1 //===-- MipsTargetMachine.cpp - Define TargetMachine for Mips -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements the info about Mips target spec.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsTargetMachine.h"
15 #include "MCTargetDesc/MipsABIInfo.h"
16 #include "MCTargetDesc/MipsMCTargetDesc.h"
17 #include "Mips.h"
18 #include "Mips16ISelDAGToDAG.h"
19 #include "MipsSEISelDAGToDAG.h"
20 #include "MipsSubtarget.h"
21 #include "MipsTargetObjectFile.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/BasicTTIImpl.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/Support/CodeGen.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/TargetRegistry.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <string>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "mips"
42 
43 extern "C" void LLVMInitializeMipsTarget() {
44   // Register the target.
45   RegisterTargetMachine<MipsebTargetMachine> X(getTheMipsTarget());
46   RegisterTargetMachine<MipselTargetMachine> Y(getTheMipselTarget());
47   RegisterTargetMachine<MipsebTargetMachine> A(getTheMips64Target());
48   RegisterTargetMachine<MipselTargetMachine> B(getTheMips64elTarget());
49 }
50 
51 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
52                                      const TargetOptions &Options,
53                                      bool isLittle) {
54   std::string Ret;
55   MipsABIInfo ABI = MipsABIInfo::computeTargetABI(TT, CPU, Options.MCOptions);
56 
57   // There are both little and big endian mips.
58   if (isLittle)
59     Ret += "e";
60   else
61     Ret += "E";
62 
63   if (ABI.IsO32())
64     Ret += "-m:m";
65   else
66     Ret += "-m:e";
67 
68   // Pointers are 32 bit on some ABIs.
69   if (!ABI.IsN64())
70     Ret += "-p:32:32";
71 
72   // 8 and 16 bit integers only need to have natural alignment, but try to
73   // align them to 32 bits. 64 bit integers have natural alignment.
74   Ret += "-i8:8:32-i16:16:32-i64:64";
75 
76   // 32 bit registers are always available and the stack is at least 64 bit
77   // aligned. On N64 64 bit registers are also available and the stack is
78   // 128 bit aligned.
79   if (ABI.IsN64() || ABI.IsN32())
80     Ret += "-n32:64-S128";
81   else
82     Ret += "-n32-S64";
83 
84   return Ret;
85 }
86 
87 static Reloc::Model getEffectiveRelocModel(bool JIT,
88                                            Optional<Reloc::Model> RM) {
89   if (!RM.hasValue() || JIT)
90     return Reloc::Static;
91   return *RM;
92 }
93 
94 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) {
95   if (CM)
96     return *CM;
97   return CodeModel::Small;
98 }
99 
100 // On function prologue, the stack is created by decrementing
101 // its pointer. Once decremented, all references are done with positive
102 // offset from the stack/frame pointer, using StackGrowsUp enables
103 // an easier handling.
104 // Using CodeModel::Large enables different CALL behavior.
105 MipsTargetMachine::MipsTargetMachine(const Target &T, const Triple &TT,
106                                      StringRef CPU, StringRef FS,
107                                      const TargetOptions &Options,
108                                      Optional<Reloc::Model> RM,
109                                      Optional<CodeModel::Model> CM,
110                                      CodeGenOpt::Level OL, bool JIT,
111                                      bool isLittle)
112     : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
113                         CPU, FS, Options, getEffectiveRelocModel(JIT, RM),
114                         getEffectiveCodeModel(CM), OL),
115       isLittle(isLittle), TLOF(llvm::make_unique<MipsTargetObjectFile>()),
116       ABI(MipsABIInfo::computeTargetABI(TT, CPU, Options.MCOptions)),
117       Subtarget(nullptr), DefaultSubtarget(TT, CPU, FS, isLittle, *this),
118       NoMips16Subtarget(TT, CPU, FS.empty() ? "-mips16" : FS.str() + ",-mips16",
119                         isLittle, *this),
120       Mips16Subtarget(TT, CPU, FS.empty() ? "+mips16" : FS.str() + ",+mips16",
121                       isLittle, *this) {
122   Subtarget = &DefaultSubtarget;
123   initAsmInfo();
124 }
125 
126 MipsTargetMachine::~MipsTargetMachine() = default;
127 
128 void MipsebTargetMachine::anchor() {}
129 
130 MipsebTargetMachine::MipsebTargetMachine(const Target &T, const Triple &TT,
131                                          StringRef CPU, StringRef FS,
132                                          const TargetOptions &Options,
133                                          Optional<Reloc::Model> RM,
134                                          Optional<CodeModel::Model> CM,
135                                          CodeGenOpt::Level OL, bool JIT)
136     : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}
137 
138 void MipselTargetMachine::anchor() {}
139 
140 MipselTargetMachine::MipselTargetMachine(const Target &T, const Triple &TT,
141                                          StringRef CPU, StringRef FS,
142                                          const TargetOptions &Options,
143                                          Optional<Reloc::Model> RM,
144                                          Optional<CodeModel::Model> CM,
145                                          CodeGenOpt::Level OL, bool JIT)
146     : MipsTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {}
147 
148 const MipsSubtarget *
149 MipsTargetMachine::getSubtargetImpl(const Function &F) const {
150   Attribute CPUAttr = F.getFnAttribute("target-cpu");
151   Attribute FSAttr = F.getFnAttribute("target-features");
152 
153   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
154                         ? CPUAttr.getValueAsString().str()
155                         : TargetCPU;
156   std::string FS = !FSAttr.hasAttribute(Attribute::None)
157                        ? FSAttr.getValueAsString().str()
158                        : TargetFS;
159   bool hasMips16Attr =
160       !F.getFnAttribute("mips16").hasAttribute(Attribute::None);
161   bool hasNoMips16Attr =
162       !F.getFnAttribute("nomips16").hasAttribute(Attribute::None);
163 
164   bool HasMicroMipsAttr =
165       !F.getFnAttribute("micromips").hasAttribute(Attribute::None);
166   bool HasNoMicroMipsAttr =
167       !F.getFnAttribute("nomicromips").hasAttribute(Attribute::None);
168 
169   // FIXME: This is related to the code below to reset the target options,
170   // we need to know whether or not the soft float flag is set on the
171   // function, so we can enable it as a subtarget feature.
