1 //===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsInstrInfo.h" 15 #include "InstPrinter/MipsInstPrinter.h" 16 #include "MipsMachineFunction.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetRegistry.h" 23 24 using namespace llvm; 25 26 #define GET_INSTRINFO_CTOR_DTOR 27 #include "MipsGenInstrInfo.inc" 28 29 // Pin the vtable to this file. 30 void MipsInstrInfo::anchor() {} 31 32 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 33 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 34 Subtarget(STI), UncondBrOpc(UncondBr) {} 35 36 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 37 if (STI.inMips16Mode()) 38 return llvm::createMips16InstrInfo(STI); 39 40 return llvm::createMipsSEInstrInfo(STI); 41 } 42 43 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 44 return op.isImm() && op.getImm() == 0; 45 } 46 47 /// insertNoop - If data hazard condition is found insert the target nop 48 /// instruction. 49 // FIXME: This appears to be dead code. 50 void MipsInstrInfo:: 51 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 52 { 53 DebugLoc DL; 54 BuildMI(MBB, MI, DL, get(Mips::NOP)); 55 } 56 57 MachineMemOperand * 58 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 59 MachineMemOperand::Flags Flags) const { 60 MachineFunction &MF = *MBB.getParent(); 61 MachineFrameInfo &MFI = MF.getFrameInfo(); 62 unsigned Align = MFI.getObjectAlignment(FI); 63 64 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 65 Flags, MFI.getObjectSize(FI), Align); 66 } 67 68 //===----------------------------------------------------------------------===// 69 // Branch Analysis 70 //===----------------------------------------------------------------------===// 71 72 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 73 MachineBasicBlock *&BB, 74 SmallVectorImpl<MachineOperand> &Cond) const { 75 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 76 int NumOp = Inst->getNumExplicitOperands(); 77 78 // for both int and fp branches, the last explicit operand is the 79 // MBB. 80 BB = Inst->getOperand(NumOp-1).getMBB(); 81 Cond.push_back(MachineOperand::CreateImm(Opc)); 82 83 for (int i=0; i<NumOp-1; i++) 84 Cond.push_back(Inst->getOperand(i)); 85 } 86 87 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 88 MachineBasicBlock *&TBB, 89 MachineBasicBlock *&FBB, 90 SmallVectorImpl<MachineOperand> &Cond, 91 bool AllowModify) const { 92 SmallVector<MachineInstr*, 2> BranchInstrs; 93 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 94 95 return (BT == BT_None) || (BT == BT_Indirect); 96 } 97 98 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 99 const DebugLoc &DL, 100 ArrayRef<MachineOperand> Cond) const { 101 unsigned Opc = Cond[0].getImm(); 102 const MCInstrDesc &MCID = get(Opc); 103 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 104 105 for (unsigned i = 1; i < Cond.size(); ++i) { 106 if (Cond[i].isReg()) 107 MIB.addReg(Cond[i].getReg()); 108 else if (Cond[i].isImm()) 109 MIB.addImm(Cond[i].getImm()); 110 else 111 assert(false && "Cannot copy operand"); 112 } 113 MIB.addMBB(TBB); 114 } 115 116 unsigned MipsInstrInfo::InsertBranch(MachineBasicBlock &MBB, 117 MachineBasicBlock *TBB, 118 MachineBasicBlock *FBB, 119 ArrayRef<MachineOperand> Cond, 120 const DebugLoc &DL) const { 121 // Shouldn't be a fall through. 122 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 123 124 // # of condition operands: 125 // Unconditional branches: 0 126 // Floating point branches: 1 (opc) 127 // Int BranchZero: 2 (opc, reg) 128 // Int Branch: 3 (opc, reg0, reg1) 129 assert((Cond.size() <= 3) && 130 "# of Mips branch conditions must be <= 3!"); 131 132 // Two-way Conditional branch. 133 if (FBB) { 134 BuildCondBr(MBB, TBB, DL, Cond); 135 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 136 return 2; 137 } 138 139 // One way branch. 140 // Unconditional branch. 141 if (Cond.empty()) 142 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 143 else // Conditional branch. 144 BuildCondBr(MBB, TBB, DL, Cond); 145 return 1; 146 } 147 148 unsigned MipsInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 149 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 150 MachineBasicBlock::reverse_iterator FirstBr; 151 unsigned removed; 152 153 // Skip all the debug instructions. 154 while (I != REnd && I->isDebugValue()) 155 ++I; 156 157 FirstBr = I; 158 159 // Up to 2 branches are removed. 160 // Note that indirect branches are not removed. 161 for (removed = 0; I != REnd && removed < 2; ++I, ++removed) 162 if (!getAnalyzableBrOpc(I->getOpcode())) 163 break; 164 165 MBB.erase(I.base(), FirstBr.base()); 166 167 return removed; 168 } 169 170 /// ReverseBranchCondition - Return the inverse opcode of the 171 /// specified Branch instruction. 