1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/PPCPredicates.h" 14 #include "PPCFrameLowering.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/Target/TargetOptions.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "framelowering" 33 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 34 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 35 STATISTIC(NumPrologProbed, "Number of prologues probed"); 36 37 static cl::opt<bool> 38 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 39 cl::desc("Enable spills in prologue to vector registers."), 40 cl::init(false), cl::Hidden); 41 42 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 43 if (STI.isAIXABI()) 44 return STI.isPPC64() ? 16 : 8; 45 // SVR4 ABI: 46 return STI.isPPC64() ? 16 : 4; 47 } 48 49 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 50 if (STI.isAIXABI()) 51 return STI.isPPC64() ? 40 : 20; 52 return STI.isELFv2ABI() ? 24 : 40; 53 } 54 55 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 56 // First slot in the general register save area. 57 return STI.isPPC64() ? -8U : -4U; 58 } 59 60 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 61 if (STI.isAIXABI() || STI.isPPC64()) 62 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 63 64 // 32-bit SVR4 ABI: 65 return 8; 66 } 67 68 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 69 // Third slot in the general purpose register save area. 70 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 71 return -12U; 72 73 // Second slot in the general purpose register save area. 74 return STI.isPPC64() ? -16U : -8U; 75 } 76 77 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 78 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 79 } 80 81 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 82 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 83 STI.getPlatformStackAlignment(), 0), 84 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 85 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 86 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 87 LinkageSize(computeLinkageSize(Subtarget)), 88 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 89 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 90 91 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 92 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 93 unsigned &NumEntries) const { 94 95 // Floating-point register save area offsets. 96 #define CALLEE_SAVED_FPRS \ 97 {PPC::F31, -8}, \ 98 {PPC::F30, -16}, \ 99 {PPC::F29, -24}, \ 100 {PPC::F28, -32}, \ 101 {PPC::F27, -40}, \ 102 {PPC::F26, -48}, \ 103 {PPC::F25, -56}, \ 104 {PPC::F24, -64}, \ 105 {PPC::F23, -72}, \ 106 {PPC::F22, -80}, \ 107 {PPC::F21, -88}, \ 108 {PPC::F20, -96}, \ 109 {PPC::F19, -104}, \ 110 {PPC::F18, -112}, \ 111 {PPC::F17, -120}, \ 112 {PPC::F16, -128}, \ 113 {PPC::F15, -136}, \ 114 {PPC::F14, -144} 115 116 // 32-bit general purpose register save area offsets shared by ELF and 117 // AIX. AIX has an extra CSR with r13. 118 #define CALLEE_SAVED_GPRS32 \ 119 {PPC::R31, -4}, \ 120 {PPC::R30, -8}, \ 121 {PPC::R29, -12}, \ 122 {PPC::R28, -16}, \ 123 {PPC::R27, -20}, \ 124 {PPC::R26, -24}, \ 125 {PPC::R25, -28}, \ 126 {PPC::R24, -32}, \ 127 {PPC::R23, -36}, \ 128 {PPC::R22, -40}, \ 129 {PPC::R21, -44}, \ 130 {PPC::R20, -48}, \ 131 {PPC::R19, -52}, \ 132 {PPC::R18, -56}, \ 133 {PPC::R17, -60}, \ 134 {PPC::R16, -64}, \ 135 {PPC::R15, -68}, \ 136 {PPC::R14, -72} 137 138 // 64-bit general purpose register save area offsets. 139 #define CALLEE_SAVED_GPRS64 \ 140 {PPC::X31, -8}, \ 141 {PPC::X30, -16}, \ 142 {PPC::X29, -24}, \ 143 {PPC::X28, -32}, \ 144 {PPC::X27, -40}, \ 145 {PPC::X26, -48}, \ 146 {PPC::X25, -56}, \ 147 {PPC::X24, -64}, \ 148 {PPC::X23, -72}, \ 149 {PPC::X22, -80}, \ 150 {PPC::X21, -88}, \ 151 {PPC::X20, -96}, \ 152 {PPC::X19, -104}, \ 153 {PPC::X18, -112}, \ 154 {PPC::X17, -120}, \ 155 {PPC::X16, -128}, \ 156 {PPC::X15, -136}, \ 157 {PPC::X14, -144} 158 159 // Vector register save area offsets. 160 #define CALLEE_SAVED_VRS \ 161 {PPC::V31, -16}, \ 162 {PPC::V30, -32}, \ 163 {PPC::V29, -48}, \ 164 {PPC::V28, -64}, \ 165 {PPC::V27, -80}, \ 166 {PPC::V26, -96}, \ 167 {PPC::V25, -112}, \ 168 {PPC::V24, -128}, \ 169 {PPC::V23, -144}, \ 170 {PPC::V22, -160}, \ 171 {PPC::V21, -176}, \ 172 {PPC::V20, -192} 173 174 // Note that the offsets here overlap, but this is fixed up in 175 // processFunctionBeforeFrameFinalized. 176 177 static const SpillSlot ELFOffsets32[] = { 178 CALLEE_SAVED_FPRS, 179 CALLEE_SAVED_GPRS32, 180 181 // CR save area offset. We map each of the nonvolatile CR fields 182 // to the slot for CR2, which is the first of the nonvolatile CR 183 // fields to be assigned, so that we only allocate one save slot. 184 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 185 {PPC::CR2, -4}, 186 187 // VRSAVE save area offset. 188 {PPC::VRSAVE, -4}, 189 190 CALLEE_SAVED_VRS, 191 192 // SPE register save area (overlaps Vector save area). 193 {PPC::S31, -8}, 194 {PPC::S30, -16}, 195 {PPC::S29, -24}, 196 {PPC::S28, -32}, 197 {PPC::S27, -40}, 198 {PPC::S26, -48}, 199 {PPC::S25, -56}, 200 {PPC::S24, -64}, 201 {PPC::S23, -72}, 202 {PPC::S22, -80}, 203 {PPC::S21, -88}, 204 {PPC::S20, -96}, 205 {PPC::S19, -104}, 206 {PPC::S18, -112}, 207 {PPC::S17, -120}, 208 {PPC::S16, -128}, 209 {PPC::S15, -136}, 210 {PPC::S14, -144}}; 211 212 static const SpillSlot ELFOffsets64[] = { 213 CALLEE_SAVED_FPRS, 214 CALLEE_SAVED_GPRS64, 215 216 // VRSAVE save area offset. 217 {PPC::VRSAVE, -4}, 218 CALLEE_SAVED_VRS 219 }; 220 221 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS, 222 CALLEE_SAVED_GPRS32, 223 // Add AIX's extra CSR. 224 {PPC::R13, -76}, 225 CALLEE_SAVED_VRS}; 226 227 static const SpillSlot AIXOffsets64[] = { 228 CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS}; 229 230 if (Subtarget.is64BitELFABI()) { 231 NumEntries = array_lengthof(ELFOffsets64); 232 return ELFOffsets64; 233 } 234 235 if (Subtarget.is32BitELFABI()) { 236 NumEntries = array_lengthof(ELFOffsets32); 237 return ELFOffsets32; 238 } 239 240 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 241 242 if (Subtarget.isPPC64()) { 243 NumEntries = array_lengthof(AIXOffsets64); 244 return AIXOffsets64; 245 } 246 247 NumEntries = array_lengthof(AIXOffsets32); 248 return AIXOffsets32; 249 } 250 251 static bool spillsCR(const MachineFunction &MF) { 252 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 253 return FuncInfo->isCRSpilled(); 254 } 255 256 static bool hasSpills(const MachineFunction &MF) { 257 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 258 return FuncInfo->hasSpills(); 259 } 260 261 static bool hasNonRISpills(const MachineFunction &MF) { 262 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 263 return FuncInfo->hasNonRISpills(); 264 } 265 266 /// MustSaveLR - Return true if this function requires that we save the LR 267 /// register onto the stack in the prolog and restore it in the epilog of the 268 /// function. 269 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 270 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 271 272 // We need a save/restore of LR if there is any def of LR (which is 273 // defined by calls, including the PIC setup sequence), or if there is 274 // some use of the LR stack slot (e.g. for builtin_return_address). 275 // (LR comes in 32 and 64 bit versions.) 276 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 277 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 278 } 279 280 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 281 /// call frame size. Update the MachineFunction object with the stack size. 282 unsigned 283 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 284 bool UseEstimate) const { 285 unsigned NewMaxCallFrameSize = 0; 286 unsigned FrameSize = determineFrameLayout(MF, UseEstimate, 287 &NewMaxCallFrameSize); 288 MF.getFrameInfo().setStackSize(FrameSize); 289 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 290 return FrameSize; 291 } 292 293 /// determineFrameLayout - Determine the size of the frame and maximum call 294 /// frame size. 295 unsigned 296 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 297 bool UseEstimate, 298 unsigned *NewMaxCallFrameSize) const { 299 const MachineFrameInfo &MFI = MF.getFrameInfo(); 300 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 301 302 // Get the number of bytes to allocate from the FrameInfo 303 unsigned FrameSize = 304 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 305 306 // Get stack alignments. The frame must be aligned to the greatest of these: 307 Align TargetAlign = getStackAlign(); // alignment required per the ABI 308 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 309 Align Alignment = std::max(TargetAlign, MaxAlign); 310 311 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 312 313 unsigned LR = RegInfo->getRARegister(); 314 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 315 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 316 !MFI.adjustsStack() && // No calls. 317 !MustSaveLR(MF, LR) && // No need to save LR. 318 !FI->mustSaveTOC() && // No need to save TOC. 319 !RegInfo->hasBasePointer(MF); // No special alignment. 320 321 // Note: for PPC32 SVR4ABI, we can still generate stackless 322 // code if all local vars are reg-allocated. 323 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 324 325 // Check whether we can skip adjusting the stack pointer (by using red zone) 326 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 327 // No need for frame 328 return 0; 329 } 330 331 // Get the maximum call frame size of all the calls. 332 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 333 334 // Maximum call frame needs to be at least big enough for linkage area. 335 unsigned minCallFrameSize = getLinkageSize(); 336 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 337 338 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 339 // that allocations will be aligned. 340 if (MFI.hasVarSizedObjects()) 341 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 342 343 // Update the new max call frame size if the caller passes in a valid pointer. 344 if (NewMaxCallFrameSize) 345 *NewMaxCallFrameSize = maxCallFrameSize; 346 347 // Include call frame size in total. 348 FrameSize += maxCallFrameSize; 349 350 // Make sure the frame is aligned. 351 FrameSize = alignTo(FrameSize, Alignment); 352 353 return FrameSize; 354 } 355 356 // hasFP - Return true if the specified function actually has a dedicated frame 357 // pointer register. 358 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 359 const MachineFrameInfo &MFI = MF.getFrameInfo(); 360 // FIXME: This is pretty much broken by design: hasFP() might be called really 361 // early, before the stack layout was calculated and thus hasFP() might return 362 // true or false here depending on the time of call. 363 return (MFI.getStackSize()) && needsFP(MF); 364 } 365 366 // needsFP - Return true if the specified function should have a dedicated frame 367 // pointer register. This is true if the function has variable sized allocas or 368 // if frame pointer elimination is disabled. 369 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 370 const MachineFrameInfo &MFI = MF.getFrameInfo(); 371 372 // Naked functions have no stack frame pushed, so we don't have a frame 373 // pointer. 