1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the PPC branch instructions 11 // that decrement and test the count register (CTR) (bdnz and friends). 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // 18 // Criteria for CTR loops: 19 // - Countable loops (w/ ind. var for a trip count) 20 // - Try inner-most loops first 21 // - No nested CTR loops. 22 // - No function calls in loops. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar.h" 27 #include "PPC.h" 28 #include "PPCTargetMachine.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/ScalarEvolutionExpander.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/PassSupport.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 50 #ifndef NDEBUG 51 #include "llvm/CodeGen/MachineDominators.h" 52 #include "llvm/CodeGen/MachineFunction.h" 53 #include "llvm/CodeGen/MachineFunctionPass.h" 54 #include "llvm/CodeGen/MachineRegisterInfo.h" 55 #endif 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "ctrloops" 60 61 #ifndef NDEBUG 62 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1)); 63 #endif 64 65 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); 66 67 namespace llvm { 68 void initializePPCCTRLoopsPass(PassRegistry&); 69 #ifndef NDEBUG 70 void initializePPCCTRLoopsVerifyPass(PassRegistry&); 71 #endif 72 } 73 74 namespace { 75 struct PPCCTRLoops : public FunctionPass { 76 77 #ifndef NDEBUG 78 static int Counter; 79 #endif 80 81 public: 82 static char ID; 83 84 PPCCTRLoops() : FunctionPass(ID), TM(nullptr) { 85 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 86 } 87 PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 88 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool runOnFunction(Function &F) override; 92 93 void getAnalysisUsage(AnalysisUsage &AU) const override { 94 AU.addRequired<LoopInfoWrapperPass>(); 95 AU.addPreserved<LoopInfoWrapperPass>(); 96 AU.addRequired<DominatorTreeWrapperPass>(); 97 AU.addPreserved<DominatorTreeWrapperPass>(); 98 AU.addRequired<ScalarEvolutionWrapperPass>(); 99 } 100 101 private: 102 bool mightUseCTR(const Triple &TT, BasicBlock *BB); 103 bool convertToCTRLoop(Loop *L); 104 105 private: 106 PPCTargetMachine *TM; 107 LoopInfo *LI; 108 ScalarEvolution *SE; 109 const DataLayout *DL; 110 DominatorTree *DT; 111 const TargetLibraryInfo *LibInfo; 112 bool PreserveLCSSA; 113 }; 114 115 char PPCCTRLoops::ID = 0; 116 #ifndef NDEBUG 117 int PPCCTRLoops::Counter = 0; 118 #endif 119 120 #ifndef NDEBUG 121 struct PPCCTRLoopsVerify : public MachineFunctionPass { 122 public: 123 static char ID; 124 125 PPCCTRLoopsVerify() : MachineFunctionPass(ID) { 126 initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry()); 127 } 128 129 void getAnalysisUsage(AnalysisUsage &AU) const override { 130 AU.addRequired<MachineDominatorTree>(); 131 MachineFunctionPass::getAnalysisUsage(AU); 132 } 133 134 bool runOnMachineFunction(MachineFunction &MF) override; 135 136 private: 137 MachineDominatorTree *MDT; 138 }; 139 140 char PPCCTRLoopsVerify::ID = 0; 141 #endif // NDEBUG 142 } // end anonymous namespace 143 144 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 145 false, false) 146 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 147 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 148 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 149 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 150 false, false) 151 152 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) { 153 return new PPCCTRLoops(TM); 154 } 155 156 #ifndef NDEBUG 157 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 158 "PowerPC CTR Loops Verify", false, false) 159 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 160 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 161 "PowerPC CTR Loops Verify", false, false) 162 163 FunctionPass *llvm::createPPCCTRLoopsVerify() { 164 return new PPCCTRLoopsVerify(); 165 } 166 #endif // NDEBUG 167 168 bool PPCCTRLoops::runOnFunction(Function &F) { 169 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 170 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 171 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 172 DL = &F.getParent()->getDataLayout(); 173 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 174 LibInfo = TLIP ? &TLIP->getTLI() : nullptr; 175 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 176 177 bool MadeChange = false; 178 179 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); 180 I != E; ++I) { 181 Loop *L = *I; 182 if (!L->getParentLoop()) 183 MadeChange |= convertToCTRLoop(L); 184 } 185 186 return MadeChange; 187 } 188 189 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) { 190 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 191 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 192 193 return false; 194 } 195 196 // Determining the address of a TLS variable results in a function call in 197 // certain TLS models. 