1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/PPCMCExpr.h" 11 #include "MCTargetDesc/PPCMCTargetDesc.h" 12 #include "PPCTargetStreamer.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/StringSwitch.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/MC/MCExpr.h" 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/MC/MCInstrInfo.h" 20 #include "llvm/MC/MCParser/MCAsmLexer.h" 21 #include "llvm/MC/MCParser/MCAsmParser.h" 22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 23 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 24 #include "llvm/MC/MCRegisterInfo.h" 25 #include "llvm/MC/MCStreamer.h" 26 #include "llvm/MC/MCSubtargetInfo.h" 27 #include "llvm/MC/MCSymbolELF.h" 28 #include "llvm/Support/SourceMgr.h" 29 #include "llvm/Support/TargetRegistry.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 static const MCPhysReg RRegs[32] = { 35 PPC::R0, PPC::R1, PPC::R2, PPC::R3, 36 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 37 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 38 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 39 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 40 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 41 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 42 PPC::R28, PPC::R29, PPC::R30, PPC::R31 43 }; 44 static const MCPhysReg RRegsNoR0[32] = { 45 PPC::ZERO, 46 PPC::R1, PPC::R2, PPC::R3, 47 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 48 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 49 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 50 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 51 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 52 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 53 PPC::R28, PPC::R29, PPC::R30, PPC::R31 54 }; 55 static const MCPhysReg XRegs[32] = { 56 PPC::X0, PPC::X1, PPC::X2, PPC::X3, 57 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 58 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 59 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 60 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 61 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 62 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 63 PPC::X28, PPC::X29, PPC::X30, PPC::X31 64 }; 65 static const MCPhysReg XRegsNoX0[32] = { 66 PPC::ZERO8, 67 PPC::X1, PPC::X2, PPC::X3, 68 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 69 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 70 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 71 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 72 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 73 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 74 PPC::X28, PPC::X29, PPC::X30, PPC::X31 75 }; 76 static const MCPhysReg FRegs[32] = { 77 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 78 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 79 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 80 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 81 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 82 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 83 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 84 PPC::F28, PPC::F29, PPC::F30, PPC::F31 85 }; 86 static const MCPhysReg VRegs[32] = { 87 PPC::V0, PPC::V1, PPC::V2, PPC::V3, 88 PPC::V4, PPC::V5, PPC::V6, PPC::V7, 89 PPC::V8, PPC::V9, PPC::V10, PPC::V11, 90 PPC::V12, PPC::V13, PPC::V14, PPC::V15, 91 PPC::V16, PPC::V17, PPC::V18, PPC::V19, 92 PPC::V20, PPC::V21, PPC::V22, PPC::V23, 93 PPC::V24, PPC::V25, PPC::V26, PPC::V27, 94 PPC::V28, PPC::V29, PPC::V30, PPC::V31 95 }; 96 static const MCPhysReg VSRegs[64] = { 97 PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3, 98 PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7, 99 PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11, 100 PPC::VSL12, PPC::VSL13, PPC::VSL14, PPC::VSL15, 101 PPC::VSL16, PPC::VSL17, PPC::VSL18, PPC::VSL19, 102 PPC::VSL20, PPC::VSL21, PPC::VSL22, PPC::VSL23, 103 PPC::VSL24, PPC::VSL25, PPC::VSL26, PPC::VSL27, 104 PPC::VSL28, PPC::VSL29, PPC::VSL30, PPC::VSL31, 105 106 PPC::VSH0, PPC::VSH1, PPC::VSH2, PPC::VSH3, 107 PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, 108 PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11, 109 PPC::VSH12, PPC::VSH13, PPC::VSH14, PPC::VSH15, 110 PPC::VSH16, PPC::VSH17, PPC::VSH18, PPC::VSH19, 111 PPC::VSH20, PPC::VSH21, PPC::VSH22, PPC::VSH23, 112 PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27, 113 PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31 114 }; 115 static const MCPhysReg VSFRegs[64] = { 116 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 117 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 118 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 119 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 120 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 121 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 122 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 123 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 124 125 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 126 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 127 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 128 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 129 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 130 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 131 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 132 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 133 }; 134 static const MCPhysReg VSSRegs[64] = { 135 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 136 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 137 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 138 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 139 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 140 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 141 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 142 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 143 144 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 145 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 146 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 147 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 148 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 149 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 150 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 151 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 152 }; 153 static unsigned QFRegs[32] = { 154 PPC::QF0, PPC::QF1, PPC::QF2, PPC::QF3, 155 PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 156 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, 157 PPC::QF12, PPC::QF13, PPC::QF14, PPC::QF15, 158 PPC::QF16, PPC::QF17, PPC::QF18, PPC::QF19, 159 PPC::QF20, PPC::QF21, PPC::QF22, PPC::QF23, 160 PPC::QF24, PPC::QF25, PPC::QF26, PPC::QF27, 161 PPC::QF28, PPC::QF29, PPC::QF30, PPC::QF31 162 }; 163 static const MCPhysReg CRBITRegs[32] = { 164 PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, 165 PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN, 166 PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, 167 PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, 168 PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, 169 PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, 170 PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, 171 PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN 172 }; 173 static const MCPhysReg CRRegs[8] = { 174 PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, 175 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7 176 }; 177 178 // Evaluate an expression containing condition register 179 // or condition register field symbols. Returns positive 180 // value on success, or -1 on error. 