1 //===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsInstrInfo.h" 15 #include "MCTargetDesc/MipsBaseInfo.h" 16 #include "MCTargetDesc/MipsMCTargetDesc.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/TargetOpcodes.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include <cassert> 31 32 using namespace llvm; 33 34 #define GET_INSTRINFO_CTOR_DTOR 35 #include "MipsGenInstrInfo.inc" 36 37 // Pin the vtable to this file. 38 void MipsInstrInfo::anchor() {} 39 40 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 41 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 42 Subtarget(STI), UncondBrOpc(UncondBr) {} 43 44 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 45 if (STI.inMips16Mode()) 46 return createMips16InstrInfo(STI); 47 48 return createMipsSEInstrInfo(STI); 49 } 50 51 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 52 return op.isImm() && op.getImm() == 0; 53 } 54 55 /// insertNoop - If data hazard condition is found insert the target nop 56 /// instruction. 57 // FIXME: This appears to be dead code. 58 void MipsInstrInfo:: 59 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 60 { 61 DebugLoc DL; 62 BuildMI(MBB, MI, DL, get(Mips::NOP)); 63 } 64 65 MachineMemOperand * 66 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 67 MachineMemOperand::Flags Flags) const { 68 MachineFunction &MF = *MBB.getParent(); 69 MachineFrameInfo &MFI = MF.getFrameInfo(); 70 unsigned Align = MFI.getObjectAlignment(FI); 71 72 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 73 Flags, MFI.getObjectSize(FI), Align); 74 } 75 76 //===----------------------------------------------------------------------===// 77 // Branch Analysis 78 //===----------------------------------------------------------------------===// 79 80 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 81 MachineBasicBlock *&BB, 82 SmallVectorImpl<MachineOperand> &Cond) const { 83 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 84 int NumOp = Inst->getNumExplicitOperands(); 85 86 // for both int and fp branches, the last explicit operand is the 87 // MBB. 88 BB = Inst->getOperand(NumOp-1).getMBB(); 89 Cond.push_back(MachineOperand::CreateImm(Opc)); 90 91 for (int i = 0; i < NumOp-1; i++) 92 Cond.push_back(Inst->getOperand(i)); 93 } 94 95 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 96 MachineBasicBlock *&TBB, 97 MachineBasicBlock *&FBB, 98 SmallVectorImpl<MachineOperand> &Cond, 99 bool AllowModify) const { 100 SmallVector<MachineInstr*, 2> BranchInstrs; 101 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 102 103 return (BT == BT_None) || (BT == BT_Indirect); 104 } 105 106 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 107 const DebugLoc &DL, 108 ArrayRef<MachineOperand> Cond) const { 109 unsigned Opc = Cond[0].getImm(); 110 const MCInstrDesc &MCID = get(Opc); 111 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 112 113 for (unsigned i = 1; i < Cond.size(); ++i) { 114 assert((Cond[i].isImm() || Cond[i].isReg()) && 115 "Cannot copy operand for conditional branch!"); 116 MIB.add(Cond[i]); 117 } 118 MIB.addMBB(TBB); 119 } 120 121 unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB, 122 MachineBasicBlock *TBB, 123 MachineBasicBlock *FBB, 124 ArrayRef<MachineOperand> Cond, 125 const DebugLoc &DL, 126 int *BytesAdded) const { 127 // Shouldn't be a fall through. 128 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 129 assert(!BytesAdded && "code size not handled"); 130 131 // # of condition operands: 132 // Unconditional branches: 0 133 // Floating point branches: 1 (opc) 134 // Int BranchZero: 2 (opc, reg) 135 // Int Branch: 3 (opc, reg0, reg1) 136 assert((Cond.size() <= 3) && 137 "# of Mips branch conditions must be <= 3!"); 138 139 // Two-way Conditional branch. 140 if (FBB) { 141 BuildCondBr(MBB, TBB, DL, Cond); 142 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 143 return 2; 144 } 145 146 // One way branch. 147 // Unconditional branch. 148 if (Cond.empty()) 149 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 150 else // Conditional branch. 