374 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 375 return false; 376 377 return MF.getTarget().Options.DisableFramePointerElim(MF) || 378 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 379 MF.exposesReturnsTwice() || 380 (MF.getTarget().Options.GuaranteedTailCallOpt && 381 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 382 } 383 384 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 385 bool is31 = needsFP(MF); 386 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 387 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 388 389 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 390 bool HasBP = RegInfo->hasBasePointer(MF); 391 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 392 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 393 394 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 395 BI != BE; ++BI) 396 for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) { 397 --MBBI; 398 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 399 MachineOperand &MO = MBBI->getOperand(I); 400 if (!MO.isReg()) 401 continue; 402 403 switch (MO.getReg()) { 404 case PPC::FP: 405 MO.setReg(FPReg); 406 break; 407 case PPC::FP8: 408 MO.setReg(FP8Reg); 409 break; 410 case PPC::BP: 411 MO.setReg(BPReg); 412 break; 413 case PPC::BP8: 414 MO.setReg(BP8Reg); 415 break; 416 417 } 418 } 419 } 420 } 421 422 /* This function will do the following: 423 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 424 respectively (defaults recommended by the ABI) and return true 425 - If MBB is not an entry block, initialize the register scavenger and look 426 for available registers. 427 - If the defaults (R0/R12) are available, return true 428 - If TwoUniqueRegsRequired is set to true, it looks for two unique 429 registers. Otherwise, look for a single available register. 430 - If the required registers are found, set SR1 and SR2 and return true. 431 - If the required registers are not found, set SR2 or both SR1 and SR2 to 432 PPC::NoRegister and return false. 433 434 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 435 is not set, this function will attempt to find two different registers, but 436 still return true if only one register is available (and set SR1 == SR2). 437 */ 438 bool 439 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 440 bool UseAtEnd, 441 bool TwoUniqueRegsRequired, 442 Register *SR1, 443 Register *SR2) const { 444 RegScavenger RS; 445 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 446 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 447 448 // Set the defaults for the two scratch registers. 449 if (SR1) 450 *SR1 = R0; 451 452 if (SR2) { 453 assert (SR1 && "Asking for the second scratch register but not the first?"); 454 *SR2 = R12; 455 } 456 457 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 458 if ((UseAtEnd && MBB->isReturnBlock()) || 459 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 460 return true; 461 462 RS.enterBasicBlock(*MBB); 463 464 if (UseAtEnd && !MBB->empty()) { 465 // The scratch register will be used at the end of the block, so must 466 // consider all registers used within the block 467 468 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 469 // If no terminator, back iterator up to previous instruction. 470 if (MBBI == MBB->end()) 471 MBBI = std::prev(MBBI); 472 473 if (MBBI != MBB->begin()) 474 RS.forward(MBBI); 475 } 476 477 // If the two registers are available, we're all good. 478 // Note that we only return here if both R0 and R12 are available because 479 // although the function may not require two unique registers, it may benefit 480 // from having two so we should try to provide them. 481 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 482 return true; 483 484 // Get the list of callee-saved registers for the target. 485 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 486 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 487 488 // Get all the available registers in the block. 489 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 490 &PPC::GPRCRegClass); 491 492 // We shouldn't use callee-saved registers as scratch registers as they may be 493 // available when looking for a candidate block for shrink wrapping but not 494 // available when the actual prologue/epilogue is being emitted because they 495 // were added as live-in to the prologue block by PrologueEpilogueInserter. 496 for (int i = 0; CSRegs[i]; ++i) 497 BV.reset(CSRegs[i]); 498 499 // Set the first scratch register to the first available one. 500 if (SR1) { 501 int FirstScratchReg = BV.find_first(); 502 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 503 } 504 505 // If there is another one available, set the second scratch register to that. 506 // Otherwise, set it to either PPC::NoRegister if this function requires two 507 // or to whatever SR1 is set to if this function doesn't require two. 508 if (SR2) { 509 int SecondScratchReg = BV.find_next(*SR1); 510 if (SecondScratchReg != -1) 511 *SR2 = SecondScratchReg; 512 else 513 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 514 } 515 516 // Now that we've done our best to provide both registers, double check 517 // whether we were unable to provide enough. 518 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 519 return false; 520 521 return true; 522 } 523 524 // We need a scratch register for spilling LR and for spilling CR. By default, 525 // we use two scratch registers to hide latency. However, if only one scratch 526 // register is available, we can adjust for that by not overlapping the spill 527 // code. However, if we need to realign the stack (i.e. have a base pointer) 528 // and the stack frame is large, we need two scratch registers. 529 // Also, stack probe requires two scratch registers, one for old sp, one for 530 // large frame and large probe size. 531 bool 532 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 533 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 534 MachineFunction &MF = *(MBB->getParent()); 535 bool HasBP = RegInfo->hasBasePointer(MF); 536 unsigned FrameSize = determineFrameLayout(MF); 537 int NegFrameSize = -FrameSize; 538 bool IsLargeFrame = !isInt<16>(NegFrameSize); 539 MachineFrameInfo &MFI = MF.getFrameInfo(); 540 Align MaxAlign = MFI.getMaxAlign(); 541 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 542 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 543 544 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) || 545 TLI.hasInlineStackProbe(MF); 546 } 547 548 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 549 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 550 551 return findScratchRegister(TmpMBB, false, 552 twoUniqueScratchRegsRequired(TmpMBB)); 553 } 554 555 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 556 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 557 558 return findScratchRegister(TmpMBB, true); 559 } 560 561 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 562 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 563 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 564 565 // Abort if there is no register info or function info. 566 if (!RegInfo || !FI) 567 return false; 568 569 // Only move the stack update on ELFv2 ABI and PPC64. 570 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 571 return false; 572 573 // Check the frame size first and return false if it does not fit the 574 // requirements. 575 // We need a non-zero frame size as well as a frame that will fit in the red 576 // zone. This is because by moving the stack pointer update we are now storing 577 // to the red zone until the stack pointer is updated. If we get an interrupt 578 // inside the prologue but before the stack update we now have a number of 579 // stores to the red zone and those stores must all fit. 580 MachineFrameInfo &MFI = MF.getFrameInfo(); 581 unsigned FrameSize = MFI.getStackSize(); 582 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 583 return false; 584 585 // Frame pointers and base pointers complicate matters so don't do anything 586 // if we have them. For example having a frame pointer will sometimes require 587 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 588 // difficult. Similar situation exists with setjmp. 589 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice()) 590 return false; 591 592 // Calls to fast_cc functions use different rules for passing parameters on 593 // the stack from the ABI and using PIC base in the function imposes 594 // similar restrictions to using the base pointer. It is not generally safe 595 // to move the stack pointer update in these situations. 596 if (FI->hasFastCall() || FI->usesPICBase()) 597 return false; 598 599 // Finally we can move the stack update if we do not require register 600 // scavenging. Register scavenging can introduce more spills and so 601 // may make the frame size larger than we have computed. 602 return !RegInfo->requiresFrameIndexScavenging(MF); 603 } 604 605 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 606 MachineBasicBlock &MBB) const { 607 MachineBasicBlock::iterator MBBI = MBB.begin(); 608 MachineFrameInfo &MFI = MF.getFrameInfo(); 609 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 610 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 611 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 612 613 MachineModuleInfo &MMI = MF.getMMI(); 614 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 615 DebugLoc dl; 616 // AIX assembler does not support cfi directives. 617 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 618 619 // Get processor type. 620 bool isPPC64 = Subtarget.isPPC64(); 621 // Get the ABI. 622 bool isSVR4ABI = Subtarget.isSVR4ABI(); 623 bool isELFv2ABI = Subtarget.isELFv2ABI(); 624 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI."); 625 626 // Work out frame sizes. 627 unsigned FrameSize = determineFrameLayoutAndUpdate(MF); 628 int NegFrameSize = -FrameSize; 629 if (!isInt<32>(NegFrameSize)) 630 llvm_unreachable("Unhandled stack size!"); 631 632 if (MFI.isFrameAddressTaken()) 633 replaceFPWithRealFP(MF); 634 635 // Check if the link register (LR) must be saved. 636 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 637 bool MustSaveLR = FI->mustSaveLR(); 638 bool MustSaveTOC = FI->mustSaveTOC(); 639 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 640 bool MustSaveCR = !MustSaveCRs.empty(); 641 // Do we have a frame pointer and/or base pointer for this function? 642 bool HasFP = hasFP(MF); 643 bool HasBP = RegInfo->hasBasePointer(MF); 644 bool HasRedZone = isPPC64 || !isSVR4ABI; 645 646 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 647 Register BPReg = RegInfo->getBaseRegister(MF); 648 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 649 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 650 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 651 Register ScratchReg; 652 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 653 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 654 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 655 : PPC::MFLR ); 656 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 657 : PPC::STW ); 658 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 659 : PPC::STWU ); 660 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 661 : PPC::STWUX); 662 const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8 663 : PPC::LIS ); 664 const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8 665 : PPC::ORI ); 666 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 667 : PPC::OR ); 668 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 669 : PPC::SUBFC); 670 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 671 : PPC::SUBFIC); 672 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 673 : PPC::MFCR); 674 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 675 676 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 677 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 678 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 679 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 680 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 681 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 682 683 // Using the same bool variable as below to suppress compiler warnings. 