1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a pattern matching instruction selector for PowerPC, 11 // converting from a legalized dag to a PPC dag. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PPC.h" 16 #include "MCTargetDesc/PPCPredicates.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCTargetMachine.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/CodeGen/FunctionLoweringInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/SelectionDAGISel.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetOptions.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "ppc-codegen" 42 43 // FIXME: Remove this once the bug has been fixed! 44 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 45 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 46 47 static cl::opt<bool> 48 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 49 cl::desc("use aggressive ppc isel for bit permutations"), 50 cl::Hidden); 51 static cl::opt<bool> BPermRewriterNoMasking( 52 "ppc-bit-perm-rewriter-stress-rotates", 53 cl::desc("stress rotate selection in aggressive ppc isel for " 54 "bit permutations"), 55 cl::Hidden); 56 57 static cl::opt<bool> EnableBranchHint( 58 "ppc-use-branch-hint", cl::init(true), 59 cl::desc("Enable static hinting of branches on ppc"), 60 cl::Hidden); 61 62 namespace { 63 //===--------------------------------------------------------------------===// 64 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 65 /// instructions for SelectionDAG operations. 66 /// 67 class PPCDAGToDAGISel : public SelectionDAGISel { 68 const PPCTargetMachine &TM; 69 const PPCSubtarget *PPCSubTarget; 70 const PPCTargetLowering *PPCLowering; 71 unsigned GlobalBaseReg; 72 public: 73 explicit PPCDAGToDAGISel(PPCTargetMachine &tm) 74 : SelectionDAGISel(tm), TM(tm) {} 75 76 bool runOnMachineFunction(MachineFunction &MF) override { 77 // Make sure we re-emit a set of the global base reg if necessary 78 GlobalBaseReg = 0; 79 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); 80 PPCLowering = PPCSubTarget->getTargetLowering(); 81 SelectionDAGISel::runOnMachineFunction(MF); 82 83 if (!PPCSubTarget->isSVR4ABI()) 84 InsertVRSaveCode(MF); 85 86 return true; 87 } 88 89 void PreprocessISelDAG() override; 90 void PostprocessISelDAG() override; 91 92 /// getI32Imm - Return a target constant with the specified value, of type 93 /// i32. 94 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 95 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 96 } 97 98 /// getI64Imm - Return a target constant with the specified value, of type 99 /// i64. 100 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { 101 return CurDAG->getTargetConstant(Imm, dl, MVT::i64); 102 } 103 104 /// getSmallIPtrImm - Return a target constant of pointer type. 105 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { 106 return CurDAG->getTargetConstant( 107 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); 108 } 109 110 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 111 /// rotate and mask opcode and mask operation. 112 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 113 unsigned &SH, unsigned &MB, unsigned &ME); 114 115 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 116 /// base register. Return the virtual register that holds this value. 117 SDNode *getGlobalBaseReg(); 118 119 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); 120 121 // Select - Convert the specified operand from a target-independent to a 122 // target-specific node if it hasn't already been changed. 123 void Select(SDNode *N) override; 124 125 bool tryBitfieldInsert(SDNode *N); 126 bool tryBitPermutation(SDNode *N); 127 128 /// SelectCC - Select a comparison of the specified values with the 129 /// specified condition code, returning the CR# of the expression. 130 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 131 const SDLoc &dl); 132 133 /// SelectAddrImm - Returns true if the address N can be represented by 134 /// a base register plus a signed 16-bit displacement [r+imm]. 135 bool SelectAddrImm(SDValue N, SDValue &Disp, 136 SDValue &Base) { 137 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false); 138 } 139 140 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 141 /// immediate field. Note that the operand at this point is already the 142 /// result of a prior SelectAddressRegImm call. 143 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 144 if (N.getOpcode() == ISD::TargetConstant || 145 N.getOpcode() == ISD::TargetGlobalAddress) { 146 Out = N; 147 return true; 148 } 149 150 return false; 151 } 152 153 /// SelectAddrIdx - Given the specified addressed, check to see if it can be 154 /// represented as an indexed [r+r] operation. Returns false if it can 155 /// be represented by [r+imm], which are preferred. 156 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 157 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG); 158 } 159 160 /// SelectAddrIdxOnly - Given the specified addressed, force it to be 161 /// represented as an indexed [r+r] operation. 162 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 163 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 164 } 165 166 /// SelectAddrImmX4 - Returns true if the address N can be represented by 167 /// a base register plus a signed 16-bit displacement that is a multiple of 4. 168 /// Suitable for use by STD and friends. 169 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 170 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true); 171 } 172 173 // Select an address into a single register. 174 bool SelectAddr(SDValue N, SDValue &Base) { 175 Base = N; 176 return true; 177 } 178 179 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 180 /// inline asm expressions. It is always correct to compute the value into 181 /// a register. The case of adding a (possibly relocatable) constant to a 182 /// register can be improved, but it is wrong to substitute Reg+Reg for 183 /// Reg in an asm, because the load or store opcode would have to change. 184 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 185 unsigned ConstraintID, 186 std::vector<SDValue> &OutOps) override { 187 188 switch(ConstraintID) { 189 default: 190 errs() << "ConstraintID: " << ConstraintID << "\n"; 191 llvm_unreachable("Unexpected asm memory constraint"); 192 case InlineAsm::Constraint_es: 193 case InlineAsm::Constraint_i: 194 case InlineAsm::Constraint_m: 195 case InlineAsm::Constraint_o: 196 case InlineAsm::Constraint_Q: 197 case InlineAsm::Constraint_Z: 198 case InlineAsm::Constraint_Zy: 199 // We need to make sure that this one operand does not end up in r0 200 // (because we might end up lowering this as 0(%op)). 201 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); 202 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 203 SDLoc dl(Op); 204 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); 205 SDValue NewOp = 206 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 207 dl, Op.getValueType(), 208 Op, RC), 0); 209 210 OutOps.push_back(NewOp); 211 return false; 212 } 213 return true; 214 } 215 216 void InsertVRSaveCode(MachineFunction &MF); 217 218 StringRef getPassName() const override { 219 return "PowerPC DAG->DAG Pattern Instruction Selection"; 220 } 221 222 // Include the pieces autogenerated from the target description. 223 #include "PPCGenDAGISel.inc" 224 225 private: 226 bool trySETCC(SDNode *N); 227 228 void PeepholePPC64(); 229 void PeepholePPC64ZExt(); 230 void PeepholeCROps(); 231 232 SDValue combineToCMPB(SDNode *N); 233 void foldBoolExts(SDValue &Res, SDNode *&N); 234 235 bool AllUsersSelectZero(SDNode *N); 236 void SwapAllSelectUsers(SDNode *N); 237 238 void transferMemOperands(SDNode *N, SDNode *Result); 239 }; 240 } 241 242 /// InsertVRSaveCode - Once the entire function has been instruction selected, 243 /// all virtual registers are created and all machine instructions are built, 244 /// check to see if we need to save/restore VRSAVE. If so, do it. 245 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 246 // Check to see if this function uses vector registers, which means we have to 247 // save and restore the VRSAVE register and update it with the regs we use. 248 // 249 // In this case, there will be virtual registers of vector type created 250 // by the scheduler. Detect them now. 251 bool HasVectorVReg = false; 252 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 253 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 254 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 255 HasVectorVReg = true; 256 break; 257 } 258 } 259 if (!HasVectorVReg) return; // nothing to do. 260 261 // If we have a vector register, we want to emit code into the entry and exit 262 // blocks to save and restore the VRSAVE register. We do this here (instead 263 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 264 // 265 // 1. This (trivially) reduces the load on the register allocator, by not 266 // having to represent the live range of the VRSAVE register. 267 // 2. This (more significantly) allows us to create a temporary virtual 268 // register to hold the saved VRSAVE value, allowing this temporary to be 269 // register allocated, instead of forcing it to be spilled to the stack. 270 271 // Create two vregs - one to hold the VRSAVE register that is live-in to the 272 // function and one for the value after having bits or'd into it. 273 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 274 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 275 276 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 277 MachineBasicBlock &EntryBB = *Fn.begin(); 278 DebugLoc dl; 279 // Emit the following code into the entry block: 280 // InVRSAVE = MFVRSAVE 281 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 282 // MTVRSAVE UpdatedVRSAVE 283 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 284 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 285 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 286 UpdatedVRSAVE).addReg(InVRSAVE); 287 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 288 289 // Find all return blocks, outputting a restore in each epilog. 290 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 291 if (BB->isReturnBlock()) { 292 IP = BB->end(); --IP; 293 294 // Skip over all terminator instructions, which are part of the return 295 // sequence. 296 MachineBasicBlock::iterator I2 = IP; 297 while (I2 != BB->begin() && (--I2)->isTerminator()) 298 IP = I2; 299 300 // Emit: MTVRSAVE InVRSave 301 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 302 } 303 } 304 } 305 306 307 /// getGlobalBaseReg - Output the instructions required to put the 308 /// base address to use for accessing globals into a register. 309 /// 310 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 311 if (!GlobalBaseReg) { 312 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 313 // Insert the set of GlobalBaseReg into the first MBB of the function 314 MachineBasicBlock &FirstMBB = MF->front(); 315 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 316 const Module *M = MF->getFunction()->getParent(); 317 DebugLoc dl; 318 319 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { 320 if (PPCSubTarget->isTargetELF()) { 321 GlobalBaseReg = PPC::R30; 322 if (M->getPICLevel() == PICLevel::SmallPIC) { 323 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 324 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 325 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 326 } else { 327 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 328 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 329 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 330 BuildMI(FirstMBB, MBBI, dl, 331 TII.get(PPC::UpdateGBR), GlobalBaseReg) 332 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 333 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 334 } 335 } else { 336 GlobalBaseReg = 337 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass); 338 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 339 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 340 } 341 } else { 342 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass); 343 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 344 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 345 } 346 } 347 return CurDAG->getRegister(GlobalBaseReg, 348 PPCLowering->getPointerTy(CurDAG->getDataLayout())) 349 .getNode(); 350 } 351 352 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 353 /// or 64-bit immediate, and if the value can be accurately represented as a 354 /// sign extension from a 16-bit value. If so, this returns true and the 355 /// immediate. 356 static bool isIntS16Immediate(SDNode *N, short &Imm) { 357 if (N->getOpcode() != ISD::Constant) 358 return false; 359 360 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 361 if (N->getValueType(0) == MVT::i32) 362 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 363 else 364 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 365 } 366 367 static bool isIntS16Immediate(SDValue Op, short &Imm) { 368 return isIntS16Immediate(Op.getNode(), Imm); 369 } 370 371 372 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 373 /// operand. If so Imm will receive the 32-bit value. 374 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 375 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 376 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 377 return true; 378 } 379 return false; 380 } 381 382 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 383 /// operand. If so Imm will receive the 64-bit value. 384 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 385 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 386 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 387 return true; 388 } 389 return false; 390 } 391 392 // isInt32Immediate - This method tests to see if a constant operand. 393 // If so Imm will receive the 32 bit value. 394 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 395 return isInt32Immediate(N.getNode(), Imm); 396 } 397 398 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo, 399 const SDValue &DestMBB) { 400 assert(isa<BasicBlockSDNode>(DestMBB)); 401 402 if (!FuncInfo->BPI) return PPC::BR_NO_HINT; 403 404 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 405 const TerminatorInst *BBTerm = BB->getTerminator(); 406 407 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; 408 409 const BasicBlock *TBB = BBTerm->getSuccessor(0); 410 const BasicBlock *FBB = BBTerm->getSuccessor(1); 411 412 auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB); 413 auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB); 414 415 // We only want to handle cases which are easy to predict at static time, e.g. 416 // C++ throw statement, that is very likely not taken, or calling never 417 // returned function, e.g. stdlib exit(). So we set Threshold to filter 418 // unwanted cases. 419 // 420 // Below is LLVM branch weight table, we only want to handle case 1, 2 421 // 422 // Case Taken:Nontaken Example 423 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), 424 // 2. Invoke-terminating 1:1048575 425 // 3. Coldblock 4:64 __builtin_expect 426 // 4. Loop Branch 124:4 For loop 427 // 5. PH/ZH/FPH 20:12 428 const uint32_t Threshold = 10000; 429 430 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) 431 return PPC::BR_NO_HINT; 432 433 DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::" 434 << BB->getName() << "'\n" 435 << " -> " << TBB->getName() << ": " << TProb << "\n" 436 << " -> " << FBB->getName() << ": " << FProb << "\n"); 437 438 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); 439 440 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, 441 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock 442 if (BBDN->getBasicBlock()->getBasicBlock() != TBB) 443 std::swap(TProb, FProb); 444 445 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; 446 } 447 448 // isOpcWithIntImmediate - This method tests to see if the node is a specific 449 // opcode and that it has a immediate integer right operand. 450 // If so Imm will receive the 32 bit value. 451 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 452 return N->getOpcode() == Opc 453 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 454 } 455 456 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { 457 SDLoc dl(SN); 458 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 459 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 460 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 461 if (SN->hasOneUse()) 462 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 463 getSmallIPtrImm(Offset, dl)); 464 else 465 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 466 getSmallIPtrImm(Offset, dl))); 467 } 468 469 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 470 bool isShiftMask, unsigned &SH, 471 unsigned &MB, unsigned &ME) { 472 // Don't even go down this path for i64, since different logic will be 473 // necessary for rldicl/rldicr/rldimi. 474 if (N->getValueType(0) != MVT::i32) 475 return false; 476 477 unsigned Shift = 32; 478 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 479 unsigned Opcode = N->getOpcode(); 480 if (N->getNumOperands() != 2 || 481 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 482 return false; 483 484 if (Opcode == ISD::SHL) { 485 // apply shift left to mask if it comes first 486 if (isShiftMask) Mask = Mask << Shift; 487 // determine which bits are made indeterminant by shift 488 Indeterminant = ~(0xFFFFFFFFu << Shift); 489 } else if (Opcode == ISD::SRL) { 490 // apply shift right to mask if it comes first 491 if (isShiftMask) Mask = Mask >> Shift; 492 // determine which bits are made indeterminant by shift 493 Indeterminant = ~(0xFFFFFFFFu >> Shift); 494 // adjust for the left rotate 495 Shift = 32 - Shift; 496 } else if (Opcode == ISD::ROTL) { 497 Indeterminant = 0; 498 } else { 499 return false; 500 } 501 502 // if the mask doesn't intersect any Indeterminant bits 503 if (Mask && !(Mask & Indeterminant)) { 504 SH = Shift & 31; 505 // make sure the mask is still a mask (wrap arounds may not be) 506 return isRunOfOnes(Mask, MB, ME); 507 } 508 return false; 509 } 510 511 /// Turn an or of two masked values into the rotate left word immediate then 512 /// mask insert (rlwimi) instruction. 513 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { 514 SDValue Op0 = N->getOperand(0); 515 SDValue Op1 = N->getOperand(1); 516 SDLoc dl(N); 517 518 APInt LKZ, LKO, RKZ, RKO; 519 CurDAG->computeKnownBits(Op0, LKZ, LKO); 520 CurDAG->computeKnownBits(Op1, RKZ, RKO); 521 522 unsigned TargetMask = LKZ.getZExtValue(); 523 unsigned InsertMask = RKZ.getZExtValue(); 524 525 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 526 unsigned Op0Opc = Op0.getOpcode(); 527 unsigned Op1Opc = Op1.getOpcode(); 528 unsigned Value, SH = 0; 529 TargetMask = ~TargetMask; 530 InsertMask = ~InsertMask; 531 532 // If the LHS has a foldable shift and the RHS does not, then swap it to the 533 // RHS so that we can fold the shift into the insert. 