151 BuildCondBr(MBB, TBB, DL, Cond); 152 return 1; 153 } 154 155 unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB, 156 int *BytesRemoved) const { 157 assert(!BytesRemoved && "code size not handled"); 158 159 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 160 unsigned removed = 0; 161 162 // Up to 2 branches are removed. 163 // Note that indirect branches are not removed. 164 while (I != REnd && removed < 2) { 165 // Skip past debug instructions. 166 if (I->isDebugInstr()) { 167 ++I; 168 continue; 169 } 170 if (!getAnalyzableBrOpc(I->getOpcode())) 171 break; 172 // Remove the branch. 173 I->eraseFromParent(); 174 I = MBB.rbegin(); 175 ++removed; 176 } 177 178 return removed; 179 } 180 181 /// reverseBranchCondition - Return the inverse opcode of the 182 /// specified Branch instruction. 183 bool MipsInstrInfo::reverseBranchCondition( 184 SmallVectorImpl<MachineOperand> &Cond) const { 185 assert( (Cond.size() && Cond.size() <= 3) && 186 "Invalid Mips branch condition!"); 187 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 188 return false; 189 } 190 191 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch( 192 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 193 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 194 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 195 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 196 197 // Skip all the debug instructions. 198 while (I != REnd && I->isDebugInstr()) 199 ++I; 200 201 if (I == REnd || !isUnpredicatedTerminator(*I)) { 202 // This block ends with no branches (it just falls through to its succ). 203 // Leave TBB/FBB null. 204 TBB = FBB = nullptr; 205 return BT_NoBranch; 206 } 207 208 MachineInstr *LastInst = &*I; 209 unsigned LastOpc = LastInst->getOpcode(); 210 BranchInstrs.push_back(LastInst); 211 212 // Not an analyzable branch (e.g., indirect jump). 213 if (!getAnalyzableBrOpc(LastOpc)) 214 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 215 216 // Get the second to last instruction in the block. 217 unsigned SecondLastOpc = 0; 218 MachineInstr *SecondLastInst = nullptr; 219 220 // Skip past any debug instruction to see if the second last actual 221 // is a branch. 222 ++I; 223 while (I != REnd && I->isDebugInstr()) 224 ++I; 225 226 if (I != REnd) { 227 SecondLastInst = &*I; 228 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 229 230 // Not an analyzable branch (must be an indirect jump). 231 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 232 return BT_None; 233 } 234 235 // If there is only one terminator instruction, process it. 236 if (!SecondLastOpc) { 237 // Unconditional branch. 238 if (LastInst->isUnconditionalBranch()) { 239 TBB = LastInst->getOperand(0).getMBB(); 240 return BT_Uncond; 241 } 242 243 // Conditional branch 244 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 245 return BT_Cond; 246 } 247 248 // If we reached here, there are two branches. 249 // If there are three terminators, we don't know what sort of block this is. 250 if (++I != REnd && isUnpredicatedTerminator(*I)) 251 return BT_None; 252 253 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 254 255 // If second to last instruction is an unconditional branch, 256 // analyze it and remove the last instruction. 257 if (SecondLastInst->isUnconditionalBranch()) { 258 // Return if the last instruction cannot be removed. 259 if (!AllowModify) 260 return BT_None; 261 262 TBB = SecondLastInst->getOperand(0).getMBB(); 263 LastInst->eraseFromParent(); 264 BranchInstrs.pop_back(); 265 return BT_Uncond; 266 } 267 268 // Conditional branch followed by an unconditional branch. 269 // The last one must be unconditional. 