684 bool SingleScratchReg = findScratchRegister( 685 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg); 686 assert(SingleScratchReg && 687 "Required number of registers not available in this block"); 688 689 SingleScratchReg = ScratchReg == TempReg; 690 691 int LROffset = getReturnSaveOffset(); 692 693 int FPOffset = 0; 694 if (HasFP) { 695 MachineFrameInfo &MFI = MF.getFrameInfo(); 696 int FPIndex = FI->getFramePointerSaveIndex(); 697 assert(FPIndex && "No Frame Pointer Save Slot!"); 698 FPOffset = MFI.getObjectOffset(FPIndex); 699 } 700 701 int BPOffset = 0; 702 if (HasBP) { 703 MachineFrameInfo &MFI = MF.getFrameInfo(); 704 int BPIndex = FI->getBasePointerSaveIndex(); 705 assert(BPIndex && "No Base Pointer Save Slot!"); 706 BPOffset = MFI.getObjectOffset(BPIndex); 707 } 708 709 int PBPOffset = 0; 710 if (FI->usesPICBase()) { 711 MachineFrameInfo &MFI = MF.getFrameInfo(); 712 int PBPIndex = FI->getPICBasePointerSaveIndex(); 713 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 714 PBPOffset = MFI.getObjectOffset(PBPIndex); 715 } 716 717 // Get stack alignments. 718 Align MaxAlign = MFI.getMaxAlign(); 719 if (HasBP && MaxAlign > 1) 720 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 721 722 // Frames of 32KB & larger require special handling because they cannot be 723 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 724 bool isLargeFrame = !isInt<16>(NegFrameSize); 725 726 // Check if we can move the stack update instruction (stdu) down the prologue 727 // past the callee saves. Hopefully this will avoid the situation where the 728 // saves are waiting for the update on the store with update to complete. 729 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 730 bool MovingStackUpdateDown = false; 731 732 // Check if we can move the stack update. 733 if (stackUpdateCanBeMoved(MF)) { 734 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 735 for (CalleeSavedInfo CSI : Info) { 736 int FrIdx = CSI.getFrameIdx(); 737 // If the frame index is not negative the callee saved info belongs to a 738 // stack object that is not a fixed stack object. We ignore non-fixed 739 // stack objects because we won't move the stack update pointer past them. 740 if (FrIdx >= 0) 741 continue; 742 743 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 744 StackUpdateLoc++; 745 MovingStackUpdateDown = true; 746 } else { 747 // We need all of the Frame Indices to meet these conditions. 748 // If they do not, abort the whole operation. 749 StackUpdateLoc = MBBI; 750 MovingStackUpdateDown = false; 751 break; 752 } 753 } 754 755 // If the operation was not aborted then update the object offset. 756 if (MovingStackUpdateDown) { 757 for (CalleeSavedInfo CSI : Info) { 758 int FrIdx = CSI.getFrameIdx(); 759 if (FrIdx < 0) 760 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 761 } 762 } 763 } 764 765 // Where in the prologue we move the CR fields depends on how many scratch 766 // registers we have, and if we need to save the link register or not. This 767 // lambda is to avoid duplicating the logic in 2 places. 768 auto BuildMoveFromCR = [&]() { 769 if (isELFv2ABI && MustSaveCRs.size() == 1) { 770 // In the ELFv2 ABI, we are not required to save all CR fields. 771 // If only one CR field is clobbered, it is more efficient to use 772 // mfocrf to selectively save just that field, because mfocrf has short 773 // latency compares to mfcr. 774 assert(isPPC64 && "V2 ABI is 64-bit only."); 775 MachineInstrBuilder MIB = 776 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 777 MIB.addReg(MustSaveCRs[0], RegState::Kill); 778 } else { 779 MachineInstrBuilder MIB = 780 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 781 for (unsigned CRfield : MustSaveCRs) 782 MIB.addReg(CRfield, RegState::ImplicitKill); 783 } 784 }; 785 786 // If we need to spill the CR and the LR but we don't have two separate 787 // registers available, we must spill them one at a time 788 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 789 BuildMoveFromCR(); 790 BuildMI(MBB, MBBI, dl, StoreWordInst) 791 .addReg(TempReg, getKillRegState(true)) 792 .addImm(CRSaveOffset) 793 .addReg(SPReg); 794 } 795 796 if (MustSaveLR) 797 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 798 799 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 800 BuildMoveFromCR(); 801 802 if (HasRedZone) { 803 if (HasFP) 804 BuildMI(MBB, MBBI, dl, StoreInst) 805 .addReg(FPReg) 806 .addImm(FPOffset) 807 .addReg(SPReg); 808 if (FI->usesPICBase()) 809 BuildMI(MBB, MBBI, dl, StoreInst) 810 .addReg(PPC::R30) 811 .addImm(PBPOffset) 812 .addReg(SPReg); 813 if (HasBP) 814 BuildMI(MBB, MBBI, dl, StoreInst) 815 .addReg(BPReg) 816 .addImm(BPOffset) 817 .addReg(SPReg); 818 } 819 820 if (MustSaveLR) 821 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 822 .addReg(ScratchReg, getKillRegState(true)) 823 .addImm(LROffset) 824 .addReg(SPReg); 825 826 if (MustSaveCR && 827 !(SingleScratchReg && MustSaveLR)) { 828 assert(HasRedZone && "A red zone is always available on PPC64"); 829 BuildMI(MBB, MBBI, dl, StoreWordInst) 830 .addReg(TempReg, getKillRegState(true)) 831 .addImm(CRSaveOffset) 832 .addReg(SPReg); 833 } 834 835 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 836 if (!FrameSize) 837 return; 838 839 // Adjust stack pointer: r1 += NegFrameSize. 840 // If there is a preferred stack alignment, align R1 now 841 842 if (HasBP && HasRedZone) { 843 // Save a copy of r1 as the base pointer. 844 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 845 .addReg(SPReg) 846 .addReg(SPReg); 847 } 848 849 // Have we generated a STUX instruction to claim stack frame? If so, 850 // the negated frame size will be placed in ScratchReg. 851 bool HasSTUX = false; 852 853 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 854 // pointer is always stored at SP, we will get a free probe due to an essential 855 // STU(X) instruction. 856 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 857 // To be consistent with other targets, a pseudo instruction is emitted and 858 // will be later expanded in `inlineStackProbe`. 859 BuildMI(MBB, MBBI, dl, 860 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 861 : PPC::PROBED_STACKALLOC_32)) 862 .addDef(ScratchReg) 863 .addDef(TempReg) // TempReg stores the old sp. 864 .addImm(NegFrameSize); 865 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 866 // update the ScratchReg to meet the assumption that ScratchReg contains 867 // the NegFrameSize. This solution is rather tricky. 868 if (!HasRedZone) { 869 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 870 .addReg(TempReg) 871 .addReg(SPReg); 872 HasSTUX = true; 873 } 874 } else { 875 // This condition must be kept in sync with canUseAsPrologue. 876 if (HasBP && MaxAlign > 1) { 877 if (isPPC64) 878 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 879 .addReg(SPReg) 880 .addImm(0) 881 .addImm(64 - Log2(MaxAlign)); 882 else // PPC32... 883 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 884 .addReg(SPReg) 885 .addImm(0) 886 .addImm(32 - Log2(MaxAlign)) 887 .addImm(31); 888 if (!isLargeFrame) { 889 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 890 .addReg(ScratchReg, RegState::Kill) 891 .addImm(NegFrameSize); 892 } else { 893 assert(!SingleScratchReg && "Only a single scratch reg available"); 894 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg) 895 .addImm(NegFrameSize >> 16); 896 BuildMI(MBB, MBBI, dl, OrImmInst, TempReg) 897 .addReg(TempReg, RegState::Kill) 898 .addImm(NegFrameSize & 0xFFFF); 899 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 900 .addReg(ScratchReg, RegState::Kill) 901 .addReg(TempReg, RegState::Kill); 902 } 903 904 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 905 .addReg(SPReg, RegState::Kill) 906 .addReg(SPReg) 907 .addReg(ScratchReg); 908 HasSTUX = true; 909 910 } else if (!isLargeFrame) { 911 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 912 .addReg(SPReg) 913 .addImm(NegFrameSize) 914 .addReg(SPReg); 915 916 } else { 917 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 918 .addImm(NegFrameSize >> 16); 919 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 920 .addReg(ScratchReg, RegState::Kill) 921 .addImm(NegFrameSize & 0xFFFF); 922 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 923 .addReg(SPReg, RegState::Kill) 924 .addReg(SPReg) 925 .addReg(ScratchReg); 926 HasSTUX = true; 927 } 928 } 929 930 // Save the TOC register after the stack pointer update if a prologue TOC 931 // save is required for the function. 932 if (MustSaveTOC) { 933 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 934 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 935 .addReg(TOCReg, getKillRegState(true)) 936 .addImm(TOCSaveOffset) 937 .addReg(SPReg); 938 } 939 940 if (!HasRedZone) { 941 assert(!isPPC64 && "A red zone is always available on PPC64"); 942 if (HasSTUX) { 943 // The negated frame size is in ScratchReg, and the SPReg has been 944 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 945 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 946 // the stack frame (i.e. the old SP), ideally, we would put the old 947 // SP into a register and use it as the base for the stores. The 948 // problem is that the only available register may be ScratchReg, 949 // which could be R0, and R0 cannot be used as a base address. 950 951 // First, set ScratchReg to the old SP. This may need to be modified 952 // later. 953 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 954 .addReg(ScratchReg, RegState::Kill) 955 .addReg(SPReg); 956 957 if (ScratchReg == PPC::R0) { 958 // R0 cannot be used as a base register, but it can be used as an 959 // index in a store-indexed. 960 int LastOffset = 0; 961 if (HasFP) { 962 // R0 += (FPOffset-LastOffset). 963 // Need addic, since addi treats R0 as 0. 964 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 965 .addReg(ScratchReg) 966 .addImm(FPOffset-LastOffset); 967 LastOffset = FPOffset; 968 // Store FP into *R0. 969 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 970 .addReg(FPReg, RegState::Kill) // Save FP. 971 .addReg(PPC::ZERO) 972 .addReg(ScratchReg); // This will be the index (R0 is ok here). 973 } 974 if (FI->usesPICBase()) { 975 // R0 += (PBPOffset-LastOffset). 976 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 977 .addReg(ScratchReg) 978 .addImm(PBPOffset-LastOffset); 979 LastOffset = PBPOffset; 980 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 981 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 982 .addReg(PPC::ZERO) 983 .addReg(ScratchReg); // This will be the index (R0 is ok here). 984 } 985 if (HasBP) { 986 // R0 += (BPOffset-LastOffset). 987 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 988 .addReg(ScratchReg) 989 .addImm(BPOffset-LastOffset); 990 LastOffset = BPOffset; 991 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 992 .addReg(BPReg, RegState::Kill) // Save BP. 993 .addReg(PPC::ZERO) 994 .addReg(ScratchReg); // This will be the index (R0 is ok here). 995 // BP = R0-LastOffset 996 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 997 .addReg(ScratchReg, RegState::Kill) 998 .addImm(-LastOffset); 999 } 1000 } else { 1001 // ScratchReg is not R0, so use it as the base register. It is 1002 // already set to the old SP, so we can use the offsets directly. 1003 1004 // Now that the stack frame has been allocated, save all the necessary 1005 // registers using ScratchReg as the base address. 