534 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 535 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 536 Op0.getOperand(0).getOpcode() == ISD::SRL) { 537 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 538 Op1.getOperand(0).getOpcode() != ISD::SRL) { 539 std::swap(Op0, Op1); 540 std::swap(Op0Opc, Op1Opc); 541 std::swap(TargetMask, InsertMask); 542 } 543 } 544 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 545 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 546 Op1.getOperand(0).getOpcode() != ISD::SRL) { 547 std::swap(Op0, Op1); 548 std::swap(Op0Opc, Op1Opc); 549 std::swap(TargetMask, InsertMask); 550 } 551 } 552 553 unsigned MB, ME; 554 if (isRunOfOnes(InsertMask, MB, ME)) { 555 SDValue Tmp1, Tmp2; 556 557 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 558 isInt32Immediate(Op1.getOperand(1), Value)) { 559 Op1 = Op1.getOperand(0); 560 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 561 } 562 if (Op1Opc == ISD::AND) { 563 // The AND mask might not be a constant, and we need to make sure that 564 // if we're going to fold the masking with the insert, all bits not 565 // know to be zero in the mask are known to be one. 566 APInt MKZ, MKO; 567 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO); 568 bool CanFoldMask = InsertMask == MKO.getZExtValue(); 569 570 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 571 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 572 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 573 // Note that Value must be in range here (less than 32) because 574 // otherwise there would not be any bits set in InsertMask. 575 Op1 = Op1.getOperand(0).getOperand(0); 576 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 577 } 578 } 579 580 SH &= 31; 581 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), 582 getI32Imm(ME, dl) }; 583 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 584 return true; 585 } 586 } 587 return false; 588 } 589 590 // Predict the number of instructions that would be generated by calling 591 // getInt64(N). 592 static unsigned getInt64CountDirect(int64_t Imm) { 593 // Assume no remaining bits. 594 unsigned Remainder = 0; 595 // Assume no shift required. 596 unsigned Shift = 0; 597 598 // If it can't be represented as a 32 bit value. 599 if (!isInt<32>(Imm)) { 600 Shift = countTrailingZeros<uint64_t>(Imm); 601 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 602 603 // If the shifted value fits 32 bits. 604 if (isInt<32>(ImmSh)) { 605 // Go with the shifted value. 606 Imm = ImmSh; 607 } else { 608 // Still stuck with a 64 bit value. 609 Remainder = Imm; 610 Shift = 32; 611 Imm >>= 32; 612 } 613 } 614 615 // Intermediate operand. 616 unsigned Result = 0; 617 618 // Handle first 32 bits. 619 unsigned Lo = Imm & 0xFFFF; 620 621 // Simple value. 622 if (isInt<16>(Imm)) { 623 // Just the Lo bits. 624 ++Result; 625 } else if (Lo) { 626 // Handle the Hi bits and Lo bits. 627 Result += 2; 628 } else { 629 // Just the Hi bits. 630 ++Result; 631 } 632 633 // If no shift, we're done. 634 if (!Shift) return Result; 635 636 // Shift for next step if the upper 32-bits were not zero. 637 if (Imm) 638 ++Result; 639 640 // Add in the last bits as required. 641 if ((Remainder >> 16) & 0xFFFF) 642 ++Result; 643 if (Remainder & 0xFFFF) 644 ++Result; 645 646 return Result; 647 } 648 649 static uint64_t Rot64(uint64_t Imm, unsigned R) { 650 return (Imm << R) | (Imm >> (64 - R)); 651 } 652 653 static unsigned getInt64Count(int64_t Imm) { 654 unsigned Count = getInt64CountDirect(Imm); 655 if (Count == 1) 656 return Count; 657 658 for (unsigned r = 1; r < 63; ++r) { 659 uint64_t RImm = Rot64(Imm, r); 660 unsigned RCount = getInt64CountDirect(RImm) + 1; 661 Count = std::min(Count, RCount); 662 663 // See comments in getInt64 for an explanation of the logic below. 664 unsigned LS = findLastSet(RImm); 665 if (LS != r-1) 666 continue; 667 668 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 669 uint64_t RImmWithOnes = RImm | OnesMask; 670 671 RCount = getInt64CountDirect(RImmWithOnes) + 1; 672 Count = std::min(Count, RCount); 673 } 674 675 return Count; 676 } 677 678 // Select a 64-bit constant. For cost-modeling purposes, getInt64Count 679 // (above) needs to be kept in sync with this function. 680 static SDNode *getInt64Direct(SelectionDAG *CurDAG, const SDLoc &dl, 681 int64_t Imm) { 682 // Assume no remaining bits. 683 unsigned Remainder = 0; 684 // Assume no shift required. 685 unsigned Shift = 0; 686 687 // If it can't be represented as a 32 bit value. 688 if (!isInt<32>(Imm)) { 689 Shift = countTrailingZeros<uint64_t>(Imm); 690 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 691 692 // If the shifted value fits 32 bits. 693 if (isInt<32>(ImmSh)) { 694 // Go with the shifted value. 695 Imm = ImmSh; 696 } else { 697 // Still stuck with a 64 bit value. 698 Remainder = Imm; 699 Shift = 32; 700 Imm >>= 32; 701 } 702 } 703 704 // Intermediate operand. 705 SDNode *Result; 706 707 // Handle first 32 bits. 708 unsigned Lo = Imm & 0xFFFF; 709 unsigned Hi = (Imm >> 16) & 0xFFFF; 710 711 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 712 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 713 }; 714 715 // Simple value. 716 if (isInt<16>(Imm)) { 717 // Just the Lo bits. 718 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); 719 } else if (Lo) { 720 // Handle the Hi bits. 721 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 722 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 723 // And Lo bits. 724 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 725 SDValue(Result, 0), getI32Imm(Lo)); 726 } else { 727 // Just the Hi bits. 728 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 729 } 730 731 // If no shift, we're done. 732 if (!Shift) return Result; 733 734 // Shift for next step if the upper 32-bits were not zero. 735 if (Imm) { 736 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 737 SDValue(Result, 0), 738 getI32Imm(Shift), 739 getI32Imm(63 - Shift)); 740 } 741 742 // Add in the last bits as required. 743 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 744 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 745 SDValue(Result, 0), getI32Imm(Hi)); 746 } 747 if ((Lo = Remainder & 0xFFFF)) { 748 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 749 SDValue(Result, 0), getI32Imm(Lo)); 750 } 751 752 return Result; 753 } 754 755 static SDNode *getInt64(SelectionDAG *CurDAG, const SDLoc &dl, int64_t Imm) { 756 unsigned Count = getInt64CountDirect(Imm); 757 if (Count == 1) 758 return getInt64Direct(CurDAG, dl, Imm); 759 760 unsigned RMin = 0; 761 762 int64_t MatImm; 763 unsigned MaskEnd; 764 765 for (unsigned r = 1; r < 63; ++r) { 766 uint64_t RImm = Rot64(Imm, r); 767 unsigned RCount = getInt64CountDirect(RImm) + 1; 768 if (RCount < Count) { 769 Count = RCount; 770 RMin = r; 771 MatImm = RImm; 772 MaskEnd = 63; 773 } 774 775 // If the immediate to generate has many trailing zeros, it might be 776 // worthwhile to generate a rotated value with too many leading ones 777 // (because that's free with li/lis's sign-extension semantics), and then 778 // mask them off after rotation. 779 780 unsigned LS = findLastSet(RImm); 781 // We're adding (63-LS) higher-order ones, and we expect to mask them off 782 // after performing the inverse rotation by (64-r). So we need that: 783 // 63-LS == 64-r => LS == r-1 784 if (LS != r-1) 785 continue; 786 787 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 788 uint64_t RImmWithOnes = RImm | OnesMask; 789 790 RCount = getInt64CountDirect(RImmWithOnes) + 1; 791 if (RCount < Count) { 792 Count = RCount; 793 RMin = r; 794 MatImm = RImmWithOnes; 795 MaskEnd = LS; 796 } 797 } 798 799 if (!RMin) 800 return getInt64Direct(CurDAG, dl, Imm); 801 802 auto getI32Imm = [CurDAG, dl](unsigned Imm) { 803 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 804 }; 805 806 SDValue Val = SDValue(getInt64Direct(CurDAG, dl, MatImm), 0); 807 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, 808 getI32Imm(64 - RMin), getI32Imm(MaskEnd)); 809 } 810 811 // Select a 64-bit constant. 812 static SDNode *getInt64(SelectionDAG *CurDAG, SDNode *N) { 813 SDLoc dl(N); 814 815 // Get 64 bit value. 816 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 817 return getInt64(CurDAG, dl, Imm); 818 } 819 820 namespace { 821 class BitPermutationSelector { 822 struct ValueBit { 823 SDValue V; 824 825 // The bit number in the value, using a convention where bit 0 is the 826 // lowest-order bit. 827 unsigned Idx; 828 829 enum Kind { 830 ConstZero, 831 Variable 832 } K; 833 834 ValueBit(SDValue V, unsigned I, Kind K = Variable) 835 : V(V), Idx(I), K(K) {} 836 ValueBit(Kind K = Variable) 837 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} 838 839 bool isZero() const { 840 return K == ConstZero; 841 } 842 843 bool hasValue() const { 844 return K == Variable; 845 } 846 847 SDValue getValue() const { 848 assert(hasValue() && "Cannot get the value of a constant bit"); 849 return V; 850 } 851 852 unsigned getValueBitIndex() const { 853 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 854 return Idx; 855 } 856 }; 857 858 // A bit group has the same underlying value and the same rotate factor. 859 struct BitGroup { 860 SDValue V; 861 unsigned RLAmt; 862 unsigned StartIdx, EndIdx; 863 864 // This rotation amount assumes that the lower 32 bits of the quantity are 865 // replicated in the high 32 bits by the rotation operator (which is done 866 // by rlwinm and friends in 64-bit mode). 867 bool Repl32; 868 // Did converting to Repl32 == true change the rotation factor? If it did, 869 // it decreased it by 32. 870 bool Repl32CR; 871 // Was this group coalesced after setting Repl32 to true? 872 bool Repl32Coalesced; 873 874 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 875 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 876 Repl32Coalesced(false) { 877 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R << 878 " [" << S << ", " << E << "]\n"); 879 } 880 }; 881 882 // Information on each (Value, RLAmt) pair (like the number of groups 883 // associated with each) used to choose the lowering method. 884 struct ValueRotInfo { 885 SDValue V; 886 unsigned RLAmt; 887 unsigned NumGroups; 888 unsigned FirstGroupStartIdx; 889 bool Repl32; 890 891 ValueRotInfo() 892 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX), 893 Repl32(false) {} 894 895 // For sorting (in reverse order) by NumGroups, and then by 896 // FirstGroupStartIdx. 897 bool operator < (const ValueRotInfo &Other) const { 898 // We need to sort so that the non-Repl32 come first because, when we're 899 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 900 // masking operation. 901 if (Repl32 < Other.Repl32) 902 return true; 903 else if (Repl32 > Other.Repl32) 904 return false; 905 else if (NumGroups > Other.NumGroups) 906 return true; 907 else if (NumGroups < Other.NumGroups) 908 return false; 909 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 910 return true; 911 return false; 912 } 913 }; 914 915 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; 916 using ValueBitsMemoizer = 917 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; 918 ValueBitsMemoizer Memoizer; 919 920 // Return a pair of bool and a SmallVector pointer to a memoization entry. 921 // The bool is true if something interesting was deduced, otherwise if we're 922 // providing only a generic representation of V (or something else likewise 923 // uninteresting for instruction selection) through the SmallVector. 924 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, 925 unsigned NumBits) { 926 auto &ValueEntry = Memoizer[V]; 927 if (ValueEntry) 928 return std::make_pair(ValueEntry->first, &ValueEntry->second); 929 ValueEntry.reset(new ValueBitsMemoizedValue()); 930 bool &Interesting = ValueEntry->first; 931 SmallVector<ValueBit, 64> &Bits = ValueEntry->second; 932 Bits.resize(NumBits); 933 934 switch (V.getOpcode()) { 935 default: break; 936 case ISD::ROTL: 937 if (isa<ConstantSDNode>(V.getOperand(1))) { 938 unsigned RotAmt = V.getConstantOperandVal(1); 939 940 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 941 942 for (unsigned i = 0; i < NumBits; ++i) 943 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; 944 945 return std::make_pair(Interesting = true, &Bits); 946 } 947 break; 948 case ISD::SHL: 949 if (isa<ConstantSDNode>(V.getOperand(1))) { 950 unsigned ShiftAmt = V.getConstantOperandVal(1); 951 952 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 953 954 for (unsigned i = ShiftAmt; i < NumBits; ++i) 955 Bits[i] = LHSBits[i - ShiftAmt]; 956 957 for (unsigned i = 0; i < ShiftAmt; ++i) 958 Bits[i] = ValueBit(ValueBit::ConstZero); 959 960 return std::make_pair(Interesting = true, &Bits); 961 } 962 break; 963 case ISD::SRL: 964 if (isa<ConstantSDNode>(V.getOperand(1))) { 965 unsigned ShiftAmt = V.getConstantOperandVal(1); 966 967 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 968 969 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) 970 Bits[i] = LHSBits[i + ShiftAmt]; 971 972 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) 973 Bits[i] = ValueBit(ValueBit::ConstZero); 974 975 return std::make_pair(Interesting = true, &Bits); 976 } 977 break; 978 case ISD::AND: 979 if (isa<ConstantSDNode>(V.getOperand(1))) { 980 uint64_t Mask = V.getConstantOperandVal(1); 981 982 const SmallVector<ValueBit, 64> *LHSBits; 983 // Mark this as interesting, only if the LHS was also interesting. This 984 // prevents the overall procedure from matching a single immediate 'and' 985 // (which is non-optimal because such an and might be folded with other 986 // things if we don't select it here). 987 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); 988 989 for (unsigned i = 0; i < NumBits; ++i) 990 if (((Mask >> i) & 1) == 1) 991 Bits[i] = (*LHSBits)[i]; 992 else 993 Bits[i] = ValueBit(ValueBit::ConstZero); 994 995 return std::make_pair(Interesting, &Bits); 996 } 997 break; 998 case ISD::OR: { 999 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; 1000 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; 1001 1002 bool AllDisjoint = true; 1003 for (unsigned i = 0; i < NumBits; ++i) 1004 if (LHSBits[i].isZero()) 1005 Bits[i] = RHSBits[i]; 1006 else if (RHSBits[i].isZero()) 1007 Bits[i] = LHSBits[i]; 1008 else { 1009 AllDisjoint = false; 1010 break; 1011 } 1012 1013 if (!AllDisjoint) 1014 break; 1015 1016 return std::make_pair(Interesting = true, &Bits); 1017 } 1018 } 1019 1020 for (unsigned i = 0; i < NumBits; ++i) 1021 Bits[i] = ValueBit(V, i); 1022 1023 return std::make_pair(Interesting = false, &Bits); 1024 } 1025 1026 // For each value (except the constant ones), compute the left-rotate amount 1027 // to get it from its original to final position. 1028 void computeRotationAmounts() { 1029 HasZeros = false; 1030 RLAmt.resize(Bits.size()); 1031 for (unsigned i = 0; i < Bits.size(); ++i) 1032 if (Bits[i].hasValue()) { 1033 unsigned VBI = Bits[i].getValueBitIndex(); 1034 if (i >= VBI) 1035 RLAmt[i] = i - VBI; 1036 else 1037 RLAmt[i] = Bits.size() - (VBI - i); 1038 } else if (Bits[i].isZero()) { 1039 HasZeros = true; 1040 RLAmt[i] = UINT32_MAX; 1041 } else { 1042 llvm_unreachable("Unknown value bit type"); 1043 } 1044 } 1045 1046 // Collect groups of consecutive bits with the same underlying value and 1047 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 1048 // they break up groups. 1049 void collectBitGroups(bool LateMask) { 1050 BitGroups.clear(); 1051 1052 unsigned LastRLAmt = RLAmt[0]; 1053 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 1054 unsigned LastGroupStartIdx = 0; 1055 for (unsigned i = 1; i < Bits.size(); ++i) { 1056 unsigned ThisRLAmt = RLAmt[i]; 1057 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 1058 if (LateMask && !ThisValue) { 1059 ThisValue = LastValue; 1060 ThisRLAmt = LastRLAmt; 1061 // If we're doing late masking, then the first bit group always starts 1062 // at zero (even if the first bits were zero). 1063 if (BitGroups.empty()) 1064 LastGroupStartIdx = 0; 1065 } 1066 1067 // If this bit has the same underlying value and the same rotate factor as 1068 // the last one, then they're part of the same group. 1069 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1070 continue; 1071 1072 if (LastValue.getNode()) 1073 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1074 i-1)); 1075 LastRLAmt = ThisRLAmt; 1076 LastValue = ThisValue; 1077 LastGroupStartIdx = i; 1078 } 1079 if (LastValue.getNode()) 1080 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1081 Bits.size()-1)); 1082 1083 if (BitGroups.empty()) 1084 return; 1085 1086 // We might be able to combine the first and last groups. 1087 if (BitGroups.size() > 1) { 1088 // If the first and last groups are the same, then remove the first group 1089 // in favor of the last group, making the ending index of the last group 1090 // equal to the ending index of the to-be-removed first group. 1091 if (BitGroups[0].StartIdx == 0 && 1092 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1093 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1094 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1095 DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); 1096 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1097 BitGroups.erase(BitGroups.begin()); 1098 } 1099 } 1100 } 1101 1102 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1103 // associated with each. If there is a degeneracy, pick the one that occurs 1104 // first (in the final value). 1105 void collectValueRotInfo() { 1106 ValueRots.clear(); 1107 1108 for (auto &BG : BitGroups) { 1109 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1110 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1111 VRI.V = BG.V; 1112 VRI.RLAmt = BG.RLAmt; 1113 VRI.Repl32 = BG.Repl32; 1114 VRI.NumGroups += 1; 1115 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1116 } 1117 1118 // Now that we've collected the various ValueRotInfo instances, we need to 1119 // sort them. 1120 ValueRotsVec.clear(); 1121 for (auto &I : ValueRots) { 1122 ValueRotsVec.push_back(I.second); 1123 } 1124 std::sort(ValueRotsVec.begin(), ValueRotsVec.end()); 1125 } 1126 1127 // In 64-bit mode, rlwinm and friends have a rotation operator that 1128 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1129 // indices of these instructions can only be in the lower 32 bits, so they 1130 // can only represent some 64-bit bit groups. However, when they can be used, 1131 // the 32-bit replication can be used to represent, as a single bit group, 1132 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1133 // groups when possible. Returns true if any of the bit groups were 1134 // converted. 