1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a pattern matching instruction selector for PowerPC, 11 // converting from a legalized dag to a PPC dag. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PPC.h" 16 #include "MCTargetDesc/PPCPredicates.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCTargetMachine.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/SelectionDAGISel.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ppc-codegen" 40 41 // FIXME: Remove this once the bug has been fixed! 42 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 43 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 44 45 static cl::opt<bool> 46 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 47 cl::desc("use aggressive ppc isel for bit permutations"), 48 cl::Hidden); 49 static cl::opt<bool> BPermRewriterNoMasking( 50 "ppc-bit-perm-rewriter-stress-rotates", 51 cl::desc("stress rotate selection in aggressive ppc isel for " 52 "bit permutations"), 53 cl::Hidden); 54 55 namespace llvm { 56 void initializePPCDAGToDAGISelPass(PassRegistry&); 57 } 58 59 namespace { 60 //===--------------------------------------------------------------------===// 61 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 62 /// instructions for SelectionDAG operations. 63 /// 64 class PPCDAGToDAGISel : public SelectionDAGISel { 65 const PPCTargetMachine &TM; 66 const PPCSubtarget *PPCSubTarget; 67 const PPCTargetLowering *PPCLowering; 68 unsigned GlobalBaseReg; 69 public: 70 explicit PPCDAGToDAGISel(PPCTargetMachine &tm) 71 : SelectionDAGISel(tm), TM(tm) { 72 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry()); 73 } 74 75 bool runOnMachineFunction(MachineFunction &MF) override { 76 // Make sure we re-emit a set of the global base reg if necessary 77 GlobalBaseReg = 0; 78 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); 79 PPCLowering = PPCSubTarget->getTargetLowering(); 80 SelectionDAGISel::runOnMachineFunction(MF); 81 82 if (!PPCSubTarget->isSVR4ABI()) 83 InsertVRSaveCode(MF); 84 85 return true; 86 } 87 88 void PreprocessISelDAG() override; 89 void PostprocessISelDAG() override; 90 91 /// getI32Imm - Return a target constant with the specified value, of type 92 /// i32. 93 inline SDValue getI32Imm(unsigned Imm, SDLoc dl) { 94 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 95 } 96 97 /// getI64Imm - Return a target constant with the specified value, of type 98 /// i64. 99 inline SDValue getI64Imm(uint64_t Imm, SDLoc dl) { 100 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 101 } 102 103 /// getSmallIPtrImm - Return a target constant of pointer type. 104 inline SDValue getSmallIPtrImm(unsigned Imm, SDLoc dl) { 105 return CurDAG->getTargetConstant( 106 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 107 } 108 109 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 110 /// rotate and mask opcode and mask operation. 111 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 112 unsigned &SH, unsigned &MB, unsigned &ME); 113 114 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 115 /// base register. Return the virtual register that holds this value. 116 SDNode *getGlobalBaseReg(); 117 118 SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); 119 120 // Select - Convert the specified operand from a target-independent to a 121 // target-specific node if it hasn't already been changed. 122 SDNode *Select(SDNode *N) override; 123 124 SDNode *SelectBitfieldInsert(SDNode *N); 125 SDNode *SelectBitPermutation(SDNode *N); 126 127 /// SelectCC - Select a comparison of the specified values with the 128 /// specified condition code, returning the CR# of the expression. 129 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl); 130 131 /// SelectAddrImm - Returns true if the address N can be represented by 132 /// a base register plus a signed 16-bit displacement [r+imm]. 133 bool SelectAddrImm(SDValue N, SDValue &Disp, 134 SDValue &Base) { 135 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false); 136 } 137 138 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 139 /// immediate field. Note that the operand at this point is already the 140 /// result of a prior SelectAddressRegImm call. 141 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 142 if (N.getOpcode() == ISD::TargetConstant || 143 N.getOpcode() == ISD::TargetGlobalAddress) { 144 Out = N; 145 return true; 146 } 147 148 return false; 149 } 150 151 /// SelectAddrIdx - Given the specified addressed, check to see if it can be 152 /// represented as an indexed [r+r] operation. Returns false if it can 153 /// be represented by [r+imm], which are preferred. 154 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 155 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG); 156 } 157 158 /// SelectAddrIdxOnly - Given the specified addressed, force it to be 159 /// represented as an indexed [r+r] operation. 160 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 161 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 162 } 163 164 /// SelectAddrImmX4 - Returns true if the address N can be represented by 165 /// a base register plus a signed 16-bit displacement that is a multiple of 4. 166 /// Suitable for use by STD and friends. 167 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 168 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true); 169 } 170 171 // Select an address into a single register. 172 bool SelectAddr(SDValue N, SDValue &Base) { 173 Base = N; 174 return true; 175 } 176 177 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 178 /// inline asm expressions. It is always correct to compute the value into 179 /// a register. The case of adding a (possibly relocatable) constant to a 180 /// register can be improved, but it is wrong to substitute Reg+Reg for 181 /// Reg in an asm, because the load or store opcode would have to change. 182 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 183 unsigned ConstraintID, 184 std::vector<SDValue> &OutOps) override { 185 186 switch(ConstraintID) { 187 default: 188 errs() << "ConstraintID: " << ConstraintID << "\n"; 189 llvm_unreachable("Unexpected asm memory constraint"); 190 case InlineAsm::Constraint_es: 191 case InlineAsm::Constraint_i: 192 case InlineAsm::Constraint_m: 193 case InlineAsm::Constraint_o: 194 case InlineAsm::Constraint_Q: 195 case InlineAsm::Constraint_Z: 196 case InlineAsm::Constraint_Zy: 197 // We need to make sure that this one operand does not end up in r0 198 // (because we might end up lowering this as 0(%op)). 199 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); 200 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 201 SDLoc dl(Op); 202 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 203 SDValue NewOp = 204 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 205 dl, Op.getValueType(), 206 Op, RC), 0); 207 208 OutOps.push_back(NewOp); 209 return false; 210 } 211 return true; 212 } 213 214 void InsertVRSaveCode(MachineFunction &MF); 215 216 const char *getPassName() const override { 217 return "PowerPC DAG->DAG Pattern Instruction Selection"; 218 } 219 220 // Include the pieces autogenerated from the target description. 221 #include "PPCGenDAGISel.inc" 222 223 private: 224 SDNode *SelectSETCC(SDNode *N); 225 226 void PeepholePPC64(); 227 void PeepholePPC64ZExt(); 228 void PeepholeCROps(); 229 230 SDValue combineToCMPB(SDNode *N); 231 void foldBoolExts(SDValue &Res, SDNode *&N); 232 233 bool AllUsersSelectZero(SDNode *N); 234 void SwapAllSelectUsers(SDNode *N); 235 236 SDNode *transferMemOperands(SDNode *N, SDNode *Result); 237 }; 238 } 239 240 /// InsertVRSaveCode - Once the entire function has been instruction selected, 241 /// all virtual registers are created and all machine instructions are built, 242 /// check to see if we need to save/restore VRSAVE. If so, do it. 243 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 244 // Check to see if this function uses vector registers, which means we have to 245 // save and restore the VRSAVE register and update it with the regs we use. 246 // 247 // In this case, there will be virtual registers of vector type created 248 // by the scheduler. Detect them now. 249 bool HasVectorVReg = false; 250 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 251 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 252 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 253 HasVectorVReg = true; 254 break; 255 } 256 } 257 if (!HasVectorVReg) return; // nothing to do. 258 259 // If we have a vector register, we want to emit code into the entry and exit 260 // blocks to save and restore the VRSAVE register. We do this here (instead 261 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 262 // 263 // 1. This (trivially) reduces the load on the register allocator, by not 264 // having to represent the live range of the VRSAVE register. 265 // 2. This (more significantly) allows us to create a temporary virtual 266 // register to hold the saved VRSAVE value, allowing this temporary to be 267 // register allocated, instead of forcing it to be spilled to the stack. 268 269 // Create two vregs - one to hold the VRSAVE register that is live-in to the 270 // function and one for the value after having bits or'd into it. 271 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 272 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 273 274 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 275 MachineBasicBlock &EntryBB = *Fn.begin(); 276 DebugLoc dl; 277 // Emit the following code into the entry block: 278 // InVRSAVE = MFVRSAVE 279 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 280 // MTVRSAVE UpdatedVRSAVE 281 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 282 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 283 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 284 UpdatedVRSAVE).addReg(InVRSAVE); 285 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 286 287 // Find all return blocks, outputting a restore in each epilog. 288 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 289 if (BB->isReturnBlock()) { 290 IP = BB->end(); --IP; 291 292 // Skip over all terminator instructions, which are part of the return 293 // sequence. 294 MachineBasicBlock::iterator I2 = IP; 295 while (I2 != BB->begin() && (--I2)->isTerminator()) 296 IP = I2; 297 298 // Emit: MTVRSAVE InVRSave 299 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 300 } 301 } 302 } 303 304 305 /// getGlobalBaseReg - Output the instructions required to put the 306 /// base address to use for accessing globals into a register. 307 /// 308 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 309 if (!GlobalBaseReg) { 310 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 311 // Insert the set of GlobalBaseReg into the first MBB of the function 312 MachineBasicBlock &FirstMBB = MF->front(); 313 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 314 const Module *M = MF->getFunction()->getParent(); 315 DebugLoc dl; 316 317 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 318 if (PPCSubTarget->isTargetELF()) { 319 GlobalBaseReg = PPC::R30; 320 if (M->getPICLevel() == PICLevel::Small) { 321 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 322 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 323 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 324 } else { 325 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 326 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 327 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 328 BuildMI(FirstMBB, MBBI, dl, 329 TII.get(PPC::UpdateGBR), GlobalBaseReg) 330 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 331 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 332 } 333 } else { 334 GlobalBaseReg = 335 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass); 336 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 337 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 338 } 339 } else { 340 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass); 341 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 342 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 343 } 344 } 345 return CurDAG->getRegister(GlobalBaseReg, 346 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 347 .getNode(); 348 } 349 350 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 351 /// or 64-bit immediate, and if the value can be accurately represented as a 352 /// sign extension from a 16-bit value. If so, this returns true and the 353 /// immediate. 354 static bool isIntS16Immediate(SDNode *N, short &Imm) { 355 if (N->getOpcode() != ISD::Constant) 356 return false; 357 358 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 359 if (N->getValueType(0) == MVT::i32) 360 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 361 else 362 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 363 } 364 365 static bool isIntS16Immediate(SDValue Op, short &Imm) { 366 return isIntS16Immediate(Op.getNode(), Imm); 367 } 368 369 370 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 371 /// operand. If so Imm will receive the 32-bit value. 372 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 373 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 374 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 375 return true; 376 } 377 return false; 378 } 379 380 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 381 /// operand. If so Imm will receive the 64-bit value. 382 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 383 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 384 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 385 return true; 386 } 387 return false; 388 } 389 390 // isInt32Immediate - This method tests to see if a constant operand. 391 // If so Imm will receive the 32 bit value. 392 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 393 return isInt32Immediate(N.getNode(), Imm); 394 } 395 396 397 // isOpcWithIntImmediate - This method tests to see if the node is a specific 398 // opcode and that it has a immediate integer right operand. 399 // If so Imm will receive the 32 bit value. 400 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 401 return N->getOpcode() == Opc 402 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 403 } 404 405 SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { 406 SDLoc dl(SN); 407 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 408 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 409 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 410 if (SN->hasOneUse()) 411 return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 412 getSmallIPtrImm(Offset, dl)); 413 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 414 getSmallIPtrImm(Offset, dl)); 415 } 416 417 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 418 bool isShiftMask, unsigned &SH, 419 unsigned &MB, unsigned &ME) { 420 // Don't even go down this path for i64, since different logic will be 421 // necessary for rldicl/rldicr/rldimi. 422 if (N->getValueType(0) != MVT::i32) 423 return false; 424 425 unsigned Shift = 32; 426 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 427 unsigned Opcode = N->getOpcode(); 428 if (N->getNumOperands() != 2 || 429 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 430 return false; 431 432 if (Opcode == ISD::SHL) { 433 // apply shift left to mask if it comes first 434 if (isShiftMask) Mask = Mask << Shift; 435 // determine which bits are made indeterminant by shift 436 Indeterminant = ~(0xFFFFFFFFu << Shift); 437 } else if (Opcode == ISD::SRL) { 438 // apply shift right to mask if it comes first 439 if (isShiftMask) Mask = Mask >> Shift; 440 // determine which bits are made indeterminant by shift 441 Indeterminant = ~(0xFFFFFFFFu >> Shift); 442 // adjust for the left rotate 443 Shift = 32 - Shift; 444 } else if (Opcode == ISD::ROTL) { 445 Indeterminant = 0; 446 } else { 447 return false; 448 } 449 450 // if the mask doesn't intersect any Indeterminant bits 451 if (Mask && !(Mask & Indeterminant)) { 452 SH = Shift & 31; 453 // make sure the mask is still a mask (wrap arounds may not be) 454 return isRunOfOnes(Mask, MB, ME); 455 } 456 return false; 457 } 458 459 /// SelectBitfieldInsert - turn an or of two masked values into 460 /// the rotate left word immediate then mask insert (rlwimi) instruction. 461 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { 462 SDValue Op0 = N->getOperand(0); 463 SDValue Op1 = N->getOperand(1); 464 SDLoc dl(N); 465 466 APInt LKZ, LKO, RKZ, RKO; 467 CurDAG->computeKnownBits(Op0, LKZ, LKO); 468 CurDAG->computeKnownBits(Op1, RKZ, RKO); 469 470 unsigned TargetMask = LKZ.getZExtValue(); 471 unsigned InsertMask = RKZ.getZExtValue(); 472 473 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 474 unsigned Op0Opc = Op0.getOpcode(); 475 unsigned Op1Opc = Op1.getOpcode(); 476 unsigned Value, SH = 0; 477 TargetMask = ~TargetMask; 478 InsertMask = ~InsertMask; 479 480 // If the LHS has a foldable shift and the RHS does not, then swap it to the 481 // RHS so that we can fold the shift into the insert. 482 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 483 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 484 Op0.getOperand(0).getOpcode() == ISD::SRL) { 485 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 486 Op1.getOperand(0).getOpcode() != ISD::SRL) { 487 std::swap(Op0, Op1); 488 std::swap(Op0Opc, Op1Opc); 489 std::swap(TargetMask, InsertMask); 490 } 491 } 492 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 493 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 494 Op1.getOperand(0).getOpcode() != ISD::SRL) { 495 std::swap(Op0, Op1); 496 std::swap(Op0Opc, Op1Opc); 497 std::swap(TargetMask, InsertMask); 498 } 499 } 500 501 unsigned MB, ME; 502 if (isRunOfOnes(InsertMask, MB, ME)) { 503 SDValue Tmp1, Tmp2; 504 505 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 506 isInt32Immediate(Op1.getOperand(1), Value)) { 507 Op1 = Op1.getOperand(0); 508 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 509 } 510 if (Op1Opc == ISD::AND) { 511 // The AND mask might not be a constant, and we need to make sure that 512 // if we're going to fold the masking with the insert, all bits not 513 // know to be zero in the mask are known to be one. 514 APInt MKZ, MKO; 515 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO); 516 bool CanFoldMask = InsertMask == MKO.getZExtValue(); 517 518 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 519 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 520 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 521 // Note that Value must be in range here (less than 32) because 522 // otherwise there would not be any bits set in InsertMask. 