isa<ConstantSDNode>(Op.getOperand(1)))
5540         return false;
5541       unsigned Bits = Op.getValueSizeInBits();
5542       if (b != Bits/8-1)
5543         return false;
5544       if (Op.getConstantOperandVal(1) != Bits-8)
5545         return false;
5546 
5547       SDValue XOR = Op.getOperand(0);
5548       if (XOR.getOpcode() == ISD::TRUNCATE)
5549         XOR = XOR.getOperand(0);
5550       if (XOR.getOpcode() != ISD::XOR)
5551         return false;
5552 
5553       LHS = XOR.getOperand(0);
5554       RHS = XOR.getOperand(1);
5555       return true;
5556     }
5557 
5558     return false;
5559   };
5560 
5561   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
5562   while (!Queue.empty()) {
5563     SDValue V = Queue.pop_back_val();
5564 
5565     for (const SDValue &O : V.getNode()->ops()) {
5566       unsigned b = 0;
5567       uint64_t M = 0, A = 0;
5568       SDValue OLHS, ORHS;
5569       if (O.getOpcode() == ISD::OR) {
5570         Queue.push_back(O);
5571       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
5572         if (!LHS) {
5573           LHS = OLHS;
5574           RHS = ORHS;
5575           BytesFound[b] = true;
5576           Mask |= M;
5577           Alt  |= A;
5578         } else if ((LHS == ORHS && RHS == OLHS) ||
5579                    (RHS == ORHS && LHS == OLHS)) {
5580           BytesFound[b] = true;
5581           Mask |= M;
5582           Alt  |= A;
5583         } else {
5584           return Res;
5585         }
5586       } else {
5587         return Res;
5588       }
5589     }
5590   }
5591 
5592   unsigned LastB = 0, BCnt = 0;
5593   for (unsigned i = 0; i < 8; ++i)
5594     if (BytesFound[LastB]) {
5595       ++BCnt;
5596       LastB = i;
5597     }
5598 
5599   if (!LastB || BCnt < 2)
5600     return Res;
5601 
5602   // Because we'll be zero-extending the output anyway if don't have a specific
5603   // value for each input byte (via the Mask), we can 'anyext' the inputs.
5604   if (LHS.getValueType() != VT) {
5605     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
5606     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
5607   }
5608 
5609   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
5610 
5611   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
5612   if (NonTrivialMask && !Alt) {
5613     // Res = Mask & CMPB
5614     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5615                           CurDAG->getConstant(Mask, dl, VT));
5616   } else if (Alt) {
5617     // Res = (CMPB & Mask) | (~CMPB & Alt)
5618     // Which, as suggested here:
5619     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
5620     // can be written as:
5621     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
5622     // useful because the (Alt ^ Mask) can be pre-computed.
5623     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5624                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
5625     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
5626                           CurDAG->getConstant(Alt, dl, VT));
5627   }
5628 
5629   return Res;
5630 }
5631 
5632 // When CR bit registers are enabled, an extension of an i1 variable to a i32
5633 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
5634 // involves constant materialization of a 0 or a 1 or both. If the result of
5635 // the extension is then operated upon by some operator that can be constant
5636 // folded with a constant 0 or 1, and that constant can be materialized using
5637 // only one instruction (like a zero or one), then we should fold in those
5638 // operations with the select.
5639 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
5640   if (!PPCSubTarget->useCRBits())
5641     return;
5642 
5643   if (N->getOpcode() != ISD::ZERO_EXTEND &&
5644       N->getOpcode() != ISD::SIGN_EXTEND &&
5645       N->getOpcode() != ISD::ANY_EXTEND)
5646     return;
5647 
5648   if (N->getOperand(0).getValueType() != MVT::i1)
5649     return;
5650 
5651   if (!N->hasOneUse())
5652     return;
5653 
5654   SDLoc dl(N);
5655   EVT VT = N->getValueType(0);
5656   SDValue Cond = N->getOperand(0);
5657   SDValue ConstTrue =
5658     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
5659   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
5660 
5661   do {
5662     SDNode *User = *N->use_begin();
5663     if (User->getNumOperands() != 2)
5664       break;
5665 
5666     auto TryFold = [this, N, User, dl](SDValue Val) {
5667       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
5668       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
5669       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
5670 
5671       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
5672                                             User->getValueType(0), {O0, O1});
5673     };
5674 
5675     // FIXME: When the semantics of the interaction between select and undef
5676     // are clearly defined, it may turn out to be unnecessary to break here.
5677     SDValue TrueRes = TryFold(ConstTrue);
5678     if (!TrueRes || TrueRes.isUndef())
5679       break;
5680     SDValue FalseRes = TryFold(ConstFalse);
5681     if (!FalseRes || FalseRes.isUndef())
5682       break;
5683 
5684     // For us to materialize these using one instruction, we must be able to
5685     // represent them as signed 16-bit integers.
5686     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
5687              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
5688     if (!isInt<16>(True) || !isInt<16>(False))
5689       break;
5690 
5691     // We can replace User with a new SELECT node, and try again to see if we
5692     // can fold the select with its user.
