1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PPC.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/CodeGen/FunctionLoweringInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "ppc-codegen"
42 
43 // FIXME: Remove this once the bug has been fixed!
44 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
45 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
46 
47 static cl::opt<bool>
48     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
49                        cl::desc("use aggressive ppc isel for bit permutations"),
50                        cl::Hidden);
51 static cl::opt<bool> BPermRewriterNoMasking(
52     "ppc-bit-perm-rewriter-stress-rotates",
53     cl::desc("stress rotate selection in aggressive ppc isel for "
54              "bit permutations"),
55     cl::Hidden);
56 
57 static cl::opt<bool> EnableBranchHint(
58   "ppc-use-branch-hint", cl::init(true),
59     cl::desc("Enable static hinting of branches on ppc"),
60     cl::Hidden);
61 
62 namespace {
63   //===--------------------------------------------------------------------===//
64   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
65   /// instructions for SelectionDAG operations.
66   ///
67   class PPCDAGToDAGISel : public SelectionDAGISel {
68     const PPCTargetMachine &TM;
69     const PPCSubtarget *PPCSubTarget;
70     const PPCTargetLowering *PPCLowering;
71     unsigned GlobalBaseReg;
72   public:
73     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
74         : SelectionDAGISel(tm), TM(tm) {}
75 
76     bool runOnMachineFunction(MachineFunction &MF) override {
77       // Make sure we re-emit a set of the global base reg if necessary
78       GlobalBaseReg = 0;
79       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
80       PPCLowering = PPCSubTarget->getTargetLowering();
81       SelectionDAGISel::runOnMachineFunction(MF);
82 
83       if (!PPCSubTarget->isSVR4ABI())
84         InsertVRSaveCode(MF);
85 
86       return true;
87     }
88 
89     void PreprocessISelDAG() override;
90     void PostprocessISelDAG() override;
91 
92     /// getI32Imm - Return a target constant with the specified value, of type
93     /// i32.
94     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
95       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
96     }
97 
98     /// getI64Imm - Return a target constant with the specified value, of type
99     /// i64.
100     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
101       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
102     }
103 
104     /// getSmallIPtrImm - Return a target constant of pointer type.
105     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
106       return CurDAG->getTargetConstant(
107           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
108     }
109 
110     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
111     /// rotate and mask opcode and mask operation.
112     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
113                                 unsigned &SH, unsigned &MB, unsigned &ME);
114 
115     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
116     /// base register.  Return the virtual register that holds this value.
117     SDNode *getGlobalBaseReg();
118 
119     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
120 
121     // Select - Convert the specified operand from a target-independent to a
122     // target-specific node if it hasn't already been changed.
123     void Select(SDNode *N) override;
124 
125     bool tryBitfieldInsert(SDNode *N);
126     bool tryBitPermutation(SDNode *N);
127 
128     /// SelectCC - Select a comparison of the specified values with the
129     /// specified condition code, returning the CR# of the expression.
130     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
131                      const SDLoc &dl);
132 
133     /// SelectAddrImm - Returns true if the address N can be represented by
134     /// a base register plus a signed 16-bit displacement [r+imm].
135     bool SelectAddrImm(SDValue N, SDValue &Disp,
136                        SDValue &Base) {
137       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
138     }
139 
140     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
141     /// immediate field.  Note that the operand at this point is already the
142     /// result of a prior SelectAddressRegImm call.
143     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
144       if (N.getOpcode() == ISD::TargetConstant ||
145           N.getOpcode() == ISD::TargetGlobalAddress) {
146         Out = N;
147         return true;
148       }
149 
150       return false;
151     }
152 
153     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
154     /// represented as an indexed [r+r] operation.  Returns false if it can
155     /// be represented by [r+imm], which are preferred.
156     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
157       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
158     }
159 
160     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
161     /// represented as an indexed [r+r] operation.
162     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
163       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
164     }
165 
166     /// SelectAddrImmX4 - Returns true if the address N can be represented by
167     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
168     /// Suitable for use by STD and friends.
169     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
170       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
171     }
172 
173     // Select an address into a single register.
174     bool SelectAddr(SDValue N, SDValue &Base) {
175       Base = N;
176       return true;
177     }
178 
179     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
180     /// inline asm expressions.  It is always correct to compute the value into
181     /// a register.  The case of adding a (possibly relocatable) constant to a
182     /// register can be improved, but it is wrong to substitute Reg+Reg for
183     /// Reg in an asm, because the load or store opcode would have to change.
184     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
185                                       unsigned ConstraintID,
186                                       std::vector<SDValue> &OutOps) override {
187 
188       switch(ConstraintID) {
189       default:
190         errs() << "ConstraintID: " << ConstraintID << "\n";
191         llvm_unreachable("Unexpected asm memory constraint");
192       case InlineAsm::Constraint_es:
193       case InlineAsm::Constraint_i:
194       case InlineAsm::Constraint_m:
195       case InlineAsm::Constraint_o:
196       case InlineAsm::Constraint_Q:
197       case InlineAsm::Constraint_Z:
198       case InlineAsm::Constraint_Zy:
199         // We need to make sure that this one operand does not end up in r0
200         // (because we might end up lowering this as 0(%op)).
201         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
202         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
203         SDLoc dl(Op);
204         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
205         SDValue NewOp =
206           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
207                                          dl, Op.getValueType(),
208                                          Op, RC), 0);
209 
210         OutOps.push_back(NewOp);
211         return false;
212       }
213       return true;
214     }
215 
216     void InsertVRSaveCode(MachineFunction &MF);
217 
218     StringRef getPassName() const override {
219       return "PowerPC DAG->DAG Pattern Instruction Selection";
220     }
221 
222 // Include the pieces autogenerated from the target description.
223 #include "PPCGenDAGISel.inc"
224 
225 private:
226     bool trySETCC(SDNode *N);
227 
228     void PeepholePPC64();
229     void PeepholePPC64ZExt();
230     void PeepholeCROps();
231 
232     SDValue combineToCMPB(SDNode *N);
233     void foldBoolExts(SDValue &Res, SDNode *&N);
234 
235     bool AllUsersSelectZero(SDNode *N);
236     void SwapAllSelectUsers(SDNode *N);
237 
238     void transferMemOperands(SDNode *N, SDNode *Result);
239   };
240 }
241 
242 /// InsertVRSaveCode - Once the entire function has been instruction selected,
243 /// all virtual registers are created and all machine instructions are built,
244 /// check to see if we need to save/restore VRSAVE.  If so, do it.
245 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
246   // Check to see if this function uses vector registers, which means we have to
247   // save and restore the VRSAVE register and update it with the regs we use.
248   //
249   // In this case, there will be virtual registers of vector type created
250   // by the scheduler.  Detect them now.
251   bool HasVectorVReg = false;
252   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
253     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
254     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
255       HasVectorVReg = true;
256       break;
257     }
258   }
259   if (!HasVectorVReg) return;  // nothing to do.
260 
261   // If we have a vector register, we want to emit code into the entry and exit
262   // blocks to save and restore the VRSAVE register.  We do this here (instead
263   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
264   //
265   // 1. This (trivially) reduces the load on the register allocator, by not
266   //    having to represent the live range of the VRSAVE register.
267   // 2. This (more significantly) allows us to create a temporary virtual
268   //    register to hold the saved VRSAVE value, allowing this temporary to be
269   //    register allocated, instead of forcing it to be spilled to the stack.
270 
271   // Create two vregs - one to hold the VRSAVE register that is live-in to the
272   // function and one for the value after having bits or'd into it.
273   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
274   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
275 
276   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
277   MachineBasicBlock &EntryBB = *Fn.begin();
278   DebugLoc dl;
279   // Emit the following code into the entry block:
280   // InVRSAVE = MFVRSAVE
281   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
282   // MTVRSAVE UpdatedVRSAVE
283   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
284   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
285   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
286           UpdatedVRSAVE).addReg(InVRSAVE);
287   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
288 
289   // Find all return blocks, outputting a restore in each epilog.
290   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
291     if (BB->isReturnBlock()) {
292       IP = BB->end(); --IP;
293 
294       // Skip over all terminator instructions, which are part of the return
295       // sequence.
296       MachineBasicBlock::iterator I2 = IP;
297       while (I2 != BB->begin() && (--I2)->isTerminator())
298         IP = I2;
299 
300       // Emit: MTVRSAVE InVRSave
301       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
302     }
303   }
304 }
305 
306 
307 /// getGlobalBaseReg - Output the instructions required to put the
308 /// base address to use for accessing globals into a register.
309 ///
310 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
311   if (!GlobalBaseReg) {
312     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
313     // Insert the set of GlobalBaseReg into the first MBB of the function
314     MachineBasicBlock &FirstMBB = MF->front();
315     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
316     const Module *M = MF->getFunction()->getParent();
317     DebugLoc dl;
318 
319     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
320       if (PPCSubTarget->isTargetELF()) {
321         GlobalBaseReg = PPC::R30;
322         if (M->getPICLevel() == PICLevel::SmallPIC) {
323           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
324           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
325           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
326         } else {
327           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
328           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
329           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
330           BuildMI(FirstMBB, MBBI, dl,
331                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
332                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
333           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
334         }
335       } else {
336         GlobalBaseReg =
337           RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
338         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
339         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
340       }
341     } else {
342       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
343       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
344       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
345     }
346   }
347   return CurDAG->getRegister(GlobalBaseReg,
348                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
349       .getNode();
350 }
351 
352 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
353 /// or 64-bit immediate, and if the value can be accurately represented as a
354 /// sign extension from a 16-bit value.  If so, this returns true and the
355 /// immediate.
356 static bool isIntS16Immediate(SDNode *N, short &Imm) {
357   if (N->getOpcode() != ISD::Constant)
358     return false;
359 
360   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
361   if (N->getValueType(0) == MVT::i32)
362     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
363   else
364     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
365 }
366 
367 static bool isIntS16Immediate(SDValue Op, short &Imm) {
368   return isIntS16Immediate(Op.getNode(), Imm);
369 }
370 
371 
372 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
373 /// operand. If so Imm will receive the 32-bit value.
374 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
375   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
376     Imm = cast<ConstantSDNode>(N)->getZExtValue();
377     return true;
378   }
379   return false;
380 }
381 
382 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
383 /// operand.  If so Imm will receive the 64-bit value.
384 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
385   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
386     Imm = cast<ConstantSDNode>(N)->getZExtValue();
387     return true;
388   }
389   return false;
390 }
391 
392 // isInt32Immediate - This method tests to see if a constant operand.
393 // If so Imm will receive the 32 bit value.
394 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
395   return isInt32Immediate(N.getNode(), Imm);
396 }
397 
398 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
399                               const SDValue &DestMBB) {
400   assert(isa<BasicBlockSDNode>(DestMBB));
401 
402   if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
403 
404   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
405   const TerminatorInst *BBTerm = BB->getTerminator();
406 
407   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
408 
409   const BasicBlock *TBB = BBTerm->getSuccessor(0);
410   const BasicBlock *FBB = BBTerm->getSuccessor(1);
411 
412   auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
413   auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
414 
415   // We only want to handle cases which are easy to predict at static time, e.g.
416   // C++ throw statement, that is very likely not taken, or calling never
417   // returned function, e.g. stdlib exit(). So we set Threshold to filter
418   // unwanted cases.
419   //
420   // Below is LLVM branch weight table, we only want to handle case 1, 2
421   //
422   // Case                  Taken:Nontaken  Example
423   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
424   // 2. Invoke-terminating 1:1048575
425   // 3. Coldblock          4:64            __builtin_expect
426   // 4. Loop Branch        124:4           For loop
427   // 5. PH/ZH/FPH          20:12
428   const uint32_t Threshold = 10000;
429 
430   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
431     return PPC::BR_NO_HINT;
432 
433   DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
434                << BB->getName() << "'\n"
435                << " -> " << TBB->getName() << ": " << TProb << "\n"
436                << " -> " << FBB->getName() << ": " << FProb << "\n");
437 
438   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
439 
440   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
441   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
442   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
443     std::swap(TProb, FProb);
444 
445   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
446 }
447 
448 // isOpcWithIntImmediate - This method tests to see if the node is a specific
449 // opcode and that it has a immediate integer right operand.
450 // If so Imm will receive the 32 bit value.
451 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
452   return N->getOpcode() == Opc
453          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
454 }
455 
456 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
457   SDLoc dl(SN);
458   int FI = cast<FrameIndexSDNode>(N)->getIndex();
459   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
460   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
461   if (SN->hasOneUse())
462     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
463                          getSmallIPtrImm(Offset, dl));
464   else
465     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
466                                            getSmallIPtrImm(Offset, dl)));
467 }
468 
469 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
470                                       bool isShiftMask, unsigned &SH,
471                                       unsigned &MB, unsigned &ME) {
472   // Don't even go down this path for i64, since different logic will be
473   // necessary for rldicl/rldicr/rldimi.
474   if (N->getValueType(0) != MVT::i32)
475     return false;
476 
477   unsigned Shift  = 32;
478   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
479   unsigned Opcode = N->getOpcode();
480   if (N->getNumOperands() != 2 ||
481       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
482     return false;
483 
484   if (Opcode == ISD::SHL) {
485     // apply shift left to mask if it comes first
486     if (isShiftMask) Mask = Mask << Shift;
487     // determine which bits are made indeterminant by shift
488     Indeterminant = ~(0xFFFFFFFFu << Shift);
489   } else if (Opcode == ISD::SRL) {
490     // apply shift right to mask if it comes first
491     if (isShiftMask) Mask = Mask >> Shift;
492     // determine which bits are made indeterminant by shift
493     Indeterminant = ~(0xFFFFFFFFu >> Shift);
494     // adjust for the left rotate
495     Shift = 32 - Shift;
496   } else if (Opcode == ISD::ROTL) {
497     Indeterminant = 0;
498   } else {
499     return false;
500   }
501 
502   // if the mask doesn't intersect any Indeterminant bits
503   if (Mask && !(Mask & Indeterminant)) {
504     SH = Shift & 31;
505     // make sure the mask is still a mask (wrap arounds may not be)
506     return isRunOfOnes(Mask, MB, ME);
507   }
508   return false;
509 }
510 
511 /// Turn an or of two masked values into the rotate left word immediate then
512 /// mask insert (rlwimi) instruction.
513 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
514   SDValue Op0 = N->getOperand(0);
515   SDValue Op1 = N->getOperand(1);
516   SDLoc dl(N);
517 
518   APInt LKZ, LKO, RKZ, RKO;
519   CurDAG->computeKnownBits(Op0, LKZ, LKO);
520   CurDAG->computeKnownBits(Op1, RKZ, RKO);
521 
522   unsigned TargetMask = LKZ.getZExtValue();
523   unsigned InsertMask = RKZ.getZExtValue();
524 
525   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
526     unsigned Op0Opc = Op0.getOpcode();
527     unsigned Op1Opc = Op1.getOpcode();
528     unsigned Value, SH = 0;
529     TargetMask = ~TargetMask;
530     InsertMask = ~InsertMask;
531 
532     // If the LHS has a foldable shift and the RHS does not, then swap it to the
533     // RHS so that we can fold the shift into the insert.
534     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
535       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
536           Op0.getOperand(0).getOpcode() == ISD::SRL) {
537         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
538             Op1.getOperand(0).getOpcode() != ISD::SRL) {
539           std::swap(Op0, Op1);
540           std::swap(Op0Opc, Op1Opc);
541           std::swap(TargetMask, InsertMask);
542         }
543       }
544     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
545       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
546           Op1.getOperand(0).getOpcode() != ISD::SRL) {
547         std::swap(Op0, Op1);
548         std::swap(Op0Opc, Op1Opc);
549         std::swap(TargetMask, InsertMask);
550       }
551     }
552 
553     unsigned MB, ME;
554     if (isRunOfOnes(InsertMask, MB, ME)) {
555       SDValue Tmp1, Tmp2;
556 
557       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
558           isInt32Immediate(Op1.getOperand(1), Value)) {
559         Op1 = Op1.getOperand(0);
560         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
561       }
562       if (Op1Opc == ISD::AND) {
563        // The AND mask might not be a constant, and we need to make sure that
564        // if we're going to fold the masking with the insert, all bits not
565        // know to be zero in the mask are known to be one.
566         APInt MKZ, MKO;
567         CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
568         bool CanFoldMask = InsertMask == MKO.getZExtValue();
569 
570         unsigned SHOpc = Op1.getOperand(0).getOpcode();
571         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
572             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
573           // Note that Value must be in range here (less than 32) because
574           // otherwise there would not be any bits set in InsertMask.
575           Op1 = Op1.getOperand(0).getOperand(0);
576           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
577         }
578       }
579 
580       SH &= 31;
581       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
582                           getI32Imm(ME, dl) };
583       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
584       return true;
585     }
586   }
587   return false;
588 }
589 
590 // Predict the number of instructions that would be generated by calling
591 // getInt64(N).
592 static unsigned getInt64CountDirect(int64_t Imm) {
593   // Assume no remaining bits.
594   unsigned Remainder = 0;
595   // Assume no shift required.
596   unsigned Shift = 0;
597 
598   // If it can't be represented as a 32 bit value.
599   if (!isInt<32>(Imm)) {
600     Shift = countTrailingZeros<uint64_t>(Imm);
601     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
602 
603     // If the shifted value fits 32 bits.
604     if (isInt<32>(ImmSh)) {
605       // Go with the shifted value.
606       Imm = ImmSh;
607     } else {
608       // Still stuck with a 64 bit value.
609       Remainder = Imm;
610       Shift = 32;
611       Imm >>= 32;
612     }
613   }
614 
615   // Intermediate operand.
616   unsigned Result = 0;
617 
618   // Handle first 32 bits.
619   unsigned Lo = Imm & 0xFFFF;
620 
621   // Simple value.
622   if (isInt<16>(Imm)) {
623     // Just the Lo bits.
624     ++Result;
625   } else if (Lo) {
626     // Handle the Hi bits and Lo bits.
627     Result += 2;
628   } else {
629     // Just the Hi bits.