181 static int64_t 182 EvaluateCRExpr(const MCExpr *E) { 183 switch (E->getKind()) { 184 case MCExpr::Target: 185 return -1; 186 187 case MCExpr::Constant: { 188 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 189 return Res < 0 ? -1 : Res; 190 } 191 192 case MCExpr::SymbolRef: { 193 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 194 StringRef Name = SRE->getSymbol().getName(); 195 196 if (Name == "lt") return 0; 197 if (Name == "gt") return 1; 198 if (Name == "eq") return 2; 199 if (Name == "so") return 3; 200 if (Name == "un") return 3; 201 202 if (Name == "cr0") return 0; 203 if (Name == "cr1") return 1; 204 if (Name == "cr2") return 2; 205 if (Name == "cr3") return 3; 206 if (Name == "cr4") return 4; 207 if (Name == "cr5") return 5; 208 if (Name == "cr6") return 6; 209 if (Name == "cr7") return 7; 210 211 return -1; 212 } 213 214 case MCExpr::Unary: 215 return -1; 216 217 case MCExpr::Binary: { 218 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 219 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 220 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 221 int64_t Res; 222 223 if (LHSVal < 0 || RHSVal < 0) 224 return -1; 225 226 switch (BE->getOpcode()) { 227 default: return -1; 228 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 229 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 230 } 231 232 return Res < 0 ? -1 : Res; 233 } 234 } 235 236 llvm_unreachable("Invalid expression kind!"); 237 } 238 239 namespace { 240 241 struct PPCOperand; 242 243 class PPCAsmParser : public MCTargetAsmParser { 244 const MCInstrInfo &MII; 245 bool IsPPC64; 246 bool IsDarwin; 247 248 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 249 bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); } 250 251 bool isPPC64() const { return IsPPC64; } 252 bool isDarwin() const { return IsDarwin; } 253 254 bool MatchRegisterName(const AsmToken &Tok, 255 unsigned &RegNo, int64_t &IntVal); 256 257 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 258 259 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 260 PPCMCExpr::VariantKind &Variant); 261 const MCExpr *FixupVariantKind(const MCExpr *E); 262 bool ParseExpression(const MCExpr *&EVal); 263 bool ParseDarwinExpression(const MCExpr *&EVal); 264 265 bool ParseOperand(OperandVector &Operands); 266 267 bool ParseDirectiveWord(unsigned Size, SMLoc L); 268 bool ParseDirectiveTC(unsigned Size, SMLoc L); 269 bool ParseDirectiveMachine(SMLoc L); 270 bool ParseDarwinDirectiveMachine(SMLoc L); 271 bool ParseDirectiveAbiVersion(SMLoc L); 272 bool ParseDirectiveLocalEntry(SMLoc L); 273 274 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 275 OperandVector &Operands, MCStreamer &Out, 276 uint64_t &ErrorInfo, 277 bool MatchingInlineAsm) override; 278 279 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 280 281 /// @name Auto-generated Match Functions 282 /// { 283 284 #define GET_ASSEMBLER_HEADER 285 #include "PPCGenAsmMatcher.inc" 286 287 /// } 288 289 290 public: 291 PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &, 292 const MCInstrInfo &MII, const MCTargetOptions &Options) 293 : MCTargetAsmParser(Options, STI), MII(MII) { 294 // Check for 64-bit vs. 32-bit pointer mode. 295 const Triple &TheTriple = STI.getTargetTriple(); 296 IsPPC64 = (TheTriple.getArch() == Triple::ppc64 || 297 TheTriple.getArch() == Triple::ppc64le); 298 IsDarwin = TheTriple.isMacOSX(); 299 // Initialize the set of available features. 300 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 301 } 302 303 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 304 SMLoc NameLoc, OperandVector &Operands) override; 305 306 bool ParseDirective(AsmToken DirectiveID) override; 307 308 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 309 unsigned Kind) override; 310 311 const MCExpr *applyModifierToExpr(const MCExpr *E, 312 MCSymbolRefExpr::VariantKind, 313 MCContext &Ctx) override; 314 }; 315 316 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 317 /// instruction. 318 struct PPCOperand : public MCParsedAsmOperand { 319 enum KindTy { 320 Token, 321 Immediate, 322 ContextImmediate, 323 Expression, 324 TLSRegister 325 } Kind; 326 327 SMLoc StartLoc, EndLoc; 328 bool IsPPC64; 329 330 struct TokOp { 331 const char *Data; 332 unsigned Length; 333 }; 334 335 struct ImmOp { 336 int64_t Val; 337 }; 338 339 struct ExprOp { 340 const MCExpr *Val; 341 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 342 }; 343 344 struct TLSRegOp { 345 const MCSymbolRefExpr *Sym; 346 }; 347 348 union { 349 struct TokOp Tok; 350 struct ImmOp Imm; 351 struct ExprOp Expr; 352 struct TLSRegOp TLSReg; 353 }; 354 355 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 356 public: 357 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 358 Kind = o.Kind; 359 StartLoc = o.StartLoc; 360 EndLoc = o.EndLoc; 361 IsPPC64 = o.IsPPC64; 362 switch (Kind) { 363 case Token: 364 Tok = o.Tok; 365 break; 366 case Immediate: 367 case ContextImmediate: 368 Imm = o.Imm; 369 break; 370 case Expression: 371 Expr = o.Expr; 372 break; 373 case TLSRegister: 374 TLSReg = o.TLSReg; 375 break; 376 } 377 } 378 379 // Disable use of sized deallocation due to overallocation of PPCOperand 380 // objects in CreateTokenWithStringCopy. 381 void operator delete(void *p) { ::operator delete(p); } 382 383 /// getStartLoc - Get the location of the first token of this operand. 384 SMLoc getStartLoc() const override { return StartLoc; } 385 386 /// getEndLoc - Get the location of the last token of this operand. 387 SMLoc getEndLoc() const override { return EndLoc; } 388 389 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 390 bool isPPC64() const { return IsPPC64; } 391 392 int64_t getImm() const { 393 assert(Kind == Immediate && "Invalid access!"); 394 return Imm.Val; 395 } 396 int64_t getImmS16Context() const { 397 assert((Kind == Immediate || Kind == ContextImmediate) && 398 "Invalid access!"); 399 if (Kind == Immediate) 400 return Imm.Val; 401 return static_cast<int16_t>(Imm.Val); 402 } 403 int64_t getImmU16Context() const { 404 assert((Kind == Immediate || Kind == ContextImmediate) && 405 "Invalid access!"); 406 return Imm.Val; 407 } 408 409 const MCExpr *getExpr() const { 410 assert(Kind == Expression && "Invalid access!"); 411 return Expr.Val; 412 } 413 414 int64_t getExprCRVal() const { 415 assert(Kind == Expression && "Invalid access!"); 416 return Expr.CRVal; 417 } 418 419 const MCExpr *getTLSReg() const { 420 assert(Kind == TLSRegister && "Invalid access!"); 421 return TLSReg.Sym; 422 } 423 424 unsigned getReg() const override { 425 assert(isRegNumber() && "Invalid access!"); 426 return (unsigned) Imm.Val; 427 } 428 429 unsigned getVSReg() const { 430 assert(isVSRegNumber() && "Invalid access!"); 431 return (unsigned) Imm.Val; 432 } 433 434 unsigned getCCReg() const { 435 assert(isCCRegNumber() && "Invalid access!"); 436 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 437 } 438 439 unsigned getCRBit() const { 440 assert(isCRBitNumber() && "Invalid access!"); 441 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 442 } 443 444 unsigned getCRBitMask() const { 445 assert(isCRBitMask() && "Invalid access!"); 446 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 447 } 448 449 bool isToken() const override { return Kind == Token; } 450 bool isImm() const override { 451 return Kind == Immediate || Kind == Expression; 452 } 453 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 454 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 455 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 456 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 457 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 458 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 459 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 460 bool isU6ImmX2() const { return Kind == Immediate && 461 isUInt<6>(getImm()) && 462 (getImm() & 1) == 0; } 463 bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); } 464 bool isU7ImmX4() const { return Kind == Immediate && 465 isUInt<7>(getImm()) && 466 (getImm() & 3) == 0; } 467 bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); } 468 bool isU8ImmX8() const { return Kind == Immediate && 469 isUInt<8>(getImm()) && 470 (getImm() & 7) == 0; } 471 472 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 473 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 474 bool isU16Imm() const { 475 switch (Kind) { 476 case Expression: 477 return true; 478 case Immediate: 479 case ContextImmediate: 480 return isUInt<16>(getImmU16Context()); 481 default: 482 return false; 483 } 484 } 485 bool isS16Imm() const { 486 switch (Kind) { 487 case Expression: 488 return true; 489 case Immediate: 490 case ContextImmediate: 491 return isInt<16>(getImmS16Context()); 492 default: 493 return false; 494 } 495 } 496 bool isS16ImmX4() const { return Kind == Expression || 497 (Kind == Immediate && isInt<16>(getImm()) && 498 (getImm() & 3) == 0); } 499 bool isS16ImmX16() const { return Kind == Expression || 500 (Kind == Immediate && isInt<16>(getImm()) && 501 (getImm() & 15) == 0); } 502 bool isS17Imm() const { 503 switch (Kind) { 504 case Expression: 505 return true; 506 case Immediate: 507 case ContextImmediate: 508 return isInt<17>(getImmS16Context()); 509 default: 510 return false; 511 } 512 } 513 bool isTLSReg() const { return Kind == TLSRegister; } 514 bool isDirectBr() const { 515 if (Kind == Expression) 516 return true; 517 if (Kind != Immediate) 518 return false; 519 // Operand must be 64-bit aligned, signed 27-bit immediate. 