1 //===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsInstrInfo.h" 15 #include "MCTargetDesc/MipsBaseInfo.h" 16 #include "MCTargetDesc/MipsMCTargetDesc.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/TargetOpcodes.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include <cassert> 31 32 using namespace llvm; 33 34 #define GET_INSTRINFO_CTOR_DTOR 35 #include "MipsGenInstrInfo.inc" 36 37 // Pin the vtable to this file. 38 void MipsInstrInfo::anchor() {} 39 40 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 41 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 42 Subtarget(STI), UncondBrOpc(UncondBr) {} 43 44 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 45 if (STI.inMips16Mode()) 46 return createMips16InstrInfo(STI); 47 48 return createMipsSEInstrInfo(STI); 49 } 50 51 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 52 return op.isImm() && op.getImm() == 0; 53 } 54 55 /// insertNoop - If data hazard condition is found insert the target nop 56 /// instruction. 57 // FIXME: This appears to be dead code. 58 void MipsInstrInfo:: 59 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 60 { 61 DebugLoc DL; 62 BuildMI(MBB, MI, DL, get(Mips::NOP)); 63 } 64 65 MachineMemOperand * 66 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 67 MachineMemOperand::Flags Flags) const { 68 MachineFunction &MF = *MBB.getParent(); 69 MachineFrameInfo &MFI = MF.getFrameInfo(); 70 unsigned Align = MFI.getObjectAlignment(FI); 71 72 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 73 Flags, MFI.getObjectSize(FI), Align); 74 } 75 76 //===----------------------------------------------------------------------===// 77 // Branch Analysis 78 //===----------------------------------------------------------------------===// 79 80 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 81 MachineBasicBlock *&BB, 82 SmallVectorImpl<MachineOperand> &Cond) const { 83 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 84 int NumOp = Inst->getNumExplicitOperands(); 85 86 // for both int and fp branches, the last explicit operand is the 87 // MBB. 88 BB = Inst->getOperand(NumOp-1).getMBB(); 89 Cond.push_back(MachineOperand::CreateImm(Opc)); 90 91 for (int i = 0; i < NumOp-1; i++) 92 Cond.push_back(Inst->getOperand(i)); 93 } 94 95 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 96 MachineBasicBlock *&TBB, 97 MachineBasicBlock *&FBB, 98 SmallVectorImpl<MachineOperand> &Cond, 99 bool AllowModify) const { 100 SmallVector<MachineInstr*, 2> BranchInstrs; 101 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 102 103 return (BT == BT_None) || (BT == BT_Indirect); 104 } 105 106 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 107 const DebugLoc &DL, 108 ArrayRef<MachineOperand> Cond) const { 109 unsigned Opc = Cond[0].getImm(); 110 const MCInstrDesc &MCID = get(Opc); 111 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 112 113 for (unsigned i = 1; i < Cond.size(); ++i) { 114 assert((Cond[i].isImm() || Cond[i].isReg()) && 115 "Cannot copy operand for conditional branch!"); 116 MIB.add(Cond[i]); 117 } 118 MIB.addMBB(TBB); 119 } 120 121 unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB, 122 MachineBasicBlock *TBB, 123 MachineBasicBlock *FBB, 124 ArrayRef<MachineOperand> Cond, 125 const DebugLoc &DL, 126 int *BytesAdded) const { 127 // Shouldn't be a fall through. 128 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 129 assert(!BytesAdded && "code size not handled"); 130 131 // # of condition operands: 132 // Unconditional branches: 0 133 // Floating point branches: 1 (opc) 134 // Int BranchZero: 2 (opc, reg) 135 // Int Branch: 3 (opc, reg0, reg1) 136 assert((Cond.size() <= 3) && 137 "# of Mips branch conditions must be <= 3!"); 138 139 // Two-way Conditional branch. 140 if (FBB) { 141 BuildCondBr(MBB, TBB, DL, Cond); 142 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 143 return 2; 144 } 145 146 // One way branch. 147 // Unconditional branch. 148 if (Cond.empty()) 149 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 150 else // Conditional branch. 