1 //===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsInstrInfo.h" 15 #include "InstPrinter/MipsInstPrinter.h" 16 #include "MipsMachineFunction.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetRegistry.h" 23 24 using namespace llvm; 25 26 #define GET_INSTRINFO_CTOR_DTOR 27 #include "MipsGenInstrInfo.inc" 28 29 // Pin the vtable to this file. 30 void MipsInstrInfo::anchor() {} 31 32 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 33 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 34 Subtarget(STI), UncondBrOpc(UncondBr) {} 35 36 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 37 if (STI.inMips16Mode()) 38 return llvm::createMips16InstrInfo(STI); 39 40 return llvm::createMipsSEInstrInfo(STI); 41 } 42 43 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 44 return op.isImm() && op.getImm() == 0; 45 } 46 47 /// insertNoop - If data hazard condition is found insert the target nop 48 /// instruction. 49 // FIXME: This appears to be dead code. 50 void MipsInstrInfo:: 51 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 52 { 53 DebugLoc DL; 54 BuildMI(MBB, MI, DL, get(Mips::NOP)); 55 } 56 57 MachineMemOperand *MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 58 unsigned Flag) const { 59 MachineFunction &MF = *MBB.getParent(); 60 MachineFrameInfo &MFI = *MF.getFrameInfo(); 61 unsigned Align = MFI.getObjectAlignment(FI); 62 63 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 64 Flag, MFI.getObjectSize(FI), Align); 65 } 66 67 //===----------------------------------------------------------------------===// 68 // Branch Analysis 69 //===----------------------------------------------------------------------===// 70 71 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 72 MachineBasicBlock *&BB, 73 SmallVectorImpl<MachineOperand> &Cond) const { 74 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 75 int NumOp = Inst->getNumExplicitOperands(); 76 77 // for both int and fp branches, the last explicit operand is the 78 // MBB. 79 BB = Inst->getOperand(NumOp-1).getMBB(); 80 Cond.push_back(MachineOperand::CreateImm(Opc)); 81 82 for (int i=0; i<NumOp-1; i++) 83 Cond.push_back(Inst->getOperand(i)); 84 } 85 86 bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 87 MachineBasicBlock *&TBB, 88 MachineBasicBlock *&FBB, 89 SmallVectorImpl<MachineOperand> &Cond, 90 bool AllowModify) const { 91 SmallVector<MachineInstr*, 2> BranchInstrs; 92 BranchType BT = AnalyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 93 94 return (BT == BT_None) || (BT == BT_Indirect); 95 } 96 97 void 98 MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 99 DebugLoc DL, ArrayRef<MachineOperand> Cond) const { 100 unsigned Opc = Cond[0].getImm(); 101 const MCInstrDesc &MCID = get(Opc); 102 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 103 104 for (unsigned i = 1; i < Cond.size(); ++i) { 105 if (Cond[i].isReg()) 106 MIB.addReg(Cond[i].getReg()); 107 else if (Cond[i].isImm()) 108 MIB.addImm(Cond[i].getImm()); 109 else 110 assert(false && "Cannot copy operand"); 111 } 112 MIB.addMBB(TBB); 113 } 114 115 unsigned MipsInstrInfo::InsertBranch( 116 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 117 ArrayRef<MachineOperand> Cond, DebugLoc DL) const { 118 // Shouldn't be a fall through. 119 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 120 121 // # of condition operands: 122 // Unconditional branches: 0 123 // Floating point branches: 1 (opc) 124 // Int BranchZero: 2 (opc, reg) 125 // Int Branch: 3 (opc, reg0, reg1) 126 assert((Cond.size() <= 3) && 127 "# of Mips branch conditions must be <= 3!"); 128 129 // Two-way Conditional branch. 130 if (FBB) { 131 BuildCondBr(MBB, TBB, DL, Cond); 132 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 133 return 2; 134 } 135 136 // One way branch. 137 // Unconditional branch. 138 if (Cond.empty()) 139 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 140 else // Conditional branch. 141 BuildCondBr(MBB, TBB, DL, Cond); 142 return 1; 143 } 144 145 unsigned MipsInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 146 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 147 MachineBasicBlock::reverse_iterator FirstBr; 148 unsigned removed; 149 150 // Skip all the debug instructions. 151 while (I != REnd && I->isDebugValue()) 152 ++I; 153 154 FirstBr = I; 155 156 // Up to 2 branches are removed. 157 // Note that indirect branches are not removed. 158 for (removed = 0; I != REnd && removed < 2; ++I, ++removed) 159 if (!getAnalyzableBrOpc(I->getOpcode())) 160 break; 161 162 MBB.erase(I.base(), FirstBr.base()); 163 164 return removed; 165 } 166 167 /// ReverseBranchCondition - Return the inverse opcode of the 168 /// specified Branch instruction. 