1006 if (HasFP) 1007 BuildMI(MBB, MBBI, dl, StoreInst) 1008 .addReg(FPReg) 1009 .addImm(FPOffset) 1010 .addReg(ScratchReg); 1011 if (FI->usesPICBase()) 1012 BuildMI(MBB, MBBI, dl, StoreInst) 1013 .addReg(PPC::R30) 1014 .addImm(PBPOffset) 1015 .addReg(ScratchReg); 1016 if (HasBP) { 1017 BuildMI(MBB, MBBI, dl, StoreInst) 1018 .addReg(BPReg) 1019 .addImm(BPOffset) 1020 .addReg(ScratchReg); 1021 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1022 .addReg(ScratchReg, RegState::Kill) 1023 .addReg(ScratchReg); 1024 } 1025 } 1026 } else { 1027 // The frame size is a known 16-bit constant (fitting in the immediate 1028 // field of STWU). To be here we have to be compiling for PPC32. 1029 // Since the SPReg has been decreased by FrameSize, add it back to each 1030 // offset. 1031 if (HasFP) 1032 BuildMI(MBB, MBBI, dl, StoreInst) 1033 .addReg(FPReg) 1034 .addImm(FrameSize + FPOffset) 1035 .addReg(SPReg); 1036 if (FI->usesPICBase()) 1037 BuildMI(MBB, MBBI, dl, StoreInst) 1038 .addReg(PPC::R30) 1039 .addImm(FrameSize + PBPOffset) 1040 .addReg(SPReg); 1041 if (HasBP) { 1042 BuildMI(MBB, MBBI, dl, StoreInst) 1043 .addReg(BPReg) 1044 .addImm(FrameSize + BPOffset) 1045 .addReg(SPReg); 1046 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1047 .addReg(SPReg) 1048 .addImm(FrameSize); 1049 } 1050 } 1051 } 1052 1053 // Add Call Frame Information for the instructions we generated above. 1054 if (needsCFI) { 1055 unsigned CFIIndex; 1056 1057 if (HasBP) { 1058 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1059 // because if the stack needed aligning then CFA won't be at a fixed 1060 // offset from FP/SP. 1061 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1062 CFIIndex = MF.addFrameInst( 1063 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1064 } else { 1065 // Adjust the definition of CFA to account for the change in SP. 1066 assert(NegFrameSize); 1067 CFIIndex = MF.addFrameInst( 1068 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1069 } 1070 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1071 .addCFIIndex(CFIIndex); 1072 1073 if (HasFP) { 1074 // Describe where FP was saved, at a fixed offset from CFA. 1075 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1076 CFIIndex = MF.addFrameInst( 1077 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1078 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1079 .addCFIIndex(CFIIndex); 1080 } 1081 1082 if (FI->usesPICBase()) { 1083 // Describe where FP was saved, at a fixed offset from CFA. 1084 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1085 CFIIndex = MF.addFrameInst( 1086 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1087 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1088 .addCFIIndex(CFIIndex); 1089 } 1090 1091 if (HasBP) { 1092 // Describe where BP was saved, at a fixed offset from CFA. 1093 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1094 CFIIndex = MF.addFrameInst( 1095 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1096 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1097 .addCFIIndex(CFIIndex); 1098 } 1099 1100 if (MustSaveLR) { 1101 // Describe where LR was saved, at a fixed offset from CFA. 1102 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1103 CFIIndex = MF.addFrameInst( 1104 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1105 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1106 .addCFIIndex(CFIIndex); 1107 } 1108 } 1109 1110 // If there is a frame pointer, copy R1 into R31 1111 if (HasFP) { 1112 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1113 .addReg(SPReg) 1114 .addReg(SPReg); 1115 1116 if (!HasBP && needsCFI) { 1117 // Change the definition of CFA from SP+offset to FP+offset, because SP 1118 // will change at every alloca. 1119 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1120 unsigned CFIIndex = MF.addFrameInst( 1121 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1122 1123 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1124 .addCFIIndex(CFIIndex); 1125 } 1126 } 1127 1128 if (needsCFI) { 1129 // Describe where callee saved registers were saved, at fixed offsets from 1130 // CFA. 1131 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1132 for (unsigned I = 0, E = CSI.size(); I != E; ++I) { 1133 unsigned Reg = CSI[I].getReg(); 1134 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1135 1136 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1137 // subregisters of CR2. We just need to emit a move of CR2. 1138 if (PPC::CRBITRCRegClass.contains(Reg)) 1139 continue; 1140 1141 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1142 continue; 1143 1144 // For SVR4, don't emit a move for the CR spill slot if we haven't 1145 // spilled CRs. 1146 if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4) 1147 && !MustSaveCR) 1148 continue; 1149 1150 // For 64-bit SVR4 when we have spilled CRs, the spill location 1151 // is SP+8, not a frame-relative slot. 1152 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1153 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1154 // the whole CR word. In the ELFv2 ABI, every CR that was 1155 // actually saved gets its own CFI record. 1156 unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2; 1157 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1158 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1159 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1160 .addCFIIndex(CFIIndex); 1161 continue; 1162 } 1163 1164 if (CSI[I].isSpilledToReg()) { 1165 unsigned SpilledReg = CSI[I].getDstReg(); 1166 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1167 nullptr, MRI->getDwarfRegNum(Reg, true), 1168 MRI->getDwarfRegNum(SpilledReg, true))); 1169 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1170 .addCFIIndex(CFIRegister); 1171 } else { 1172 int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx()); 1173 // We have changed the object offset above but we do not want to change 1174 // the actual offsets in the CFI instruction so we have to undo the 1175 // offset change here. 1176 if (MovingStackUpdateDown) 1177 Offset -= NegFrameSize; 1178 1179 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1180 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1181 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1182 .addCFIIndex(CFIIndex); 1183 } 1184 } 1185 } 1186 } 1187 1188 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1189 MachineBasicBlock &PrologMBB) const { 1190 // TODO: Generate CFI instructions. 1191 bool isPPC64 = Subtarget.isPPC64(); 1192 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1193 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1194 MachineFrameInfo &MFI = MF.getFrameInfo(); 1195 MachineModuleInfo &MMI = MF.getMMI(); 1196 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1197 // AIX assembler does not support cfi directives. 1198 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1199 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1200 int Opc = MI.getOpcode(); 1201 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1202 }); 1203 if (StackAllocMIPos == PrologMBB.end()) 1204 return; 1205 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1206 MachineBasicBlock *CurrentMBB = &PrologMBB; 1207 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1208 MachineInstr &MI = *StackAllocMIPos; 1209 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1210 unsigned ProbeSize = TLI.getStackProbeSize(MF); 1211 int64_t NegProbeSize = -(int64_t)ProbeSize; 1212 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1213 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1214 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1215 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1216 Register ScratchReg = MI.getOperand(0).getReg(); 1217 Register FPReg = MI.getOperand(1).getReg(); 1218 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1219 bool HasBP = RegInfo->hasBasePointer(MF); 1220 Register BPReg = RegInfo->getBaseRegister(MF); 1221 Align MaxAlign = MFI.getMaxAlign(); 1222 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1223 // Subroutines to generate .cfi_* directives. 1224 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1225 MachineBasicBlock::iterator MBBI, Register Reg) { 1226 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1227 unsigned CFIIndex = MF.addFrameInst( 1228 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1229 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1230 .addCFIIndex(CFIIndex); 1231 }; 1232 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1233 MachineBasicBlock::iterator MBBI, Register Reg, 1234 int Offset) { 1235 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1236 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1237 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1238 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1239 .addCFIIndex(CFIIndex); 1240 }; 1241 // Subroutine to determine if we can use the Imm as part of d-form. 1242 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1243 // Subroutine to materialize the Imm into TempReg. 1244 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1245 MachineBasicBlock::iterator MBBI, int64_t Imm, 1246 Register &TempReg) { 1247 assert(isInt<32>(Imm) && "Unhandled imm"); 1248 if (isInt<16>(Imm)) 1249 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1250 .addImm(Imm); 1251 else { 1252 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1253 .addImm(Imm >> 16); 1254 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1255 .addReg(TempReg) 1256 .addImm(Imm & 0xFFFF); 1257 } 1258 }; 1259 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1260 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1261 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1262 Register NegSizeReg, bool UseDForm, 1263 Register StoreReg) { 1264 if (UseDForm) 1265 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1266 .addReg(StoreReg) 1267 .addImm(NegSize) 1268 .addReg(SPReg); 1269 else 1270 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1271 .addReg(StoreReg) 1272 .addReg(SPReg) 1273 .addReg(NegSizeReg); 1274 }; 1275 // Used to probe realignment gap [stackptr - (stackptr % align), stackptr) 1276 // when HasBP && isPPC64. In such scenario, normally we have r0, r1, r12, r30 1277 // available and r1 is already copied to r30 which is BPReg. So BPReg stores 1278 // the value of stackptr. 1279 // First we have to probe tail interval whose size is less than probesize, 1280 // i.e., [stackptr - (stackptr % align) % probesize, stackptr). At this stage, 1281 // ScratchReg stores the value of ((stackptr % align) % probesize). Then we 1282 // probe each block sized probesize until stackptr meets 1283 // (stackptr - (stackptr % align)). At this stage, ScratchReg is materialized 1284 // as negprobesize. At both stages, TempReg stores the value of 1285 // (stackptr - (stackptr % align)). 1286 auto dynamicProbe = [&](MachineBasicBlock &MBB, 1287 MachineBasicBlock::iterator MBBI, Register ScratchReg, 1288 Register TempReg) { 1289 assert(HasBP && isPPC64 && "Probe alignment part not available"); 1290 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2"); 1291 // ScratchReg = stackptr % align 1292 BuildMI(MBB, MBBI, DL, TII.get(PPC::RLDICL), ScratchReg) 1293 .addReg(BPReg) 1294 .addImm(0) 1295 .addImm(64 - Log2(MaxAlign)); 1296 // TempReg = stackptr - (stackptr % align) 1297 BuildMI(MBB, MBBI, DL, TII.get(PPC::SUBFC8), TempReg) 1298 .addReg(ScratchReg) 1299 .addReg(BPReg); 1300 // ScratchReg = (stackptr % align) % probesize 1301 BuildMI(MBB, MBBI, DL, TII.get(PPC::RLDICL), ScratchReg) 1302 .addReg(ScratchReg) 1303 .addImm(0) 1304 .addImm(64 - Log2(ProbeSize)); 1305 Register CRReg = PPC::CR0; 1306 // If (stackptr % align) % probesize == 0, we should not generate probe 1307 // code. Layout of output assembly kinda like: 1308 // bb.0: 1309 // ... 