523 Op1 = Op1.getOperand(0).getOperand(0); 524 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 525 } 526 } 527 528 SH &= 31; 529 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 530 getI32Imm(ME, dl) }; 531 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); 532 } 533 } 534 return nullptr; 535 } 536 537 // Predict the number of instructions that would be generated by calling 538 // SelectInt64(N). 539 static unsigned SelectInt64CountDirect(int64_t Imm) { 540 // Assume no remaining bits. 541 unsigned Remainder = 0; 542 // Assume no shift required. 543 unsigned Shift = 0; 544 545 // If it can't be represented as a 32 bit value. 546 if (!isInt<32>(Imm)) { 547 Shift = countTrailingZeros<uint64_t>(Imm); 548 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 549 550 // If the shifted value fits 32 bits. 551 if (isInt<32>(ImmSh)) { 552 // Go with the shifted value. 553 Imm = ImmSh; 554 } else { 555 // Still stuck with a 64 bit value. 556 Remainder = Imm; 557 Shift = 32; 558 Imm >>= 32; 559 } 560 } 561 562 // Intermediate operand. 563 unsigned Result = 0; 564 565 // Handle first 32 bits. 566 unsigned Lo = Imm & 0xFFFF; 567 unsigned Hi = (Imm >> 16) & 0xFFFF; 568 569 // Simple value. 570 if (isInt<16>(Imm)) { 571 // Just the Lo bits. 572 ++Result; 573 } else if (Lo) { 574 // Handle the Hi bits and Lo bits. 575 Result += 2; 576 } else { 577 // Just the Hi bits. 578 ++Result; 579 } 580 581 // If no shift, we're done. 582 if (!Shift) return Result; 583 584 // Shift for next step if the upper 32-bits were not zero. 585 if (Imm) 586 ++Result; 587 588 // Add in the last bits as required. 589 if ((Hi = (Remainder >> 16) & 0xFFFF)) 590 ++Result; 591 if ((Lo = Remainder & 0xFFFF)) 592 ++Result; 593 594 return Result; 595 } 596 597 static uint64_t Rot64(uint64_t Imm, unsigned R) { 598 return (Imm << R) | (Imm >> (64 - R)); 599 } 600 601 static unsigned SelectInt64Count(int64_t Imm) { 602 unsigned Count = SelectInt64CountDirect(Imm); 603 if (Count == 1) 604 return Count; 605 606 for (unsigned r = 1; r < 63; ++r) { 607 uint64_t RImm = Rot64(Imm, r); 608 unsigned RCount = SelectInt64CountDirect(RImm) + 1; 609 Count = std::min(Count, RCount); 610 611 // See comments in SelectInt64 for an explanation of the logic below. 612 unsigned LS = findLastSet(RImm); 613 if (LS != r-1) 614 continue; 615 616 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 617 uint64_t RImmWithOnes = RImm | OnesMask; 618 619 RCount = SelectInt64CountDirect(RImmWithOnes) + 1; 620 Count = std::min(Count, RCount); 621 } 622 623 return Count; 624 } 625 626 // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count 627 // (above) needs to be kept in sync with this function. 628 static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) { 629 // Assume no remaining bits. 630 unsigned Remainder = 0; 631 // Assume no shift required. 632 unsigned Shift = 0; 633 634 // If it can't be represented as a 32 bit value. 635 if (!isInt<32>(Imm)) { 636 Shift = countTrailingZeros<uint64_t>(Imm); 637 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 638 639 // If the shifted value fits 32 bits. 640 if (isInt<32>(ImmSh)) { 641 // Go with the shifted value. 642 Imm = ImmSh; 643 } else { 644 // Still stuck with a 64 bit value. 645 Remainder = Imm; 646 Shift = 32; 647 Imm >>= 32; 648 } 649 } 650 651 // Intermediate operand. 652 SDNode *Result; 653 654 // Handle first 32 bits. 655 unsigned Lo = Imm & 0xFFFF; 656 unsigned Hi = (Imm >> 16) & 0xFFFF; 657 658 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 659 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 660 }; 661 662 // Simple value. 663 if (isInt<16>(Imm)) { 664 // Just the Lo bits. 665 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); 666 } else if (Lo) { 667 // Handle the Hi bits. 668 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 669 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 670 // And Lo bits. 671 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 672 SDValue(Result, 0), getI32Imm(Lo)); 673 } else { 674 // Just the Hi bits. 675 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 676 } 677 678 // If no shift, we're done. 679 if (!Shift) return Result; 680 681 // Shift for next step if the upper 32-bits were not zero. 682 if (Imm) { 683 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 684 SDValue(Result, 0), 685 getI32Imm(Shift), 686 getI32Imm(63 - Shift)); 687 } 688 689 // Add in the last bits as required. 690 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 691 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 692 SDValue(Result, 0), getI32Imm(Hi)); 693 } 694 if ((Lo = Remainder & 0xFFFF)) { 695 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 696 SDValue(Result, 0), getI32Imm(Lo)); 697 } 698 699 return Result; 700 } 701 702 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) { 703 unsigned Count = SelectInt64CountDirect(Imm); 704 if (Count == 1) 705 return SelectInt64Direct(CurDAG, dl, Imm); 706 707 unsigned RMin = 0; 708 709 int64_t MatImm; 710 unsigned MaskEnd; 711 712 for (unsigned r = 1; r < 63; ++r) { 713 uint64_t RImm = Rot64(Imm, r); 714 unsigned RCount = SelectInt64CountDirect(RImm) + 1; 715 if (RCount < Count) { 716 Count = RCount; 717 RMin = r; 718 MatImm = RImm; 719 MaskEnd = 63; 720 } 721 722 // If the immediate to generate has many trailing zeros, it might be 723 // worthwhile to generate a rotated value with too many leading ones 724 // (because that's free with li/lis's sign-extension semantics), and then 725 // mask them off after rotation. 726 727 unsigned LS = findLastSet(RImm); 728 // We're adding (63-LS) higher-order ones, and we expect to mask them off 729 // after performing the inverse rotation by (64-r). So we need that: 730 // 63-LS == 64-r => LS == r-1 731 if (LS != r-1) 732 continue; 733 734 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 735 uint64_t RImmWithOnes = RImm | OnesMask; 736 737 RCount = SelectInt64CountDirect(RImmWithOnes) + 1; 738 if (RCount < Count) { 739 Count = RCount; 740 RMin = r; 741 MatImm = RImmWithOnes; 742 MaskEnd = LS; 743 } 744 } 745 746 if (!RMin) 747 return SelectInt64Direct(CurDAG, dl, Imm); 748 749 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 750 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 751 }; 752 753 SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0); 754 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, 755 getI32Imm(64 - RMin), getI32Imm(MaskEnd)); 756 } 757 758 // Select a 64-bit constant. 759 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) { 760 SDLoc dl(N); 761 762 // Get 64 bit value. 763 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 764 return SelectInt64(CurDAG, dl, Imm); 765 } 766 767 namespace { 768 class BitPermutationSelector { 769 struct ValueBit { 770 SDValue V; 771 772 // The bit number in the value, using a convention where bit 0 is the 773 // lowest-order bit. 774 unsigned Idx; 775 776 enum Kind { 777 ConstZero, 778 Variable 779 } K; 780 781 ValueBit(SDValue V, unsigned I, Kind K = Variable) 782 : V(V), Idx(I), K(K) {} 783 ValueBit(Kind K = Variable) 784 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} 785 786 bool isZero() const { 787 return K == ConstZero; 788 } 789 790 bool hasValue() const { 791 return K == Variable; 792 } 793 794 SDValue getValue() const { 795 assert(hasValue() && "Cannot get the value of a constant bit"); 796 return V; 797 } 798 799 unsigned getValueBitIndex() const { 800 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 801 return Idx; 802 } 803 }; 804 805 // A bit group has the same underlying value and the same rotate factor. 806 struct BitGroup { 807 SDValue V; 808 unsigned RLAmt; 809 unsigned StartIdx, EndIdx; 810 811 // This rotation amount assumes that the lower 32 bits of the quantity are 812 // replicated in the high 32 bits by the rotation operator (which is done 813 // by rlwinm and friends in 64-bit mode). 814 bool Repl32; 815 // Did converting to Repl32 == true change the rotation factor? If it did, 816 // it decreased it by 32. 817 bool Repl32CR; 818 // Was this group coalesced after setting Repl32 to true? 819 bool Repl32Coalesced; 820 821 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 822 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 823 Repl32Coalesced(false) { 824 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R << 825 " [" << S << ", " << E << "]\n"); 826 } 827 }; 828 829 // Information on each (Value, RLAmt) pair (like the number of groups 830 // associated with each) used to choose the lowering method. 831 struct ValueRotInfo { 832 SDValue V; 833 unsigned RLAmt; 834 unsigned NumGroups; 835 unsigned FirstGroupStartIdx; 836 bool Repl32; 837 838 ValueRotInfo() 839 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX), 840 Repl32(false) {} 841 842 // For sorting (in reverse order) by NumGroups, and then by 843 // FirstGroupStartIdx. 844 bool operator < (const ValueRotInfo &Other) const { 845 // We need to sort so that the non-Repl32 come first because, when we're 846 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 847 // masking operation. 848 if (Repl32 < Other.Repl32) 849 return true; 850 else if (Repl32 > Other.Repl32) 851 return false; 852 else if (NumGroups > Other.NumGroups) 853 return true; 854 else if (NumGroups < Other.NumGroups) 855 return false; 856 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 857 return true; 858 return false; 859 } 860 }; 861 862 // Return true if something interesting was deduced, return false if we're 863 // providing only a generic representation of V (or something else likewise 864 // uninteresting for instruction selection). 865 bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) { 866 switch (V.getOpcode()) { 867 default: break; 868 case ISD::ROTL: 869 if (isa<ConstantSDNode>(V.getOperand(1))) { 870 unsigned RotAmt = V.getConstantOperandVal(1); 871 872 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 873 getValueBits(V.getOperand(0), LHSBits); 874 875 for (unsigned i = 0; i < Bits.size(); ++i) 876 Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt]; 877 878 return true; 879 } 880 break; 881 case ISD::SHL: 882 if (isa<ConstantSDNode>(V.getOperand(1))) { 883 unsigned ShiftAmt = V.getConstantOperandVal(1); 884 885 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 886 getValueBits(V.getOperand(0), LHSBits); 887 888 for (unsigned i = ShiftAmt; i < Bits.size(); ++i) 889 Bits[i] = LHSBits[i - ShiftAmt]; 890 891 for (unsigned i = 0; i < ShiftAmt; ++i) 892 Bits[i] = ValueBit(ValueBit::ConstZero); 893 894 return true; 895 } 896 break; 897 case ISD::SRL: 898 if (isa<ConstantSDNode>(V.getOperand(1))) { 899 unsigned ShiftAmt = V.getConstantOperandVal(1); 900 901 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 902 getValueBits(V.getOperand(0), LHSBits); 903 904 for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i) 905 Bits[i] = LHSBits[i + ShiftAmt]; 906 907 for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i) 908 Bits[i] = ValueBit(ValueBit::ConstZero); 909 910 return true; 911 } 912 break; 913 case ISD::AND: 914 if (isa<ConstantSDNode>(V.getOperand(1))) { 915 uint64_t Mask = V.getConstantOperandVal(1); 916 917 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 918 bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits); 919 920 for (unsigned i = 0; i < Bits.size(); ++i) 921 if (((Mask >> i) & 1) == 1) 922 Bits[i] = LHSBits[i]; 923 else 924 Bits[i] = ValueBit(ValueBit::ConstZero); 925 926 // Mark this as interesting, only if the LHS was also interesting. This 927 // prevents the overall procedure from matching a single immediate 'and' 928 // (which is non-optimal because such an and might be folded with other 929 // things if we don't select it here). 930 return LHSTrivial; 931 } 932 break; 933 case ISD::OR: { 934 SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size()); 935 getValueBits(V.getOperand(0), LHSBits); 936 getValueBits(V.getOperand(1), RHSBits); 937 938 bool AllDisjoint = true; 939 for (unsigned i = 0; i < Bits.size(); ++i) 940 if (LHSBits[i].isZero()) 941 Bits[i] = RHSBits[i]; 942 else if (RHSBits[i].isZero()) 943 Bits[i] = LHSBits[i]; 944 else { 945 AllDisjoint = false; 946 break; 947 } 948 949 if (!AllDisjoint) 950 break; 951 952 return true; 953 } 954 } 955 956 for (unsigned i = 0; i < Bits.size(); ++i) 957 Bits[i] = ValueBit(V, i); 958 959 return false; 960 } 961 962 // For each value (except the constant ones), compute the left-rotate amount 963 // to get it from its original to final position. 964 void computeRotationAmounts() { 965 HasZeros = false; 966 RLAmt.resize(Bits.size()); 967 for (unsigned i = 0; i < Bits.size(); ++i) 968 if (Bits[i].hasValue()) { 969 unsigned VBI = Bits[i].getValueBitIndex(); 970 if (i >= VBI) 971 RLAmt[i] = i - VBI; 972 else 973 RLAmt[i] = Bits.size() - (VBI - i); 974 } else if (Bits[i].isZero()) { 975 HasZeros = true; 976 RLAmt[i] = UINT32_MAX; 977 } else { 978 llvm_unreachable("Unknown value bit type"); 979 } 980 } 981 982 // Collect groups of consecutive bits with the same underlying value and 983 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 984 // they break up groups. 985 void collectBitGroups(bool LateMask) { 986 BitGroups.clear(); 987 988 unsigned LastRLAmt = RLAmt[0]; 989 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 990 unsigned LastGroupStartIdx = 0; 991 for (unsigned i = 1; i < Bits.size(); ++i) { 992 unsigned ThisRLAmt = RLAmt[i]; 993 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 994 if (LateMask && !ThisValue) { 995 ThisValue = LastValue; 996 ThisRLAmt = LastRLAmt; 997 // If we're doing late masking, then the first bit group always starts 998 // at zero (even if the first bits were zero). 999 if (BitGroups.empty()) 1000 LastGroupStartIdx = 0; 1001 } 1002 1003 // If this bit has the same underlying value and the same rotate factor as 1004 // the last one, then they're part of the same group. 1005 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1006 continue; 1007 1008 if (LastValue.getNode()) 1009 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1010 i-1)); 1011 LastRLAmt = ThisRLAmt; 1012 LastValue = ThisValue; 1013 LastGroupStartIdx = i; 1014 } 1015 if (LastValue.getNode()) 1016 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1017 Bits.size()-1)); 1018 1019 if (BitGroups.empty()) 1020 return; 1021 1022 // We might be able to combine the first and last groups. 1023 if (BitGroups.size() > 1) { 1024 // If the first and last groups are the same, then remove the first group 1025 // in favor of the last group, making the ending index of the last group 1026 // equal to the ending index of the to-be-removed first group. 1027 if (BitGroups[0].StartIdx == 0 && 1028 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1029 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1030 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1031 DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1032 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1033 BitGroups.erase(BitGroups.begin()); 1034 } 1035 } 1036 } 1037 1038 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1039 // associated with each. If there is a degeneracy, pick the one that occurs 1040 // first (in the final value). 1041 void collectValueRotInfo() { 1042 ValueRots.clear(); 1043 1044 for (auto &BG : BitGroups) { 1045 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1046 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1047 VRI.V = BG.V; 1048 VRI.RLAmt = BG.RLAmt; 1049 VRI.Repl32 = BG.Repl32; 1050 VRI.NumGroups += 1; 1051 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1052 } 1053 1054 // Now that we've collected the various ValueRotInfo instances, we need to 1055 // sort them. 1056 ValueRotsVec.clear(); 1057 for (auto &I : ValueRots) { 1058 ValueRotsVec.push_back(I.second); 1059 } 1060 std::sort(ValueRotsVec.begin(), ValueRotsVec.end()); 1061 } 1062 1063 // In 64-bit mode, rlwinm and friends have a rotation operator that 1064 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1065 // indices of these instructions can only be in the lower 32 bits, so they 1066 // can only represent some 64-bit bit groups. However, when they can be used, 1067 // the 32-bit replication can be used to represent, as a single bit group, 1068 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1069 // groups when possible. Returns true if any of the bit groups were 1070 // converted. 1071 void assignRepl32BitGroups() { 1072 // If we have bits like this: 1073 // 1074 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1075 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1076 // Groups: | RLAmt = 8 | RLAmt = 40 | 1077 // 1078 // But, making use of a 32-bit operation that replicates the low-order 32 1079 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1080 // of 8. 1081 1082 auto IsAllLow32 = [this](BitGroup & BG) { 1083 if (BG.StartIdx <= BG.EndIdx) { 1084 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1085 if (!Bits[i].hasValue()) 1086 continue; 1087 if (Bits[i].getValueBitIndex() >= 32) 1088 return false; 1089 } 1090 } else { 1091 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1092 if (!Bits[i].hasValue()) 1093 continue; 1094 if (Bits[i].getValueBitIndex() >= 32) 1095 return false; 1096 } 1097 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1098 if (!Bits[i].hasValue()) 1099 continue; 1100 if (Bits[i].getValueBitIndex() >= 32) 1101 return false; 1102 } 1103 } 1104 1105 return true; 1106 }; 1107 1108 for (auto &BG : BitGroups) { 1109 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 1110 if (IsAllLow32(BG)) { 1111 if (BG.RLAmt >= 32) { 1112 BG.RLAmt -= 32; 1113 BG.Repl32CR = true; 1114 } 1115 1116 BG.Repl32 = true; 1117 1118 DEBUG(dbgs() << "\t32-bit replicated bit group for " << 1119 BG.V.getNode() << " RLAmt = " << BG.RLAmt << 1120 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 1121 } 1122 } 1123 } 1124 1125 // Now walk through the bit groups, consolidating where possible. 