5693     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
5694     N = User;
5695     ConstTrue = TrueRes;
5696     ConstFalse = FalseRes;
5697   } while (N->hasOneUse());
5698 }
5699 
5700 void PPCDAGToDAGISel::PreprocessISelDAG() {
5701   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
5702 
5703   bool MadeChange = false;
5704   while (Position != CurDAG->allnodes_begin()) {
5705     SDNode *N = &*--Position;
5706     if (N->use_empty())
5707       continue;
5708 
5709     SDValue Res;
5710     switch (N->getOpcode()) {
5711     default: break;
5712     case ISD::OR:
5713       Res = combineToCMPB(N);
5714       break;
5715     }
5716 
5717     if (!Res)
5718       foldBoolExts(Res, N);
5719 
5720     if (Res) {
5721       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
5722       LLVM_DEBUG(N->dump(CurDAG));
5723       LLVM_DEBUG(dbgs() << "\nNew: ");
5724       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
5725       LLVM_DEBUG(dbgs() << "\n");
5726 
5727       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
5728       MadeChange = true;
5729     }
5730   }
5731 
5732   if (MadeChange)
5733     CurDAG->RemoveDeadNodes();
5734 }
5735 
5736 /// PostprocessISelDAG - Perform some late peephole optimizations
5737 /// on the DAG representation.
5738 void PPCDAGToDAGISel::PostprocessISelDAG() {
5739   // Skip peepholes at -O0.
5740   if (TM.getOptLevel() == CodeGenOpt::None)
5741     return;
5742 
5743   PeepholePPC64();
5744   PeepholeCROps();
5745   PeepholePPC64ZExt();
5746 }
5747 
5748 // Check if all users of this node will become isel where the second operand
5749 // is the constant zero. If this is so, and if we can negate the condition,
5750 // then we can flip the true and false operands. This will allow the zero to
5751 // be folded with the isel so that we don't need to materialize a register
5752 // containing zero.
5753 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
5754   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5755        UI != UE; ++UI) {
5756     SDNode *User = *UI;
5757     if (!User->isMachineOpcode())
5758       return false;
5759     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
5760         User->getMachineOpcode() != PPC::SELECT_I8)
5761       return false;
5762 
5763     SDNode *Op2 = User->getOperand(2).getNode();
5764     if (!Op2->isMachineOpcode())
5765       return false;
5766 
5767     if (Op2->getMachineOpcode() != PPC::LI &&
5768         Op2->getMachineOpcode() != PPC::LI8)
5769       return false;
5770 
5771     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
5772     if (!C)
5773       return false;
5774 
5775     if (!C->isNullValue())
5776       return false;
5777   }
5778 
5779   return true;
5780 }
5781 
5782 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
5783   SmallVector<SDNode *, 4> ToReplace;
5784   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5785        UI != UE; ++UI) {
5786     SDNode *User = *UI;
5787     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
5788             User->getMachineOpcode() == PPC::SELECT_I8) &&
5789            "Must have all select users");
5790     ToReplace.push_back(User);
5791   }
5792 
5793   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
5794        UE = ToReplace.end(); UI != UE; ++UI) {
5795     SDNode *User = *UI;
5796     SDNode *ResNode =
5797       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
5798                              User->getValueType(0), User->getOperand(0),
5799                              User->getOperand(2),
5800                              User->getOperand(1));
5801 
5802     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
5803     LLVM_DEBUG(User->dump(CurDAG));
5804     LLVM_DEBUG(dbgs() << "\nNew: ");
5805     LLVM_DEBUG(ResNode->dump(CurDAG));
5806     LLVM_DEBUG(dbgs() << "\n");
5807 
5808     ReplaceUses(User, ResNode);
5809   }
5810 }
5811 
5812 void PPCDAGToDAGISel::PeepholeCROps() {
5813   bool IsModified;
5814   do {
5815     IsModified = false;
5816     for (SDNode &Node : CurDAG->allnodes()) {
5817       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
5818       if (!MachineNode || MachineNode->use_empty())
5819         continue;
5820       SDNode *ResNode = MachineNode;
5821 
5822       bool Op1Set   = false, Op1Unset = false,
5823            Op1Not   = false,
5824            Op2Set   = false, Op2Unset = false,
5825            Op2Not   = false;
5826 
5827       unsigned Opcode = MachineNode->getMachineOpcode();
5828       switch (Opcode) {
5829       default: break;
5830       case PPC::CRAND:
5831       case PPC::CRNAND:
5832       case PPC::CROR:
5833       case PPC::CRXOR:
5834       case PPC::CRNOR:
5835       case PPC::CREQV:
5836       case PPC::CRANDC:
5837       case PPC::CRORC: {
5838         SDValue Op = MachineNode->getOperand(1);
5839         if (Op.isMachineOpcode()) {
5840           if (Op.getMachineOpcode() == PPC::CRSET)
5841             Op2Set = true;
5842           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5843             Op2Unset = true;
5844           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5845                    Op.getOperand(0) == Op.getOperand(1))
5846             Op2Not = true;
5847         }
5848         LLVM_FALLTHROUGH;
5849       }
5850       case PPC::BC:
5851       case PPC::BCn:
5852       case PPC::SELECT_I4:
5853       case PPC::SELECT_I8:
5854       case PPC::SELECT_F4:
5855       case PPC::SELECT_F8:
5856       case PPC::SELECT_QFRC:
5857       case PPC::SELECT_QSRC:
5858       case PPC::SELECT_QBRC:
5859       case PPC::SELECT_SPE:
5860       case PPC::SELECT_SPE4:
5861       case PPC::SELECT_VRRC:
5862       case PPC::SELECT_VSFRC:
5863       case PPC::SELECT_VSSRC:
5864       case PPC::SELECT_VSRC: {
5865         SDValue Op = MachineNode->getOperand(0);
5866         if (Op.isMachineOpcode()) {
5867           if (Op.getMachineOpcode() == PPC::CRSET)
5868             Op1Set = true;
5869           else if (Op.getMachineOpcode() == PPC::CRUNSET)
5870             Op1Unset = true;
5871           else if (Op.getMachineOpcode() == PPC::CRNOR &&
5872                    Op.getOperand(0) == Op.getOperand(1))
5873             Op1Not = true;
5874         }
5875         }
5876         break;
5877       }
5878 
5879       bool SelectSwap = false;
5880       switch (Opcode) {
5881       default: break;
5882       case PPC::CRAND:
5883         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5884           // x & x = x
5885           ResNode = MachineNode->getOperand(0).getNode();
5886         else if (Op1Set)
5887           // 1 & y = y
5888           ResNode = MachineNode->getOperand(1).getNode();
5889         else if (Op2Set)
5890           // x & 1 = x
5891           ResNode = MachineNode->getOperand(0).getNode();
5892         else if (Op1Unset || Op2Unset)
5893           // x & 0 = 0 & y = 0
5894           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5895                                            MVT::i1);
5896         else if (Op1Not)
5897           // ~x & y = andc(y, x)
5898           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5899                                            MVT::i1, MachineNode->getOperand(1),