520 if ((getImm() & 3) != 0) 521 return false; 522 if (isInt<26>(getImm())) 523 return true; 524 if (!IsPPC64) { 525 // In 32-bit mode, large 32-bit quantities wrap around. 526 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 527 return true; 528 } 529 return false; 530 } 531 bool isCondBr() const { return Kind == Expression || 532 (Kind == Immediate && isInt<16>(getImm()) && 533 (getImm() & 3) == 0); } 534 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 535 bool isVSRegNumber() const { 536 return Kind == Immediate && isUInt<6>(getImm()); 537 } 538 bool isCCRegNumber() const { return (Kind == Expression 539 && isUInt<3>(getExprCRVal())) || 540 (Kind == Immediate 541 && isUInt<3>(getImm())); } 542 bool isCRBitNumber() const { return (Kind == Expression 543 && isUInt<5>(getExprCRVal())) || 544 (Kind == Immediate 545 && isUInt<5>(getImm())); } 546 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 547 isPowerOf2_32(getImm()); } 548 bool isATBitsAsHint() const { return false; } 549 bool isMem() const override { return false; } 550 bool isReg() const override { return false; } 551 552 void addRegOperands(MCInst &Inst, unsigned N) const { 553 llvm_unreachable("addRegOperands"); 554 } 555 556 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 557 assert(N == 1 && "Invalid number of operands!"); 558 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 559 } 560 561 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 562 assert(N == 1 && "Invalid number of operands!"); 563 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()])); 564 } 565 566 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 567 assert(N == 1 && "Invalid number of operands!"); 568 Inst.addOperand(MCOperand::createReg(XRegs[getReg()])); 569 } 570 571 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 572 assert(N == 1 && "Invalid number of operands!"); 573 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()])); 574 } 575 576 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 577 if (isPPC64()) 578 addRegG8RCOperands(Inst, N); 579 else 580 addRegGPRCOperands(Inst, N); 581 } 582 583 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 584 if (isPPC64()) 585 addRegG8RCNoX0Operands(Inst, N); 586 else 587 addRegGPRCNoR0Operands(Inst, N); 588 } 589 590 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 591 assert(N == 1 && "Invalid number of operands!"); 592 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 593 } 594 595 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 596 assert(N == 1 && "Invalid number of operands!"); 597 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 598 } 599 600 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 601 assert(N == 1 && "Invalid number of operands!"); 602 Inst.addOperand(MCOperand::createReg(VRegs[getReg()])); 603 } 604 605 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 606 assert(N == 1 && "Invalid number of operands!"); 607 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 608 } 609 610 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 611 assert(N == 1 && "Invalid number of operands!"); 612 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 613 } 614 615 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 616 assert(N == 1 && "Invalid number of operands!"); 617 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 618 } 619 620 void addRegQFRCOperands(MCInst &Inst, unsigned N) const { 621 assert(N == 1 && "Invalid number of operands!"); 622 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 623 } 624 625 void addRegQSRCOperands(MCInst &Inst, unsigned N) const { 626 assert(N == 1 && "Invalid number of operands!"); 627 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 628 } 629 630 void addRegQBRCOperands(MCInst &Inst, unsigned N) const { 631 assert(N == 1 && "Invalid number of operands!"); 632 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 633 } 634 635 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 636 assert(N == 1 && "Invalid number of operands!"); 637 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 638 } 639 640 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 641 assert(N == 1 && "Invalid number of operands!"); 642 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 643 } 644 645 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 646 assert(N == 1 && "Invalid number of operands!"); 647 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 648 } 649 650 void addImmOperands(MCInst &Inst, unsigned N) const { 651 assert(N == 1 && "Invalid number of operands!"); 652 if (Kind == Immediate) 653 Inst.addOperand(MCOperand::createImm(getImm())); 654 else 655 Inst.addOperand(MCOperand::createExpr(getExpr())); 656 } 657 658 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 659 assert(N == 1 && "Invalid number of operands!"); 660 switch (Kind) { 661 case Immediate: 662 Inst.addOperand(MCOperand::createImm(getImm())); 663 break; 664 case ContextImmediate: 665 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 666 break; 667 default: 668 Inst.addOperand(MCOperand::createExpr(getExpr())); 669 break; 670 } 671 } 672 673 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 674 assert(N == 1 && "Invalid number of operands!"); 675 switch (Kind) { 676 case Immediate: 677 Inst.addOperand(MCOperand::createImm(getImm())); 678 break; 679 case ContextImmediate: 680 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 681 break; 682 default: 683 Inst.addOperand(MCOperand::createExpr(getExpr())); 684 break; 685 } 686 } 687 688 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 689 assert(N == 1 && "Invalid number of operands!"); 690 if (Kind == Immediate) 691 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 692 else 693 Inst.addOperand(MCOperand::createExpr(getExpr())); 694 } 695 696 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 697 assert(N == 1 && "Invalid number of operands!"); 698 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 699 } 700 701 StringRef getToken() const { 702 assert(Kind == Token && "Invalid access!"); 703 return StringRef(Tok.Data, Tok.Length); 704 } 705 706 void print(raw_ostream &OS) const override; 707 708 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 709 bool IsPPC64) { 710 auto Op = make_unique<PPCOperand>(Token); 711 Op->Tok.Data = Str.data(); 712 Op->Tok.Length = Str.size(); 713 Op->StartLoc = S; 714 Op->EndLoc = S; 715 Op->IsPPC64 = IsPPC64; 716 return Op; 717 } 718 719 static std::unique_ptr<PPCOperand> 720 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 721 // Allocate extra memory for the string and copy it. 722 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 723 // deleter which will destroy them by simply using "delete", not correctly 724 // calling operator delete on this extra memory after calling the dtor 725 // explicitly. 