1126 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1127 // We might want to remove this bit group by merging it with the previous 1128 // group (which might be the ending group). 1129 auto IP = (I == BitGroups.begin()) ? 1130 std::prev(BitGroups.end()) : std::prev(I); 1131 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 1132 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 1133 1134 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " << 1135 I->V.getNode() << " RLAmt = " << I->RLAmt << 1136 " [" << I->StartIdx << ", " << I->EndIdx << 1137 "] with group with range [" << 1138 IP->StartIdx << ", " << IP->EndIdx << "]\n"); 1139 1140 IP->EndIdx = I->EndIdx; 1141 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 1142 IP->Repl32Coalesced = true; 1143 I = BitGroups.erase(I); 1144 continue; 1145 } else { 1146 // There is a special case worth handling: If there is a single group 1147 // covering the entire upper 32 bits, and it can be merged with both 1148 // the next and previous groups (which might be the same group), then 1149 // do so. If it is the same group (so there will be only one group in 1150 // total), then we need to reverse the order of the range so that it 1151 // covers the entire 64 bits. 1152 if (I->StartIdx == 32 && I->EndIdx == 63) { 1153 assert(std::next(I) == BitGroups.end() && 1154 "bit group ends at index 63 but there is another?"); 1155 auto IN = BitGroups.begin(); 1156 1157 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 1158 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 1159 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 1160 IsAllLow32(*I)) { 1161 1162 DEBUG(dbgs() << "\tcombining bit group for " << 1163 I->V.getNode() << " RLAmt = " << I->RLAmt << 1164 " [" << I->StartIdx << ", " << I->EndIdx << 1165 "] with 32-bit replicated groups with ranges [" << 1166 IP->StartIdx << ", " << IP->EndIdx << "] and [" << 1167 IN->StartIdx << ", " << IN->EndIdx << "]\n"); 1168 1169 if (IP == IN) { 1170 // There is only one other group; change it to cover the whole 1171 // range (backward, so that it can still be Repl32 but cover the 1172 // whole 64-bit range). 1173 IP->StartIdx = 31; 1174 IP->EndIdx = 30; 1175 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 1176 IP->Repl32Coalesced = true; 1177 I = BitGroups.erase(I); 1178 } else { 1179 // There are two separate groups, one before this group and one 1180 // after us (at the beginning). We're going to remove this group, 1181 // but also the group at the very beginning. 1182 IP->EndIdx = IN->EndIdx; 1183 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 1184 IP->Repl32Coalesced = true; 1185 I = BitGroups.erase(I); 1186 BitGroups.erase(BitGroups.begin()); 1187 } 1188 1189 // This must be the last group in the vector (and we might have 1190 // just invalidated the iterator above), so break here. 1191 break; 1192 } 1193 } 1194 } 1195 1196 ++I; 1197 } 1198 } 1199 1200 SDValue getI32Imm(unsigned Imm, SDLoc dl) { 1201 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1202 } 1203 1204 uint64_t getZerosMask() { 1205 uint64_t Mask = 0; 1206 for (unsigned i = 0; i < Bits.size(); ++i) { 1207 if (Bits[i].hasValue()) 1208 continue; 1209 Mask |= (UINT64_C(1) << i); 1210 } 1211 1212 return ~Mask; 1213 } 1214 1215 // Depending on the number of groups for a particular value, it might be 1216 // better to rotate, mask explicitly (using andi/andis), and then or the 1217 // result. Select this part of the result first. 1218 void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) { 1219 if (BPermRewriterNoMasking) 1220 return; 1221 1222 for (ValueRotInfo &VRI : ValueRotsVec) { 1223 unsigned Mask = 0; 1224 for (unsigned i = 0; i < Bits.size(); ++i) { 1225 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 1226 continue; 1227 if (RLAmt[i] != VRI.RLAmt) 1228 continue; 1229 Mask |= (1u << i); 1230 } 1231 1232 // Compute the masks for andi/andis that would be necessary. 1233 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1234 assert((ANDIMask != 0 || ANDISMask != 0) && 1235 "No set bits in mask for value bit groups"); 1236 bool NeedsRotate = VRI.RLAmt != 0; 1237 1238 // We're trying to minimize the number of instructions. If we have one 1239 // group, using one of andi/andis can break even. If we have three 1240 // groups, we can use both andi and andis and break even (to use both 1241 // andi and andis we also need to or the results together). We need four 1242 // groups if we also need to rotate. To use andi/andis we need to do more 1243 // than break even because rotate-and-mask instructions tend to be easier 1244 // to schedule. 1245 1246 // FIXME: We've biased here against using andi/andis, which is right for 1247 // POWER cores, but not optimal everywhere. For example, on the A2, 1248 // andi/andis have single-cycle latency whereas the rotate-and-mask 1249 // instructions take two cycles, and it would be better to bias toward 1250 // andi/andis in break-even cases. 1251 1252 unsigned NumAndInsts = (unsigned) NeedsRotate + 1253 (unsigned) (ANDIMask != 0) + 1254 (unsigned) (ANDISMask != 0) + 1255 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 1256 (unsigned) (bool) Res; 1257 1258 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << 1259 " RL: " << VRI.RLAmt << ":" << 1260 "\n\t\t\tisel using masking: " << NumAndInsts << 1261 " using rotates: " << VRI.NumGroups << "\n"); 1262 1263 if (NumAndInsts >= VRI.NumGroups) 1264 continue; 1265 1266 DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1267 1268 if (InstCnt) *InstCnt += NumAndInsts; 1269 1270 SDValue VRot; 1271 if (VRI.RLAmt) { 1272 SDValue Ops[] = 1273 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), 1274 getI32Imm(31, dl) }; 1275 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 1276 Ops), 0); 1277 } else { 1278 VRot = VRI.V; 1279 } 1280 1281 SDValue ANDIVal, ANDISVal; 1282 if (ANDIMask != 0) 1283 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1284 VRot, getI32Imm(ANDIMask, dl)), 0); 1285 if (ANDISMask != 0) 1286 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1287 VRot, getI32Imm(ANDISMask, dl)), 0); 1288 1289 SDValue TotalVal; 1290 if (!ANDIVal) 1291 TotalVal = ANDISVal; 1292 else if (!ANDISVal) 1293 TotalVal = ANDIVal; 1294 else 1295 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1296 ANDIVal, ANDISVal), 0); 1297 1298 if (!Res) 1299 Res = TotalVal; 1300 else 1301 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1302 Res, TotalVal), 0); 1303 1304 // Now, remove all groups with this underlying value and rotation 1305 // factor. 1306 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1307 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1308 }); 1309 } 1310 } 1311 1312 // Instruction selection for the 32-bit case. 1313 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 1314 SDLoc dl(N); 1315 SDValue Res; 1316 1317 if (InstCnt) *InstCnt = 0; 1318 1319 // Take care of cases that should use andi/andis first. 1320 SelectAndParts32(dl, Res, InstCnt); 1321 1322 // If we've not yet selected a 'starting' instruction, and we have no zeros 1323 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1324 // number of groups), and start with this rotated value. 1325 if ((!HasZeros || LateMask) && !Res) { 1326 ValueRotInfo &VRI = ValueRotsVec[0]; 1327 if (VRI.RLAmt) { 1328 if (InstCnt) *InstCnt += 1; 1329 SDValue Ops[] = 1330 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), 1331 getI32Imm(31, dl) }; 1332 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 1333 0); 1334 } else { 1335 Res = VRI.V; 1336 } 1337 1338 // Now, remove all groups with this underlying value and rotation factor. 1339 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1340 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1341 }); 1342 } 1343 1344 if (InstCnt) *InstCnt += BitGroups.size(); 1345 1346 // Insert the other groups (one at a time). 1347 for (auto &BG : BitGroups) { 1348 if (!Res) { 1349 SDValue Ops[] = 1350 { BG.V, getI32Imm(BG.RLAmt, dl), 1351 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1352 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1353 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 1354 } else { 1355 SDValue Ops[] = 1356 { Res, BG.V, getI32Imm(BG.RLAmt, dl), 1357 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1358 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1359 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 1360 } 1361 } 1362 1363 if (LateMask) { 1364 unsigned Mask = (unsigned) getZerosMask(); 1365 1366 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1367 assert((ANDIMask != 0 || ANDISMask != 0) && 1368 "No set bits in zeros mask?"); 1369 1370 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1371 (unsigned) (ANDISMask != 0) + 1372 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1373 1374 SDValue ANDIVal, ANDISVal; 1375 if (ANDIMask != 0) 1376 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1377 Res, getI32Imm(ANDIMask, dl)), 0); 1378 if (ANDISMask != 0) 1379 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1380 Res, getI32Imm(ANDISMask, dl)), 0); 1381 1382 if (!ANDIVal) 1383 Res = ANDISVal; 1384 else if (!ANDISVal) 1385 Res = ANDIVal; 1386 else 1387 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1388 ANDIVal, ANDISVal), 0); 1389 } 1390 1391 return Res.getNode(); 1392 } 1393 1394 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 1395 unsigned MaskStart, unsigned MaskEnd, 1396 bool IsIns) { 1397 // In the notation used by the instructions, 'start' and 'end' are reversed 1398 // because bits are counted from high to low order. 1399 unsigned InstMaskStart = 64 - MaskEnd - 1, 1400 InstMaskEnd = 64 - MaskStart - 1; 1401 1402 if (Repl32) 1403 return 1; 1404 1405 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 1406 InstMaskEnd == 63 - RLAmt) 1407 return 1; 1408 1409 return 2; 1410 } 1411 1412 // For 64-bit values, not all combinations of rotates and masks are 1413 // available. Produce one if it is available. 1414 SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32, 1415 unsigned MaskStart, unsigned MaskEnd, 1416 unsigned *InstCnt = nullptr) { 1417 // In the notation used by the instructions, 'start' and 'end' are reversed 1418 // because bits are counted from high to low order. 1419 unsigned InstMaskStart = 64 - MaskEnd - 1, 1420 InstMaskEnd = 64 - MaskStart - 1; 1421 1422 if (InstCnt) *InstCnt += 1; 1423 1424 if (Repl32) { 1425 // This rotation amount assumes that the lower 32 bits of the quantity 1426 // are replicated in the high 32 bits by the rotation operator (which is 1427 // done by rlwinm and friends). 1428 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1429 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1430 SDValue Ops[] = 1431 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), 1432 getI32Imm(InstMaskEnd - 32, dl) }; 1433 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 1434 Ops), 0); 1435 } 1436 1437 if (InstMaskEnd == 63) { 1438 SDValue Ops[] = 1439 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; 1440 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 1441 } 1442 1443 if (InstMaskStart == 0) { 1444 SDValue Ops[] = 1445 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) }; 1446 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 1447 } 1448 1449 if (InstMaskEnd == 63 - RLAmt) { 1450 SDValue Ops[] = 1451 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; 1452 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 1453 } 1454 1455 // We cannot do this with a single instruction, so we'll use two. The 1456 // problem is that we're not free to choose both a rotation amount and mask 1457 // start and end independently. We can choose an arbitrary mask start and 1458 // end, but then the rotation amount is fixed. Rotation, however, can be 1459 // inverted, and so by applying an "inverse" rotation first, we can get the 1460 // desired result. 1461 if (InstCnt) *InstCnt += 1; 1462 1463 // The rotation mask for the second instruction must be MaskStart. 1464 unsigned RLAmt2 = MaskStart; 1465 // The first instruction must rotate V so that the overall rotation amount 1466 // is RLAmt. 1467 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 1468 if (RLAmt1) 1469 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 1470 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 1471 } 1472 1473 // For 64-bit values, not all combinations of rotates and masks are 1474 // available. Produce a rotate-mask-and-insert if one is available. 1475 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt, 1476 bool Repl32, unsigned MaskStart, 1477 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 1478 // In the notation used by the instructions, 'start' and 'end' are reversed 1479 // because bits are counted from high to low order. 1480 unsigned InstMaskStart = 64 - MaskEnd - 1, 1481 InstMaskEnd = 64 - MaskStart - 1; 1482 1483 if (InstCnt) *InstCnt += 1; 1484 1485 if (Repl32) { 1486 // This rotation amount assumes that the lower 32 bits of the quantity 1487 // are replicated in the high 32 bits by the rotation operator (which is 1488 // done by rlwinm and friends). 1489 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1490 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1491 SDValue Ops[] = 1492 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), 1493 getI32Imm(InstMaskEnd - 32, dl) }; 1494 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 1495 Ops), 0); 1496 } 1497 1498 if (InstMaskEnd == 63 - RLAmt) { 1499 SDValue Ops[] = 1500 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; 1501 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 1502 } 1503 1504 // We cannot do this with a single instruction, so we'll use two. The 1505 // problem is that we're not free to choose both a rotation amount and mask 1506 // start and end independently. We can choose an arbitrary mask start and 1507 // end, but then the rotation amount is fixed. Rotation, however, can be 1508 // inverted, and so by applying an "inverse" rotation first, we can get the 1509 // desired result. 1510 if (InstCnt) *InstCnt += 1; 1511 1512 // The rotation mask for the second instruction must be MaskStart. 1513 unsigned RLAmt2 = MaskStart; 1514 // The first instruction must rotate V so that the overall rotation amount 1515 // is RLAmt. 1516 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 1517 if (RLAmt1) 1518 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 1519 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 1520 } 1521 1522 void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) { 1523 if (BPermRewriterNoMasking) 1524 return; 1525 1526 // The idea here is the same as in the 32-bit version, but with additional 1527 // complications from the fact that Repl32 might be true. Because we 1528 // aggressively convert bit groups to Repl32 form (which, for small 1529 // rotation factors, involves no other change), and then coalesce, it might 1530 // be the case that a single 64-bit masking operation could handle both 1531 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 1532 // form allowed coalescing, then we must use a 32-bit rotaton in order to 1533 // completely capture the new combined bit group. 1534 1535 for (ValueRotInfo &VRI : ValueRotsVec) { 1536 uint64_t Mask = 0; 1537 1538 // We need to add to the mask all bits from the associated bit groups. 1539 // If Repl32 is false, we need to add bits from bit groups that have 1540 // Repl32 true, but are trivially convertable to Repl32 false. Such a 1541 // group is trivially convertable if it overlaps only with the lower 32 1542 // bits, and the group has not been coalesced. 1543 auto MatchingBG = [VRI](const BitGroup &BG) { 1544 if (VRI.V != BG.V) 1545 return false; 1546 1547 unsigned EffRLAmt = BG.RLAmt; 1548 if (!VRI.Repl32 && BG.Repl32) { 1549 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 1550 !BG.Repl32Coalesced) { 1551 if (BG.Repl32CR) 1552 EffRLAmt += 32; 1553 } else { 1554 return false; 1555 } 1556 } else if (VRI.Repl32 != BG.Repl32) { 1557 return false; 1558 } 1559 1560 if (VRI.RLAmt != EffRLAmt) 1561 return false; 1562 1563 return true; 1564 }; 1565 1566 for (auto &BG : BitGroups) { 1567 if (!MatchingBG(BG)) 1568 continue; 1569 1570 if (BG.StartIdx <= BG.EndIdx) { 1571 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 1572 Mask |= (UINT64_C(1) << i); 1573 } else { 1574 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 1575 Mask |= (UINT64_C(1) << i); 1576 for (unsigned i = 0; i <= BG.EndIdx; ++i) 1577 Mask |= (UINT64_C(1) << i); 1578 } 1579 } 1580 1581 // We can use the 32-bit andi/andis technique if the mask does not 1582 // require any higher-order bits. This can save an instruction compared 1583 // to always using the general 64-bit technique. 1584 bool Use32BitInsts = isUInt<32>(Mask); 1585 // Compute the masks for andi/andis that would be necessary. 