5900                                            MachineNode->getOperand(0).
5901                                              getOperand(0));
5902         else if (Op2Not)
5903           // x & ~y = andc(x, y)
5904           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5905                                            MVT::i1, MachineNode->getOperand(0),
5906                                            MachineNode->getOperand(1).
5907                                              getOperand(0));
5908         else if (AllUsersSelectZero(MachineNode)) {
5909           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5910                                            MVT::i1, MachineNode->getOperand(0),
5911                                            MachineNode->getOperand(1));
5912           SelectSwap = true;
5913         }
5914         break;
5915       case PPC::CRNAND:
5916         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5917           // nand(x, x) -> nor(x, x)
5918           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5919                                            MVT::i1, MachineNode->getOperand(0),
5920                                            MachineNode->getOperand(0));
5921         else if (Op1Set)
5922           // nand(1, y) -> nor(y, y)
5923           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5924                                            MVT::i1, MachineNode->getOperand(1),
5925                                            MachineNode->getOperand(1));
5926         else if (Op2Set)
5927           // nand(x, 1) -> nor(x, x)
5928           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5929                                            MVT::i1, MachineNode->getOperand(0),
5930                                            MachineNode->getOperand(0));
5931         else if (Op1Unset || Op2Unset)
5932           // nand(x, 0) = nand(0, y) = 1
5933           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5934                                            MVT::i1);
5935         else if (Op1Not)
5936           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
5937           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5938                                            MVT::i1, MachineNode->getOperand(0).
5939                                                       getOperand(0),
5940                                            MachineNode->getOperand(1));
5941         else if (Op2Not)
5942           // nand(x, ~y) = ~x | y = orc(y, x)
5943           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5944                                            MVT::i1, MachineNode->getOperand(1).
5945                                                       getOperand(0),
5946                                            MachineNode->getOperand(0));
5947         else if (AllUsersSelectZero(MachineNode)) {
5948           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5949                                            MVT::i1, MachineNode->getOperand(0),
5950                                            MachineNode->getOperand(1));
5951           SelectSwap = true;
5952         }
5953         break;
5954       case PPC::CROR:
5955         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5956           // x | x = x
5957           ResNode = MachineNode->getOperand(0).getNode();
5958         else if (Op1Set || Op2Set)
5959           // x | 1 = 1 | y = 1
5960           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5961                                            MVT::i1);
5962         else if (Op1Unset)
5963           // 0 | y = y
5964           ResNode = MachineNode->getOperand(1).getNode();
5965         else if (Op2Unset)
5966           // x | 0 = x
5967           ResNode = MachineNode->getOperand(0).getNode();
5968         else if (Op1Not)
5969           // ~x | y = orc(y, x)
5970           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5971                                            MVT::i1, MachineNode->getOperand(1),
5972                                            MachineNode->getOperand(0).
5973                                              getOperand(0));
5974         else if (Op2Not)
5975           // x | ~y = orc(x, y)
5976           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5977                                            MVT::i1, MachineNode->getOperand(0),
5978                                            MachineNode->getOperand(1).
5979                                              getOperand(0));
5980         else if (AllUsersSelectZero(MachineNode)) {
5981           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5982                                            MVT::i1, MachineNode->getOperand(0),
5983                                            MachineNode->getOperand(1));
5984           SelectSwap = true;
5985         }
5986         break;
5987       case PPC::CRXOR:
5988         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5989           // xor(x, x) = 0
5990           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5991                                            MVT::i1);
5992         else if (Op1Set)
5993           // xor(1, y) -> nor(y, y)
5994           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5995                                            MVT::i1, MachineNode->getOperand(1),
5996                                            MachineNode->getOperand(1));
5997         else if (Op2Set)
5998           // xor(x, 1) -> nor(x, x)
5999           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6000                                            MVT::i1, MachineNode->getOperand(0),
6001                                            MachineNode->getOperand(0));
6002         else if (Op1Unset)
6003           // xor(0, y) = y
6004           ResNode = MachineNode->getOperand(1).getNode();
6005         else if (Op2Unset)
6006           // xor(x, 0) = x
6007           ResNode = MachineNode->getOperand(0).getNode();
6008         else if (Op1Not)
6009           // xor(~x, y) = eqv(x, y)
6010           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6011                                            MVT::i1, MachineNode->getOperand(0).