151 BuildCondBr(MBB, TBB, DL, Cond); 152 return 1; 153 } 154 155 unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB, 156 int *BytesRemoved) const { 157 assert(!BytesRemoved && "code size not handled"); 158 159 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 160 unsigned removed = 0; 161 162 // Up to 2 branches are removed. 163 // Note that indirect branches are not removed. 164 while (I != REnd && removed < 2) { 165 // Skip past debug instructions. 166 if (I->isDebugValue()) { 167 ++I; 168 continue; 169 } 170 if (!getAnalyzableBrOpc(I->getOpcode())) 171 break; 172 // Remove the branch. 173 I->eraseFromParent(); 174 I = MBB.rbegin(); 175 ++removed; 176 } 177 178 return removed; 179 } 180 181 /// reverseBranchCondition - Return the inverse opcode of the 182 /// specified Branch instruction. 183 bool MipsInstrInfo::reverseBranchCondition( 184 SmallVectorImpl<MachineOperand> &Cond) const { 185 assert( (Cond.size() && Cond.size() <= 3) && 186 "Invalid Mips branch condition!"); 187 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 188 return false; 189 } 190 191 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch( 192 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 193 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 194 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 195 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 196 197 // Skip all the debug instructions. 198 while (I != REnd && I->isDebugValue()) 199 ++I; 200 201 if (I == REnd || !isUnpredicatedTerminator(*I)) { 202 // This block ends with no branches (it just falls through to its succ). 203 // Leave TBB/FBB null. 204 TBB = FBB = nullptr; 205 return BT_NoBranch; 206 } 207 208 MachineInstr *LastInst = &*I; 209 unsigned LastOpc = LastInst->getOpcode(); 210 BranchInstrs.push_back(LastInst); 211 212 // Not an analyzable branch (e.g., indirect jump). 213 if (!getAnalyzableBrOpc(LastOpc)) 214 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 215 216 // Get the second to last instruction in the block. 217 unsigned SecondLastOpc = 0; 218 MachineInstr *SecondLastInst = nullptr; 219 220 // Skip past any debug instruction to see if the second last actual 221 // is a branch. 222 ++I; 223 while (I != REnd && I->isDebugValue()) 224 ++I; 225 226 if (I != REnd) { 227 SecondLastInst = &*I; 228 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 229 230 // Not an analyzable branch (must be an indirect jump). 231 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 232 return BT_None; 233 } 234 235 // If there is only one terminator instruction, process it. 236 if (!SecondLastOpc) { 237 // Unconditional branch. 238 if (LastInst->isUnconditionalBranch()) { 239 TBB = LastInst->getOperand(0).getMBB(); 240 return BT_Uncond; 241 } 242 243 // Conditional branch 244 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 245 return BT_Cond; 246 } 247 248 // If we reached here, there are two branches. 249 // If there are three terminators, we don't know what sort of block this is. 250 if (++I != REnd && isUnpredicatedTerminator(*I)) 251 return BT_None; 252 253 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 254 255 // If second to last instruction is an unconditional branch, 256 // analyze it and remove the last instruction. 257 if (SecondLastInst->isUnconditionalBranch()) { 258 // Return if the last instruction cannot be removed. 259 if (!AllowModify) 260 return BT_None; 261 262 TBB = SecondLastInst->getOperand(0).getMBB(); 263 LastInst->eraseFromParent(); 264 BranchInstrs.pop_back(); 265 return BT_Uncond; 266 } 267 268 // Conditional branch followed by an unconditional branch. 269 // The last one must be unconditional. 270 if (!LastInst->isUnconditionalBranch()) 271 return BT_None; 272 273 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 274 FBB = LastInst->getOperand(0).getMBB(); 275 276 return BT_CondUncond; 277 } 278 279 /// Return the corresponding compact (no delay slot) form of a branch. 