270 if (!LastInst->isUnconditionalBranch()) 271 return BT_None; 272 273 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 274 FBB = LastInst->getOperand(0).getMBB(); 275 276 return BT_CondUncond; 277 } 278 279 bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const { 280 switch (BranchOpc) { 281 case Mips::B: 282 case Mips::BAL: 283 case Mips::BAL_BR: 284 case Mips::BAL_BR_MM: 285 case Mips::BC1F: 286 case Mips::BC1FL: 287 case Mips::BC1T: 288 case Mips::BC1TL: 289 case Mips::BEQ: case Mips::BEQ64: 290 case Mips::BEQL: 291 case Mips::BGEZ: case Mips::BGEZ64: 292 case Mips::BGEZL: 293 case Mips::BGEZAL: 294 case Mips::BGEZALL: 295 case Mips::BGTZ: case Mips::BGTZ64: 296 case Mips::BGTZL: 297 case Mips::BLEZ: case Mips::BLEZ64: 298 case Mips::BLEZL: 299 case Mips::BLTZ: case Mips::BLTZ64: 300 case Mips::BLTZL: 301 case Mips::BLTZAL: 302 case Mips::BLTZALL: 303 case Mips::BNE: case Mips::BNE64: 304 case Mips::BNEL: 305 return isInt<18>(BrOffset); 306 307 // microMIPSr3 branches 308 case Mips::B_MM: 309 case Mips::BC1F_MM: 310 case Mips::BC1T_MM: 311 case Mips::BEQ_MM: 312 case Mips::BGEZ_MM: 313 case Mips::BGEZAL_MM: 314 case Mips::BGTZ_MM: 315 case Mips::BLEZ_MM: 316 case Mips::BLTZ_MM: 317 case Mips::BLTZAL_MM: 318 case Mips::BNE_MM: 319 case Mips::BEQZC_MM: 320 case Mips::BNEZC_MM: 321 return isInt<17>(BrOffset); 322 323 // microMIPSR3 short branches. 324 case Mips::B16_MM: 325 return isInt<11>(BrOffset); 326 327 case Mips::BEQZ16_MM: 328 case Mips::BNEZ16_MM: 329 return isInt<8>(BrOffset); 330 331 // MIPSR6 branches. 332 case Mips::BALC: 333 case Mips::BC: 334 return isInt<28>(BrOffset); 335 336 case Mips::BC1EQZ: 337 case Mips::BC1NEZ: 338 case Mips::BC2EQZ: 339 case Mips::BC2NEZ: 340 case Mips::BEQC: case Mips::BEQC64: 341 case Mips::BNEC: case Mips::BNEC64: 342 case Mips::BGEC: case Mips::BGEC64: 343 case Mips::BGEUC: case Mips::BGEUC64: 344 case Mips::BGEZC: case Mips::BGEZC64: 345 case Mips::BGTZC: case Mips::BGTZC64: 346 case Mips::BLEZC: case Mips::BLEZC64: 347 case Mips::BLTC: case Mips::BLTC64: 348 case Mips::BLTUC: case Mips::BLTUC64: 349 case Mips::BLTZC: case Mips::BLTZC64: 350 case Mips::BNVC: 351 case Mips::BOVC: 352 case Mips::BGEZALC: 353 case Mips::BEQZALC: 354 case Mips::BGTZALC: 355 case Mips::BLEZALC: 356 case Mips::BLTZALC: 357 case Mips::BNEZALC: 358 return isInt<18>(BrOffset); 359 360 case Mips::BEQZC: case Mips::BEQZC64: 361 case Mips::BNEZC: case Mips::BNEZC64: 362 return isInt<23>(BrOffset); 363 364 // microMIPSR6 branches 365 case Mips::BC16_MMR6: 366 return isInt<11>(BrOffset); 367 368 case Mips::BEQZC16_MMR6: 369 case Mips::BNEZC16_MMR6: 370 return isInt<8>(BrOffset); 371 372 case Mips::BALC_MMR6: 373 case Mips::BC_MMR6: 374 return isInt<27>(BrOffset); 375 376 case Mips::BC1EQZC_MMR6: 377 case Mips::BC1NEZC_MMR6: 378 case Mips::BC2EQZC_MMR6: 379 case Mips::BC2NEZC_MMR6: 380 case Mips::BGEZALC_MMR6: 381 case Mips::BEQZALC_MMR6: 382 case Mips::BGTZALC_MMR6: 383 case Mips::BLEZALC_MMR6: 384 case Mips::BLTZALC_MMR6: 385 case Mips::BNEZALC_MMR6: 386 case Mips::BNVC_MMR6: 387 case Mips::BOVC_MMR6: 388 return isInt<17>(BrOffset); 389 390 case Mips::BEQC_MMR6: 391 case Mips::BNEC_MMR6: 392 case Mips::BGEC_MMR6: 393 case Mips::BGEUC_MMR6: 394 case Mips::BGEZC_MMR6: 395 case Mips::BGTZC_MMR6: 396 case Mips::BLEZC_MMR6: 397 case Mips::BLTC_MMR6: 398 case Mips::BLTUC_MMR6: 399 case Mips::BLTZC_MMR6: 400 return isInt<18>(BrOffset); 401 402 case Mips::BEQZC_MMR6: 403 case Mips::BNEZC_MMR6: 404 return isInt<23>(BrOffset); 405 406 // DSP branches. 407 case Mips::BPOSGE32: 408 return isInt<18>(BrOffset); 409 case Mips::BPOSGE32_MM: 410 case Mips::BPOSGE32C_MMR3: 411 return isInt<17>(BrOffset); 412 413 // cnMIPS branches. 414 case Mips::BBIT0: 415 case Mips::BBIT032: 416 case Mips::BBIT1: 417 case Mips::BBIT132: 418 return isInt<18>(BrOffset); 419 420 // MSA branches. 421 case Mips::BZ_B: 422 case Mips::BZ_H: 423 case Mips::BZ_W: 424 case Mips::BZ_D: 425 case Mips::BZ_V: 426 case Mips::BNZ_B: 427 case Mips::BNZ_H: 428 case Mips::BNZ_W: 429 case Mips::BNZ_D: 430 case Mips::BNZ_V: 431 return isInt<18>(BrOffset); 432 } 433 434 llvm_unreachable("Unknown branch instruction!"); 435 } 436 437 438 /// Return the corresponding compact (no delay slot) form of a branch. 