6012                                                       getOperand(0),
6013                                            MachineNode->getOperand(1));
6014         else if (Op2Not)
6015           // xor(x, ~y) = eqv(x, y)
6016           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6017                                            MVT::i1, MachineNode->getOperand(0),
6018                                            MachineNode->getOperand(1).
6019                                              getOperand(0));
6020         else if (AllUsersSelectZero(MachineNode)) {
6021           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6022                                            MVT::i1, MachineNode->getOperand(0),
6023                                            MachineNode->getOperand(1));
6024           SelectSwap = true;
6025         }
6026         break;
6027       case PPC::CRNOR:
6028         if (Op1Set || Op2Set)
6029           // nor(1, y) -> 0
6030           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6031                                            MVT::i1);
6032         else if (Op1Unset)
6033           // nor(0, y) = ~y -> nor(y, y)
6034           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6035                                            MVT::i1, MachineNode->getOperand(1),
6036                                            MachineNode->getOperand(1));
6037         else if (Op2Unset)
6038           // nor(x, 0) = ~x
6039           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6040                                            MVT::i1, MachineNode->getOperand(0),
6041                                            MachineNode->getOperand(0));
6042         else if (Op1Not)
6043           // nor(~x, y) = andc(x, y)
6044           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6045                                            MVT::i1, MachineNode->getOperand(0).
6046                                                       getOperand(0),
6047                                            MachineNode->getOperand(1));
6048         else if (Op2Not)
6049           // nor(x, ~y) = andc(y, x)
6050           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6051                                            MVT::i1, MachineNode->getOperand(1).
6052                                                       getOperand(0),
6053                                            MachineNode->getOperand(0));
6054         else if (AllUsersSelectZero(MachineNode)) {
6055           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6056                                            MVT::i1, MachineNode->getOperand(0),
6057                                            MachineNode->getOperand(1));
6058           SelectSwap = true;
6059         }
6060         break;
6061       case PPC::CREQV:
6062         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6063           // eqv(x, x) = 1
6064           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6065                                            MVT::i1);
6066         else if (Op1Set)
6067           // eqv(1, y) = y
6068           ResNode = MachineNode->getOperand(1).getNode();
6069         else if (Op2Set)
6070           // eqv(x, 1) = x
6071           ResNode = MachineNode->getOperand(0).getNode();
6072         else if (Op1Unset)
6073           // eqv(0, y) = ~y -> nor(y, y)
6074           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6075                                            MVT::i1, MachineNode->getOperand(1),
6076                                            MachineNode->getOperand(1));
6077         else if (Op2Unset)
6078           // eqv(x, 0) = ~x
6079           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6080                                            MVT::i1, MachineNode->getOperand(0),
6081                                            MachineNode->getOperand(0));
6082         else if (Op1Not)
6083           // eqv(~x, y) = xor(x, y)
6084           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6085                                            MVT::i1, MachineNode->getOperand(0).
6086                                                       getOperand(0),
6087                                            MachineNode->getOperand(1));
6088         else if (Op2Not)
6089           // eqv(x, ~y) = xor(x, y)
6090           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6091                                            MVT::i1, MachineNode->getOperand(0),
6092                                            MachineNode->getOperand(1).
6093                                              getOperand(0));
6094         else if (AllUsersSelectZero(MachineNode)) {
6095           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6096                                            MVT::i1, MachineNode->getOperand(0),
6097                                            MachineNode->getOperand(1));
6098           SelectSwap = true;
6099         }
6100         break;
6101       case PPC::CRANDC:
6102         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6103           // andc(x, x) = 0
6104           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6105                                            MVT::i1);
6106         else if (Op1Set)
6107           // andc(1, y) = ~y
6108           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6109                                            MVT::i1, MachineNode->getOperand(1),
6110                                            MachineNode->getOperand(1));
6111         else if (Op1Unset || Op2Set)
6112           // andc(0, y) = andc(x, 1) = 0
6113           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6114                                            MVT::i1);
6115         else if (Op2Unset)
6116           // andc(x, 0) = x
6117           ResNode = MachineNode->getOperand(0).getNode();
6118         else if (Op1Not)
6119           // andc(~x, y) = ~(x | y) = nor(x, y)
6120           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6121                                            MVT::i1, MachineNode->getOperand(0).
6122                                                       getOperand(0),
6123                                            MachineNode->getOperand(1));
6124         else if (Op2Not)
6125           // andc(x, ~y) = x & y
6126           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6127                                            MVT::i1, MachineNode->getOperand(0),
6128                                            MachineNode->getOperand(1).
6129                                              getOperand(0));
6130         else if (AllUsersSelectZero(MachineNode)) {
6131           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6132                                            MVT::i1, MachineNode->getOperand(1),
6133                                            MachineNode->getOperand(0));
6134           SelectSwap = true;
6135         }
6136         break;
6137       case PPC::CRORC:
6138         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6139           // orc(x, x) = 1
6140           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6141                                            MVT::i1);
6142         else if (Op1Set || Op2Unset)
6143           // orc(1, y) = orc(x, 0) = 1
6144           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6145                                            MVT::i1);
6146         else if (Op2Set)
6147           // orc(x, 1) = x
6148           ResNode = MachineNode->getOperand(0).getNode();
6149         else if (Op1Unset)
6150           // orc(0, y) = ~y
6151           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6152                                            MVT::i1, MachineNode->getOperand(1),
6153                                            MachineNode->getOperand(1));
6154         else if (Op1Not)
6155           // orc(~x, y) = ~(x & y) = nand(x, y)
6156           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6157                                            MVT::i1, MachineNode->getOperand(0).
