1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Top-level implementation for the NVPTX target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "NVPTXTargetMachine.h" 15 #include "MCTargetDesc/NVPTXMCAsmInfo.h" 16 #include "NVPTX.h" 17 #include "NVPTXAllocaHoisting.h" 18 #include "NVPTXLowerAggrCopies.h" 19 #include "NVPTXTargetObjectFile.h" 20 #include "NVPTXTargetTransformInfo.h" 21 #include "llvm/Analysis/Passes.h" 22 #include "llvm/CodeGen/AsmPrinter.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/IRPrintingPasses.h" 28 #include "llvm/IR/LegacyPassManager.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCStreamer.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/FormattedStream.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetLowering.h" 41 #include "llvm/Target/TargetLoweringObjectFile.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetOptions.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 50 using namespace llvm; 51 52 static cl::opt<bool> UseInferAddressSpaces( 53 "nvptx-use-infer-addrspace", cl::init(true), cl::Hidden, 54 cl::desc("Optimize address spaces using NVPTXInferAddressSpaces instead of " 55 "NVPTXFavorNonGenericAddrSpaces")); 56 57 // LSV is still relatively new; this switch lets us turn it off in case we 58 // encounter (or suspect) a bug. 59 static cl::opt<bool> 60 DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer", 61 cl::desc("Disable load/store vectorizer"), 62 cl::init(false), cl::Hidden); 63 64 namespace llvm { 65 void initializeNVVMIntrRangePass(PassRegistry&); 66 void initializeNVVMReflectPass(PassRegistry&); 67 void initializeGenericToNVVMPass(PassRegistry&); 68 void initializeNVPTXAllocaHoistingPass(PassRegistry &); 69 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&); 70 void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &); 71 void initializeNVPTXInferAddressSpacesPass(PassRegistry &); 72 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &); 73 void initializeNVPTXLowerArgsPass(PassRegistry &); 74 void initializeNVPTXLowerAllocaPass(PassRegistry &); 75 } 76 77 extern "C" void LLVMInitializeNVPTXTarget() { 78 // Register the target. 79 RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32()); 80 RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64()); 81 82 // FIXME: This pass is really intended to be invoked during IR optimization, 83 // but it's very NVPTX-specific. 84 PassRegistry &PR = *PassRegistry::getPassRegistry(); 85 initializeNVVMReflectPass(PR); 86 initializeNVVMIntrRangePass(PR); 87 initializeGenericToNVVMPass(PR); 88 initializeNVPTXAllocaHoistingPass(PR); 89 initializeNVPTXAssignValidGlobalNamesPass(PR); 90 initializeNVPTXFavorNonGenericAddrSpacesPass(PR); 91 initializeNVPTXInferAddressSpacesPass(PR); 92 initializeNVPTXLowerArgsPass(PR); 93 initializeNVPTXLowerAllocaPass(PR); 94 initializeNVPTXLowerAggrCopiesPass(PR); 95 } 96 97 static std::string computeDataLayout(bool is64Bit) { 98 std::string Ret = "e"; 99 100 if (!is64Bit) 101 Ret += "-p:32:32"; 102 103 Ret += "-i64:64-v16:16-v32:32-n16:32:64"; 104 105 return Ret; 106 } 107 108 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT, 109 StringRef CPU, StringRef FS, 110 const TargetOptions &Options, 111 Optional<Reloc::Model> RM, 112 CodeModel::Model CM, 113 CodeGenOpt::Level OL, bool is64bit) 114 // The pic relocation model is used regardless of what the client has 115 // specified, as it is the only relocation model currently supported. 116 : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options, 117 Reloc::PIC_, CM, OL), 118 is64bit(is64bit), 119 TLOF(make_unique<NVPTXTargetObjectFile>()), 120 Subtarget(TT, CPU, FS, *this) { 121 if (TT.getOS() == Triple::NVCL) 122 drvInterface = NVPTX::NVCL; 123 else 124 drvInterface = NVPTX::CUDA; 125 initAsmInfo(); 126 } 127 128 NVPTXTargetMachine::~NVPTXTargetMachine() {} 129 130 void NVPTXTargetMachine32::anchor() {} 131 132 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT, 133 StringRef CPU, StringRef FS, 134 const TargetOptions &Options, 135 Optional<Reloc::Model> RM, 136 CodeModel::Model CM, 137 CodeGenOpt::Level OL) 138 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} 139 140 void NVPTXTargetMachine64::anchor() {} 141 142 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT, 143 StringRef CPU, StringRef FS, 144 const TargetOptions &Options, 145 