198 static bool memAddrUsesCTR(const PPCTargetMachine *TM, 199 const Value *MemAddr) { 200 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 201 if (!GV) { 202 // Recurse to check for constants that refer to TLS global variables. 203 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 204 for (const auto &CO : CV->operands()) 205 if (memAddrUsesCTR(TM, CO)) 206 return true; 207 208 return false; 209 } 210 211 if (!GV->isThreadLocal()) 212 return false; 213 if (!TM) 214 return true; 215 TLSModel::Model Model = TM->getTLSModel(GV); 216 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic; 217 } 218 219 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) { 220 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 221 J != JE; ++J) { 222 if (CallInst *CI = dyn_cast<CallInst>(J)) { 223 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { 224 // Inline ASM is okay, unless it clobbers the ctr register. 225 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 226 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 227 InlineAsm::ConstraintInfo &C = CIV[i]; 228 if (C.Type != InlineAsm::isInput) 229 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 230 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 231 return true; 232 } 233 234 continue; 235 } 236 237 if (!TM) 238 return true; 239 const TargetLowering *TLI = 240 TM->getSubtargetImpl(*BB->getParent())->getTargetLowering(); 241 242 if (Function *F = CI->getCalledFunction()) { 243 // Most intrinsics don't become function calls, but some might. 244 // sin, cos, exp and log are always calls. 245 unsigned Opcode = 0; 246 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 247 switch (F->getIntrinsicID()) { 248 default: continue; 249 // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr 250 // we're definitely using CTR. 251 case Intrinsic::ppc_is_decremented_ctr_nonzero: 252 case Intrinsic::ppc_mtctr: 253 return true; 254 255 // VisualStudio defines setjmp as _setjmp 256 #if defined(_MSC_VER) && defined(setjmp) && \ 257 !defined(setjmp_undefined_for_msvc) 258 # pragma push_macro("setjmp") 259 # undef setjmp 260 # define setjmp_undefined_for_msvc 261 #endif 262 263 case Intrinsic::setjmp: 264 265 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 266 // let's return it to _setjmp state 267 # pragma pop_macro("setjmp") 268 # undef setjmp_undefined_for_msvc 269 #endif 270 271 case Intrinsic::longjmp: 272 273 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 274 // because, although it does clobber the counter register, the 275 // control can't then return to inside the loop unless there is also 276 // an eh_sjlj_setjmp. 277 case Intrinsic::eh_sjlj_setjmp: 278 279 case Intrinsic::memcpy: 280 case Intrinsic::memmove: 281 case Intrinsic::memset: 282 case Intrinsic::powi: 283 case Intrinsic::log: 284 case Intrinsic::log2: 285 case Intrinsic::log10: 286 case Intrinsic::exp: 287 case Intrinsic::exp2: 288 case Intrinsic::pow: 289 case Intrinsic::sin: 290 case Intrinsic::cos: 291 return true; 292 case Intrinsic::copysign: 293 if (CI->getArgOperand(0)->getType()->getScalarType()-> 294 isPPC_FP128Ty()) 295 return true; 296 else 297 continue; // ISD::FCOPYSIGN is never a library call. 298 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 299 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 300 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 301 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 302 case Intrinsic::rint: Opcode = ISD::FRINT; break; 303 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 304 case Intrinsic::round: Opcode = ISD::FROUND; break; 305 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break; 306 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break; 307 } 308 } 309 310 // PowerPC does not use [US]DIVREM or other library calls for 311 // operations on regular types which are not otherwise library calls 312 // (i.e. soft float or atomics). If adapting for targets that do, 313 // additional care is required here. 314 315 LibFunc::Func Func; 316 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 317 LibInfo->getLibFunc(F->getName(), Func) && 318 LibInfo->hasOptimizedCodeGen(Func)) { 319 // Non-read-only functions are never treated as intrinsics. 