1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Top-level implementation for the NVPTX target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "NVPTXTargetMachine.h" 15 #include "MCTargetDesc/NVPTXMCAsmInfo.h" 16 #include "NVPTX.h" 17 #include "NVPTXAllocaHoisting.h" 18 #include "NVPTXLowerAggrCopies.h" 19 #include "NVPTXTargetObjectFile.h" 20 #include "NVPTXTargetTransformInfo.h" 21 #include "llvm/Analysis/Passes.h" 22 #include "llvm/CodeGen/AsmPrinter.h" 23 #include "llvm/CodeGen/MachineFunctionAnalysis.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IRPrintingPasses.h" 28 #include "llvm/IR/LegacyPassManager.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCStreamer.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/FormattedStream.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetLowering.h" 41 #include "llvm/Target/TargetLoweringObjectFile.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetOptions.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 49 using namespace llvm; 50 51 static cl::opt<bool> UseInferAddressSpaces( 52 "nvptx-use-infer-addrspace", cl::init(false), cl::Hidden, 53 cl::desc("Optimize address spaces using NVPTXInferAddressSpaces instead of " 54 "NVPTXFavorNonGenericAddrSpaces")); 55 56 namespace llvm { 57 void initializeNVVMReflectPass(PassRegistry&); 58 void initializeGenericToNVVMPass(PassRegistry&); 59 void initializeNVPTXAllocaHoistingPass(PassRegistry &); 60 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&); 61 void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &); 62 void initializeNVPTXInferAddressSpacesPass(PassRegistry &); 63 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &); 64 void initializeNVPTXLowerKernelArgsPass(PassRegistry &); 65 void initializeNVPTXLowerAllocaPass(PassRegistry &); 66 } 67 68 extern "C" void LLVMInitializeNVPTXTarget() { 69 // Register the target. 70 RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32); 71 RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64); 72 73 // FIXME: This pass is really intended to be invoked during IR optimization, 74 // but it's very NVPTX-specific. 75 PassRegistry &PR = *PassRegistry::getPassRegistry(); 76 initializeNVVMReflectPass(PR); 77 initializeGenericToNVVMPass(PR); 78 initializeNVPTXAllocaHoistingPass(PR); 79 initializeNVPTXAssignValidGlobalNamesPass(PR); 80 initializeNVPTXFavorNonGenericAddrSpacesPass(PR); 81 initializeNVPTXInferAddressSpacesPass(PR); 82 initializeNVPTXLowerKernelArgsPass(PR); 83 initializeNVPTXLowerAllocaPass(PR); 84 initializeNVPTXLowerAggrCopiesPass(PR); 85 } 86 87 static std::string computeDataLayout(bool is64Bit) { 88 std::string Ret = "e"; 89 90 if (!is64Bit) 91 Ret += "-p:32:32"; 92 93 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 94 95 return Ret; 96 } 97 98 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT, 99 StringRef CPU, StringRef FS, 100 const TargetOptions &Options, 101 Reloc::Model RM, CodeModel::Model CM, 102 CodeGenOpt::Level OL, bool is64bit) 103 : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options, RM, 104 CM, OL), 105 is64bit(is64bit), TLOF(make_unique<NVPTXTargetObjectFile>()), 106 Subtarget(TT, CPU, FS, *this) { 107 if (TT.getOS() == Triple::NVCL) 108 drvInterface = NVPTX::NVCL; 109 else 110 drvInterface = NVPTX::CUDA; 111 initAsmInfo(); 112 } 113 114 NVPTXTargetMachine::~NVPTXTargetMachine() {} 115 116 void NVPTXTargetMachine32::anchor() {} 117 118 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT, 119 StringRef CPU, StringRef FS, 120 const TargetOptions &Options, 121 Reloc::Model RM, CodeModel::Model CM, 122 CodeGenOpt::Level OL) 123 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 124 125 void NVPTXTargetMachine64::anchor() {} 126 127 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT, 128 StringRef CPU, StringRef FS, 129 const TargetOptions &Options, 130 Reloc::Model RM, CodeModel::Model CM, 131 CodeGenOpt::Level OL) 132 