172 bool MipsInstrInfo::ReverseBranchCondition( 173 SmallVectorImpl<MachineOperand> &Cond) const { 174 assert( (Cond.size() && Cond.size() <= 3) && 175 "Invalid Mips branch condition!"); 176 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 177 return false; 178 } 179 180 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch( 181 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 182 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 183 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 184 185 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 186 187 // Skip all the debug instructions. 188 while (I != REnd && I->isDebugValue()) 189 ++I; 190 191 if (I == REnd || !isUnpredicatedTerminator(*I)) { 192 // This block ends with no branches (it just falls through to its succ). 193 // Leave TBB/FBB null. 194 TBB = FBB = nullptr; 195 return BT_NoBranch; 196 } 197 198 MachineInstr *LastInst = &*I; 199 unsigned LastOpc = LastInst->getOpcode(); 200 BranchInstrs.push_back(LastInst); 201 202 // Not an analyzable branch (e.g., indirect jump). 203 if (!getAnalyzableBrOpc(LastOpc)) 204 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 205 206 // Get the second to last instruction in the block. 207 unsigned SecondLastOpc = 0; 208 MachineInstr *SecondLastInst = nullptr; 209 210 if (++I != REnd) { 211 SecondLastInst = &*I; 212 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 213 214 // Not an analyzable branch (must be an indirect jump). 215 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 216 return BT_None; 217 } 218 219 // If there is only one terminator instruction, process it. 220 if (!SecondLastOpc) { 221 // Unconditional branch. 222 if (LastInst->isUnconditionalBranch()) { 223 TBB = LastInst->getOperand(0).getMBB(); 224 return BT_Uncond; 225 } 226 227 // Conditional branch 228 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 229 return BT_Cond; 230 } 231 232 // If we reached here, there are two branches. 233 // If there are three terminators, we don't know what sort of block this is. 234 if (++I != REnd && isUnpredicatedTerminator(*I)) 235 return BT_None; 236 237 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 238 239 // If second to last instruction is an unconditional branch, 240 // analyze it and remove the last instruction. 241 if (SecondLastInst->isUnconditionalBranch()) { 242 // Return if the last instruction cannot be removed. 243 if (!AllowModify) 244 return BT_None; 245 246 TBB = SecondLastInst->getOperand(0).getMBB(); 247 LastInst->eraseFromParent(); 248 BranchInstrs.pop_back(); 249 return BT_Uncond; 250 } 251 252 // Conditional branch followed by an unconditional branch. 253 // The last one must be unconditional. 254 if (!LastInst->isUnconditionalBranch()) 255 return BT_None; 256 257 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 258 FBB = LastInst->getOperand(0).getMBB(); 259 260 return BT_CondUncond; 261 } 262 263 /// Return the corresponding compact (no delay slot) form of a branch. 264 unsigned MipsInstrInfo::getEquivalentCompactForm( 265 const MachineBasicBlock::iterator I) const { 266 unsigned Opcode = I->getOpcode(); 267 bool canUseShortMicroMipsCTI = false; 268 269 if (Subtarget.inMicroMipsMode()) { 270 switch (Opcode) { 271 case Mips::BNE: 272 case Mips::BNE_MM: 273 case Mips::BEQ: 274 case Mips::BEQ_MM: 275 // microMIPS has NE,EQ branches that do not have delay slots provided one 276 // of the operands is zero. 277 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 278 canUseShortMicroMipsCTI = true; 279 break; 280 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 281 // expanded to JR_MM, so they can be replaced with JRC16_MM. 282 case Mips::JR: 283 case Mips::PseudoReturn: 284 case Mips::PseudoIndirectBranch: 285 case Mips::TAILCALLREG: 286 canUseShortMicroMipsCTI = true; 287 break; 288 } 289 } 290 291 // MIPSR6 forbids both operands being the zero register. 292 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 293 (I->getOperand(0).isReg() && 294 (I->getOperand(0).getReg() == Mips::ZERO || 295 I->getOperand(0).getReg() == Mips::ZERO_64)) && 296 (I->getOperand(1).isReg() && 297 (I->getOperand(1).getReg() == Mips::ZERO || 298 I->getOperand(1).getReg() == Mips::ZERO_64))) 299 return 0; 300 301 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 302 switch (Opcode) { 303 case Mips::B: 304 return Mips::BC; 305 case Mips::BAL: 306 return Mips::BALC; 307 case Mips::BEQ: 308 case Mips::BEQ_MM: 309 if (canUseShortMicroMipsCTI) 310 return Mips::BEQZC_MM; 311 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 312 return 0; 313 return Mips::BEQC; 314 case Mips::BNE: 315 case Mips::BNE_MM: 316 if (canUseShortMicroMipsCTI) 317 return Mips::BNEZC_MM; 318 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 319 return 0; 320 return Mips::BNEC; 321 case Mips::BGE: 322 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 323 return 0; 324 return Mips::BGEC; 325 case Mips::BGEU: 326 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 327 return 0; 328 return Mips::BGEUC; 329 case Mips::BGEZ: 330 return Mips::BGEZC; 331 case Mips::BGTZ: 332 return Mips::BGTZC; 333 case Mips::BLEZ: 