439 unsigned MipsInstrInfo::getEquivalentCompactForm( 440 const MachineBasicBlock::iterator I) const { 441 unsigned Opcode = I->getOpcode(); 442 bool canUseShortMicroMipsCTI = false; 443 444 if (Subtarget.inMicroMipsMode()) { 445 switch (Opcode) { 446 case Mips::BNE: 447 case Mips::BNE_MM: 448 case Mips::BEQ: 449 case Mips::BEQ_MM: 450 // microMIPS has NE,EQ branches that do not have delay slots provided one 451 // of the operands is zero. 452 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 453 canUseShortMicroMipsCTI = true; 454 break; 455 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 456 // expanded to JR_MM, so they can be replaced with JRC16_MM. 457 case Mips::JR: 458 case Mips::PseudoReturn: 459 case Mips::PseudoIndirectBranch: 460 canUseShortMicroMipsCTI = true; 461 break; 462 } 463 } 464 465 // MIPSR6 forbids both operands being the zero register. 466 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 467 (I->getOperand(0).isReg() && 468 (I->getOperand(0).getReg() == Mips::ZERO || 469 I->getOperand(0).getReg() == Mips::ZERO_64)) && 470 (I->getOperand(1).isReg() && 471 (I->getOperand(1).getReg() == Mips::ZERO || 472 I->getOperand(1).getReg() == Mips::ZERO_64))) 473 return 0; 474 475 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 476 switch (Opcode) { 477 case Mips::B: 478 return Mips::BC; 479 case Mips::BAL: 480 return Mips::BALC; 481 case Mips::BEQ: 482 case Mips::BEQ_MM: 483 if (canUseShortMicroMipsCTI) 484 return Mips::BEQZC_MM; 485 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 486 return 0; 487 return Mips::BEQC; 488 case Mips::BNE: 489 case Mips::BNE_MM: 490 if (canUseShortMicroMipsCTI) 491 return Mips::BNEZC_MM; 492 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 493 return 0; 494 return Mips::BNEC; 495 case Mips::BGE: 496 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 497 return 0; 498 return Mips::BGEC; 499 case Mips::BGEU: 500 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 501 return 0; 502 return Mips::BGEUC; 503 case Mips::BGEZ: 504 return Mips::BGEZC; 505 case Mips::BGTZ: 506 return Mips::BGTZC; 507 case Mips::BLEZ: 508 return Mips::BLEZC; 509 case Mips::BLT: 510 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 511 return 0; 512 return Mips::BLTC; 513 case Mips::BLTU: 514 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 515 return 0; 516 return Mips::BLTUC; 517 case Mips::BLTZ: 518 return Mips::BLTZC; 519 case Mips::BEQ64: 520 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 521 return 0; 522 return Mips::BEQC64; 523 case Mips::BNE64: 524 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 525 return 0; 526 return Mips::BNEC64; 527 case Mips::BGTZ64: 528 return Mips::BGTZC64; 529 case Mips::BGEZ64: 530 return Mips::BGEZC64; 531 case Mips::BLTZ64: 532 return Mips::BLTZC64; 533 case Mips::BLEZ64: 534 return Mips::BLEZC64; 535 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 536 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 537 case Mips::JR: 538 case Mips::PseudoIndirectBranchR6: 539 case Mips::PseudoReturn: 540 case Mips::TAILCALLR6REG: 541 if (canUseShortMicroMipsCTI) 542 return Mips::JRC16_MM; 543 return Mips::JIC; 544 case Mips::JALRPseudo: 545 return Mips::JIALC; 546 case Mips::JR64: 547 case Mips::PseudoIndirectBranch64R6: 548 case Mips::PseudoReturn64: 549 case Mips::TAILCALL64R6REG: 550 return Mips::JIC64; 551 case Mips::JALR64Pseudo: 552 return Mips::JIALC64; 553 default: 554 return 0; 555 } 556 } 557 558 return 0; 559 } 560 561 /// Predicate for distingushing between control transfer instructions and all 562 /// other instructions for handling forbidden slots. Consider inline assembly 563 /// as unsafe as well. 564 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 565 if (MI.isInlineAsm()) 566 return false; 567 568 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 569 } 570 571 /// Predicate for distingushing instructions that have forbidden slots. 572 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 573 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 574 } 575 576 /// Return the number of bytes of code the specified instruction may be. 577 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 578 switch (MI.getOpcode()) { 579 default: 580 return MI.getDesc().getSize(); 581 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. 