726 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 727 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 728 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 729 Op->Tok.Length = Str.size(); 730 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 731 Op->StartLoc = S; 732 Op->EndLoc = S; 733 Op->IsPPC64 = IsPPC64; 734 return Op; 735 } 736 737 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 738 bool IsPPC64) { 739 auto Op = make_unique<PPCOperand>(Immediate); 740 Op->Imm.Val = Val; 741 Op->StartLoc = S; 742 Op->EndLoc = E; 743 Op->IsPPC64 = IsPPC64; 744 return Op; 745 } 746 747 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 748 SMLoc E, bool IsPPC64) { 749 auto Op = make_unique<PPCOperand>(Expression); 750 Op->Expr.Val = Val; 751 Op->Expr.CRVal = EvaluateCRExpr(Val); 752 Op->StartLoc = S; 753 Op->EndLoc = E; 754 Op->IsPPC64 = IsPPC64; 755 return Op; 756 } 757 758 static std::unique_ptr<PPCOperand> 759 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 760 auto Op = make_unique<PPCOperand>(TLSRegister); 761 Op->TLSReg.Sym = Sym; 762 Op->StartLoc = S; 763 Op->EndLoc = E; 764 Op->IsPPC64 = IsPPC64; 765 return Op; 766 } 767 768 static std::unique_ptr<PPCOperand> 769 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 770 auto Op = make_unique<PPCOperand>(ContextImmediate); 771 Op->Imm.Val = Val; 772 Op->StartLoc = S; 773 Op->EndLoc = E; 774 Op->IsPPC64 = IsPPC64; 775 return Op; 776 } 777 778 static std::unique_ptr<PPCOperand> 779 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 780 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 781 return CreateImm(CE->getValue(), S, E, IsPPC64); 782 783 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 784 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS) 785 return CreateTLSReg(SRE, S, E, IsPPC64); 786 787 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 788 int64_t Res; 789 if (TE->evaluateAsConstant(Res)) 790 return CreateContextImm(Res, S, E, IsPPC64); 791 } 792 793 return CreateExpr(Val, S, E, IsPPC64); 794 } 795 }; 796 797 } // end anonymous namespace. 798 799 void PPCOperand::print(raw_ostream &OS) const { 800 switch (Kind) { 801 case Token: 802 OS << "'" << getToken() << "'"; 803 break; 804 case Immediate: 805 case ContextImmediate: 806 OS << getImm(); 807 break; 808 case Expression: 809 OS << *getExpr(); 810 break; 811 case TLSRegister: 812 OS << *getTLSReg(); 813 break; 814 } 815 } 816 817 static void 818 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 819 if (Op.isImm()) { 820 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 821 return; 822 } 823 const MCExpr *Expr = Op.getExpr(); 824 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 825 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 826 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 827 return; 828 } 829 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 830 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 831 const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(), 832 BinExpr->getLHS(), Ctx); 833 Inst.addOperand(MCOperand::createExpr(NE)); 834 return; 835 } 836 } 837 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx))); 838 } 839 840 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 841 const OperandVector &Operands) { 842 int Opcode = Inst.getOpcode(); 843 switch (Opcode) { 844 case PPC::DCBTx: 845 case PPC::DCBTT: 846 case PPC::DCBTSTx: 847 case PPC::DCBTSTT: { 848 MCInst TmpInst; 849 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 850 PPC::DCBT : PPC::DCBTST); 851 TmpInst.addOperand(MCOperand::createImm( 852 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 853 TmpInst.addOperand(Inst.getOperand(0)); 854 TmpInst.addOperand(Inst.getOperand(1)); 855 Inst = TmpInst; 856 break; 857 } 858 case PPC::DCBTCT: 859 case PPC::DCBTDS: { 860 MCInst TmpInst; 861 TmpInst.setOpcode(PPC::DCBT); 862 TmpInst.addOperand(Inst.getOperand(2)); 863 TmpInst.addOperand(Inst.getOperand(0)); 864 TmpInst.addOperand(Inst.getOperand(1)); 865 Inst = TmpInst; 866 break; 867 } 868 case PPC::DCBTSTCT: 869 case PPC::DCBTSTDS: { 870 MCInst TmpInst; 871 TmpInst.setOpcode(PPC::DCBTST); 872 TmpInst.addOperand(Inst.getOperand(2)); 873 TmpInst.addOperand(Inst.getOperand(0)); 874 TmpInst.addOperand(Inst.getOperand(1)); 875 Inst = TmpInst; 876 break; 877 } 878 case PPC::DCBFx: 879 case PPC::DCBFL: 880 case PPC::DCBFLP: { 881 int L = 0; 882 if (Opcode == PPC::DCBFL) 883 L = 1; 884 else if (Opcode == PPC::DCBFLP) 885 L = 3; 886 887 MCInst TmpInst; 888 TmpInst.setOpcode(PPC::DCBF); 889 TmpInst.addOperand(MCOperand::createImm(L)); 890 TmpInst.addOperand(Inst.getOperand(0)); 891 TmpInst.addOperand(Inst.getOperand(1)); 892 Inst = TmpInst; 893 break; 894 } 895 case PPC::LAx: { 896 MCInst TmpInst; 897 TmpInst.setOpcode(PPC::LA); 898 TmpInst.addOperand(Inst.getOperand(0)); 899 TmpInst.addOperand(Inst.getOperand(2)); 900 TmpInst.addOperand(Inst.getOperand(1)); 901 Inst = TmpInst; 902 break; 903 } 904 case PPC::SUBI: { 905 MCInst TmpInst; 906 TmpInst.setOpcode(PPC::ADDI); 907 TmpInst.addOperand(Inst.getOperand(0)); 908 TmpInst.addOperand(Inst.getOperand(1)); 909 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 910 Inst = TmpInst; 911 break; 912 } 913 case PPC::SUBIS: { 914 MCInst TmpInst; 915 TmpInst.setOpcode(PPC::ADDIS); 916 TmpInst.addOperand(Inst.getOperand(0)); 917 TmpInst.addOperand(Inst.getOperand(1)); 918 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 919 Inst = TmpInst; 920 break; 921 } 922 case PPC::SUBIC: { 923 MCInst TmpInst; 924 TmpInst.setOpcode(PPC::ADDIC); 925 TmpInst.addOperand(Inst.getOperand(0)); 926 TmpInst.addOperand(Inst.getOperand(1)); 927 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 928 Inst = TmpInst; 929 break; 930 } 931 case PPC::SUBICo: { 932 MCInst TmpInst; 933 TmpInst.setOpcode(PPC::ADDICo); 934 TmpInst.addOperand(Inst.getOperand(0)); 935 TmpInst.addOperand(Inst.getOperand(1)); 936 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 937 Inst = TmpInst; 938 break; 939 } 940 case PPC::EXTLWI: 941 case PPC::EXTLWIo: { 942 MCInst TmpInst; 943 int64_t N = Inst.getOperand(2).getImm(); 944 int64_t B = Inst.getOperand(3).getImm(); 945 TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo); 946 TmpInst.addOperand(Inst.getOperand(0)); 947 TmpInst.addOperand(Inst.getOperand(1)); 948 TmpInst.addOperand(MCOperand::createImm(B)); 949 TmpInst.addOperand(MCOperand::createImm(0)); 950 TmpInst.addOperand(MCOperand::createImm(N - 1)); 951 Inst = TmpInst; 952 break; 953 } 954 case PPC::EXTRWI: 955 case PPC::EXTRWIo: { 956 MCInst TmpInst; 957 int64_t N = Inst.getOperand(2).getImm(); 958 int64_t B = Inst.getOperand(3).getImm(); 959 TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo); 960 TmpInst.addOperand(Inst.getOperand(0)); 961 TmpInst.addOperand(Inst.getOperand(1)); 962 TmpInst.addOperand(MCOperand::createImm(B + N)); 963 TmpInst.addOperand(MCOperand::createImm(32 - N)); 964 TmpInst.addOperand(MCOperand::createImm(31)); 965 Inst = TmpInst; 966 break; 967 } 968 case PPC::INSLWI: 969 case PPC::INSLWIo: { 970 MCInst TmpInst; 971 int64_t N = Inst.getOperand(2).getImm(); 972 int64_t B = Inst.getOperand(3).getImm(); 973 TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo); 974 TmpInst.addOperand(Inst.getOperand(0)); 975 TmpInst.addOperand(Inst.getOperand(0)); 976 TmpInst.addOperand(Inst.getOperand(1)); 977 TmpInst.addOperand(MCOperand::createImm(32 - B)); 978 TmpInst.addOperand(MCOperand::createImm(B)); 979 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 980 Inst = TmpInst; 981 break; 982 } 983 case PPC::INSRWI: 984 case PPC::INSRWIo: { 985 MCInst TmpInst; 986 int64_t N = Inst.getOperand(2).getImm(); 987 int64_t B = Inst.getOperand(3).getImm(); 988 TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo); 989 TmpInst.addOperand(Inst.getOperand(0)); 990 TmpInst.addOperand(Inst.getOperand(0)); 991 TmpInst.addOperand(Inst.getOperand(1)); 992 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 993 TmpInst.addOperand(MCOperand::createImm(B)); 994 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 995 Inst = TmpInst; 996 break; 997 } 998 case PPC::ROTRWI: 999 case PPC::ROTRWIo: { 1000 MCInst TmpInst; 1001 int64_t N = Inst.getOperand(2).getImm(); 1002 TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo); 1003 TmpInst.addOperand(Inst.getOperand(0)); 1004 TmpInst.addOperand(Inst.getOperand(1)); 1005 TmpInst.addOperand(MCOperand::createImm(32 - N)); 1006 TmpInst.addOperand(MCOperand::createImm(0)); 1007 TmpInst.addOperand(MCOperand::createImm(31)); 1008 Inst = TmpInst; 1009 break; 1010 } 1011 case PPC::SLWI: 1012 case PPC::SLWIo: { 1013 MCInst TmpInst; 1014 int64_t N = Inst.getOperand(2).getImm(); 1015 TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo); 1016 TmpInst.addOperand(Inst.getOperand(0)); 1017 TmpInst.addOperand(Inst.getOperand(1)); 1018 TmpInst.addOperand(MCOperand::createImm(N)); 1019 TmpInst.addOperand(MCOperand::createImm(0)); 1020 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1021 Inst = TmpInst; 1022 break; 1023 } 1024 case PPC::SRWI: 1025 case PPC::SRWIo: { 1026 MCInst TmpInst; 1027 int64_t N = Inst.getOperand(2).getImm(); 1028 TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo); 1029 TmpInst.addOperand(Inst.getOperand(0)); 1030 TmpInst.addOperand(Inst.getOperand(1)); 1031 TmpInst.addOperand(MCOperand::createImm(32 - N)); 1032 TmpInst.addOperand(MCOperand::createImm(N)); 1033 TmpInst.addOperand(MCOperand::createImm(31)); 1034 Inst = TmpInst; 1035 break; 1036 } 1037 case PPC::CLRRWI: 1038 case PPC::CLRRWIo: { 1039 MCInst TmpInst; 1040 int64_t N = Inst.getOperand(2).getImm(); 1041 TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo); 1042 TmpInst.addOperand(Inst.getOperand(0)); 1043 TmpInst.addOperand(Inst.getOperand(1)); 1044 TmpInst.addOperand(MCOperand::createImm(0)); 1045 TmpInst.addOperand(MCOperand::createImm(0)); 1046 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1047 Inst = TmpInst; 1048 break; 1049 } 1050 case PPC::CLRLSLWI: 1051 case PPC::CLRLSLWIo: { 1052 MCInst TmpInst; 1053 int64_t B = Inst.getOperand(2).getImm(); 1054 int64_t N = Inst.getOperand(3).getImm(); 1055 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo); 1056 TmpInst.addOperand(Inst.getOperand(0)); 1057 TmpInst.addOperand(Inst.getOperand(1)); 1058 TmpInst.addOperand(MCOperand::createImm(N)); 1059 TmpInst.addOperand(MCOperand::createImm(B - N)); 1060 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1061 Inst = TmpInst; 1062 break; 1063 } 1064 case PPC::EXTLDI: 1065 case PPC::EXTLDIo: { 1066 MCInst TmpInst; 1067 int64_t N = Inst.getOperand(2).getImm(); 1068 int64_t B = Inst.getOperand(3).getImm(); 1069 TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo); 1070 TmpInst.addOperand(Inst.getOperand(0)); 1071 TmpInst.addOperand(Inst.getOperand(1)); 1072 TmpInst.addOperand(MCOperand::createImm(B)); 1073 TmpInst.addOperand(MCOperand::createImm(N - 1)); 1074 Inst = TmpInst; 1075 break; 1076 } 1077 case PPC::EXTRDI: 1078 case PPC::EXTRDIo: { 1079 MCInst TmpInst; 1080 int64_t N = Inst.getOperand(2).getImm(); 1081 int64_t B = Inst.getOperand(3).getImm(); 1082 TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo); 1083 TmpInst.addOperand(Inst.getOperand(0)); 1084 TmpInst.addOperand(Inst.getOperand(1)); 1085 TmpInst.addOperand(MCOperand::createImm(B + N)); 1086 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1087 Inst = TmpInst; 1088 break; 1089 } 1090 case PPC::INSRDI: 1091 case PPC::INSRDIo: { 1092 MCInst TmpInst; 1093 int64_t N = Inst.getOperand(2).getImm(); 1094 int64_t B = Inst.getOperand(3).getImm(); 1095 TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo); 1096 TmpInst.addOperand(Inst.getOperand(0)); 1097 TmpInst.addOperand(Inst.getOperand(0)); 1098 TmpInst.addOperand(Inst.getOperand(1)); 1099 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 1100 TmpInst.addOperand(MCOperand::createImm(B)); 1101 Inst = TmpInst; 1102 break; 1103 } 1104 case PPC::ROTRDI: 1105 case PPC::ROTRDIo: { 1106 MCInst TmpInst; 1107 int64_t N = Inst.getOperand(2).getImm(); 1108 TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo); 1109 TmpInst.addOperand(Inst.getOperand(0)); 1110 TmpInst.addOperand(Inst.getOperand(1)); 1111 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1112 TmpInst.addOperand(MCOperand::createImm(0)); 1113 Inst = TmpInst; 1114 break; 1115 } 1116 case PPC::SLDI: 1117 case PPC::SLDIo: { 1118 MCInst TmpInst; 1119 int64_t N = Inst.getOperand(2).getImm(); 1120 TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo); 1121 TmpInst.addOperand(Inst.getOperand(0)); 1122 TmpInst.addOperand(Inst.getOperand(1)); 1123 TmpInst.addOperand(MCOperand::createImm(N)); 1124 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1125 Inst = TmpInst; 1126 break; 1127 } 1128 case PPC::SRDI: 1129 case PPC::SRDIo: { 1130 MCInst TmpInst; 1131 int64_t N = Inst.getOperand(2).getImm(); 1132 TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo); 1133 TmpInst.addOperand(Inst.getOperand(0)); 1134 TmpInst.addOperand(Inst.getOperand(1)); 1135 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1136 TmpInst.addOperand(MCOperand::createImm(N)); 1137 Inst = TmpInst; 1138 break; 1139 } 1140 case PPC::CLRRDI: 1141 case PPC::CLRRDIo: { 1142 MCInst TmpInst; 1143 int64_t N = Inst.getOperand(2).getImm(); 1144 TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo); 1145 TmpInst.addOperand(Inst.getOperand(0)); 1146 TmpInst.addOperand(Inst.getOperand(1)); 1147 TmpInst.addOperand(MCOperand::createImm(0)); 1148 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1149 Inst = TmpInst; 1150 break; 1151 } 1152 case PPC::CLRLSLDI: 1153 case PPC::CLRLSLDIo: { 1154 MCInst TmpInst; 1155 int64_t B = Inst.getOperand(2).getImm(); 1156 int64_t N = Inst.getOperand(3).getImm(); 1157 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo); 1158 TmpInst.addOperand(Inst.getOperand(0)); 1159 TmpInst.addOperand(Inst.getOperand(1)); 1160 TmpInst.addOperand(MCOperand::createImm(N)); 1161 TmpInst.addOperand(MCOperand::createImm(B - N)); 1162 Inst = TmpInst; 1163 break; 1164 } 1165 case PPC::RLWINMbm: 1166 case PPC::RLWINMobm: { 1167 unsigned MB, ME; 1168 int64_t BM = Inst.getOperand(3).getImm(); 1169 if (!isRunOfOnes(BM, MB, ME)) 1170 break; 1171 1172 MCInst TmpInst; 1173 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINMo); 1174 TmpInst.addOperand(Inst.getOperand(0)); 1175 TmpInst.addOperand(Inst.getOperand(1)); 1176 TmpInst.addOperand(Inst.getOperand(2)); 1177 TmpInst.addOperand(MCOperand::createImm(MB)); 1178 TmpInst.addOperand(MCOperand::createImm(ME)); 1179 Inst = TmpInst; 1180 break; 1181 } 1182 case PPC::RLWIMIbm: 1183 case PPC::RLWIMIobm: { 1184 unsigned MB, ME; 1185 int64_t BM = Inst.getOperand(3).getImm(); 1186 if (!isRunOfOnes(BM, MB, ME)) 1187 break; 1188 1189 MCInst TmpInst; 1190 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMIo); 1191 TmpInst.addOperand(Inst.getOperand(0)); 1192 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1193 TmpInst.addOperand(Inst.getOperand(1)); 1194 TmpInst.addOperand(Inst.getOperand(2)); 1195 TmpInst.addOperand(MCOperand::createImm(MB)); 1196 TmpInst.addOperand(MCOperand::createImm(ME)); 1197 Inst = TmpInst; 1198 break; 1199 } 1200 case PPC::RLWNMbm: 1201 case PPC::RLWNMobm: { 1202 unsigned MB, ME; 1203 int64_t BM = Inst.getOperand(3).getImm(); 1204 if (!isRunOfOnes(BM, MB, ME)) 1205 break; 1206 1207 MCInst TmpInst; 1208 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNMo); 1209 TmpInst.addOperand(Inst.getOperand(0)); 1210 TmpInst.addOperand(Inst.getOperand(1)); 1211 TmpInst.addOperand(Inst.getOperand(2)); 1212 TmpInst.addOperand(MCOperand::createImm(MB)); 1213 TmpInst.addOperand(MCOperand::createImm(ME)); 1214 Inst = TmpInst; 1215 break; 1216 } 1217 case PPC::MFTB: { 1218 if (getSTI().getFeatureBits()[PPC::FeatureMFTB]) { 1219 assert(Inst.getNumOperands() == 2 && "Expecting two operands"); 1220 Inst.setOpcode(PPC::MFSPR); 1221 } 1222 break; 1223 } 1224 case PPC::CP_COPYx: 1225 case PPC::CP_COPY_FIRST: { 1226 MCInst TmpInst; 1227 TmpInst.setOpcode(PPC::CP_COPY); 1228 TmpInst.addOperand(Inst.getOperand(0)); 1229 TmpInst.addOperand(Inst.getOperand(1)); 1230 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_COPYx ? 0 : 1)); 1231 1232 Inst = TmpInst; 1233 break; 1234 } 1235 case PPC::CP_PASTEx : 1236 case PPC::CP_PASTE_LAST: { 1237 MCInst TmpInst; 1238 TmpInst.setOpcode(Opcode == PPC::CP_PASTEx ? 1239 PPC::CP_PASTE : PPC::CP_PASTEo); 1240 TmpInst.addOperand(Inst.getOperand(0)); 1241 TmpInst.addOperand(Inst.getOperand(1)); 1242 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_PASTEx ? 