6158                                                       getOperand(0),
6159                                            MachineNode->getOperand(1));
6160         else if (Op2Not)
6161           // orc(x, ~y) = x | y
6162           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6163                                            MVT::i1, MachineNode->getOperand(0),
6164                                            MachineNode->getOperand(1).
6165                                              getOperand(0));
6166         else if (AllUsersSelectZero(MachineNode)) {
6167           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6168                                            MVT::i1, MachineNode->getOperand(1),
6169                                            MachineNode->getOperand(0));
6170           SelectSwap = true;
6171         }
6172         break;
6173       case PPC::SELECT_I4:
6174       case PPC::SELECT_I8:
6175       case PPC::SELECT_F4:
6176       case PPC::SELECT_F8:
6177       case PPC::SELECT_QFRC:
6178       case PPC::SELECT_QSRC:
6179       case PPC::SELECT_QBRC:
6180       case PPC::SELECT_SPE:
6181       case PPC::SELECT_SPE4:
6182       case PPC::SELECT_VRRC:
6183       case PPC::SELECT_VSFRC:
6184       case PPC::SELECT_VSSRC:
6185       case PPC::SELECT_VSRC:
6186         if (Op1Set)
6187           ResNode = MachineNode->getOperand(1).getNode();
6188         else if (Op1Unset)
6189           ResNode = MachineNode->getOperand(2).getNode();
6190         else if (Op1Not)
6191           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
6192                                            SDLoc(MachineNode),
6193                                            MachineNode->getValueType(0),
6194                                            MachineNode->getOperand(0).
6195                                              getOperand(0),
6196                                            MachineNode->getOperand(2),
6197                                            MachineNode->getOperand(1));
6198         break;
6199       case PPC::BC:
6200       case PPC::BCn:
6201         if (Op1Not)
6202           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
6203                                                                PPC::BC,
6204                                            SDLoc(MachineNode),
6205                                            MVT::Other,
6206                                            MachineNode->getOperand(0).
6207                                              getOperand(0),
6208                                            MachineNode->getOperand(1),
6209                                            MachineNode->getOperand(2));
6210         // FIXME: Handle Op1Set, Op1Unset here too.
6211         break;
6212       }
6213 
6214       // If we're inverting this node because it is used only by selects that
6215       // we'd like to swap, then swap the selects before the node replacement.
6216       if (SelectSwap)
6217         SwapAllSelectUsers(MachineNode);
6218 
6219       if (ResNode != MachineNode) {
6220         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6221         LLVM_DEBUG(MachineNode->dump(CurDAG));
6222         LLVM_DEBUG(dbgs() << "\nNew: ");
6223         LLVM_DEBUG(ResNode->dump(CurDAG));
6224         LLVM_DEBUG(dbgs() << "\n");
6225 
6226         ReplaceUses(MachineNode, ResNode);
6227         IsModified = true;
6228       }
6229     }
6230     if (IsModified)
6231       CurDAG->RemoveDeadNodes();
6232   } while (IsModified);
6233 }
6234 
6235 // Gather the set of 32-bit operations that are known to have their
6236 // higher-order 32 bits zero, where ToPromote contains all such operations.
6237 static bool PeepholePPC64ZExtGather(SDValue Op32,
6238                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
6239   if (!Op32.isMachineOpcode())
6240     return false;
6241 
6242   // First, check for the "frontier" instructions (those that will clear the
6243   // higher-order 32 bits.
6244 
6245   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6246   // around. If it does not, then these instructions will clear the
6247   // higher-order bits.
6248   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6249        Op32.getMachineOpcode() == PPC::RLWNM) &&
6250       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6251     ToPromote.insert(Op32.getNode());
6252     return true;
6253   }
6254 
6255   // SLW and SRW always clear the higher-order bits.
6256   if (Op32.getMachineOpcode() == PPC::SLW ||
6257       Op32.getMachineOpcode() == PPC::SRW) {
6258     ToPromote.insert(Op32.getNode());
6259     return true;
6260   }
6261 
6262   // For LI and LIS, we need the immediate to be positive (so that it is not
6263   // sign extended).
6264   if (Op32.getMachineOpcode() == PPC::LI ||
6265       Op32.getMachineOpcode() == PPC::LIS) {
6266     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
6267       return false;
6268 
6269     ToPromote.insert(Op32.getNode());
6270     return true;
6271   }
6272 
6273   // LHBRX and LWBRX always clear the higher-order bits.
6274   if (Op32.getMachineOpcode() == PPC::LHBRX ||
6275       Op32.getMachineOpcode() == PPC::LWBRX) {
6276     ToPromote.insert(Op32.getNode());
6277     return true;
6278   }
6279 
6280   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
6281   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
6282       Op32.getMachineOpcode() == PPC::CNTTZW) {
6283     ToPromote.insert(Op32.getNode());
6284     return true;
6285   }
6286 
6287   // Next, check for those instructions we can look through.