630     ++Result;
631   }
632 
633   // If no shift, we're done.
634   if (!Shift) return Result;
635 
636   // Shift for next step if the upper 32-bits were not zero.
637   if (Imm)
638     ++Result;
639 
640   // Add in the last bits as required.
641   if ((Remainder >> 16) & 0xFFFF)
642     ++Result;
643   if (Remainder & 0xFFFF)
644     ++Result;
645 
646   return Result;
647 }
648 
649 static uint64_t Rot64(uint64_t Imm, unsigned R) {
650   return (Imm << R) | (Imm >> (64 - R));
651 }
652 
653 static unsigned getInt64Count(int64_t Imm) {
654   unsigned Count = getInt64CountDirect(Imm);
655   if (Count == 1)
656     return Count;
657 
658   for (unsigned r = 1; r < 63; ++r) {
659     uint64_t RImm = Rot64(Imm, r);
660     unsigned RCount = getInt64CountDirect(RImm) + 1;
661     Count = std::min(Count, RCount);
662 
663     // See comments in getInt64 for an explanation of the logic below.
664     unsigned LS = findLastSet(RImm);
665     if (LS != r-1)
666       continue;
667 
668     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
669     uint64_t RImmWithOnes = RImm | OnesMask;
670 
671     RCount = getInt64CountDirect(RImmWithOnes) + 1;
672     Count = std::min(Count, RCount);
673   }
674 
675   return Count;
676 }
677 
678 // Select a 64-bit constant. For cost-modeling purposes, getInt64Count
679 // (above) needs to be kept in sync with this function.
680 static SDNode *getInt64Direct(SelectionDAG *CurDAG, const SDLoc &dl,
681                               int64_t Imm) {
682   // Assume no remaining bits.
683   unsigned Remainder = 0;
684   // Assume no shift required.
685   unsigned Shift = 0;
686 
687   // If it can't be represented as a 32 bit value.
688   if (!isInt<32>(Imm)) {
689     Shift = countTrailingZeros<uint64_t>(Imm);
690     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
691 
692     // If the shifted value fits 32 bits.
693     if (isInt<32>(ImmSh)) {
694       // Go with the shifted value.
695       Imm = ImmSh;
696     } else {
697       // Still stuck with a 64 bit value.
698       Remainder = Imm;
699       Shift = 32;
700       Imm >>= 32;
701     }
702   }
703 
704   // Intermediate operand.
705   SDNode *Result;
706 
707   // Handle first 32 bits.
708   unsigned Lo = Imm & 0xFFFF;
709   unsigned Hi = (Imm >> 16) & 0xFFFF;
710 
711   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
712       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
713   };
714 
715   // Simple value.
716   if (isInt<16>(Imm)) {
717     // Just the Lo bits.
718     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
719   } else if (Lo) {
720     // Handle the Hi bits.
721     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
722     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
723     // And Lo bits.
724     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
725                                     SDValue(Result, 0), getI32Imm(Lo));
726   } else {
727     // Just the Hi bits.
728     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
729   }
730 
731   // If no shift, we're done.
732   if (!Shift) return Result;
733 
734   // Shift for next step if the upper 32-bits were not zero.
735   if (Imm) {
736     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
737                                     SDValue(Result, 0),
738                                     getI32Imm(Shift),
739                                     getI32Imm(63 - Shift));
740   }
741 
742   // Add in the last bits as required.
743   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
744     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
745                                     SDValue(Result, 0), getI32Imm(Hi));
746   }
747   if ((Lo = Remainder & 0xFFFF)) {
748     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
749                                     SDValue(Result, 0), getI32Imm(Lo));
750   }
751 
752   return Result;
753 }
754 
755 static SDNode *getInt64(SelectionDAG *CurDAG, const SDLoc &dl, int64_t Imm) {
756   unsigned Count = getInt64CountDirect(Imm);
757   if (Count == 1)
758     return getInt64Direct(CurDAG, dl, Imm);
759 
760   unsigned RMin = 0;
761 
762   int64_t MatImm;
763   unsigned MaskEnd;
764 
765   for (unsigned r = 1; r < 63; ++r) {
766     uint64_t RImm = Rot64(Imm, r);
767     unsigned RCount = getInt64CountDirect(RImm) + 1;
768     if (RCount < Count) {
769       Count = RCount;
770       RMin = r;
771       MatImm = RImm;
772       MaskEnd = 63;
773     }
774 
775     // If the immediate to generate has many trailing zeros, it might be
776     // worthwhile to generate a rotated value with too many leading ones
777     // (because that's free with li/lis's sign-extension semantics), and then
778     // mask them off after rotation.
779 
780     unsigned LS = findLastSet(RImm);
781     // We're adding (63-LS) higher-order ones, and we expect to mask them off
782     // after performing the inverse rotation by (64-r). So we need that:
783     //   63-LS == 64-r => LS == r-1
784     if (LS != r-1)
785       continue;
786 
787     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
788     uint64_t RImmWithOnes = RImm | OnesMask;
789 
790     RCount = getInt64CountDirect(RImmWithOnes) + 1;
791     if (RCount < Count) {
792       Count = RCount;
793       RMin = r;
794       MatImm = RImmWithOnes;
795       MaskEnd = LS;
796     }
797   }
798 
799   if (!RMin)
800     return getInt64Direct(CurDAG, dl, Imm);
801 
802   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
803       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
804   };
805 
806   SDValue Val = SDValue(getInt64Direct(CurDAG, dl, MatImm), 0);
807   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
808                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
809 }
810 
811 // Select a 64-bit constant.
812 static SDNode *getInt64(SelectionDAG *CurDAG, SDNode *N) {
813   SDLoc dl(N);
814 
815   // Get 64 bit value.
816   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
817   return getInt64(CurDAG, dl, Imm);
818 }
819 
820 namespace {
821 class BitPermutationSelector {
822   struct ValueBit {
823     SDValue V;
824 
825     // The bit number in the value, using a convention where bit 0 is the
826     // lowest-order bit.
827     unsigned Idx;
828 
829     enum Kind {
830       ConstZero,
831       Variable
832     } K;
833 
834     ValueBit(SDValue V, unsigned I, Kind K = Variable)
835       : V(V), Idx(I), K(K) {}
836     ValueBit(Kind K = Variable)
837       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
838 
839     bool isZero() const {
840       return K == ConstZero;
841     }
842 
843     bool hasValue() const {
844       return K == Variable;
845     }
846 
847     SDValue getValue() const {
848       assert(hasValue() && "Cannot get the value of a constant bit");
849       return V;
850     }
851 
852     unsigned getValueBitIndex() const {
853       assert(hasValue() && "Cannot get the value bit index of a constant bit");
854       return Idx;
855     }
856   };
857 
858   // A bit group has the same underlying value and the same rotate factor.
859   struct BitGroup {
860     SDValue V;
861     unsigned RLAmt;
862     unsigned StartIdx, EndIdx;
863 
864     // This rotation amount assumes that the lower 32 bits of the quantity are
865     // replicated in the high 32 bits by the rotation operator (which is done
866     // by rlwinm and friends in 64-bit mode).
867     bool Repl32;
868     // Did converting to Repl32 == true change the rotation factor? If it did,
869     // it decreased it by 32.
870     bool Repl32CR;
871     // Was this group coalesced after setting Repl32 to true?
872     bool Repl32Coalesced;
873 
874     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
875       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
876         Repl32Coalesced(false) {
877       DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
878                       " [" << S << ", " << E << "]\n");
879     }
880   };
881 
882   // Information on each (Value, RLAmt) pair (like the number of groups
883   // associated with each) used to choose the lowering method.
884   struct ValueRotInfo {
885     SDValue V;
886     unsigned RLAmt;
887     unsigned NumGroups;
888     unsigned FirstGroupStartIdx;
889     bool Repl32;
890 
891     ValueRotInfo()
892       : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
893         Repl32(false) {}
894 
895     // For sorting (in reverse order) by NumGroups, and then by
896     // FirstGroupStartIdx.
897     bool operator < (const ValueRotInfo &Other) const {
898       // We need to sort so that the non-Repl32 come first because, when we're
899       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
900       // masking operation.
901       if (Repl32 < Other.Repl32)
902         return true;
903       else if (Repl32 > Other.Repl32)
904         return false;
905       else if (NumGroups > Other.NumGroups)
906         return true;
907       else if (NumGroups < Other.NumGroups)
908         return false;
909       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
910         return true;
911       return false;
912     }
913   };
914 
915   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
916   using ValueBitsMemoizer =
917       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
918   ValueBitsMemoizer Memoizer;
919 
920   // Return a pair of bool and a SmallVector pointer to a memoization entry.
921   // The bool is true if something interesting was deduced, otherwise if we're
922   // providing only a generic representation of V (or something else likewise
923   // uninteresting for instruction selection) through the SmallVector.
924   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
925                                                             unsigned NumBits) {
926     auto &ValueEntry = Memoizer[V];
927     if (ValueEntry)
928       return std::make_pair(ValueEntry->first, &ValueEntry->second);
929     ValueEntry.reset(new ValueBitsMemoizedValue());
930     bool &Interesting = ValueEntry->first;
931     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
932     Bits.resize(NumBits);
933 
934     switch (V.getOpcode()) {
935     default: break;
936     case ISD::ROTL:
937       if (isa<ConstantSDNode>(V.getOperand(1))) {
938         unsigned RotAmt = V.getConstantOperandVal(1);
939 
940         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
941 
942         for (unsigned i = 0; i < NumBits; ++i)
943           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
944 
945         return std::make_pair(Interesting = true, &Bits);
946       }
947       break;
948     case ISD::SHL:
949       if (isa<ConstantSDNode>(V.getOperand(1))) {
950         unsigned ShiftAmt = V.getConstantOperandVal(1);
951 
952         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
953 
954         for (unsigned i = ShiftAmt; i < NumBits; ++i)
955           Bits[i] = LHSBits[i - ShiftAmt];
956 
957         for (unsigned i = 0; i < ShiftAmt; ++i)
958           Bits[i] = ValueBit(ValueBit::ConstZero);
959 
960         return std::make_pair(Interesting = true, &Bits);
961       }
962       break;
963     case ISD::SRL:
964       if (isa<ConstantSDNode>(V.getOperand(1))) {
965         unsigned ShiftAmt = V.getConstantOperandVal(1);
966 
967         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
968 
969         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
970           Bits[i] = LHSBits[i + ShiftAmt];
971 
972         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
973           Bits[i] = ValueBit(ValueBit::ConstZero);
974 
975         return std::make_pair(Interesting = true, &Bits);
976       }
977       break;
978     case ISD::AND:
979       if (isa<ConstantSDNode>(V.getOperand(1))) {
980         uint64_t Mask = V.getConstantOperandVal(1);
981 
982         const SmallVector<ValueBit, 64> *LHSBits;
983         // Mark this as interesting, only if the LHS was also interesting. This
984         // prevents the overall procedure from matching a single immediate 'and'
985         // (which is non-optimal because such an and might be folded with other
986         // things if we don't select it here).
987         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
988 
989         for (unsigned i = 0; i < NumBits; ++i)
990           if (((Mask >> i) & 1) == 1)
991             Bits[i] = (*LHSBits)[i];
992           else
993             Bits[i] = ValueBit(ValueBit::ConstZero);
994 
995         return std::make_pair(Interesting, &Bits);
996       }
997       break;
998     case ISD::OR: {
999       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1000       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1001 
1002       bool AllDisjoint = true;
1003       for (unsigned i = 0; i < NumBits; ++i)
1004         if (LHSBits[i].isZero())
1005           Bits[i] = RHSBits[i];
1006         else if (RHSBits[i].isZero())
1007           Bits[i] = LHSBits[i];
1008         else {
1009           AllDisjoint = false;
1010           break;
1011         }
1012 
1013       if (!AllDisjoint)
1014         break;
1015 
1016       return std::make_pair(Interesting = true, &Bits);
1017     }
1018     }
1019 
1020     for (unsigned i = 0; i < NumBits; ++i)
1021       Bits[i] = ValueBit(V, i);
1022 
1023     return std::make_pair(Interesting = false, &Bits);
1024   }
1025 
1026   // For each value (except the constant ones), compute the left-rotate amount
1027   // to get it from its original to final position.
1028   void computeRotationAmounts() {
1029     HasZeros = false;
1030     RLAmt.resize(Bits.size());
1031     for (unsigned i = 0; i < Bits.size(); ++i)
1032       if (Bits[i].hasValue()) {
1033         unsigned VBI = Bits[i].getValueBitIndex();
1034         if (i >= VBI)
1035           RLAmt[i] = i - VBI;
1036         else
1037           RLAmt[i] = Bits.size() - (VBI - i);
1038       } else if (Bits[i].isZero()) {
1039         HasZeros = true;
1040         RLAmt[i] = UINT32_MAX;
1041       } else {
1042         llvm_unreachable("Unknown value bit type");
1043       }
1044   }
1045 
1046   // Collect groups of consecutive bits with the same underlying value and
1047   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1048   // they break up groups.
1049   void collectBitGroups(bool LateMask) {
1050     BitGroups.clear();
1051 
1052     unsigned LastRLAmt = RLAmt[0];
1053     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1054     unsigned LastGroupStartIdx = 0;
1055     for (unsigned i = 1; i < Bits.size(); ++i) {
1056       unsigned ThisRLAmt = RLAmt[i];
1057       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1058       if (LateMask && !ThisValue) {
1059         ThisValue = LastValue;
1060         ThisRLAmt = LastRLAmt;
1061         // If we're doing late masking, then the first bit group always starts
1062         // at zero (even if the first bits were zero).
1063         if (BitGroups.empty())
1064           LastGroupStartIdx = 0;
1065       }
1066 
1067       // If this bit has the same underlying value and the same rotate factor as
1068       // the last one, then they're part of the same group.
1069       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1070         continue;
1071 
1072       if (LastValue.getNode())
1073         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1074                                      i-1));
1075       LastRLAmt = ThisRLAmt;
1076       LastValue = ThisValue;
1077       LastGroupStartIdx = i;
1078     }
1079     if (LastValue.getNode())
1080       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1081                                    Bits.size()-1));
1082 
1083     if (BitGroups.empty())
1084       return;
1085 
1086     // We might be able to combine the first and last groups.
1087     if (BitGroups.size() > 1) {
1088       // If the first and last groups are the same, then remove the first group
1089       // in favor of the last group, making the ending index of the last group
1090       // equal to the ending index of the to-be-removed first group.
1091       if (BitGroups[0].StartIdx == 0 &&
1092           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1093           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1094           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1095         DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1096         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1097         BitGroups.erase(BitGroups.begin());
1098       }
1099     }
1100   }
1101 
1102   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1103   // associated with each. If there is a degeneracy, pick the one that occurs
1104   // first (in the final value).
1105   void collectValueRotInfo() {
1106     ValueRots.clear();
1107 
1108     for (auto &BG : BitGroups) {
1109       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1110       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1111       VRI.V = BG.V;
1112       VRI.RLAmt = BG.RLAmt;
1113       VRI.Repl32 = BG.Repl32;
1114       VRI.NumGroups += 1;
1115       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1116     }
1117 
1118     // Now that we've collected the various ValueRotInfo instances, we need to
1119     // sort them.
1120     ValueRotsVec.clear();
1121     for (auto &I : ValueRots) {
1122       ValueRotsVec.push_back(I.second);
1123     }
1124     std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1125   }
1126 
1127   // In 64-bit mode, rlwinm and friends have a rotation operator that
1128   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1129   // indices of these instructions can only be in the lower 32 bits, so they
1130   // can only represent some 64-bit bit groups. However, when they can be used,
1131   // the 32-bit replication can be used to represent, as a single bit group,
1132   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1133   // groups when possible. Returns true if any of the bit groups were
1134   // converted.
1135   void assignRepl32BitGroups() {
1136     // If we have bits like this:
1137     //
1138     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1139     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1140     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1141     //
1142     // But, making use of a 32-bit operation that replicates the low-order 32
1143     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1144     // of 8.
1145 
1146     auto IsAllLow32 = [this](BitGroup & BG) {
1147       if (BG.StartIdx <= BG.EndIdx) {
1148         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1149           if (!Bits[i].hasValue())
1150             continue;
1151           if (Bits[i].getValueBitIndex() >= 32)
1152             return false;
1153         }
1154       } else {
1155         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1156           if (!Bits[i].hasValue())
1157             continue;
1158           if (Bits[i].getValueBitIndex() >= 32)
1159             return false;
1160         }
1161         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1162           if (!Bits[i].hasValue())
1163             continue;
1164           if (Bits[i].getValueBitIndex() >= 32)
1165             return false;
1166         }
1167       }
1168 
1169       return true;
1170     };
1171 
1172     for (auto &BG : BitGroups) {
1173       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1174         if (IsAllLow32(BG)) {
1175           if (BG.RLAmt >= 32) {
1176             BG.RLAmt -= 32;
1177             BG.Repl32CR = true;
1178           }
1179 
1180           BG.Repl32 = true;
1181 
1182           DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1183                           BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1184                           " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1185         }
1186       }
1187     }
1188 
1189     // Now walk through the bit groups, consolidating where possible.
1190     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1191       // We might want to remove this bit group by merging it with the previous
1192       // group (which might be the ending group).
1193       auto IP = (I == BitGroups.begin()) ?
1194                 std::prev(BitGroups.end()) : std::prev(I);
1195       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1196           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1197 
1198         DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1199                         I->V.getNode() << " RLAmt = " << I->RLAmt <<
1200                         " [" << I->StartIdx << ", " << I->EndIdx <<
1201                         "] with group with range [" <<
1202                         IP->StartIdx << ", " << IP->EndIdx << "]\n");
1203 
1204         IP->EndIdx = I->EndIdx;
1205         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1206         IP->Repl32Coalesced = true;
1207         I = BitGroups.erase(I);
1208         continue;
1209       } else {
1210         // There is a special case worth handling: If there is a single group
1211         // covering the entire upper 32 bits, and it can be merged with both
1212         // the next and previous groups (which might be the same group), then
1213         // do so. If it is the same group (so there will be only one group in
1214         // total), then we need to reverse the order of the range so that it
1215         // covers the entire 64 bits.