1310 // cmpldi $scratchreg, 0 1311 // beq bb.2 1312 // bb.1: # Probe tail interval 1313 // neg $scratchreg, $scratchreg 1314 // stdux $bpreg, r1, $scratchreg 1315 // bb.2: 1316 // <materialize negprobesize into $scratchreg> 1317 // cmpd r1, $tempreg 1318 // beq bb.4 1319 // bb.3: # Loop to probe each block 1320 // stdux $bpreg, r1, $scratchreg 1321 // cmpd r1, $tempreg 1322 // bne bb.3 1323 // bb.4: 1324 // ... 1325 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 1326 MachineBasicBlock *ProbeResidualMBB = MF.CreateMachineBasicBlock(ProbedBB); 1327 MF.insert(MBBInsertPoint, ProbeResidualMBB); 1328 MachineBasicBlock *ProbeLoopPreHeaderMBB = 1329 MF.CreateMachineBasicBlock(ProbedBB); 1330 MF.insert(MBBInsertPoint, ProbeLoopPreHeaderMBB); 1331 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB); 1332 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB); 1333 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1334 MF.insert(MBBInsertPoint, ProbeExitMBB); 1335 // bb.4 1336 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end()); 1337 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 1338 // bb.0 1339 BuildMI(&MBB, DL, TII.get(PPC::CMPDI), CRReg).addReg(ScratchReg).addImm(0); 1340 BuildMI(&MBB, DL, TII.get(PPC::BCC)) 1341 .addImm(PPC::PRED_EQ) 1342 .addReg(CRReg) 1343 .addMBB(ProbeLoopPreHeaderMBB); 1344 MBB.addSuccessor(ProbeResidualMBB); 1345 MBB.addSuccessor(ProbeLoopPreHeaderMBB); 1346 // bb.1 1347 BuildMI(ProbeResidualMBB, DL, TII.get(PPC::NEG8), ScratchReg) 1348 .addReg(ScratchReg); 1349 allocateAndProbe(*ProbeResidualMBB, ProbeResidualMBB->end(), 0, ScratchReg, 1350 false, BPReg); 1351 ProbeResidualMBB->addSuccessor(ProbeLoopPreHeaderMBB); 1352 // bb.2 1353 MaterializeImm(*ProbeLoopPreHeaderMBB, ProbeLoopPreHeaderMBB->end(), 1354 NegProbeSize, ScratchReg); 1355 BuildMI(ProbeLoopPreHeaderMBB, DL, TII.get(PPC::CMPD), CRReg) 1356 .addReg(SPReg) 1357 .addReg(TempReg); 1358 BuildMI(ProbeLoopPreHeaderMBB, DL, TII.get(PPC::BCC)) 1359 .addImm(PPC::PRED_EQ) 1360 .addReg(CRReg) 1361 .addMBB(ProbeExitMBB); 1362 ProbeLoopPreHeaderMBB->addSuccessor(ProbeLoopBodyMBB); 1363 ProbeLoopPreHeaderMBB->addSuccessor(ProbeExitMBB); 1364 // bb.3 1365 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), 0, ScratchReg, 1366 false, BPReg); 1367 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::CMPD), CRReg) 1368 .addReg(SPReg) 1369 .addReg(TempReg); 1370 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC)) 1371 .addImm(PPC::PRED_NE) 1372 .addReg(CRReg) 1373 .addMBB(ProbeLoopBodyMBB); 1374 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB); 1375 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB); 1376 // Update liveins. 1377 recomputeLiveIns(*ProbeResidualMBB); 1378 recomputeLiveIns(*ProbeLoopPreHeaderMBB); 1379 recomputeLiveIns(*ProbeLoopBodyMBB); 1380 recomputeLiveIns(*ProbeExitMBB); 1381 return ProbeExitMBB; 1382 }; 1383 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing 1384 // SP = SP - SP % MaxAlign. 1385 if (HasBP && MaxAlign > 1) { 1386 // FIXME: Currently only probe the gap [stackptr & alignmask, stackptr) in 1387 // 64-bit mode. 1388 if (isPPC64) { 1389 // Use BPReg to calculate CFA. 1390 if (needsCFI) 1391 buildDefCFA(*CurrentMBB, {MI}, BPReg, 0); 1392 // Since we have SPReg copied to BPReg at the moment, FPReg can be used as 1393 // TempReg. 1394 Register TempReg = FPReg; 1395 CurrentMBB = dynamicProbe(*CurrentMBB, {MI}, ScratchReg, TempReg); 1396 // Copy BPReg to FPReg to meet the definition of PROBED_STACKALLOC_64. 1397 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg) 1398 .addReg(BPReg) 1399 .addReg(BPReg); 1400 } else { 1401 // Initialize current frame pointer. 1402 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg) 1403 .addReg(SPReg) 1404 .addReg(SPReg); 1405 // Use FPReg to calculate CFA. 1406 if (needsCFI) 1407 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1408 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1409 .addReg(FPReg) 1410 .addImm(0) 1411 .addImm(32 - Log2(MaxAlign)) 1412 .addImm(31); 1413 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::SUBFC), SPReg) 1414 .addReg(ScratchReg) 1415 .addReg(SPReg); 1416 } 1417 } else { 1418 // Initialize current frame pointer. 1419 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1420 // Use FPReg to calculate CFA. 1421 if (needsCFI) 1422 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1423 } 1424 // Probe residual part. 1425 if (NegResidualSize) { 1426 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1427 if (!ResidualUseDForm) 1428 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg); 1429 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg, 1430 ResidualUseDForm, FPReg); 1431 } 1432 bool UseDForm = CanUseDForm(NegProbeSize); 1433 // If number of blocks is small, just probe them directly. 1434 if (NumBlocks < 3) { 1435 if (!UseDForm) 1436 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1437 for (int i = 0; i < NumBlocks; ++i) 1438 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm, 1439 FPReg); 1440 if (needsCFI) { 1441 // Restore using SPReg to calculate CFA. 1442 buildDefCFAReg(*CurrentMBB, {MI}, SPReg); 1443 } 1444 } else { 1445 // Since CTR is a volatile register and current shrinkwrap implementation 1446 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1447 // CTR loop to probe. 1448 // Calculate trip count and stores it in CTRReg. 1449 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg); 1450 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1451 .addReg(ScratchReg, RegState::Kill); 1452 if (!UseDForm) 1453 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1454 // Create MBBs of the loop. 1455 MachineFunction::iterator MBBInsertPoint = 1456 std::next(CurrentMBB->getIterator()); 1457 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1458 MF.insert(MBBInsertPoint, LoopMBB); 1459 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1460 MF.insert(MBBInsertPoint, ExitMBB); 1461 // Synthesize the loop body. 1462 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1463 UseDForm, FPReg); 1464 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1465 .addMBB(LoopMBB); 1466 LoopMBB->addSuccessor(ExitMBB); 1467 LoopMBB->addSuccessor(LoopMBB); 1468 // Synthesize the exit MBB. 1469 ExitMBB->splice(ExitMBB->end(), CurrentMBB, 1470 std::next(MachineBasicBlock::iterator(MI)), 1471 CurrentMBB->end()); 1472 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB); 1473 CurrentMBB->addSuccessor(LoopMBB); 1474 if (needsCFI) { 1475 // Restore using SPReg to calculate CFA. 1476 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1477 } 1478 // Update liveins. 1479 recomputeLiveIns(*LoopMBB); 1480 recomputeLiveIns(*ExitMBB); 1481 } 1482 ++NumPrologProbed; 1483 MI.eraseFromParent(); 1484 } 1485 1486 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1487 MachineBasicBlock &MBB) const { 1488 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1489 DebugLoc dl; 1490 1491 if (MBBI != MBB.end()) 1492 dl = MBBI->getDebugLoc(); 1493 1494 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1495 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1496 1497 // Get alignment info so we know how to restore the SP. 1498 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1499 1500 // Get the number of bytes allocated from the FrameInfo. 1501 int FrameSize = MFI.getStackSize(); 1502 1503 // Get processor type. 1504 bool isPPC64 = Subtarget.isPPC64(); 1505 1506 // Check if the link register (LR) has been saved. 1507 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1508 bool MustSaveLR = FI->mustSaveLR(); 1509 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1510 bool MustSaveCR = !MustSaveCRs.empty(); 1511 // Do we have a frame pointer and/or base pointer for this function? 1512 bool HasFP = hasFP(MF); 1513 bool HasBP = RegInfo->hasBasePointer(MF); 1514 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1515 1516 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1517 Register BPReg = RegInfo->getBaseRegister(MF); 1518 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1519 Register ScratchReg; 1520 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1521 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1522 : PPC::MTLR ); 1523 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1524 : PPC::LWZ ); 1525 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1526 : PPC::LIS ); 1527 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1528 : PPC::OR ); 1529 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1530 : PPC::ORI ); 1531 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1532 : PPC::ADDI ); 1533 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1534 : PPC::ADD4 ); 1535 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1536 : PPC::LWZ); 1537 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1538 : PPC::MTOCRF); 1539 int LROffset = getReturnSaveOffset(); 1540 1541 int FPOffset = 0; 1542 1543 // Using the same bool variable as below to suppress compiler warnings. 1544 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1545 &TempReg); 1546 assert(SingleScratchReg && 1547 "Could not find an available scratch register"); 1548 1549 SingleScratchReg = ScratchReg == TempReg; 1550 1551 if (HasFP) { 1552 int FPIndex = FI->getFramePointerSaveIndex(); 1553 assert(FPIndex && "No Frame Pointer Save Slot!"); 1554 FPOffset = MFI.getObjectOffset(FPIndex); 1555 } 1556 1557 int BPOffset = 0; 1558 if (HasBP) { 1559 int BPIndex = FI->getBasePointerSaveIndex(); 1560 assert(BPIndex && "No Base Pointer Save Slot!"); 1561 BPOffset = MFI.getObjectOffset(BPIndex); 1562 } 1563 1564 int PBPOffset = 0; 1565 if (FI->usesPICBase()) { 1566 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1567 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1568 PBPOffset = MFI.getObjectOffset(PBPIndex); 1569 } 1570 1571 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1572 1573 if (IsReturnBlock) { 1574 unsigned RetOpcode = MBBI->getOpcode(); 1575 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1576 RetOpcode == PPC::TCRETURNdi || 1577 RetOpcode == PPC::TCRETURNai || 1578 RetOpcode == PPC::TCRETURNri8 || 1579 RetOpcode == PPC::TCRETURNdi8 || 1580 RetOpcode == PPC::TCRETURNai8; 1581 1582 if (UsesTCRet) { 1583 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1584 MachineOperand &StackAdjust = MBBI->getOperand(1); 1585 assert(StackAdjust.isImm() && "Expecting immediate value."); 1586 // Adjust stack pointer. 1587 int StackAdj = StackAdjust.getImm(); 1588 int Delta = StackAdj - MaxTCRetDelta; 1589 assert((Delta >= 0) && "Delta must be positive"); 1590 if (MaxTCRetDelta>0) 1591 FrameSize += (StackAdj +Delta); 1592 else 1593 FrameSize += StackAdj; 1594 } 1595 } 1596 1597 // Frames of 32KB & larger require special handling because they cannot be 1598 // indexed into with a simple LD/LWZ immediate offset operand. 1599 bool isLargeFrame = !isInt<16>(FrameSize); 1600 1601 // On targets without red zone, the SP needs to be restored last, so that 1602 // all live contents of the stack frame are upwards of the SP. This means 1603 // that we cannot restore SP just now, since there may be more registers 1604 // to restore from the stack frame (e.g. R31). If the frame size is not 1605 // a simple immediate value, we will need a spare register to hold the 1606 // restored SP. If the frame size is known and small, we can simply adjust 1607 // the offsets of the registers to be restored, and still use SP to restore 1608 // them. In such case, the final update of SP will be to add the frame 1609 // size to it. 1610 // To simplify the code, set RBReg to the base register used to restore 1611 // values from the stack, and set SPAdd to the value that needs to be added 1612 // to the SP at the end. The default values are as if red zone was present. 