320 if (!CI->onlyReadsMemory()) 321 return true; 322 323 // Conversion happens only for FP calls. 324 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 325 return true; 326 327 switch (Func) { 328 default: return true; 329 case LibFunc::copysign: 330 case LibFunc::copysignf: 331 continue; // ISD::FCOPYSIGN is never a library call. 332 case LibFunc::copysignl: 333 return true; 334 case LibFunc::fabs: 335 case LibFunc::fabsf: 336 case LibFunc::fabsl: 337 continue; // ISD::FABS is never a library call. 338 case LibFunc::sqrt: 339 case LibFunc::sqrtf: 340 case LibFunc::sqrtl: 341 Opcode = ISD::FSQRT; break; 342 case LibFunc::floor: 343 case LibFunc::floorf: 344 case LibFunc::floorl: 345 Opcode = ISD::FFLOOR; break; 346 case LibFunc::nearbyint: 347 case LibFunc::nearbyintf: 348 case LibFunc::nearbyintl: 349 Opcode = ISD::FNEARBYINT; break; 350 case LibFunc::ceil: 351 case LibFunc::ceilf: 352 case LibFunc::ceill: 353 Opcode = ISD::FCEIL; break; 354 case LibFunc::rint: 355 case LibFunc::rintf: 356 case LibFunc::rintl: 357 Opcode = ISD::FRINT; break; 358 case LibFunc::round: 359 case LibFunc::roundf: 360 case LibFunc::roundl: 361 Opcode = ISD::FROUND; break; 362 case LibFunc::trunc: 363 case LibFunc::truncf: 364 case LibFunc::truncl: 365 Opcode = ISD::FTRUNC; break; 366 case LibFunc::fmin: 367 case LibFunc::fminf: 368 case LibFunc::fminl: 369 Opcode = ISD::FMINNUM; break; 370 case LibFunc::fmax: 371 case LibFunc::fmaxf: 372 case LibFunc::fmaxl: 373 Opcode = ISD::FMAXNUM; break; 374 } 375 } 376 377 if (Opcode) { 378 auto &DL = CI->getModule()->getDataLayout(); 379 MVT VTy = TLI->getSimpleValueType(DL, CI->getArgOperand(0)->getType(), 380 true); 381 if (VTy == MVT::Other) 382 return true; 383 384 if (TLI->isOperationLegalOrCustom(Opcode, VTy)) 385 continue; 386 else if (VTy.isVector() && 387 TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType())) 388 continue; 389 390 return true; 391 } 392 } 393 394 return true; 395 } else if (isa<BinaryOperator>(J) && 396 J->getType()->getScalarType()->isPPC_FP128Ty()) { 397 // Most operations on ppc_f128 values become calls. 398 return true; 399 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 400 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 401 CastInst *CI = cast<CastInst>(J); 402 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 403 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 404 isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) || 405 isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType())) 406 return true; 407 } else if (isLargeIntegerTy(TT.isArch32Bit(), 408 J->getType()->getScalarType()) && 409 (J->getOpcode() == Instruction::UDiv || 410 J->getOpcode() == Instruction::SDiv || 411 J->getOpcode() == Instruction::URem || 412 J->getOpcode() == Instruction::SRem)) { 413 return true; 414 } else if (TT.isArch32Bit() && 415 isLargeIntegerTy(false, J->getType()->getScalarType()) && 416 (J->getOpcode() == Instruction::Shl || 417 J->getOpcode() == Instruction::AShr || 418 J->getOpcode() == Instruction::LShr)) { 419 // Only on PPC32, for 128-bit integers (specifically not 64-bit 420 // integers), these might be runtime calls. 421 return true; 422 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 423 // On PowerPC, indirect jumps use the counter register. 