0 : 1)); 1243 1244 Inst = TmpInst; 1245 break; 1246 } 1247 } 1248 } 1249 1250 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1251 OperandVector &Operands, 1252 MCStreamer &Out, uint64_t &ErrorInfo, 1253 bool MatchingInlineAsm) { 1254 MCInst Inst; 1255 1256 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1257 case Match_Success: 1258 // Post-process instructions (typically extended mnemonics) 1259 ProcessInstruction(Inst, Operands); 1260 Inst.setLoc(IDLoc); 1261 Out.EmitInstruction(Inst, getSTI()); 1262 return false; 1263 case Match_MissingFeature: 1264 return Error(IDLoc, "instruction use requires an option to be enabled"); 1265 case Match_MnemonicFail: 1266 return Error(IDLoc, "unrecognized instruction mnemonic"); 1267 case Match_InvalidOperand: { 1268 SMLoc ErrorLoc = IDLoc; 1269 if (ErrorInfo != ~0ULL) { 1270 if (ErrorInfo >= Operands.size()) 1271 return Error(IDLoc, "too few operands for instruction"); 1272 1273 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1274 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1275 } 1276 1277 return Error(ErrorLoc, "invalid operand for instruction"); 1278 } 1279 } 1280 1281 llvm_unreachable("Implement any new match types added!"); 1282 } 1283 1284 bool PPCAsmParser:: 1285 MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) { 1286 if (Tok.is(AsmToken::Identifier)) { 1287 StringRef Name = Tok.getString(); 1288 1289 if (Name.equals_lower("lr")) { 1290 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1291 IntVal = 8; 1292 return false; 1293 } else if (Name.equals_lower("ctr")) { 1294 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1295 IntVal = 9; 1296 return false; 1297 } else if (Name.equals_lower("vrsave")) { 1298 RegNo = PPC::VRSAVE; 1299 IntVal = 256; 1300 return false; 1301 } else if (Name.startswith_lower("r") && 1302 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1303 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1304 return false; 1305 } else if (Name.startswith_lower("f") && 1306 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1307 RegNo = FRegs[IntVal]; 1308 return false; 1309 } else if (Name.startswith_lower("vs") && 1310 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1311 RegNo = VSRegs[IntVal]; 1312 return false; 1313 } else if (Name.startswith_lower("v") && 1314 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1315 RegNo = VRegs[IntVal]; 1316 return false; 1317 } else if (Name.startswith_lower("q") && 1318 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1319 RegNo = QFRegs[IntVal]; 1320 return false; 1321 } else if (Name.startswith_lower("cr") && 1322 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1323 RegNo = CRRegs[IntVal]; 1324 return false; 1325 } 1326 } 1327 1328 return true; 1329 } 1330 1331 bool PPCAsmParser:: 1332 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1333 MCAsmParser &Parser = getParser(); 1334 const AsmToken &Tok = Parser.getTok(); 1335 StartLoc = Tok.getLoc(); 1336 EndLoc = Tok.getEndLoc(); 1337 RegNo = 0; 1338 int64_t IntVal; 1339 1340 if (!MatchRegisterName(Tok, RegNo, IntVal)) { 1341 Parser.Lex(); // Eat identifier token. 1342 return false; 1343 } 1344 1345 return Error(StartLoc, "invalid register name"); 1346 } 1347 1348 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1349 /// the expression and check for VK_PPC_LO/HI/HA 1350 /// symbol variants. If all symbols with modifier use the same 1351 /// variant, return the corresponding PPCMCExpr::VariantKind, 1352 /// and a modified expression using the default symbol variant. 1353 /// Otherwise, return NULL. 1354 const MCExpr *PPCAsmParser:: 1355 ExtractModifierFromExpr(const MCExpr *E, 1356 PPCMCExpr::VariantKind &Variant) { 1357 MCContext &Context = getParser().getContext(); 1358 Variant = PPCMCExpr::VK_PPC_None; 1359 1360 switch (E->getKind()) { 1361 case MCExpr::Target: 1362 case MCExpr::Constant: 1363 return nullptr; 1364 1365 case MCExpr::SymbolRef: { 1366 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1367 1368 switch (SRE->getKind()) { 1369 case MCSymbolRefExpr::VK_PPC_LO: 1370 Variant = PPCMCExpr::VK_PPC_LO; 1371 break; 1372 case MCSymbolRefExpr::VK_PPC_HI: 1373 Variant = PPCMCExpr::VK_PPC_HI; 1374 break; 1375 case MCSymbolRefExpr::VK_PPC_HA: 1376 Variant = PPCMCExpr::VK_PPC_HA; 1377 break; 1378 case MCSymbolRefExpr::VK_PPC_HIGHER: 1379 Variant = PPCMCExpr::VK_PPC_HIGHER; 1380 break; 1381 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1382 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1383 break; 1384 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1385 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1386 break; 1387 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1388 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1389 break; 1390 default: 1391 return nullptr; 1392 } 1393 1394 return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); 1395 } 1396 1397 case MCExpr::Unary: { 1398 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1399 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1400 if (!Sub) 1401 return nullptr; 1402 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1403 } 1404 1405 case MCExpr::Binary: { 1406 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1407 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1408 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1409 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1410 1411 if (!LHS && !RHS) 1412 return nullptr; 1413 1414 if (!LHS) LHS = BE->getLHS(); 1415 if (!RHS) RHS = BE->getRHS(); 1416 1417 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1418 Variant = RHSVariant; 1419 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1420 Variant = LHSVariant; 1421 else if (LHSVariant == RHSVariant) 1422 Variant = LHSVariant; 1423 else 1424 return nullptr; 1425 1426 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1427 } 1428 } 1429 1430 llvm_unreachable("Invalid expression kind!"); 1431 } 1432 1433 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1434 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1435 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1436 /// FIXME: This is a hack. 1437 const MCExpr *PPCAsmParser:: 1438 FixupVariantKind(const MCExpr *E) { 1439 MCContext &Context = getParser().getContext(); 1440 1441 switch (E->getKind()) { 1442 case MCExpr::Target: 1443 case MCExpr::Constant: 1444 return E; 1445 1446 case MCExpr::SymbolRef: { 1447 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1448 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1449 1450 switch (SRE->getKind()) { 1451 case MCSymbolRefExpr::VK_TLSGD: 1452 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1453 break; 1454 case MCSymbolRefExpr::VK_TLSLD: 1455 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1456 break; 1457 default: 1458 return E; 1459 } 1460 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context); 1461 } 1462 1463 case MCExpr::Unary: { 1464 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1465 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1466 if (Sub == UE->getSubExpr()) 1467 return E; 1468 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1469 } 1470 1471 case MCExpr::Binary: { 1472 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1473 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1474 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1475 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1476 return E; 1477 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1478 } 1479 } 1480 1481 llvm_unreachable("Invalid expression kind!"); 1482 } 1483 1484 /// ParseExpression. This differs from the default "parseExpression" in that 1485 /// it handles modifiers. 1486 bool PPCAsmParser:: 1487 ParseExpression(const MCExpr *&EVal) { 1488 1489 if (isDarwin()) 1490 return ParseDarwinExpression(EVal); 1491 1492 // (ELF Platforms) 1493 // Handle \code @l/@ha \endcode 1494 if (getParser().parseExpression(EVal)) 1495 return true; 1496 1497 EVal = FixupVariantKind(EVal); 1498 1499 PPCMCExpr::VariantKind Variant; 1500 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1501 if (E) 1502 EVal = PPCMCExpr::create(Variant, E, false, getParser().getContext()); 1503 1504 return false; 1505 } 1506 1507 /// ParseDarwinExpression. (MachO Platforms) 1508 /// This differs from the default "parseExpression" in that it handles detection 1509 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1510 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1511 /// syntax form so it is done here. TODO: Determine if there is merit in 1512 /// arranging for this to be done at a higher level. 1513 bool PPCAsmParser:: 1514 ParseDarwinExpression(const MCExpr *&EVal) { 1515 MCAsmParser &Parser = getParser(); 1516 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1517 switch (getLexer().getKind()) { 1518 default: 1519 break; 1520 case AsmToken::Identifier: 1521 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1522 // something starting with any other char should be part of the 1523 // asm syntax. If handwritten asm includes an identifier like lo16, 1524 // then all bets are off - but no-one would do that, right? 