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 133 134 namespace { 135 class NVPTXPassConfig : public TargetPassConfig { 136 public: 137 NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM) 138 : TargetPassConfig(TM, PM) {} 139 140 NVPTXTargetMachine &getNVPTXTargetMachine() const { 141 return getTM<NVPTXTargetMachine>(); 142 } 143 144 void addIRPasses() override; 145 bool addInstSelector() override; 146 void addPostRegAlloc() override; 147 void addMachineSSAOptimization() override; 148 149 FunctionPass *createTargetRegisterAllocator(bool) override; 150 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 151 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 152 153 private: 154 // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This 155 // function is only called in opt mode. 156 void addEarlyCSEOrGVNPass(); 157 158 // Add passes that propagate special memory spaces. 159 void addAddressSpaceInferencePasses(); 160 161 // Add passes that perform straight-line scalar optimizations. 162 void addStraightLineScalarOptimizationPasses(); 163 }; 164 } // end anonymous namespace 165 166 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) { 167 return new NVPTXPassConfig(this, PM); 168 } 169 170 TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() { 171 return TargetIRAnalysis([this](const Function &F) { 172 return TargetTransformInfo(NVPTXTTIImpl(this, F)); 173 }); 174 } 175 176 void NVPTXPassConfig::addEarlyCSEOrGVNPass() { 177 if (getOptLevel() == CodeGenOpt::Aggressive) 178 addPass(createGVNPass()); 179 else 180 addPass(createEarlyCSEPass()); 181 } 182 183 void NVPTXPassConfig::addAddressSpaceInferencePasses() { 184 addPass(createNVPTXLowerKernelArgsPass(&getNVPTXTargetMachine())); 185 // NVPTXLowerKernelArgs emits alloca for byval parameters which can often 186 // be eliminated by SROA. 187 addPass(createSROAPass()); 188 addPass(createNVPTXLowerAllocaPass()); 189 if (UseInferAddressSpaces) { 190 addPass(createNVPTXInferAddressSpacesPass()); 191 } else { 192 addPass(createNVPTXFavorNonGenericAddrSpacesPass()); 193 // FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave 194 // them unused. We could remove dead code in an ad-hoc manner, but that 195 // requires manual work and might be error-prone. 196 addPass(createDeadCodeEliminationPass()); 197 } 198 } 199 200 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() { 201 addPass(createSeparateConstOffsetFromGEPPass()); 202 addPass(createSpeculativeExecutionPass()); 203 // ReassociateGEPs exposes more opportunites for SLSR. See 204 // the example in reassociate-geps-and-slsr.ll. 205 addPass(createStraightLineStrengthReducePass()); 206 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 207 // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE 208 // for some of our benchmarks. 209 addEarlyCSEOrGVNPass(); 210 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 211 addPass(createNaryReassociatePass()); 212 // NaryReassociate on GEPs creates redundant common expressions, so run 213 // EarlyCSE after it. 214 addPass(createEarlyCSEPass()); 215 } 216 217 void NVPTXPassConfig::addIRPasses() { 218 // The following passes are known to not play well with virtual regs hanging 219 // around after register allocation (which in our case, is *all* registers). 220 // We explicitly disable them here. We do, however, need some functionality 221 // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the 222 // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp). 