6288 
6289   // Assuming the mask does not wrap around, then the higher-order bits are
6290   // taken directly from the first operand.
6291   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
6292       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
6293     SmallPtrSet<SDNode *, 16> ToPromote1;
6294     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6295       return false;
6296 
6297     ToPromote.insert(Op32.getNode());
6298     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6299     return true;
6300   }
6301 
6302   // For OR, the higher-order bits are zero if that is true for both operands.
6303   // For SELECT_I4, the same is true (but the relevant operand numbers are
6304   // shifted by 1).
6305   if (Op32.getMachineOpcode() == PPC::OR ||
6306       Op32.getMachineOpcode() == PPC::SELECT_I4) {
6307     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
6308     SmallPtrSet<SDNode *, 16> ToPromote1;
6309     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
6310       return false;
6311     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
6312       return false;
6313 
6314     ToPromote.insert(Op32.getNode());
6315     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6316     return true;
6317   }
6318 
6319   // For ORI and ORIS, we need the higher-order bits of the first operand to be
6320   // zero, and also for the constant to be positive (so that it is not sign
6321   // extended).
6322   if (Op32.getMachineOpcode() == PPC::ORI ||
6323       Op32.getMachineOpcode() == PPC::ORIS) {
6324     SmallPtrSet<SDNode *, 16> ToPromote1;
6325     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6326       return false;
6327     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
6328       return false;
6329 
6330     ToPromote.insert(Op32.getNode());
6331     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6332     return true;
6333   }
6334 
6335   // The higher-order bits of AND are zero if that is true for at least one of
6336   // the operands.
6337   if (Op32.getMachineOpcode() == PPC::AND) {
6338     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
6339     bool Op0OK =
6340       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6341     bool Op1OK =
6342       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
6343     if (!Op0OK && !Op1OK)
6344       return false;
6345 
6346     ToPromote.insert(Op32.getNode());
6347 
6348     if (Op0OK)
6349       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6350 
6351     if (Op1OK)
6352       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
6353 
6354     return true;
6355   }
6356 
6357   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
6358   // of the first operand, or if the second operand is positive (so that it is
6359   // not sign extended).
6360   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
6361       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
6362     SmallPtrSet<SDNode *, 16> ToPromote1;
6363     bool Op0OK =
6364       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6365     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
6366     if (!Op0OK && !Op1OK)
6367       return false;
6368 
6369     ToPromote.insert(Op32.getNode());
6370 
6371     if (Op0OK)
6372       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6373 
6374     return true;
6375   }
6376 
6377   return false;
6378 }
6379 
6380 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
6381   if (!PPCSubTarget->isPPC64())
6382     return;
6383 
6384   // When we zero-extend from i32 to i64, we use a pattern like this:
6385   // def : Pat<(i64 (zext i32:$in)),
6386   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
6387   //                   0, 32)>;
6388   // There are several 32-bit shift/rotate instructions, however, that will
6389   // clear the higher-order bits of their output, rendering the RLDICL
6390   // unnecessary. When that happens, we remove it here, and redefine the
6391   // relevant 32-bit operation to be a 64-bit operation.
6392 
6393   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6394 
6395   bool MadeChange = false;
6396   while (Position != CurDAG->allnodes_begin()) {
6397     SDNode *N = &*--Position;
6398     // Skip dead nodes and any non-machine opcodes.
6399     if (N->use_empty() || !N->isMachineOpcode())
6400       continue;
6401 
6402     if (N->getMachineOpcode() != PPC::RLDICL)
6403       continue;
6404 
6405     if (N->getConstantOperandVal(1) != 0 ||
6406         N->getConstantOperandVal(2) != 32)
6407       continue;
6408 
6409     SDValue ISR = N->getOperand(0);
6410     if (!ISR.isMachineOpcode() ||
6411         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
6412       continue;
6413 
6414     if (!ISR.hasOneUse())
6415       continue;
6416 
6417     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
6418       continue;
6419 
6420     SDValue IDef = ISR.getOperand(0);
6421     if (!IDef.isMachineOpcode() ||
6422         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
6423       continue;
6424 
6425     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
6426     // can get rid of it.
6427 
6428     SDValue Op32 = ISR->getOperand(1);
6429     if (!Op32.isMachineOpcode())
6430       continue;
6431 
6432     // There are some 32-bit instructions that always clear the high-order 32
6433     // bits, there are also some instructions (like AND) that we can look
6434     // through.
6435     SmallPtrSet<SDNode *, 16> ToPromote;
6436     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
6437       continue;
6438 
6439     // If the ToPromote set contains nodes that have uses outside of the set
6440     // (except for the original INSERT_SUBREG), then abort the transformation.
6441     bool OutsideUse = false;
6442     for (SDNode *PN : ToPromote) {
6443       for (SDNode *UN : PN->uses()) {
6444         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
6445           OutsideUse = true;
6446           break;
6447         }
6448       }
6449 
6450       if (OutsideUse)
6451         break;
6452     }
6453     if (OutsideUse)
6454       continue;
6455 
6456     MadeChange = true;
6457 
6458     // We now know that this zero extension can be removed by promoting to
6459     // nodes in ToPromote to 64-bit operations, where for operations in the
6460     // frontier of the set, we need to insert INSERT_SUBREGs for their
6461     // operands.