169 bool MipsInstrInfo::ReverseBranchCondition( 170 SmallVectorImpl<MachineOperand> &Cond) const { 171 assert( (Cond.size() && Cond.size() <= 3) && 172 "Invalid Mips branch condition!"); 173 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 174 return false; 175 } 176 177 MipsInstrInfo::BranchType MipsInstrInfo::AnalyzeBranch( 178 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 179 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 180 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 181 182 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 183 184 // Skip all the debug instructions. 185 while (I != REnd && I->isDebugValue()) 186 ++I; 187 188 if (I == REnd || !isUnpredicatedTerminator(*I)) { 189 // This block ends with no branches (it just falls through to its succ). 190 // Leave TBB/FBB null. 191 TBB = FBB = nullptr; 192 return BT_NoBranch; 193 } 194 195 MachineInstr *LastInst = &*I; 196 unsigned LastOpc = LastInst->getOpcode(); 197 BranchInstrs.push_back(LastInst); 198 199 // Not an analyzable branch (e.g., indirect jump). 200 if (!getAnalyzableBrOpc(LastOpc)) 201 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 202 203 // Get the second to last instruction in the block. 204 unsigned SecondLastOpc = 0; 205 MachineInstr *SecondLastInst = nullptr; 206 207 if (++I != REnd) { 208 SecondLastInst = &*I; 209 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 210 211 // Not an analyzable branch (must be an indirect jump). 212 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 213 return BT_None; 214 } 215 216 // If there is only one terminator instruction, process it. 217 if (!SecondLastOpc) { 218 // Unconditional branch. 219 if (LastInst->isUnconditionalBranch()) { 220 TBB = LastInst->getOperand(0).getMBB(); 221 return BT_Uncond; 222 } 223 224 // Conditional branch 225 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 226 return BT_Cond; 227 } 228 229 // If we reached here, there are two branches. 230 // If there are three terminators, we don't know what sort of block this is. 231 if (++I != REnd && isUnpredicatedTerminator(*I)) 232 return BT_None; 233 234 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 235 236 // If second to last instruction is an unconditional branch, 237 // analyze it and remove the last instruction. 238 if (SecondLastInst->isUnconditionalBranch()) { 239 // Return if the last instruction cannot be removed. 240 if (!AllowModify) 241 return BT_None; 242 243 TBB = SecondLastInst->getOperand(0).getMBB(); 244 LastInst->eraseFromParent(); 245 BranchInstrs.pop_back(); 246 return BT_Uncond; 247 } 248 249 // Conditional branch followed by an unconditional branch. 250 // The last one must be unconditional. 251 if (!LastInst->isUnconditionalBranch()) 252 return BT_None; 253 254 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 255 FBB = LastInst->getOperand(0).getMBB(); 256 257 return BT_CondUncond; 258 } 259 260 /// Return the corresponding compact (no delay slot) form of a branch. 261 unsigned MipsInstrInfo::getEquivalentCompactForm( 262 const MachineBasicBlock::iterator I) const { 263 unsigned Opcode = I->getOpcode(); 264 bool canUseShortMicroMipsCTI = false; 265 266 if (Subtarget.inMicroMipsMode()) { 267 switch (Opcode) { 268 case Mips::BNE: 269 case Mips::BEQ: 270 // microMIPS has NE,EQ branches that do not have delay slots provided one 271 // of the operands is zero. 272 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 273 canUseShortMicroMipsCTI = true; 274 break; 275 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 276 // expanded to JR_MM, so they can be replaced with JRC16_MM. 277 case Mips::JR: 278 case Mips::PseudoReturn: 279 case Mips::PseudoIndirectBranch: 280 canUseShortMicroMipsCTI = true; 281 break; 282 } 283 } 284 285 // MIPSR6 forbids both operands being the zero register. 286 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 287 (I->getOperand(0).isReg() && 288 (I->getOperand(0).getReg() == Mips::ZERO || 289 I->getOperand(0).getReg() == Mips::ZERO_64)) && 290 (I->getOperand(1).isReg() && 291 (I->getOperand(1).getReg() == Mips::ZERO || 292 I->getOperand(1).getReg() == Mips::ZERO_64))) 293 return 0; 294 295 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 296 switch (Opcode) { 297 case Mips::B: 298 return Mips::BC; 299 case Mips::BAL: 300 return Mips::BALC; 301 case Mips::BEQ: 302 if (canUseShortMicroMipsCTI) 303 return Mips::BEQZC_MM; 304 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 305 return 0; 306 return Mips::BEQC; 307 case Mips::BNE: 308 if (canUseShortMicroMipsCTI) 309 return Mips::BNEZC_MM; 310 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 311 return 0; 312 return Mips::BNEC; 313 case Mips::BGE: 314 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 