Optional<Reloc::Model> RM, 146 CodeModel::Model CM, 147 CodeGenOpt::Level OL) 148 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} 149 150 namespace { 151 class NVPTXPassConfig : public TargetPassConfig { 152 public: 153 NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM) 154 : TargetPassConfig(TM, PM) {} 155 156 NVPTXTargetMachine &getNVPTXTargetMachine() const { 157 return getTM<NVPTXTargetMachine>(); 158 } 159 160 void addIRPasses() override; 161 bool addInstSelector() override; 162 void addPostRegAlloc() override; 163 void addMachineSSAOptimization() override; 164 165 FunctionPass *createTargetRegisterAllocator(bool) override; 166 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 167 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 168 169 private: 170 // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This 171 // function is only called in opt mode. 172 void addEarlyCSEOrGVNPass(); 173 174 // Add passes that propagate special memory spaces. 175 void addAddressSpaceInferencePasses(); 176 177 // Add passes that perform straight-line scalar optimizations. 178 void addStraightLineScalarOptimizationPasses(); 179 }; 180 } // end anonymous namespace 181 182 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) { 183 return new NVPTXPassConfig(this, PM); 184 } 185 186 void NVPTXTargetMachine::addEarlyAsPossiblePasses(PassManagerBase &PM) { 187 PM.add(createNVVMReflectPass()); 188 PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion())); 189 } 190 191 TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() { 192 return TargetIRAnalysis([this](const Function &F) { 193 return TargetTransformInfo(NVPTXTTIImpl(this, F)); 194 }); 195 } 196 197 void NVPTXPassConfig::addEarlyCSEOrGVNPass() { 198 if (getOptLevel() == CodeGenOpt::Aggressive) 199 addPass(createGVNPass()); 200 else 201 addPass(createEarlyCSEPass()); 202 } 203 204 void NVPTXPassConfig::addAddressSpaceInferencePasses() { 205 // NVPTXLowerArgs emits alloca for byval parameters which can often 206 // be eliminated by SROA. 207 addPass(createSROAPass()); 208 addPass(createNVPTXLowerAllocaPass()); 209 if (UseInferAddressSpaces) { 210 addPass(createNVPTXInferAddressSpacesPass()); 211 } else { 212 addPass(createNVPTXFavorNonGenericAddrSpacesPass()); 213 // FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave 214 // them unused. We could remove dead code in an ad-hoc manner, but that 215 // requires manual work and might be error-prone. 216 addPass(createDeadCodeEliminationPass()); 217 } 218 } 219 220 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() { 221 addPass(createSeparateConstOffsetFromGEPPass()); 222 addPass(createSpeculativeExecutionPass()); 223 // ReassociateGEPs exposes more opportunites for SLSR. See 224 // the example in reassociate-geps-and-slsr.ll. 225 addPass(createStraightLineStrengthReducePass()); 226 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 227 // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE 228 // for some of our benchmarks. 229 addEarlyCSEOrGVNPass(); 230 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 231 addPass(createNaryReassociatePass()); 232 // NaryReassociate on GEPs creates redundant common expressions, so run 233 // EarlyCSE after it. 234 addPass(createEarlyCSEPass()); 235 } 236 237 void NVPTXPassConfig::addIRPasses() { 238 // The following passes are known to not play well with virtual regs hanging 239 // around after register allocation (which in our case, is *all* registers). 240 // We explicitly disable them here. We do, however, need some functionality 241 // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the 242 // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp). 243 disablePass(&PrologEpilogCodeInserterID); 244 disablePass(&MachineCopyPropagationID); 245 disablePass(&TailDuplicateID); 246 disablePass(&StackMapLivenessID); 247 disablePass(&LiveDebugValuesID); 248 disablePass(&PostRASchedulerID); 249 disablePass(&FuncletLayoutID); 250 disablePass(&PatchableFunctionID); 251 252 // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running 253 // it here does nothing. But since we need it for correctness when lowering 254 // to NVPTX, run it here too, in case whoever built our pass pipeline didn't 255 // call addEarlyAsPossiblePasses. 