6462     for (SDNode *PN : ToPromote) {
6463       unsigned NewOpcode;
6464       switch (PN->getMachineOpcode()) {
6465       default:
6466         llvm_unreachable("Don't know the 64-bit variant of this instruction");
6467       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
6468       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
6469       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
6470       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
6471       case PPC::LI:        NewOpcode = PPC::LI8; break;
6472       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
6473       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
6474       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
6475       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
6476       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
6477       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
6478       case PPC::OR:        NewOpcode = PPC::OR8; break;
6479       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
6480       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
6481       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
6482       case PPC::AND:       NewOpcode = PPC::AND8; break;
6483       case PPC::ANDI_rec:
6484         NewOpcode = PPC::ANDI8_rec;
6485         break;
6486       case PPC::ANDIS_rec:
6487         NewOpcode = PPC::ANDIS8_rec;
6488         break;
6489       }
6490 
6491       // Note: During the replacement process, the nodes will be in an
6492       // inconsistent state (some instructions will have operands with values
6493       // of the wrong type). Once done, however, everything should be right
6494       // again.
6495 
6496       SmallVector<SDValue, 4> Ops;
6497       for (const SDValue &V : PN->ops()) {
6498         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
6499             !isa<ConstantSDNode>(V)) {
6500           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
6501           SDNode *ReplOp =
6502             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
6503                                    ISR.getNode()->getVTList(), ReplOpOps);
6504           Ops.push_back(SDValue(ReplOp, 0));
6505         } else {
6506           Ops.push_back(V);
6507         }
6508       }
6509 
6510       // Because all to-be-promoted nodes only have users that are other
6511       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
6512       // the i32 result value type with i64.
6513 
6514       SmallVector<EVT, 2> NewVTs;
6515       SDVTList VTs = PN->getVTList();
6516       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
6517         if (VTs.VTs[i] == MVT::i32)
6518           NewVTs.push_back(MVT::i64);
6519         else
6520           NewVTs.push_back(VTs.VTs[i]);
6521 
6522       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
6523       LLVM_DEBUG(PN->dump(CurDAG));
6524 
6525       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
6526 
6527       LLVM_DEBUG(dbgs() << "\nNew: ");
6528       LLVM_DEBUG(PN->dump(CurDAG));
6529       LLVM_DEBUG(dbgs() << "\n");
6530     }
6531 
6532     // Now we replace the original zero extend and its associated INSERT_SUBREG
6533     // with the value feeding the INSERT_SUBREG (which has now been promoted to
6534     // return an i64).
6535 
6536     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
6537     LLVM_DEBUG(N->dump(CurDAG));
6538     LLVM_DEBUG(dbgs() << "\nNew: ");
6539     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
6540     LLVM_DEBUG(dbgs() << "\n");
6541 
6542     ReplaceUses(N, Op32.getNode());
6543   }
6544 
6545   if (MadeChange)
6546     CurDAG->RemoveDeadNodes();
6547 }
6548 
6549 void PPCDAGToDAGISel::PeepholePPC64() {
6550   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6551 
6552   while (Position != CurDAG->allnodes_begin()) {
6553     SDNode *N = &*--Position;
6554     // Skip dead nodes and any non-machine opcodes.
6555     if (N->use_empty() || !N->isMachineOpcode())
6556       continue;
6557 
6558     unsigned FirstOp;
6559     unsigned StorageOpcode = N->getMachineOpcode();
6560     bool RequiresMod4Offset = false;
6561 
6562     switch (StorageOpcode) {
6563     default: continue;
6564 
6565     case PPC::LWA:
6566     case PPC::LD:
6567     case PPC::DFLOADf64:
6568     case PPC::DFLOADf32:
6569       RequiresMod4Offset = true;
6570       LLVM_FALLTHROUGH;
6571     case PPC::LBZ:
6572     case PPC::LBZ8:
6573     case PPC::LFD:
6574     case PPC::LFS:
6575     case PPC::LHA:
6576     case PPC::LHA8:
6577     case PPC::LHZ:
6578     case PPC::LHZ8:
6579     case PPC::LWZ:
6580     case PPC::LWZ8:
6581       FirstOp = 0;
6582       break;
6583 
6584     case PPC::STD:
6585     case PPC::DFSTOREf64:
6586     case PPC::DFSTOREf32:
6587       RequiresMod4Offset = true;
6588       LLVM_FALLTHROUGH;
6589     case PPC::STB:
6590     case PPC::STB8:
6591     case PPC::STFD:
6592     case PPC::STFS:
6593     case PPC::STH:
6594     case PPC::STH8:
6595     case PPC::STW:
6596     case PPC::STW8:
6597       FirstOp = 1;
6598       break;
6599     }
6600 
6601     // If this is a load or store with a zero offset, or within the alignment,
6602     // we may be able to fold an add-immediate into the memory operation.
6603     // The check against alignment is below, as it can't occur until we check
6604     // the arguments to N
6605     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
6606       continue;
6607 
6608     SDValue Base = N->getOperand(FirstOp + 1);
6609     if (!Base.isMachineOpcode())
6610       continue;
6611 
6612     unsigned Flags = 0;
6613     bool ReplaceFlags = true;
6614 
6615     // When the feeding operation is an add-immediate of some sort,
6616     // determine whether we need to add relocation information to the
6617     // target flags on the immediate operand when we fold it into the
6618     // load instruction.