1216         if (I->StartIdx == 32 && I->EndIdx == 63) {
1217           assert(std::next(I) == BitGroups.end() &&
1218                  "bit group ends at index 63 but there is another?");
1219           auto IN = BitGroups.begin();
1220 
1221           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1222               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1223               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1224               IsAllLow32(*I)) {
1225 
1226             DEBUG(dbgs() << "\tcombining bit group for " <<
1227                             I->V.getNode() << " RLAmt = " << I->RLAmt <<
1228                             " [" << I->StartIdx << ", " << I->EndIdx <<
1229                             "] with 32-bit replicated groups with ranges [" <<
1230                             IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1231                             IN->StartIdx << ", " << IN->EndIdx << "]\n");
1232 
1233             if (IP == IN) {
1234               // There is only one other group; change it to cover the whole
1235               // range (backward, so that it can still be Repl32 but cover the
1236               // whole 64-bit range).
1237               IP->StartIdx = 31;
1238               IP->EndIdx = 30;
1239               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1240               IP->Repl32Coalesced = true;
1241               I = BitGroups.erase(I);
1242             } else {
1243               // There are two separate groups, one before this group and one
1244               // after us (at the beginning). We're going to remove this group,
1245               // but also the group at the very beginning.
1246               IP->EndIdx = IN->EndIdx;
1247               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1248               IP->Repl32Coalesced = true;
1249               I = BitGroups.erase(I);
1250               BitGroups.erase(BitGroups.begin());
1251             }
1252 
1253             // This must be the last group in the vector (and we might have
1254             // just invalidated the iterator above), so break here.
1255             break;
1256           }
1257         }
1258       }
1259 
1260       ++I;
1261     }
1262   }
1263 
1264   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1265     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1266   }
1267 
1268   uint64_t getZerosMask() {
1269     uint64_t Mask = 0;
1270     for (unsigned i = 0; i < Bits.size(); ++i) {
1271       if (Bits[i].hasValue())
1272         continue;
1273       Mask |= (UINT64_C(1) << i);
1274     }
1275 
1276     return ~Mask;
1277   }
1278 
1279   // Depending on the number of groups for a particular value, it might be
1280   // better to rotate, mask explicitly (using andi/andis), and then or the
1281   // result. Select this part of the result first.
1282   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1283     if (BPermRewriterNoMasking)
1284       return;
1285 
1286     for (ValueRotInfo &VRI : ValueRotsVec) {
1287       unsigned Mask = 0;
1288       for (unsigned i = 0; i < Bits.size(); ++i) {
1289         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1290           continue;
1291         if (RLAmt[i] != VRI.RLAmt)
1292           continue;
1293         Mask |= (1u << i);
1294       }
1295 
1296       // Compute the masks for andi/andis that would be necessary.
1297       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1298       assert((ANDIMask != 0 || ANDISMask != 0) &&
1299              "No set bits in mask for value bit groups");
1300       bool NeedsRotate = VRI.RLAmt != 0;
1301 
1302       // We're trying to minimize the number of instructions. If we have one
1303       // group, using one of andi/andis can break even.  If we have three
1304       // groups, we can use both andi and andis and break even (to use both
1305       // andi and andis we also need to or the results together). We need four
1306       // groups if we also need to rotate. To use andi/andis we need to do more
1307       // than break even because rotate-and-mask instructions tend to be easier
1308       // to schedule.
1309 
1310       // FIXME: We've biased here against using andi/andis, which is right for
1311       // POWER cores, but not optimal everywhere. For example, on the A2,
1312       // andi/andis have single-cycle latency whereas the rotate-and-mask
1313       // instructions take two cycles, and it would be better to bias toward
1314       // andi/andis in break-even cases.
1315 
1316       unsigned NumAndInsts = (unsigned) NeedsRotate +
1317                              (unsigned) (ANDIMask != 0) +
1318                              (unsigned) (ANDISMask != 0) +
1319                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1320                              (unsigned) (bool) Res;
1321 
1322       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1323                       " RL: " << VRI.RLAmt << ":" <<
1324                       "\n\t\t\tisel using masking: " << NumAndInsts <<
1325                       " using rotates: " << VRI.NumGroups << "\n");
1326 
1327       if (NumAndInsts >= VRI.NumGroups)
1328         continue;
1329 
1330       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1331 
1332       if (InstCnt) *InstCnt += NumAndInsts;
1333 
1334       SDValue VRot;
1335       if (VRI.RLAmt) {
1336         SDValue Ops[] =
1337           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1338             getI32Imm(31, dl) };
1339         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1340                                               Ops), 0);
1341       } else {
1342         VRot = VRI.V;
1343       }
1344 
1345       SDValue ANDIVal, ANDISVal;
1346       if (ANDIMask != 0)
1347         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1348                             VRot, getI32Imm(ANDIMask, dl)), 0);
1349       if (ANDISMask != 0)
1350         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1351                              VRot, getI32Imm(ANDISMask, dl)), 0);
1352 
1353       SDValue TotalVal;
1354       if (!ANDIVal)
1355         TotalVal = ANDISVal;
1356       else if (!ANDISVal)
1357         TotalVal = ANDIVal;
1358       else
1359         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1360                              ANDIVal, ANDISVal), 0);
1361 
1362       if (!Res)
1363         Res = TotalVal;
1364       else
1365         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1366                         Res, TotalVal), 0);
1367 
1368       // Now, remove all groups with this underlying value and rotation
1369       // factor.
1370       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1371         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1372       });
1373     }
1374   }
1375 
1376   // Instruction selection for the 32-bit case.
1377   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1378     SDLoc dl(N);
1379     SDValue Res;
1380 
1381     if (InstCnt) *InstCnt = 0;
1382 
1383     // Take care of cases that should use andi/andis first.
1384     SelectAndParts32(dl, Res, InstCnt);
1385 
1386     // If we've not yet selected a 'starting' instruction, and we have no zeros
1387     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1388     // number of groups), and start with this rotated value.
1389     if ((!HasZeros || LateMask) && !Res) {
1390       ValueRotInfo &VRI = ValueRotsVec[0];
1391       if (VRI.RLAmt) {
1392         if (InstCnt) *InstCnt += 1;
1393         SDValue Ops[] =
1394           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1395             getI32Imm(31, dl) };
1396         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1397                       0);
1398       } else {
1399         Res = VRI.V;
1400       }
1401 
1402       // Now, remove all groups with this underlying value and rotation factor.
1403       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1404         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1405       });
1406     }
1407 
1408     if (InstCnt) *InstCnt += BitGroups.size();
1409 
1410     // Insert the other groups (one at a time).
1411     for (auto &BG : BitGroups) {
1412       if (!Res) {
1413         SDValue Ops[] =
1414           { BG.V, getI32Imm(BG.RLAmt, dl),
1415             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1416             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1417         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1418       } else {
1419         SDValue Ops[] =
1420           { Res, BG.V, getI32Imm(BG.RLAmt, dl),
1421               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1422             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1423         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1424       }
1425     }
1426 
1427     if (LateMask) {
1428       unsigned Mask = (unsigned) getZerosMask();
1429 
1430       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1431       assert((ANDIMask != 0 || ANDISMask != 0) &&
1432              "No set bits in zeros mask?");
1433 
1434       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1435                                (unsigned) (ANDISMask != 0) +
1436                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1437 
1438       SDValue ANDIVal, ANDISVal;
1439       if (ANDIMask != 0)
1440         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1441                             Res, getI32Imm(ANDIMask, dl)), 0);
1442       if (ANDISMask != 0)
1443         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1444                              Res, getI32Imm(ANDISMask, dl)), 0);
1445 
1446       if (!ANDIVal)
1447         Res = ANDISVal;
1448       else if (!ANDISVal)
1449         Res = ANDIVal;
1450       else
1451         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1452                         ANDIVal, ANDISVal), 0);
1453     }
1454 
1455     return Res.getNode();
1456   }
1457 
1458   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1459                                 unsigned MaskStart, unsigned MaskEnd,
1460                                 bool IsIns) {
1461     // In the notation used by the instructions, 'start' and 'end' are reversed
1462     // because bits are counted from high to low order.
1463     unsigned InstMaskStart = 64 - MaskEnd - 1,
1464              InstMaskEnd   = 64 - MaskStart - 1;
1465 
1466     if (Repl32)
1467       return 1;
1468 
1469     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1470         InstMaskEnd == 63 - RLAmt)
1471       return 1;
1472 
1473     return 2;
1474   }
1475 
1476   // For 64-bit values, not all combinations of rotates and masks are
1477   // available. Produce one if it is available.
1478   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1479                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1480                           unsigned *InstCnt = nullptr) {
1481     // In the notation used by the instructions, 'start' and 'end' are reversed
1482     // because bits are counted from high to low order.
1483     unsigned InstMaskStart = 64 - MaskEnd - 1,
1484              InstMaskEnd   = 64 - MaskStart - 1;
1485 
1486     if (InstCnt) *InstCnt += 1;
1487 
1488     if (Repl32) {
1489       // This rotation amount assumes that the lower 32 bits of the quantity
1490       // are replicated in the high 32 bits by the rotation operator (which is
1491       // done by rlwinm and friends).
1492       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1493       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1494       SDValue Ops[] =
1495         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1496           getI32Imm(InstMaskEnd - 32, dl) };
1497       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1498                                             Ops), 0);
1499     }
1500 
1501     if (InstMaskEnd == 63) {
1502       SDValue Ops[] =
1503         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1504       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1505     }
1506 
1507     if (InstMaskStart == 0) {
1508       SDValue Ops[] =
1509         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
1510       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1511     }
1512 
1513     if (InstMaskEnd == 63 - RLAmt) {
1514       SDValue Ops[] =
1515         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1516       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1517     }
1518 
1519     // We cannot do this with a single instruction, so we'll use two. The
1520     // problem is that we're not free to choose both a rotation amount and mask
1521     // start and end independently. We can choose an arbitrary mask start and
1522     // end, but then the rotation amount is fixed. Rotation, however, can be
1523     // inverted, and so by applying an "inverse" rotation first, we can get the
1524     // desired result.
1525     if (InstCnt) *InstCnt += 1;
1526 
1527     // The rotation mask for the second instruction must be MaskStart.
1528     unsigned RLAmt2 = MaskStart;
1529     // The first instruction must rotate V so that the overall rotation amount
1530     // is RLAmt.
1531     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1532     if (RLAmt1)
1533       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1534     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1535   }
1536 
1537   // For 64-bit values, not all combinations of rotates and masks are
1538   // available. Produce a rotate-mask-and-insert if one is available.
1539   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
1540                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
1541                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1542     // In the notation used by the instructions, 'start' and 'end' are reversed
1543     // because bits are counted from high to low order.
1544     unsigned InstMaskStart = 64 - MaskEnd - 1,
1545              InstMaskEnd   = 64 - MaskStart - 1;
1546 
1547     if (InstCnt) *InstCnt += 1;
1548 
1549     if (Repl32) {
1550       // This rotation amount assumes that the lower 32 bits of the quantity
1551       // are replicated in the high 32 bits by the rotation operator (which is
1552       // done by rlwinm and friends).
1553       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1554       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1555       SDValue Ops[] =
1556         { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1557           getI32Imm(InstMaskEnd - 32, dl) };
1558       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1559                                             Ops), 0);
1560     }
1561 
1562     if (InstMaskEnd == 63 - RLAmt) {
1563       SDValue Ops[] =
1564         { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1565       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1566     }
1567 
1568     // We cannot do this with a single instruction, so we'll use two. The
1569     // problem is that we're not free to choose both a rotation amount and mask
1570     // start and end independently. We can choose an arbitrary mask start and
1571     // end, but then the rotation amount is fixed. Rotation, however, can be
1572     // inverted, and so by applying an "inverse" rotation first, we can get the
1573     // desired result.
1574     if (InstCnt) *InstCnt += 1;
1575 
1576     // The rotation mask for the second instruction must be MaskStart.
1577     unsigned RLAmt2 = MaskStart;
1578     // The first instruction must rotate V so that the overall rotation amount
1579     // is RLAmt.
1580     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1581     if (RLAmt1)
1582       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1583     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1584   }
1585 
1586   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1587     if (BPermRewriterNoMasking)
1588       return;
1589 
1590     // The idea here is the same as in the 32-bit version, but with additional
1591     // complications from the fact that Repl32 might be true. Because we
1592     // aggressively convert bit groups to Repl32 form (which, for small
1593     // rotation factors, involves no other change), and then coalesce, it might
1594     // be the case that a single 64-bit masking operation could handle both
1595     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1596     // form allowed coalescing, then we must use a 32-bit rotaton in order to
1597     // completely capture the new combined bit group.
1598 
1599     for (ValueRotInfo &VRI : ValueRotsVec) {
1600       uint64_t Mask = 0;
1601 
1602       // We need to add to the mask all bits from the associated bit groups.
1603       // If Repl32 is false, we need to add bits from bit groups that have
1604       // Repl32 true, but are trivially convertable to Repl32 false. Such a
1605       // group is trivially convertable if it overlaps only with the lower 32
1606       // bits, and the group has not been coalesced.
1607       auto MatchingBG = [VRI](const BitGroup &BG) {
1608         if (VRI.V != BG.V)
1609           return false;
1610 
1611         unsigned EffRLAmt = BG.RLAmt;
1612         if (!VRI.Repl32 && BG.Repl32) {
1613           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1614               !BG.Repl32Coalesced) {
1615             if (BG.Repl32CR)
1616               EffRLAmt += 32;
1617           } else {
1618             return false;
1619           }
1620         } else if (VRI.Repl32 != BG.Repl32) {
1621           return false;
1622         }
1623 
1624         return VRI.RLAmt == EffRLAmt;
1625       };
1626 
1627       for (auto &BG : BitGroups) {
1628         if (!MatchingBG(BG))
1629           continue;
1630 
1631         if (BG.StartIdx <= BG.EndIdx) {
1632           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1633             Mask |= (UINT64_C(1) << i);
1634         } else {
1635           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1636             Mask |= (UINT64_C(1) << i);
1637           for (unsigned i = 0; i <= BG.EndIdx; ++i)
1638             Mask |= (UINT64_C(1) << i);
1639         }
1640       }
1641 
1642       // We can use the 32-bit andi/andis technique if the mask does not
1643       // require any higher-order bits. This can save an instruction compared
1644       // to always using the general 64-bit technique.
1645       bool Use32BitInsts = isUInt<32>(Mask);
1646       // Compute the masks for andi/andis that would be necessary.
1647       unsigned ANDIMask = (Mask & UINT16_MAX),
1648                ANDISMask = (Mask >> 16) & UINT16_MAX;
1649 
1650       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1651 
1652       unsigned NumAndInsts = (unsigned) NeedsRotate +
1653                              (unsigned) (bool) Res;
1654       if (Use32BitInsts)
1655         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1656                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1657       else
1658         NumAndInsts += getInt64Count(Mask) + /* and */ 1;
1659 
1660       unsigned NumRLInsts = 0;
1661       bool FirstBG = true;
1662       for (auto &BG : BitGroups) {
1663         if (!MatchingBG(BG))
1664           continue;
1665         NumRLInsts +=
1666           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1667                                !FirstBG);
1668         FirstBG = false;
1669       }
1670 
1671       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1672                       " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1673                       "\n\t\t\tisel using masking: " << NumAndInsts <<
1674                       " using rotates: " << NumRLInsts << "\n");
1675 
1676       // When we'd use andi/andis, we bias toward using the rotates (andi only
1677       // has a record form, and is cracked on POWER cores). However, when using
1678       // general 64-bit constant formation, bias toward the constant form,
1679       // because that exposes more opportunities for CSE.
1680       if (NumAndInsts > NumRLInsts)
1681         continue;
1682       if (Use32BitInsts && NumAndInsts == NumRLInsts)
1683         continue;
1684 
1685       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1686 
1687       if (InstCnt) *InstCnt += NumAndInsts;
1688 
1689       SDValue VRot;
1690       // We actually need to generate a rotation if we have a non-zero rotation
1691       // factor or, in the Repl32 case, if we care about any of the
1692       // higher-order replicated bits. In the latter case, we generate a mask
1693       // backward so that it actually includes the entire 64 bits.
1694       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1695         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1696                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1697       else
1698         VRot = VRI.V;
1699 
1700       SDValue TotalVal;
1701       if (Use32BitInsts) {
1702         assert((ANDIMask != 0 || ANDISMask != 0) &&
1703                "No set bits in mask when using 32-bit ands for 64-bit value");
1704 
1705         SDValue ANDIVal, ANDISVal;
1706         if (ANDIMask != 0)
1707           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1708                               VRot, getI32Imm(ANDIMask, dl)), 0);
1709         if (ANDISMask != 0)
1710           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1711                                VRot, getI32Imm(ANDISMask, dl)), 0);
1712 
1713         if (!ANDIVal)
1714           TotalVal = ANDISVal;
1715         else if (!ANDISVal)
1716           TotalVal = ANDIVal;
1717         else
1718           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1719                                ANDIVal, ANDISVal), 0);
1720       } else {
1721         TotalVal = SDValue(getInt64(CurDAG, dl, Mask), 0);
1722         TotalVal =
1723           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1724                                          VRot, TotalVal), 0);
1725      }
1726 
1727       if (!Res)
1728         Res = TotalVal;
1729       else
1730         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1731                                              Res, TotalVal), 0);
1732 
1733       // Now, remove all groups with this underlying value and rotation
1734       // factor.
1735       eraseMatchingBitGroups(MatchingBG);
1736     }
1737   }
1738 
1739   // Instruction selection for the 64-bit case.
1740   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1741     SDLoc dl(N);
1742     SDValue Res;
1743 
1744     if (InstCnt) *InstCnt = 0;
1745 
1746     // Take care of cases that should use andi/andis first.
1747     SelectAndParts64(dl, Res, InstCnt);
1748 
1749     // If we've not yet selected a 'starting' instruction, and we have no zeros
1750     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1751     // number of groups), and start with this rotated value.