1135 void assignRepl32BitGroups() { 1136 // If we have bits like this: 1137 // 1138 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1139 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1140 // Groups: | RLAmt = 8 | RLAmt = 40 | 1141 // 1142 // But, making use of a 32-bit operation that replicates the low-order 32 1143 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1144 // of 8. 1145 1146 auto IsAllLow32 = [this](BitGroup & BG) { 1147 if (BG.StartIdx <= BG.EndIdx) { 1148 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1149 if (!Bits[i].hasValue()) 1150 continue; 1151 if (Bits[i].getValueBitIndex() >= 32) 1152 return false; 1153 } 1154 } else { 1155 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1156 if (!Bits[i].hasValue()) 1157 continue; 1158 if (Bits[i].getValueBitIndex() >= 32) 1159 return false; 1160 } 1161 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1162 if (!Bits[i].hasValue()) 1163 continue; 1164 if (Bits[i].getValueBitIndex() >= 32) 1165 return false; 1166 } 1167 } 1168 1169 return true; 1170 }; 1171 1172 for (auto &BG : BitGroups) { 1173 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 1174 if (IsAllLow32(BG)) { 1175 if (BG.RLAmt >= 32) { 1176 BG.RLAmt -= 32; 1177 BG.Repl32CR = true; 1178 } 1179 1180 BG.Repl32 = true; 1181 1182 DEBUG(dbgs() << "\t32-bit replicated bit group for " << 1183 BG.V.getNode() << " RLAmt = " << BG.RLAmt << 1184 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 1185 } 1186 } 1187 } 1188 1189 // Now walk through the bit groups, consolidating where possible. 1190 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1191 // We might want to remove this bit group by merging it with the previous 1192 // group (which might be the ending group). 1193 auto IP = (I == BitGroups.begin()) ? 1194 std::prev(BitGroups.end()) : std::prev(I); 1195 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 1196 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 1197 1198 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " << 1199 I->V.getNode() << " RLAmt = " << I->RLAmt << 1200 " [" << I->StartIdx << ", " << I->EndIdx << 1201 "] with group with range [" << 1202 IP->StartIdx << ", " << IP->EndIdx << "]\n"); 1203 1204 IP->EndIdx = I->EndIdx; 1205 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 1206 IP->Repl32Coalesced = true; 1207 I = BitGroups.erase(I); 1208 continue; 1209 } else { 1210 // There is a special case worth handling: If there is a single group 1211 // covering the entire upper 32 bits, and it can be merged with both 1212 // the next and previous groups (which might be the same group), then 1213 // do so. If it is the same group (so there will be only one group in 1214 // total), then we need to reverse the order of the range so that it 1215 // covers the entire 64 bits. 1216 if (I->StartIdx == 32 && I->EndIdx == 63) { 1217 assert(std::next(I) == BitGroups.end() && 1218 "bit group ends at index 63 but there is another?"); 1219 auto IN = BitGroups.begin(); 1220 1221 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 1222 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 1223 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 1224 IsAllLow32(*I)) { 1225 1226 DEBUG(dbgs() << "\tcombining bit group for " << 1227 I->V.getNode() << " RLAmt = " << I->RLAmt << 1228 " [" << I->StartIdx << ", " << I->EndIdx << 1229 "] with 32-bit replicated groups with ranges [" << 1230 IP->StartIdx << ", " << IP->EndIdx << "] and [" << 1231 IN->StartIdx << ", " << IN->EndIdx << "]\n"); 1232 1233 if (IP == IN) { 1234 // There is only one other group; change it to cover the whole 1235 // range (backward, so that it can still be Repl32 but cover the 1236 // whole 64-bit range). 1237 IP->StartIdx = 31; 1238 IP->EndIdx = 30; 1239 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 1240 IP->Repl32Coalesced = true; 1241 I = BitGroups.erase(I); 1242 } else { 1243 // There are two separate groups, one before this group and one 1244 // after us (at the beginning). We're going to remove this group, 1245 // but also the group at the very beginning. 1246 IP->EndIdx = IN->EndIdx; 1247 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 1248 IP->Repl32Coalesced = true; 1249 I = BitGroups.erase(I); 1250 BitGroups.erase(BitGroups.begin()); 1251 } 1252 1253 // This must be the last group in the vector (and we might have 1254 // just invalidated the iterator above), so break here. 1255 break; 1256 } 1257 } 1258 } 1259 1260 ++I; 1261 } 1262 } 1263 1264 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { 1265 return CurDAG->getTargetConstant(Imm, dl, MVT::i32); 1266 } 1267 1268 uint64_t getZerosMask() { 1269 uint64_t Mask = 0; 1270 for (unsigned i = 0; i < Bits.size(); ++i) { 1271 if (Bits[i].hasValue()) 1272 continue; 1273 Mask |= (UINT64_C(1) << i); 1274 } 1275 1276 return ~Mask; 1277 } 1278 1279 // Depending on the number of groups for a particular value, it might be 1280 // better to rotate, mask explicitly (using andi/andis), and then or the 1281 // result. Select this part of the result first. 1282 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 1283 if (BPermRewriterNoMasking) 1284 return; 1285 1286 for (ValueRotInfo &VRI : ValueRotsVec) { 1287 unsigned Mask = 0; 1288 for (unsigned i = 0; i < Bits.size(); ++i) { 1289 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 1290 continue; 1291 if (RLAmt[i] != VRI.RLAmt) 1292 continue; 1293 Mask |= (1u << i); 1294 } 1295 1296 // Compute the masks for andi/andis that would be necessary. 1297 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1298 assert((ANDIMask != 0 || ANDISMask != 0) && 1299 "No set bits in mask for value bit groups"); 1300 bool NeedsRotate = VRI.RLAmt != 0; 1301 1302 // We're trying to minimize the number of instructions. If we have one 1303 // group, using one of andi/andis can break even. If we have three 1304 // groups, we can use both andi and andis and break even (to use both 1305 // andi and andis we also need to or the results together). We need four 1306 // groups if we also need to rotate. To use andi/andis we need to do more 1307 // than break even because rotate-and-mask instructions tend to be easier 1308 // to schedule. 1309 1310 // FIXME: We've biased here against using andi/andis, which is right for 1311 // POWER cores, but not optimal everywhere. For example, on the A2, 1312 // andi/andis have single-cycle latency whereas the rotate-and-mask 1313 // instructions take two cycles, and it would be better to bias toward 1314 // andi/andis in break-even cases. 1315 1316 unsigned NumAndInsts = (unsigned) NeedsRotate + 1317 (unsigned) (ANDIMask != 0) + 1318 (unsigned) (ANDISMask != 0) + 1319 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 1320 (unsigned) (bool) Res; 1321 1322 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << 1323 " RL: " << VRI.RLAmt << ":" << 1324 "\n\t\t\tisel using masking: " << NumAndInsts << 1325 " using rotates: " << VRI.NumGroups << "\n"); 1326 1327 if (NumAndInsts >= VRI.NumGroups) 1328 continue; 1329 1330 DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1331 1332 if (InstCnt) *InstCnt += NumAndInsts; 1333 1334 SDValue VRot; 1335 if (VRI.RLAmt) { 1336 SDValue Ops[] = 1337 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), 1338 getI32Imm(31, dl) }; 1339 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 1340 Ops), 0); 1341 } else { 1342 VRot = VRI.V; 1343 } 1344 1345 SDValue ANDIVal, ANDISVal; 1346 if (ANDIMask != 0) 1347 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1348 VRot, getI32Imm(ANDIMask, dl)), 0); 1349 if (ANDISMask != 0) 1350 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1351 VRot, getI32Imm(ANDISMask, dl)), 0); 1352 1353 SDValue TotalVal; 1354 if (!ANDIVal) 1355 TotalVal = ANDISVal; 1356 else if (!ANDISVal) 1357 TotalVal = ANDIVal; 1358 else 1359 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1360 ANDIVal, ANDISVal), 0); 1361 1362 if (!Res) 1363 Res = TotalVal; 1364 else 1365 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1366 Res, TotalVal), 0); 1367 1368 // Now, remove all groups with this underlying value and rotation 1369 // factor. 1370 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1371 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1372 }); 1373 } 1374 } 1375 1376 // Instruction selection for the 32-bit case. 1377 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 1378 SDLoc dl(N); 1379 SDValue Res; 1380 1381 if (InstCnt) *InstCnt = 0; 1382 1383 // Take care of cases that should use andi/andis first. 1384 SelectAndParts32(dl, Res, InstCnt); 1385 1386 // If we've not yet selected a 'starting' instruction, and we have no zeros 1387 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1388 // number of groups), and start with this rotated value. 1389 if ((!HasZeros || LateMask) && !Res) { 1390 ValueRotInfo &VRI = ValueRotsVec[0]; 1391 if (VRI.RLAmt) { 1392 if (InstCnt) *InstCnt += 1; 1393 SDValue Ops[] = 1394 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), 1395 getI32Imm(31, dl) }; 1396 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 1397 0); 1398 } else { 1399 Res = VRI.V; 1400 } 1401 1402 // Now, remove all groups with this underlying value and rotation factor. 1403 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1404 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; 1405 }); 1406 } 1407 1408 if (InstCnt) *InstCnt += BitGroups.size(); 1409 1410 // Insert the other groups (one at a time). 1411 for (auto &BG : BitGroups) { 1412 if (!Res) { 1413 SDValue Ops[] = 1414 { BG.V, getI32Imm(BG.RLAmt, dl), 1415 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1416 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1417 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 1418 } else { 1419 SDValue Ops[] = 1420 { Res, BG.V, getI32Imm(BG.RLAmt, dl), 1421 getI32Imm(Bits.size() - BG.EndIdx - 1, dl), 1422 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; 1423 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 1424 } 1425 } 1426 1427 if (LateMask) { 1428 unsigned Mask = (unsigned) getZerosMask(); 1429 1430 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1431 assert((ANDIMask != 0 || ANDISMask != 0) && 1432 "No set bits in zeros mask?"); 1433 1434 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1435 (unsigned) (ANDISMask != 0) + 1436 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1437 1438 SDValue ANDIVal, ANDISVal; 1439 if (ANDIMask != 0) 1440 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1441 Res, getI32Imm(ANDIMask, dl)), 0); 1442 if (ANDISMask != 0) 1443 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1444 Res, getI32Imm(ANDISMask, dl)), 0); 1445 1446 if (!ANDIVal) 1447 Res = ANDISVal; 1448 else if (!ANDISVal) 1449 Res = ANDIVal; 1450 else 1451 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1452 ANDIVal, ANDISVal), 0); 1453 } 1454 1455 return Res.getNode(); 1456 } 1457 1458 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 1459 unsigned MaskStart, unsigned MaskEnd, 1460 bool IsIns) { 1461 // In the notation used by the instructions, 'start' and 'end' are reversed 1462 // because bits are counted from high to low order. 1463 unsigned InstMaskStart = 64 - MaskEnd - 1, 1464 InstMaskEnd = 64 - MaskStart - 1; 1465 1466 if (Repl32) 1467 return 1; 1468 1469 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 1470 InstMaskEnd == 63 - RLAmt) 1471 return 1; 1472 1473 return 2; 1474 } 1475 1476 // For 64-bit values, not all combinations of rotates and masks are 1477 // available. Produce one if it is available. 1478 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, 1479 bool Repl32, unsigned MaskStart, unsigned MaskEnd, 1480 unsigned *InstCnt = nullptr) { 1481 // In the notation used by the instructions, 'start' and 'end' are reversed 1482 // because bits are counted from high to low order. 1483 unsigned InstMaskStart = 64 - MaskEnd - 1, 1484 InstMaskEnd = 64 - MaskStart - 1; 1485 1486 if (InstCnt) *InstCnt += 1; 1487 1488 if (Repl32) { 1489 // This rotation amount assumes that the lower 32 bits of the quantity 1490 // are replicated in the high 32 bits by the rotation operator (which is 1491 // done by rlwinm and friends). 1492 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1493 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1494 SDValue Ops[] = 1495 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), 1496 getI32Imm(InstMaskEnd - 32, dl) }; 1497 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 1498 Ops), 0); 1499 } 1500 1501 if (InstMaskEnd == 63) { 1502 SDValue Ops[] = 1503 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; 1504 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 1505 } 1506 1507 if (InstMaskStart == 0) { 1508 SDValue Ops[] = 1509 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) }; 1510 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 1511 } 1512 1513 if (InstMaskEnd == 63 - RLAmt) { 1514 SDValue Ops[] = 1515 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; 1516 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 1517 } 1518 1519 // We cannot do this with a single instruction, so we'll use two. The 1520 // problem is that we're not free to choose both a rotation amount and mask 1521 // start and end independently. We can choose an arbitrary mask start and 1522 // end, but then the rotation amount is fixed. Rotation, however, can be 1523 // inverted, and so by applying an "inverse" rotation first, we can get the 1524 // desired result. 1525 if (InstCnt) *InstCnt += 1; 1526 1527 // The rotation mask for the second instruction must be MaskStart. 1528 unsigned RLAmt2 = MaskStart; 1529 // The first instruction must rotate V so that the overall rotation amount 1530 // is RLAmt. 1531 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 1532 if (RLAmt1) 1533 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 1534 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 1535 } 1536 1537 // For 64-bit values, not all combinations of rotates and masks are 1538 // available. Produce a rotate-mask-and-insert if one is available. 1539 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, 1540 unsigned RLAmt, bool Repl32, unsigned MaskStart, 1541 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 1542 // In the notation used by the instructions, 'start' and 'end' are reversed 1543 // because bits are counted from high to low order. 1544 unsigned InstMaskStart = 64 - MaskEnd - 1, 1545 InstMaskEnd = 64 - MaskStart - 1; 1546 1547 if (InstCnt) *InstCnt += 1; 1548 1549 if (Repl32) { 1550 // This rotation amount assumes that the lower 32 bits of the quantity 1551 // are replicated in the high 32 bits by the rotation operator (which is 1552 // done by rlwinm and friends). 1553 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1554 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1555 SDValue Ops[] = 1556 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), 1557 getI32Imm(InstMaskEnd - 32, dl) }; 1558 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 1559 Ops), 0); 1560 } 1561 1562 if (InstMaskEnd == 63 - RLAmt) { 1563 SDValue Ops[] = 1564 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; 1565 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 1566 } 1567 1568 // We cannot do this with a single instruction, so we'll use two. The 1569 // problem is that we're not free to choose both a rotation amount and mask 1570 // start and end independently. We can choose an arbitrary mask start and 1571 // end, but then the rotation amount is fixed. Rotation, however, can be 1572 // inverted, and so by applying an "inverse" rotation first, we can get the 1573 // desired result. 1574 if (InstCnt) *InstCnt += 1; 1575 1576 // The rotation mask for the second instruction must be MaskStart. 1577 unsigned RLAmt2 = MaskStart; 1578 // The first instruction must rotate V so that the overall rotation amount 1579 // is RLAmt. 1580 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 1581 if (RLAmt1) 1582 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 1583 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 1584 } 1585 1586 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { 1587 if (BPermRewriterNoMasking) 1588 return; 1589 1590 // The idea here is the same as in the 32-bit version, but with additional 1591 // complications from the fact that Repl32 might be true. Because we 1592 // aggressively convert bit groups to Repl32 form (which, for small 1593 // rotation factors, involves no other change), and then coalesce, it might 1594 // be the case that a single 64-bit masking operation could handle both 1595 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 1596 // form allowed coalescing, then we must use a 32-bit rotaton in order to 1597 // completely capture the new combined bit group. 1598 1599 for (ValueRotInfo &VRI : ValueRotsVec) { 1600 uint64_t Mask = 0; 1601 1602 // We need to add to the mask all bits from the associated bit groups. 1603 // If Repl32 is false, we need to add bits from bit groups that have 1604 // Repl32 true, but are trivially convertable to Repl32 false. Such a 1605 // group is trivially convertable if it overlaps only with the lower 32 1606 // bits, and the group has not been coalesced. 1607 auto MatchingBG = [VRI](const BitGroup &BG) { 1608 if (VRI.V != BG.V) 1609 return false; 1610 1611 unsigned EffRLAmt = BG.RLAmt; 1612 if (!VRI.Repl32 && BG.Repl32) { 1613 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 1614 !BG.Repl32Coalesced) { 1615 if (BG.Repl32CR) 1616 EffRLAmt += 32; 1617 } else { 1618 return false; 1619 } 1620 } else if (VRI.Repl32 != BG.Repl32) { 1621 return false; 1622 } 1623 1624 return VRI.RLAmt == EffRLAmt; 1625 }; 1626 1627 for (auto &BG : BitGroups) { 1628 if (!MatchingBG(BG)) 1629 continue; 1630 1631 if (BG.StartIdx <= BG.EndIdx) { 1632 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 1633 Mask |= (UINT64_C(1) << i); 1634 } else { 1635 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 1636 Mask |= (UINT64_C(1) << i); 1637 for (unsigned i = 0; i <= BG.EndIdx; ++i) 1638 Mask |= (UINT64_C(1) << i); 1639 } 1640 } 1641 1642 // We can use the 32-bit andi/andis technique if the mask does not 1643 // require any higher-order bits. This can save an instruction compared 1644 // to always using the general 64-bit technique. 1645 bool Use32BitInsts = isUInt<32>(Mask); 1646 // Compute the masks for andi/andis that would be necessary. 