424 return true; 425 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 426 if (!TM) 427 return true; 428 const TargetLowering *TLI = 429 TM->getSubtargetImpl(*BB->getParent())->getTargetLowering(); 430 431 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 432 return true; 433 } 434 435 if (TM->getSubtargetImpl(*BB->getParent())->getTargetLowering()->useSoftFloat()) { 436 switch(J->getOpcode()) { 437 case Instruction::FAdd: 438 case Instruction::FSub: 439 case Instruction::FMul: 440 case Instruction::FDiv: 441 case Instruction::FRem: 442 case Instruction::FPTrunc: 443 case Instruction::FPExt: 444 case Instruction::FPToUI: 445 case Instruction::FPToSI: 446 case Instruction::UIToFP: 447 case Instruction::SIToFP: 448 case Instruction::FCmp: 449 return true; 450 } 451 } 452 453 for (Value *Operand : J->operands()) 454 if (memAddrUsesCTR(TM, Operand)) 455 return true; 456 } 457 458 return false; 459 } 460 461 bool PPCCTRLoops::convertToCTRLoop(Loop *L) { 462 bool MadeChange = false; 463 464 const Triple TT = 465 Triple(L->getHeader()->getParent()->getParent()->getTargetTriple()); 466 if (!TT.isArch32Bit() && !TT.isArch64Bit()) 467 return MadeChange; // Unknown arch. type. 468 469 // Process nested loops first. 470 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 471 MadeChange |= convertToCTRLoop(*I); 472 DEBUG(dbgs() << "Nested loop converted\n"); 473 } 474 475 // If a nested loop has been converted, then we can't convert this loop. 476 if (MadeChange) 477 return MadeChange; 478 479 #ifndef NDEBUG 480 // Stop trying after reaching the limit (if any). 481 int Limit = CTRLoopLimit; 482 if (Limit >= 0) { 483 if (Counter >= CTRLoopLimit) 484 return false; 485 Counter++; 486 } 487 #endif 488 489 // We don't want to spill/restore the counter register, and so we don't 490 // want to use the counter register if the loop contains calls. 491 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 492 I != IE; ++I) 493 if (mightUseCTR(TT, *I)) 494 return MadeChange; 495 496 SmallVector<BasicBlock*, 4> ExitingBlocks; 497 L->getExitingBlocks(ExitingBlocks); 498 499 BasicBlock *CountedExitBlock = nullptr; 500 const SCEV *ExitCount = nullptr; 501 BranchInst *CountedExitBranch = nullptr; 502 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 503 IE = ExitingBlocks.end(); I != IE; ++I) { 504 const SCEV *EC = SE->getExitCount(L, *I); 505 DEBUG(dbgs() << "Exit Count for " << *L << " from block " << 506 (*I)->getName() << ": " << *EC << "\n"); 507 if (isa<SCEVCouldNotCompute>(EC)) 508 continue; 509 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 510 if (ConstEC->getValue()->isZero()) 511 continue; 512 } else if (!SE->isLoopInvariant(EC, L)) 513 continue; 514 515 if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32)) 516 continue; 517 518 // We now have a loop-invariant count of loop iterations (which is not the 519 // constant zero) for which we know that this loop will not exit via this 520 // exisiting block. 521 522 // We need to make sure that this block will run on every loop iteration. 523 // For this to be true, we must dominate all blocks with backedges. Such 524 // blocks are in-loop predecessors to the header block. 525 bool NotAlways = false; 526 for (pred_iterator PI = pred_begin(L->getHeader()), 527 PIE = pred_end(L->getHeader()); PI != PIE; ++PI) { 528 if (!L->contains(*PI)) 529 continue; 530 531 if (!DT->dominates(*I, *PI)) { 532 NotAlways = true; 533 break; 534 } 535 } 536 537 if (NotAlways) 538 continue; 539 540 // Make sure this blocks ends with a conditional branch. 541 Instruction *TI = (*I)->getTerminator(); 542 if (!TI) 543 continue; 544 545 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 546 if (!BI->isConditional()) 547 continue; 548 549 CountedExitBranch = BI; 550 } else 551 continue; 552 553 // Note that this block may not be the loop latch block, even if the loop 554 // has a latch block. 555 CountedExitBlock = *I; 556 ExitCount = EC; 557 break; 558 } 559 560 if (!CountedExitBlock) 561 return MadeChange; 562 563 BasicBlock *Preheader = L->getLoopPreheader(); 564 565 // If we don't have a preheader, then insert one. If we already have a 566 // preheader, then we can use it (except if the preheader contains a use of 567 // the CTR register because some such uses might be reordered by the 568 // selection DAG after the mtctr instruction). 569 if (!Preheader || mightUseCTR(TT, Preheader)) 570 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 571 if (!Preheader) 572 return MadeChange; 573 574 DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n"); 575 576 // Insert the count into the preheader and replace the condition used by the 577 // selected branch. 