223 disablePass(&PrologEpilogCodeInserterID); 224 disablePass(&MachineCopyPropagationID); 225 disablePass(&TailDuplicateID); 226 disablePass(&StackMapLivenessID); 227 disablePass(&LiveDebugValuesID); 228 disablePass(&PostRASchedulerID); 229 disablePass(&FuncletLayoutID); 230 231 addPass(createNVVMReflectPass()); 232 if (getOptLevel() != CodeGenOpt::None) 233 addPass(createNVPTXImageOptimizerPass()); 234 addPass(createNVPTXAssignValidGlobalNamesPass()); 235 addPass(createGenericToNVVMPass()); 236 237 if (getOptLevel() != CodeGenOpt::None) { 238 addAddressSpaceInferencePasses(); 239 addStraightLineScalarOptimizationPasses(); 240 } 241 242 // === LSR and other generic IR passes === 243 TargetPassConfig::addIRPasses(); 244 // EarlyCSE is not always strong enough to clean up what LSR produces. For 245 // example, GVN can combine 246 // 247 // %0 = add %a, %b 248 // %1 = add %b, %a 249 // 250 // and 251 // 252 // %0 = shl nsw %a, 2 253 // %1 = shl %a, 2 254 // 255 // but EarlyCSE can do neither of them. 256 if (getOptLevel() != CodeGenOpt::None) 257 addEarlyCSEOrGVNPass(); 258 } 259 260 bool NVPTXPassConfig::addInstSelector() { 261 const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl(); 262 263 addPass(createLowerAggrCopies()); 264 addPass(createAllocaHoisting()); 265 addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel())); 266 267 if (!ST.hasImageHandles()) 268 addPass(createNVPTXReplaceImageHandlesPass()); 269 270 return false; 271 } 272 273 void NVPTXPassConfig::addPostRegAlloc() { 274 addPass(createNVPTXPrologEpilogPass(), false); 275 // NVPTXPrologEpilogPass calculates frame object offset and replace frame 276 // index with VRFrame register. NVPTXPeephole need to be run after that and 277 // will replace VRFrame with VRFrameLocal when possible. 278 addPass(createNVPTXPeephole()); 279 } 280 281 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) { 282 return nullptr; // No reg alloc 283 } 284 285 void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 286 assert(!RegAllocPass && "NVPTX uses no regalloc!"); 287 addPass(&PHIEliminationID); 288 addPass(&TwoAddressInstructionPassID); 289 } 290 291 void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 292 assert(!RegAllocPass && "NVPTX uses no regalloc!"); 293 294 addPass(&ProcessImplicitDefsID); 295 addPass(&LiveVariablesID); 296 addPass(&MachineLoopInfoID); 297 addPass(&PHIEliminationID); 298 299 addPass(&TwoAddressInstructionPassID); 300 addPass(&RegisterCoalescerID); 301 302 // PreRA instruction scheduling. 303 if (addPass(&MachineSchedulerID)) 304 printAndVerify("After Machine Scheduling"); 305 306 307 addPass(&StackSlotColoringID); 308 309 // FIXME: Needs physical registers 310 //addPass(&PostRAMachineLICMID); 311 312 printAndVerify("After StackSlotColoring"); 313 } 314 315 void NVPTXPassConfig::addMachineSSAOptimization() { 316 // Pre-ra tail duplication. 317 if (addPass(&EarlyTailDuplicateID)) 318 printAndVerify("After Pre-RegAlloc TailDuplicate"); 319 320 // Optimize PHIs before DCE: removing dead PHI cycles may make more 321 // instructions dead. 322 addPass(&OptimizePHIsID); 323 324 // This pass merges large allocas. StackSlotColoring is a different pass 325 // which merges spill slots. 326 addPass(&StackColoringID); 327 328 // If the target requests it, assign local variables to stack slots relative 329 // to one another and simplify frame index references where possible. 330 addPass(&LocalStackSlotAllocationID); 331 332 // With optimization, dead code should already be eliminated. However 333 // there is one known exception: lowered code for arguments that are only 334 // used by tail calls, where the tail calls reuse the incoming stack 335 // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll). 336 addPass(&DeadMachineInstructionElimID); 337 printAndVerify("After codegen DCE pass"); 338 339 // Allow targets to insert passes that improve instruction level parallelism, 340 // like if-conversion. Such passes will typically need dominator trees and 341 // loop info, just like LICM and CSE below. 342 if (addILPOpts()) 343 printAndVerify("After ILP optimizations"); 344 345 addPass(&MachineLICMID); 346 addPass(&MachineCSEID); 347 348 addPass(&MachineSinkingID); 349 printAndVerify("After Machine LICM, CSE and Sinking passes"); 350 351 addPass(&PeepholeOptimizerID); 352 printAndVerify("After codegen peephole optimization pass"); 353 } 354