1647 unsigned ANDIMask = (Mask & UINT16_MAX), 1648 ANDISMask = (Mask >> 16) & UINT16_MAX; 1649 1650 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 1651 1652 unsigned NumAndInsts = (unsigned) NeedsRotate + 1653 (unsigned) (bool) Res; 1654 if (Use32BitInsts) 1655 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 1656 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1657 else 1658 NumAndInsts += getInt64Count(Mask) + /* and */ 1; 1659 1660 unsigned NumRLInsts = 0; 1661 bool FirstBG = true; 1662 for (auto &BG : BitGroups) { 1663 if (!MatchingBG(BG)) 1664 continue; 1665 NumRLInsts += 1666 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 1667 !FirstBG); 1668 FirstBG = false; 1669 } 1670 1671 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << 1672 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << 1673 "\n\t\t\tisel using masking: " << NumAndInsts << 1674 " using rotates: " << NumRLInsts << "\n"); 1675 1676 // When we'd use andi/andis, we bias toward using the rotates (andi only 1677 // has a record form, and is cracked on POWER cores). However, when using 1678 // general 64-bit constant formation, bias toward the constant form, 1679 // because that exposes more opportunities for CSE. 1680 if (NumAndInsts > NumRLInsts) 1681 continue; 1682 if (Use32BitInsts && NumAndInsts == NumRLInsts) 1683 continue; 1684 1685 DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1686 1687 if (InstCnt) *InstCnt += NumAndInsts; 1688 1689 SDValue VRot; 1690 // We actually need to generate a rotation if we have a non-zero rotation 1691 // factor or, in the Repl32 case, if we care about any of the 1692 // higher-order replicated bits. In the latter case, we generate a mask 1693 // backward so that it actually includes the entire 64 bits. 1694 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 1695 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 1696 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 1697 else 1698 VRot = VRI.V; 1699 1700 SDValue TotalVal; 1701 if (Use32BitInsts) { 1702 assert((ANDIMask != 0 || ANDISMask != 0) && 1703 "No set bits in mask when using 32-bit ands for 64-bit value"); 1704 1705 SDValue ANDIVal, ANDISVal; 1706 if (ANDIMask != 0) 1707 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 1708 VRot, getI32Imm(ANDIMask, dl)), 0); 1709 if (ANDISMask != 0) 1710 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 1711 VRot, getI32Imm(ANDISMask, dl)), 0); 1712 1713 if (!ANDIVal) 1714 TotalVal = ANDISVal; 1715 else if (!ANDISVal) 1716 TotalVal = ANDIVal; 1717 else 1718 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1719 ANDIVal, ANDISVal), 0); 1720 } else { 1721 TotalVal = SDValue(getInt64(CurDAG, dl, Mask), 0); 1722 TotalVal = 1723 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 1724 VRot, TotalVal), 0); 1725 } 1726 1727 if (!Res) 1728 Res = TotalVal; 1729 else 1730 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1731 Res, TotalVal), 0); 1732 1733 // Now, remove all groups with this underlying value and rotation 1734 // factor. 1735 eraseMatchingBitGroups(MatchingBG); 1736 } 1737 } 1738 1739 // Instruction selection for the 64-bit case. 1740 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 1741 SDLoc dl(N); 1742 SDValue Res; 1743 1744 if (InstCnt) *InstCnt = 0; 1745 1746 // Take care of cases that should use andi/andis first. 1747 SelectAndParts64(dl, Res, InstCnt); 1748 1749 // If we've not yet selected a 'starting' instruction, and we have no zeros 1750 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1751 // number of groups), and start with this rotated value. 1752 if ((!HasZeros || LateMask) && !Res) { 1753 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 1754 // groups will come first, and so the VRI representing the largest number 1755 // of groups might not be first (it might be the first Repl32 groups). 1756 unsigned MaxGroupsIdx = 0; 1757 if (!ValueRotsVec[0].Repl32) { 1758 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 1759 if (ValueRotsVec[i].Repl32) { 1760 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 1761 MaxGroupsIdx = i; 1762 break; 1763 } 1764 } 1765 1766 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 1767 bool NeedsRotate = false; 1768 if (VRI.RLAmt) { 1769 NeedsRotate = true; 1770 } else if (VRI.Repl32) { 1771 for (auto &BG : BitGroups) { 1772 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 1773 BG.Repl32 != VRI.Repl32) 1774 continue; 1775 1776 // We don't need a rotate if the bit group is confined to the lower 1777 // 32 bits. 1778 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 1779 continue; 1780 1781 NeedsRotate = true; 1782 break; 1783 } 1784 } 1785 1786 if (NeedsRotate) 1787 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 1788 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 1789 InstCnt); 1790 else 1791 Res = VRI.V; 1792 1793 // Now, remove all groups with this underlying value and rotation factor. 1794 if (Res) 1795 eraseMatchingBitGroups([VRI](const BitGroup &BG) { 1796 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && 1797 BG.Repl32 == VRI.Repl32; 1798 }); 1799 } 1800 1801 // Because 64-bit rotates are more flexible than inserts, we might have a 1802 // preference regarding which one we do first (to save one instruction). 1803 if (!Res) 1804 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 1805 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 1806 false) < 1807 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 1808 true)) { 1809 if (I != BitGroups.begin()) { 1810 BitGroup BG = *I; 1811 BitGroups.erase(I); 1812 BitGroups.insert(BitGroups.begin(), BG); 1813 } 1814 1815 break; 1816 } 1817 } 1818 1819 // Insert the other groups (one at a time). 1820 for (auto &BG : BitGroups) { 1821 if (!Res) 1822 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 1823 BG.EndIdx, InstCnt); 1824 else 1825 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 1826 BG.StartIdx, BG.EndIdx, InstCnt); 1827 } 1828 1829 if (LateMask) { 1830 uint64_t Mask = getZerosMask(); 1831 1832 // We can use the 32-bit andi/andis technique if the mask does not 1833 // require any higher-order bits. This can save an instruction compared 1834 // to always using the general 64-bit technique. 1835 bool Use32BitInsts = isUInt<32>(Mask); 1836 // Compute the masks for andi/andis that would be necessary. 1837 unsigned ANDIMask = (Mask & UINT16_MAX), 1838 ANDISMask = (Mask >> 16) & UINT16_MAX; 1839 1840 if (Use32BitInsts) { 1841 assert((ANDIMask != 0 || ANDISMask != 0) && 1842 "No set bits in mask when using 32-bit ands for 64-bit value"); 1843 1844 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1845 (unsigned) (ANDISMask != 0) + 1846 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1847 1848 SDValue ANDIVal, ANDISVal; 1849 if (ANDIMask != 0) 1850 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 1851 Res, getI32Imm(ANDIMask, dl)), 0); 1852 if (ANDISMask != 0) 1853 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 1854 Res, getI32Imm(ANDISMask, dl)), 0); 1855 1856 if (!ANDIVal) 1857 Res = ANDISVal; 1858 else if (!ANDISVal) 1859 Res = ANDIVal; 1860 else 1861 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1862 ANDIVal, ANDISVal), 0); 1863 } else { 1864 if (InstCnt) *InstCnt += getInt64Count(Mask) + /* and */ 1; 1865 1866 SDValue MaskVal = SDValue(getInt64(CurDAG, dl, Mask), 0); 1867 Res = 1868 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 1869 Res, MaskVal), 0); 1870 } 1871 } 1872 1873 return Res.getNode(); 1874 } 1875 1876 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 1877 // Fill in BitGroups. 1878 collectBitGroups(LateMask); 1879 if (BitGroups.empty()) 1880 return nullptr; 1881 1882 // For 64-bit values, figure out when we can use 32-bit instructions. 1883 if (Bits.size() == 64) 1884 assignRepl32BitGroups(); 1885 1886 // Fill in ValueRotsVec. 1887 collectValueRotInfo(); 1888 1889 if (Bits.size() == 32) { 1890 return Select32(N, LateMask, InstCnt); 1891 } else { 1892 assert(Bits.size() == 64 && "Not 64 bits here?"); 1893 return Select64(N, LateMask, InstCnt); 1894 } 1895 1896 return nullptr; 1897 } 1898 1899 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { 1900 BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); 1901 } 1902 1903 SmallVector<ValueBit, 64> Bits; 1904 1905 bool HasZeros; 1906 SmallVector<unsigned, 64> RLAmt; 1907 1908 SmallVector<BitGroup, 16> BitGroups; 1909 1910 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 1911 SmallVector<ValueRotInfo, 16> ValueRotsVec; 1912 1913 SelectionDAG *CurDAG; 1914 1915 public: 1916 BitPermutationSelector(SelectionDAG *DAG) 1917 : CurDAG(DAG) {} 1918 1919 // Here we try to match complex bit permutations into a set of 1920 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 1921 // known to produce optimial code for common cases (like i32 byte swapping). 1922 SDNode *Select(SDNode *N) { 1923 Memoizer.clear(); 1924 auto Result = 1925 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); 1926 if (!Result.first) 1927 return nullptr; 1928 Bits = std::move(*Result.second); 1929 1930 DEBUG(dbgs() << "Considering bit-permutation-based instruction" 1931 " selection for: "); 1932 DEBUG(N->dump(CurDAG)); 1933 1934 // Fill it RLAmt and set HasZeros. 1935 computeRotationAmounts(); 1936 1937 if (!HasZeros) 1938 return Select(N, false); 1939 1940 // We currently have two techniques for handling results with zeros: early 1941 // masking (the default) and late masking. Late masking is sometimes more 1942 // efficient, but because the structure of the bit groups is different, it 1943 // is hard to tell without generating both and comparing the results. With 1944 // late masking, we ignore zeros in the resulting value when inserting each 1945 // set of bit groups, and then mask in the zeros at the end. With early 1946 // masking, we only insert the non-zero parts of the result at every step. 1947 1948 unsigned InstCnt, InstCntLateMask; 1949 DEBUG(dbgs() << "\tEarly masking:\n"); 1950 SDNode *RN = Select(N, false, &InstCnt); 1951 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 1952 1953 DEBUG(dbgs() << "\tLate masking:\n"); 1954 SDNode *RNLM = Select(N, true, &InstCntLateMask); 1955 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask << 1956 " instructions\n"); 1957 1958 if (InstCnt <= InstCntLateMask) { 1959 DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 1960 return RN; 1961 } 1962 1963 DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 1964 return RNLM; 1965 } 1966 }; 1967 } // anonymous namespace 1968 1969 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { 1970 if (N->getValueType(0) != MVT::i32 && 1971 N->getValueType(0) != MVT::i64) 1972 return false; 1973 1974 if (!UseBitPermRewriter) 1975 return false; 1976 1977 switch (N->getOpcode()) { 1978 default: break; 1979 case ISD::ROTL: 1980 case ISD::SHL: 1981 case ISD::SRL: 1982 case ISD::AND: 1983 case ISD::OR: { 1984 BitPermutationSelector BPS(CurDAG); 1985 if (SDNode *New = BPS.Select(N)) { 1986 ReplaceNode(N, New); 1987 return true; 1988 } 1989 return false; 1990 } 1991 } 1992 1993 return false; 1994 } 1995 1996 /// SelectCC - Select a comparison of the specified values with the specified 1997 /// condition code, returning the CR# of the expression. 1998 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, 1999 const SDLoc &dl) { 2000 // Always select the LHS. 2001 unsigned Opc; 2002 2003 if (LHS.getValueType() == MVT::i32) { 2004 unsigned Imm; 2005 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2006 if (isInt32Immediate(RHS, Imm)) { 2007 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 2008 if (isUInt<16>(Imm)) 2009 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 2010 getI32Imm(Imm & 0xFFFF, dl)), 2011 0); 2012 // If this is a 16-bit signed immediate, fold it. 2013 if (isInt<16>((int)Imm)) 2014 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 2015 getI32Imm(Imm & 0xFFFF, dl)), 2016 0); 2017 2018 // For non-equality comparisons, the default code would materialize the 2019 // constant, then compare against it, like this: 2020 // lis r2, 4660 2021 // ori r2, r2, 22136 2022 // cmpw cr0, r3, r2 2023 // Since we are just comparing for equality, we can emit this instead: 2024 // xoris r0,r3,0x1234 2025 // cmplwi cr0,r0,0x5678 2026 // beq cr0,L6 2027 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 2028 getI32Imm(Imm >> 16, dl)), 0); 2029 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 2030 getI32Imm(Imm & 0xFFFF, dl)), 0); 2031 } 2032 Opc = PPC::CMPLW; 2033 } else if (ISD::isUnsignedIntSetCC(CC)) { 2034 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 2035 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 2036 getI32Imm(Imm & 0xFFFF, dl)), 0); 2037 Opc = PPC::CMPLW; 2038 } else { 2039 short SImm; 2040 if (isIntS16Immediate(RHS, SImm)) 2041 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 2042 getI32Imm((int)SImm & 0xFFFF, 2043 dl)), 2044 0); 2045 Opc = PPC::CMPW; 2046 } 2047 } else if (LHS.getValueType() == MVT::i64) { 2048 uint64_t Imm; 2049 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 2050 if (isInt64Immediate(RHS.getNode(), Imm)) { 2051 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 2052 if (isUInt<16>(Imm)) 2053 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 2054 getI32Imm(Imm & 0xFFFF, dl)), 2055 0); 2056 // If this is a 16-bit signed immediate, fold it. 2057 if (isInt<16>(Imm)) 2058 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 2059 getI32Imm(Imm & 0xFFFF, dl)), 2060 0); 2061 2062 // For non-equality comparisons, the default code would materialize the 2063 // constant, then compare against it, like this: 2064 // lis r2, 4660 2065 // ori r2, r2, 22136 2066 // cmpd cr0, r3, r2 2067 // Since we are just comparing for equality, we can emit this instead: 2068 // xoris r0,r3,0x1234 2069 // cmpldi cr0,r0,0x5678 2070 // beq cr0,L6 2071 if (isUInt<32>(Imm)) { 2072 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 2073 getI64Imm(Imm >> 16, dl)), 0); 2074 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 2075 getI64Imm(Imm & 0xFFFF, dl)), 2076 0); 2077 } 2078 } 2079 Opc = PPC::CMPLD; 2080 } else if (ISD::isUnsignedIntSetCC(CC)) { 2081 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 2082 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 2083 getI64Imm(Imm & 0xFFFF, dl)), 0); 2084 Opc = PPC::CMPLD; 2085 } else { 2086 short SImm; 2087 if (isIntS16Immediate(RHS, SImm)) 2088 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 2089 getI64Imm(SImm & 0xFFFF, dl)), 2090 0); 2091 Opc = PPC::CMPD; 2092 } 2093 } else if (LHS.getValueType() == MVT::f32) { 2094 Opc = PPC::FCMPUS; 2095 } else { 2096 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); 2097 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 2098 } 2099 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 2100 } 2101 2102 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 2103 switch (CC) { 2104 case ISD::SETUEQ: 2105 case ISD::SETONE: 2106 case ISD::SETOLE: 2107 case ISD::SETOGE: 2108 llvm_unreachable("Should be lowered by legalize!"); 2109 default: llvm_unreachable("Unknown condition!"); 2110 case ISD::SETOEQ: 2111 case ISD::SETEQ: return PPC::PRED_EQ; 2112 case ISD::SETUNE: 2113 case ISD::SETNE: return PPC::PRED_NE; 2114 case ISD::SETOLT: 2115 case ISD::SETLT: return PPC::PRED_LT; 2116 case ISD::SETULE: 2117 case ISD::SETLE: return PPC::PRED_LE; 2118 case ISD::SETOGT: 2119 case ISD::SETGT: return PPC::PRED_GT; 2120 case ISD::SETUGE: 2121 case ISD::SETGE: return PPC::PRED_GE; 2122 case ISD::SETO: return PPC::PRED_NU; 2123 case ISD::SETUO: return PPC::PRED_UN; 2124 // These two are invalid for floating point. Assume we have int. 2125 case ISD::SETULT: return PPC::PRED_LT; 2126 case ISD::SETUGT: return PPC::PRED_GT; 2127 } 2128 } 2129 2130 /// getCRIdxForSetCC - Return the index of the condition register field 2131 /// associated with the SetCC condition, and whether or not the field is 2132 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 2133 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 2134 Invert = false; 2135 switch (CC) { 2136 default: llvm_unreachable("Unknown condition!"); 2137 case ISD::SETOLT: 2138 case ISD::SETLT: return 0; // Bit #0 = SETOLT 2139 case ISD::SETOGT: 2140 case ISD::SETGT: return 1; // Bit #1 = SETOGT 2141 case ISD::SETOEQ: 2142 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 2143 case ISD::SETUO: return 3; // Bit #3 = SETUO 2144 case ISD::SETUGE: 2145 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 2146 case ISD::SETULE: 2147 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 2148 case ISD::SETUNE: 2149 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 2150 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 2151 case ISD::SETUEQ: 2152 case ISD::SETOGE: 2153 case ISD::SETOLE: 2154 case ISD::SETONE: 2155 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 2156 // These are invalid for floating point. Assume integer. 2157 case ISD::SETULT: return 0; 2158 case ISD::SETUGT: return 1; 2159 } 2160 } 2161 2162 // getVCmpInst: return the vector compare instruction for the specified 2163 // vector type and condition code. Since this is for altivec specific code, 2164 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). 