1586 unsigned ANDIMask = (Mask & UINT16_MAX), 1587 ANDISMask = (Mask >> 16) & UINT16_MAX; 1588 1589 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 1590 1591 unsigned NumAndInsts = (unsigned) NeedsRotate + 1592 (unsigned) (bool) Res; 1593 if (Use32BitInsts) 1594 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 1595 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1596 else 1597 NumAndInsts += SelectInt64Count(Mask) + /* and */ 1; 1598 1599 unsigned NumRLInsts = 0; 1600 bool FirstBG = true; 1601 for (auto &BG : BitGroups) { 1602 if (!MatchingBG(BG)) 1603 continue; 1604 NumRLInsts += 1605 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 1606 !FirstBG); 1607 FirstBG = false; 1608 } 1609 1610 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << 1611 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << 1612 "\n\t\t\tisel using masking: " << NumAndInsts << 1613 " using rotates: " << NumRLInsts << "\n"); 1614 1615 // When we'd use andi/andis, we bias toward using the rotates (andi only 1616 // has a record form, and is cracked on POWER cores). However, when using 1617 // general 64-bit constant formation, bias toward the constant form, 1618 // because that exposes more opportunities for CSE. 1619 if (NumAndInsts > NumRLInsts) 1620 continue; 1621 if (Use32BitInsts && NumAndInsts == NumRLInsts) 1622 continue; 1623 1624 DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1625 1626 if (InstCnt) *InstCnt += NumAndInsts; 1627 1628 SDValue VRot; 1629 // We actually need to generate a rotation if we have a non-zero rotation 1630 // factor or, in the Repl32 case, if we care about any of the 1631 // higher-order replicated bits. In the latter case, we generate a mask 1632 // backward so that it actually includes the entire 64 bits. 1633 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 1634 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 1635 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 1636 else 1637 VRot = VRI.V; 1638 1639 SDValue TotalVal; 1640 if (Use32BitInsts) { 1641 assert((ANDIMask != 0 || ANDISMask != 0) && 1642 "No set bits in mask when using 32-bit ands for 64-bit value"); 1643 1644 SDValue ANDIVal, ANDISVal; 1645 if (ANDIMask != 0) 1646 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 1647 VRot, getI32Imm(ANDIMask, dl)), 0); 1648 if (ANDISMask != 0) 1649 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 1650 VRot, getI32Imm(ANDISMask, dl)), 0); 1651 1652 if (!ANDIVal) 1653 TotalVal = ANDISVal; 1654 else if (!ANDISVal) 1655 TotalVal = ANDIVal; 1656 else 1657 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1658 ANDIVal, ANDISVal), 0); 1659 } else { 1660 TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0); 1661 TotalVal = 1662 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 1663 VRot, TotalVal), 0); 1664 } 1665 1666 if (!Res) 1667 Res = TotalVal; 1668 else 1669 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1670 Res, TotalVal), 0); 1671 1672 // Now, remove all groups with this underlying value and rotation 1673 // factor. 1674 eraseMatchingBitGroups(MatchingBG); 1675 } 1676 } 1677 1678 // Instruction selection for the 64-bit case. 1679 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 1680 SDLoc dl(N); 1681 SDValue Res; 1682 1683 if (InstCnt) *InstCnt = 0; 1684 1685 // Take care of cases that should use andi/andis first. 1686 SelectAndParts64(dl, Res, InstCnt); 1687 1688 // If we've not yet selected a 'starting' instruction, and we have no zeros 1689 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1690 // number of groups), and start with this rotated value. 1691 if ((!HasZeros || LateMask) && !Res) { 1692 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 1693 // groups will come first, and so the VRI representing the largest number 1694 // of groups might not be first (it might be the first Repl32 groups). 1695 unsigned MaxGroupsIdx = 0; 1696 if (!ValueRotsVec[0].Repl32) { 1697 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 1698 if (ValueRotsVec[i].Repl32) { 1699 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 1700 MaxGroupsIdx = i; 1701 break; 1702 } 1703 } 1704 1705 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 1706 bool NeedsRotate = false; 1707 if (VRI.RLAmt) { 1708 NeedsRotate = true; 1709 } else if (VRI.Repl32) { 1710 for (auto &BG : BitGroups) { 1711 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 1712 BG.Repl32 != VRI.Repl32) 1713 continue; 1714 1715 // We don't need a rotate if the bit group is confined to the lower 1716 // 32 bits. 1717 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 1718 continue; 1719 1720 NeedsRotate = true; 1721 break; 1722 } 1723 } 1724 1725 if (NeedsRotate) 1726 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 1727 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 1728 InstCnt); 1729 else 1730 Res = VRI.V; 1731 1732 // Now, remove all groups with this underlying value and rotation factor. 1733 if (Res) 1734 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1735 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 1736 BG.Repl32 == VRI.Repl32; 1737 }); 1738 } 1739 1740 // Because 64-bit rotates are more flexible than inserts, we might have a 1741 // preference regarding which one we do first (to save one instruction). 1742 if (!Res) 1743 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 1744 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 1745 false) < 1746 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 1747 true)) { 1748 if (I != BitGroups.begin()) { 1749 BitGroup BG = *I; 1750 BitGroups.erase(I); 1751 BitGroups.insert(BitGroups.begin(), BG); 1752 } 1753 1754 break; 1755 } 1756 } 1757 1758 // Insert the other groups (one at a time). 1759 for (auto &BG : BitGroups) { 1760 if (!Res) 1761 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 1762 BG.EndIdx, InstCnt); 1763 else 1764 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 1765 BG.StartIdx, BG.EndIdx, InstCnt); 1766 } 1767 1768 if (LateMask) { 1769 uint64_t Mask = getZerosMask(); 1770 1771 // We can use the 32-bit andi/andis technique if the mask does not 1772 // require any higher-order bits. This can save an instruction compared 1773 // to always using the general 64-bit technique. 1774 bool Use32BitInsts = isUInt<32>(Mask); 1775 // Compute the masks for andi/andis that would be necessary. 1776 unsigned ANDIMask = (Mask & UINT16_MAX), 1777 ANDISMask = (Mask >> 16) & UINT16_MAX; 1778 1779 if (Use32BitInsts) { 1780 assert((ANDIMask != 0 || ANDISMask != 0) && 1781 "No set bits in mask when using 32-bit ands for 64-bit value"); 1782 1783 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1784 (unsigned) (ANDISMask != 0) + 1785 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1786 1787 SDValue ANDIVal, ANDISVal; 1788 if (ANDIMask != 0) 1789 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 1790 Res, getI32Imm(ANDIMask, dl)), 0); 1791 if (ANDISMask != 0) 1792 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 1793 Res, getI32Imm(ANDISMask, dl)), 0); 1794 1795 if (!ANDIVal) 1796 Res = ANDISVal; 1797 else if (!ANDISVal) 1798 Res = ANDIVal; 1799 else 1800 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1801 ANDIVal, ANDISVal), 0); 1802 } else { 1803 if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1; 1804 1805 SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0); 1806 Res = 1807 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 1808 Res, MaskVal), 0); 1809 } 1810 } 1811 1812 return Res.getNode(); 1813 } 1814 1815 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 1816 // Fill in BitGroups. 1817 collectBitGroups(LateMask); 1818 if (BitGroups.empty()) 1819 return nullptr; 1820 1821 // For 64-bit values, figure out when we can use 32-bit instructions. 1822 if (Bits.size() == 64) 1823 assignRepl32BitGroups(); 1824 1825 // Fill in ValueRotsVec. 1826 collectValueRotInfo(); 1827 1828 if (Bits.size() == 32) { 1829 return Select32(N, LateMask, InstCnt); 1830 } else { 1831 assert(Bits.size() == 64 && "Not 64 bits here?"); 1832 return Select64(N, LateMask, InstCnt); 1833 } 1834 1835 return nullptr; 1836 } 1837 1838 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 1839 BitGroups.erase(std::remove_if(BitGroups.begin(), BitGroups.end(), F), 1840 BitGroups.end()); 1841 } 1842 1843 SmallVector<ValueBit, 64> Bits; 1844 1845 bool HasZeros; 1846 SmallVector<unsigned, 64> RLAmt; 1847 1848 SmallVector<BitGroup, 16> BitGroups; 1849 1850 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 1851 SmallVector<ValueRotInfo, 16> ValueRotsVec; 1852 1853 SelectionDAG *CurDAG; 1854 1855 public: 1856 BitPermutationSelector(SelectionDAG *DAG) 1857 : CurDAG(DAG) {} 1858 1859 // Here we try to match complex bit permutations into a set of 1860 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 1861 // known to produce optimial code for common cases (like i32 byte swapping). 1862 SDNode *Select(SDNode *N) { 1863 Bits.resize(N->getValueType(0).getSizeInBits()); 1864 if (!getValueBits(SDValue(N, 0), Bits)) 1865 return nullptr; 1866 1867 DEBUG(dbgs() << "Considering bit-permutation-based instruction" 1868 " selection for: "); 1869 DEBUG(N->dump(CurDAG)); 1870 1871 // Fill it RLAmt and set HasZeros. 1872 computeRotationAmounts(); 1873 1874 if (!HasZeros) 1875 return Select(N, false); 1876 1877 // We currently have two techniques for handling results with zeros: early 1878 // masking (the default) and late masking. Late masking is sometimes more 1879 // efficient, but because the structure of the bit groups is different, it 1880 // is hard to tell without generating both and comparing the results. With 1881 // late masking, we ignore zeros in the resulting value when inserting each 1882 // set of bit groups, and then mask in the zeros at the end. With early 1883 // masking, we only insert the non-zero parts of the result at every step. 1884 1885 unsigned InstCnt, InstCntLateMask; 1886 DEBUG(dbgs() << "\tEarly masking:\n"); 1887 SDNode *RN = Select(N, false, &InstCnt); 1888 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 1889 1890 DEBUG(dbgs() << "\tLate masking:\n"); 1891 SDNode *RNLM = Select(N, true, &InstCntLateMask); 1892 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask << 1893 " instructions\n"); 1894 1895 if (InstCnt <= InstCntLateMask) { 1896 DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 1897 return RN; 1898 } 1899 1900 DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 1901 return RNLM; 1902 } 1903 }; 1904 } // anonymous namespace 1905 1906 SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) { 1907 if (N->getValueType(0) != MVT::i32 && 1908 N->getValueType(0) != MVT::i64) 1909 return nullptr; 1910 1911 if (!UseBitPermRewriter) 1912 return nullptr; 1913 1914 switch (N->getOpcode()) { 1915 default: break; 1916 case ISD::ROTL: 1917 case ISD::SHL: 1918 case ISD::SRL: 1919 case ISD::AND: 1920 case ISD::OR: { 1921 BitPermutationSelector BPS(CurDAG); 1922 return BPS.Select(N); 1923 } 1924 } 1925 1926 return nullptr; 1927 } 1928 1929 /// SelectCC - Select a comparison of the specified values with the specified 1930 /// condition code, returning the CR# of the expression. 1931 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, 1932 ISD::CondCode CC, SDLoc dl) { 1933 // Always select the LHS. 1934 unsigned Opc; 1935 1936 if (LHS.getValueType() == MVT::i32) { 1937 unsigned Imm; 1938 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 1939 if (isInt32Immediate(RHS, Imm)) { 1940 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 1941 if (isUInt<16>(Imm)) 1942 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 1943 getI32Imm(Imm & 0xFFFF, dl)), 1944 0); 1945 // If this is a 16-bit signed immediate, fold it. 1946 if (isInt<16>((int)Imm)) 1947 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 1948 getI32Imm(Imm & 0xFFFF, dl)), 1949 0); 1950 1951 // For non-equality comparisons, the default code would materialize the 1952 // constant, then compare against it, like this: 1953 // lis r2, 4660 1954 // ori r2, r2, 22136 1955 // cmpw cr0, r3, r2 1956 // Since we are just comparing for equality, we can emit this instead: 1957 // xoris r0,r3,0x1234 1958 // cmplwi cr0,r0,0x5678 1959 // beq cr0,L6 1960 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 1961 getI32Imm(Imm >> 16, dl)), 0); 1962 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 1963 getI32Imm(Imm & 0xFFFF, dl)), 0); 1964 } 1965 Opc = PPC::CMPLW; 1966 } else if (ISD::isUnsignedIntSetCC(CC)) { 1967 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 1968 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 1969 getI32Imm(Imm & 0xFFFF, dl)), 0); 1970 Opc = PPC::CMPLW; 1971 } else { 1972 short SImm; 1973 if (isIntS16Immediate(RHS, SImm)) 1974 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 1975 getI32Imm((int)SImm & 0xFFFF, 1976 dl)), 1977 0); 1978 Opc = PPC::CMPW; 1979 } 1980 } else if (LHS.getValueType() == MVT::i64) { 1981 uint64_t Imm; 1982 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 1983 if (isInt64Immediate(RHS.getNode(), Imm)) { 1984 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 1985 if (isUInt<16>(Imm)) 1986 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 1987 getI32Imm(Imm & 0xFFFF, dl)), 1988 0); 1989 // If this is a 16-bit signed immediate, fold it. 1990 if (isInt<16>(Imm)) 1991 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 1992 getI32Imm(Imm & 0xFFFF, dl)), 1993 0); 1994 1995 // For non-equality comparisons, the default code would materialize the 1996 // constant, then compare against it, like this: 1997 // lis r2, 4660 1998 // ori r2, r2, 22136 1999 // cmpd cr0, r3, r2 2000 // Since we are just comparing for equality, we can emit this instead: 2001 // xoris r0,r3,0x1234 2002 // cmpldi cr0,r0,0x5678 2003 // beq cr0,L6 2004 if (isUInt<32>(Imm)) { 2005 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 2006 getI64Imm(Imm >> 16, dl)), 0); 2007 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 2008 getI64Imm(Imm & 0xFFFF, dl)), 2009 0); 2010 } 2011 } 2012 Opc = PPC::CMPLD; 2013 } else if (ISD::isUnsignedIntSetCC(CC)) { 2014 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 2015 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 2016 getI64Imm(Imm & 0xFFFF, dl)), 0); 2017 Opc = PPC::CMPLD; 2018 } else { 2019 short SImm; 2020 if (isIntS16Immediate(RHS, SImm)) 2021 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 2022 getI64Imm(SImm & 0xFFFF, dl)), 2023 0); 2024 Opc = PPC::CMPD; 2025 } 2026 } else if (LHS.getValueType() == MVT::f32) { 2027 Opc = PPC::FCMPUS; 2028 } else { 2029 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); 2030 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 2031 } 2032 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 2033 } 2034 2035 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 2036 switch (CC) { 2037 case ISD::SETUEQ: 2038 case ISD::SETONE: 2039 case ISD::SETOLE: 2040 case ISD::SETOGE: 2041 llvm_unreachable("Should be lowered by legalize!"); 2042 default: llvm_unreachable("Unknown condition!"); 2043 case ISD::SETOEQ: 2044 case ISD::SETEQ: return PPC::PRED_EQ; 2045 case ISD::SETUNE: 2046 case ISD::SETNE: return PPC::PRED_NE; 2047 case ISD::SETOLT: 2048 case ISD::SETLT: return PPC::PRED_LT; 2049 case ISD::SETULE: 2050 case ISD::SETLE: return PPC::PRED_LE; 2051 case ISD::SETOGT: 2052 case ISD::SETGT: return PPC::PRED_GT; 2053 case ISD::SETUGE: 2054 case ISD::SETGE: return PPC::PRED_GE; 2055 case ISD::SETO: return PPC::PRED_NU; 2056 case ISD::SETUO: return PPC::PRED_UN; 2057 // These two are invalid for floating point. Assume we have int. 2058 case ISD::SETULT: return PPC::PRED_LT; 2059 case ISD::SETUGT: return PPC::PRED_GT; 2060 } 2061 } 2062 2063 /// getCRIdxForSetCC - Return the index of the condition register field 2064 /// associated with the SetCC condition, and whether or not the field is 2065 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 2066 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 2067 Invert = false; 2068 switch (CC) { 2069 default: llvm_unreachable("Unknown condition!"); 2070 case ISD::SETOLT: 2071 case ISD::SETLT: return 0; // Bit #0 = SETOLT 2072 case ISD::SETOGT: 2073 case ISD::SETGT: return 1; // Bit #1 = SETOGT 2074 case ISD::SETOEQ: 2075 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 2076 case ISD::SETUO: return 3; // Bit #3 = SETUO 2077 case ISD::SETUGE: 2078 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 2079 case ISD::SETULE: 2080 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 2081 case ISD::SETUNE: 2082 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 2083 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 2084 case ISD::SETUEQ: 2085 case ISD::SETOGE: 2086 case ISD::SETOLE: 2087 case ISD::SETONE: 2088 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 2089 // These are invalid for floating point. Assume integer. 2090 case ISD::SETULT: return 0; 2091 case ISD::SETUGT: return 1; 2092 } 2093 } 2094 2095 // getVCmpInst: return the vector compare instruction for the specified 2096 // vector type and condition code. Since this is for altivec specific code, 2097 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). 2098 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 2099 bool HasVSX, bool &Swap, bool &Negate) { 2100 Swap = false; 2101 Negate = false; 2102 2103 if (VecVT.isFloatingPoint()) { 2104 /* Handle some cases by swapping input operands. */ 2105 switch (CC) { 2106 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 2107 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 2108 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 2109 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 2110 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 2111 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 2112 default: break; 2113 } 2114 /* Handle some cases by negating the result. */ 2115 switch (CC) { 2116 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 2117 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 2118 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 2119 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 2120 default: break; 2121 } 2122 /* We have instructions implementing the remaining cases. */ 2123 switch (CC) { 2124 case ISD::SETEQ: 2125 case ISD::SETOEQ: 2126 if (VecVT == MVT::v4f32) 2127 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 2128 else if (VecVT == MVT::v2f64) 2129 return PPC::XVCMPEQDP; 2130 break; 2131 case ISD::SETGT: 2132 case ISD::SETOGT: 2133 if (VecVT == MVT::v4f32) 2134 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 2135 else if (VecVT == MVT::v2f64) 2136 return PPC::XVCMPGTDP; 2137 break; 2138 case ISD::SETGE: 2139 case ISD::SETOGE: 2140 if (VecVT == MVT::v4f32) 2141 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 2142 else if (VecVT == MVT::v2f64) 2143 return PPC::XVCMPGEDP; 2144 break; 2145 default: 2146 break; 2147 } 2148 llvm_unreachable("Invalid floating-point vector compare condition"); 2149 } else { 2150 /* Handle some cases by swapping input operands. */ 2151 switch (CC) { 2152 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 2153 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 2154 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 2155 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 2156 default: break; 2157 } 2158 /* Handle some cases by negating the result. */ 2159 switch (CC) { 2160 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 2161 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 2162 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 2163 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 2164 default: break; 2165 } 2166 /* We have instructions implementing the remaining cases. */ 2167 switch (CC) { 2168 case ISD::SETEQ: 2169 case ISD::SETUEQ: 2170 if (VecVT == MVT::v16i8) 2171 return PPC::VCMPEQUB; 2172 else if (VecVT == MVT::v8i16) 2173 return PPC::VCMPEQUH; 2174 else if (VecVT == MVT::v4i32) 2175 return PPC::VCMPEQUW; 2176 else if (VecVT == MVT::v2i64) 2177 return PPC::VCMPEQUD; 2178 break; 2179 case ISD::SETGT: 2180 if (VecVT == MVT::v16i8) 2181 return PPC::VCMPGTSB; 2182 else if (VecVT == MVT::v8i16) 2183 return PPC::VCMPGTSH; 2184 else if (VecVT == MVT::v4i32) 2185 return PPC::VCMPGTSW; 2186 else if (VecVT == MVT::v2i64) 2187 return PPC::VCMPGTSD; 2188 break; 2189 case ISD::SETUGT: 2190 if (VecVT == MVT::v16i8) 2191 return PPC::VCMPGTUB; 2192 else if (VecVT == MVT::v8i16) 2193 return PPC::VCMPGTUH; 2194 else if (VecVT == MVT::v4i32) 2195 return PPC::VCMPGTUW; 2196 else if (VecVT == MVT::v2i64) 2197 return PPC::VCMPGTUD; 2198 break; 2199 default: 2200 break; 2201 } 2202 llvm_unreachable("Invalid integer vector compare condition"); 2203 } 2204 } 2205 2206 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { 2207 SDLoc dl(N); 2208 unsigned Imm; 2209 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2210 EVT PtrVT = 2211 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 2212 bool isPPC64 = (PtrVT == MVT::i64); 2213 2214 if (!PPCSubTarget->useCRBits() && 2215 isInt32Immediate(N->getOperand(1), Imm)) { 2216 // We can codegen setcc op, imm very efficiently compared to a brcond. 