280 unsigned MipsInstrInfo::getEquivalentCompactForm( 281 const MachineBasicBlock::iterator I) const { 282 unsigned Opcode = I->getOpcode(); 283 bool canUseShortMicroMipsCTI = false; 284 285 if (Subtarget.inMicroMipsMode()) { 286 switch (Opcode) { 287 case Mips::BNE: 288 case Mips::BNE_MM: 289 case Mips::BEQ: 290 case Mips::BEQ_MM: 291 // microMIPS has NE,EQ branches that do not have delay slots provided one 292 // of the operands is zero. 293 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 294 canUseShortMicroMipsCTI = true; 295 break; 296 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 297 // expanded to JR_MM, so they can be replaced with JRC16_MM. 298 case Mips::JR: 299 case Mips::PseudoReturn: 300 case Mips::PseudoIndirectBranch: 301 canUseShortMicroMipsCTI = true; 302 break; 303 } 304 } 305 306 // MIPSR6 forbids both operands being the zero register. 307 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 308 (I->getOperand(0).isReg() && 309 (I->getOperand(0).getReg() == Mips::ZERO || 310 I->getOperand(0).getReg() == Mips::ZERO_64)) && 311 (I->getOperand(1).isReg() && 312 (I->getOperand(1).getReg() == Mips::ZERO || 313 I->getOperand(1).getReg() == Mips::ZERO_64))) 314 return 0; 315 316 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 317 switch (Opcode) { 318 case Mips::B: 319 return Mips::BC; 320 case Mips::BAL: 321 return Mips::BALC; 322 case Mips::BEQ: 323 case Mips::BEQ_MM: 324 if (canUseShortMicroMipsCTI) 325 return Mips::BEQZC_MM; 326 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 327 return 0; 328 return Mips::BEQC; 329 case Mips::BNE: 330 case Mips::BNE_MM: 331 if (canUseShortMicroMipsCTI) 332 return Mips::BNEZC_MM; 333 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 334 return 0; 335 return Mips::BNEC; 336 case Mips::BGE: 337 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 338 return 0; 339 return Mips::BGEC; 340 case Mips::BGEU: 341 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 342 return 0; 343 return Mips::BGEUC; 344 case Mips::BGEZ: 345 return Mips::BGEZC; 346 case Mips::BGTZ: 347 return Mips::BGTZC; 348 case Mips::BLEZ: 349 return Mips::BLEZC; 350 case Mips::BLT: 351 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 352 return 0; 353 return Mips::BLTC; 354 case Mips::BLTU: 355 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 356 return 0; 357 return Mips::BLTUC; 358 case Mips::BLTZ: 359 return Mips::BLTZC; 360 case Mips::BEQ64: 361 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 362 return 0; 363 return Mips::BEQC64; 364 case Mips::BNE64: 365 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 366 return 0; 367 return Mips::BNEC64; 368 case Mips::BGTZ64: 369 return Mips::BGTZC64; 370 case Mips::BGEZ64: 371 return Mips::BGEZC64; 372 case Mips::BLTZ64: 373 return Mips::BLTZC64; 374 case Mips::BLEZ64: 375 return Mips::BLEZC64; 376 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 377 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 378 case Mips::JR: 379 case Mips::PseudoIndirectBranchR6: 380 case Mips::PseudoReturn: 381 case Mips::TAILCALLR6REG: 382 if (canUseShortMicroMipsCTI) 383 return Mips::JRC16_MM; 384 return Mips::JIC; 385 case Mips::JALRPseudo: 386 return Mips::JIALC; 387 case Mips::JR64: 388 case Mips::PseudoIndirectBranch64R6: 389 case Mips::PseudoReturn64: 390 case Mips::TAILCALL64R6REG: 391 return Mips::JIC64; 392 case Mips::JALR64Pseudo: 393 return Mips::JIALC64; 394 default: 395 return 0; 396 } 397 } 398 399 return 0; 400 } 401 402 /// Predicate for distingushing between control transfer instructions and all 403 /// other instructions for handling forbidden slots. Consider inline assembly 404 /// as unsafe as well. 405 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 406 if (MI.isInlineAsm()) 407 return false; 408 409 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 410 } 411 412 /// Predicate for distingushing instructions that have forbidden slots. 413 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 414 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 415 } 416 417 /// Return the number of bytes of code the specified instruction may be. 418 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 419 switch (MI.getOpcode()) { 420 default: 421 return MI.getDesc().getSize(); 422 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. 