2165 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 2166 bool HasVSX, bool &Swap, bool &Negate) { 2167 Swap = false; 2168 Negate = false; 2169 2170 if (VecVT.isFloatingPoint()) { 2171 /* Handle some cases by swapping input operands. */ 2172 switch (CC) { 2173 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 2174 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 2175 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 2176 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 2177 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 2178 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 2179 default: break; 2180 } 2181 /* Handle some cases by negating the result. */ 2182 switch (CC) { 2183 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 2184 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 2185 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 2186 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 2187 default: break; 2188 } 2189 /* We have instructions implementing the remaining cases. */ 2190 switch (CC) { 2191 case ISD::SETEQ: 2192 case ISD::SETOEQ: 2193 if (VecVT == MVT::v4f32) 2194 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 2195 else if (VecVT == MVT::v2f64) 2196 return PPC::XVCMPEQDP; 2197 break; 2198 case ISD::SETGT: 2199 case ISD::SETOGT: 2200 if (VecVT == MVT::v4f32) 2201 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 2202 else if (VecVT == MVT::v2f64) 2203 return PPC::XVCMPGTDP; 2204 break; 2205 case ISD::SETGE: 2206 case ISD::SETOGE: 2207 if (VecVT == MVT::v4f32) 2208 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 2209 else if (VecVT == MVT::v2f64) 2210 return PPC::XVCMPGEDP; 2211 break; 2212 default: 2213 break; 2214 } 2215 llvm_unreachable("Invalid floating-point vector compare condition"); 2216 } else { 2217 /* Handle some cases by swapping input operands. */ 2218 switch (CC) { 2219 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 2220 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 2221 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 2222 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 2223 default: break; 2224 } 2225 /* Handle some cases by negating the result. */ 2226 switch (CC) { 2227 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 2228 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 2229 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 2230 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 2231 default: break; 2232 } 2233 /* We have instructions implementing the remaining cases. */ 2234 switch (CC) { 2235 case ISD::SETEQ: 2236 case ISD::SETUEQ: 2237 if (VecVT == MVT::v16i8) 2238 return PPC::VCMPEQUB; 2239 else if (VecVT == MVT::v8i16) 2240 return PPC::VCMPEQUH; 2241 else if (VecVT == MVT::v4i32) 2242 return PPC::VCMPEQUW; 2243 else if (VecVT == MVT::v2i64) 2244 return PPC::VCMPEQUD; 2245 break; 2246 case ISD::SETGT: 2247 if (VecVT == MVT::v16i8) 2248 return PPC::VCMPGTSB; 2249 else if (VecVT == MVT::v8i16) 2250 return PPC::VCMPGTSH; 2251 else if (VecVT == MVT::v4i32) 2252 return PPC::VCMPGTSW; 2253 else if (VecVT == MVT::v2i64) 2254 return PPC::VCMPGTSD; 2255 break; 2256 case ISD::SETUGT: 2257 if (VecVT == MVT::v16i8) 2258 return PPC::VCMPGTUB; 2259 else if (VecVT == MVT::v8i16) 2260 return PPC::VCMPGTUH; 2261 else if (VecVT == MVT::v4i32) 2262 return PPC::VCMPGTUW; 2263 else if (VecVT == MVT::v2i64) 2264 return PPC::VCMPGTUD; 2265 break; 2266 default: 2267 break; 2268 } 2269 llvm_unreachable("Invalid integer vector compare condition"); 2270 } 2271 } 2272 2273 bool PPCDAGToDAGISel::trySETCC(SDNode *N) { 2274 SDLoc dl(N); 2275 unsigned Imm; 2276 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2277 EVT PtrVT = 2278 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 2279 bool isPPC64 = (PtrVT == MVT::i64); 2280 2281 if (!PPCSubTarget->useCRBits() && 2282 isInt32Immediate(N->getOperand(1), Imm)) { 2283 // We can codegen setcc op, imm very efficiently compared to a brcond. 2284 // Check for those cases here. 2285 // setcc op, 0 2286 if (Imm == 0) { 2287 SDValue Op = N->getOperand(0); 2288 switch (CC) { 2289 default: break; 2290 case ISD::SETEQ: { 2291 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 2292 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), 2293 getI32Imm(31, dl) }; 2294 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2295 return true; 2296 } 2297 case ISD::SETNE: { 2298 if (isPPC64) break; 2299 SDValue AD = 2300 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2301 Op, getI32Imm(~0U, dl)), 0); 2302 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); 2303 return true; 2304 } 2305 case ISD::SETLT: { 2306 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 2307 getI32Imm(31, dl) }; 2308 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2309 return true; 2310 } 2311 case ISD::SETGT: { 2312 SDValue T = 2313 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 2314 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 2315 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), 2316 getI32Imm(31, dl) }; 2317 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2318 return true; 2319 } 2320 } 2321 } else if (Imm == ~0U) { // setcc op, -1 2322 SDValue Op = N->getOperand(0); 2323 switch (CC) { 2324 default: break; 2325 case ISD::SETEQ: 2326 if (isPPC64) break; 2327 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2328 Op, getI32Imm(1, dl)), 0); 2329 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 2330 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 2331 MVT::i32, 2332 getI32Imm(0, dl)), 2333 0), Op.getValue(1)); 2334 return true; 2335 case ISD::SETNE: { 2336 if (isPPC64) break; 2337 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 2338 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2339 Op, getI32Imm(~0U, dl)); 2340 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, 2341 SDValue(AD, 1)); 2342 return true; 2343 } 2344 case ISD::SETLT: { 2345 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 2346 getI32Imm(1, dl)), 0); 2347 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 2348 Op), 0); 2349 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), 2350 getI32Imm(31, dl) }; 2351 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2352 return true; 2353 } 2354 case ISD::SETGT: { 2355 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), 2356 getI32Imm(31, dl) }; 2357 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2358 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); 2359 return true; 2360 } 2361 } 2362 } 2363 } 2364 2365 SDValue LHS = N->getOperand(0); 2366 SDValue RHS = N->getOperand(1); 2367 2368 // Altivec Vector compare instructions do not set any CR register by default and 2369 // vector compare operations return the same type as the operands. 2370 if (LHS.getValueType().isVector()) { 2371 if (PPCSubTarget->hasQPX()) 2372 return false; 2373 2374 EVT VecVT = LHS.getValueType(); 2375 bool Swap, Negate; 2376 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, 2377 PPCSubTarget->hasVSX(), Swap, Negate); 2378 if (Swap) 2379 std::swap(LHS, RHS); 2380 2381 EVT ResVT = VecVT.changeVectorElementTypeToInteger(); 2382 if (Negate) { 2383 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); 2384 CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, 2385 ResVT, VCmp, VCmp); 2386 return true; 2387 } 2388 2389 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); 2390 return true; 2391 } 2392 2393 if (PPCSubTarget->useCRBits()) 2394 return false; 2395 2396 bool Inv; 2397 unsigned Idx = getCRIdxForSetCC(CC, Inv); 2398 SDValue CCReg = SelectCC(LHS, RHS, CC, dl); 2399 SDValue IntCR; 2400 2401 // Force the ccreg into CR7. 2402 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 2403 2404 SDValue InFlag(nullptr, 0); // Null incoming flag value. 2405 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 2406 InFlag).getValue(1); 2407 2408 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 2409 CCReg), 0); 2410 2411 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), 2412 getI32Imm(31, dl), getI32Imm(31, dl) }; 2413 if (!Inv) { 2414 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2415 return true; 2416 } 2417 2418 // Get the specified bit. 2419 SDValue Tmp = 2420 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2421 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); 2422 return true; 2423 } 2424 2425 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 2426 // Transfer memoperands. 2427 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 2428 MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); 2429 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); 2430 } 2431 2432 2433 // Select - Convert the specified operand from a target-independent to a 2434 // target-specific node if it hasn't already been changed. 2435 void PPCDAGToDAGISel::Select(SDNode *N) { 2436 SDLoc dl(N); 2437 if (N->isMachineOpcode()) { 2438 N->setNodeId(-1); 2439 return; // Already selected. 2440 } 2441 2442 // In case any misguided DAG-level optimizations form an ADD with a 2443 // TargetConstant operand, crash here instead of miscompiling (by selecting 2444 // an r+r add instead of some kind of r+i add). 2445 if (N->getOpcode() == ISD::ADD && 2446 N->getOperand(1).getOpcode() == ISD::TargetConstant) 2447 llvm_unreachable("Invalid ADD with TargetConstant operand"); 2448 2449 // Try matching complex bit permutations before doing anything else. 2450 if (tryBitPermutation(N)) 2451 return; 2452 2453 switch (N->getOpcode()) { 2454 default: break; 2455 2456 case ISD::Constant: { 2457 if (N->getValueType(0) == MVT::i64) { 2458 ReplaceNode(N, getInt64(CurDAG, N)); 2459 return; 2460 } 2461 break; 2462 } 2463 2464 case ISD::SETCC: { 2465 if (trySETCC(N)) 2466 return; 2467 break; 2468 } 2469 case PPCISD::GlobalBaseReg: 2470 ReplaceNode(N, getGlobalBaseReg()); 2471 return; 2472 2473 case ISD::FrameIndex: 2474 selectFrameIndex(N, N); 2475 return; 2476 2477 case PPCISD::MFOCRF: { 2478 SDValue InFlag = N->getOperand(1); 2479 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 2480 N->getOperand(0), InFlag)); 2481 return; 2482 } 2483 2484 case PPCISD::READ_TIME_BASE: { 2485 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 2486 MVT::Other, N->getOperand(0))); 2487 return; 2488 } 2489 2490 case PPCISD::SRA_ADDZE: { 2491 SDValue N0 = N->getOperand(0); 2492 SDValue ShiftAmt = 2493 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 2494 getConstantIntValue(), dl, 2495 N->getValueType(0)); 2496 if (N->getValueType(0) == MVT::i64) { 2497 SDNode *Op = 2498 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 2499 N0, ShiftAmt); 2500 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), 2501 SDValue(Op, 1)); 2502 return; 2503 } else { 2504 assert(N->getValueType(0) == MVT::i32 && 2505 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 2506 SDNode *Op = 2507 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 2508 N0, ShiftAmt); 2509 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), 2510 SDValue(Op, 1)); 2511 return; 2512 } 2513 } 2514 2515 case ISD::LOAD: { 2516 // Handle preincrement loads. 2517 LoadSDNode *LD = cast<LoadSDNode>(N); 2518 EVT LoadedVT = LD->getMemoryVT(); 2519 2520 // Normal loads are handled by code generated from the .td file. 2521 if (LD->getAddressingMode() != ISD::PRE_INC) 2522 break; 2523 2524 SDValue Offset = LD->getOffset(); 2525 if (Offset.getOpcode() == ISD::TargetConstant || 2526 Offset.getOpcode() == ISD::TargetGlobalAddress) { 2527 2528 unsigned Opcode; 2529 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 2530 if (LD->getValueType(0) != MVT::i64) { 2531 // Handle PPC32 integer and normal FP loads. 2532 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2533 switch (LoadedVT.getSimpleVT().SimpleTy) { 2534 default: llvm_unreachable("Invalid PPC load type!"); 2535 case MVT::f64: Opcode = PPC::LFDU; break; 2536 case MVT::f32: Opcode = PPC::LFSU; break; 2537 case MVT::i32: Opcode = PPC::LWZU; break; 2538 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 2539 case MVT::i1: 2540 case MVT::i8: Opcode = PPC::LBZU; break; 2541 } 2542 } else { 2543 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 2544 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2545 switch (LoadedVT.getSimpleVT().SimpleTy) { 2546 default: llvm_unreachable("Invalid PPC load type!"); 2547 case MVT::i64: Opcode = PPC::LDU; break; 2548 case MVT::i32: Opcode = PPC::LWZU8; break; 2549 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 2550 case MVT::i1: 2551 case MVT::i8: Opcode = PPC::LBZU8; break; 2552 } 2553 } 2554 2555 SDValue Chain = LD->getChain(); 2556 SDValue Base = LD->getBasePtr(); 2557 SDValue Ops[] = { Offset, Base, Chain }; 2558 SDNode *MN = CurDAG->getMachineNode( 2559 Opcode, dl, LD->getValueType(0), 2560 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 2561 transferMemOperands(N, MN); 2562 ReplaceNode(N, MN); 2563 return; 2564 } else { 2565 unsigned Opcode; 2566 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 2567 if (LD->getValueType(0) != MVT::i64) { 2568 // Handle PPC32 integer and normal FP loads. 2569 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2570 switch (LoadedVT.getSimpleVT().SimpleTy) { 2571 default: llvm_unreachable("Invalid PPC load type!"); 2572 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX 2573 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX 2574 case MVT::f64: Opcode = PPC::LFDUX; break; 2575 case MVT::f32: Opcode = PPC::LFSUX; break; 2576 case MVT::i32: Opcode = PPC::LWZUX; break; 2577 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 2578 case MVT::i1: 2579 case MVT::i8: Opcode = PPC::LBZUX; break; 2580 } 2581 } else { 2582 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 2583 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 2584 "Invalid sext update load"); 2585 switch (LoadedVT.getSimpleVT().SimpleTy) { 2586 default: llvm_unreachable("Invalid PPC load type!"); 2587 case MVT::i64: Opcode = PPC::LDUX; break; 2588 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 2589 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 2590 case MVT::i1: 2591 case MVT::i8: Opcode = PPC::LBZUX8; break; 2592 } 2593 } 2594 2595 SDValue Chain = LD->getChain(); 2596 SDValue Base = LD->getBasePtr(); 2597 SDValue Ops[] = { Base, Offset, Chain }; 2598 SDNode *MN = CurDAG->getMachineNode( 2599 Opcode, dl, LD->getValueType(0), 2600 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); 2601 transferMemOperands(N, MN); 2602 ReplaceNode(N, MN); 2603 return; 2604 } 2605 } 2606 2607 case ISD::AND: { 2608 unsigned Imm, Imm2, SH, MB, ME; 2609 uint64_t Imm64; 2610 2611 // If this is an and of a value rotated between 0 and 31 bits and then and'd 2612 // with a mask, emit rlwinm 2613 if (isInt32Immediate(N->getOperand(1), Imm) && 2614 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 2615 SDValue Val = N->getOperand(0).getOperand(0); 2616 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), 2617 getI32Imm(ME, dl) }; 2618 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2619 return; 2620 } 2621 // If this is just a masked value where the input is not handled above, and 2622 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 2623 if (isInt32Immediate(N->getOperand(1), Imm) && 2624 isRunOfOnes(Imm, MB, ME) && 2625 N->getOperand(0).getOpcode() != ISD::ROTL) { 2626 SDValue Val = N->getOperand(0); 2627 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), 2628 getI32Imm(ME, dl) }; 2629 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2630 return; 2631 } 2632 // If this is a 64-bit zero-extension mask, emit rldicl. 2633 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && 2634 isMask_64(Imm64)) { 2635 SDValue Val = N->getOperand(0); 2636 MB = 64 - countTrailingOnes(Imm64); 2637 SH = 0; 2638 2639 // If the operand is a logical right shift, we can fold it into this 2640 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 2641 // for n <= mb. The right shift is really a left rotate followed by a 2642 // mask, and this mask is a more-restrictive sub-mask of the mask implied 2643 // by the shift. 2644 if (Val.getOpcode() == ISD::SRL && 2645 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 2646 assert(Imm < 64 && "Illegal shift amount"); 2647 Val = Val.getOperand(0); 2648 SH = 64 - Imm; 2649 } 2650 2651 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; 2652 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 2653 return; 2654 } 2655 // AND X, 0 -> 0, not "rlwinm 32". 2656 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 2657 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 2658 return; 2659 } 2660 // ISD::OR doesn't get all the bitfield insertion fun. 2661 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a 2662 // bitfield insert. 2663 if (isInt32Immediate(N->getOperand(1), Imm) && 2664 N->getOperand(0).getOpcode() == ISD::OR && 2665 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 2666 // The idea here is to check whether this is equivalent to: 2667 // (c1 & m) | (x & ~m) 2668 // where m is a run-of-ones mask. The logic here is that, for each bit in 2669 // c1 and c2: 2670 // - if both are 1, then the output will be 1. 2671 // - if both are 0, then the output will be 0. 2672 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will 2673 // come from x. 2674 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will 2675 // be 0. 2676 // If that last condition is never the case, then we can form m from the 2677 // bits that are the same between c1 and c2. 2678 unsigned MB, ME; 2679 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { 2680 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2681 N->getOperand(0).getOperand(1), 2682 getI32Imm(0, dl), getI32Imm(MB, dl), 2683 getI32Imm(ME, dl) }; 2684 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); 2685 return; 2686 } 2687 } 2688 2689 // Other cases are autogenerated. 2690 break; 2691 } 2692 case ISD::OR: { 2693 if (N->getValueType(0) == MVT::i32) 2694 if (tryBitfieldInsert(N)) 2695 return; 2696 2697 short Imm; 2698 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 2699 isIntS16Immediate(N->getOperand(1), Imm)) { 2700 APInt LHSKnownZero, LHSKnownOne; 2701 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne); 2702 2703 // If this is equivalent to an add, then we can fold it with the 2704 // FrameIndex calculation. 2705 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { 2706 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 2707 return; 2708 } 2709 } 2710 2711 // Other cases are autogenerated. 2712 break; 2713 } 2714 case ISD::ADD: { 2715 short Imm; 2716 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 2717 isIntS16Immediate(N->getOperand(1), Imm)) { 2718 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 2719 return; 2720 } 2721 2722 break; 2723 } 2724 case ISD::SHL: { 2725 unsigned Imm, SH, MB, ME; 2726 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 2727 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 2728 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2729 getI32Imm(SH, dl), getI32Imm(MB, dl), 2730 getI32Imm(ME, dl) }; 2731 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2732 return; 2733 } 2734 2735 // Other cases are autogenerated. 2736 break; 2737 } 2738 case ISD::SRL: { 2739 unsigned Imm, SH, MB, ME; 2740 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 2741 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 2742 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2743 getI32Imm(SH, dl), getI32Imm(MB, dl), 2744 getI32Imm(ME, dl) }; 2745 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2746 return; 2747 } 2748 2749 // Other cases are autogenerated. 2750 break; 2751 } 2752 // FIXME: Remove this once the ANDI glue bug is fixed: 2753 case PPCISD::ANDIo_1_EQ_BIT: 2754 case PPCISD::ANDIo_1_GT_BIT: { 2755 if (!ANDIGlueBug) 2756 break; 2757 2758 EVT InVT = N->getOperand(0).getValueType(); 2759 assert((InVT == MVT::i64 || InVT == MVT::i32) && 2760 "Invalid input type for ANDIo_1_EQ_BIT"); 2761 2762 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; 2763 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 2764 N->getOperand(0), 2765 CurDAG->getTargetConstant(1, dl, InVT)), 2766 0); 2767 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2768 SDValue SRIdxVal = 2769 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? 