6619     //
6620     // For something like ADDItocL, the relocation information is
6621     // inferred from the opcode; when we process it in the AsmPrinter,
6622     // we add the necessary relocation there.  A load, though, can receive
6623     // relocation from various flavors of ADDIxxx, so we need to carry
6624     // the relocation information in the target flags.
6625     switch (Base.getMachineOpcode()) {
6626     default: continue;
6627 
6628     case PPC::ADDI8:
6629     case PPC::ADDI:
6630       // In some cases (such as TLS) the relocation information
6631       // is already in place on the operand, so copying the operand
6632       // is sufficient.
6633       ReplaceFlags = false;
6634       // For these cases, the immediate may not be divisible by 4, in
6635       // which case the fold is illegal for DS-form instructions.  (The
6636       // other cases provide aligned addresses and are always safe.)
6637       if (RequiresMod4Offset &&
6638           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
6639            Base.getConstantOperandVal(1) % 4 != 0))
6640         continue;
6641       break;
6642     case PPC::ADDIdtprelL:
6643       Flags = PPCII::MO_DTPREL_LO;
6644       break;
6645     case PPC::ADDItlsldL:
6646       Flags = PPCII::MO_TLSLD_LO;
6647       break;
6648     case PPC::ADDItocL:
6649       Flags = PPCII::MO_TOC_LO;
6650       break;
6651     }
6652 
6653     SDValue ImmOpnd = Base.getOperand(1);
6654 
6655     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
6656     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
6657     // we might have needed different @ha relocation values for the offset
6658     // pointers).
6659     int MaxDisplacement = 7;
6660     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6661       const GlobalValue *GV = GA->getGlobal();
6662       MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
6663     }
6664 
6665     bool UpdateHBase = false;
6666     SDValue HBase = Base.getOperand(0);
6667 
6668     int Offset = N->getConstantOperandVal(FirstOp);
6669     if (ReplaceFlags) {
6670       if (Offset < 0 || Offset > MaxDisplacement) {
6671         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
6672         // one use, then we can do this for any offset, we just need to also
6673         // update the offset (i.e. the symbol addend) on the addis also.
6674         if (Base.getMachineOpcode() != PPC::ADDItocL)
6675           continue;
6676 
6677         if (!HBase.isMachineOpcode() ||
6678             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
6679           continue;
6680 
6681         if (!Base.hasOneUse() || !HBase.hasOneUse())
6682           continue;
6683 
6684         SDValue HImmOpnd = HBase.getOperand(1);
6685         if (HImmOpnd != ImmOpnd)
6686           continue;
6687 
6688         UpdateHBase = true;
6689       }
6690     } else {
6691       // If we're directly folding the addend from an addi instruction, then:
6692       //  1. In general, the offset on the memory access must be zero.
6693       //  2. If the addend is a constant, then it can be combined with a
6694       //     non-zero offset, but only if the result meets the encoding
6695       //     requirements.
6696       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
6697         Offset += C->getSExtValue();
6698 
6699         if (RequiresMod4Offset && (Offset % 4) != 0)
6700           continue;
6701 
6702         if (!isInt<16>(Offset))
6703           continue;
6704 
6705         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
6706                                             ImmOpnd.getValueType());
6707       } else if (Offset != 0) {
6708         continue;
6709       }
6710     }
6711 
6712     // We found an opportunity.  Reverse the operands from the add
6713     // immediate and substitute them into the load or store.  If
6714     // needed, update the target flags for the immediate operand to
6715     // reflect the necessary relocation information.
6716     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
6717     LLVM_DEBUG(Base->dump(CurDAG));
6718     LLVM_DEBUG(dbgs() << "\nN: ");
6719     LLVM_DEBUG(N->dump(CurDAG));
6720     LLVM_DEBUG(dbgs() << "\n");
6721 
6722     // If the relocation information isn't already present on the
6723     // immediate operand, add it now.
6724     if (ReplaceFlags) {
6725       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6726         SDLoc dl(GA);
6727         const GlobalValue *GV = GA->getGlobal();
6728         // We can't perform this optimization for data whose alignment
6729         // is insufficient for the instruction encoding.
6730         if (GV->getAlignment() < 4 &&
6731             (RequiresMod4Offset || (Offset % 4) != 0)) {
6732           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
6733           continue;
6734         }
6735         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
6736       } else if (ConstantPoolSDNode *CP =
6737                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
6738         const Constant *C = CP->getConstVal();
6739         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
6740                                                 Offset, Flags);
6741       }
6742     }
6743 
6744     if (FirstOp == 1) // Store
6745       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
6746                                        Base.getOperand(0), N->getOperand(3));
6747     else // Load
6748       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
6749                                        N->getOperand(2));
6750 
6751     if (UpdateHBase)
6752       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
6753                                        ImmOpnd);
6754 
6755     // The add-immediate may now be dead, in which case remove it.
6756     if (Base.getNode()->use_empty())
6757       CurDAG->RemoveDeadNode(Base.getNode());
6758   }
6759 }
6760 
6761 /// createPPCISelDag - This pass converts a legalized DAG into a
6762 /// PowerPC-specific DAG, ready for instruction scheduling.
6763 ///
6764 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
6765                                      CodeGenOpt::Level OptLevel) {
6766   return new PPCDAGToDAGISel(TM, OptLevel);
6767 }
6768