2217 // Check for those cases here. 2218 // setcc op, 0 2219 if (Imm == 0) { 2220 SDValue Op = N->getOperand(0); 2221 switch (CC) { 2222 default: break; 2223 case ISD::SETEQ: { 2224 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 2225 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 2226 getI32Imm(31, dl) }; 2227 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2228 } 2229 case ISD::SETNE: { 2230 if (isPPC64) break; 2231 SDValue AD = 2232 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2233 Op, getI32Imm(~0U, dl)), 0); 2234 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 2235 AD.getValue(1)); 2236 } 2237 case ISD::SETLT: { 2238 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 2239 getI32Imm(31, dl) }; 2240 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2241 } 2242 case ISD::SETGT: { 2243 SDValue T = 2244 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 2245 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 2246 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 2247 getI32Imm(31, dl) }; 2248 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2249 } 2250 } 2251 } else if (Imm == ~0U) { // setcc op, -1 2252 SDValue Op = N->getOperand(0); 2253 switch (CC) { 2254 default: break; 2255 case ISD::SETEQ: 2256 if (isPPC64) break; 2257 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2258 Op, getI32Imm(1, dl)), 0); 2259 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 2260 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 2261 MVT::i32, 2262 getI32Imm(0, dl)), 2263 0), Op.getValue(1)); 2264 case ISD::SETNE: { 2265 if (isPPC64) break; 2266 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 2267 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2268 Op, getI32Imm(~0U, dl)); 2269 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), 2270 Op, SDValue(AD, 1)); 2271 } 2272 case ISD::SETLT: { 2273 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 2274 getI32Imm(1, dl)), 0); 2275 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 2276 Op), 0); 2277 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 2278 getI32Imm(31, dl) }; 2279 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2280 } 2281 case ISD::SETGT: { 2282 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 2283 getI32Imm(31, dl) }; 2284 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2285 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 2286 getI32Imm(1, dl)); 2287 } 2288 } 2289 } 2290 } 2291 2292 SDValue LHS = N->getOperand(0); 2293 SDValue RHS = N->getOperand(1); 2294 2295 // Altivec Vector compare instructions do not set any CR register by default and 2296 // vector compare operations return the same type as the operands. 2297 if (LHS.getValueType().isVector()) { 2298 if (PPCSubTarget->hasQPX()) 2299 return nullptr; 2300 2301 EVT VecVT = LHS.getValueType(); 2302 bool Swap, Negate; 2303 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, 2304 PPCSubTarget->hasVSX(), Swap, Negate); 2305 if (Swap) 2306 std::swap(LHS, RHS); 2307 2308 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 2309 if (Negate) { 2310 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 2311 return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : 2312 PPC::VNOR, 2313 ResVT, VCmp, VCmp); 2314 } 2315 2316 return CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 2317 } 2318 2319 if (PPCSubTarget->useCRBits()) 2320 return nullptr; 2321 2322 bool Inv; 2323 unsigned Idx = getCRIdxForSetCC(CC, Inv); 2324 SDValue CCReg = SelectCC(LHS, RHS, CC, dl); 2325 SDValue IntCR; 2326 2327 // Force the ccreg into CR7. 2328 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 2329 2330 SDValue InFlag(nullptr, 0); // Null incoming flag value. 2331 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 2332 InFlag).getValue(1); 2333 2334 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 2335 CCReg), 0); 2336 2337 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 2338 getI32Imm(31, dl), getI32Imm(31, dl) }; 2339 if (!Inv) 2340 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2341 2342 // Get the specified bit. 2343 SDValue Tmp = 2344 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2345 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 2346 } 2347 2348 SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 2349 // Transfer memoperands. 2350 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 2351 MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); 2352 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); 2353 return Result; 2354 } 2355 2356 2357 // Select - Convert the specified operand from a target-independent to a 2358 // target-specific node if it hasn't already been changed. 2359 SDNode *PPCDAGToDAGISel::Select(SDNode *N) { 2360 SDLoc dl(N); 2361 if (N->isMachineOpcode()) { 2362 N->setNodeId(-1); 2363 return nullptr; // Already selected. 2364 } 2365 2366 // In case any misguided DAG-level optimizations form an ADD with a 2367 // TargetConstant operand, crash here instead of miscompiling (by selecting 2368 // an r+r add instead of some kind of r+i add). 2369 if (N->getOpcode() == ISD::ADD && 2370 N->getOperand(1).getOpcode() == ISD::TargetConstant) 2371 llvm_unreachable("Invalid ADD with TargetConstant operand"); 2372 2373 // Try matching complex bit permutations before doing anything else. 2374 if (SDNode *NN = SelectBitPermutation(N)) 2375 return NN; 2376 2377 switch (N->getOpcode()) { 2378 default: break; 2379 2380 case ISD::Constant: { 2381 if (N->getValueType(0) == MVT::i64) 2382 return SelectInt64(CurDAG, N); 2383 break; 2384 } 2385 2386 case ISD::SETCC: { 2387 SDNode *SN = SelectSETCC(N); 2388 if (SN) 2389 return SN; 2390 break; 2391 } 2392 case PPCISD::GlobalBaseReg: 2393 return getGlobalBaseReg(); 2394 2395 case ISD::FrameIndex: 2396 return getFrameIndex(N, N); 2397 2398 case PPCISD::MFOCRF: { 2399 SDValue InFlag = N->getOperand(1); 2400 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 2401 N->getOperand(0), InFlag); 2402 } 2403 2404 case PPCISD::READ_TIME_BASE: { 2405 return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 2406 MVT::Other, N->getOperand(0)); 2407 } 2408 2409 case PPCISD::SRA_ADDZE: { 2410 SDValue N0 = N->getOperand(0); 2411 SDValue ShiftAmt = 2412 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 2413 getConstantIntValue(), dl, 2414 N->getValueType(0)); 2415 if (N->getValueType(0) == MVT::i64) { 2416 SDNode *Op = 2417 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 2418 N0, ShiftAmt); 2419 return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, 2420 SDValue(Op, 0), SDValue(Op, 1)); 2421 } else { 2422 assert(N->getValueType(0) == MVT::i32 && 2423 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 2424 SDNode *Op = 2425 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 2426 N0, ShiftAmt); 2427 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 2428 SDValue(Op, 0), SDValue(Op, 1)); 2429 } 2430 } 2431 2432 case ISD::LOAD: { 2433 // Handle preincrement loads. 2434 LoadSDNode *LD = cast<LoadSDNode>(N); 2435 EVT LoadedVT = LD->getMemoryVT(); 2436 2437 // Normal loads are handled by code generated from the .td file. 2438 if (LD->getAddressingMode() != ISD::PRE_INC) 2439 break; 2440 2441 SDValue Offset = LD->getOffset(); 2442 if (Offset.getOpcode() == ISD::TargetConstant || 2443 Offset.getOpcode() == ISD::TargetGlobalAddress) { 2444 2445 unsigned Opcode; 2446 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 2447 if (LD->getValueType(0) != MVT::i64) { 2448 // Handle PPC32 integer and normal FP loads. 2449 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2450 switch (LoadedVT.getSimpleVT().SimpleTy) { 2451 default: llvm_unreachable("Invalid PPC load type!"); 2452 case MVT::f64: Opcode = PPC::LFDU; break; 2453 case MVT::f32: Opcode = PPC::LFSU; break; 2454 case MVT::i32: Opcode = PPC::LWZU; break; 2455 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 2456 case MVT::i1: 2457 case MVT::i8: Opcode = PPC::LBZU; break; 2458 } 2459 } else { 2460 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 2461 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2462 switch (LoadedVT.getSimpleVT().SimpleTy) { 2463 default: llvm_unreachable("Invalid PPC load type!"); 2464 case MVT::i64: Opcode = PPC::LDU; break; 2465 case MVT::i32: Opcode = PPC::LWZU8; break; 2466 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 2467 case MVT::i1: 2468 case MVT::i8: Opcode = PPC::LBZU8; break; 2469 } 2470 } 2471 2472 SDValue Chain = LD->getChain(); 2473 SDValue Base = LD->getBasePtr(); 2474 SDValue Ops[] = { Offset, Base, Chain }; 2475 return transferMemOperands( 2476 N, CurDAG->getMachineNode( 2477 Opcode, dl, LD->getValueType(0), 2478 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, 2479 Ops)); 2480 } else { 2481 unsigned Opcode; 2482 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 2483 if (LD->getValueType(0) != MVT::i64) { 2484 // Handle PPC32 integer and normal FP loads. 2485 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2486 switch (LoadedVT.getSimpleVT().SimpleTy) { 2487 default: llvm_unreachable("Invalid PPC load type!"); 2488 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX 2489 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX 2490 case MVT::f64: Opcode = PPC::LFDUX; break; 2491 case MVT::f32: Opcode = PPC::LFSUX; break; 2492 case MVT::i32: Opcode = PPC::LWZUX; break; 2493 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 2494 case MVT::i1: 2495 case MVT::i8: Opcode = PPC::LBZUX; break; 2496 } 2497 } else { 2498 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 2499 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 2500 "Invalid sext update load"); 2501 switch (LoadedVT.getSimpleVT().SimpleTy) { 2502 default: llvm_unreachable("Invalid PPC load type!"); 2503 case MVT::i64: Opcode = PPC::LDUX; break; 2504 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 2505 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 2506 case MVT::i1: 2507 case MVT::i8: Opcode = PPC::LBZUX8; break; 2508 } 2509 } 2510 2511 SDValue Chain = LD->getChain(); 2512 SDValue Base = LD->getBasePtr(); 2513 SDValue Ops[] = { Base, Offset, Chain }; 2514 return transferMemOperands( 2515 N, CurDAG->getMachineNode( 2516 Opcode, dl, LD->getValueType(0), 2517 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, 2518 Ops)); 2519 } 2520 } 2521 2522 case ISD::AND: { 2523 unsigned Imm, Imm2, SH, MB, ME; 2524 uint64_t Imm64; 2525 2526 // If this is an and of a value rotated between 0 and 31 bits and then and'd 2527 // with a mask, emit rlwinm 2528 if (isInt32Immediate(N->getOperand(1), Imm) && 2529 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 2530 SDValue Val = N->getOperand(0).getOperand(0); 2531 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 2532 getI32Imm(ME, dl) }; 2533 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2534 } 2535 // If this is just a masked value where the input is not handled above, and 2536 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 2537 if (isInt32Immediate(N->getOperand(1), Imm) && 2538 isRunOfOnes(Imm, MB, ME) && 2539 N->getOperand(0).getOpcode() != ISD::ROTL) { 2540 SDValue Val = N->getOperand(0); 2541 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), 2542 getI32Imm(ME, dl) }; 2543 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2544 } 2545 // If this is a 64-bit zero-extension mask, emit rldicl. 2546 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && 2547 isMask_64(Imm64)) { 2548 SDValue Val = N->getOperand(0); 2549 MB = 64 - countTrailingOnes(Imm64); 2550 SH = 0; 2551 2552 // If the operand is a logical right shift, we can fold it into this 2553 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 2554 // for n <= mb. The right shift is really a left rotate followed by a 2555 // mask, and this mask is a more-restrictive sub-mask of the mask implied 2556 // by the shift. 2557 if (Val.getOpcode() == ISD::SRL && 2558 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 2559 assert(Imm < 64 && "Illegal shift amount"); 2560 Val = Val.getOperand(0); 2561 SH = 64 - Imm; 2562 } 2563 2564 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; 2565 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 2566 } 2567 // AND X, 0 -> 0, not "rlwinm 32". 2568 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 2569 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 2570 return nullptr; 2571 } 2572 // ISD::OR doesn't get all the bitfield insertion fun. 2573 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 2574 // bitfield insert. 2575 if (isInt32Immediate(N->getOperand(1), Imm) && 2576 N->getOperand(0).getOpcode() == ISD::OR && 2577 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 2578 // The idea here is to check whether this is equivalent to: 2579 // (c1 & m) | (x & ~m) 2580 // where m is a run-of-ones mask. The logic here is that, for each bit in 2581 // c1 and c2: 2582 // - if both are 1, then the output will be 1. 2583 // - if both are 0, then the output will be 0. 2584 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 2585 // come from x. 2586 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 2587 // be 0. 2588 // If that last condition is never the case, then we can form m from the 2589 // bits that are the same between c1 and c2. 2590 unsigned MB, ME; 2591 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { 2592 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2593 N->getOperand(0).getOperand(1), 2594 getI32Imm(0, dl), getI32Imm(MB, dl), 2595 getI32Imm(ME, dl) }; 2596 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); 2597 } 2598 } 2599 2600 // Other cases are autogenerated. 2601 break; 2602 } 2603 case ISD::OR: { 2604 if (N->getValueType(0) == MVT::i32) 2605 if (SDNode *I = SelectBitfieldInsert(N)) 2606 return I; 2607 2608 short Imm; 2609 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 2610 isIntS16Immediate(N->getOperand(1), Imm)) { 2611 APInt LHSKnownZero, LHSKnownOne; 2612 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne); 2613 2614 // If this is equivalent to an add, then we can fold it with the 2615 // FrameIndex calculation. 2616 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) 2617 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 2618 } 2619 2620 // Other cases are autogenerated. 2621 break; 2622 } 2623 case ISD::ADD: { 2624 short Imm; 2625 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 2626 isIntS16Immediate(N->getOperand(1), Imm)) 2627 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 2628 2629 break; 2630 } 2631 case ISD::SHL: { 2632 unsigned Imm, SH, MB, ME; 2633 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 2634 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 2635 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2636 getI32Imm(SH, dl), getI32Imm(MB, dl), 2637 getI32Imm(ME, dl) }; 2638 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2639 } 2640 2641 // Other cases are autogenerated. 2642 break; 2643 } 2644 case ISD::SRL: { 2645 unsigned Imm, SH, MB, ME; 2646 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 2647 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 2648 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2649 getI32Imm(SH, dl), getI32Imm(MB, dl), 2650 getI32Imm(ME, dl) }; 2651 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2652 } 2653 2654 // Other cases are autogenerated. 2655 break; 2656 } 2657 // FIXME: Remove this once the ANDI glue bug is fixed: 2658 case PPCISD::ANDIo_1_EQ_BIT: 2659 case PPCISD::ANDIo_1_GT_BIT: { 2660 if (!ANDIGlueBug) 2661 break; 2662 2663 EVT InVT = N->getOperand(0).getValueType(); 2664 assert((InVT == MVT::i64 || InVT == MVT::i32) && 2665 "Invalid input type for ANDIo_1_EQ_BIT"); 2666 2667 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; 2668 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 2669 N->getOperand(0), 2670 CurDAG->getTargetConstant(1, dl, InVT)), 2671 0); 2672 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2673 SDValue SRIdxVal = 2674 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? 