2770 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32); 2771 2772 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, 2773 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); 2774 return; 2775 } 2776 case ISD::SELECT_CC: { 2777 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 2778 EVT PtrVT = 2779 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); 2780 bool isPPC64 = (PtrVT == MVT::i64); 2781 2782 // If this is a select of i1 operands, we'll pattern match it. 2783 if (PPCSubTarget->useCRBits() && 2784 N->getOperand(0).getValueType() == MVT::i1) 2785 break; 2786 2787 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 2788 if (!isPPC64) 2789 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2790 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 2791 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 2792 if (N1C->isNullValue() && N3C->isNullValue() && 2793 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 2794 // FIXME: Implement this optzn for PPC64. 2795 N->getValueType(0) == MVT::i32) { 2796 SDNode *Tmp = 2797 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2798 N->getOperand(0), getI32Imm(~0U, dl)); 2799 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), 2800 N->getOperand(0), SDValue(Tmp, 1)); 2801 return; 2802 } 2803 2804 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 2805 2806 if (N->getValueType(0) == MVT::i1) { 2807 // An i1 select is: (c & t) | (!c & f). 2808 bool Inv; 2809 unsigned Idx = getCRIdxForSetCC(CC, Inv); 2810 2811 unsigned SRI; 2812 switch (Idx) { 2813 default: llvm_unreachable("Invalid CC index"); 2814 case 0: SRI = PPC::sub_lt; break; 2815 case 1: SRI = PPC::sub_gt; break; 2816 case 2: SRI = PPC::sub_eq; break; 2817 case 3: SRI = PPC::sub_un; break; 2818 } 2819 2820 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 2821 2822 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 2823 CCBit, CCBit), 0); 2824 SDValue C = Inv ? NotCCBit : CCBit, 2825 NotC = Inv ? CCBit : NotCCBit; 2826 2827 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 2828 C, N->getOperand(2)), 0); 2829 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 2830 NotC, N->getOperand(3)), 0); 2831 2832 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 2833 return; 2834 } 2835 2836 unsigned BROpc = getPredicateForSetCC(CC); 2837 2838 unsigned SelectCCOp; 2839 if (N->getValueType(0) == MVT::i32) 2840 SelectCCOp = PPC::SELECT_CC_I4; 2841 else if (N->getValueType(0) == MVT::i64) 2842 SelectCCOp = PPC::SELECT_CC_I8; 2843 else if (N->getValueType(0) == MVT::f32) 2844 if (PPCSubTarget->hasP8Vector()) 2845 SelectCCOp = PPC::SELECT_CC_VSSRC; 2846 else 2847 SelectCCOp = PPC::SELECT_CC_F4; 2848 else if (N->getValueType(0) == MVT::f64) 2849 if (PPCSubTarget->hasVSX()) 2850 SelectCCOp = PPC::SELECT_CC_VSFRC; 2851 else 2852 SelectCCOp = PPC::SELECT_CC_F8; 2853 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) 2854 SelectCCOp = PPC::SELECT_CC_QFRC; 2855 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) 2856 SelectCCOp = PPC::SELECT_CC_QSRC; 2857 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) 2858 SelectCCOp = PPC::SELECT_CC_QBRC; 2859 else if (N->getValueType(0) == MVT::v2f64 || 2860 N->getValueType(0) == MVT::v2i64) 2861 SelectCCOp = PPC::SELECT_CC_VSRC; 2862 else 2863 SelectCCOp = PPC::SELECT_CC_VRRC; 2864 2865 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 2866 getI32Imm(BROpc, dl) }; 2867 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 2868 return; 2869 } 2870 case ISD::VSELECT: 2871 if (PPCSubTarget->hasVSX()) { 2872 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) }; 2873 CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops); 2874 return; 2875 } 2876 2877 break; 2878 case ISD::VECTOR_SHUFFLE: 2879 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 2880 N->getValueType(0) == MVT::v2i64)) { 2881 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 2882 2883 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 2884 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 2885 unsigned DM[2]; 2886 2887 for (int i = 0; i < 2; ++i) 2888 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 2889 DM[i] = 0; 2890 else 2891 DM[i] = 1; 2892 2893 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 2894 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 2895 isa<LoadSDNode>(Op1.getOperand(0))) { 2896 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 2897 SDValue Base, Offset; 2898 2899 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && 2900 (LD->getMemoryVT() == MVT::f64 || 2901 LD->getMemoryVT() == MVT::i64) && 2902 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 2903 SDValue Chain = LD->getChain(); 2904 SDValue Ops[] = { Base, Offset, Chain }; 2905 CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops); 2906 return; 2907 } 2908 } 2909 2910 // For little endian, we must swap the input operands and adjust 2911 // the mask elements (reverse and invert them). 2912 if (PPCSubTarget->isLittleEndian()) { 2913 std::swap(Op1, Op2); 2914 unsigned tmp = DM[0]; 2915 DM[0] = 1 - DM[1]; 2916 DM[1] = 1 - tmp; 2917 } 2918 2919 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, 2920 MVT::i32); 2921 SDValue Ops[] = { Op1, Op2, DMV }; 2922 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 2923 return; 2924 } 2925 2926 break; 2927 case PPCISD::BDNZ: 2928 case PPCISD::BDZ: { 2929 bool IsPPC64 = PPCSubTarget->isPPC64(); 2930 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 2931 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ 2932 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) 2933 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 2934 MVT::Other, Ops); 2935 return; 2936 } 2937 case PPCISD::COND_BRANCH: { 2938 // Op #0 is the Chain. 2939 // Op #1 is the PPC::PRED_* number. 2940 // Op #2 is the CR# 2941 // Op #3 is the Dest MBB 2942 // Op #4 is the Flag. 2943 // Prevent PPC::PRED_* from being selected into LI. 2944 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2945 if (EnableBranchHint) 2946 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3)); 2947 2948 SDValue Pred = getI32Imm(PCC, dl); 2949 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 2950 N->getOperand(0), N->getOperand(4) }; 2951 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 2952 return; 2953 } 2954 case ISD::BR_CC: { 2955 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 2956 unsigned PCC = getPredicateForSetCC(CC); 2957 2958 if (N->getOperand(2).getValueType() == MVT::i1) { 2959 unsigned Opc; 2960 bool Swap; 2961 switch (PCC) { 2962 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 2963 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 2964 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 2965 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 2966 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 2967 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 2968 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 2969 } 2970 2971 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 2972 N->getOperand(Swap ? 3 : 2), 2973 N->getOperand(Swap ? 2 : 3)), 0); 2974 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), 2975 N->getOperand(0)); 2976 return; 2977 } 2978 2979 if (EnableBranchHint) 2980 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4)); 2981 2982 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 2983 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, 2984 N->getOperand(4), N->getOperand(0) }; 2985 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 2986 return; 2987 } 2988 case ISD::BRIND: { 2989 // FIXME: Should custom lower this. 2990 SDValue Chain = N->getOperand(0); 2991 SDValue Target = N->getOperand(1); 2992 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 2993 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 2994 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 2995 Chain), 0); 2996 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 2997 return; 2998 } 2999 case PPCISD::TOC_ENTRY: { 3000 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && 3001 "Only supported for 64-bit ABI and 32-bit SVR4"); 3002 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { 3003 SDValue GA = N->getOperand(0); 3004 SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, 3005 N->getOperand(1)); 3006 transferMemOperands(N, MN); 3007 ReplaceNode(N, MN); 3008 return; 3009 } 3010 3011 // For medium and large code model, we generate two instructions as 3012 // described below. Otherwise we allow SelectCodeCommon to handle this, 3013 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. 3014 CodeModel::Model CModel = TM.getCodeModel(); 3015 if (CModel != CodeModel::Medium && CModel != CodeModel::Large) 3016 break; 3017 3018 // The first source operand is a TargetGlobalAddress or a TargetJumpTable. 3019 // If it must be toc-referenced according to PPCSubTarget, we generate: 3020 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>)) 3021 // Otherwise we generate: 3022 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>) 3023 SDValue GA = N->getOperand(0); 3024 SDValue TOCbase = N->getOperand(1); 3025 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, 3026 TOCbase, GA); 3027 3028 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) || 3029 CModel == CodeModel::Large) { 3030 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, 3031 SDValue(Tmp, 0)); 3032 transferMemOperands(N, MN); 3033 ReplaceNode(N, MN); 3034 return; 3035 } 3036 3037 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 3038 const GlobalValue *GV = G->getGlobal(); 3039 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 3040 if (GVFlags & PPCII::MO_NLP_FLAG) { 3041 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, 3042 SDValue(Tmp, 0)); 3043 transferMemOperands(N, MN); 3044 ReplaceNode(N, MN); 3045 return; 3046 } 3047 } 3048 3049 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 3050 SDValue(Tmp, 0), GA)); 3051 return; 3052 } 3053 case PPCISD::PPC32_PICGOT: { 3054 // Generate a PIC-safe GOT reference. 3055 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && 3056 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 3057 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, 3058 PPCLowering->getPointerTy(CurDAG->getDataLayout()), 3059 MVT::i32); 3060 return; 3061 } 3062 case PPCISD::VADD_SPLAT: { 3063 // This expands into one of three sequences, depending on whether 3064 // the first operand is odd or even, positive or negative. 3065 assert(isa<ConstantSDNode>(N->getOperand(0)) && 3066 isa<ConstantSDNode>(N->getOperand(1)) && 3067 "Invalid operand on VADD_SPLAT!"); 3068 3069 int Elt = N->getConstantOperandVal(0); 3070 int EltSize = N->getConstantOperandVal(1); 3071 unsigned Opc1, Opc2, Opc3; 3072 EVT VT; 3073 3074 if (EltSize == 1) { 3075 Opc1 = PPC::VSPLTISB; 3076 Opc2 = PPC::VADDUBM; 3077 Opc3 = PPC::VSUBUBM; 3078 VT = MVT::v16i8; 3079 } else if (EltSize == 2) { 3080 Opc1 = PPC::VSPLTISH; 3081 Opc2 = PPC::VADDUHM; 3082 Opc3 = PPC::VSUBUHM; 3083 VT = MVT::v8i16; 3084 } else { 3085 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 3086 Opc1 = PPC::VSPLTISW; 3087 Opc2 = PPC::VADDUWM; 3088 Opc3 = PPC::VSUBUWM; 3089 VT = MVT::v4i32; 3090 } 3091 3092 if ((Elt & 1) == 0) { 3093 // Elt is even, in the range [-32,-18] + [16,30]. 3094 // 3095 // Convert: VADD_SPLAT elt, size 3096 // Into: tmp = VSPLTIS[BHW] elt 3097 // VADDU[BHW]M tmp, tmp 3098 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 3099 SDValue EltVal = getI32Imm(Elt >> 1, dl); 3100 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 3101 SDValue TmpVal = SDValue(Tmp, 0); 3102 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); 3103 return; 3104 3105 } else if (Elt > 0) { 3106 // Elt is odd and positive, in the range [17,31]. 3107 // 3108 // Convert: VADD_SPLAT elt, size 3109 // Into: tmp1 = VSPLTIS[BHW] elt-16 3110 // tmp2 = VSPLTIS[BHW] -16 3111 // VSUBU[BHW]M tmp1, tmp2 3112 SDValue EltVal = getI32Imm(Elt - 16, dl); 3113 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 3114 EltVal = getI32Imm(-16, dl); 3115 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 3116 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 3117 SDValue(Tmp2, 0))); 3118 return; 3119 3120 } else { 3121 // Elt is odd and negative, in the range [-31,-17]. 3122 // 3123 // Convert: VADD_SPLAT elt, size 3124 // Into: tmp1 = VSPLTIS[BHW] elt+16 3125 // tmp2 = VSPLTIS[BHW] -16 3126 // VADDU[BHW]M tmp1, tmp2 3127 SDValue EltVal = getI32Imm(Elt + 16, dl); 3128 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 3129 EltVal = getI32Imm(-16, dl); 3130 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 3131 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 3132 SDValue(Tmp2, 0))); 3133 return; 3134 } 3135 } 3136 } 3137 3138 SelectCode(N); 3139 } 3140 3141 // If the target supports the cmpb instruction, do the idiom recognition here. 3142 // We don't do this as a DAG combine because we don't want to do it as nodes 3143 // are being combined (because we might miss part of the eventual idiom). We 3144 // don't want to do it during instruction selection because we want to reuse 3145 // the logic for lowering the masking operations already part of the 3146 // instruction selector. 3147 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 3148 SDLoc dl(N); 3149 3150 assert(N->getOpcode() == ISD::OR && 3151 "Only OR nodes are supported for CMPB"); 3152 3153 SDValue Res; 3154 if (!PPCSubTarget->hasCMPB()) 3155 return Res; 3156 3157 if (N->getValueType(0) != MVT::i32 && 3158 N->getValueType(0) != MVT::i64) 3159 return Res; 3160 3161 EVT VT = N->getValueType(0); 3162 3163 SDValue RHS, LHS; 3164 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 3165 uint64_t Mask = 0, Alt = 0; 3166 3167 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 3168 uint64_t &Mask, uint64_t &Alt, 3169 SDValue &LHS, SDValue &RHS) { 3170 if (O.getOpcode() != ISD::SELECT_CC) 3171 return false; 3172 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 3173 3174 if (!isa<ConstantSDNode>(O.getOperand(2)) || 3175 !isa<ConstantSDNode>(O.getOperand(3))) 3176 return false; 3177 3178 uint64_t PM = O.getConstantOperandVal(2); 3179 uint64_t PAlt = O.getConstantOperandVal(3); 3180 for (b = 0; b < 8; ++b) { 3181 uint64_t Mask = UINT64_C(0xFF) << (8*b); 3182 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 3183 break; 3184 } 3185 3186 if (b == 8) 3187 return false; 3188 Mask |= PM; 3189 Alt |= PAlt; 3190 3191 if (!isa<ConstantSDNode>(O.getOperand(1)) || 3192 O.getConstantOperandVal(1) != 0) { 3193 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 3194 if (Op0.getOpcode() == ISD::TRUNCATE) 3195 Op0 = Op0.getOperand(0); 3196 if (Op1.getOpcode() == ISD::TRUNCATE) 3197 Op1 = Op1.getOperand(0); 3198 3199 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 3200 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 3201 isa<ConstantSDNode>(Op0.getOperand(1))) { 3202 3203 unsigned Bits = Op0.getValueSizeInBits(); 3204 if (b != Bits/8-1) 3205 return false; 3206 if (Op0.getConstantOperandVal(1) != Bits-8) 3207 return false; 3208 3209 LHS = Op0.getOperand(0); 3210 RHS = Op1.getOperand(0); 3211 return true; 3212 } 3213 3214 // When we have small integers (i16 to be specific), the form present 3215 // post-legalization uses SETULT in the SELECT_CC for the 3216 // higher-order byte, depending on the fact that the 3217 // even-higher-order bytes are known to all be zero, for example: 3218 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 3219 // (so when the second byte is the same, because all higher-order 3220 // bits from bytes 3 and 4 are known to be zero, the result of the 3221 // xor can be at most 255) 3222 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 3223 isa<ConstantSDNode>(O.getOperand(1))) { 3224 3225 uint64_t ULim = O.getConstantOperandVal(1); 3226 if (ULim != (UINT64_C(1) << b*8)) 3227 return false; 3228 3229 // Now we need to make sure that the upper bytes are known to be 3230 // zero. 3231 unsigned Bits = Op0.getValueSizeInBits(); 3232 if (!CurDAG->MaskedValueIsZero( 3233 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) 3234 return false; 3235 3236 LHS = Op0.getOperand(0); 3237 RHS = Op0.getOperand(1); 3238 return true; 3239 } 3240 3241 return false; 3242 } 3243 3244 if (CC != ISD::SETEQ) 3245 return false; 3246 3247 SDValue Op = O.getOperand(0); 3248 if (Op.getOpcode() == ISD::AND) { 3249 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3250 return false; 3251 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 3252 return false; 3253 3254 SDValue XOR = Op.getOperand(0); 3255 if (XOR.getOpcode() == ISD::TRUNCATE) 3256 XOR = XOR.getOperand(0); 3257 if (XOR.getOpcode() != ISD::XOR) 3258 return false; 3259 3260 LHS = XOR.getOperand(0); 3261 RHS = XOR.getOperand(1); 3262 return true; 3263 } else if (Op.getOpcode() == ISD::SRL) { 3264 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3265 return false; 3266 unsigned Bits = Op.getValueSizeInBits(); 3267 if (b != Bits/8-1) 3268 return false; 3269 if (Op.getConstantOperandVal(1) != Bits-8) 3270 return false; 3271 3272 SDValue XOR = Op.getOperand(0); 3273 if (XOR.getOpcode() == ISD::TRUNCATE) 3274 XOR = XOR.getOperand(0); 3275 if (XOR.getOpcode() != ISD::XOR) 3276 return false; 3277 3278 LHS = XOR.getOperand(0); 3279 RHS = XOR.getOperand(1); 3280 return true; 3281 } 3282 3283 return false; 3284 }; 3285 3286 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 3287 while (!Queue.empty()) { 3288 SDValue V = Queue.pop_back_val(); 3289 3290 for (const SDValue &O : V.getNode()->ops()) { 3291 unsigned b; 3292 uint64_t M = 0, A = 0; 3293 SDValue OLHS, ORHS; 3294 if (O.getOpcode() == ISD::OR) { 3295 Queue.push_back(O); 3296 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 3297 if (!LHS) { 3298 LHS = OLHS; 3299 RHS = ORHS; 3300 BytesFound[b] = true; 3301 Mask |= M; 3302 Alt |= A; 3303 } else if ((LHS == ORHS && RHS == OLHS) || 3304 (RHS == ORHS && LHS == OLHS)) { 3305 BytesFound[b] = true; 3306 Mask |= M; 3307 Alt |= A; 3308 } else { 3309 return Res; 3310 } 3311 } else { 3312 return Res; 3313 } 3314 } 3315 } 3316 3317 unsigned LastB = 0, BCnt = 0; 3318 for (unsigned i = 0; i < 8; ++i) 3319 if (BytesFound[LastB]) { 3320 ++BCnt; 3321 LastB = i; 3322 } 3323 3324 if (!LastB || BCnt < 2) 3325 return Res; 3326 3327 // Because we'll be zero-extending the output anyway if don't have a specific 3328 // value for each input byte (via the Mask), we can 'anyext' the inputs. 3329 if (LHS.getValueType() != VT) { 3330 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 3331 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 3332 } 3333 3334 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 3335 3336 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 3337 if (NonTrivialMask && !Alt) { 3338 // Res = Mask & CMPB 3339 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 3340 CurDAG->getConstant(Mask, dl, VT)); 3341 } else if (Alt) { 3342 // Res = (CMPB & Mask) | (~CMPB & Alt) 3343 // Which, as suggested here: 3344 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 3345 // can be written as: 3346 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 3347 // useful because the (Alt ^ Mask) can be pre-computed. 