334 return Mips::BLEZC; 335 case Mips::BLT: 336 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 337 return 0; 338 return Mips::BLTC; 339 case Mips::BLTU: 340 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 341 return 0; 342 return Mips::BLTUC; 343 case Mips::BLTZ: 344 return Mips::BLTZC; 345 case Mips::BEQ64: 346 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 347 return 0; 348 return Mips::BEQC64; 349 case Mips::BNE64: 350 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 351 return 0; 352 return Mips::BNEC64; 353 case Mips::BGTZ64: 354 return Mips::BGTZC64; 355 case Mips::BGEZ64: 356 return Mips::BGEZC64; 357 case Mips::BLTZ64: 358 return Mips::BLTZC64; 359 case Mips::BLEZ64: 360 return Mips::BLEZC64; 361 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 362 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 363 case Mips::JR: 364 case Mips::PseudoReturn: 365 case Mips::PseudoIndirectBranch: 366 case Mips::TAILCALLREG: 367 if (canUseShortMicroMipsCTI) 368 return Mips::JRC16_MM; 369 return Mips::JIC; 370 case Mips::JALRPseudo: 371 return Mips::JIALC; 372 case Mips::JR64: 373 case Mips::PseudoReturn64: 374 case Mips::PseudoIndirectBranch64: 375 case Mips::TAILCALLREG64: 376 return Mips::JIC64; 377 case Mips::JALR64Pseudo: 378 return Mips::JIALC64; 379 default: 380 return 0; 381 } 382 } 383 384 return 0; 385 } 386 387 /// Predicate for distingushing between control transfer instructions and all 388 /// other instructions for handling forbidden slots. Consider inline assembly 389 /// as unsafe as well. 390 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 391 if (MI.isInlineAsm()) 392 return false; 393 394 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 395 396 } 397 398 /// Predicate for distingushing instructions that have forbidden slots. 399 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 400 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 401 } 402 403 /// Return the number of bytes of code the specified instruction may be. 404 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 405 switch (MI.getOpcode()) { 406 default: 407 return MI.getDesc().getSize(); 408 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. 409 const MachineFunction *MF = MI.getParent()->getParent(); 410 const char *AsmStr = MI.getOperand(0).getSymbolName(); 411 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 412 } 413 case Mips::CONSTPOOL_ENTRY: 414 // If this machine instr is a constant pool entry, its size is recorded as 415 // operand #2. 416 return MI.getOperand(2).getImm(); 417 } 418 } 419 420 MachineInstrBuilder 421 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 422 MachineBasicBlock::iterator I) const { 423 MachineInstrBuilder MIB; 424 425 // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest 426 // Pick the zero form of the branch for readable assembly and for greater 427 // branch distance in non-microMIPS mode. 428 // Additional MIPSR6 does not permit the use of register $zero for compact 429 // branches. 430 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 431 // Mips::ZERO, which is incorrect. This test should be updated to use 432 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 433 // are fixed. 434 int ZeroOperandPosition = -1; 435 bool BranchWithZeroOperand = false; 436 if (I->isBranch() && !I->isPseudo()) { 437 auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo(); 438 ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI); 439 BranchWithZeroOperand = ZeroOperandPosition != -1; 440 } 441 442 if (BranchWithZeroOperand) { 443 switch (NewOpc) { 444 case Mips::BEQC: 445 NewOpc = Mips::BEQZC; 446 break; 447 case Mips::BNEC: 448 NewOpc = Mips::BNEZC; 449 break; 450 case Mips::BGEC: 451 NewOpc = Mips::BGEZC; 452 break; 453 case Mips::BLTC: 454 NewOpc = Mips::BLTZC; 455 break; 456 case Mips::BEQC64: 457 NewOpc = Mips::BEQZC64; 458 break; 459 case Mips::BNEC64: 460 NewOpc = Mips::BNEZC64; 461 break; 462 } 463 } 464 465 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 466 467 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 468 // immediate 0 as an operand and requires the removal of it's %RA<imp-def> 469 // implicit operand as copying the implicit operations of the instructio we're 470 // looking at will give us the correct flags. 471 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 472 NewOpc == Mips::JIALC64) { 473 474 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 475 MIB->RemoveOperand(0); 476 477 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 478 MIB.addOperand(I->getOperand(J)); 479 } 480 481 MIB.addImm(0); 482 483 } else { 484 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 485 if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J) 486 continue; 487 488 MIB.addOperand(I->getOperand(J)); 489 } 490 } 491 492 MIB.copyImplicitOps(*I); 493 494 MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end()); 495 return MIB; 496 } 497