578 MadeChange = true; 579 580 SCEVExpander SCEVE(*SE, Preheader->getModule()->getDataLayout(), "loopcnt"); 581 LLVMContext &C = SE->getContext(); 582 Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) : 583 Type::getInt32Ty(C); 584 if (!ExitCount->getType()->isPointerTy() && 585 ExitCount->getType() != CountType) 586 ExitCount = SE->getZeroExtendExpr(ExitCount, CountType); 587 ExitCount = SE->getAddExpr(ExitCount, SE->getOne(CountType)); 588 Value *ECValue = 589 SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator()); 590 591 IRBuilder<> CountBuilder(Preheader->getTerminator()); 592 Module *M = Preheader->getParent()->getParent(); 593 Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr, 594 CountType); 595 CountBuilder.CreateCall(MTCTRFunc, ECValue); 596 597 IRBuilder<> CondBuilder(CountedExitBranch); 598 Value *DecFunc = 599 Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero); 600 Value *NewCond = CondBuilder.CreateCall(DecFunc, {}); 601 Value *OldCond = CountedExitBranch->getCondition(); 602 CountedExitBranch->setCondition(NewCond); 603 604 // The false branch must exit the loop. 605 if (!L->contains(CountedExitBranch->getSuccessor(0))) 606 CountedExitBranch->swapSuccessors(); 607 608 // The old condition may be dead now, and may have even created a dead PHI 609 // (the original induction variable). 610 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 611 DeleteDeadPHIs(CountedExitBlock); 612 613 ++NumCTRLoops; 614 return MadeChange; 615 } 616 617 #ifndef NDEBUG 618 static bool clobbersCTR(const MachineInstr *MI) { 619 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 620 const MachineOperand &MO = MI->getOperand(i); 621 if (MO.isReg()) { 622 if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) 623 return true; 624 } else if (MO.isRegMask()) { 625 if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8)) 626 return true; 627 } 628 } 629 630 return false; 631 } 632 633 static bool verifyCTRBranch(MachineBasicBlock *MBB, 634 MachineBasicBlock::iterator I) { 635 MachineBasicBlock::iterator BI = I; 636 SmallSet<MachineBasicBlock *, 16> Visited; 637 SmallVector<MachineBasicBlock *, 8> Preds; 638 bool CheckPreds; 639 640 if (I == MBB->begin()) { 641 Visited.insert(MBB); 642 goto queue_preds; 643 } else 644 --I; 645 646 check_block: 647 Visited.insert(MBB); 648 if (I == MBB->end()) 649 goto queue_preds; 650 651 CheckPreds = true; 652 for (MachineBasicBlock::iterator IE = MBB->begin();; --I) { 653 unsigned Opc = I->getOpcode(); 654 if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) { 655 CheckPreds = false; 656 break; 657 } 658 659 if (I != BI && clobbersCTR(I)) { 660 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" << 661 MBB->getFullName() << ") instruction " << *I << 662 " clobbers CTR, invalidating " << "BB#" << 663 BI->getParent()->getNumber() << " (" << 664 BI->getParent()->getFullName() << ") instruction " << 665 *BI << "\n"); 666 return false; 667 } 668 669 if (I == IE) 670 break; 671 } 672 673 if (!CheckPreds && Preds.empty()) 674 return true; 675 676 if (CheckPreds) { 677 queue_preds: 678 if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) { 679 DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" << 680 BI->getParent()->getNumber() << " (" << 681 BI->getParent()->getFullName() << ") instruction " << 682 *BI << "\n"); 683 return false; 684 } 685 686 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 687 PIE = MBB->pred_end(); PI != PIE; ++PI) 688 Preds.push_back(*PI); 689 } 690 691 do { 692 MBB = Preds.pop_back_val(); 693 if (!Visited.count(MBB)) { 694 I = MBB->getLastNonDebugInstr(); 695 goto check_block; 696 } 697 } while (!Preds.empty()); 698 699 return true; 700 } 701 702 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) { 703 MDT = &getAnalysis<MachineDominatorTree>(); 704 705 // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before 706 // any other instructions that might clobber the ctr register. 707 for (MachineFunction::iterator I = MF.begin(), IE = MF.end(); 708 I != IE; ++I) { 709 MachineBasicBlock *MBB = &*I; 710 if (!MDT->isReachableFromEntry(MBB)) 711 continue; 712 713 for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(), 714 MIIE = MBB->end(); MII != MIIE; ++MII) { 715 unsigned Opc = MII->getOpcode(); 716 if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ || 717 Opc == PPC::BDZ8 || Opc == PPC::BDZ) 718 if (!verifyCTRBranch(MBB, MII)) 719 llvm_unreachable("Invalid PPC CTR loop!"); 720 } 721 } 722 723 return false; 724 } 725 #endif // NDEBUG 726