2675 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32); 2676 2677 return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, 2678 CR0Reg, SRIdxVal, 2679 SDValue(AndI.getNode(), 1) /* glue */); 2680 } 2681 case ISD::SELECT_CC: { 2682 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 2683 EVT PtrVT = 2684 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 2685 bool isPPC64 = (PtrVT == MVT::i64); 2686 2687 // If this is a select of i1 operands, we'll pattern match it. 2688 if (PPCSubTarget->useCRBits() && 2689 N->getOperand(0).getValueType() == MVT::i1) 2690 break; 2691 2692 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 2693 if (!isPPC64) 2694 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2695 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 2696 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 2697 if (N1C->isNullValue() && N3C->isNullValue() && 2698 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 2699 // FIXME: Implement this optzn for PPC64. 2700 N->getValueType(0) == MVT::i32) { 2701 SDNode *Tmp = 2702 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2703 N->getOperand(0), getI32Imm(~0U, dl)); 2704 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, 2705 SDValue(Tmp, 0), N->getOperand(0), 2706 SDValue(Tmp, 1)); 2707 } 2708 2709 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 2710 2711 if (N->getValueType(0) == MVT::i1) { 2712 // An i1 select is: (c & t) | (!c & f). 2713 bool Inv; 2714 unsigned Idx = getCRIdxForSetCC(CC, Inv); 2715 2716 unsigned SRI; 2717 switch (Idx) { 2718 default: llvm_unreachable("Invalid CC index"); 2719 case 0: SRI = PPC::sub_lt; break; 2720 case 1: SRI = PPC::sub_gt; break; 2721 case 2: SRI = PPC::sub_eq; break; 2722 case 3: SRI = PPC::sub_un; break; 2723 } 2724 2725 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 2726 2727 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 2728 CCBit, CCBit), 0); 2729 SDValue C = Inv ? NotCCBit : CCBit, 2730 NotC = Inv ? CCBit : NotCCBit; 2731 2732 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 2733 C, N->getOperand(2)), 0); 2734 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 2735 NotC, N->getOperand(3)), 0); 2736 2737 return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 2738 } 2739 2740 unsigned BROpc = getPredicateForSetCC(CC); 2741 2742 unsigned SelectCCOp; 2743 if (N->getValueType(0) == MVT::i32) 2744 SelectCCOp = PPC::SELECT_CC_I4; 2745 else if (N->getValueType(0) == MVT::i64) 2746 SelectCCOp = PPC::SELECT_CC_I8; 2747 else if (N->getValueType(0) == MVT::f32) 2748 if (PPCSubTarget->hasP8Vector()) 2749 SelectCCOp = PPC::SELECT_CC_VSSRC; 2750 else 2751 SelectCCOp = PPC::SELECT_CC_F4; 2752 else if (N->getValueType(0) == MVT::f64) 2753 if (PPCSubTarget->hasVSX()) 2754 SelectCCOp = PPC::SELECT_CC_VSFRC; 2755 else 2756 SelectCCOp = PPC::SELECT_CC_F8; 2757 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) 2758 SelectCCOp = PPC::SELECT_CC_QFRC; 2759 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) 2760 SelectCCOp = PPC::SELECT_CC_QSRC; 2761 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) 2762 SelectCCOp = PPC::SELECT_CC_QBRC; 2763 else if (N->getValueType(0) == MVT::v2f64 || 2764 N->getValueType(0) == MVT::v2i64) 2765 SelectCCOp = PPC::SELECT_CC_VSRC; 2766 else 2767 SelectCCOp = PPC::SELECT_CC_VRRC; 2768 2769 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 2770 getI32Imm(BROpc, dl) }; 2771 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 2772 } 2773 case ISD::VSELECT: 2774 if (PPCSubTarget->hasVSX()) { 2775 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) }; 2776 return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops); 2777 } 2778 2779 break; 2780 case ISD::VECTOR_SHUFFLE: 2781 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 2782 N->getValueType(0) == MVT::v2i64)) { 2783 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 2784 2785 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 2786 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 2787 unsigned DM[2]; 2788 2789 for (int i = 0; i < 2; ++i) 2790 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 2791 DM[i] = 0; 2792 else 2793 DM[i] = 1; 2794 2795 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 2796 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 2797 isa<LoadSDNode>(Op1.getOperand(0))) { 2798 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 2799 SDValue Base, Offset; 2800 2801 if (LD->isUnindexed() && 2802 (LD->getMemoryVT() == MVT::f64 || 2803 LD->getMemoryVT() == MVT::i64) && 2804 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 2805 SDValue Chain = LD->getChain(); 2806 SDValue Ops[] = { Base, Offset, Chain }; 2807 return CurDAG->SelectNodeTo(N, PPC::LXVDSX, 2808 N->getValueType(0), Ops); 2809 } 2810 } 2811 2812 // For little endian, we must swap the input operands and adjust 2813 // the mask elements (reverse and invert them). 2814 if (PPCSubTarget->isLittleEndian()) { 2815 std::swap(Op1, Op2); 2816 unsigned tmp = DM[0]; 2817 DM[0] = 1 - DM[1]; 2818 DM[1] = 1 - tmp; 2819 } 2820 2821 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 2822 MVT::i32); 2823 SDValue Ops[] = { Op1, Op2, DMV }; 2824 return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 2825 } 2826 2827 break; 2828 case PPCISD::BDNZ: 2829 case PPCISD::BDZ: { 2830 bool IsPPC64 = PPCSubTarget->isPPC64(); 2831 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 2832 return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ? 2833 (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 2834 (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 2835 MVT::Other, Ops); 2836 } 2837 case PPCISD::COND_BRANCH: { 2838 // Op #0 is the Chain. 2839 // Op #1 is the PPC::PRED_* number. 2840 // Op #2 is the CR# 2841 // Op #3 is the Dest MBB 2842 // Op #4 is the Flag. 2843 // Prevent PPC::PRED_* from being selected into LI. 2844 SDValue Pred = 2845 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(), dl); 2846 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 2847 N->getOperand(0), N->getOperand(4) }; 2848 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 2849 } 2850 case ISD::BR_CC: { 2851 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 2852 unsigned PCC = getPredicateForSetCC(CC); 2853 2854 if (N->getOperand(2).getValueType() == MVT::i1) { 2855 unsigned Opc; 2856 bool Swap; 2857 switch (PCC) { 2858 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 2859 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 2860 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 2861 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 2862 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 2863 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 2864 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 2865 } 2866 2867 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 2868 N->getOperand(Swap ? 3 : 2), 2869 N->getOperand(Swap ? 2 : 3)), 0); 2870 return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, 2871 BitComp, N->getOperand(4), N->getOperand(0)); 2872 } 2873 2874 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 2875 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 2876 N->getOperand(4), N->getOperand(0) }; 2877 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 2878 } 2879 case ISD::BRIND: { 2880 // FIXME: Should custom lower this. 2881 SDValue Chain = N->getOperand(0); 2882 SDValue Target = N->getOperand(1); 2883 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 2884 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 2885 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 2886 Chain), 0); 2887 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 2888 } 2889 case PPCISD::TOC_ENTRY: { 2890 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && 2891 "Only supported for 64-bit ABI and 32-bit SVR4"); 2892 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { 2893 SDValue GA = N->getOperand(0); 2894 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl, 2895 MVT::i32, GA, N->getOperand(1))); 2896 } 2897 2898 // For medium and large code model, we generate two instructions as 2899 // described below. Otherwise we allow SelectCodeCommon to handle this, 2900 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. 2901 CodeModel::Model CModel = TM.getCodeModel(); 2902 if (CModel != CodeModel::Medium && CModel != CodeModel::Large) 2903 break; 2904 2905 // The first source operand is a TargetGlobalAddress or a TargetJumpTable. 2906 // If it is an externally defined symbol, a symbol with common linkage, 2907 // a non-local function address, or a jump table address, or if we are 2908 // generating code for large code model, we generate: 2909 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>)) 2910 // Otherwise we generate: 2911 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>) 2912 SDValue GA = N->getOperand(0); 2913 SDValue TOCbase = N->getOperand(1); 2914 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, 2915 TOCbase, GA); 2916 2917 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) || 2918 CModel == CodeModel::Large) 2919 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl, 2920 MVT::i64, GA, SDValue(Tmp, 0))); 2921 2922 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 2923 const GlobalValue *GValue = G->getGlobal(); 2924 if ((GValue->getType()->getElementType()->isFunctionTy() && 2925 !GValue->isStrongDefinitionForLinker()) || 2926 GValue->isDeclaration() || GValue->hasCommonLinkage() || 2927 GValue->hasAvailableExternallyLinkage()) 2928 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl, 2929 MVT::i64, GA, SDValue(Tmp, 0))); 2930 } 2931 2932 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 2933 SDValue(Tmp, 0), GA); 2934 } 2935 case PPCISD::PPC32_PICGOT: { 2936 // Generate a PIC-safe GOT reference. 2937 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && 2938 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 2939 return CurDAG->SelectNodeTo( 2940 N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(CurDAG->getDataLayout()), 2941 MVT::i32); 2942 } 2943 case PPCISD::VADD_SPLAT: { 2944 // This expands into one of three sequences, depending on whether 2945 // the first operand is odd or even, positive or negative. 2946 assert(isa<ConstantSDNode>(N->getOperand(0)) && 2947 isa<ConstantSDNode>(N->getOperand(1)) && 2948 "Invalid operand on VADD_SPLAT!"); 2949 2950 int Elt = N->getConstantOperandVal(0); 2951 int EltSize = N->getConstantOperandVal(1); 2952 unsigned Opc1, Opc2, Opc3; 2953 EVT VT; 2954 2955 if (EltSize == 1) { 2956 Opc1 = PPC::VSPLTISB; 2957 Opc2 = PPC::VADDUBM; 2958 Opc3 = PPC::VSUBUBM; 2959 VT = MVT::v16i8; 2960 } else if (EltSize == 2) { 2961 Opc1 = PPC::VSPLTISH; 2962 Opc2 = PPC::VADDUHM; 2963 Opc3 = PPC::VSUBUHM; 2964 VT = MVT::v8i16; 2965 } else { 2966 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 2967 Opc1 = PPC::VSPLTISW; 2968 Opc2 = PPC::VADDUWM; 2969 Opc3 = PPC::VSUBUWM; 2970 VT = MVT::v4i32; 2971 } 2972 2973 if ((Elt & 1) == 0) { 2974 // Elt is even, in the range [-32,-18] + [16,30]. 2975 // 2976 // Convert: VADD_SPLAT elt, size 2977 // Into: tmp = VSPLTIS[BHW] elt 2978 // VADDU[BHW]M tmp, tmp 2979 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 2980 SDValue EltVal = getI32Imm(Elt >> 1, dl); 2981 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2982 SDValue TmpVal = SDValue(Tmp, 0); 2983 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal); 2984 2985 } else if (Elt > 0) { 2986 // Elt is odd and positive, in the range [17,31]. 2987 // 2988 // Convert: VADD_SPLAT elt, size 2989 // Into: tmp1 = VSPLTIS[BHW] elt-16 2990 // tmp2 = VSPLTIS[BHW] -16 2991 // VSUBU[BHW]M tmp1, tmp2 2992 SDValue EltVal = getI32Imm(Elt - 16, dl); 2993 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2994 EltVal = getI32Imm(-16, dl); 2995 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2996 return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 2997 SDValue(Tmp2, 0)); 2998 2999 } else { 3000 // Elt is odd and negative, in the range [-31,-17]. 3001 // 3002 // Convert: VADD_SPLAT elt, size 3003 // Into: tmp1 = VSPLTIS[BHW] elt+16 3004 // tmp2 = VSPLTIS[BHW] -16 3005 // VADDU[BHW]M tmp1, tmp2 3006 SDValue EltVal = getI32Imm(Elt + 16, dl); 3007 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 3008 EltVal = getI32Imm(-16, dl); 3009 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 3010 return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 3011 SDValue(Tmp2, 0)); 3012 } 3013 } 3014 } 3015 3016 return SelectCode(N); 3017 } 3018 3019 // If the target supports the cmpb instruction, do the idiom recognition here. 3020 // We don't do this as a DAG combine because we don't want to do it as nodes 3021 // are being combined (because we might miss part of the eventual idiom). We 3022 // don't want to do it during instruction selection because we want to reuse 3023 // the logic for lowering the masking operations already part of the 3024 // instruction selector. 3025 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 3026 SDLoc dl(N); 3027 3028 assert(N->getOpcode() == ISD::OR && 3029 "Only OR nodes are supported for CMPB"); 3030 3031 SDValue Res; 3032 if (!PPCSubTarget->hasCMPB()) 3033 return Res; 3034 3035 if (N->getValueType(0) != MVT::i32 && 3036 N->getValueType(0) != MVT::i64) 3037 return Res; 3038 3039 EVT VT = N->getValueType(0); 3040 3041 SDValue RHS, LHS; 3042 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 3043 uint64_t Mask = 0, Alt = 0; 3044 3045 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 3046 uint64_t &Mask, uint64_t &Alt, 3047 SDValue &LHS, SDValue &RHS) { 3048 if (O.getOpcode() != ISD::SELECT_CC) 3049 return false; 3050 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 3051 3052 if (!isa<ConstantSDNode>(O.getOperand(2)) || 3053 !isa<ConstantSDNode>(O.getOperand(3))) 3054 return false; 3055 3056 uint64_t PM = O.getConstantOperandVal(2); 3057 uint64_t PAlt = O.getConstantOperandVal(3); 3058 for (b = 0; b < 8; ++b) { 3059 uint64_t Mask = UINT64_C(0xFF) << (8*b); 3060 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 3061 break; 3062 } 3063 3064 if (b == 8) 3065 return false; 3066 Mask |= PM; 3067 Alt |= PAlt; 3068 3069 if (!isa<ConstantSDNode>(O.getOperand(1)) || 3070 O.getConstantOperandVal(1) != 0) { 3071 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 3072 if (Op0.getOpcode() == ISD::TRUNCATE) 3073 Op0 = Op0.getOperand(0); 3074 if (Op1.getOpcode() == ISD::TRUNCATE) 3075 Op1 = Op1.getOperand(0); 3076 3077 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 3078 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 3079 isa<ConstantSDNode>(Op0.getOperand(1))) { 3080 3081 unsigned Bits = Op0.getValueType().getSizeInBits(); 3082 if (b != Bits/8-1) 3083 return false; 3084 if (Op0.getConstantOperandVal(1) != Bits-8) 3085 return false; 3086 3087 LHS = Op0.getOperand(0); 3088 RHS = Op1.getOperand(0); 3089 return true; 3090 } 3091 3092 // When we have small integers (i16 to be specific), the form present 3093 // post-legalization uses SETULT in the SELECT_CC for the 3094 // higher-order byte, depending on the fact that the 3095 // even-higher-order bytes are known to all be zero, for example: 3096 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 3097 // (so when the second byte is the same, because all higher-order 3098 // bits from bytes 3 and 4 are known to be zero, the result of the 3099 // xor can be at most 255) 3100 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 3101 isa<ConstantSDNode>(O.getOperand(1))) { 3102 3103 uint64_t ULim = O.getConstantOperandVal(1); 3104 if (ULim != (UINT64_C(1) << b*8)) 3105 return false; 3106 3107 // Now we need to make sure that the upper bytes are known to be 3108 // zero. 3109 unsigned Bits = Op0.getValueType().getSizeInBits(); 3110 if (!CurDAG->MaskedValueIsZero(Op0, 3111 APInt::getHighBitsSet(Bits, Bits - (b+1)*8))) 3112 return false; 3113 3114 LHS = Op0.getOperand(0); 3115 RHS = Op0.getOperand(1); 3116 return true; 3117 } 3118 3119 return false; 3120 } 3121 3122 if (CC != ISD::SETEQ) 3123 return false; 3124 3125 SDValue Op = O.getOperand(0); 3126 if (Op.getOpcode() == ISD::AND) { 3127 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3128 return false; 3129 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 3130 return false; 3131 3132 SDValue XOR = Op.getOperand(0); 3133 if (XOR.getOpcode() == ISD::TRUNCATE) 3134 XOR = XOR.getOperand(0); 3135 if (XOR.getOpcode() != ISD::XOR) 3136 return false; 3137 3138 LHS = XOR.getOperand(0); 3139 RHS = XOR.getOperand(1); 3140 return true; 3141 } else if (Op.getOpcode() == ISD::SRL) { 3142 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3143 return false; 3144 unsigned Bits = Op.getValueType().getSizeInBits(); 3145 if (b != Bits/8-1) 3146 return false; 3147 if (Op.getConstantOperandVal(1) != Bits-8) 3148 return false; 3149 3150 SDValue XOR = Op.getOperand(0); 3151 if (XOR.getOpcode() == ISD::TRUNCATE) 3152 XOR = XOR.getOperand(0); 3153 if (XOR.getOpcode() != ISD::XOR) 3154 return false; 3155 3156 LHS = XOR.getOperand(0); 3157 RHS = XOR.getOperand(1); 3158 return true; 3159 } 3160 3161 return false; 3162 }; 3163 3164 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 3165 while (!Queue.empty()) { 3166 SDValue V = Queue.pop_back_val(); 3167 3168 for (const SDValue &O : V.getNode()->ops()) { 3169 unsigned b; 3170 uint64_t M = 0, A = 0; 3171 SDValue OLHS, ORHS; 3172 if (O.getOpcode() == ISD::OR) { 3173 Queue.push_back(O); 3174 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 3175 if (!LHS) { 3176 LHS = OLHS; 3177 RHS = ORHS; 3178 BytesFound[b] = true; 3179 Mask |= M; 3180 Alt |= A; 3181 } else if ((LHS == ORHS && RHS == OLHS) || 3182 (RHS == ORHS && LHS == OLHS)) { 3183 BytesFound[b] = true; 3184 Mask |= M; 3185 Alt |= A; 3186 } else { 3187 return Res; 3188 } 3189 } else { 3190 return Res; 3191 } 3192 } 3193 } 3194 3195 unsigned LastB = 0, BCnt = 0; 3196 for (unsigned i = 0; i < 8; ++i) 3197 if (BytesFound[LastB]) { 3198 ++BCnt; 3199 LastB = i; 3200 } 3201 3202 if (!LastB || BCnt < 2) 3203 return Res; 3204 3205 // Because we'll be zero-extending the output anyway if don't have a specific 3206 // value for each input byte (via the Mask), we can 'anyext' the inputs. 