423 const MachineFunction *MF = MI.getParent()->getParent(); 424 const char *AsmStr = MI.getOperand(0).getSymbolName(); 425 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 426 } 427 case Mips::CONSTPOOL_ENTRY: 428 // If this machine instr is a constant pool entry, its size is recorded as 429 // operand #2. 430 return MI.getOperand(2).getImm(); 431 } 432 } 433 434 MachineInstrBuilder 435 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 436 MachineBasicBlock::iterator I) const { 437 MachineInstrBuilder MIB; 438 439 // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest 440 // Pick the zero form of the branch for readable assembly and for greater 441 // branch distance in non-microMIPS mode. 442 // Additional MIPSR6 does not permit the use of register $zero for compact 443 // branches. 444 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 445 // Mips::ZERO, which is incorrect. This test should be updated to use 446 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 447 // are fixed. 448 int ZeroOperandPosition = -1; 449 bool BranchWithZeroOperand = false; 450 if (I->isBranch() && !I->isPseudo()) { 451 auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo(); 452 ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI); 453 BranchWithZeroOperand = ZeroOperandPosition != -1; 454 } 455 456 if (BranchWithZeroOperand) { 457 switch (NewOpc) { 458 case Mips::BEQC: 459 NewOpc = Mips::BEQZC; 460 break; 461 case Mips::BNEC: 462 NewOpc = Mips::BNEZC; 463 break; 464 case Mips::BGEC: 465 NewOpc = Mips::BGEZC; 466 break; 467 case Mips::BLTC: 468 NewOpc = Mips::BLTZC; 469 break; 470 case Mips::BEQC64: 471 NewOpc = Mips::BEQZC64; 472 break; 473 case Mips::BNEC64: 474 NewOpc = Mips::BNEZC64; 475 break; 476 } 477 } 478 479 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 480 481 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 482 // immediate 0 as an operand and requires the removal of it's implicit-def %ra 483 // implicit operand as copying the implicit operations of the instructio we're 484 // looking at will give us the correct flags. 485 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 486 NewOpc == Mips::JIALC64) { 487 488 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 489 MIB->RemoveOperand(0); 490 491 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 492 MIB.add(I->getOperand(J)); 493 } 494 495 MIB.addImm(0); 496 497 } else { 498 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 499 if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J) 500 continue; 501 502 MIB.add(I->getOperand(J)); 503 } 504 } 505 506 MIB.copyImplicitOps(*I); 507 508 MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end()); 509 return MIB; 510 } 511 512 bool MipsInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 513 unsigned &SrcOpIdx2) const { 514 assert(!MI.isBundle() && 515 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 516 517 const MCInstrDesc &MCID = MI.getDesc(); 518 if (!MCID.isCommutable()) 519 return false; 520 521 switch (MI.getOpcode()) { 522 case Mips::DPADD_U_H: 523 case Mips::DPADD_U_W: 524 case Mips::DPADD_U_D: 525 case Mips::DPADD_S_H: 526 case Mips::DPADD_S_W: 527 case Mips::DPADD_S_D: 528 // The first operand is both input and output, so it should not commute 529 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3)) 530 return false; 531 532 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 533 return false; 534 return true; 535 } 536 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 537 } 538 539 // ins, ext, dext*, dins have the following constraints: 540 // X <= pos < Y 541 // X < size <= Y 542 // X < pos+size <= Y 543 // 544 // dinsm and dinsu have the following constraints: 545 // X <= pos < Y 546 // X <= size <= Y 547 // X < pos+size <= Y 548 // 549 // The callee of verifyInsExtInstruction however gives the bounds of 550 // dins[um] like the other (d)ins (d)ext(um) instructions, so that this 551 // function doesn't have to vary it's behaviour based on the instruction 552 // being checked. 