1613 unsigned RBReg = SPReg; 1614 unsigned SPAdd = 0; 1615 1616 // Check if we can move the stack update instruction up the epilogue 1617 // past the callee saves. This will allow the move to LR instruction 1618 // to be executed before the restores of the callee saves which means 1619 // that the callee saves can hide the latency from the MTLR instrcution. 1620 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1621 if (stackUpdateCanBeMoved(MF)) { 1622 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1623 for (CalleeSavedInfo CSI : Info) { 1624 int FrIdx = CSI.getFrameIdx(); 1625 // If the frame index is not negative the callee saved info belongs to a 1626 // stack object that is not a fixed stack object. We ignore non-fixed 1627 // stack objects because we won't move the update of the stack pointer 1628 // past them. 1629 if (FrIdx >= 0) 1630 continue; 1631 1632 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1633 StackUpdateLoc--; 1634 else { 1635 // Abort the operation as we can't update all CSR restores. 1636 StackUpdateLoc = MBBI; 1637 break; 1638 } 1639 } 1640 } 1641 1642 if (FrameSize) { 1643 // In the prologue, the loaded (or persistent) stack pointer value is 1644 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1645 // zone add this offset back now. 1646 1647 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1648 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1649 // call which invalidates the stack pointer value in SP(0). So we use the 1650 // value of R31 in this case. Similar situation exists with setjmp. 1651 if (FI->hasFastCall() || MF.exposesReturnsTwice()) { 1652 assert(HasFP && "Expecting a valid frame pointer."); 1653 if (!HasRedZone) 1654 RBReg = FPReg; 1655 if (!isLargeFrame) { 1656 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1657 .addReg(FPReg).addImm(FrameSize); 1658 } else { 1659 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1660 .addImm(FrameSize >> 16); 1661 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1662 .addReg(ScratchReg, RegState::Kill) 1663 .addImm(FrameSize & 0xFFFF); 1664 BuildMI(MBB, MBBI, dl, AddInst) 1665 .addReg(RBReg) 1666 .addReg(FPReg) 1667 .addReg(ScratchReg); 1668 } 1669 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1670 if (HasRedZone) { 1671 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1672 .addReg(SPReg) 1673 .addImm(FrameSize); 1674 } else { 1675 // Make sure that adding FrameSize will not overflow the max offset 1676 // size. 1677 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1678 "Local offsets should be negative"); 1679 SPAdd = FrameSize; 1680 FPOffset += FrameSize; 1681 BPOffset += FrameSize; 1682 PBPOffset += FrameSize; 1683 } 1684 } else { 1685 // We don't want to use ScratchReg as a base register, because it 1686 // could happen to be R0. Use FP instead, but make sure to preserve it. 1687 if (!HasRedZone) { 1688 // If FP is not saved, copy it to ScratchReg. 1689 if (!HasFP) 1690 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1691 .addReg(FPReg) 1692 .addReg(FPReg); 1693 RBReg = FPReg; 1694 } 1695 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1696 .addImm(0) 1697 .addReg(SPReg); 1698 } 1699 } 1700 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1701 // If there is no red zone, ScratchReg may be needed for holding a useful 1702 // value (although not the base register). Make sure it is not overwritten 1703 // too early. 1704 1705 // If we need to restore both the LR and the CR and we only have one 1706 // available scratch register, we must do them one at a time. 1707 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1708 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1709 // is live here. 1710 assert(HasRedZone && "Expecting red zone"); 1711 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1712 .addImm(CRSaveOffset) 1713 .addReg(SPReg); 1714 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1715 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1716 .addReg(TempReg, getKillRegState(i == e-1)); 1717 } 1718 1719 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1720 // LR is stored in the caller's stack frame. ScratchReg will be needed 1721 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1722 // a base register anyway, because it may happen to be R0. 1723 bool LoadedLR = false; 1724 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1725 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1726 .addImm(LROffset+SPAdd) 1727 .addReg(RBReg); 1728 LoadedLR = true; 1729 } 1730 1731 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1732 assert(RBReg == SPReg && "Should be using SP as a base register"); 1733 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1734 .addImm(CRSaveOffset) 1735 .addReg(RBReg); 1736 } 1737 1738 if (HasFP) { 1739 // If there is red zone, restore FP directly, since SP has already been 1740 // restored. Otherwise, restore the value of FP into ScratchReg. 1741 if (HasRedZone || RBReg == SPReg) 1742 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1743 .addImm(FPOffset) 1744 .addReg(SPReg); 1745 else 1746 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1747 .addImm(FPOffset) 1748 .addReg(RBReg); 1749 } 1750 1751 if (FI->usesPICBase()) 1752 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1753 .addImm(PBPOffset) 1754 .addReg(RBReg); 1755 1756 if (HasBP) 1757 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1758 .addImm(BPOffset) 1759 .addReg(RBReg); 1760 1761 // There is nothing more to be loaded from the stack, so now we can 1762 // restore SP: SP = RBReg + SPAdd. 1763 if (RBReg != SPReg || SPAdd != 0) { 1764 assert(!HasRedZone && "This should not happen with red zone"); 1765 // If SPAdd is 0, generate a copy. 1766 if (SPAdd == 0) 1767 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1768 .addReg(RBReg) 1769 .addReg(RBReg); 1770 else 1771 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1772 .addReg(RBReg) 1773 .addImm(SPAdd); 1774 1775 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1776 if (RBReg == FPReg) 1777 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1778 .addReg(ScratchReg) 1779 .addReg(ScratchReg); 1780 1781 // Now load the LR from the caller's stack frame. 1782 if (MustSaveLR && !LoadedLR) 1783 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1784 .addImm(LROffset) 1785 .addReg(SPReg); 1786 } 1787 1788 if (MustSaveCR && 1789 !(SingleScratchReg && MustSaveLR)) 1790 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1791 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1792 .addReg(TempReg, getKillRegState(i == e-1)); 1793 1794 if (MustSaveLR) 1795 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1796 1797 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1798 // call optimization 1799 if (IsReturnBlock) { 1800 unsigned RetOpcode = MBBI->getOpcode(); 1801 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1802 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1803 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1804 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1805 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1806 1807 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1808 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1809 .addReg(SPReg).addImm(CallerAllocatedAmt); 1810 } else { 1811 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1812 .addImm(CallerAllocatedAmt >> 16); 1813 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1814 .addReg(ScratchReg, RegState::Kill) 1815 .addImm(CallerAllocatedAmt & 0xFFFF); 1816 BuildMI(MBB, MBBI, dl, AddInst) 1817 .addReg(SPReg) 1818 .addReg(FPReg) 1819 .addReg(ScratchReg); 1820 } 1821 } else { 1822 createTailCallBranchInstr(MBB); 1823 } 1824 } 1825 } 1826 1827 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1828 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1829 1830 // If we got this far a first terminator should exist. 1831 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1832 1833 DebugLoc dl = MBBI->getDebugLoc(); 1834 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1835 1836 // Create branch instruction for pseudo tail call return instruction. 1837 // The TCRETURNdi variants are direct calls. Valid targets for those are 1838 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1839 // since we can tail call external functions with PC-Rel (i.e. we don't need 1840 // to worry about different TOC pointers). Some of the external functions will 1841 // be MO_GlobalAddress while others like memcpy for example, are going to 1842 // be MO_ExternalSymbol. 1843 unsigned RetOpcode = MBBI->getOpcode(); 1844 if (RetOpcode == PPC::TCRETURNdi) { 1845 MBBI = MBB.getLastNonDebugInstr(); 1846 MachineOperand &JumpTarget = MBBI->getOperand(0); 1847 if (JumpTarget.isGlobal()) 1848 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1849 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1850 else if (JumpTarget.isSymbol()) 1851 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1852 addExternalSymbol(JumpTarget.getSymbolName()); 1853 else 1854 llvm_unreachable("Expecting Global or External Symbol"); 1855 } else if (RetOpcode == PPC::TCRETURNri) { 1856 MBBI = MBB.getLastNonDebugInstr(); 1857 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1858 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1859 } else if (RetOpcode == PPC::TCRETURNai) { 1860 MBBI = MBB.getLastNonDebugInstr(); 1861 MachineOperand &JumpTarget = MBBI->getOperand(0); 1862 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1863 } else if (RetOpcode == PPC::TCRETURNdi8) { 1864 MBBI = MBB.getLastNonDebugInstr(); 1865 MachineOperand &JumpTarget = MBBI->getOperand(0); 1866 if (JumpTarget.isGlobal()) 1867 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1868 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1869 else if (JumpTarget.isSymbol()) 1870 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1871 addExternalSymbol(JumpTarget.getSymbolName()); 1872 else 1873 llvm_unreachable("Expecting Global or External Symbol"); 1874 } else if (RetOpcode == PPC::TCRETURNri8) { 1875 MBBI = MBB.getLastNonDebugInstr(); 1876 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1877 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1878 } else if (RetOpcode == PPC::TCRETURNai8) { 1879 MBBI = MBB.getLastNonDebugInstr(); 1880 MachineOperand &JumpTarget = MBBI->getOperand(0); 1881 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1882 } 1883 } 1884 1885 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1886 BitVector &SavedRegs, 1887 RegScavenger *RS) const { 1888 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1889 1890 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1891 1892 // Save and clear the LR state. 1893 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1894 unsigned LR = RegInfo->getRARegister(); 1895 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1896 SavedRegs.reset(LR); 1897 1898 // Save R31 if necessary 1899 int FPSI = FI->getFramePointerSaveIndex(); 1900 const bool isPPC64 = Subtarget.isPPC64(); 1901 MachineFrameInfo &MFI = MF.getFrameInfo(); 1902 1903 // If the frame pointer save index hasn't been defined yet. 1904 if (!FPSI && needsFP(MF)) { 1905 // Find out what the fix offset of the frame pointer save area. 1906 int FPOffset = getFramePointerSaveOffset(); 1907 // Allocate the frame index for frame pointer save area. 1908 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 1909 // Save the result. 