1525 StringRef poss = Parser.getTok().getString(); 1526 if (poss.equals_lower("lo16")) { 1527 Variant = PPCMCExpr::VK_PPC_LO; 1528 } else if (poss.equals_lower("hi16")) { 1529 Variant = PPCMCExpr::VK_PPC_HI; 1530 } else if (poss.equals_lower("ha16")) { 1531 Variant = PPCMCExpr::VK_PPC_HA; 1532 } 1533 if (Variant != PPCMCExpr::VK_PPC_None) { 1534 Parser.Lex(); // Eat the xx16 1535 if (getLexer().isNot(AsmToken::LParen)) 1536 return Error(Parser.getTok().getLoc(), "expected '('"); 1537 Parser.Lex(); // Eat the '(' 1538 } 1539 break; 1540 } 1541 1542 if (getParser().parseExpression(EVal)) 1543 return true; 1544 1545 if (Variant != PPCMCExpr::VK_PPC_None) { 1546 if (getLexer().isNot(AsmToken::RParen)) 1547 return Error(Parser.getTok().getLoc(), "expected ')'"); 1548 Parser.Lex(); // Eat the ')' 1549 EVal = PPCMCExpr::create(Variant, EVal, false, getParser().getContext()); 1550 } 1551 return false; 1552 } 1553 1554 /// ParseOperand 1555 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1556 /// rNN for MachO. 1557 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1558 MCAsmParser &Parser = getParser(); 1559 SMLoc S = Parser.getTok().getLoc(); 1560 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1561 const MCExpr *EVal; 1562 1563 // Attempt to parse the next token as an immediate 1564 switch (getLexer().getKind()) { 1565 // Special handling for register names. These are interpreted 1566 // as immediates corresponding to the register number. 1567 case AsmToken::Percent: 1568 Parser.Lex(); // Eat the '%'. 1569 unsigned RegNo; 1570 int64_t IntVal; 1571 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1572 Parser.Lex(); // Eat the identifier token. 1573 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1574 return false; 1575 } 1576 return Error(S, "invalid register name"); 1577 1578 case AsmToken::Identifier: 1579 // Note that non-register-name identifiers from the compiler will begin 1580 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1581 // identifiers like r31foo - so we fall through in the event that parsing 1582 // a register name fails. 1583 if (isDarwin()) { 1584 unsigned RegNo; 1585 int64_t IntVal; 1586 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1587 Parser.Lex(); // Eat the identifier token. 1588 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1589 return false; 1590 } 1591 } 1592 // Fall-through to process non-register-name identifiers as expression. 1593 LLVM_FALLTHROUGH; 1594 // All other expressions 1595 case AsmToken::LParen: 1596 case AsmToken::Plus: 1597 case AsmToken::Minus: 1598 case AsmToken::Integer: 1599 case AsmToken::Dot: 1600 case AsmToken::Dollar: 1601 case AsmToken::Exclaim: 1602 case AsmToken::Tilde: 1603 if (!ParseExpression(EVal)) 1604 break; 1605 /* fall through */ 1606 default: 1607 return Error(S, "unknown operand"); 1608 } 1609 1610 // Push the parsed operand into the list of operands 1611 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1612 1613 // Check whether this is a TLS call expression 1614 bool TLSCall = false; 1615 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1616 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1617 1618 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1619 const MCExpr *TLSSym; 1620 1621 Parser.Lex(); // Eat the '('. 1622 S = Parser.getTok().getLoc(); 1623 if (ParseExpression(TLSSym)) 1624 return Error(S, "invalid TLS call expression"); 1625 if (getLexer().isNot(AsmToken::RParen)) 1626 return Error(Parser.getTok().getLoc(), "missing ')'"); 1627 E = Parser.getTok().getLoc(); 1628 Parser.Lex(); // Eat the ')'. 1629 1630 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1631 } 1632 1633 // Otherwise, check for D-form memory operands 1634 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1635 Parser.Lex(); // Eat the '('. 1636 S = Parser.getTok().getLoc(); 1637 1638 int64_t IntVal; 1639 switch (getLexer().getKind()) { 1640 case AsmToken::Percent: 1641 Parser.Lex(); // Eat the '%'. 1642 unsigned RegNo; 1643 if (MatchRegisterName(Parser.getTok(), RegNo, IntVal)) 1644 return Error(S, "invalid register name"); 1645 Parser.Lex(); // Eat the identifier token. 1646 break; 1647 1648 case AsmToken::Integer: 1649 if (!isDarwin()) { 1650 if (getParser().parseAbsoluteExpression(IntVal) || 1651 IntVal < 0 || IntVal > 31) 1652 return Error(S, "invalid register number"); 1653 } else { 1654 return Error(S, "unexpected integer value"); 1655 } 1656 break; 1657 1658 case AsmToken::Identifier: 1659 if (isDarwin()) { 1660 unsigned RegNo; 1661 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1662 Parser.Lex(); // Eat the identifier token. 1663 break; 1664 } 1665 } 1666 LLVM_FALLTHROUGH; 1667 1668 default: 1669 return Error(S, "invalid memory operand"); 1670 } 1671 1672 if (getLexer().isNot(AsmToken::RParen)) 1673 return Error(Parser.getTok().getLoc(), "missing ')'"); 1674 E = Parser.getTok().getLoc(); 1675 Parser.Lex(); // Eat the ')'. 1676 1677 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1678 } 1679 1680 return false; 1681 } 1682 1683 /// Parse an instruction mnemonic followed by its operands. 1684 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1685 SMLoc NameLoc, OperandVector &Operands) { 1686 // The first operand is the token for the instruction name. 1687 // If the next character is a '+' or '-', we need to add it to the 1688 // instruction name, to match what TableGen is doing. 1689 std::string NewOpcode; 1690 if (getLexer().is(AsmToken::Plus)) { 1691 getLexer().Lex(); 1692 NewOpcode = Name; 1693 NewOpcode += '+'; 1694 Name = NewOpcode; 1695 } 1696 if (getLexer().is(AsmToken::Minus)) { 1697 getLexer().Lex(); 1698 NewOpcode = Name; 1699 NewOpcode += '-'; 1700 Name = NewOpcode; 1701 } 1702 // If the instruction ends in a '.', we need to create a separate 1703 // token for it, to match what TableGen is doing. 1704 size_t Dot = Name.find('.'); 1705 StringRef Mnemonic = Name.slice(0, Dot); 1706 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1707 Operands.push_back( 1708 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1709 else 1710 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1711 if (Dot != StringRef::npos) { 1712 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1713 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1714 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1715 Operands.push_back( 1716 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1717 else 1718 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1719 } 1720 1721 // If there are no more operands then finish 1722 if (getLexer().is(AsmToken::EndOfStatement)) 1723 return false; 1724 1725 // Parse the first operand 1726 if (ParseOperand(Operands)) 1727 return true; 1728 1729 while (getLexer().isNot(AsmToken::EndOfStatement) && 1730 getLexer().is(AsmToken::Comma)) { 1731 // Consume the comma token 1732 Lex(); 1733 1734 // Parse the next operand 1735 if (ParseOperand(Operands)) 1736 return true; 1737 } 1738 1739 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1740 // and dcbtst instructions differs for server vs. embedded cores. 1741 // The syntax for dcbt is: 1742 // dcbt ra, rb, th [server] 1743 // dcbt th, ra, rb [embedded] 1744 // where th can be omitted when it is 0. dcbtst is the same. We take the 1745 // server form to be the default, so swap the operands if we're parsing for 1746 // an embedded core (they'll be swapped again upon printing). 