1752     if ((!HasZeros || LateMask) && !Res) {
1753       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1754       // groups will come first, and so the VRI representing the largest number
1755       // of groups might not be first (it might be the first Repl32 groups).
1756       unsigned MaxGroupsIdx = 0;
1757       if (!ValueRotsVec[0].Repl32) {
1758         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1759           if (ValueRotsVec[i].Repl32) {
1760             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1761               MaxGroupsIdx = i;
1762             break;
1763           }
1764       }
1765 
1766       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1767       bool NeedsRotate = false;
1768       if (VRI.RLAmt) {
1769         NeedsRotate = true;
1770       } else if (VRI.Repl32) {
1771         for (auto &BG : BitGroups) {
1772           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1773               BG.Repl32 != VRI.Repl32)
1774             continue;
1775 
1776           // We don't need a rotate if the bit group is confined to the lower
1777           // 32 bits.
1778           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1779             continue;
1780 
1781           NeedsRotate = true;
1782           break;
1783         }
1784       }
1785 
1786       if (NeedsRotate)
1787         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1788                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1789                               InstCnt);
1790       else
1791         Res = VRI.V;
1792 
1793       // Now, remove all groups with this underlying value and rotation factor.
1794       if (Res)
1795         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1796           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
1797                  BG.Repl32 == VRI.Repl32;
1798         });
1799     }
1800 
1801     // Because 64-bit rotates are more flexible than inserts, we might have a
1802     // preference regarding which one we do first (to save one instruction).
1803     if (!Res)
1804       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1805         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1806                                 false) <
1807             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1808                                 true)) {
1809           if (I != BitGroups.begin()) {
1810             BitGroup BG = *I;
1811             BitGroups.erase(I);
1812             BitGroups.insert(BitGroups.begin(), BG);
1813           }
1814 
1815           break;
1816         }
1817       }
1818 
1819     // Insert the other groups (one at a time).
1820     for (auto &BG : BitGroups) {
1821       if (!Res)
1822         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1823                               BG.EndIdx, InstCnt);
1824       else
1825         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1826                                  BG.StartIdx, BG.EndIdx, InstCnt);
1827     }
1828 
1829     if (LateMask) {
1830       uint64_t Mask = getZerosMask();
1831 
1832       // We can use the 32-bit andi/andis technique if the mask does not
1833       // require any higher-order bits. This can save an instruction compared
1834       // to always using the general 64-bit technique.
1835       bool Use32BitInsts = isUInt<32>(Mask);
1836       // Compute the masks for andi/andis that would be necessary.
1837       unsigned ANDIMask = (Mask & UINT16_MAX),
1838                ANDISMask = (Mask >> 16) & UINT16_MAX;
1839 
1840       if (Use32BitInsts) {
1841         assert((ANDIMask != 0 || ANDISMask != 0) &&
1842                "No set bits in mask when using 32-bit ands for 64-bit value");
1843 
1844         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1845                                  (unsigned) (ANDISMask != 0) +
1846                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1847 
1848         SDValue ANDIVal, ANDISVal;
1849         if (ANDIMask != 0)
1850           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1851                               Res, getI32Imm(ANDIMask, dl)), 0);
1852         if (ANDISMask != 0)
1853           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1854                                Res, getI32Imm(ANDISMask, dl)), 0);
1855 
1856         if (!ANDIVal)
1857           Res = ANDISVal;
1858         else if (!ANDISVal)
1859           Res = ANDIVal;
1860         else
1861           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1862                           ANDIVal, ANDISVal), 0);
1863       } else {
1864         if (InstCnt) *InstCnt += getInt64Count(Mask) + /* and */ 1;
1865 
1866         SDValue MaskVal = SDValue(getInt64(CurDAG, dl, Mask), 0);
1867         Res =
1868           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1869                                          Res, MaskVal), 0);
1870       }
1871     }
1872 
1873     return Res.getNode();
1874   }
1875 
1876   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1877     // Fill in BitGroups.
1878     collectBitGroups(LateMask);
1879     if (BitGroups.empty())
1880       return nullptr;
1881 
1882     // For 64-bit values, figure out when we can use 32-bit instructions.
1883     if (Bits.size() == 64)
1884       assignRepl32BitGroups();
1885 
1886     // Fill in ValueRotsVec.
1887     collectValueRotInfo();
1888 
1889     if (Bits.size() == 32) {
1890       return Select32(N, LateMask, InstCnt);
1891     } else {
1892       assert(Bits.size() == 64 && "Not 64 bits here?");
1893       return Select64(N, LateMask, InstCnt);
1894     }
1895 
1896     return nullptr;
1897   }
1898 
1899   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
1900     BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
1901   }
1902 
1903   SmallVector<ValueBit, 64> Bits;
1904 
1905   bool HasZeros;
1906   SmallVector<unsigned, 64> RLAmt;
1907 
1908   SmallVector<BitGroup, 16> BitGroups;
1909 
1910   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1911   SmallVector<ValueRotInfo, 16> ValueRotsVec;
1912 
1913   SelectionDAG *CurDAG;
1914 
1915 public:
1916   BitPermutationSelector(SelectionDAG *DAG)
1917     : CurDAG(DAG) {}
1918 
1919   // Here we try to match complex bit permutations into a set of
1920   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1921   // known to produce optimial code for common cases (like i32 byte swapping).
1922   SDNode *Select(SDNode *N) {
1923     Memoizer.clear();
1924     auto Result =
1925         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
1926     if (!Result.first)
1927       return nullptr;
1928     Bits = std::move(*Result.second);
1929 
1930     DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1931                     " selection for:    ");
1932     DEBUG(N->dump(CurDAG));
1933 
1934     // Fill it RLAmt and set HasZeros.
1935     computeRotationAmounts();
1936 
1937     if (!HasZeros)
1938       return Select(N, false);
1939 
1940     // We currently have two techniques for handling results with zeros: early
1941     // masking (the default) and late masking. Late masking is sometimes more
1942     // efficient, but because the structure of the bit groups is different, it
1943     // is hard to tell without generating both and comparing the results. With
1944     // late masking, we ignore zeros in the resulting value when inserting each
1945     // set of bit groups, and then mask in the zeros at the end. With early
1946     // masking, we only insert the non-zero parts of the result at every step.
1947 
1948     unsigned InstCnt, InstCntLateMask;
1949     DEBUG(dbgs() << "\tEarly masking:\n");
1950     SDNode *RN = Select(N, false, &InstCnt);
1951     DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1952 
1953     DEBUG(dbgs() << "\tLate masking:\n");
1954     SDNode *RNLM = Select(N, true, &InstCntLateMask);
1955     DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1956                     " instructions\n");
1957 
1958     if (InstCnt <= InstCntLateMask) {
1959       DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1960       return RN;
1961     }
1962 
1963     DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1964     return RNLM;
1965   }
1966 };
1967 } // anonymous namespace
1968 
1969 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
1970   if (N->getValueType(0) != MVT::i32 &&
1971       N->getValueType(0) != MVT::i64)
1972     return false;
1973 
1974   if (!UseBitPermRewriter)
1975     return false;
1976 
1977   switch (N->getOpcode()) {
1978   default: break;
1979   case ISD::ROTL:
1980   case ISD::SHL:
1981   case ISD::SRL:
1982   case ISD::AND:
1983   case ISD::OR: {
1984     BitPermutationSelector BPS(CurDAG);
1985     if (SDNode *New = BPS.Select(N)) {
1986       ReplaceNode(N, New);
1987       return true;
1988     }
1989     return false;
1990   }
1991   }
1992 
1993   return false;
1994 }
1995 
1996 /// SelectCC - Select a comparison of the specified values with the specified
1997 /// condition code, returning the CR# of the expression.
1998 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1999                                   const SDLoc &dl) {
2000   // Always select the LHS.
2001   unsigned Opc;
2002 
2003   if (LHS.getValueType() == MVT::i32) {
2004     unsigned Imm;
2005     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2006       if (isInt32Immediate(RHS, Imm)) {
2007         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2008         if (isUInt<16>(Imm))
2009           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2010                                                 getI32Imm(Imm & 0xFFFF, dl)),
2011                          0);
2012         // If this is a 16-bit signed immediate, fold it.
2013         if (isInt<16>((int)Imm))
2014           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2015                                                 getI32Imm(Imm & 0xFFFF, dl)),
2016                          0);
2017 
2018         // For non-equality comparisons, the default code would materialize the
2019         // constant, then compare against it, like this:
2020         //   lis r2, 4660
2021         //   ori r2, r2, 22136
2022         //   cmpw cr0, r3, r2
2023         // Since we are just comparing for equality, we can emit this instead:
2024         //   xoris r0,r3,0x1234
2025         //   cmplwi cr0,r0,0x5678
2026         //   beq cr0,L6
2027         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
2028                                            getI32Imm(Imm >> 16, dl)), 0);
2029         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
2030                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
2031       }
2032       Opc = PPC::CMPLW;
2033     } else if (ISD::isUnsignedIntSetCC(CC)) {
2034       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
2035         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2036                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
2037       Opc = PPC::CMPLW;
2038     } else {
2039       short SImm;
2040       if (isIntS16Immediate(RHS, SImm))
2041         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2042                                               getI32Imm((int)SImm & 0xFFFF,
2043                                                         dl)),
2044                          0);
2045       Opc = PPC::CMPW;
2046     }
2047   } else if (LHS.getValueType() == MVT::i64) {
2048     uint64_t Imm;
2049     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2050       if (isInt64Immediate(RHS.getNode(), Imm)) {
2051         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2052         if (isUInt<16>(Imm))
2053           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2054                                                 getI32Imm(Imm & 0xFFFF, dl)),
2055                          0);
2056         // If this is a 16-bit signed immediate, fold it.
2057         if (isInt<16>(Imm))
2058           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2059                                                 getI32Imm(Imm & 0xFFFF, dl)),
2060                          0);
2061 
2062         // For non-equality comparisons, the default code would materialize the
2063         // constant, then compare against it, like this:
2064         //   lis r2, 4660
2065         //   ori r2, r2, 22136
2066         //   cmpd cr0, r3, r2
2067         // Since we are just comparing for equality, we can emit this instead:
2068         //   xoris r0,r3,0x1234
2069         //   cmpldi cr0,r0,0x5678
2070         //   beq cr0,L6
2071         if (isUInt<32>(Imm)) {
2072           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2073                                              getI64Imm(Imm >> 16, dl)), 0);
2074           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2075                                                 getI64Imm(Imm & 0xFFFF, dl)),
2076                          0);
2077         }
2078       }
2079       Opc = PPC::CMPLD;
2080     } else if (ISD::isUnsignedIntSetCC(CC)) {
2081       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
2082         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2083                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
2084       Opc = PPC::CMPLD;
2085     } else {
2086       short SImm;
2087       if (isIntS16Immediate(RHS, SImm))
2088         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2089                                               getI64Imm(SImm & 0xFFFF, dl)),
2090                          0);
2091       Opc = PPC::CMPD;
2092     }
2093   } else if (LHS.getValueType() == MVT::f32) {
2094     Opc = PPC::FCMPUS;
2095   } else {
2096     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
2097     Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
2098   }
2099   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
2100 }
2101 
2102 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
2103   switch (CC) {
2104   case ISD::SETUEQ:
2105   case ISD::SETONE:
2106   case ISD::SETOLE:
2107   case ISD::SETOGE:
2108     llvm_unreachable("Should be lowered by legalize!");
2109   default: llvm_unreachable("Unknown condition!");
2110   case ISD::SETOEQ:
2111   case ISD::SETEQ:  return PPC::PRED_EQ;
2112   case ISD::SETUNE:
2113   case ISD::SETNE:  return PPC::PRED_NE;
2114   case ISD::SETOLT:
2115   case ISD::SETLT:  return PPC::PRED_LT;
2116   case ISD::SETULE:
2117   case ISD::SETLE:  return PPC::PRED_LE;
2118   case ISD::SETOGT:
2119   case ISD::SETGT:  return PPC::PRED_GT;
2120   case ISD::SETUGE:
2121   case ISD::SETGE:  return PPC::PRED_GE;
2122   case ISD::SETO:   return PPC::PRED_NU;
2123   case ISD::SETUO:  return PPC::PRED_UN;
2124     // These two are invalid for floating point.  Assume we have int.
2125   case ISD::SETULT: return PPC::PRED_LT;
2126   case ISD::SETUGT: return PPC::PRED_GT;
2127   }
2128 }
2129 
2130 /// getCRIdxForSetCC - Return the index of the condition register field
2131 /// associated with the SetCC condition, and whether or not the field is
2132 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
2133 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
2134   Invert = false;
2135   switch (CC) {
2136   default: llvm_unreachable("Unknown condition!");
2137   case ISD::SETOLT:
2138   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
2139   case ISD::SETOGT:
2140   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
2141   case ISD::SETOEQ:
2142   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
2143   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
2144   case ISD::SETUGE:
2145   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
2146   case ISD::SETULE:
2147   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
2148   case ISD::SETUNE:
2149   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
2150   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
2151   case ISD::SETUEQ:
2152   case ISD::SETOGE:
2153   case ISD::SETOLE:
2154   case ISD::SETONE:
2155     llvm_unreachable("Invalid branch code: should be expanded by legalize");
2156   // These are invalid for floating point.  Assume integer.
2157   case ISD::SETULT: return 0;
2158   case ISD::SETUGT: return 1;
2159   }
2160 }
2161 
2162 // getVCmpInst: return the vector compare instruction for the specified
2163 // vector type and condition code. Since this is for altivec specific code,
2164 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
2165 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2166                                 bool HasVSX, bool &Swap, bool &Negate) {
2167   Swap = false;
2168   Negate = false;
2169 
2170   if (VecVT.isFloatingPoint()) {
2171     /* Handle some cases by swapping input operands.  */
2172     switch (CC) {
2173       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2174       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2175       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2176       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2177       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2178       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2179       default: break;
2180     }
2181     /* Handle some cases by negating the result.  */
2182     switch (CC) {
2183       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2184       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2185       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2186       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2187       default: break;
2188     }
2189     /* We have instructions implementing the remaining cases.  */
2190     switch (CC) {
2191       case ISD::SETEQ:
2192       case ISD::SETOEQ:
2193         if (VecVT == MVT::v4f32)
2194           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2195         else if (VecVT == MVT::v2f64)
2196           return PPC::XVCMPEQDP;
2197         break;
2198       case ISD::SETGT:
2199       case ISD::SETOGT:
2200         if (VecVT == MVT::v4f32)
2201           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2202         else if (VecVT == MVT::v2f64)
2203           return PPC::XVCMPGTDP;
2204         break;
2205       case ISD::SETGE:
2206       case ISD::SETOGE:
2207         if (VecVT == MVT::v4f32)
2208           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2209         else if (VecVT == MVT::v2f64)
2210           return PPC::XVCMPGEDP;
2211         break;
2212       default:
2213         break;
2214     }
2215     llvm_unreachable("Invalid floating-point vector compare condition");
2216   } else {
2217     /* Handle some cases by swapping input operands.  */
2218     switch (CC) {
2219       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2220       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2221       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2222       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2223       default: break;
2224     }
2225     /* Handle some cases by negating the result.  */
2226     switch (CC) {
2227       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2228       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2229       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2230       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2231       default: break;
2232     }
2233     /* We have instructions implementing the remaining cases.  */
2234     switch (CC) {
2235       case ISD::SETEQ:
2236       case ISD::SETUEQ:
2237         if (VecVT == MVT::v16i8)
2238           return PPC::VCMPEQUB;
2239         else if (VecVT == MVT::v8i16)
2240           return PPC::VCMPEQUH;
2241         else if (VecVT == MVT::v4i32)
2242           return PPC::VCMPEQUW;
2243         else if (VecVT == MVT::v2i64)
2244           return PPC::VCMPEQUD;
2245         break;
2246       case ISD::SETGT:
2247         if (VecVT == MVT::v16i8)
2248           return PPC::VCMPGTSB;
2249         else if (VecVT == MVT::v8i16)
2250           return PPC::VCMPGTSH;
2251         else if (VecVT == MVT::v4i32)
2252           return PPC::VCMPGTSW;
2253         else if (VecVT == MVT::v2i64)
2254           return PPC::VCMPGTSD;
2255         break;
2256       case ISD::SETUGT:
2257         if (VecVT == MVT::v16i8)
2258           return PPC::VCMPGTUB;
2259         else if (VecVT == MVT::v8i16)
2260           return PPC::VCMPGTUH;
2261         else if (VecVT == MVT::v4i32)
2262           return PPC::VCMPGTUW;
2263         else if (VecVT == MVT::v2i64)
2264           return PPC::VCMPGTUD;
2265         break;
2266       default:
2267         break;
2268     }
2269     llvm_unreachable("Invalid integer vector compare condition");
2270   }
2271 }
2272 
2273 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
2274   SDLoc dl(N);
2275   unsigned Imm;
2276   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2277   EVT PtrVT =
2278       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2279   bool isPPC64 = (PtrVT == MVT::i64);
2280 
2281   if (!PPCSubTarget->useCRBits() &&
2282       isInt32Immediate(N->getOperand(1), Imm)) {
2283     // We can codegen setcc op, imm very efficiently compared to a brcond.
2284     // Check for those cases here.