256 addPass(createNVVMReflectPass()); 257 258 if (getOptLevel() != CodeGenOpt::None) 259 addPass(createNVPTXImageOptimizerPass()); 260 addPass(createNVPTXAssignValidGlobalNamesPass()); 261 addPass(createGenericToNVVMPass()); 262 263 // NVPTXLowerArgs is required for correctness and should be run right 264 // before the address space inference passes. 265 addPass(createNVPTXLowerArgsPass(&getNVPTXTargetMachine())); 266 if (getOptLevel() != CodeGenOpt::None) { 267 addAddressSpaceInferencePasses(); 268 if (!DisableLoadStoreVectorizer) 269 addPass(createLoadStoreVectorizerPass()); 270 addStraightLineScalarOptimizationPasses(); 271 } 272 273 // === LSR and other generic IR passes === 274 TargetPassConfig::addIRPasses(); 275 // EarlyCSE is not always strong enough to clean up what LSR produces. For 276 // example, GVN can combine 277 // 278 // %0 = add %a, %b 279 // %1 = add %b, %a 280 // 281 // and 282 // 283 // %0 = shl nsw %a, 2 284 // %1 = shl %a, 2 285 // 286 // but EarlyCSE can do neither of them. 287 if (getOptLevel() != CodeGenOpt::None) 288 addEarlyCSEOrGVNPass(); 289 } 290 291 bool NVPTXPassConfig::addInstSelector() { 292 const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl(); 293 294 addPass(createLowerAggrCopies()); 295 addPass(createAllocaHoisting()); 296 addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel())); 297 298 if (!ST.hasImageHandles()) 299 addPass(createNVPTXReplaceImageHandlesPass()); 300 301 return false; 302 } 303 304 void NVPTXPassConfig::addPostRegAlloc() { 305 addPass(createNVPTXPrologEpilogPass(), false); 306 if (getOptLevel() != CodeGenOpt::None) { 307 // NVPTXPrologEpilogPass calculates frame object offset and replace frame 308 // index with VRFrame register. NVPTXPeephole need to be run after that and 309 // will replace VRFrame with VRFrameLocal when possible. 310 addPass(createNVPTXPeephole()); 311 } 312 } 313 314 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) { 315 return nullptr; // No reg alloc 316 } 317 318 void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 319 assert(!RegAllocPass && "NVPTX uses no regalloc!"); 320 addPass(&PHIEliminationID); 321 addPass(&TwoAddressInstructionPassID); 322 } 323 324 void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 325 assert(!RegAllocPass && "NVPTX uses no regalloc!"); 326 327 addPass(&ProcessImplicitDefsID); 328 addPass(&LiveVariablesID); 329 addPass(&MachineLoopInfoID); 330 addPass(&PHIEliminationID); 331 332 addPass(&TwoAddressInstructionPassID); 333 addPass(&RegisterCoalescerID); 334 335 // PreRA instruction scheduling. 336 if (addPass(&MachineSchedulerID)) 337 printAndVerify("After Machine Scheduling"); 338 339 340 addPass(&StackSlotColoringID); 341 342 // FIXME: Needs physical registers 343 //addPass(&PostRAMachineLICMID); 344 345 printAndVerify("After StackSlotColoring"); 346 } 347 348 void NVPTXPassConfig::addMachineSSAOptimization() { 349 // Pre-ra tail duplication. 350 if (addPass(&EarlyTailDuplicateID)) 351 printAndVerify("After Pre-RegAlloc TailDuplicate"); 352 353 // Optimize PHIs before DCE: removing dead PHI cycles may make more 354 // instructions dead. 355 addPass(&OptimizePHIsID); 356 357 // This pass merges large allocas. StackSlotColoring is a different pass 358 // which merges spill slots. 359 addPass(&StackColoringID); 360 361 // If the target requests it, assign local variables to stack slots relative 362 // to one another and simplify frame index references where possible. 363 addPass(&LocalStackSlotAllocationID); 364 365 // With optimization, dead code should already be eliminated. However 366 // there is one known exception: lowered code for arguments that are only 367 // used by tail calls, where the tail calls reuse the incoming stack 368 // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll). 369 addPass(&DeadMachineInstructionElimID); 370 printAndVerify("After codegen DCE pass"); 371 372 // Allow targets to insert passes that improve instruction level parallelism, 373 // like if-conversion. Such passes will typically need dominator trees and 374 // loop info, just like LICM and CSE below. 375 if (addILPOpts()) 376 printAndVerify("After ILP optimizations"); 377 378 addPass(&MachineLICMID); 379 addPass(&MachineCSEID); 380 381 addPass(&MachineSinkingID); 382 printAndVerify("After Machine LICM, CSE and Sinking passes"); 383 384 addPass(&PeepholeOptimizerID); 385 printAndVerify("After codegen peephole optimization pass"); 386 } 387