3348 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 3349 CurDAG->getConstant(Mask ^ Alt, dl, VT)); 3350 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, 3351 CurDAG->getConstant(Alt, dl, VT)); 3352 } 3353 3354 return Res; 3355 } 3356 3357 // When CR bit registers are enabled, an extension of an i1 variable to a i32 3358 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 3359 // involves constant materialization of a 0 or a 1 or both. If the result of 3360 // the extension is then operated upon by some operator that can be constant 3361 // folded with a constant 0 or 1, and that constant can be materialized using 3362 // only one instruction (like a zero or one), then we should fold in those 3363 // operations with the select. 3364 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 3365 if (!PPCSubTarget->useCRBits()) 3366 return; 3367 3368 if (N->getOpcode() != ISD::ZERO_EXTEND && 3369 N->getOpcode() != ISD::SIGN_EXTEND && 3370 N->getOpcode() != ISD::ANY_EXTEND) 3371 return; 3372 3373 if (N->getOperand(0).getValueType() != MVT::i1) 3374 return; 3375 3376 if (!N->hasOneUse()) 3377 return; 3378 3379 SDLoc dl(N); 3380 EVT VT = N->getValueType(0); 3381 SDValue Cond = N->getOperand(0); 3382 SDValue ConstTrue = 3383 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); 3384 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); 3385 3386 do { 3387 SDNode *User = *N->use_begin(); 3388 if (User->getNumOperands() != 2) 3389 break; 3390 3391 auto TryFold = [this, N, User, dl](SDValue Val) { 3392 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 3393 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 3394 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 3395 3396 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, 3397 User->getValueType(0), 3398 O0.getNode(), O1.getNode()); 3399 }; 3400 3401 SDValue TrueRes = TryFold(ConstTrue); 3402 if (!TrueRes) 3403 break; 3404 SDValue FalseRes = TryFold(ConstFalse); 3405 if (!FalseRes) 3406 break; 3407 3408 // For us to materialize these using one instruction, we must be able to 3409 // represent them as signed 16-bit integers. 3410 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 3411 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 3412 if (!isInt<16>(True) || !isInt<16>(False)) 3413 break; 3414 3415 // We can replace User with a new SELECT node, and try again to see if we 3416 // can fold the select with its user. 3417 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 3418 N = User; 3419 ConstTrue = TrueRes; 3420 ConstFalse = FalseRes; 3421 } while (N->hasOneUse()); 3422 } 3423 3424 void PPCDAGToDAGISel::PreprocessISelDAG() { 3425 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 3426 ++Position; 3427 3428 bool MadeChange = false; 3429 while (Position != CurDAG->allnodes_begin()) { 3430 SDNode *N = &*--Position; 3431 if (N->use_empty()) 3432 continue; 3433 3434 SDValue Res; 3435 switch (N->getOpcode()) { 3436 default: break; 3437 case ISD::OR: 3438 Res = combineToCMPB(N); 3439 break; 3440 } 3441 3442 if (!Res) 3443 foldBoolExts(Res, N); 3444 3445 if (Res) { 3446 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 3447 DEBUG(N->dump(CurDAG)); 3448 DEBUG(dbgs() << "\nNew: "); 3449 DEBUG(Res.getNode()->dump(CurDAG)); 3450 DEBUG(dbgs() << "\n"); 3451 3452 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 3453 MadeChange = true; 3454 } 3455 } 3456 3457 if (MadeChange) 3458 CurDAG->RemoveDeadNodes(); 3459 } 3460 3461 /// PostprocessISelDAG - Perform some late peephole optimizations 3462 /// on the DAG representation. 3463 void PPCDAGToDAGISel::PostprocessISelDAG() { 3464 3465 // Skip peepholes at -O0. 3466 if (TM.getOptLevel() == CodeGenOpt::None) 3467 return; 3468 3469 PeepholePPC64(); 3470 PeepholeCROps(); 3471 PeepholePPC64ZExt(); 3472 } 3473 3474 // Check if all users of this node will become isel where the second operand 3475 // is the constant zero. If this is so, and if we can negate the condition, 3476 // then we can flip the true and false operands. This will allow the zero to 3477 // be folded with the isel so that we don't need to materialize a register 3478 // containing zero. 3479 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 3480 // If we're not using isel, then this does not matter. 3481 if (!PPCSubTarget->hasISEL()) 3482 return false; 3483 3484 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 3485 UI != UE; ++UI) { 3486 SDNode *User = *UI; 3487 if (!User->isMachineOpcode()) 3488 return false; 3489 if (User->getMachineOpcode() != PPC::SELECT_I4 && 3490 User->getMachineOpcode() != PPC::SELECT_I8) 3491 return false; 3492 3493 SDNode *Op2 = User->getOperand(2).getNode(); 3494 if (!Op2->isMachineOpcode()) 3495 return false; 3496 3497 if (Op2->getMachineOpcode() != PPC::LI && 3498 Op2->getMachineOpcode() != PPC::LI8) 3499 return false; 3500 3501 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 3502 if (!C) 3503 return false; 3504 3505 if (!C->isNullValue()) 3506 return false; 3507 } 3508 3509 return true; 3510 } 3511 3512 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 3513 SmallVector<SDNode *, 4> ToReplace; 3514 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 3515 UI != UE; ++UI) { 3516 SDNode *User = *UI; 3517 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 3518 User->getMachineOpcode() == PPC::SELECT_I8) && 3519 "Must have all select users"); 3520 ToReplace.push_back(User); 3521 } 3522 3523 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), 3524 UE = ToReplace.end(); UI != UE; ++UI) { 3525 SDNode *User = *UI; 3526 SDNode *ResNode = 3527 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 3528 User->getValueType(0), User->getOperand(0), 3529 User->getOperand(2), 3530 User->getOperand(1)); 3531 3532 DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 3533 DEBUG(User->dump(CurDAG)); 3534 DEBUG(dbgs() << "\nNew: "); 3535 DEBUG(ResNode->dump(CurDAG)); 3536 DEBUG(dbgs() << "\n"); 3537 3538 ReplaceUses(User, ResNode); 3539 } 3540 } 3541 3542 void PPCDAGToDAGISel::PeepholeCROps() { 3543 bool IsModified; 3544 do { 3545 IsModified = false; 3546 for (SDNode &Node : CurDAG->allnodes()) { 3547 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); 3548 if (!MachineNode || MachineNode->use_empty()) 3549 continue; 3550 SDNode *ResNode = MachineNode; 3551 3552 bool Op1Set = false, Op1Unset = false, 3553 Op1Not = false, 3554 Op2Set = false, Op2Unset = false, 3555 Op2Not = false; 3556 3557 unsigned Opcode = MachineNode->getMachineOpcode(); 3558 switch (Opcode) { 3559 default: break; 3560 case PPC::CRAND: 3561 case PPC::CRNAND: 3562 case PPC::CROR: 3563 case PPC::CRXOR: 3564 case PPC::CRNOR: 3565 case PPC::CREQV: 3566 case PPC::CRANDC: 3567 case PPC::CRORC: { 3568 SDValue Op = MachineNode->getOperand(1); 3569 if (Op.isMachineOpcode()) { 3570 if (Op.getMachineOpcode() == PPC::CRSET) 3571 Op2Set = true; 3572 else if (Op.getMachineOpcode() == PPC::CRUNSET) 3573 Op2Unset = true; 3574 else if (Op.getMachineOpcode() == PPC::CRNOR && 3575 Op.getOperand(0) == Op.getOperand(1)) 3576 Op2Not = true; 3577 } 3578 LLVM_FALLTHROUGH; 3579 } 3580 case PPC::BC: 3581 case PPC::BCn: 3582 case PPC::SELECT_I4: 3583 case PPC::SELECT_I8: 3584 case PPC::SELECT_F4: 3585 case PPC::SELECT_F8: 3586 case PPC::SELECT_QFRC: 3587 case PPC::SELECT_QSRC: 3588 case PPC::SELECT_QBRC: 3589 case PPC::SELECT_VRRC: 3590 case PPC::SELECT_VSFRC: 3591 case PPC::SELECT_VSSRC: 3592 case PPC::SELECT_VSRC: { 3593 SDValue Op = MachineNode->getOperand(0); 3594 if (Op.isMachineOpcode()) { 3595 if (Op.getMachineOpcode() == PPC::CRSET) 3596 Op1Set = true; 3597 else if (Op.getMachineOpcode() == PPC::CRUNSET) 3598 Op1Unset = true; 3599 else if (Op.getMachineOpcode() == PPC::CRNOR && 3600 Op.getOperand(0) == Op.getOperand(1)) 3601 Op1Not = true; 3602 } 3603 } 3604 break; 3605 } 3606 3607 bool SelectSwap = false; 3608 switch (Opcode) { 3609 default: break; 3610 case PPC::CRAND: 3611 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3612 // x & x = x 3613 ResNode = MachineNode->getOperand(0).getNode(); 3614 else if (Op1Set) 3615 // 1 & y = y 3616 ResNode = MachineNode->getOperand(1).getNode(); 3617 else if (Op2Set) 3618 // x & 1 = x 3619 ResNode = MachineNode->getOperand(0).getNode(); 3620 else if (Op1Unset || Op2Unset) 3621 // x & 0 = 0 & y = 0 3622 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3623 MVT::i1); 3624 else if (Op1Not) 3625 // ~x & y = andc(y, x) 3626 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3627 MVT::i1, MachineNode->getOperand(1), 3628 MachineNode->getOperand(0). 3629 getOperand(0)); 3630 else if (Op2Not) 3631 // x & ~y = andc(x, y) 3632 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3633 MVT::i1, MachineNode->getOperand(0), 3634 MachineNode->getOperand(1). 3635 getOperand(0)); 3636 else if (AllUsersSelectZero(MachineNode)) { 3637 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 3638 MVT::i1, MachineNode->getOperand(0), 3639 MachineNode->getOperand(1)); 3640 SelectSwap = true; 3641 } 3642 break; 3643 case PPC::CRNAND: 3644 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3645 // nand(x, x) -> nor(x, x) 3646 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3647 MVT::i1, MachineNode->getOperand(0), 3648 MachineNode->getOperand(0)); 3649 else if (Op1Set) 3650 // nand(1, y) -> nor(y, y) 3651 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3652 MVT::i1, MachineNode->getOperand(1), 3653 MachineNode->getOperand(1)); 3654 else if (Op2Set) 3655 // nand(x, 1) -> nor(x, x) 3656 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3657 MVT::i1, MachineNode->getOperand(0), 3658 MachineNode->getOperand(0)); 3659 else if (Op1Unset || Op2Unset) 3660 // nand(x, 0) = nand(0, y) = 1 3661 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3662 MVT::i1); 3663 else if (Op1Not) 3664 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 3665 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3666 MVT::i1, MachineNode->getOperand(0). 3667 getOperand(0), 3668 MachineNode->getOperand(1)); 3669 else if (Op2Not) 3670 // nand(x, ~y) = ~x | y = orc(y, x) 3671 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3672 MVT::i1, MachineNode->getOperand(1). 3673 getOperand(0), 3674 MachineNode->getOperand(0)); 3675 else if (AllUsersSelectZero(MachineNode)) { 3676 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 3677 MVT::i1, MachineNode->getOperand(0), 3678 MachineNode->getOperand(1)); 3679 SelectSwap = true; 3680 } 3681 break; 3682 case PPC::CROR: 3683 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3684 // x | x = x 3685 ResNode = MachineNode->getOperand(0).getNode(); 3686 else if (Op1Set || Op2Set) 3687 // x | 1 = 1 | y = 1 3688 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3689 MVT::i1); 3690 else if (Op1Unset) 3691 // 0 | y = y 3692 ResNode = MachineNode->getOperand(1).getNode(); 3693 else if (Op2Unset) 3694 // x | 0 = x 3695 ResNode = MachineNode->getOperand(0).getNode(); 3696 else if (Op1Not) 3697 // ~x | y = orc(y, x) 3698 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3699 MVT::i1, MachineNode->getOperand(1), 3700 MachineNode->getOperand(0). 3701 getOperand(0)); 3702 else if (Op2Not) 3703 // x | ~y = orc(x, y) 3704 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3705 MVT::i1, MachineNode->getOperand(0), 3706 MachineNode->getOperand(1). 3707 getOperand(0)); 3708 else if (AllUsersSelectZero(MachineNode)) { 3709 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3710 MVT::i1, MachineNode->getOperand(0), 3711 MachineNode->getOperand(1)); 3712 SelectSwap = true; 3713 } 3714 break; 3715 case PPC::CRXOR: 3716 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3717 // xor(x, x) = 0 3718 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3719 MVT::i1); 3720 else if (Op1Set) 3721 // xor(1, y) -> nor(y, y) 3722 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3723 MVT::i1, MachineNode->getOperand(1), 3724 MachineNode->getOperand(1)); 3725 else if (Op2Set) 3726 // xor(x, 1) -> nor(x, x) 3727 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3728 MVT::i1, MachineNode->getOperand(0), 3729 MachineNode->getOperand(0)); 3730 else if (Op1Unset) 3731 // xor(0, y) = y 3732 ResNode = MachineNode->getOperand(1).getNode(); 3733 else if (Op2Unset) 3734 // xor(x, 0) = x 3735 ResNode = MachineNode->getOperand(0).getNode(); 3736 else if (Op1Not) 3737 // xor(~x, y) = eqv(x, y) 3738 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3739 MVT::i1, MachineNode->getOperand(0). 3740 getOperand(0), 3741 MachineNode->getOperand(1)); 3742 else if (Op2Not) 3743 // xor(x, ~y) = eqv(x, y) 3744 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3745 MVT::i1, MachineNode->getOperand(0), 3746 MachineNode->getOperand(1). 3747 getOperand(0)); 3748 else if (AllUsersSelectZero(MachineNode)) { 3749 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3750 MVT::i1, MachineNode->getOperand(0), 3751 MachineNode->getOperand(1)); 3752 SelectSwap = true; 3753 } 3754 break; 3755 case PPC::CRNOR: 3756 if (Op1Set || Op2Set) 3757 // nor(1, y) -> 0 3758 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3759 MVT::i1); 3760 else if (Op1Unset) 3761 // nor(0, y) = ~y -> nor(y, y) 3762 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3763 MVT::i1, MachineNode->getOperand(1), 3764 MachineNode->getOperand(1)); 3765 else if (Op2Unset) 3766 // nor(x, 0) = ~x 3767 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3768 MVT::i1, MachineNode->getOperand(0), 3769 MachineNode->getOperand(0)); 3770 else if (Op1Not) 3771 // nor(~x, y) = andc(x, y) 3772 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3773 MVT::i1, MachineNode->getOperand(0). 3774 getOperand(0), 3775 MachineNode->getOperand(1)); 3776 else if (Op2Not) 3777 // nor(x, ~y) = andc(y, x) 3778 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3779 MVT::i1, MachineNode->getOperand(1). 3780 getOperand(0), 3781 MachineNode->getOperand(0)); 3782 else if (AllUsersSelectZero(MachineNode)) { 3783 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 3784 MVT::i1, MachineNode->getOperand(0), 3785 MachineNode->getOperand(1)); 3786 SelectSwap = true; 3787 } 3788 break; 3789 case PPC::CREQV: 3790 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3791 // eqv(x, x) = 1 3792 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3793 MVT::i1); 3794 else if (Op1Set) 3795 // eqv(1, y) = y 3796 ResNode = MachineNode->getOperand(1).getNode(); 3797 else if (Op2Set) 3798 // eqv(x, 1) = x 3799 ResNode = MachineNode->getOperand(0).getNode(); 3800 else if (Op1Unset) 3801 // eqv(0, y) = ~y -> nor(y, y) 3802 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3803 MVT::i1, MachineNode->getOperand(1), 3804 MachineNode->getOperand(1)); 3805 else if (Op2Unset) 3806 // eqv(x, 0) = ~x 3807 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3808 MVT::i1, MachineNode->getOperand(0), 3809 MachineNode->getOperand(0)); 3810 else if (Op1Not) 3811 // eqv(~x, y) = xor(x, y) 3812 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3813 MVT::i1, MachineNode->getOperand(0). 3814 getOperand(0), 3815 MachineNode->getOperand(1)); 3816 else if (Op2Not) 3817 // eqv(x, ~y) = xor(x, y) 3818 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3819 MVT::i1, MachineNode->getOperand(0), 3820 MachineNode->getOperand(1). 3821 getOperand(0)); 3822 else if (AllUsersSelectZero(MachineNode)) { 3823 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3824 MVT::i1, MachineNode->getOperand(0), 3825 MachineNode->getOperand(1)); 3826 SelectSwap = true; 3827 } 3828 break; 3829 case PPC::CRANDC: 3830 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3831 // andc(x, x) = 0 3832 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3833 MVT::i1); 3834 else if (Op1Set) 3835 // andc(1, y) = ~y 3836 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3837 MVT::i1, MachineNode->getOperand(1), 3838 MachineNode->getOperand(1)); 3839 else if (Op1Unset || Op2Set) 3840 // andc(0, y) = andc(x, 1) = 0 3841 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3842 MVT::i1); 3843 else if (Op2Unset) 3844 // andc(x, 0) = x 3845 ResNode = MachineNode->getOperand(0).getNode(); 3846 else if (Op1Not) 3847 // andc(~x, y) = ~(x | y) = nor(x, y) 3848 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3849 MVT::i1, MachineNode->getOperand(0). 3850 getOperand(0), 3851 MachineNode->getOperand(1)); 3852 else if (Op2Not) 3853 // andc(x, ~y) = x & y 3854 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 3855 MVT::i1, MachineNode->getOperand(0), 3856 MachineNode->getOperand(1). 3857 getOperand(0)); 3858 else if (AllUsersSelectZero(MachineNode)) { 3859 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3860 MVT::i1, MachineNode->getOperand(1), 3861 MachineNode->getOperand(0)); 3862 SelectSwap = true; 3863 } 3864 break; 3865 case PPC::CRORC: 3866 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3867 // orc(x, x) = 1 3868 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3869 MVT::i1); 3870 else if (Op1Set || Op2Unset) 3871 // orc(1, y) = orc(x, 0) = 1 3872 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3873 MVT::i1); 3874 else if (Op2Set) 3875 // orc(x, 1) = x 3876 ResNode = MachineNode->getOperand(0).getNode(); 3877 else if (Op1Unset) 3878 // orc(0, y) = ~y 3879 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3880 MVT::i1, MachineNode->getOperand(1), 3881 MachineNode->getOperand(1)); 3882 else if (Op1Not) 3883 // orc(~x, y) = ~(x & y) = nand(x, y) 3884 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 3885 MVT::i1, MachineNode->getOperand(0). 3886 getOperand(0), 3887 MachineNode->getOperand(1)); 3888 else if (Op2Not) 3889 // orc(x, ~y) = x | y 3890 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 3891 MVT::i1, MachineNode->getOperand(0), 3892 MachineNode->getOperand(1). 3893 getOperand(0)); 3894 else if (AllUsersSelectZero(MachineNode)) { 3895 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3896 MVT::i1, MachineNode->getOperand(1), 3897 MachineNode->getOperand(0)); 3898 SelectSwap = true; 3899 } 3900 break; 3901 case PPC::SELECT_I4: 3902 case PPC::SELECT_I8: 3903 case PPC::SELECT_F4: 3904 case PPC::SELECT_F8: 3905 case PPC::SELECT_QFRC: 3906 case PPC::SELECT_QSRC: 3907 case PPC::SELECT_QBRC: 3908 case PPC::SELECT_VRRC: 3909 case PPC::SELECT_VSFRC: 3910 case PPC::SELECT_VSSRC: 3911 case PPC::SELECT_VSRC: 3912 if (Op1Set) 3913 ResNode = MachineNode->getOperand(1).getNode(); 3914 else if (Op1Unset) 3915 ResNode = MachineNode->getOperand(2).getNode(); 3916 else if (Op1Not) 3917 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 3918 SDLoc(MachineNode), 3919 MachineNode->getValueType(0), 3920 MachineNode->getOperand(0). 3921 getOperand(0), 3922 MachineNode->getOperand(2), 3923 MachineNode->getOperand(1)); 3924 break; 3925 case PPC::BC: 3926 case PPC::BCn: 3927 if (Op1Not) 3928 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 3929 PPC::BC, 3930 SDLoc(MachineNode), 3931 MVT::Other, 3932 MachineNode->getOperand(0). 