3207 if (LHS.getValueType() != VT) { 3208 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 3209 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 3210 } 3211 3212 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 3213 3214 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 3215 if (NonTrivialMask && !Alt) { 3216 // Res = Mask & CMPB 3217 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 3218 CurDAG->getConstant(Mask, dl, VT)); 3219 } else if (Alt) { 3220 // Res = (CMPB & Mask) | (~CMPB & Alt) 3221 // Which, as suggested here: 3222 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 3223 // can be written as: 3224 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 3225 // useful because the (Alt ^ Mask) can be pre-computed. 3226 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 3227 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 3228 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 3229 CurDAG->getConstant(Alt, dl, VT)); 3230 } 3231 3232 return Res; 3233 } 3234 3235 // When CR bit registers are enabled, an extension of an i1 variable to a i32 3236 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 3237 // involves constant materialization of a 0 or a 1 or both. If the result of 3238 // the extension is then operated upon by some operator that can be constant 3239 // folded with a constant 0 or 1, and that constant can be materialized using 3240 // only one instruction (like a zero or one), then we should fold in those 3241 // operations with the select. 3242 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 3243 if (!PPCSubTarget->useCRBits()) 3244 return; 3245 3246 if (N->getOpcode() != ISD::ZERO_EXTEND && 3247 N->getOpcode() != ISD::SIGN_EXTEND && 3248 N->getOpcode() != ISD::ANY_EXTEND) 3249 return; 3250 3251 if (N->getOperand(0).getValueType() != MVT::i1) 3252 return; 3253 3254 if (!N->hasOneUse()) 3255 return; 3256 3257 SDLoc dl(N); 3258 EVT VT = N->getValueType(0); 3259 SDValue Cond = N->getOperand(0); 3260 SDValue ConstTrue = 3261 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 3262 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 3263 3264 do { 3265 SDNode *User = *N->use_begin(); 3266 if (User->getNumOperands() != 2) 3267 break; 3268 3269 auto TryFold = [this, N, User, dl](SDValue Val) { 3270 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 3271 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 3272 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 3273 3274 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 3275 User->getValueType(0), 3276 O0.getNode(), O1.getNode()); 3277 }; 3278 3279 SDValue TrueRes = TryFold(ConstTrue); 3280 if (!TrueRes) 3281 break; 3282 SDValue FalseRes = TryFold(ConstFalse); 3283 if (!FalseRes) 3284 break; 3285 3286 // For us to materialize these using one instruction, we must be able to 3287 // represent them as signed 16-bit integers. 3288 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 3289 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 3290 if (!isInt<16>(True) || !isInt<16>(False)) 3291 break; 3292 3293 // We can replace User with a new SELECT node, and try again to see if we 3294 // can fold the select with its user. 3295 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 3296 N = User; 3297 ConstTrue = TrueRes; 3298 ConstFalse = FalseRes; 3299 } while (N->hasOneUse()); 3300 } 3301 3302 void PPCDAGToDAGISel::PreprocessISelDAG() { 3303 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 3304 ++Position; 3305 3306 bool MadeChange = false; 3307 while (Position != CurDAG->allnodes_begin()) { 3308 SDNode *N = &*--Position; 3309 if (N->use_empty()) 3310 continue; 3311 3312 SDValue Res; 3313 switch (N->getOpcode()) { 3314 default: break; 3315 case ISD::OR: 3316 Res = combineToCMPB(N); 3317 break; 3318 } 3319 3320 if (!Res) 3321 foldBoolExts(Res, N); 3322 3323 if (Res) { 3324 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 3325 DEBUG(N->dump(CurDAG)); 3326 DEBUG(dbgs() << "\nNew: "); 3327 DEBUG(Res.getNode()->dump(CurDAG)); 3328 DEBUG(dbgs() << "\n"); 3329 3330 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 3331 MadeChange = true; 3332 } 3333 } 3334 3335 if (MadeChange) 3336 CurDAG->RemoveDeadNodes(); 3337 } 3338 3339 /// PostprocessISelDAG - Perform some late peephole optimizations 3340 /// on the DAG representation. 3341 void PPCDAGToDAGISel::PostprocessISelDAG() { 3342 3343 // Skip peepholes at -O0. 3344 if (TM.getOptLevel() == CodeGenOpt::None) 3345 return; 3346 3347 PeepholePPC64(); 3348 PeepholeCROps(); 3349 PeepholePPC64ZExt(); 3350 } 3351 3352 // Check if all users of this node will become isel where the second operand 3353 // is the constant zero. If this is so, and if we can negate the condition, 3354 // then we can flip the true and false operands. This will allow the zero to 3355 // be folded with the isel so that we don't need to materialize a register 3356 // containing zero. 3357 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 3358 // If we're not using isel, then this does not matter. 3359 if (!PPCSubTarget->hasISEL()) 3360 return false; 3361 3362 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 3363 UI != UE; ++UI) { 3364 SDNode *User = *UI; 3365 if (!User->isMachineOpcode()) 3366 return false; 3367 if (User->getMachineOpcode() != PPC::SELECT_I4 && 3368 User->getMachineOpcode() != PPC::SELECT_I8) 3369 return false; 3370 3371 SDNode *Op2 = User->getOperand(2).getNode(); 3372 if (!Op2->isMachineOpcode()) 3373 return false; 3374 3375 if (Op2->getMachineOpcode() != PPC::LI && 3376 Op2->getMachineOpcode() != PPC::LI8) 3377 return false; 3378 3379 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 3380 if (!C) 3381 return false; 3382 3383 if (!C->isNullValue()) 3384 return false; 3385 } 3386 3387 return true; 3388 } 3389 3390 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 3391 SmallVector<SDNode *, 4> ToReplace; 3392 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 3393 UI != UE; ++UI) { 3394 SDNode *User = *UI; 3395 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 3396 User->getMachineOpcode() == PPC::SELECT_I8) && 3397 "Must have all select users"); 3398 ToReplace.push_back(User); 3399 } 3400 3401 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), 3402 UE = ToReplace.end(); UI != UE; ++UI) { 3403 SDNode *User = *UI; 3404 SDNode *ResNode = 3405 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 3406 User->getValueType(0), User->getOperand(0), 3407 User->getOperand(2), 3408 User->getOperand(1)); 3409 3410 DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 3411 DEBUG(User->dump(CurDAG)); 3412 DEBUG(dbgs() << "\nNew: "); 3413 DEBUG(ResNode->dump(CurDAG)); 3414 DEBUG(dbgs() << "\n"); 3415 3416 ReplaceUses(User, ResNode); 3417 } 3418 } 3419 3420 void PPCDAGToDAGISel::PeepholeCROps() { 3421 bool IsModified; 3422 do { 3423 IsModified = false; 3424 for (SDNode &Node : CurDAG->allnodes()) { 3425 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 3426 if (!MachineNode || MachineNode->use_empty()) 3427 continue; 3428 SDNode *ResNode = MachineNode; 3429 3430 bool Op1Set = false, Op1Unset = false, 3431 Op1Not = false, 3432 Op2Set = false, Op2Unset = false, 3433 Op2Not = false; 3434 3435 unsigned Opcode = MachineNode->getMachineOpcode(); 3436 switch (Opcode) { 3437 default: break; 3438 case PPC::CRAND: 3439 case PPC::CRNAND: 3440 case PPC::CROR: 3441 case PPC::CRXOR: 3442 case PPC::CRNOR: 3443 case PPC::CREQV: 3444 case PPC::CRANDC: 3445 case PPC::CRORC: { 3446 SDValue Op = MachineNode->getOperand(1); 3447 if (Op.isMachineOpcode()) { 3448 if (Op.getMachineOpcode() == PPC::CRSET) 3449 Op2Set = true; 3450 else if (Op.getMachineOpcode() == PPC::CRUNSET) 3451 Op2Unset = true; 3452 else if (Op.getMachineOpcode() == PPC::CRNOR && 3453 Op.getOperand(0) == Op.getOperand(1)) 3454 Op2Not = true; 3455 } 3456 } // fallthrough 3457 case PPC::BC: 3458 case PPC::BCn: 3459 case PPC::SELECT_I4: 3460 case PPC::SELECT_I8: 3461 case PPC::SELECT_F4: 3462 case PPC::SELECT_F8: 3463 case PPC::SELECT_QFRC: 3464 case PPC::SELECT_QSRC: 3465 case PPC::SELECT_QBRC: 3466 case PPC::SELECT_VRRC: 3467 case PPC::SELECT_VSFRC: 3468 case PPC::SELECT_VSSRC: 3469 case PPC::SELECT_VSRC: { 3470 SDValue Op = MachineNode->getOperand(0); 3471 if (Op.isMachineOpcode()) { 3472 if (Op.getMachineOpcode() == PPC::CRSET) 3473 Op1Set = true; 3474 else if (Op.getMachineOpcode() == PPC::CRUNSET) 3475 Op1Unset = true; 3476 else if (Op.getMachineOpcode() == PPC::CRNOR && 3477 Op.getOperand(0) == Op.getOperand(1)) 3478 Op1Not = true; 3479 } 3480 } 3481 break; 3482 } 3483 3484 bool SelectSwap = false; 3485 switch (Opcode) { 3486 default: break; 3487 case PPC::CRAND: 3488 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3489 // x & x = x 3490 ResNode = MachineNode->getOperand(0).getNode(); 3491 else if (Op1Set) 3492 // 1 & y = y 3493 ResNode = MachineNode->getOperand(1).getNode(); 3494 else if (Op2Set) 3495 // x & 1 = x 3496 ResNode = MachineNode->getOperand(0).getNode(); 3497 else if (Op1Unset || Op2Unset) 3498 // x & 0 = 0 & y = 0 3499 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3500 MVT::i1); 3501 else if (Op1Not) 3502 // ~x & y = andc(y, x) 3503 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3504 MVT::i1, MachineNode->getOperand(1), 3505 MachineNode->getOperand(0). 3506 getOperand(0)); 3507 else if (Op2Not) 3508 // x & ~y = andc(x, y) 3509 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3510 MVT::i1, MachineNode->getOperand(0), 3511 MachineNode->getOperand(1). 3512 getOperand(0)); 3513 else if (AllUsersSelectZero(MachineNode)) 3514 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 3515 MVT::i1, MachineNode->getOperand(0), 3516 MachineNode->getOperand(1)), 3517 SelectSwap = true; 3518 break; 3519 case PPC::CRNAND: 3520 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3521 // nand(x, x) -> nor(x, x) 3522 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3523 MVT::i1, MachineNode->getOperand(0), 3524 MachineNode->getOperand(0)); 3525 else if (Op1Set) 3526 // nand(1, y) -> nor(y, y) 3527 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3528 MVT::i1, MachineNode->getOperand(1), 3529 MachineNode->getOperand(1)); 3530 else if (Op2Set) 3531 // nand(x, 1) -> nor(x, x) 3532 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3533 MVT::i1, MachineNode->getOperand(0), 3534 MachineNode->getOperand(0)); 3535 else if (Op1Unset || Op2Unset) 3536 // nand(x, 0) = nand(0, y) = 1 3537 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3538 MVT::i1); 3539 else if (Op1Not) 3540 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 3541 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3542 MVT::i1, MachineNode->getOperand(0). 3543 getOperand(0), 3544 MachineNode->getOperand(1)); 3545 else if (Op2Not) 3546 // nand(x, ~y) = ~x | y = orc(y, x) 3547 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3548 MVT::i1, MachineNode->getOperand(1). 3549 getOperand(0), 3550 MachineNode->getOperand(0)); 3551 else if (AllUsersSelectZero(MachineNode)) 3552 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 3553 MVT::i1, MachineNode->getOperand(0), 3554 MachineNode->getOperand(1)), 3555 SelectSwap = true; 3556 break; 3557 case PPC::CROR: 3558 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3559 // x | x = x 3560 ResNode = MachineNode->getOperand(0).getNode(); 3561 else if (Op1Set || Op2Set) 3562 // x | 1 = 1 | y = 1 3563 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3564 MVT::i1); 3565 else if (Op1Unset) 3566 // 0 | y = y 3567 ResNode = MachineNode->getOperand(1).getNode(); 3568 else if (Op2Unset) 3569 // x | 0 = x 3570 ResNode = MachineNode->getOperand(0).getNode(); 3571 else if (Op1Not) 3572 // ~x | y = orc(y, x) 3573 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3574 MVT::i1, MachineNode->getOperand(1), 3575 MachineNode->getOperand(0). 3576 getOperand(0)); 3577 else if (Op2Not) 3578 // x | ~y = orc(x, y) 3579 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3580 MVT::i1, MachineNode->getOperand(0), 3581 MachineNode->getOperand(1). 3582 getOperand(0)); 3583 else if (AllUsersSelectZero(MachineNode)) 3584 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3585 MVT::i1, MachineNode->getOperand(0), 3586 MachineNode->getOperand(1)), 3587 SelectSwap = true; 3588 break; 3589 case PPC::CRXOR: 3590 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3591 // xor(x, x) = 0 3592 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3593 MVT::i1); 3594 else if (Op1Set) 3595 // xor(1, y) -> nor(y, y) 3596 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3597 MVT::i1, MachineNode->getOperand(1), 3598 MachineNode->getOperand(1)); 3599 else if (Op2Set) 3600 // xor(x, 1) -> nor(x, x) 3601 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3602 MVT::i1, MachineNode->getOperand(0), 3603 MachineNode->getOperand(0)); 3604 else if (Op1Unset) 3605 // xor(0, y) = y 3606 ResNode = MachineNode->getOperand(1).getNode(); 3607 else if (Op2Unset) 3608 // xor(x, 0) = x 3609 ResNode = MachineNode->getOperand(0).getNode(); 3610 else if (Op1Not) 3611 // xor(~x, y) = eqv(x, y) 3612 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3613 MVT::i1, MachineNode->getOperand(0). 3614 getOperand(0), 3615 MachineNode->getOperand(1)); 3616 else if (Op2Not) 3617 // xor(x, ~y) = eqv(x, y) 3618 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3619 MVT::i1, MachineNode->getOperand(0), 3620 MachineNode->getOperand(1). 3621 getOperand(0)); 3622 else if (AllUsersSelectZero(MachineNode)) 3623 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3624 MVT::i1, MachineNode->getOperand(0), 3625 MachineNode->getOperand(1)), 3626 SelectSwap = true; 3627 break; 3628 case PPC::CRNOR: 3629 if (Op1Set || Op2Set) 3630 // nor(1, y) -> 0 3631 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3632 MVT::i1); 3633 else if (Op1Unset) 3634 // nor(0, y) = ~y -> nor(y, y) 3635 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3636 MVT::i1, MachineNode->getOperand(1), 3637 MachineNode->getOperand(1)); 3638 else if (Op2Unset) 3639 // nor(x, 0) = ~x 3640 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3641 MVT::i1, MachineNode->getOperand(0), 3642 MachineNode->getOperand(0)); 3643 else if (Op1Not) 3644 // nor(~x, y) = andc(x, y) 3645 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3646 MVT::i1, MachineNode->getOperand(0). 3647 getOperand(0), 3648 MachineNode->getOperand(1)); 3649 else if (Op2Not) 3650 // nor(x, ~y) = andc(y, x) 3651 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3652 MVT::i1, MachineNode->getOperand(1). 3653 getOperand(0), 3654 MachineNode->getOperand(0)); 3655 else if (AllUsersSelectZero(MachineNode)) 3656 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 3657 MVT::i1, MachineNode->getOperand(0), 3658 MachineNode->getOperand(1)), 3659 SelectSwap = true; 3660 break; 3661 case PPC::CREQV: 3662 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3663 // eqv(x, x) = 1 3664 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3665 MVT::i1); 3666 else if (Op1Set) 3667 // eqv(1, y) = y 3668 ResNode = MachineNode->getOperand(1).getNode(); 3669 else if (Op2Set) 3670 // eqv(x, 1) = x 3671 ResNode = MachineNode->getOperand(0).getNode(); 3672 else if (Op1Unset) 3673 // eqv(0, y) = ~y -> nor(y, y) 3674 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3675 MVT::i1, MachineNode->getOperand(1), 3676 MachineNode->getOperand(1)); 3677 else if (Op2Unset) 3678 // eqv(x, 0) = ~x 3679 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3680 MVT::i1, MachineNode->getOperand(0), 3681 MachineNode->getOperand(0)); 3682 else if (Op1Not) 3683 // eqv(~x, y) = xor(x, y) 3684 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3685 MVT::i1, MachineNode->getOperand(0). 3686 getOperand(0), 3687 MachineNode->getOperand(1)); 3688 else if (Op2Not) 3689 // eqv(x, ~y) = xor(x, y) 3690 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3691 MVT::i1, MachineNode->getOperand(0), 3692 MachineNode->getOperand(1). 3693 getOperand(0)); 3694 else if (AllUsersSelectZero(MachineNode)) 3695 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3696 MVT::i1, MachineNode->getOperand(0), 3697 MachineNode->getOperand(1)), 3698 SelectSwap = true; 3699 break; 3700 case PPC::CRANDC: 3701 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3702 // andc(x, x) = 0 3703 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3704 MVT::i1); 3705 else if (Op1Set) 3706 // andc(1, y) = ~y 3707 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3708 MVT::i1, MachineNode->getOperand(1), 3709 MachineNode->getOperand(1)); 3710 else if (Op1Unset || Op2Set) 3711 // andc(0, y) = andc(x, 1) = 0 3712 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3713 MVT::i1); 3714 else if (Op2Unset) 3715 // andc(x, 0) = x 3716 ResNode = MachineNode->getOperand(0).getNode(); 3717 else if (Op1Not) 3718 // andc(~x, y) = ~(x | y) = nor(x, y) 3719 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3720 MVT::i1, MachineNode->getOperand(0). 3721 getOperand(0), 3722 MachineNode->getOperand(1)); 3723 else if (Op2Not) 3724 // andc(x, ~y) = x & y 3725 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 3726 MVT::i1, MachineNode->getOperand(0), 3727 MachineNode->getOperand(1). 3728 getOperand(0)); 3729 else if (AllUsersSelectZero(MachineNode)) 3730 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3731 MVT::i1, MachineNode->getOperand(1), 3732 MachineNode->getOperand(0)), 3733 SelectSwap = true; 3734 break; 3735 case PPC::CRORC: 3736 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3737 // orc(x, x) = 1 3738 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3739 MVT::i1); 3740 else if (Op1Set || Op2Unset) 3741 // orc(1, y) = orc(x, 0) = 1 3742 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3743 MVT::i1); 3744 else if (Op2Set) 3745 // orc(x, 1) = x 3746 ResNode = MachineNode->getOperand(0).getNode(); 3747 else if (Op1Unset) 3748 // orc(0, y) = ~y 3749 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3750 MVT::i1, MachineNode->getOperand(1), 3751 MachineNode->getOperand(1)); 3752 else if (Op1Not) 3753 // orc(~x, y) = ~(x & y) = nand(x, y) 3754 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 3755 MVT::i1, MachineNode->getOperand(0). 3756 getOperand(0), 3757 MachineNode->getOperand(1)); 3758 else if (Op2Not) 3759 // orc(x, ~y) = x | y 3760 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 3761 MVT::i1, MachineNode->getOperand(0), 3762 MachineNode->getOperand(1). 