2285     // setcc op, 0
2286     if (Imm == 0) {
2287       SDValue Op = N->getOperand(0);
2288       switch (CC) {
2289       default: break;
2290       case ISD::SETEQ: {
2291         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
2292         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
2293                           getI32Imm(31, dl) };
2294         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2295         return true;
2296       }
2297       case ISD::SETNE: {
2298         if (isPPC64) break;
2299         SDValue AD =
2300           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2301                                          Op, getI32Imm(~0U, dl)), 0);
2302         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
2303         return true;
2304       }
2305       case ISD::SETLT: {
2306         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2307                           getI32Imm(31, dl) };
2308         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2309         return true;
2310       }
2311       case ISD::SETGT: {
2312         SDValue T =
2313           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2314         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
2315         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
2316                           getI32Imm(31, dl) };
2317         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2318         return true;
2319       }
2320       }
2321     } else if (Imm == ~0U) {        // setcc op, -1
2322       SDValue Op = N->getOperand(0);
2323       switch (CC) {
2324       default: break;
2325       case ISD::SETEQ:
2326         if (isPPC64) break;
2327         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2328                                             Op, getI32Imm(1, dl)), 0);
2329         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2330                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
2331                                                             MVT::i32,
2332                                                             getI32Imm(0, dl)),
2333                                      0), Op.getValue(1));
2334         return true;
2335       case ISD::SETNE: {
2336         if (isPPC64) break;
2337         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
2338         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2339                                             Op, getI32Imm(~0U, dl));
2340         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
2341                              SDValue(AD, 1));
2342         return true;
2343       }
2344       case ISD::SETLT: {
2345         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2346                                                     getI32Imm(1, dl)), 0);
2347         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2348                                                     Op), 0);
2349         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
2350                           getI32Imm(31, dl) };
2351         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2352         return true;
2353       }
2354       case ISD::SETGT: {
2355         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2356                           getI32Imm(31, dl) };
2357         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2358         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
2359         return true;
2360       }
2361       }
2362     }
2363   }
2364 
2365   SDValue LHS = N->getOperand(0);
2366   SDValue RHS = N->getOperand(1);
2367 
2368   // Altivec Vector compare instructions do not set any CR register by default and
2369   // vector compare operations return the same type as the operands.
2370   if (LHS.getValueType().isVector()) {
2371     if (PPCSubTarget->hasQPX())
2372       return false;
2373 
2374     EVT VecVT = LHS.getValueType();
2375     bool Swap, Negate;
2376     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2377                                         PPCSubTarget->hasVSX(), Swap, Negate);
2378     if (Swap)
2379       std::swap(LHS, RHS);
2380 
2381     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
2382     if (Negate) {
2383       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
2384       CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
2385                            ResVT, VCmp, VCmp);
2386       return true;
2387     }
2388 
2389     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
2390     return true;
2391   }
2392 
2393   if (PPCSubTarget->useCRBits())
2394     return false;
2395 
2396   bool Inv;
2397   unsigned Idx = getCRIdxForSetCC(CC, Inv);
2398   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
2399   SDValue IntCR;
2400 
2401   // Force the ccreg into CR7.
2402   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
2403 
2404   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
2405   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
2406                                InFlag).getValue(1);
2407 
2408   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2409                                          CCReg), 0);
2410 
2411   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
2412                       getI32Imm(31, dl), getI32Imm(31, dl) };
2413   if (!Inv) {
2414     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2415     return true;
2416   }
2417 
2418   // Get the specified bit.
2419   SDValue Tmp =
2420     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2421   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
2422   return true;
2423 }
2424 
2425 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
2426   // Transfer memoperands.
2427   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2428   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2429   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
2430 }
2431 
2432 
2433 // Select - Convert the specified operand from a target-independent to a
2434 // target-specific node if it hasn't already been changed.
2435 void PPCDAGToDAGISel::Select(SDNode *N) {
2436   SDLoc dl(N);
2437   if (N->isMachineOpcode()) {
2438     N->setNodeId(-1);
2439     return;   // Already selected.
2440   }
2441 
2442   // In case any misguided DAG-level optimizations form an ADD with a
2443   // TargetConstant operand, crash here instead of miscompiling (by selecting
2444   // an r+r add instead of some kind of r+i add).
2445   if (N->getOpcode() == ISD::ADD &&
2446       N->getOperand(1).getOpcode() == ISD::TargetConstant)
2447     llvm_unreachable("Invalid ADD with TargetConstant operand");
2448 
2449   // Try matching complex bit permutations before doing anything else.
2450   if (tryBitPermutation(N))
2451     return;
2452 
2453   switch (N->getOpcode()) {
2454   default: break;
2455 
2456   case ISD::Constant: {
2457     if (N->getValueType(0) == MVT::i64) {
2458       ReplaceNode(N, getInt64(CurDAG, N));
2459       return;
2460     }
2461     break;
2462   }
2463 
2464   case ISD::SETCC: {
2465     if (trySETCC(N))
2466       return;
2467     break;
2468   }
2469   case PPCISD::GlobalBaseReg:
2470     ReplaceNode(N, getGlobalBaseReg());
2471     return;
2472 
2473   case ISD::FrameIndex:
2474     selectFrameIndex(N, N);
2475     return;
2476 
2477   case PPCISD::MFOCRF: {
2478     SDValue InFlag = N->getOperand(1);
2479     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2480                                           N->getOperand(0), InFlag));
2481     return;
2482   }
2483 
2484   case PPCISD::READ_TIME_BASE: {
2485     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2486                                           MVT::Other, N->getOperand(0)));
2487     return;
2488   }
2489 
2490   case PPCISD::SRA_ADDZE: {
2491     SDValue N0 = N->getOperand(0);
2492     SDValue ShiftAmt =
2493       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2494                                   getConstantIntValue(), dl,
2495                                   N->getValueType(0));
2496     if (N->getValueType(0) == MVT::i64) {
2497       SDNode *Op =
2498         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2499                                N0, ShiftAmt);
2500       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
2501                            SDValue(Op, 1));
2502       return;
2503     } else {
2504       assert(N->getValueType(0) == MVT::i32 &&
2505              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2506       SDNode *Op =
2507         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2508                                N0, ShiftAmt);
2509       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
2510                            SDValue(Op, 1));
2511       return;
2512     }
2513   }
2514 
2515   case ISD::LOAD: {
2516     // Handle preincrement loads.
2517     LoadSDNode *LD = cast<LoadSDNode>(N);
2518     EVT LoadedVT = LD->getMemoryVT();
2519 
2520     // Normal loads are handled by code generated from the .td file.
2521     if (LD->getAddressingMode() != ISD::PRE_INC)
2522       break;
2523 
2524     SDValue Offset = LD->getOffset();
2525     if (Offset.getOpcode() == ISD::TargetConstant ||
2526         Offset.getOpcode() == ISD::TargetGlobalAddress) {
2527 
2528       unsigned Opcode;
2529       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2530       if (LD->getValueType(0) != MVT::i64) {
2531         // Handle PPC32 integer and normal FP loads.
2532         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2533         switch (LoadedVT.getSimpleVT().SimpleTy) {
2534           default: llvm_unreachable("Invalid PPC load type!");
2535           case MVT::f64: Opcode = PPC::LFDU; break;
2536           case MVT::f32: Opcode = PPC::LFSU; break;
2537           case MVT::i32: Opcode = PPC::LWZU; break;
2538           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2539           case MVT::i1:
2540           case MVT::i8:  Opcode = PPC::LBZU; break;
2541         }
2542       } else {
2543         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2544         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2545         switch (LoadedVT.getSimpleVT().SimpleTy) {
2546           default: llvm_unreachable("Invalid PPC load type!");
2547           case MVT::i64: Opcode = PPC::LDU; break;
2548           case MVT::i32: Opcode = PPC::LWZU8; break;
2549           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2550           case MVT::i1:
2551           case MVT::i8:  Opcode = PPC::LBZU8; break;
2552         }
2553       }
2554 
2555       SDValue Chain = LD->getChain();
2556       SDValue Base = LD->getBasePtr();
2557       SDValue Ops[] = { Offset, Base, Chain };
2558       SDNode *MN = CurDAG->getMachineNode(
2559           Opcode, dl, LD->getValueType(0),
2560           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
2561       transferMemOperands(N, MN);
2562       ReplaceNode(N, MN);
2563       return;
2564     } else {
2565       unsigned Opcode;
2566       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2567       if (LD->getValueType(0) != MVT::i64) {
2568         // Handle PPC32 integer and normal FP loads.
2569         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2570         switch (LoadedVT.getSimpleVT().SimpleTy) {
2571           default: llvm_unreachable("Invalid PPC load type!");
2572           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
2573           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
2574           case MVT::f64: Opcode = PPC::LFDUX; break;
2575           case MVT::f32: Opcode = PPC::LFSUX; break;
2576           case MVT::i32: Opcode = PPC::LWZUX; break;
2577           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2578           case MVT::i1:
2579           case MVT::i8:  Opcode = PPC::LBZUX; break;
2580         }
2581       } else {
2582         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2583         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2584                "Invalid sext update load");
2585         switch (LoadedVT.getSimpleVT().SimpleTy) {
2586           default: llvm_unreachable("Invalid PPC load type!");
2587           case MVT::i64: Opcode = PPC::LDUX; break;
2588           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
2589           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2590           case MVT::i1:
2591           case MVT::i8:  Opcode = PPC::LBZUX8; break;
2592         }
2593       }
2594 
2595       SDValue Chain = LD->getChain();
2596       SDValue Base = LD->getBasePtr();
2597       SDValue Ops[] = { Base, Offset, Chain };
2598       SDNode *MN = CurDAG->getMachineNode(
2599           Opcode, dl, LD->getValueType(0),
2600           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
2601       transferMemOperands(N, MN);
2602       ReplaceNode(N, MN);
2603       return;
2604     }
2605   }
2606 
2607   case ISD::AND: {
2608     unsigned Imm, Imm2, SH, MB, ME;
2609     uint64_t Imm64;
2610 
2611     // If this is an and of a value rotated between 0 and 31 bits and then and'd
2612     // with a mask, emit rlwinm
2613     if (isInt32Immediate(N->getOperand(1), Imm) &&
2614         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
2615       SDValue Val = N->getOperand(0).getOperand(0);
2616       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
2617                         getI32Imm(ME, dl) };
2618       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2619       return;
2620     }
2621     // If this is just a masked value where the input is not handled above, and
2622     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2623     if (isInt32Immediate(N->getOperand(1), Imm) &&
2624         isRunOfOnes(Imm, MB, ME) &&
2625         N->getOperand(0).getOpcode() != ISD::ROTL) {
2626       SDValue Val = N->getOperand(0);
2627       SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
2628                         getI32Imm(ME, dl) };
2629       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2630       return;
2631     }
2632     // If this is a 64-bit zero-extension mask, emit rldicl.
2633     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2634         isMask_64(Imm64)) {
2635       SDValue Val = N->getOperand(0);
2636       MB = 64 - countTrailingOnes(Imm64);
2637       SH = 0;
2638 
2639       // If the operand is a logical right shift, we can fold it into this
2640       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2641       // for n <= mb. The right shift is really a left rotate followed by a
2642       // mask, and this mask is a more-restrictive sub-mask of the mask implied
2643       // by the shift.
2644       if (Val.getOpcode() == ISD::SRL &&
2645           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2646         assert(Imm < 64 && "Illegal shift amount");
2647         Val = Val.getOperand(0);
2648         SH = 64 - Imm;
2649       }
2650 
2651       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
2652       CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
2653       return;
2654     }
2655     // AND X, 0 -> 0, not "rlwinm 32".
2656     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
2657       ReplaceUses(SDValue(N, 0), N->getOperand(1));
2658       return;
2659     }
2660     // ISD::OR doesn't get all the bitfield insertion fun.
2661     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
2662     // bitfield insert.
2663     if (isInt32Immediate(N->getOperand(1), Imm) &&
2664         N->getOperand(0).getOpcode() == ISD::OR &&
2665         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
2666       // The idea here is to check whether this is equivalent to:
2667       //   (c1 & m) | (x & ~m)
2668       // where m is a run-of-ones mask. The logic here is that, for each bit in
2669       // c1 and c2:
2670       //  - if both are 1, then the output will be 1.
2671       //  - if both are 0, then the output will be 0.
2672       //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
2673       //    come from x.
2674       //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
2675       //    be 0.
2676       //  If that last condition is never the case, then we can form m from the
2677       //  bits that are the same between c1 and c2.
2678       unsigned MB, ME;
2679       if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
2680         SDValue Ops[] = { N->getOperand(0).getOperand(0),
2681                             N->getOperand(0).getOperand(1),
2682                             getI32Imm(0, dl), getI32Imm(MB, dl),
2683                             getI32Imm(ME, dl) };
2684         ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
2685         return;
2686       }
2687     }
2688 
2689     // Other cases are autogenerated.
2690     break;
2691   }
2692   case ISD::OR: {
2693     if (N->getValueType(0) == MVT::i32)
2694       if (tryBitfieldInsert(N))
2695         return;
2696 
2697     short Imm;
2698     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2699         isIntS16Immediate(N->getOperand(1), Imm)) {
2700       APInt LHSKnownZero, LHSKnownOne;
2701       CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2702 
2703       // If this is equivalent to an add, then we can fold it with the
2704       // FrameIndex calculation.
2705       if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
2706         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2707         return;
2708       }
2709     }
2710 
2711     // Other cases are autogenerated.
2712     break;
2713   }
2714   case ISD::ADD: {
2715     short Imm;
2716     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2717         isIntS16Immediate(N->getOperand(1), Imm)) {
2718       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2719       return;
2720     }
2721 
2722     break;
2723   }
2724   case ISD::SHL: {
2725     unsigned Imm, SH, MB, ME;
2726     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2727         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2728       SDValue Ops[] = { N->getOperand(0).getOperand(0),
2729                           getI32Imm(SH, dl), getI32Imm(MB, dl),
2730                           getI32Imm(ME, dl) };
2731       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2732       return;
2733     }
2734 
2735     // Other cases are autogenerated.
2736     break;
2737   }
2738   case ISD::SRL: {
2739     unsigned Imm, SH, MB, ME;
2740     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2741         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2742       SDValue Ops[] = { N->getOperand(0).getOperand(0),
2743                           getI32Imm(SH, dl), getI32Imm(MB, dl),
2744                           getI32Imm(ME, dl) };
2745       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2746       return;
2747     }
2748 
2749     // Other cases are autogenerated.
2750     break;
2751   }
2752   // FIXME: Remove this once the ANDI glue bug is fixed:
2753   case PPCISD::ANDIo_1_EQ_BIT:
2754   case PPCISD::ANDIo_1_GT_BIT: {
2755     if (!ANDIGlueBug)
2756       break;
2757 
2758     EVT InVT = N->getOperand(0).getValueType();
2759     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2760            "Invalid input type for ANDIo_1_EQ_BIT");
2761 
2762     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2763     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2764                                         N->getOperand(0),
2765                                         CurDAG->getTargetConstant(1, dl, InVT)),
2766                  0);
2767     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2768     SDValue SRIdxVal =
2769       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2770                                 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
2771 
2772     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
2773                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
2774     return;
2775   }
2776   case ISD::SELECT_CC: {
2777     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
2778     EVT PtrVT =
2779         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2780     bool isPPC64 = (PtrVT == MVT::i64);
2781 
2782     // If this is a select of i1 operands, we'll pattern match it.
2783     if (PPCSubTarget->useCRBits() &&
2784         N->getOperand(0).getValueType() == MVT::i1)
2785       break;
2786 
2787     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
2788     if (!isPPC64)
2789       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2790         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2791           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2792             if (N1C->isNullValue() && N3C->isNullValue() &&
2793                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2794                 // FIXME: Implement this optzn for PPC64.
2795                 N->getValueType(0) == MVT::i32) {
2796               SDNode *Tmp =
2797                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2798                                        N->getOperand(0), getI32Imm(~0U, dl));
2799               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
2800                                    N->getOperand(0), SDValue(Tmp, 1));
2801               return;
2802             }
2803 
2804     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
2805 
2806     if (N->getValueType(0) == MVT::i1) {
2807       // An i1 select is: (c & t) | (!c & f).
2808       bool Inv;
2809       unsigned Idx = getCRIdxForSetCC(CC, Inv);
2810 
2811       unsigned SRI;
2812       switch (Idx) {
2813       default: llvm_unreachable("Invalid CC index");
2814       case 0: SRI = PPC::sub_lt; break;
2815       case 1: SRI = PPC::sub_gt; break;
2816       case 2: SRI = PPC::sub_eq; break;
2817       case 3: SRI = PPC::sub_un; break;
2818       }
2819 
2820       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2821 
2822       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2823                                               CCBit, CCBit), 0);
2824       SDValue C =    Inv ? NotCCBit : CCBit,
2825               NotC = Inv ? CCBit    : NotCCBit;
2826 
2827       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2828                                            C, N->getOperand(2)), 0);
2829       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2830                                               NotC, N->getOperand(3)), 0);
2831 
2832       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2833       return;
2834     }
2835 
2836     unsigned BROpc = getPredicateForSetCC(CC);
2837 
2838     unsigned SelectCCOp;
2839     if (N->getValueType(0) == MVT::i32)
2840       SelectCCOp = PPC::SELECT_CC_I4;
2841     else if (N->getValueType(0) == MVT::i64)
2842       SelectCCOp = PPC::SELECT_CC_I8;
2843     else if (N->getValueType(0) == MVT::f32)
2844       if (PPCSubTarget->hasP8Vector())
2845         SelectCCOp = PPC::SELECT_CC_VSSRC;
2846       else
2847         SelectCCOp = PPC::SELECT_CC_F4;
2848     else if (N->getValueType(0) == MVT::f64)
2849       if (PPCSubTarget->hasVSX())
2850         SelectCCOp = PPC::SELECT_CC_VSFRC;
2851       else
2852         SelectCCOp = PPC::SELECT_CC_F8;
2853     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
2854       SelectCCOp = PPC::SELECT_CC_QFRC;
2855     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
2856       SelectCCOp = PPC::SELECT_CC_QSRC;
2857     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
2858       SelectCCOp = PPC::SELECT_CC_QBRC;
2859     else if (N->getValueType(0) == MVT::v2f64 ||
2860              N->getValueType(0) == MVT::v2i64)
2861       SelectCCOp = PPC::SELECT_CC_VSRC;
2862     else
2863       SelectCCOp = PPC::SELECT_CC_VRRC;
2864 
2865     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
2866                         getI32Imm(BROpc, dl) };
2867     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
2868     return;
2869   }
2870   case ISD::VSELECT:
2871     if (PPCSubTarget->hasVSX()) {
2872       SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
2873       CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
2874       return;
2875     }
2876 
2877     break;
2878   case ISD::VECTOR_SHUFFLE:
2879     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
2880                                   N->getValueType(0) == MVT::v2i64)) {
2881       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2882 
2883       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2884               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2885       unsigned DM[2];
2886 
2887       for (int i = 0; i < 2; ++i)
2888         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2889           DM[i] = 0;
2890         else
2891           DM[i] = 1;
2892 
2893       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2894           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2895           isa<LoadSDNode>(Op1.getOperand(0))) {
2896         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2897         SDValue Base, Offset;
2898 
2899         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
2900             (LD->getMemoryVT() == MVT::f64 ||
2901              LD->getMemoryVT() == MVT::i64) &&
2902             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2903           SDValue Chain = LD->getChain();
2904           SDValue Ops[] = { Base, Offset, Chain };
2905           CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops);
2906           return;
2907         }
2908       }
2909 
2910       // For little endian, we must swap the input operands and adjust
2911       // the mask elements (reverse and invert them).