3933 getOperand(0), 3934 MachineNode->getOperand(1), 3935 MachineNode->getOperand(2)); 3936 // FIXME: Handle Op1Set, Op1Unset here too. 3937 break; 3938 } 3939 3940 // If we're inverting this node because it is used only by selects that 3941 // we'd like to swap, then swap the selects before the node replacement. 3942 if (SelectSwap) 3943 SwapAllSelectUsers(MachineNode); 3944 3945 if (ResNode != MachineNode) { 3946 DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 3947 DEBUG(MachineNode->dump(CurDAG)); 3948 DEBUG(dbgs() << "\nNew: "); 3949 DEBUG(ResNode->dump(CurDAG)); 3950 DEBUG(dbgs() << "\n"); 3951 3952 ReplaceUses(MachineNode, ResNode); 3953 IsModified = true; 3954 } 3955 } 3956 if (IsModified) 3957 CurDAG->RemoveDeadNodes(); 3958 } while (IsModified); 3959 } 3960 3961 // Gather the set of 32-bit operations that are known to have their 3962 // higher-order 32 bits zero, where ToPromote contains all such operations. 3963 static bool PeepholePPC64ZExtGather(SDValue Op32, 3964 SmallPtrSetImpl<SDNode *> &ToPromote) { 3965 if (!Op32.isMachineOpcode()) 3966 return false; 3967 3968 // First, check for the "frontier" instructions (those that will clear the 3969 // higher-order 32 bits. 3970 3971 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 3972 // around. If it does not, then these instructions will clear the 3973 // higher-order bits. 3974 if ((Op32.getMachineOpcode() == PPC::RLWINM || 3975 Op32.getMachineOpcode() == PPC::RLWNM) && 3976 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 3977 ToPromote.insert(Op32.getNode()); 3978 return true; 3979 } 3980 3981 // SLW and SRW always clear the higher-order bits. 3982 if (Op32.getMachineOpcode() == PPC::SLW || 3983 Op32.getMachineOpcode() == PPC::SRW) { 3984 ToPromote.insert(Op32.getNode()); 3985 return true; 3986 } 3987 3988 // For LI and LIS, we need the immediate to be positive (so that it is not 3989 // sign extended). 3990 if (Op32.getMachineOpcode() == PPC::LI || 3991 Op32.getMachineOpcode() == PPC::LIS) { 3992 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 3993 return false; 3994 3995 ToPromote.insert(Op32.getNode()); 3996 return true; 3997 } 3998 3999 // LHBRX and LWBRX always clear the higher-order bits. 4000 if (Op32.getMachineOpcode() == PPC::LHBRX || 4001 Op32.getMachineOpcode() == PPC::LWBRX) { 4002 ToPromote.insert(Op32.getNode()); 4003 return true; 4004 } 4005 4006 // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended. 4007 if (Op32.getMachineOpcode() == PPC::CNTLZW) { 4008 ToPromote.insert(Op32.getNode()); 4009 return true; 4010 } 4011 4012 // Next, check for those instructions we can look through. 4013 4014 // Assuming the mask does not wrap around, then the higher-order bits are 4015 // taken directly from the first operand. 4016 if (Op32.getMachineOpcode() == PPC::RLWIMI && 4017 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 4018 SmallPtrSet<SDNode *, 16> ToPromote1; 4019 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 4020 return false; 4021 4022 ToPromote.insert(Op32.getNode()); 4023 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 4024 return true; 4025 } 4026 4027 // For OR, the higher-order bits are zero if that is true for both operands. 4028 // For SELECT_I4, the same is true (but the relevant operand numbers are 4029 // shifted by 1). 4030 if (Op32.getMachineOpcode() == PPC::OR || 4031 Op32.getMachineOpcode() == PPC::SELECT_I4) { 4032 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 4033 SmallPtrSet<SDNode *, 16> ToPromote1; 4034 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 4035 return false; 4036 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 4037 return false; 4038 4039 ToPromote.insert(Op32.getNode()); 4040 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 4041 return true; 4042 } 4043 4044 // For ORI and ORIS, we need the higher-order bits of the first operand to be 4045 // zero, and also for the constant to be positive (so that it is not sign 4046 // extended). 4047 if (Op32.getMachineOpcode() == PPC::ORI || 4048 Op32.getMachineOpcode() == PPC::ORIS) { 4049 SmallPtrSet<SDNode *, 16> ToPromote1; 4050 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 4051 return false; 4052 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 4053 return false; 4054 4055 ToPromote.insert(Op32.getNode()); 4056 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 4057 return true; 4058 } 4059 4060 // The higher-order bits of AND are zero if that is true for at least one of 4061 // the operands. 4062 if (Op32.getMachineOpcode() == PPC::AND) { 4063 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 4064 bool Op0OK = 4065 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 4066 bool Op1OK = 4067 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 4068 if (!Op0OK && !Op1OK) 4069 return false; 4070 4071 ToPromote.insert(Op32.getNode()); 4072 4073 if (Op0OK) 4074 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 4075 4076 if (Op1OK) 4077 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 4078 4079 return true; 4080 } 4081 4082 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 4083 // of the first operand, or if the second operand is positive (so that it is 4084 // not sign extended). 4085 if (Op32.getMachineOpcode() == PPC::ANDIo || 4086 Op32.getMachineOpcode() == PPC::ANDISo) { 4087 SmallPtrSet<SDNode *, 16> ToPromote1; 4088 bool Op0OK = 4089 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 4090 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 4091 if (!Op0OK && !Op1OK) 4092 return false; 4093 4094 ToPromote.insert(Op32.getNode()); 4095 4096 if (Op0OK) 4097 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 4098 4099 return true; 4100 } 4101 4102 return false; 4103 } 4104 4105 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 4106 if (!PPCSubTarget->isPPC64()) 4107 return; 4108 4109 // When we zero-extend from i32 to i64, we use a pattern like this: 4110 // def : Pat<(i64 (zext i32:$in)), 4111 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 4112 // 0, 32)>; 4113 // There are several 32-bit shift/rotate instructions, however, that will 4114 // clear the higher-order bits of their output, rendering the RLDICL 4115 // unnecessary. When that happens, we remove it here, and redefine the 4116 // relevant 32-bit operation to be a 64-bit operation. 4117 4118 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 4119 ++Position; 4120 4121 bool MadeChange = false; 4122 while (Position != CurDAG->allnodes_begin()) { 4123 SDNode *N = &*--Position; 4124 // Skip dead nodes and any non-machine opcodes. 4125 if (N->use_empty() || !N->isMachineOpcode()) 4126 continue; 4127 4128 if (N->getMachineOpcode() != PPC::RLDICL) 4129 continue; 4130 4131 if (N->getConstantOperandVal(1) != 0 || 4132 N->getConstantOperandVal(2) != 32) 4133 continue; 4134 4135 SDValue ISR = N->getOperand(0); 4136 if (!ISR.isMachineOpcode() || 4137 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 4138 continue; 4139 4140 if (!ISR.hasOneUse()) 4141 continue; 4142 4143 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 4144 continue; 4145 4146 SDValue IDef = ISR.getOperand(0); 4147 if (!IDef.isMachineOpcode() || 4148 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 4149 continue; 4150 4151 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 4152 // can get rid of it. 4153 4154 SDValue Op32 = ISR->getOperand(1); 4155 if (!Op32.isMachineOpcode()) 4156 continue; 4157 4158 // There are some 32-bit instructions that always clear the high-order 32 4159 // bits, there are also some instructions (like AND) that we can look 4160 // through. 4161 SmallPtrSet<SDNode *, 16> ToPromote; 4162 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 4163 continue; 4164 4165 // If the ToPromote set contains nodes that have uses outside of the set 4166 // (except for the original INSERT_SUBREG), then abort the transformation. 4167 bool OutsideUse = false; 4168 for (SDNode *PN : ToPromote) { 4169 for (SDNode *UN : PN->uses()) { 4170 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 4171 OutsideUse = true; 4172 break; 4173 } 4174 } 4175 4176 if (OutsideUse) 4177 break; 4178 } 4179 if (OutsideUse) 4180 continue; 4181 4182 MadeChange = true; 4183 4184 // We now know that this zero extension can be removed by promoting to 4185 // nodes in ToPromote to 64-bit operations, where for operations in the 4186 // frontier of the set, we need to insert INSERT_SUBREGs for their 4187 // operands. 4188 for (SDNode *PN : ToPromote) { 4189 unsigned NewOpcode; 4190 switch (PN->getMachineOpcode()) { 4191 default: 4192 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 4193 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 4194 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 4195 case PPC::SLW: NewOpcode = PPC::SLW8; break; 4196 case PPC::SRW: NewOpcode = PPC::SRW8; break; 4197 case PPC::LI: NewOpcode = PPC::LI8; break; 4198 case PPC::LIS: NewOpcode = PPC::LIS8; break; 4199 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 4200 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 4201 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 4202 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 4203 case PPC::OR: NewOpcode = PPC::OR8; break; 4204 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 4205 case PPC::ORI: NewOpcode = PPC::ORI8; break; 4206 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 4207 case PPC::AND: NewOpcode = PPC::AND8; break; 4208 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break; 4209 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break; 4210 } 4211 4212 // Note: During the replacement process, the nodes will be in an 4213 // inconsistent state (some instructions will have operands with values 4214 // of the wrong type). Once done, however, everything should be right 4215 // again. 4216 4217 SmallVector<SDValue, 4> Ops; 4218 for (const SDValue &V : PN->ops()) { 4219 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 4220 !isa<ConstantSDNode>(V)) { 4221 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 4222 SDNode *ReplOp = 4223 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 4224 ISR.getNode()->getVTList(), ReplOpOps); 4225 Ops.push_back(SDValue(ReplOp, 0)); 4226 } else { 4227 Ops.push_back(V); 4228 } 4229 } 4230 4231 // Because all to-be-promoted nodes only have users that are other 4232 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 4233 // the i32 result value type with i64. 4234 4235 SmallVector<EVT, 2> NewVTs; 4236 SDVTList VTs = PN->getVTList(); 4237 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 4238 if (VTs.VTs[i] == MVT::i32) 4239 NewVTs.push_back(MVT::i64); 4240 else 4241 NewVTs.push_back(VTs.VTs[i]); 4242 4243 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 4244 DEBUG(PN->dump(CurDAG)); 4245 4246 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 4247 4248 DEBUG(dbgs() << "\nNew: "); 4249 DEBUG(PN->dump(CurDAG)); 4250 DEBUG(dbgs() << "\n"); 4251 } 4252 4253 // Now we replace the original zero extend and its associated INSERT_SUBREG 4254 // with the value feeding the INSERT_SUBREG (which has now been promoted to 4255 // return an i64). 4256 4257 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 4258 DEBUG(N->dump(CurDAG)); 4259 DEBUG(dbgs() << "\nNew: "); 4260 DEBUG(Op32.getNode()->dump(CurDAG)); 4261 DEBUG(dbgs() << "\n"); 4262 4263 ReplaceUses(N, Op32.getNode()); 4264 } 4265 4266 if (MadeChange) 4267 CurDAG->RemoveDeadNodes(); 4268 } 4269 4270 void PPCDAGToDAGISel::PeepholePPC64() { 4271 // These optimizations are currently supported only for 64-bit SVR4. 4272 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) 4273 return; 4274 4275 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 4276 ++Position; 4277 4278 while (Position != CurDAG->allnodes_begin()) { 4279 SDNode *N = &*--Position; 4280 // Skip dead nodes and any non-machine opcodes. 4281 if (N->use_empty() || !N->isMachineOpcode()) 4282 continue; 4283 4284 unsigned FirstOp; 4285 unsigned StorageOpcode = N->getMachineOpcode(); 4286 4287 switch (StorageOpcode) { 4288 default: continue; 4289 4290 case PPC::LBZ: 4291 case PPC::LBZ8: 4292 case PPC::LD: 4293 case PPC::LFD: 4294 case PPC::LFS: 4295 case PPC::LHA: 4296 case PPC::LHA8: 4297 case PPC::LHZ: 4298 case PPC::LHZ8: 4299 case PPC::LWA: 4300 case PPC::LWZ: 4301 case PPC::LWZ8: 4302 FirstOp = 0; 4303 break; 4304 4305 case PPC::STB: 4306 case PPC::STB8: 4307 case PPC::STD: 4308 case PPC::STFD: 4309 case PPC::STFS: 4310 case PPC::STH: 4311 case PPC::STH8: 4312 case PPC::STW: 4313 case PPC::STW8: 4314 FirstOp = 1; 4315 break; 4316 } 4317 4318 // If this is a load or store with a zero offset, or within the alignment, 4319 // we may be able to fold an add-immediate into the memory operation. 4320 // The check against alignment is below, as it can't occur until we check 4321 // the arguments to N 4322 if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) 4323 continue; 4324 4325 SDValue Base = N->getOperand(FirstOp + 1); 4326 if (!Base.isMachineOpcode()) 4327 continue; 4328 4329 unsigned Flags = 0; 4330 bool ReplaceFlags = true; 4331 4332 // When the feeding operation is an add-immediate of some sort, 4333 // determine whether we need to add relocation information to the 4334 // target flags on the immediate operand when we fold it into the 4335 // load instruction. 4336 // 4337 // For something like ADDItocL, the relocation information is 4338 // inferred from the opcode; when we process it in the AsmPrinter, 4339 // we add the necessary relocation there. A load, though, can receive 4340 // relocation from various flavors of ADDIxxx, so we need to carry 4341 // the relocation information in the target flags. 4342 switch (Base.getMachineOpcode()) { 4343 default: continue; 4344 4345 case PPC::ADDI8: 4346 case PPC::ADDI: 4347 // In some cases (such as TLS) the relocation information 4348 // is already in place on the operand, so copying the operand 4349 // is sufficient. 4350 ReplaceFlags = false; 4351 // For these cases, the immediate may not be divisible by 4, in 4352 // which case the fold is illegal for DS-form instructions. (The 4353 // other cases provide aligned addresses and are always safe.) 4354 if ((StorageOpcode == PPC::LWA || 4355 StorageOpcode == PPC::LD || 4356 StorageOpcode == PPC::STD) && 4357 (!isa<ConstantSDNode>(Base.getOperand(1)) || 4358 Base.getConstantOperandVal(1) % 4 != 0)) 4359 continue; 4360 break; 4361 case PPC::ADDIdtprelL: 4362 Flags = PPCII::MO_DTPREL_LO; 4363 break; 4364 case PPC::ADDItlsldL: 4365 Flags = PPCII::MO_TLSLD_LO; 4366 break; 4367 case PPC::ADDItocL: 4368 Flags = PPCII::MO_TOC_LO; 4369 break; 4370 } 4371 4372 SDValue ImmOpnd = Base.getOperand(1); 4373 4374 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have 4375 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, 4376 // we might have needed different @ha relocation values for the offset 4377 // pointers). 4378 int MaxDisplacement = 7; 4379 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 4380 const GlobalValue *GV = GA->getGlobal(); 4381 MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement); 4382 } 4383 4384 bool UpdateHBase = false; 4385 SDValue HBase = Base.getOperand(0); 4386 4387 int Offset = N->getConstantOperandVal(FirstOp); 4388 if (ReplaceFlags) { 4389 if (Offset < 0 || Offset > MaxDisplacement) { 4390 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only 4391 // one use, then we can do this for any offset, we just need to also 4392 // update the offset (i.e. the symbol addend) on the addis also. 4393 if (Base.getMachineOpcode() != PPC::ADDItocL) 4394 continue; 4395 4396 if (!HBase.isMachineOpcode() || 4397 HBase.getMachineOpcode() != PPC::ADDIStocHA) 4398 continue; 4399 4400 if (!Base.hasOneUse() || !HBase.hasOneUse()) 4401 continue; 4402 4403 SDValue HImmOpnd = HBase.getOperand(1); 4404 if (HImmOpnd != ImmOpnd) 4405 continue; 4406 4407 UpdateHBase = true; 4408 } 4409 } else { 4410 // If we're directly folding the addend from an addi instruction, then: 4411 // 1. In general, the offset on the memory access must be zero. 4412 // 2. If the addend is a constant, then it can be combined with a 4413 // non-zero offset, but only if the result meets the encoding 4414 // requirements. 4415 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { 4416 Offset += C->getSExtValue(); 4417 4418 if ((StorageOpcode == PPC::LWA || StorageOpcode == PPC::LD || 4419 StorageOpcode == PPC::STD) && (Offset % 4) != 0) 4420 continue; 4421 4422 if (!isInt<16>(Offset)) 4423 continue; 4424 4425 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), 4426 ImmOpnd.getValueType()); 4427 } else if (Offset != 0) { 4428 continue; 4429 } 4430 } 4431 4432 // We found an opportunity. Reverse the operands from the add 4433 // immediate and substitute them into the load or store. If 4434 // needed, update the target flags for the immediate operand to 4435 // reflect the necessary relocation information. 4436 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 4437 DEBUG(Base->dump(CurDAG)); 4438 DEBUG(dbgs() << "\nN: "); 4439 DEBUG(N->dump(CurDAG)); 4440 DEBUG(dbgs() << "\n"); 4441 4442 // If the relocation information isn't already present on the 4443 // immediate operand, add it now. 4444 if (ReplaceFlags) { 4445 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 4446 SDLoc dl(GA); 4447 const GlobalValue *GV = GA->getGlobal(); 4448 // We can't perform this optimization for data whose alignment 4449 // is insufficient for the instruction encoding. 4450 if (GV->getAlignment() < 4 && 4451 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || 4452 StorageOpcode == PPC::LWA || (Offset % 4) != 0)) { 4453 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 4454 continue; 4455 } 4456 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); 4457 } else if (ConstantPoolSDNode *CP = 4458 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 4459 const Constant *C = CP->getConstVal(); 4460 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, 4461 CP->getAlignment(), 4462 Offset, Flags); 4463 } 4464 } 4465 4466 if (FirstOp == 1) // Store 4467 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 4468 Base.getOperand(0), N->getOperand(3)); 4469 else // Load 4470 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 4471 N->getOperand(2)); 4472 4473 if (UpdateHBase) 4474 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), 4475 ImmOpnd); 4476 4477 // The add-immediate may now be dead, in which case remove it. 4478 if (Base.getNode()->use_empty()) 4479 CurDAG->RemoveDeadNode(Base.getNode()); 4480 } 4481 } 4482 4483 4484 /// createPPCISelDag - This pass converts a legalized DAG into a 4485 /// PowerPC-specific DAG, ready for instruction scheduling. 4486 /// 4487 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { 4488 return new PPCDAGToDAGISel(TM); 4489 } 4490