582 const MachineFunction *MF = MI.getParent()->getParent(); 583 const char *AsmStr = MI.getOperand(0).getSymbolName(); 584 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 585 } 586 case Mips::CONSTPOOL_ENTRY: 587 // If this machine instr is a constant pool entry, its size is recorded as 588 // operand #2. 589 return MI.getOperand(2).getImm(); 590 } 591 } 592 593 MachineInstrBuilder 594 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 595 MachineBasicBlock::iterator I) const { 596 MachineInstrBuilder MIB; 597 598 // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest 599 // Pick the zero form of the branch for readable assembly and for greater 600 // branch distance in non-microMIPS mode. 601 // Additional MIPSR6 does not permit the use of register $zero for compact 602 // branches. 603 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 604 // Mips::ZERO, which is incorrect. This test should be updated to use 605 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 606 // are fixed. 607 int ZeroOperandPosition = -1; 608 bool BranchWithZeroOperand = false; 609 if (I->isBranch() && !I->isPseudo()) { 610 auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo(); 611 ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI); 612 BranchWithZeroOperand = ZeroOperandPosition != -1; 613 } 614 615 if (BranchWithZeroOperand) { 616 switch (NewOpc) { 617 case Mips::BEQC: 618 NewOpc = Mips::BEQZC; 619 break; 620 case Mips::BNEC: 621 NewOpc = Mips::BNEZC; 622 break; 623 case Mips::BGEC: 624 NewOpc = Mips::BGEZC; 625 break; 626 case Mips::BLTC: 627 NewOpc = Mips::BLTZC; 628 break; 629 case Mips::BEQC64: 630 NewOpc = Mips::BEQZC64; 631 break; 632 case Mips::BNEC64: 633 NewOpc = Mips::BNEZC64; 634 break; 635 } 636 } 637 638 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 639 640 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 641 // immediate 0 as an operand and requires the removal of it's implicit-def %ra 642 // implicit operand as copying the implicit operations of the instructio we're 643 // looking at will give us the correct flags. 644 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 645 NewOpc == Mips::JIALC64) { 646 647 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 648 MIB->RemoveOperand(0); 649 650 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 651 MIB.add(I->getOperand(J)); 652 } 653 654 MIB.addImm(0); 655 656 } else { 657 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 658 if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J) 659 continue; 660 661 MIB.add(I->getOperand(J)); 662 } 663 } 664 665 MIB.copyImplicitOps(*I); 666 MIB.cloneMemRefs(*I); 667 return MIB; 668 } 669 670 bool MipsInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 671 unsigned &SrcOpIdx2) const { 672 assert(!MI.isBundle() && 673 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 674 675 const MCInstrDesc &MCID = MI.getDesc(); 676 if (!MCID.isCommutable()) 677 return false; 678 679 switch (MI.getOpcode()) { 680 case Mips::DPADD_U_H: 681 case Mips::DPADD_U_W: 682 case Mips::DPADD_U_D: 683 case Mips::DPADD_S_H: 684 case Mips::DPADD_S_W: 685 case Mips::DPADD_S_D: 686 // The first operand is both input and output, so it should not commute 687 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3)) 688 return false; 689 690 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 691 return false; 692 return true; 693 } 694 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 695 } 696 697 // ins, ext, dext*, dins have the following constraints: 698 // X <= pos < Y 699 // X < size <= Y 700 // X < pos+size <= Y 701 // 702 // dinsm and dinsu have the following constraints: 703 // X <= pos < Y 704 // X <= size <= Y 705 // X < pos+size <= Y 706 // 707 // The callee of verifyInsExtInstruction however gives the bounds of 708 // dins[um] like the other (d)ins (d)ext(um) instructions, so that this 709 // function doesn't have to vary it's behaviour based on the instruction 710 // being checked. 