1910 FI->setFramePointerSaveIndex(FPSI); 1911 } 1912 1913 int BPSI = FI->getBasePointerSaveIndex(); 1914 if (!BPSI && RegInfo->hasBasePointer(MF)) { 1915 int BPOffset = getBasePointerSaveOffset(); 1916 // Allocate the frame index for the base pointer save area. 1917 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 1918 // Save the result. 1919 FI->setBasePointerSaveIndex(BPSI); 1920 } 1921 1922 // Reserve stack space for the PIC Base register (R30). 1923 // Only used in SVR4 32-bit. 1924 if (FI->usesPICBase()) { 1925 int PBPSI = MFI.CreateFixedObject(4, -8, true); 1926 FI->setPICBasePointerSaveIndex(PBPSI); 1927 } 1928 1929 // Make sure we don't explicitly spill r31, because, for example, we have 1930 // some inline asm which explicitly clobbers it, when we otherwise have a 1931 // frame pointer and are using r31's spill slot for the prologue/epilogue 1932 // code. Same goes for the base pointer and the PIC base register. 1933 if (needsFP(MF)) 1934 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 1935 if (RegInfo->hasBasePointer(MF)) 1936 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 1937 if (FI->usesPICBase()) 1938 SavedRegs.reset(PPC::R30); 1939 1940 // Reserve stack space to move the linkage area to in case of a tail call. 1941 int TCSPDelta = 0; 1942 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1943 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 1944 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 1945 } 1946 1947 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 1948 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 1949 // object at the offset of the CR-save slot in the linkage area. The actual 1950 // save and restore of the condition register will be created as part of the 1951 // prologue and epilogue insertion, but the FixedStack object is needed to 1952 // keep the CalleSavedInfo valid. 1953 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 1954 SavedRegs.test(PPC::CR4))) { 1955 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 1956 const int64_t SpillOffset = 1957 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 1958 int FrameIdx = 1959 MFI.CreateFixedObject(SpillSize, SpillOffset, 1960 /* IsImmutable */ true, /* IsAliased */ false); 1961 FI->setCRSpillFrameIndex(FrameIdx); 1962 } 1963 } 1964 1965 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 1966 RegScavenger *RS) const { 1967 // Get callee saved register information. 1968 MachineFrameInfo &MFI = MF.getFrameInfo(); 1969 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1970 1971 // If the function is shrink-wrapped, and if the function has a tail call, the 1972 // tail call might not be in the new RestoreBlock, so real branch instruction 1973 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 1974 // RestoreBlock. So we handle this case here. 1975 if (MFI.getSavePoint() && MFI.hasTailCall()) { 1976 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 1977 for (MachineBasicBlock &MBB : MF) { 1978 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 1979 createTailCallBranchInstr(MBB); 1980 } 1981 } 1982 1983 // Early exit if no callee saved registers are modified! 1984 if (CSI.empty() && !needsFP(MF)) { 1985 addScavengingSpillSlot(MF, RS); 1986 return; 1987 } 1988 1989 unsigned MinGPR = PPC::R31; 1990 unsigned MinG8R = PPC::X31; 1991 unsigned MinFPR = PPC::F31; 1992 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 1993 1994 bool HasGPSaveArea = false; 1995 bool HasG8SaveArea = false; 1996 bool HasFPSaveArea = false; 1997 bool HasVRSaveArea = false; 1998 1999 SmallVector<CalleeSavedInfo, 18> GPRegs; 2000 SmallVector<CalleeSavedInfo, 18> G8Regs; 2001 SmallVector<CalleeSavedInfo, 18> FPRegs; 2002 SmallVector<CalleeSavedInfo, 18> VRegs; 2003 2004 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2005 unsigned Reg = CSI[i].getReg(); 2006 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2007 (Reg != PPC::X2 && Reg != PPC::R2)) && 2008 "Not expecting to try to spill R2 in a function that must save TOC"); 2009 if (PPC::GPRCRegClass.contains(Reg)) { 2010 HasGPSaveArea = true; 2011 2012 GPRegs.push_back(CSI[i]); 2013 2014 if (Reg < MinGPR) { 2015 MinGPR = Reg; 2016 } 2017 } else if (PPC::G8RCRegClass.contains(Reg)) { 2018 HasG8SaveArea = true; 2019 2020 G8Regs.push_back(CSI[i]); 2021 2022 if (Reg < MinG8R) { 2023 MinG8R = Reg; 2024 } 2025 } else if (PPC::F8RCRegClass.contains(Reg)) { 2026 HasFPSaveArea = true; 2027 2028 FPRegs.push_back(CSI[i]); 2029 2030 if (Reg < MinFPR) { 2031 MinFPR = Reg; 2032 } 2033 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2034 PPC::CRRCRegClass.contains(Reg)) { 2035 ; // do nothing, as we already know whether CRs are spilled 2036 } else if (PPC::VRRCRegClass.contains(Reg) || 2037 PPC::SPERCRegClass.contains(Reg)) { 2038 // Altivec and SPE are mutually exclusive, but have the same stack 2039 // alignment requirements, so overload the save area for both cases. 2040 HasVRSaveArea = true; 2041 2042 VRegs.push_back(CSI[i]); 2043 2044 if (Reg < MinVR) { 2045 MinVR = Reg; 2046 } 2047 } else { 2048 llvm_unreachable("Unknown RegisterClass!"); 2049 } 2050 } 2051 2052 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2053 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2054 2055 int64_t LowerBound = 0; 2056 2057 // Take into account stack space reserved for tail calls. 2058 int TCSPDelta = 0; 2059 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2060 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2061 LowerBound = TCSPDelta; 2062 } 2063 2064 // The Floating-point register save area is right below the back chain word 2065 // of the previous stack frame. 2066 if (HasFPSaveArea) { 2067 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2068 int FI = FPRegs[i].getFrameIdx(); 2069 2070 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2071 } 2072 2073 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2074 } 2075 2076 // Check whether the frame pointer register is allocated. If so, make sure it 2077 // is spilled to the correct offset. 2078 if (needsFP(MF)) { 2079 int FI = PFI->getFramePointerSaveIndex(); 2080 assert(FI && "No Frame Pointer Save Slot!"); 2081 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2082 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2083 HasGPSaveArea = true; 2084 } 2085 2086 if (PFI->usesPICBase()) { 2087 int FI = PFI->getPICBasePointerSaveIndex(); 2088 assert(FI && "No PIC Base Pointer Save Slot!"); 2089 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2090 2091 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2092 HasGPSaveArea = true; 2093 } 2094 2095 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2096 if (RegInfo->hasBasePointer(MF)) { 2097 int FI = PFI->getBasePointerSaveIndex(); 2098 assert(FI && "No Base Pointer Save Slot!"); 2099 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2100 2101 Register BP = RegInfo->getBaseRegister(MF); 2102 if (PPC::G8RCRegClass.contains(BP)) { 2103 MinG8R = std::min<unsigned>(MinG8R, BP); 2104 HasG8SaveArea = true; 2105 } else if (PPC::GPRCRegClass.contains(BP)) { 2106 MinGPR = std::min<unsigned>(MinGPR, BP); 2107 HasGPSaveArea = true; 2108 } 2109 } 2110 2111 // General register save area starts right below the Floating-point 2112 // register save area. 2113 if (HasGPSaveArea || HasG8SaveArea) { 2114 // Move general register save area spill slots down, taking into account 2115 // the size of the Floating-point register save area. 2116 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2117 if (!GPRegs[i].isSpilledToReg()) { 2118 int FI = GPRegs[i].getFrameIdx(); 2119 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2120 } 2121 } 2122 2123 // Move general register save area spill slots down, taking into account 2124 // the size of the Floating-point register save area. 2125 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2126 if (!G8Regs[i].isSpilledToReg()) { 2127 int FI = G8Regs[i].getFrameIdx(); 2128 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2129 } 2130 } 2131 2132 unsigned MinReg = 2133 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2134 TRI->getEncodingValue(MinG8R)); 2135 2136 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2137 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2138 } 2139 2140 // For 32-bit only, the CR save area is below the general register 2141 // save area. For 64-bit SVR4, the CR save area is addressed relative 2142 // to the stack pointer and hence does not need an adjustment here. 2143 // Only CR2 (the first nonvolatile spilled) has an associated frame 2144 // index so that we have a single uniform save area. 2145 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2146 // Adjust the frame index of the CR spill slot. 2147 for (const auto &CSInfo : CSI) { 2148 if (CSInfo.getReg() == PPC::CR2) { 2149 int FI = CSInfo.getFrameIdx(); 2150 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2151 break; 2152 } 2153 } 2154 2155 LowerBound -= 4; // The CR save area is always 4 bytes long. 2156 } 2157 2158 // Both Altivec and SPE have the same alignment and padding requirements 2159 // within the stack frame. 2160 if (HasVRSaveArea) { 2161 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2162 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2163 // we are using negative number here (the stack grows downward). We should 2164 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2165 // is the alignment size ( n = 16 here) and y is the size after aligning. 2166 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2167 LowerBound &= ~(15); 2168 2169 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2170 int FI = VRegs[i].getFrameIdx(); 2171 2172 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2173 } 2174 } 2175 2176 addScavengingSpillSlot(MF, RS); 2177 } 2178 2179 void 2180 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2181 RegScavenger *RS) const { 2182 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2183 // a large stack, which will require scavenging a register to materialize a 2184 // large offset. 2185 2186 // We need to have a scavenger spill slot for spills if the frame size is 2187 // large. In case there is no free register for large-offset addressing, 2188 // this slot is used for the necessary emergency spill. Also, we need the 2189 // slot for dynamic stack allocations. 2190 2191 // The scavenger might be invoked if the frame offset does not fit into 2192 // the 16-bit immediate. We don't know the complete frame size here 2193 // because we've not yet computed callee-saved register spills or the 2194 // needed alignment padding. 2195 unsigned StackSize = determineFrameLayout(MF, true); 2196 MachineFrameInfo &MFI = MF.getFrameInfo(); 2197 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) || 2198 (hasSpills(MF) && !isInt<16>(StackSize))) { 2199 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2200 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2201 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2202 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2203 unsigned Size = TRI.getSpillSize(RC); 2204 Align Alignment = TRI.getSpillAlign(RC); 2205 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2206 2207 // Might we have over-aligned allocas? 2208 bool HasAlVars = 2209 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2210 2211 // These kinds of spills might need two registers. 