3763 getOperand(0)); 3764 else if (AllUsersSelectZero(MachineNode)) 3765 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3766 MVT::i1, MachineNode->getOperand(1), 3767 MachineNode->getOperand(0)), 3768 SelectSwap = true; 3769 break; 3770 case PPC::SELECT_I4: 3771 case PPC::SELECT_I8: 3772 case PPC::SELECT_F4: 3773 case PPC::SELECT_F8: 3774 case PPC::SELECT_QFRC: 3775 case PPC::SELECT_QSRC: 3776 case PPC::SELECT_QBRC: 3777 case PPC::SELECT_VRRC: 3778 case PPC::SELECT_VSFRC: 3779 case PPC::SELECT_VSSRC: 3780 case PPC::SELECT_VSRC: 3781 if (Op1Set) 3782 ResNode = MachineNode->getOperand(1).getNode(); 3783 else if (Op1Unset) 3784 ResNode = MachineNode->getOperand(2).getNode(); 3785 else if (Op1Not) 3786 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 3787 SDLoc(MachineNode), 3788 MachineNode->getValueType(0), 3789 MachineNode->getOperand(0). 3790 getOperand(0), 3791 MachineNode->getOperand(2), 3792 MachineNode->getOperand(1)); 3793 break; 3794 case PPC::BC: 3795 case PPC::BCn: 3796 if (Op1Not) 3797 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 3798 PPC::BC, 3799 SDLoc(MachineNode), 3800 MVT::Other, 3801 MachineNode->getOperand(0). 3802 getOperand(0), 3803 MachineNode->getOperand(1), 3804 MachineNode->getOperand(2)); 3805 // FIXME: Handle Op1Set, Op1Unset here too. 3806 break; 3807 } 3808 3809 // If we're inverting this node because it is used only by selects that 3810 // we'd like to swap, then swap the selects before the node replacement. 3811 if (SelectSwap) 3812 SwapAllSelectUsers(MachineNode); 3813 3814 if (ResNode != MachineNode) { 3815 DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 3816 DEBUG(MachineNode->dump(CurDAG)); 3817 DEBUG(dbgs() << "\nNew: "); 3818 DEBUG(ResNode->dump(CurDAG)); 3819 DEBUG(dbgs() << "\n"); 3820 3821 ReplaceUses(MachineNode, ResNode); 3822 IsModified = true; 3823 } 3824 } 3825 if (IsModified) 3826 CurDAG->RemoveDeadNodes(); 3827 } while (IsModified); 3828 } 3829 3830 // Gather the set of 32-bit operations that are known to have their 3831 // higher-order 32 bits zero, where ToPromote contains all such operations. 3832 static bool PeepholePPC64ZExtGather(SDValue Op32, 3833 SmallPtrSetImpl<SDNode *> &ToPromote) { 3834 if (!Op32.isMachineOpcode()) 3835 return false; 3836 3837 // First, check for the "frontier" instructions (those that will clear the 3838 // higher-order 32 bits. 3839 3840 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 3841 // around. If it does not, then these instructions will clear the 3842 // higher-order bits. 3843 if ((Op32.getMachineOpcode() == PPC::RLWINM || 3844 Op32.getMachineOpcode() == PPC::RLWNM) && 3845 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 3846 ToPromote.insert(Op32.getNode()); 3847 return true; 3848 } 3849 3850 // SLW and SRW always clear the higher-order bits. 3851 if (Op32.getMachineOpcode() == PPC::SLW || 3852 Op32.getMachineOpcode() == PPC::SRW) { 3853 ToPromote.insert(Op32.getNode()); 3854 return true; 3855 } 3856 3857 // For LI and LIS, we need the immediate to be positive (so that it is not 3858 // sign extended). 3859 if (Op32.getMachineOpcode() == PPC::LI || 3860 Op32.getMachineOpcode() == PPC::LIS) { 3861 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 3862 return false; 3863 3864 ToPromote.insert(Op32.getNode()); 3865 return true; 3866 } 3867 3868 // LHBRX and LWBRX always clear the higher-order bits. 3869 if (Op32.getMachineOpcode() == PPC::LHBRX || 3870 Op32.getMachineOpcode() == PPC::LWBRX) { 3871 ToPromote.insert(Op32.getNode()); 3872 return true; 3873 } 3874 3875 // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended. 3876 if (Op32.getMachineOpcode() == PPC::CNTLZW) { 3877 ToPromote.insert(Op32.getNode()); 3878 return true; 3879 } 3880 3881 // Next, check for those instructions we can look through. 3882 3883 // Assuming the mask does not wrap around, then the higher-order bits are 3884 // taken directly from the first operand. 3885 if (Op32.getMachineOpcode() == PPC::RLWIMI && 3886 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 3887 SmallPtrSet<SDNode *, 16> ToPromote1; 3888 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 3889 return false; 3890 3891 ToPromote.insert(Op32.getNode()); 3892 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3893 return true; 3894 } 3895 3896 // For OR, the higher-order bits are zero if that is true for both operands. 3897 // For SELECT_I4, the same is true (but the relevant operand numbers are 3898 // shifted by 1). 3899 if (Op32.getMachineOpcode() == PPC::OR || 3900 Op32.getMachineOpcode() == PPC::SELECT_I4) { 3901 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 3902 SmallPtrSet<SDNode *, 16> ToPromote1; 3903 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 3904 return false; 3905 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 3906 return false; 3907 3908 ToPromote.insert(Op32.getNode()); 3909 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3910 return true; 3911 } 3912 3913 // For ORI and ORIS, we need the higher-order bits of the first operand to be 3914 // zero, and also for the constant to be positive (so that it is not sign 3915 // extended). 3916 if (Op32.getMachineOpcode() == PPC::ORI || 3917 Op32.getMachineOpcode() == PPC::ORIS) { 3918 SmallPtrSet<SDNode *, 16> ToPromote1; 3919 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 3920 return false; 3921 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 3922 return false; 3923 3924 ToPromote.insert(Op32.getNode()); 3925 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3926 return true; 3927 } 3928 3929 // The higher-order bits of AND are zero if that is true for at least one of 3930 // the operands. 3931 if (Op32.getMachineOpcode() == PPC::AND) { 3932 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 3933 bool Op0OK = 3934 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 3935 bool Op1OK = 3936 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 3937 if (!Op0OK && !Op1OK) 3938 return false; 3939 3940 ToPromote.insert(Op32.getNode()); 3941 3942 if (Op0OK) 3943 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3944 3945 if (Op1OK) 3946 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 3947 3948 return true; 3949 } 3950 3951 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 3952 // of the first operand, or if the second operand is positive (so that it is 3953 // not sign extended). 3954 if (Op32.getMachineOpcode() == PPC::ANDIo || 3955 Op32.getMachineOpcode() == PPC::ANDISo) { 3956 SmallPtrSet<SDNode *, 16> ToPromote1; 3957 bool Op0OK = 3958 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 3959 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 3960 if (!Op0OK && !Op1OK) 3961 return false; 3962 3963 ToPromote.insert(Op32.getNode()); 3964 3965 if (Op0OK) 3966 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3967 3968 return true; 3969 } 3970 3971 return false; 3972 } 3973 3974 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 3975 if (!PPCSubTarget->isPPC64()) 3976 return; 3977 3978 // When we zero-extend from i32 to i64, we use a pattern like this: 3979 // def : Pat<(i64 (zext i32:$in)), 3980 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 3981 // 0, 32)>; 3982 // There are several 32-bit shift/rotate instructions, however, that will 3983 // clear the higher-order bits of their output, rendering the RLDICL 3984 // unnecessary. When that happens, we remove it here, and redefine the 3985 // relevant 32-bit operation to be a 64-bit operation. 3986 3987 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 3988 ++Position; 3989 3990 bool MadeChange = false; 3991 while (Position != CurDAG->allnodes_begin()) { 3992 SDNode *N = &*--Position; 3993 // Skip dead nodes and any non-machine opcodes. 3994 if (N->use_empty() || !N->isMachineOpcode()) 3995 continue; 3996 3997 if (N->getMachineOpcode() != PPC::RLDICL) 3998 continue; 3999 4000 if (N->getConstantOperandVal(1) != 0 || 4001 N->getConstantOperandVal(2) != 32) 4002 continue; 4003 4004 SDValue ISR = N->getOperand(0); 4005 if (!ISR.isMachineOpcode() || 4006 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 4007 continue; 4008 4009 if (!ISR.hasOneUse()) 4010 continue; 4011 4012 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 4013 continue; 4014 4015 SDValue IDef = ISR.getOperand(0); 4016 if (!IDef.isMachineOpcode() || 4017 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 4018 continue; 4019 4020 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 4021 // can get rid of it. 4022 4023 SDValue Op32 = ISR->getOperand(1); 4024 if (!Op32.isMachineOpcode()) 4025 continue; 4026 4027 // There are some 32-bit instructions that always clear the high-order 32 4028 // bits, there are also some instructions (like AND) that we can look 4029 // through. 4030 SmallPtrSet<SDNode *, 16> ToPromote; 4031 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 4032 continue; 4033 4034 // If the ToPromote set contains nodes that have uses outside of the set 4035 // (except for the original INSERT_SUBREG), then abort the transformation. 4036 bool OutsideUse = false; 4037 for (SDNode *PN : ToPromote) { 4038 for (SDNode *UN : PN->uses()) { 4039 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 4040 OutsideUse = true; 4041 break; 4042 } 4043 } 4044 4045 if (OutsideUse) 4046 break; 4047 } 4048 if (OutsideUse) 4049 continue; 4050 4051 MadeChange = true; 4052 4053 // We now know that this zero extension can be removed by promoting to 4054 // nodes in ToPromote to 64-bit operations, where for operations in the 4055 // frontier of the set, we need to insert INSERT_SUBREGs for their 4056 // operands. 4057 for (SDNode *PN : ToPromote) { 4058 unsigned NewOpcode; 4059 switch (PN->getMachineOpcode()) { 4060 default: 4061 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 4062 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 4063 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 4064 case PPC::SLW: NewOpcode = PPC::SLW8; break; 4065 case PPC::SRW: NewOpcode = PPC::SRW8; break; 4066 case PPC::LI: NewOpcode = PPC::LI8; break; 4067 case PPC::LIS: NewOpcode = PPC::LIS8; break; 4068 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 4069 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 4070 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 4071 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 4072 case PPC::OR: NewOpcode = PPC::OR8; break; 4073 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 4074 case PPC::ORI: NewOpcode = PPC::ORI8; break; 4075 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 4076 case PPC::AND: NewOpcode = PPC::AND8; break; 4077 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break; 4078 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break; 4079 } 4080 4081 // Note: During the replacement process, the nodes will be in an 4082 // inconsistent state (some instructions will have operands with values 4083 // of the wrong type). Once done, however, everything should be right 4084 // again. 4085 4086 SmallVector<SDValue, 4> Ops; 4087 for (const SDValue &V : PN->ops()) { 4088 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 4089 !isa<ConstantSDNode>(V)) { 4090 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 4091 SDNode *ReplOp = 4092 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 4093 ISR.getNode()->getVTList(), ReplOpOps); 4094 Ops.push_back(SDValue(ReplOp, 0)); 4095 } else { 4096 Ops.push_back(V); 4097 } 4098 } 4099 4100 // Because all to-be-promoted nodes only have users that are other 4101 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 4102 // the i32 result value type with i64. 4103 4104 SmallVector<EVT, 2> NewVTs; 4105 SDVTList VTs = PN->getVTList(); 4106 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 4107 if (VTs.VTs[i] == MVT::i32) 4108 NewVTs.push_back(MVT::i64); 4109 else 4110 NewVTs.push_back(VTs.VTs[i]); 4111 4112 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 4113 DEBUG(PN->dump(CurDAG)); 4114 4115 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 4116 4117 DEBUG(dbgs() << "\nNew: "); 4118 DEBUG(PN->dump(CurDAG)); 4119 DEBUG(dbgs() << "\n"); 4120 } 4121 4122 // Now we replace the original zero extend and its associated INSERT_SUBREG 4123 // with the value feeding the INSERT_SUBREG (which has now been promoted to 4124 // return an i64). 4125 4126 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 4127 DEBUG(N->dump(CurDAG)); 4128 DEBUG(dbgs() << "\nNew: "); 4129 DEBUG(Op32.getNode()->dump(CurDAG)); 4130 DEBUG(dbgs() << "\n"); 4131 4132 ReplaceUses(N, Op32.getNode()); 4133 } 4134 4135 if (MadeChange) 4136 CurDAG->RemoveDeadNodes(); 4137 } 4138 4139 void PPCDAGToDAGISel::PeepholePPC64() { 4140 // These optimizations are currently supported only for 64-bit SVR4. 4141 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) 4142 return; 4143 4144 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 4145 ++Position; 4146 4147 while (Position != CurDAG->allnodes_begin()) { 4148 SDNode *N = &*--Position; 4149 // Skip dead nodes and any non-machine opcodes. 4150 if (N->use_empty() || !N->isMachineOpcode()) 4151 continue; 4152 4153 unsigned FirstOp; 4154 unsigned StorageOpcode = N->getMachineOpcode(); 4155 4156 switch (StorageOpcode) { 4157 default: continue; 4158 4159 case PPC::LBZ: 4160 case PPC::LBZ8: 4161 case PPC::LD: 4162 case PPC::LFD: 4163 case PPC::LFS: 4164 case PPC::LHA: 4165 case PPC::LHA8: 4166 case PPC::LHZ: 4167 case PPC::LHZ8: 4168 case PPC::LWA: 4169 case PPC::LWZ: 4170 case PPC::LWZ8: 4171 FirstOp = 0; 4172 break; 4173 4174 case PPC::STB: 4175 case PPC::STB8: 4176 case PPC::STD: 4177 case PPC::STFD: 4178 case PPC::STFS: 4179 case PPC::STH: 4180 case PPC::STH8: 4181 case PPC::STW: 4182 case PPC::STW8: 4183 FirstOp = 1; 4184 break; 4185 } 4186 4187 // If this is a load or store with a zero offset, we may be able to 4188 // fold an add-immediate into the memory operation. 4189 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) || 4190 N->getConstantOperandVal(FirstOp) != 0) 4191 continue; 4192 4193 SDValue Base = N->getOperand(FirstOp + 1); 4194 if (!Base.isMachineOpcode()) 4195 continue; 4196 4197 unsigned Flags = 0; 4198 bool ReplaceFlags = true; 4199 4200 // When the feeding operation is an add-immediate of some sort, 4201 // determine whether we need to add relocation information to the 4202 // target flags on the immediate operand when we fold it into the 4203 // load instruction. 4204 // 4205 // For something like ADDItocL, the relocation information is 4206 // inferred from the opcode; when we process it in the AsmPrinter, 4207 // we add the necessary relocation there. A load, though, can receive 4208 // relocation from various flavors of ADDIxxx, so we need to carry 4209 // the relocation information in the target flags. 4210 switch (Base.getMachineOpcode()) { 4211 default: continue; 4212 4213 case PPC::ADDI8: 4214 case PPC::ADDI: 4215 // In some cases (such as TLS) the relocation information 4216 // is already in place on the operand, so copying the operand 4217 // is sufficient. 4218 ReplaceFlags = false; 4219 // For these cases, the immediate may not be divisible by 4, in 4220 // which case the fold is illegal for DS-form instructions. (The 4221 // other cases provide aligned addresses and are always safe.) 4222 if ((StorageOpcode == PPC::LWA || 4223 StorageOpcode == PPC::LD || 4224 StorageOpcode == PPC::STD) && 4225 (!isa<ConstantSDNode>(Base.getOperand(1)) || 4226 Base.getConstantOperandVal(1) % 4 != 0)) 4227 continue; 4228 break; 4229 case PPC::ADDIdtprelL: 4230 Flags = PPCII::MO_DTPREL_LO; 4231 break; 4232 case PPC::ADDItlsldL: 4233 Flags = PPCII::MO_TLSLD_LO; 4234 break; 4235 case PPC::ADDItocL: 4236 Flags = PPCII::MO_TOC_LO; 4237 break; 4238 } 4239 4240 // We found an opportunity. Reverse the operands from the add 4241 // immediate and substitute them into the load or store. If 4242 // needed, update the target flags for the immediate operand to 4243 // reflect the necessary relocation information. 4244 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 4245 DEBUG(Base->dump(CurDAG)); 4246 DEBUG(dbgs() << "\nN: "); 4247 DEBUG(N->dump(CurDAG)); 4248 DEBUG(dbgs() << "\n"); 4249 4250 SDValue ImmOpnd = Base.getOperand(1); 4251 4252 // If the relocation information isn't already present on the 4253 // immediate operand, add it now. 4254 if (ReplaceFlags) { 4255 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 4256 SDLoc dl(GA); 4257 const GlobalValue *GV = GA->getGlobal(); 4258 // We can't perform this optimization for data whose alignment 4259 // is insufficient for the instruction encoding. 4260 if (GV->getAlignment() < 4 && 4261 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || 4262 StorageOpcode == PPC::LWA)) { 4263 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 4264 continue; 4265 } 4266 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags); 4267 } else if (ConstantPoolSDNode *CP = 4268 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 4269 const Constant *C = CP->getConstVal(); 4270 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, 4271 CP->getAlignment(), 4272 0, Flags); 4273 } 4274 } 4275 4276 if (FirstOp == 1) // Store 4277 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 4278 Base.getOperand(0), N->getOperand(3)); 4279 else // Load 4280 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 4281 N->getOperand(2)); 4282 4283 // The add-immediate may now be dead, in which case remove it. 4284 if (Base.getNode()->use_empty()) 4285 CurDAG->RemoveDeadNode(Base.getNode()); 4286 } 4287 } 4288 4289 4290 /// createPPCISelDag - This pass converts a legalized DAG into a 4291 /// PowerPC-specific DAG, ready for instruction scheduling. 4292 /// 4293 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { 4294 return new PPCDAGToDAGISel(TM); 4295 } 4296 4297 static void initializePassOnce(PassRegistry &Registry) { 4298 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection"; 4299 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 4300 nullptr, false, false); 4301 Registry.registerPass(*PI, true); 4302 } 4303 4304 void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) { 4305 CALL_ONCE_INITIALIZATION(initializePassOnce); 4306 } 4307 4308