711 static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo, 712 const int64_t PosLow, const int64_t PosHigh, 713 const int64_t SizeLow, 714 const int64_t SizeHigh, 715 const int64_t BothLow, 716 const int64_t BothHigh) { 717 MachineOperand MOPos = MI.getOperand(2); 718 if (!MOPos.isImm()) { 719 ErrInfo = "Position is not an immediate!"; 720 return false; 721 } 722 int64_t Pos = MOPos.getImm(); 723 if (!((PosLow <= Pos) && (Pos < PosHigh))) { 724 ErrInfo = "Position operand is out of range!"; 725 return false; 726 } 727 728 MachineOperand MOSize = MI.getOperand(3); 729 if (!MOSize.isImm()) { 730 ErrInfo = "Size operand is not an immediate!"; 731 return false; 732 } 733 int64_t Size = MOSize.getImm(); 734 if (!((SizeLow < Size) && (Size <= SizeHigh))) { 735 ErrInfo = "Size operand is out of range!"; 736 return false; 737 } 738 739 if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) { 740 ErrInfo = "Position + Size is out of range!"; 741 return false; 742 } 743 744 return true; 745 } 746 747 // Perform target specific instruction verification. 748 bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI, 749 StringRef &ErrInfo) const { 750 // Verify that ins and ext instructions are well formed. 751 switch (MI.getOpcode()) { 752 case Mips::EXT: 753 case Mips::EXT_MM: 754 case Mips::INS: 755 case Mips::INS_MM: 756 case Mips::DINS: 757 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32); 758 case Mips::DINSM: 759 // The ISA spec has a subtle difference between dinsm and dextm 760 // in that it says: 761 // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64. 762 // To make the bounds checks similar, the range 1 < size <= 64 is checked 763 // for 'dinsm'. 764 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64); 765 case Mips::DINSU: 766 // The ISA spec has a subtle difference between dinsu and dextu in that 767 // the size range of dinsu is specified as 1 <= size <= 32 whereas size 768 // for dextu is 0 < size <= 32. The range checked for dinsu here is 769 // 0 < size <= 32, which is equivalent and similar to dextu. 770 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 771 case Mips::DEXT: 772 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63); 773 case Mips::DEXTM: 774 return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64); 775 case Mips::DEXTU: 776 return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64); 777 case Mips::TAILCALLREG: 778 case Mips::PseudoIndirectBranch: 779 case Mips::JR: 780 case Mips::JR64: 781 case Mips::JALR: 782 case Mips::JALR64: 783 case Mips::JALRPseudo: 784 if (!Subtarget.useIndirectJumpsHazard()) 785 return true; 786 787 ErrInfo = "invalid instruction when using jump guards!"; 788 return false; 789 default: 790 return true; 791 } 792 793 return true; 794 } 795 796 std::pair<unsigned, unsigned> 797 MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 798 return std::make_pair(TF, 0u); 799 } 800 801 ArrayRef<std::pair<unsigned, const char*>> 802 MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 803 using namespace MipsII; 804 805 static const std::pair<unsigned, const char*> Flags[] = { 806 {MO_GOT, "mips-got"}, 807 {MO_GOT_CALL, "mips-got-call"}, 808 {MO_GPREL, "mips-gprel"}, 809 {MO_ABS_HI, "mips-abs-hi"}, 810 {MO_ABS_LO, "mips-abs-lo"}, 811 {MO_TLSGD, "mips-tlsgd"}, 812 {MO_TLSLDM, "mips-tlsldm"}, 813 {MO_DTPREL_HI, "mips-dtprel-hi"}, 814 {MO_DTPREL_LO, "mips-dtprel-lo"}, 815 {MO_GOTTPREL, "mips-gottprel"}, 816 {MO_TPREL_HI, "mips-tprel-hi"}, 817 {MO_TPREL_LO, "mips-tprel-lo"}, 818 {MO_GPOFF_HI, "mips-gpoff-hi"}, 819 {MO_GPOFF_LO, "mips-gpoff-lo"}, 820 {MO_GOT_DISP, "mips-got-disp"}, 821 {MO_GOT_PAGE, "mips-got-page"}, 822 {MO_GOT_OFST, "mips-got-ofst"}, 823 {MO_HIGHER, "mips-higher"}, 824 {MO_HIGHEST, "mips-highest"}, 825 {MO_GOT_HI16, "mips-got-hi16"}, 826 {MO_GOT_LO16, "mips-got-lo16"}, 827 {MO_CALL_HI16, "mips-call-hi16"}, 828 {MO_CALL_LO16, "mips-call-lo16"} 829 }; 830 return makeArrayRef(Flags); 831 } 832