2212 if (spillsCR(MF) || HasAlVars) 2213 RS->addScavengingFrameIndex( 2214 MFI.CreateStackObject(Size, Alignment, false)); 2215 } 2216 } 2217 2218 // This function checks if a callee saved gpr can be spilled to a volatile 2219 // vector register. This occurs for leaf functions when the option 2220 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2221 // which were not spilled to vectors, return false so the target independent 2222 // code can handle them by assigning a FrameIdx to a stack slot. 2223 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2224 MachineFunction &MF, const TargetRegisterInfo *TRI, 2225 std::vector<CalleeSavedInfo> &CSI) const { 2226 2227 if (CSI.empty()) 2228 return true; // Early exit if no callee saved registers are modified! 2229 2230 // Early exit if cannot spill gprs to volatile vector registers. 2231 MachineFrameInfo &MFI = MF.getFrameInfo(); 2232 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2233 return false; 2234 2235 // Build a BitVector of VSRs that can be used for spilling GPRs. 2236 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2237 BitVector BVCalleeSaved(TRI->getNumRegs()); 2238 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2239 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2240 for (unsigned i = 0; CSRegs[i]; ++i) 2241 BVCalleeSaved.set(CSRegs[i]); 2242 2243 for (unsigned Reg : BVAllocatable.set_bits()) { 2244 // Set to 0 if the register is not a volatile VF/F8 register, or if it is 2245 // used in the function. 2246 if (BVCalleeSaved[Reg] || 2247 (!PPC::F8RCRegClass.contains(Reg) && 2248 !PPC::VFRCRegClass.contains(Reg)) || 2249 (MF.getRegInfo().isPhysRegUsed(Reg))) 2250 BVAllocatable.reset(Reg); 2251 } 2252 2253 bool AllSpilledToReg = true; 2254 for (auto &CS : CSI) { 2255 if (BVAllocatable.none()) 2256 return false; 2257 2258 unsigned Reg = CS.getReg(); 2259 if (!PPC::G8RCRegClass.contains(Reg) && !PPC::GPRCRegClass.contains(Reg)) { 2260 AllSpilledToReg = false; 2261 continue; 2262 } 2263 2264 unsigned VolatileVFReg = BVAllocatable.find_first(); 2265 if (VolatileVFReg < BVAllocatable.size()) { 2266 CS.setDstReg(VolatileVFReg); 2267 BVAllocatable.reset(VolatileVFReg); 2268 } else { 2269 AllSpilledToReg = false; 2270 } 2271 } 2272 return AllSpilledToReg; 2273 } 2274 2275 bool PPCFrameLowering::spillCalleeSavedRegisters( 2276 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2277 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2278 2279 MachineFunction *MF = MBB.getParent(); 2280 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2281 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2282 bool MustSaveTOC = FI->mustSaveTOC(); 2283 DebugLoc DL; 2284 bool CRSpilled = false; 2285 MachineInstrBuilder CRMIB; 2286 2287 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2288 unsigned Reg = CSI[i].getReg(); 2289 2290 // CR2 through CR4 are the nonvolatile CR fields. 2291 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2292 2293 // Add the callee-saved register as live-in; it's killed at the spill. 2294 // Do not do this for callee-saved registers that are live-in to the 2295 // function because they will already be marked live-in and this will be 2296 // adding it for a second time. It is an error to add the same register 2297 // to the set more than once. 2298 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2299 bool IsLiveIn = MRI.isLiveIn(Reg); 2300 if (!IsLiveIn) 2301 MBB.addLiveIn(Reg); 2302 2303 if (CRSpilled && IsCRField) { 2304 CRMIB.addReg(Reg, RegState::ImplicitKill); 2305 continue; 2306 } 2307 2308 // The actual spill will happen in the prologue. 2309 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2310 continue; 2311 2312 // Insert the spill to the stack frame. 2313 if (IsCRField) { 2314 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2315 if (!Subtarget.is32BitELFABI()) { 2316 // The actual spill will happen at the start of the prologue. 2317 FuncInfo->addMustSaveCR(Reg); 2318 } else { 2319 CRSpilled = true; 2320 FuncInfo->setSpillsCR(); 2321 2322 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2323 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2324 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2325 .addReg(Reg, RegState::ImplicitKill); 2326 2327 MBB.insert(MI, CRMIB); 2328 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2329 .addReg(PPC::R12, 2330 getKillRegState(true)), 2331 CSI[i].getFrameIdx())); 2332 } 2333 } else { 2334 if (CSI[i].isSpilledToReg()) { 2335 NumPESpillVSR++; 2336 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), CSI[i].getDstReg()) 2337 .addReg(Reg, getKillRegState(true)); 2338 } else { 2339 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2340 // Use !IsLiveIn for the kill flag. 2341 // We do not want to kill registers that are live in this function 2342 // before their use because they will become undefined registers. 2343 // Functions without NoUnwind need to preserve the order of elements in 2344 // saved vector registers. 2345 if (Subtarget.needsSwapsForVSXMemOps() && 2346 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2347 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2348 CSI[i].getFrameIdx(), RC, TRI); 2349 else 2350 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, CSI[i].getFrameIdx(), 2351 RC, TRI); 2352 } 2353 } 2354 } 2355 return true; 2356 } 2357 2358 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2359 bool CR4Spilled, MachineBasicBlock &MBB, 2360 MachineBasicBlock::iterator MI, 2361 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2362 2363 MachineFunction *MF = MBB.getParent(); 2364 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2365 DebugLoc DL; 2366 unsigned MoveReg = PPC::R12; 2367 2368 // 32-bit: FP-relative 2369 MBB.insert(MI, 2370 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2371 CSI[CSIIndex].getFrameIdx())); 2372 2373 unsigned RestoreOp = PPC::MTOCRF; 2374 if (CR2Spilled) 2375 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2376 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2377 2378 if (CR3Spilled) 2379 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2380 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2381 2382 if (CR4Spilled) 2383 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2384 .addReg(MoveReg, getKillRegState(true))); 2385 } 2386 2387 MachineBasicBlock::iterator PPCFrameLowering:: 2388 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2389 MachineBasicBlock::iterator I) const { 2390 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2391 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2392 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2393 // Add (actually subtract) back the amount the callee popped on return. 2394 if (int CalleeAmt = I->getOperand(1).getImm()) { 2395 bool is64Bit = Subtarget.isPPC64(); 2396 CalleeAmt *= -1; 2397 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2398 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2399 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2400 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2401 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2402 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2403 const DebugLoc &dl = I->getDebugLoc(); 2404 2405 if (isInt<16>(CalleeAmt)) { 2406 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2407 .addReg(StackReg, RegState::Kill) 2408 .addImm(CalleeAmt); 2409 } else { 2410 MachineBasicBlock::iterator MBBI = I; 2411 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2412 .addImm(CalleeAmt >> 16); 2413 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2414 .addReg(TmpReg, RegState::Kill) 2415 .addImm(CalleeAmt & 0xFFFF); 2416 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2417 .addReg(StackReg, RegState::Kill) 2418 .addReg(TmpReg); 2419 } 2420 } 2421 } 2422 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2423 return MBB.erase(I); 2424 } 2425 2426 static bool isCalleeSavedCR(unsigned Reg) { 2427 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2428 } 2429 2430 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2431 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2432 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2433 MachineFunction *MF = MBB.getParent(); 2434 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2435 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2436 bool MustSaveTOC = FI->mustSaveTOC(); 2437 bool CR2Spilled = false; 2438 bool CR3Spilled = false; 2439 bool CR4Spilled = false; 2440 unsigned CSIIndex = 0; 2441 2442 // Initialize insertion-point logic; we will be restoring in reverse 2443 // order of spill. 2444 MachineBasicBlock::iterator I = MI, BeforeI = I; 2445 bool AtStart = I == MBB.begin(); 2446 2447 if (!AtStart) 2448 --BeforeI; 2449 2450 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2451 unsigned Reg = CSI[i].getReg(); 2452 2453 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2454 continue; 2455 2456 // Restore of callee saved condition register field is handled during 2457 // epilogue insertion. 2458 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2459 continue; 2460 2461 if (Reg == PPC::CR2) { 2462 CR2Spilled = true; 2463 // The spill slot is associated only with CR2, which is the 2464 // first nonvolatile spilled. Save it here. 2465 CSIIndex = i; 2466 continue; 2467 } else if (Reg == PPC::CR3) { 2468 CR3Spilled = true; 2469 continue; 2470 } else if (Reg == PPC::CR4) { 2471 CR4Spilled = true; 2472 continue; 2473 } else { 2474 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2475 // least one CR register, restore all spilled CRs together. 2476 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2477 bool is31 = needsFP(*MF); 2478 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2479 CSIIndex); 2480 CR2Spilled = CR3Spilled = CR4Spilled = false; 2481 } 2482 2483 if (CSI[i].isSpilledToReg()) { 2484 DebugLoc DL; 2485 NumPEReloadVSR++; 2486 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), Reg) 2487 .addReg(CSI[i].getDstReg(), getKillRegState(true)); 2488 } else { 2489 // Default behavior for non-CR saves. 2490 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2491 2492 // Functions without NoUnwind need to preserve the order of elements in 2493 // saved vector registers. 2494 if (Subtarget.needsSwapsForVSXMemOps() && 2495 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2496 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2497 TRI); 2498 else 2499 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI); 2500 2501 assert(I != MBB.begin() && 2502 "loadRegFromStackSlot didn't insert any code!"); 2503 } 2504 } 2505 2506 // Insert in reverse order. 2507 if (AtStart) 2508 I = MBB.begin(); 2509 else { 2510 I = BeforeI; 2511 ++I; 2512 } 2513 } 2514 2515 // If we haven't yet spilled the CRs, do so now. 2516 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2517 assert(Subtarget.is32BitELFABI() && 2518 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2519 bool is31 = needsFP(*MF); 2520 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2521 } 2522 2523 return true; 2524 } 2525 2526 unsigned PPCFrameLowering::getTOCSaveOffset() const { 2527 return TOCSaveOffset; 2528 } 2529 2530 unsigned PPCFrameLowering::getFramePointerSaveOffset() const { 2531 return FramePointerSaveOffset; 2532 } 2533 2534 unsigned PPCFrameLowering::getBasePointerSaveOffset() const { 2535 return BasePointerSaveOffset; 2536 } 2537 2538 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2539 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2540 return false; 2541 return (MF.getSubtarget<PPCSubtarget>().isSVR4ABI() && 2542 MF.getSubtarget<PPCSubtarget>().isPPC64()); 2543 } 2544