315 return 0; 316 return Mips::BGEC; 317 case Mips::BGEU: 318 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 319 return 0; 320 return Mips::BGEUC; 321 case Mips::BGEZ: 322 return Mips::BGEZC; 323 case Mips::BGTZ: 324 return Mips::BGTZC; 325 case Mips::BLEZ: 326 return Mips::BLEZC; 327 case Mips::BLT: 328 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 329 return 0; 330 return Mips::BLTC; 331 case Mips::BLTU: 332 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 333 return 0; 334 return Mips::BLTUC; 335 case Mips::BLTZ: 336 return Mips::BLTZC; 337 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 338 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 339 case Mips::JR: 340 case Mips::PseudoReturn: 341 case Mips::PseudoIndirectBranch: 342 if (canUseShortMicroMipsCTI) 343 return Mips::JRC16_MM; 344 return Mips::JIC; 345 case Mips::JALRPseudo: 346 return Mips::JIALC; 347 case Mips::JR64: 348 case Mips::PseudoReturn64: 349 case Mips::PseudoIndirectBranch64: 350 return Mips::JIC64; 351 case Mips::JALR64Pseudo: 352 return Mips::JIALC64; 353 default: 354 return 0; 355 } 356 } 357 358 return 0; 359 } 360 361 /// Predicate for distingushing between control transfer instructions and all 362 /// other instructions for handling forbidden slots. Consider inline assembly 363 /// as unsafe as well. 364 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 365 if (MI.isInlineAsm()) 366 return false; 367 368 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 369 370 } 371 372 /// Predicate for distingushing instructions that have forbidden slots. 373 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 374 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 375 } 376 377 /// Return the number of bytes of code the specified instruction may be. 378 unsigned MipsInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 379 switch (MI->getOpcode()) { 380 default: 381 return MI->getDesc().getSize(); 382 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. 383 const MachineFunction *MF = MI->getParent()->getParent(); 384 const char *AsmStr = MI->getOperand(0).getSymbolName(); 385 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 386 } 387 case Mips::CONSTPOOL_ENTRY: 388 // If this machine instr is a constant pool entry, its size is recorded as 389 // operand #2. 390 return MI->getOperand(2).getImm(); 391 } 392 } 393 394 MachineInstrBuilder 395 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 396 MachineBasicBlock::iterator I) const { 397 MachineInstrBuilder MIB; 398 399 // Certain branches have two forms: e.g beq $1, $zero, dst vs beqz $1, dest 400 // Pick the zero form of the branch for readable assembly and for greater 401 // branch distance in non-microMIPS mode. 402 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 403 // Mips::ZERO, which is incorrect. This test should be updated to use 404 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 405 // are fixed. 406 bool BranchWithZeroOperand = 407 (I->isBranch() && !I->isPseudo() && I->getOperand(1).isReg() && 408 (I->getOperand(1).getReg() == Mips::ZERO || 409 I->getOperand(1).getReg() == Mips::ZERO_64)); 410 411 if (BranchWithZeroOperand) { 412 switch (NewOpc) { 413 case Mips::BEQC: 414 NewOpc = Mips::BEQZC; 415 break; 416 case Mips::BNEC: 417 NewOpc = Mips::BNEZC; 418 break; 419 case Mips::BGEC: 420 NewOpc = Mips::BGEZC; 421 break; 422 case Mips::BLTC: 423 NewOpc = Mips::BLTZC; 424 break; 425 } 426 } 427 428 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 429 430 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 431 // immediate 0 as an operand and requires the removal of it's %RA<imp-def> 432 // implicit operand as copying the implicit operations of the instructio we're 433 // looking at will give us the correct flags. 434 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 435 NewOpc == Mips::JIALC64) { 436 437 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 438 MIB->RemoveOperand(0); 439 440 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 441 MIB.addOperand(I->getOperand(J)); 442 } 443 444 MIB.addImm(0); 445 446 } else if (BranchWithZeroOperand) { 447 // For MIPSR6 and microMIPS branches with an explicit zero operand, copy 448 // everything after the zero. 449 MIB.addOperand(I->getOperand(0)); 450 451 for (unsigned J = 2, E = I->getDesc().getNumOperands(); J < E; ++J) { 452 MIB.addOperand(I->getOperand(J)); 453 } 454 } else { 455 // All other cases copy all other operands. 456 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 457 MIB.addOperand(I->getOperand(J)); 458 } 459 } 460 461 MIB.copyImplicitOps(*I); 462 463 MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end()); 464 return MIB; 465 } 466