172   bool softFloat =
173       F.hasFnAttribute("use-soft-float") &&
174       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
175 
176   if (hasMips16Attr)
177     FS += FS.empty() ? "+mips16" : ",+mips16";
178   else if (hasNoMips16Attr)
179     FS += FS.empty() ? "-mips16" : ",-mips16";
180   if (HasMicroMipsAttr)
181     FS += FS.empty() ? "+micromips" : ",+micromips";
182   else if (HasNoMicroMipsAttr)
183     FS += FS.empty() ? "-micromips" : ",-micromips";
184   if (softFloat)
185     FS += FS.empty() ? "+soft-float" : ",+soft-float";
186 
187   auto &I = SubtargetMap[CPU + FS];
188   if (!I) {
189     // This needs to be done before we create a new subtarget since any
190     // creation will depend on the TM and the code generation flags on the
191     // function that reside in TargetOptions.
192     resetTargetOptions(F);
193     I = llvm::make_unique<MipsSubtarget>(TargetTriple, CPU, FS, isLittle,
194                                          *this);
195   }
196   return I.get();
197 }
198 
199 void MipsTargetMachine::resetSubtarget(MachineFunction *MF) {
200   DEBUG(dbgs() << "resetSubtarget\n");
201 
202   Subtarget = const_cast<MipsSubtarget *>(getSubtargetImpl(*MF->getFunction()));
203   MF->setSubtarget(Subtarget);
204 }
205 
206 namespace {
207 
208 /// Mips Code Generator Pass Configuration Options.
209 class MipsPassConfig : public TargetPassConfig {
210 public:
211   MipsPassConfig(MipsTargetMachine &TM, PassManagerBase &PM)
212     : TargetPassConfig(TM, PM) {
213     // The current implementation of long branch pass requires a scratch
214     // register ($at) to be available before branch instructions. Tail merging
215     // can break this requirement, so disable it when long branch pass is
216     // enabled.
217     EnableTailMerge = !getMipsSubtarget().enableLongBranchPass();
218   }
219 
220   MipsTargetMachine &getMipsTargetMachine() const {
221     return getTM<MipsTargetMachine>();
222   }
223 
224   const MipsSubtarget &getMipsSubtarget() const {
225     return *getMipsTargetMachine().getSubtargetImpl();
226   }
227 
228   void addIRPasses() override;
229   bool addInstSelector() override;
230   void addPreEmitPass() override;
231   void addPreRegAlloc() override;
232 };
233 
234 } // end anonymous namespace
235 
236 TargetPassConfig *MipsTargetMachine::createPassConfig(PassManagerBase &PM) {
237   return new MipsPassConfig(*this, PM);
238 }
239 
240 void MipsPassConfig::addIRPasses() {
241   TargetPassConfig::addIRPasses();
242   addPass(createAtomicExpandPass());
243   if (getMipsSubtarget().os16())
244     addPass(createMipsOs16Pass());
245   if (getMipsSubtarget().inMips16HardFloat())
246     addPass(createMips16HardFloatPass());
247 }
248 // Install an instruction selector pass using
249 // the ISelDag to gen Mips code.
250 bool MipsPassConfig::addInstSelector() {
251   addPass(createMipsModuleISelDagPass());
252   addPass(createMips16ISelDag(getMipsTargetMachine(), getOptLevel()));
253   addPass(createMipsSEISelDag(getMipsTargetMachine(), getOptLevel()));
254   return false;
255 }
256 
257 void MipsPassConfig::addPreRegAlloc() {
258   addPass(createMipsOptimizePICCallPass());
259 }
260 
261 TargetIRAnalysis MipsTargetMachine::getTargetIRAnalysis() {
262   return TargetIRAnalysis([this](const Function &F) {
263     if (Subtarget->allowMixed16_32()) {
264       DEBUG(errs() << "No Target Transform Info Pass Added\n");
265       // FIXME: This is no longer necessary as the TTI returned is per-function.
266       return TargetTransformInfo(F.getParent()->getDataLayout());
267     }
268 
269     DEBUG(errs() << "Target Transform Info Pass Added\n");
270     return TargetTransformInfo(BasicTTIImpl(this, F));
271   });
272 }
273 
274 // Implemented by targets that want to run passes immediately before
275 // machine code is emitted. return true if -print-machineinstrs should
276 // print out the code after the passes.
277 void MipsPassConfig::addPreEmitPass() {
278   addPass(createMicroMipsSizeReductionPass());
279 
280   // The delay slot filler pass can potientially create forbidden slot (FS)
281   // hazards for MIPSR6 which the hazard schedule pass (HSP) will fix. Any
282   // (new) pass that creates compact branches after the HSP must handle FS
283   // hazards itself or be pipelined before the HSP.
284   addPass(createMipsDelaySlotFillerPass());
285   addPass(createMipsHazardSchedule());
286   addPass(createMipsLongBranchPass());
287   addPass(createMipsConstantIslandPass());
288 }
289