2912       if (PPCSubTarget->isLittleEndian()) {
2913         std::swap(Op1, Op2);
2914         unsigned tmp = DM[0];
2915         DM[0] = 1 - DM[1];
2916         DM[1] = 1 - tmp;
2917       }
2918 
2919       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
2920                                               MVT::i32);
2921       SDValue Ops[] = { Op1, Op2, DMV };
2922       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
2923       return;
2924     }
2925 
2926     break;
2927   case PPCISD::BDNZ:
2928   case PPCISD::BDZ: {
2929     bool IsPPC64 = PPCSubTarget->isPPC64();
2930     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2931     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
2932                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2933                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
2934                          MVT::Other, Ops);
2935     return;
2936   }
2937   case PPCISD::COND_BRANCH: {
2938     // Op #0 is the Chain.
2939     // Op #1 is the PPC::PRED_* number.
2940     // Op #2 is the CR#
2941     // Op #3 is the Dest MBB
2942     // Op #4 is the Flag.
2943     // Prevent PPC::PRED_* from being selected into LI.
2944     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2945     if (EnableBranchHint)
2946       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
2947 
2948     SDValue Pred = getI32Imm(PCC, dl);
2949     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
2950       N->getOperand(0), N->getOperand(4) };
2951     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2952     return;
2953   }
2954   case ISD::BR_CC: {
2955     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2956     unsigned PCC = getPredicateForSetCC(CC);
2957 
2958     if (N->getOperand(2).getValueType() == MVT::i1) {
2959       unsigned Opc;
2960       bool Swap;
2961       switch (PCC) {
2962       default: llvm_unreachable("Unexpected Boolean-operand predicate");
2963       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
2964       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
2965       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
2966       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
2967       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2968       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
2969       }
2970 
2971       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2972                                              N->getOperand(Swap ? 3 : 2),
2973                                              N->getOperand(Swap ? 2 : 3)), 0);
2974       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
2975                            N->getOperand(0));
2976       return;
2977     }
2978 
2979     if (EnableBranchHint)
2980       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
2981 
2982     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
2983     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
2984                         N->getOperand(4), N->getOperand(0) };
2985     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2986     return;
2987   }
2988   case ISD::BRIND: {
2989     // FIXME: Should custom lower this.
2990     SDValue Chain = N->getOperand(0);
2991     SDValue Target = N->getOperand(1);
2992     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
2993     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
2994     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
2995                                            Chain), 0);
2996     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
2997     return;
2998   }
2999   case PPCISD::TOC_ENTRY: {
3000     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
3001             "Only supported for 64-bit ABI and 32-bit SVR4");
3002     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
3003       SDValue GA = N->getOperand(0);
3004       SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
3005                                           N->getOperand(1));
3006       transferMemOperands(N, MN);
3007       ReplaceNode(N, MN);
3008       return;
3009     }
3010 
3011     // For medium and large code model, we generate two instructions as
3012     // described below.  Otherwise we allow SelectCodeCommon to handle this,
3013     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
3014     CodeModel::Model CModel = TM.getCodeModel();
3015     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
3016       break;
3017 
3018     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
3019     // If it must be toc-referenced according to PPCSubTarget, we generate:
3020     //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
3021     // Otherwise we generate:
3022     //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
3023     SDValue GA = N->getOperand(0);
3024     SDValue TOCbase = N->getOperand(1);
3025     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
3026                                          TOCbase, GA);
3027 
3028     if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
3029         CModel == CodeModel::Large) {
3030       SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3031                                           SDValue(Tmp, 0));
3032       transferMemOperands(N, MN);
3033       ReplaceNode(N, MN);
3034       return;
3035     }
3036 
3037     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
3038       const GlobalValue *GV = G->getGlobal();
3039       unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
3040       if (GVFlags & PPCII::MO_NLP_FLAG) {
3041         SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3042                                             SDValue(Tmp, 0));
3043         transferMemOperands(N, MN);
3044         ReplaceNode(N, MN);
3045         return;
3046       }
3047     }
3048 
3049     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
3050                                           SDValue(Tmp, 0), GA));
3051     return;
3052   }
3053   case PPCISD::PPC32_PICGOT: {
3054     // Generate a PIC-safe GOT reference.
3055     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
3056       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
3057     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
3058                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
3059                          MVT::i32);
3060     return;
3061   }
3062   case PPCISD::VADD_SPLAT: {
3063     // This expands into one of three sequences, depending on whether
3064     // the first operand is odd or even, positive or negative.
3065     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
3066            isa<ConstantSDNode>(N->getOperand(1)) &&
3067            "Invalid operand on VADD_SPLAT!");
3068 
3069     int Elt     = N->getConstantOperandVal(0);
3070     int EltSize = N->getConstantOperandVal(1);
3071     unsigned Opc1, Opc2, Opc3;
3072     EVT VT;
3073 
3074     if (EltSize == 1) {
3075       Opc1 = PPC::VSPLTISB;
3076       Opc2 = PPC::VADDUBM;
3077       Opc3 = PPC::VSUBUBM;
3078       VT = MVT::v16i8;
3079     } else if (EltSize == 2) {
3080       Opc1 = PPC::VSPLTISH;
3081       Opc2 = PPC::VADDUHM;
3082       Opc3 = PPC::VSUBUHM;
3083       VT = MVT::v8i16;
3084     } else {
3085       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
3086       Opc1 = PPC::VSPLTISW;
3087       Opc2 = PPC::VADDUWM;
3088       Opc3 = PPC::VSUBUWM;
3089       VT = MVT::v4i32;
3090     }
3091 
3092     if ((Elt & 1) == 0) {
3093       // Elt is even, in the range [-32,-18] + [16,30].
3094       //
3095       // Convert: VADD_SPLAT elt, size
3096       // Into:    tmp = VSPLTIS[BHW] elt
3097       //          VADDU[BHW]M tmp, tmp
3098       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
3099       SDValue EltVal = getI32Imm(Elt >> 1, dl);
3100       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3101       SDValue TmpVal = SDValue(Tmp, 0);
3102       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
3103       return;
3104 
3105     } else if (Elt > 0) {
3106       // Elt is odd and positive, in the range [17,31].
3107       //
3108       // Convert: VADD_SPLAT elt, size
3109       // Into:    tmp1 = VSPLTIS[BHW] elt-16
3110       //          tmp2 = VSPLTIS[BHW] -16
3111       //          VSUBU[BHW]M tmp1, tmp2
3112       SDValue EltVal = getI32Imm(Elt - 16, dl);
3113       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3114       EltVal = getI32Imm(-16, dl);
3115       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3116       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
3117                                             SDValue(Tmp2, 0)));
3118       return;
3119 
3120     } else {
3121       // Elt is odd and negative, in the range [-31,-17].
3122       //
3123       // Convert: VADD_SPLAT elt, size
3124       // Into:    tmp1 = VSPLTIS[BHW] elt+16
3125       //          tmp2 = VSPLTIS[BHW] -16
3126       //          VADDU[BHW]M tmp1, tmp2
3127       SDValue EltVal = getI32Imm(Elt + 16, dl);
3128       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3129       EltVal = getI32Imm(-16, dl);
3130       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3131       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
3132                                             SDValue(Tmp2, 0)));
3133       return;
3134     }
3135   }
3136   }
3137 
3138   SelectCode(N);
3139 }
3140 
3141 // If the target supports the cmpb instruction, do the idiom recognition here.
3142 // We don't do this as a DAG combine because we don't want to do it as nodes
3143 // are being combined (because we might miss part of the eventual idiom). We
3144 // don't want to do it during instruction selection because we want to reuse
3145 // the logic for lowering the masking operations already part of the
3146 // instruction selector.
3147 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
3148   SDLoc dl(N);
3149 
3150   assert(N->getOpcode() == ISD::OR &&
3151          "Only OR nodes are supported for CMPB");
3152 
3153   SDValue Res;
3154   if (!PPCSubTarget->hasCMPB())
3155     return Res;
3156 
3157   if (N->getValueType(0) != MVT::i32 &&
3158       N->getValueType(0) != MVT::i64)
3159     return Res;
3160 
3161   EVT VT = N->getValueType(0);
3162 
3163   SDValue RHS, LHS;
3164   bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
3165   uint64_t Mask = 0, Alt = 0;
3166 
3167   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
3168                                uint64_t &Mask, uint64_t &Alt,
3169                                SDValue &LHS, SDValue &RHS) {
3170     if (O.getOpcode() != ISD::SELECT_CC)
3171       return false;
3172     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
3173 
3174     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
3175         !isa<ConstantSDNode>(O.getOperand(3)))
3176       return false;
3177 
3178     uint64_t PM = O.getConstantOperandVal(2);
3179     uint64_t PAlt = O.getConstantOperandVal(3);
3180     for (b = 0; b < 8; ++b) {
3181       uint64_t Mask = UINT64_C(0xFF) << (8*b);
3182       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3183         break;
3184     }
3185 
3186     if (b == 8)
3187       return false;
3188     Mask |= PM;
3189     Alt  |= PAlt;
3190 
3191     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3192         O.getConstantOperandVal(1) != 0) {
3193       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3194       if (Op0.getOpcode() == ISD::TRUNCATE)
3195         Op0 = Op0.getOperand(0);
3196       if (Op1.getOpcode() == ISD::TRUNCATE)
3197         Op1 = Op1.getOperand(0);
3198 
3199       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3200           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3201           isa<ConstantSDNode>(Op0.getOperand(1))) {
3202 
3203         unsigned Bits = Op0.getValueSizeInBits();
3204         if (b != Bits/8-1)
3205           return false;
3206         if (Op0.getConstantOperandVal(1) != Bits-8)
3207           return false;
3208 
3209         LHS = Op0.getOperand(0);
3210         RHS = Op1.getOperand(0);
3211         return true;
3212       }
3213 
3214       // When we have small integers (i16 to be specific), the form present
3215       // post-legalization uses SETULT in the SELECT_CC for the
3216       // higher-order byte, depending on the fact that the
3217       // even-higher-order bytes are known to all be zero, for example:
3218       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3219       // (so when the second byte is the same, because all higher-order
3220       // bits from bytes 3 and 4 are known to be zero, the result of the
3221       // xor can be at most 255)
3222       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3223           isa<ConstantSDNode>(O.getOperand(1))) {
3224 
3225         uint64_t ULim = O.getConstantOperandVal(1);
3226         if (ULim != (UINT64_C(1) << b*8))
3227           return false;
3228 
3229         // Now we need to make sure that the upper bytes are known to be
3230         // zero.
3231         unsigned Bits = Op0.getValueSizeInBits();
3232         if (!CurDAG->MaskedValueIsZero(
3233                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
3234           return false;
3235 
3236         LHS = Op0.getOperand(0);
3237         RHS = Op0.getOperand(1);
3238         return true;
3239       }
3240 
3241       return false;
3242     }
3243 
3244     if (CC != ISD::SETEQ)
3245       return false;
3246 
3247     SDValue Op = O.getOperand(0);
3248     if (Op.getOpcode() == ISD::AND) {
3249       if (!isa<ConstantSDNode>(Op.getOperand(1)))
3250         return false;
3251       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3252         return false;
3253 
3254       SDValue XOR = Op.getOperand(0);
3255       if (XOR.getOpcode() == ISD::TRUNCATE)
3256         XOR = XOR.getOperand(0);
3257       if (XOR.getOpcode() != ISD::XOR)
3258         return false;
3259 
3260       LHS = XOR.getOperand(0);
3261       RHS = XOR.getOperand(1);
3262       return true;
3263     } else if (Op.getOpcode() == ISD::SRL) {
3264       if (!isa<ConstantSDNode>(Op.getOperand(1)))
3265         return false;
3266       unsigned Bits = Op.getValueSizeInBits();
3267       if (b != Bits/8-1)
3268         return false;
3269       if (Op.getConstantOperandVal(1) != Bits-8)
3270         return false;
3271 
3272       SDValue XOR = Op.getOperand(0);
3273       if (XOR.getOpcode() == ISD::TRUNCATE)
3274         XOR = XOR.getOperand(0);
3275       if (XOR.getOpcode() != ISD::XOR)
3276         return false;
3277 
3278       LHS = XOR.getOperand(0);
3279       RHS = XOR.getOperand(1);
3280       return true;
3281     }
3282 
3283     return false;
3284   };
3285 
3286   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3287   while (!Queue.empty()) {
3288     SDValue V = Queue.pop_back_val();
3289 
3290     for (const SDValue &O : V.getNode()->ops()) {
3291       unsigned b;
3292       uint64_t M = 0, A = 0;
3293       SDValue OLHS, ORHS;
3294       if (O.getOpcode() == ISD::OR) {
3295         Queue.push_back(O);
3296       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3297         if (!LHS) {
3298           LHS = OLHS;
3299           RHS = ORHS;
3300           BytesFound[b] = true;
3301           Mask |= M;
3302           Alt  |= A;
3303         } else if ((LHS == ORHS && RHS == OLHS) ||
3304                    (RHS == ORHS && LHS == OLHS)) {
3305           BytesFound[b] = true;
3306           Mask |= M;
3307           Alt  |= A;
3308         } else {
3309           return Res;
3310         }
3311       } else {
3312         return Res;
3313       }
3314     }
3315   }
3316 
3317   unsigned LastB = 0, BCnt = 0;
3318   for (unsigned i = 0; i < 8; ++i)
3319     if (BytesFound[LastB]) {
3320       ++BCnt;
3321       LastB = i;
3322     }
3323 
3324   if (!LastB || BCnt < 2)
3325     return Res;
3326 
3327   // Because we'll be zero-extending the output anyway if don't have a specific
3328   // value for each input byte (via the Mask), we can 'anyext' the inputs.
3329   if (LHS.getValueType() != VT) {
3330     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3331     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3332   }
3333 
3334   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3335 
3336   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3337   if (NonTrivialMask && !Alt) {
3338     // Res = Mask & CMPB
3339     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3340                           CurDAG->getConstant(Mask, dl, VT));
3341   } else if (Alt) {
3342     // Res = (CMPB & Mask) | (~CMPB & Alt)
3343     // Which, as suggested here:
3344     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3345     // can be written as:
3346     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3347     // useful because the (Alt ^ Mask) can be pre-computed.
3348     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3349                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
3350     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
3351                           CurDAG->getConstant(Alt, dl, VT));
3352   }
3353 
3354   return Res;
3355 }
3356 
3357 // When CR bit registers are enabled, an extension of an i1 variable to a i32
3358 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
3359 // involves constant materialization of a 0 or a 1 or both. If the result of
3360 // the extension is then operated upon by some operator that can be constant
3361 // folded with a constant 0 or 1, and that constant can be materialized using
3362 // only one instruction (like a zero or one), then we should fold in those
3363 // operations with the select.
3364 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
3365   if (!PPCSubTarget->useCRBits())
3366     return;
3367 
3368   if (N->getOpcode() != ISD::ZERO_EXTEND &&
3369       N->getOpcode() != ISD::SIGN_EXTEND &&
3370       N->getOpcode() != ISD::ANY_EXTEND)
3371     return;
3372 
3373   if (N->getOperand(0).getValueType() != MVT::i1)
3374     return;
3375 
3376   if (!N->hasOneUse())
3377     return;
3378 
3379   SDLoc dl(N);
3380   EVT VT = N->getValueType(0);
3381   SDValue Cond = N->getOperand(0);
3382   SDValue ConstTrue =
3383     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
3384   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
3385 
3386   do {
3387     SDNode *User = *N->use_begin();
3388     if (User->getNumOperands() != 2)
3389       break;
3390 
3391     auto TryFold = [this, N, User, dl](SDValue Val) {
3392       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
3393       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
3394       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
3395 
3396       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
3397                                             User->getValueType(0),
3398                                             O0.getNode(), O1.getNode());
3399     };
3400 
3401     SDValue TrueRes = TryFold(ConstTrue);
3402     if (!TrueRes)
3403       break;
3404     SDValue FalseRes = TryFold(ConstFalse);
3405     if (!FalseRes)
3406       break;
3407 
3408     // For us to materialize these using one instruction, we must be able to
3409     // represent them as signed 16-bit integers.
3410     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
3411              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
3412     if (!isInt<16>(True) || !isInt<16>(False))
3413       break;
3414 
3415     // We can replace User with a new SELECT node, and try again to see if we
3416     // can fold the select with its user.
3417     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
3418     N = User;
3419     ConstTrue = TrueRes;
3420     ConstFalse = FalseRes;
3421   } while (N->hasOneUse());
3422 }
3423 
3424 void PPCDAGToDAGISel::PreprocessISelDAG() {
3425   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3426   ++Position;
3427 
3428   bool MadeChange = false;
3429   while (Position != CurDAG->allnodes_begin()) {
3430     SDNode *N = &*--Position;
3431     if (N->use_empty())
3432       continue;
3433 
3434     SDValue Res;
3435     switch (N->getOpcode()) {
3436     default: break;
3437     case ISD::OR:
3438       Res = combineToCMPB(N);
3439       break;
3440     }
3441 
3442     if (!Res)
3443       foldBoolExts(Res, N);
3444 
3445     if (Res) {
3446       DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
3447       DEBUG(N->dump(CurDAG));
3448       DEBUG(dbgs() << "\nNew: ");
3449       DEBUG(Res.getNode()->dump(CurDAG));
3450       DEBUG(dbgs() << "\n");
3451 
3452       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3453       MadeChange = true;
3454     }
3455   }
3456 
3457   if (MadeChange)
3458     CurDAG->RemoveDeadNodes();
3459 }
3460 
3461 /// PostprocessISelDAG - Perform some late peephole optimizations
3462 /// on the DAG representation.