1747 if (getSTI().getFeatureBits()[PPC::FeatureBookE] && 1748 Operands.size() == 4 && 1749 (Name == "dcbt" || Name == "dcbtst")) { 1750 std::swap(Operands[1], Operands[3]); 1751 std::swap(Operands[2], Operands[1]); 1752 } 1753 1754 return false; 1755 } 1756 1757 /// ParseDirective parses the PPC specific directives 1758 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1759 StringRef IDVal = DirectiveID.getIdentifier(); 1760 if (!isDarwin()) { 1761 if (IDVal == ".word") 1762 return ParseDirectiveWord(2, DirectiveID.getLoc()); 1763 if (IDVal == ".llong") 1764 return ParseDirectiveWord(8, DirectiveID.getLoc()); 1765 if (IDVal == ".tc") 1766 return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc()); 1767 if (IDVal == ".machine") 1768 return ParseDirectiveMachine(DirectiveID.getLoc()); 1769 if (IDVal == ".abiversion") 1770 return ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1771 if (IDVal == ".localentry") 1772 return ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1773 } else { 1774 if (IDVal == ".machine") 1775 return ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1776 } 1777 return true; 1778 } 1779 1780 /// ParseDirectiveWord 1781 /// ::= .word [ expression (, expression)* ] 1782 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 1783 MCAsmParser &Parser = getParser(); 1784 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1785 for (;;) { 1786 const MCExpr *Value; 1787 SMLoc ExprLoc = getLexer().getLoc(); 1788 if (getParser().parseExpression(Value)) 1789 return false; 1790 1791 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { 1792 assert(Size <= 8 && "Invalid size"); 1793 uint64_t IntValue = MCE->getValue(); 1794 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 1795 return Error(ExprLoc, "literal value out of range for directive"); 1796 getStreamer().EmitIntValue(IntValue, Size); 1797 } else { 1798 getStreamer().EmitValue(Value, Size, ExprLoc); 1799 } 1800 1801 if (getLexer().is(AsmToken::EndOfStatement)) 1802 break; 1803 1804 if (getLexer().isNot(AsmToken::Comma)) 1805 return Error(L, "unexpected token in directive"); 1806 Parser.Lex(); 1807 } 1808 } 1809 1810 Parser.Lex(); 1811 return false; 1812 } 1813 1814 /// ParseDirectiveTC 1815 /// ::= .tc [ symbol (, expression)* ] 1816 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) { 1817 MCAsmParser &Parser = getParser(); 1818 // Skip TC symbol, which is only used with XCOFF. 1819 while (getLexer().isNot(AsmToken::EndOfStatement) 1820 && getLexer().isNot(AsmToken::Comma)) 1821 Parser.Lex(); 1822 if (getLexer().isNot(AsmToken::Comma)) { 1823 Error(L, "unexpected token in directive"); 1824 return false; 1825 } 1826 Parser.Lex(); 1827 1828 // Align to word size. 1829 getParser().getStreamer().EmitValueToAlignment(Size); 1830 1831 // Emit expressions. 1832 return ParseDirectiveWord(Size, L); 1833 } 1834 1835 /// ParseDirectiveMachine (ELF platforms) 1836 /// ::= .machine [ cpu | "push" | "pop" ] 1837 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1838 MCAsmParser &Parser = getParser(); 1839 if (getLexer().isNot(AsmToken::Identifier) && 1840 getLexer().isNot(AsmToken::String)) { 1841 Error(L, "unexpected token in directive"); 1842 return false; 1843 } 1844 1845 StringRef CPU = Parser.getTok().getIdentifier(); 1846 Parser.Lex(); 1847 1848 // FIXME: Right now, the parser always allows any available 1849 // instruction, so the .machine directive is not useful. 1850 // Implement ".machine any" (by doing nothing) for the benefit 1851 // of existing assembler code. Likewise, we can then implement 1852 // ".machine push" and ".machine pop" as no-op. 1853 if (CPU != "any" && CPU != "push" && CPU != "pop") { 1854 Error(L, "unrecognized machine type"); 1855 return false; 1856 } 1857 1858 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1859 Error(L, "unexpected token in directive"); 1860 return false; 1861 } 1862 PPCTargetStreamer &TStreamer = 1863 *static_cast<PPCTargetStreamer *>( 1864 getParser().getStreamer().getTargetStreamer()); 1865 TStreamer.emitMachine(CPU); 1866 1867 return false; 1868 } 1869 1870 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1871 /// ::= .machine cpu-identifier 1872 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1873 MCAsmParser &Parser = getParser(); 1874 if (getLexer().isNot(AsmToken::Identifier) && 1875 getLexer().isNot(AsmToken::String)) { 1876 Error(L, "unexpected token in directive"); 1877 return false; 1878 } 1879 1880 StringRef CPU = Parser.getTok().getIdentifier(); 1881 Parser.Lex(); 1882 1883 // FIXME: this is only the 'default' set of cpu variants. 1884 // However we don't act on this information at present, this is simply 1885 // allowing parsing to proceed with minimal sanity checking. 1886 if (CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64") { 1887 Error(L, "unrecognized cpu type"); 1888 return false; 1889 } 1890 1891 if (isPPC64() && (CPU == "ppc7400" || CPU == "ppc")) { 1892 Error(L, "wrong cpu type specified for 64bit"); 1893 return false; 1894 } 1895 if (!isPPC64() && CPU == "ppc64") { 1896 Error(L, "wrong cpu type specified for 32bit"); 1897 return false; 1898 } 1899 1900 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1901 Error(L, "unexpected token in directive"); 1902 return false; 1903 } 1904 1905 return false; 1906 } 1907 1908 /// ParseDirectiveAbiVersion 1909 /// ::= .abiversion constant-expression 1910 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1911 int64_t AbiVersion; 1912 if (getParser().parseAbsoluteExpression(AbiVersion)){ 1913 Error(L, "expected constant expression"); 1914 return false; 1915 } 1916 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1917 Error(L, "unexpected token in directive"); 1918 return false; 1919 } 1920 1921 PPCTargetStreamer &TStreamer = 1922 *static_cast<PPCTargetStreamer *>( 1923 getParser().getStreamer().getTargetStreamer()); 1924 TStreamer.emitAbiVersion(AbiVersion); 1925 1926 return false; 1927 } 1928 1929 /// ParseDirectiveLocalEntry 1930 /// ::= .localentry symbol, expression 1931 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1932 StringRef Name; 1933 if (getParser().parseIdentifier(Name)) { 1934 Error(L, "expected identifier in directive"); 1935 return false; 1936 } 1937 MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name)); 1938 1939 if (getLexer().isNot(AsmToken::Comma)) { 1940 Error(L, "unexpected token in directive"); 1941 return false; 1942 } 1943 Lex(); 1944 1945 const MCExpr *Expr; 1946 if (getParser().parseExpression(Expr)) { 1947 Error(L, "expected expression"); 1948 return false; 1949 } 1950 1951 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1952 Error(L, "unexpected token in directive"); 1953 return false; 1954 } 1955 1956 PPCTargetStreamer &TStreamer = 1957 *static_cast<PPCTargetStreamer *>( 1958 getParser().getStreamer().getTargetStreamer()); 1959 TStreamer.emitLocalEntry(Sym, Expr); 1960 1961 return false; 1962 } 1963 1964 1965 1966 /// Force static initialization. 1967 extern "C" void LLVMInitializePowerPCAsmParser() { 1968 RegisterMCAsmParser<PPCAsmParser> A(ThePPC32Target); 1969 RegisterMCAsmParser<PPCAsmParser> B(ThePPC64Target); 1970 RegisterMCAsmParser<PPCAsmParser> C(ThePPC64LETarget); 1971 } 1972 1973 #define GET_REGISTER_MATCHER 1974 #define GET_MATCHER_IMPLEMENTATION 1975 #include "PPCGenAsmMatcher.inc" 1976 1977 // Define this matcher function after the auto-generated include so we 1978 // have the match class enum definitions. 1979 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1980 unsigned Kind) { 1981 // If the kind is a token for a literal immediate, check if our asm 1982 // operand matches. This is for InstAliases which have a fixed-value 1983 // immediate in the syntax. 1984 int64_t ImmVal; 1985 switch (Kind) { 1986 case MCK_0: ImmVal = 0; break; 1987 case MCK_1: ImmVal = 1; break; 1988 case MCK_2: ImmVal = 2; break; 1989 case MCK_3: ImmVal = 3; break; 1990 case MCK_4: ImmVal = 4; break; 1991 case MCK_5: ImmVal = 5; break; 1992 case MCK_6: ImmVal = 6; break; 1993 case MCK_7: ImmVal = 7; break; 1994 default: return Match_InvalidOperand; 1995 } 1996 1997 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1998 if (Op.isImm() && Op.getImm() == ImmVal) 1999 return Match_Success; 2000 2001 return Match_InvalidOperand; 2002 } 2003 2004 const MCExpr * 2005 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 2006 MCSymbolRefExpr::VariantKind Variant, 2007 MCContext &Ctx) { 2008 switch (Variant) { 2009 case MCSymbolRefExpr::VK_PPC_LO: 2010 return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, false, Ctx); 2011 case MCSymbolRefExpr::VK_PPC_HI: 2012 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, false, Ctx); 2013 case MCSymbolRefExpr::VK_PPC_HA: 2014 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, false, Ctx); 2015 case MCSymbolRefExpr::VK_PPC_HIGHER: 2016 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, false, Ctx); 2017 case MCSymbolRefExpr::VK_PPC_HIGHERA: 2018 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, false, Ctx); 2019 case MCSymbolRefExpr::VK_PPC_HIGHEST: 2020 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, false, Ctx); 2021 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 2022 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, false, Ctx); 2023 default: 2024 return nullptr; 2025 } 2026 } 2027