553 static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo, 554 const int64_t PosLow, const int64_t PosHigh, 555 const int64_t SizeLow, 556 const int64_t SizeHigh, 557 const int64_t BothLow, 558 const int64_t BothHigh) { 559 MachineOperand MOPos = MI.getOperand(2); 560 if (!MOPos.isImm()) { 561 ErrInfo = "Position is not an immediate!"; 562 return false; 563 } 564 int64_t Pos = MOPos.getImm(); 565 if (!((PosLow <= Pos) && (Pos < PosHigh))) { 566 ErrInfo = "Position operand is out of range!"; 567 return false; 568 } 569 570 MachineOperand MOSize = MI.getOperand(3); 571 if (!MOSize.isImm()) { 572 ErrInfo = "Size operand is not an immediate!"; 573 return false; 574 } 575 int64_t Size = MOSize.getImm(); 576 if (!((SizeLow < Size) && (Size <= SizeHigh))) { 577 ErrInfo = "Size operand is out of range!"; 578 return false; 579 } 580 581 if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) { 582 ErrInfo = "Position + Size is out of range!"; 583 return false; 584 } 585 586 return true; 587 } 588 589 // Perform target specific instruction verification. 590 bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI, 591 StringRef &ErrInfo) const { 592 // Verify that ins and ext instructions are well formed. 593 switch (MI.getOpcode()) { 594 case Mips::EXT: 595 case Mips::EXT_MM: 596 case Mips::INS: 597 case Mips::INS_MM: 598 case Mips::DINS: 599 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32); 600 case Mips::DINSM: 601 // The ISA spec has a subtle difference difference between dinsm and dextm 602 // in that it says: 603 // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64. 604 // To make the bounds checks similar, the range 1 < size <= 64 is checked 605 // for 'dinsm'. 606 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64); 607 case Mips::DINSU: 608 // The ISA spec has a subtle difference between dinsu and dextu in that 609 // the size range of dinsu is specified as 1 <= size <= 32 whereas size 610 // for dextu is 0 < size <= 32. The range checked for dinsu here is 611 // 0 < size <= 32, which is equivalent and similar to dextu. 612 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 613 case Mips::DEXT: 614 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63); 615 case Mips::DEXTM: 616 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64); 617 case Mips::DEXTU: 618 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 619 case Mips::TAILCALLREG: 620 case Mips::PseudoIndirectBranch: 621 case Mips::JR: 622 case Mips::JR64: 623 case Mips::JALR: 624 case Mips::JALR64: 625 case Mips::JALRPseudo: 626 if (!Subtarget.useIndirectJumpsHazard()) 627 return true; 628 629 ErrInfo = "invalid instruction when using jump guards!"; 630 return false; 631 default: 632 return true; 633 } 634 635 return true; 636 } 637 638 std::pair<unsigned, unsigned> 639 MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 640 return std::make_pair(TF, 0u); 641 } 642 643 ArrayRef<std::pair<unsigned, const char*>> 644 MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 645 using namespace MipsII; 646 647 static const std::pair<unsigned, const char*> Flags[] = { 648 {MO_GOT, "mips-got"}, 649 {MO_GOT_CALL, "mips-got-call"}, 650 {MO_GPREL, "mips-gprel"}, 651 {MO_ABS_HI, "mips-abs-hi"}, 652 {MO_ABS_LO, "mips-abs-lo"}, 653 {MO_TLSGD, "mips-tlsgd"}, 654 {MO_TLSLDM, "mips-tlsldm"}, 655 {MO_DTPREL_HI, "mips-dtprel-hi"}, 656 {MO_DTPREL_LO, "mips-dtprel-lo"}, 657 {MO_GOTTPREL, "mips-gottprel"}, 658 {MO_TPREL_HI, "mips-tprel-hi"}, 659 {MO_TPREL_LO, "mips-tprel-lo"}, 660 {MO_GPOFF_HI, "mips-gpoff-hi"}, 661 {MO_GPOFF_LO, "mips-gpoff-lo"}, 662 {MO_GOT_DISP, "mips-got-disp"}, 663 {MO_GOT_PAGE, "mips-got-page"}, 664 {MO_GOT_OFST, "mips-got-ofst"}, 665 {MO_HIGHER, "mips-higher"}, 666 {MO_HIGHEST, "mips-highest"}, 667 {MO_GOT_HI16, "mips-got-hi16"}, 668 {MO_GOT_LO16, "mips-got-lo16"}, 669 {MO_CALL_HI16, "mips-call-hi16"}, 670 {MO_CALL_LO16, "mips-call-lo16"} 671 }; 672 return makeArrayRef(Flags); 673 } 674