3463 void PPCDAGToDAGISel::PostprocessISelDAG() {
3464 
3465   // Skip peepholes at -O0.
3466   if (TM.getOptLevel() == CodeGenOpt::None)
3467     return;
3468 
3469   PeepholePPC64();
3470   PeepholeCROps();
3471   PeepholePPC64ZExt();
3472 }
3473 
3474 // Check if all users of this node will become isel where the second operand
3475 // is the constant zero. If this is so, and if we can negate the condition,
3476 // then we can flip the true and false operands. This will allow the zero to
3477 // be folded with the isel so that we don't need to materialize a register
3478 // containing zero.
3479 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3480   // If we're not using isel, then this does not matter.
3481   if (!PPCSubTarget->hasISEL())
3482     return false;
3483 
3484   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3485        UI != UE; ++UI) {
3486     SDNode *User = *UI;
3487     if (!User->isMachineOpcode())
3488       return false;
3489     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3490         User->getMachineOpcode() != PPC::SELECT_I8)
3491       return false;
3492 
3493     SDNode *Op2 = User->getOperand(2).getNode();
3494     if (!Op2->isMachineOpcode())
3495       return false;
3496 
3497     if (Op2->getMachineOpcode() != PPC::LI &&
3498         Op2->getMachineOpcode() != PPC::LI8)
3499       return false;
3500 
3501     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3502     if (!C)
3503       return false;
3504 
3505     if (!C->isNullValue())
3506       return false;
3507   }
3508 
3509   return true;
3510 }
3511 
3512 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3513   SmallVector<SDNode *, 4> ToReplace;
3514   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3515        UI != UE; ++UI) {
3516     SDNode *User = *UI;
3517     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3518             User->getMachineOpcode() == PPC::SELECT_I8) &&
3519            "Must have all select users");
3520     ToReplace.push_back(User);
3521   }
3522 
3523   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3524        UE = ToReplace.end(); UI != UE; ++UI) {
3525     SDNode *User = *UI;
3526     SDNode *ResNode =
3527       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3528                              User->getValueType(0), User->getOperand(0),
3529                              User->getOperand(2),
3530                              User->getOperand(1));
3531 
3532       DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
3533       DEBUG(User->dump(CurDAG));
3534       DEBUG(dbgs() << "\nNew: ");
3535       DEBUG(ResNode->dump(CurDAG));
3536       DEBUG(dbgs() << "\n");
3537 
3538       ReplaceUses(User, ResNode);
3539   }
3540 }
3541 
3542 void PPCDAGToDAGISel::PeepholeCROps() {
3543   bool IsModified;
3544   do {
3545     IsModified = false;
3546     for (SDNode &Node : CurDAG->allnodes()) {
3547       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
3548       if (!MachineNode || MachineNode->use_empty())
3549         continue;
3550       SDNode *ResNode = MachineNode;
3551 
3552       bool Op1Set   = false, Op1Unset = false,
3553            Op1Not   = false,
3554            Op2Set   = false, Op2Unset = false,
3555            Op2Not   = false;
3556 
3557       unsigned Opcode = MachineNode->getMachineOpcode();
3558       switch (Opcode) {
3559       default: break;
3560       case PPC::CRAND:
3561       case PPC::CRNAND:
3562       case PPC::CROR:
3563       case PPC::CRXOR:
3564       case PPC::CRNOR:
3565       case PPC::CREQV:
3566       case PPC::CRANDC:
3567       case PPC::CRORC: {
3568         SDValue Op = MachineNode->getOperand(1);
3569         if (Op.isMachineOpcode()) {
3570           if (Op.getMachineOpcode() == PPC::CRSET)
3571             Op2Set = true;
3572           else if (Op.getMachineOpcode() == PPC::CRUNSET)
3573             Op2Unset = true;
3574           else if (Op.getMachineOpcode() == PPC::CRNOR &&
3575                    Op.getOperand(0) == Op.getOperand(1))
3576             Op2Not = true;
3577         }
3578         LLVM_FALLTHROUGH;
3579       }
3580       case PPC::BC:
3581       case PPC::BCn:
3582       case PPC::SELECT_I4:
3583       case PPC::SELECT_I8:
3584       case PPC::SELECT_F4:
3585       case PPC::SELECT_F8:
3586       case PPC::SELECT_QFRC:
3587       case PPC::SELECT_QSRC:
3588       case PPC::SELECT_QBRC:
3589       case PPC::SELECT_VRRC:
3590       case PPC::SELECT_VSFRC:
3591       case PPC::SELECT_VSSRC:
3592       case PPC::SELECT_VSRC: {
3593         SDValue Op = MachineNode->getOperand(0);
3594         if (Op.isMachineOpcode()) {
3595           if (Op.getMachineOpcode() == PPC::CRSET)
3596             Op1Set = true;
3597           else if (Op.getMachineOpcode() == PPC::CRUNSET)
3598             Op1Unset = true;
3599           else if (Op.getMachineOpcode() == PPC::CRNOR &&
3600                    Op.getOperand(0) == Op.getOperand(1))
3601             Op1Not = true;
3602         }
3603         }
3604         break;
3605       }
3606 
3607       bool SelectSwap = false;
3608       switch (Opcode) {
3609       default: break;
3610       case PPC::CRAND:
3611         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3612           // x & x = x
3613           ResNode = MachineNode->getOperand(0).getNode();
3614         else if (Op1Set)
3615           // 1 & y = y
3616           ResNode = MachineNode->getOperand(1).getNode();
3617         else if (Op2Set)
3618           // x & 1 = x
3619           ResNode = MachineNode->getOperand(0).getNode();
3620         else if (Op1Unset || Op2Unset)
3621           // x & 0 = 0 & y = 0
3622           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3623                                            MVT::i1);
3624         else if (Op1Not)
3625           // ~x & y = andc(y, x)
3626           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3627                                            MVT::i1, MachineNode->getOperand(1),
3628                                            MachineNode->getOperand(0).
3629                                              getOperand(0));
3630         else if (Op2Not)
3631           // x & ~y = andc(x, y)
3632           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3633                                            MVT::i1, MachineNode->getOperand(0),
3634                                            MachineNode->getOperand(1).
3635                                              getOperand(0));
3636         else if (AllUsersSelectZero(MachineNode)) {
3637           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3638                                            MVT::i1, MachineNode->getOperand(0),
3639                                            MachineNode->getOperand(1));
3640           SelectSwap = true;
3641         }
3642         break;
3643       case PPC::CRNAND:
3644         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3645           // nand(x, x) -> nor(x, x)
3646           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3647                                            MVT::i1, MachineNode->getOperand(0),
3648                                            MachineNode->getOperand(0));
3649         else if (Op1Set)
3650           // nand(1, y) -> nor(y, y)
3651           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3652                                            MVT::i1, MachineNode->getOperand(1),
3653                                            MachineNode->getOperand(1));
3654         else if (Op2Set)
3655           // nand(x, 1) -> nor(x, x)
3656           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3657                                            MVT::i1, MachineNode->getOperand(0),
3658                                            MachineNode->getOperand(0));
3659         else if (Op1Unset || Op2Unset)
3660           // nand(x, 0) = nand(0, y) = 1
3661           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3662                                            MVT::i1);
3663         else if (Op1Not)
3664           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3665           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3666                                            MVT::i1, MachineNode->getOperand(0).
3667                                                       getOperand(0),
3668                                            MachineNode->getOperand(1));
3669         else if (Op2Not)
3670           // nand(x, ~y) = ~x | y = orc(y, x)
3671           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3672                                            MVT::i1, MachineNode->getOperand(1).
3673                                                       getOperand(0),
3674                                            MachineNode->getOperand(0));
3675         else if (AllUsersSelectZero(MachineNode)) {
3676           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3677                                            MVT::i1, MachineNode->getOperand(0),
3678                                            MachineNode->getOperand(1));
3679           SelectSwap = true;
3680         }
3681         break;
3682       case PPC::CROR:
3683         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3684           // x | x = x
3685           ResNode = MachineNode->getOperand(0).getNode();
3686         else if (Op1Set || Op2Set)
3687           // x | 1 = 1 | y = 1
3688           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3689                                            MVT::i1);
3690         else if (Op1Unset)
3691           // 0 | y = y
3692           ResNode = MachineNode->getOperand(1).getNode();
3693         else if (Op2Unset)
3694           // x | 0 = x
3695           ResNode = MachineNode->getOperand(0).getNode();
3696         else if (Op1Not)
3697           // ~x | y = orc(y, x)
3698           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3699                                            MVT::i1, MachineNode->getOperand(1),
3700                                            MachineNode->getOperand(0).
3701                                              getOperand(0));
3702         else if (Op2Not)
3703           // x | ~y = orc(x, y)
3704           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3705                                            MVT::i1, MachineNode->getOperand(0),
3706                                            MachineNode->getOperand(1).
3707                                              getOperand(0));
3708         else if (AllUsersSelectZero(MachineNode)) {
3709           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3710                                            MVT::i1, MachineNode->getOperand(0),
3711                                            MachineNode->getOperand(1));
3712           SelectSwap = true;
3713         }
3714         break;
3715       case PPC::CRXOR:
3716         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3717           // xor(x, x) = 0
3718           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3719                                            MVT::i1);
3720         else if (Op1Set)
3721           // xor(1, y) -> nor(y, y)
3722           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3723                                            MVT::i1, MachineNode->getOperand(1),
3724                                            MachineNode->getOperand(1));
3725         else if (Op2Set)
3726           // xor(x, 1) -> nor(x, x)
3727           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3728                                            MVT::i1, MachineNode->getOperand(0),
3729                                            MachineNode->getOperand(0));
3730         else if (Op1Unset)
3731           // xor(0, y) = y
3732           ResNode = MachineNode->getOperand(1).getNode();
3733         else if (Op2Unset)
3734           // xor(x, 0) = x
3735           ResNode = MachineNode->getOperand(0).getNode();
3736         else if (Op1Not)
3737           // xor(~x, y) = eqv(x, y)
3738           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3739                                            MVT::i1, MachineNode->getOperand(0).
3740                                                       getOperand(0),
3741                                            MachineNode->getOperand(1));
3742         else if (Op2Not)
3743           // xor(x, ~y) = eqv(x, y)
3744           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3745                                            MVT::i1, MachineNode->getOperand(0),
3746                                            MachineNode->getOperand(1).
3747                                              getOperand(0));
3748         else if (AllUsersSelectZero(MachineNode)) {
3749           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3750                                            MVT::i1, MachineNode->getOperand(0),
3751                                            MachineNode->getOperand(1));
3752           SelectSwap = true;
3753         }
3754         break;
3755       case PPC::CRNOR:
3756         if (Op1Set || Op2Set)
3757           // nor(1, y) -> 0
3758           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3759                                            MVT::i1);
3760         else if (Op1Unset)
3761           // nor(0, y) = ~y -> nor(y, y)
3762           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3763                                            MVT::i1, MachineNode->getOperand(1),
3764                                            MachineNode->getOperand(1));
3765         else if (Op2Unset)
3766           // nor(x, 0) = ~x
3767           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3768                                            MVT::i1, MachineNode->getOperand(0),
3769                                            MachineNode->getOperand(0));
3770         else if (Op1Not)
3771           // nor(~x, y) = andc(x, y)
3772           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3773                                            MVT::i1, MachineNode->getOperand(0).
3774                                                       getOperand(0),
3775                                            MachineNode->getOperand(1));
3776         else if (Op2Not)
3777           // nor(x, ~y) = andc(y, x)
3778           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3779                                            MVT::i1, MachineNode->getOperand(1).
3780                                                       getOperand(0),
3781                                            MachineNode->getOperand(0));
3782         else if (AllUsersSelectZero(MachineNode)) {
3783           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3784                                            MVT::i1, MachineNode->getOperand(0),
3785                                            MachineNode->getOperand(1));
3786           SelectSwap = true;
3787         }
3788         break;
3789       case PPC::CREQV:
3790         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3791           // eqv(x, x) = 1
3792           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3793                                            MVT::i1);
3794         else if (Op1Set)
3795           // eqv(1, y) = y
3796           ResNode = MachineNode->getOperand(1).getNode();
3797         else if (Op2Set)
3798           // eqv(x, 1) = x
3799           ResNode = MachineNode->getOperand(0).getNode();
3800         else if (Op1Unset)
3801           // eqv(0, y) = ~y -> nor(y, y)
3802           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3803                                            MVT::i1, MachineNode->getOperand(1),
3804                                            MachineNode->getOperand(1));
3805         else if (Op2Unset)
3806           // eqv(x, 0) = ~x
3807           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3808                                            MVT::i1, MachineNode->getOperand(0),
3809                                            MachineNode->getOperand(0));
3810         else if (Op1Not)
3811           // eqv(~x, y) = xor(x, y)
3812           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3813                                            MVT::i1, MachineNode->getOperand(0).
3814                                                       getOperand(0),
3815                                            MachineNode->getOperand(1));
3816         else if (Op2Not)
3817           // eqv(x, ~y) = xor(x, y)
3818           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3819                                            MVT::i1, MachineNode->getOperand(0),
3820                                            MachineNode->getOperand(1).
3821                                              getOperand(0));
3822         else if (AllUsersSelectZero(MachineNode)) {
3823           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3824                                            MVT::i1, MachineNode->getOperand(0),
3825                                            MachineNode->getOperand(1));
3826           SelectSwap = true;
3827         }
3828         break;
3829       case PPC::CRANDC:
3830         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3831           // andc(x, x) = 0
3832           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3833                                            MVT::i1);
3834         else if (Op1Set)
3835           // andc(1, y) = ~y
3836           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3837                                            MVT::i1, MachineNode->getOperand(1),
3838                                            MachineNode->getOperand(1));
3839         else if (Op1Unset || Op2Set)
3840           // andc(0, y) = andc(x, 1) = 0
3841           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3842                                            MVT::i1);
3843         else if (Op2Unset)
3844           // andc(x, 0) = x
3845           ResNode = MachineNode->getOperand(0).getNode();
3846         else if (Op1Not)
3847           // andc(~x, y) = ~(x | y) = nor(x, y)
3848           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3849                                            MVT::i1, MachineNode->getOperand(0).
3850                                                       getOperand(0),
3851                                            MachineNode->getOperand(1));
3852         else if (Op2Not)
3853           // andc(x, ~y) = x & y
3854           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3855                                            MVT::i1, MachineNode->getOperand(0),
3856                                            MachineNode->getOperand(1).
3857                                              getOperand(0));
3858         else if (AllUsersSelectZero(MachineNode)) {
3859           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3860                                            MVT::i1, MachineNode->getOperand(1),
3861                                            MachineNode->getOperand(0));
3862           SelectSwap = true;
3863         }
3864         break;
3865       case PPC::CRORC:
3866         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3867           // orc(x, x) = 1
3868           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3869                                            MVT::i1);
3870         else if (Op1Set || Op2Unset)
3871           // orc(1, y) = orc(x, 0) = 1
3872           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3873                                            MVT::i1);
3874         else if (Op2Set)
3875           // orc(x, 1) = x
3876           ResNode = MachineNode->getOperand(0).getNode();
3877         else if (Op1Unset)
3878           // orc(0, y) = ~y
3879           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3880                                            MVT::i1, MachineNode->getOperand(1),
3881                                            MachineNode->getOperand(1));
3882         else if (Op1Not)
3883           // orc(~x, y) = ~(x & y) = nand(x, y)
3884           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3885                                            MVT::i1, MachineNode->getOperand(0).
3886                                                       getOperand(0),
3887                                            MachineNode->getOperand(1));
3888         else if (Op2Not)
3889           // orc(x, ~y) = x | y
3890           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3891                                            MVT::i1, MachineNode->getOperand(0),
3892                                            MachineNode->getOperand(1).
3893                                              getOperand(0));
3894         else if (AllUsersSelectZero(MachineNode)) {
3895           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3896                                            MVT::i1, MachineNode->getOperand(1),
3897                                            MachineNode->getOperand(0));
3898           SelectSwap = true;
3899         }
3900         break;
3901       case PPC::SELECT_I4:
3902       case PPC::SELECT_I8:
3903       case PPC::SELECT_F4:
3904       case PPC::SELECT_F8:
3905       case PPC::SELECT_QFRC:
3906       case PPC::SELECT_QSRC:
3907       case PPC::SELECT_QBRC:
3908       case PPC::SELECT_VRRC:
3909       case PPC::SELECT_VSFRC:
3910       case PPC::SELECT_VSSRC:
3911       case PPC::SELECT_VSRC:
3912         if (Op1Set)
3913           ResNode = MachineNode->getOperand(1).getNode();
3914         else if (Op1Unset)
3915           ResNode = MachineNode->getOperand(2).getNode();
3916         else if (Op1Not)
3917           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3918                                            SDLoc(MachineNode),
3919                                            MachineNode->getValueType(0),
3920                                            MachineNode->getOperand(0).
3921                                              getOperand(0),
3922                                            MachineNode->getOperand(2),
3923                                            MachineNode->getOperand(1));
3924         break;
3925       case PPC::BC:
3926       case PPC::BCn:
3927         if (Op1Not)
3928           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3929                                                                PPC::BC,
3930                                            SDLoc(MachineNode),
3931                                            MVT::Other,
3932                                            MachineNode->getOperand(0).
3933                                              getOperand(0),
3934                                            MachineNode->getOperand(1),
3935                                            MachineNode->getOperand(2));
3936         // FIXME: Handle Op1Set, Op1Unset here too.
3937         break;
3938       }
3939 
3940       // If we're inverting this node because it is used only by selects that
3941       // we'd like to swap, then swap the selects before the node replacement.
3942       if (SelectSwap)
3943         SwapAllSelectUsers(MachineNode);
3944 
3945       if (ResNode != MachineNode) {
3946         DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
3947         DEBUG(MachineNode->dump(CurDAG));
3948         DEBUG(dbgs() << "\nNew: ");
3949         DEBUG(ResNode->dump(CurDAG));
3950         DEBUG(dbgs() << "\n");
3951 
3952         ReplaceUses(MachineNode, ResNode);
3953         IsModified = true;
3954       }
3955     }
3956     if (IsModified)
3957       CurDAG->RemoveDeadNodes();
3958   } while (IsModified);
3959 }
3960 
3961 // Gather the set of 32-bit operations that are known to have their
3962 // higher-order 32 bits zero, where ToPromote contains all such operations.
3963 static bool PeepholePPC64ZExtGather(SDValue Op32,
3964                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
3965   if (!Op32.isMachineOpcode())
3966     return false;
3967 
3968   // First, check for the "frontier" instructions (those that will clear the
3969   // higher-order 32 bits.
3970 
3971   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3972   // around. If it does not, then these instructions will clear the
3973   // higher-order bits.
3974   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3975        Op32.getMachineOpcode() == PPC::RLWNM) &&
3976       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3977     ToPromote.insert(Op32.getNode());
3978     return true;
3979   }
3980 
3981   // SLW and SRW always clear the higher-order bits.
3982   if (Op32.getMachineOpcode() == PPC::SLW ||
3983       Op32.getMachineOpcode() == PPC::SRW) {
3984     ToPromote.insert(Op32.getNode());
3985     return true;
3986   }
3987 
3988   // For LI and LIS, we need the immediate to be positive (so that it is not
3989   // sign extended).
3990   if (Op32.getMachineOpcode() == PPC::LI ||
3991       Op32.getMachineOpcode() == PPC::LIS) {
3992     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3993       return false;
3994 
3995     ToPromote.insert(Op32.getNode());
3996     return true;
3997   }
3998 
3999   // LHBRX and LWBRX always clear the higher-order bits.
4000   if (Op32.getMachineOpcode() == PPC::LHBRX ||
4001       Op32.getMachineOpcode() == PPC::LWBRX) {
4002     ToPromote.insert(Op32.getNode());
4003     return true;
4004   }
4005 
4006   // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
4007   if (Op32.getMachineOpcode() == PPC::CNTLZW) {
4008     ToPromote.insert(Op32.getNode());
4009     return true;
4010   }
4011 
4012   // Next, check for those instructions we can look through.
4013 
4014   // Assuming the mask does not wrap around, then the higher-order bits are
4015   // taken directly from the first operand.
4016   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
4017       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
4018     SmallPtrSet<SDNode *, 16> ToPromote1;
4019     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4020       return false;
4021 
4022     ToPromote.insert(Op32.getNode());
4023     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4024     return true;
4025   }
4026 
4027   // For OR, the higher-order bits are zero if that is true for both operands.
4028   // For SELECT_I4, the same is true (but the relevant operand numbers are
4029   // shifted by 1).
4030   if (Op32.getMachineOpcode() == PPC::OR ||
4031       Op32.getMachineOpcode() == PPC::SELECT_I4) {
4032     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
4033     SmallPtrSet<SDNode *, 16> ToPromote1;
4034     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
4035       return false;
4036     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
4037       return false;
4038 
4039     ToPromote.insert(Op32.getNode());
4040     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4041     return true;
4042   }
4043 
4044   // For ORI and ORIS, we need the higher-order bits of the first operand to be
4045   // zero, and also for the constant to be positive (so that it is not sign
4046   // extended).
4047   if (Op32.getMachineOpcode() == PPC::ORI ||
4048       Op32.getMachineOpcode() == PPC::ORIS) {
4049     SmallPtrSet<SDNode *, 16> ToPromote1;
4050     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4051       return false;
4052     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
4053       return false;
4054 
4055     ToPromote.insert(Op32.getNode());
4056     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4057     return true;
4058   }
4059 
4060   // The higher-order bits of AND are zero if that is true for at least one of
4061   // the operands.
4062   if (Op32.getMachineOpcode() == PPC::AND) {
4063     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
4064     bool Op0OK =
4065       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4066     bool Op1OK =
4067       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
4068     if (!Op0OK && !Op1OK)
4069       return false;
4070 
4071     ToPromote.insert(Op32.getNode());
4072 
4073     if (Op0OK)
4074       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4075 
4076     if (Op1OK)
4077       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
4078 
4079     return true;
4080   }
4081 
4082   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
4083   // of the first operand, or if the second operand is positive (so that it is
4084   // not sign extended).
4085   if (Op32.getMachineOpcode() == PPC::ANDIo ||
4086       Op32.getMachineOpcode() == PPC::ANDISo) {
4087     SmallPtrSet<SDNode *, 16> ToPromote1;
4088     bool Op0OK =
4089       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4090     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
4091     if (!Op0OK && !Op1OK)
4092       return false;
4093 
4094     ToPromote.insert(Op32.getNode());
4095 
4096     if (Op0OK)
4097       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4098 
4099     return true;
4100   }
4101 
4102   return false;
4103 }
4104 
4105 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
4106   if (!PPCSubTarget->isPPC64())
4107     return;
4108 
4109   // When we zero-extend from i32 to i64, we use a pattern like this:
4110   // def : Pat<(i64 (zext i32:$in)),
4111   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
4112   //                   0, 32)>;
4113   // There are several 32-bit shift/rotate instructions, however, that will
4114   // clear the higher-order bits of their output, rendering the RLDICL
4115   // unnecessary. When that happens, we remove it here, and redefine the
4116   // relevant 32-bit operation to be a 64-bit operation.
4117 
4118   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4119   ++Position;
4120 
4121   bool MadeChange = false;
4122   while (Position != CurDAG->allnodes_begin()) {
4123     SDNode *N = &*--Position;
4124     // Skip dead nodes and any non-machine opcodes.
4125     if (N->use_empty() || !N->isMachineOpcode())
4126       continue;
4127 
4128     if (N->getMachineOpcode() != PPC::RLDICL)
4129       continue;
4130 
4131     if (N->getConstantOperandVal(1) != 0 ||
4132         N->getConstantOperandVal(2) != 32)
4133       continue;
4134 
4135     SDValue ISR = N->getOperand(0);
4136     if (!ISR.isMachineOpcode() ||
4137         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
4138       continue;
4139 
4140     if (!ISR.hasOneUse())
4141       continue;
4142 
4143     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
4144       continue;
4145 
4146     SDValue IDef = ISR.getOperand(0);
4147     if (!IDef.isMachineOpcode() ||
4148         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
4149       continue;
4150 
4151     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
4152     // can get rid of it.
4153 
4154     SDValue Op32 = ISR->getOperand(1);
4155     if (!Op32.isMachineOpcode())
4156       continue;
4157 
4158     // There are some 32-bit instructions that always clear the high-order 32
4159     // bits, there are also some instructions (like AND) that we can look
4160     // through.
4161     SmallPtrSet<SDNode *, 16> ToPromote;
4162     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
4163       continue;
4164 
4165     // If the ToPromote set contains nodes that have uses outside of the set
4166     // (except for the original INSERT_SUBREG), then abort the transformation.
4167     bool OutsideUse = false;
4168     for (SDNode *PN : ToPromote) {
4169       for (SDNode *UN : PN->uses()) {
4170         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
4171           OutsideUse = true;
4172           break;
4173         }
4174       }
4175 
4176       if (OutsideUse)
4177         break;
4178     }
4179     if (OutsideUse)
4180       continue;
4181 
4182     MadeChange = true;
4183 
4184     // We now know that this zero extension can be removed by promoting to
4185     // nodes in ToPromote to 64-bit operations, where for operations in the
4186     // frontier of the set, we need to insert INSERT_SUBREGs for their
4187     // operands.
4188     for (SDNode *PN : ToPromote) {
4189       unsigned NewOpcode;
4190       switch (PN->getMachineOpcode()) {
4191       default:
4192         llvm_unreachable("Don't know the 64-bit variant of this instruction");
4193       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
4194       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
4195       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
4196       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
4197       case PPC::LI:        NewOpcode = PPC::LI8; break;
4198       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
4199       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
4200       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
4201       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
4202       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
4203       case PPC::OR:        NewOpcode = PPC::OR8; break;
4204       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
4205       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
4206       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
4207       case PPC::AND:       NewOpcode = PPC::AND8; break;
4208       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
4209       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
4210       }
4211 
4212       // Note: During the replacement process, the nodes will be in an
4213       // inconsistent state (some instructions will have operands with values
4214       // of the wrong type). Once done, however, everything should be right
4215       // again.
4216 
4217       SmallVector<SDValue, 4> Ops;
4218       for (const SDValue &V : PN->ops()) {
4219         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
4220             !isa<ConstantSDNode>(V)) {
4221           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
4222           SDNode *ReplOp =
4223             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
4224                                    ISR.getNode()->getVTList(), ReplOpOps);
4225           Ops.push_back(SDValue(ReplOp, 0));
4226         } else {
4227           Ops.push_back(V);
4228         }
4229       }
4230 
4231       // Because all to-be-promoted nodes only have users that are other
4232       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
4233       // the i32 result value type with i64.
4234 
4235       SmallVector<EVT, 2> NewVTs;
4236       SDVTList VTs = PN->getVTList();
4237       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
4238         if (VTs.VTs[i] == MVT::i32)
4239           NewVTs.push_back(MVT::i64);
4240         else
4241           NewVTs.push_back(VTs.VTs[i]);
4242 
4243       DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
4244       DEBUG(PN->dump(CurDAG));
4245 
4246       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
4247 
4248       DEBUG(dbgs() << "\nNew: ");
4249       DEBUG(PN->dump(CurDAG));
4250       DEBUG(dbgs() << "\n");
4251     }
4252 
4253     // Now we replace the original zero extend and its associated INSERT_SUBREG
4254     // with the value feeding the INSERT_SUBREG (which has now been promoted to
4255     // return an i64).
4256 
4257     DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
4258     DEBUG(N->dump(CurDAG));
4259     DEBUG(dbgs() << "\nNew: ");
4260     DEBUG(Op32.getNode()->dump(CurDAG));
4261     DEBUG(dbgs() << "\n");
4262 
4263     ReplaceUses(N, Op32.getNode());
4264   }
4265 
4266   if (MadeChange)
4267     CurDAG->RemoveDeadNodes();
4268 }
4269 
4270 void PPCDAGToDAGISel::PeepholePPC64() {
4271   // These optimizations are currently supported only for 64-bit SVR4.
4272   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
4273     return;
4274 
4275   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4276   ++Position;
4277 
4278   while (Position != CurDAG->allnodes_begin()) {
4279     SDNode *N = &*--Position;
4280     // Skip dead nodes and any non-machine opcodes.
4281     if (N->use_empty() || !N->isMachineOpcode())
4282       continue;
4283 
4284     unsigned FirstOp;
4285     unsigned StorageOpcode = N->getMachineOpcode();
4286 
4287     switch (StorageOpcode) {
4288     default: continue;
4289 
4290     case PPC::LBZ:
4291     case PPC::LBZ8:
4292     case PPC::LD:
4293     case PPC::LFD:
4294     case PPC::LFS:
4295     case PPC::LHA:
4296     case PPC::LHA8:
4297     case PPC::LHZ:
4298     case PPC::LHZ8:
4299     case PPC::LWA:
4300     case PPC::LWZ:
4301     case PPC::LWZ8:
4302       FirstOp = 0;
4303       break;
4304 
4305     case PPC::STB:
4306     case PPC::STB8:
4307     case PPC::STD:
4308     case PPC::STFD:
4309     case PPC::STFS:
4310     case PPC::STH:
4311     case PPC::STH8:
4312     case PPC::STW:
4313     case PPC::STW8:
4314       FirstOp = 1;
4315       break;
4316     }
4317 
4318     // If this is a load or store with a zero offset, or within the alignment,
4319     // we may be able to fold an add-immediate into the memory operation.
4320     // The check against alignment is below, as it can't occur until we check
4321     // the arguments to N
4322     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
4323       continue;
4324 
4325     SDValue Base = N->getOperand(FirstOp + 1);
4326     if (!Base.isMachineOpcode())
4327       continue;
4328 
4329     unsigned Flags = 0;
4330     bool ReplaceFlags = true;
4331 
4332     // When the feeding operation is an add-immediate of some sort,
4333     // determine whether we need to add relocation information to the
4334     // target flags on the immediate operand when we fold it into the
4335     // load instruction.
4336     //
4337     // For something like ADDItocL, the relocation information is
4338     // inferred from the opcode; when we process it in the AsmPrinter,
4339     // we add the necessary relocation there.  A load, though, can receive
4340     // relocation from various flavors of ADDIxxx, so we need to carry
4341     // the relocation information in the target flags.
4342     switch (Base.getMachineOpcode()) {
4343     default: continue;
4344 
4345     case PPC::ADDI8:
4346     case PPC::ADDI:
4347       // In some cases (such as TLS) the relocation information
4348       // is already in place on the operand, so copying the operand
4349       // is sufficient.
4350       ReplaceFlags = false;
4351       // For these cases, the immediate may not be divisible by 4, in
4352       // which case the fold is illegal for DS-form instructions.  (The
4353       // other cases provide aligned addresses and are always safe.)
4354       if ((StorageOpcode == PPC::LWA ||
4355            StorageOpcode == PPC::LD  ||
4356            StorageOpcode == PPC::STD) &&
4357           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4358            Base.getConstantOperandVal(1) % 4 != 0))
4359         continue;
4360       break;
4361     case PPC::ADDIdtprelL:
4362       Flags = PPCII::MO_DTPREL_LO;
4363       break;
4364     case PPC::ADDItlsldL:
4365       Flags = PPCII::MO_TLSLD_LO;
4366       break;
4367     case PPC::ADDItocL:
4368       Flags = PPCII::MO_TOC_LO;
4369       break;
4370     }
4371 
4372     SDValue ImmOpnd = Base.getOperand(1);
4373 
4374     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
4375     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
4376     // we might have needed different @ha relocation values for the offset
4377     // pointers).
4378     int MaxDisplacement = 7;
4379     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4380       const GlobalValue *GV = GA->getGlobal();
4381       MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
4382     }
4383 
4384     bool UpdateHBase = false;
4385     SDValue HBase = Base.getOperand(0);
4386 
4387     int Offset = N->getConstantOperandVal(FirstOp);
4388     if (ReplaceFlags) {
4389       if (Offset < 0 || Offset > MaxDisplacement) {
4390         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
4391         // one use, then we can do this for any offset, we just need to also
4392         // update the offset (i.e. the symbol addend) on the addis also.
4393         if (Base.getMachineOpcode() != PPC::ADDItocL)
4394           continue;
4395 
4396         if (!HBase.isMachineOpcode() ||
4397             HBase.getMachineOpcode() != PPC::ADDIStocHA)
4398           continue;
4399 
4400         if (!Base.hasOneUse() || !HBase.hasOneUse())
4401           continue;
4402 
4403         SDValue HImmOpnd = HBase.getOperand(1);
4404         if (HImmOpnd != ImmOpnd)
4405           continue;
4406 
4407         UpdateHBase = true;
4408       }
4409     } else {
4410       // If we're directly folding the addend from an addi instruction, then:
4411       //  1. In general, the offset on the memory access must be zero.
4412       //  2. If the addend is a constant, then it can be combined with a
4413       //     non-zero offset, but only if the result meets the encoding
4414       //     requirements.
4415       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
4416         Offset += C->getSExtValue();
4417 
4418         if ((StorageOpcode == PPC::LWA || StorageOpcode == PPC::LD ||
4419              StorageOpcode == PPC::STD) && (Offset % 4) != 0)
4420           continue;
4421 
4422         if (!isInt<16>(Offset))
4423           continue;
4424 
4425         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
4426                                             ImmOpnd.getValueType());
4427       } else if (Offset != 0) {
4428         continue;
4429       }
4430     }
4431 
4432     // We found an opportunity.  Reverse the operands from the add
4433     // immediate and substitute them into the load or store.  If
4434     // needed, update the target flags for the immediate operand to
4435     // reflect the necessary relocation information.
4436     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
4437     DEBUG(Base->dump(CurDAG));
4438     DEBUG(dbgs() << "\nN: ");
4439     DEBUG(N->dump(CurDAG));
4440     DEBUG(dbgs() << "\n");
4441 
4442     // If the relocation information isn't already present on the
4443     // immediate operand, add it now.
4444     if (ReplaceFlags) {
4445       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4446         SDLoc dl(GA);
4447         const GlobalValue *GV = GA->getGlobal();
4448         // We can't perform this optimization for data whose alignment
4449         // is insufficient for the instruction encoding.
4450         if (GV->getAlignment() < 4 &&
4451             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4452              StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
4453           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4454           continue;
4455         }
4456         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
4457       } else if (ConstantPoolSDNode *CP =
4458                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
4459         const Constant *C = CP->getConstVal();
4460         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4461                                                 CP->getAlignment(),
4462                                                 Offset, Flags);
4463       }
4464     }
4465 
4466     if (FirstOp == 1) // Store
4467       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4468                                        Base.getOperand(0), N->getOperand(3));
4469     else // Load
4470       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4471                                        N->getOperand(2));
4472 
4473     if (UpdateHBase)
4474       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
4475                                        ImmOpnd);
4476 
4477     // The add-immediate may now be dead, in which case remove it.
4478     if (Base.getNode()->use_empty())
4479       CurDAG->RemoveDeadNode(Base.getNode());
4480   }
4481 }
4482 
4483 
4484 /// createPPCISelDag - This pass converts a legalized DAG into a
4485 /// PowerPC-specific DAG, ready for instruction scheduling.
4486 ///
4487 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
4488   return new PPCDAGToDAGISel(TM);
4489 }
4490