1 //===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsInstrInfo.h" 15 #include "InstPrinter/MipsInstPrinter.h" 16 #include "MipsMachineFunction.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetRegistry.h" 23 24 using namespace llvm; 25 26 #define GET_INSTRINFO_CTOR_DTOR 27 #include "MipsGenInstrInfo.inc" 28 29 // Pin the vtable to this file. 30 void MipsInstrInfo::anchor() {} 31 32 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 33 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 34 Subtarget(STI), UncondBrOpc(UncondBr) {} 35 36 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 37 if (STI.inMips16Mode()) 38 return llvm::createMips16InstrInfo(STI); 39 40 return llvm::createMipsSEInstrInfo(STI); 41 } 42 43 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 44 return op.isImm() && op.getImm() == 0; 45 } 46 47 /// insertNoop - If data hazard condition is found insert the target nop 48 /// instruction. 49 // FIXME: This appears to be dead code. 50 void MipsInstrInfo:: 51 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 52 { 53 DebugLoc DL; 54 BuildMI(MBB, MI, DL, get(Mips::NOP)); 55 } 56 57 MachineMemOperand * 58 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 59 MachineMemOperand::Flags Flags) const { 60 MachineFunction &MF = *MBB.getParent(); 61 MachineFrameInfo &MFI = MF.getFrameInfo(); 62 unsigned Align = MFI.getObjectAlignment(FI); 63 64 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 65 Flags, MFI.getObjectSize(FI), Align); 66 } 67 68 //===----------------------------------------------------------------------===// 69 // Branch Analysis 70 //===----------------------------------------------------------------------===// 71 72 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 73 MachineBasicBlock *&BB, 74 SmallVectorImpl<MachineOperand> &Cond) const { 75 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 76 int NumOp = Inst->getNumExplicitOperands(); 77 78 // for both int and fp branches, the last explicit operand is the 79 // MBB. 80 BB = Inst->getOperand(NumOp-1).getMBB(); 81 Cond.push_back(MachineOperand::CreateImm(Opc)); 82 83 for (int i=0; i<NumOp-1; i++) 84 Cond.push_back(Inst->getOperand(i)); 85 } 86 87 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 88 MachineBasicBlock *&TBB, 89 MachineBasicBlock *&FBB, 90 SmallVectorImpl<MachineOperand> &Cond, 91 bool AllowModify) const { 92 SmallVector<MachineInstr*, 2> BranchInstrs; 93 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 94 95 return (BT == BT_None) || (BT == BT_Indirect); 96 } 97 98 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 99 const DebugLoc &DL, 100 ArrayRef<MachineOperand> Cond) const { 101 unsigned Opc = Cond[0].getImm(); 102 const MCInstrDesc &MCID = get(Opc); 103 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 104 105 for (unsigned i = 1; i < Cond.size(); ++i) { 106 assert((Cond[i].isImm() || Cond[i].isReg()) && 107 "Cannot copy operand for conditional branch!"); 108 MIB.add(Cond[i]); 109 } 110 MIB.addMBB(TBB); 111 } 112 113 unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB, 114 MachineBasicBlock *TBB, 115 MachineBasicBlock *FBB, 116 ArrayRef<MachineOperand> Cond, 117 const DebugLoc &DL, 118 int *BytesAdded) const { 119 // Shouldn't be a fall through. 120 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 121 assert(!BytesAdded && "code size not handled"); 122 123 // # of condition operands: 124 // Unconditional branches: 0 125 // Floating point branches: 1 (opc) 126 // Int BranchZero: 2 (opc, reg) 127 // Int Branch: 3 (opc, reg0, reg1) 128 assert((Cond.size() <= 3) && 129 "# of Mips branch conditions must be <= 3!"); 130 131 // Two-way Conditional branch. 132 if (FBB) { 133 BuildCondBr(MBB, TBB, DL, Cond); 134 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 135 return 2; 136 } 137 138 // One way branch. 139 // Unconditional branch. 140 if (Cond.empty()) 141 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 142 else // Conditional branch. 143 BuildCondBr(MBB, TBB, DL, Cond); 144 return 1; 145 } 146 147 unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB, 148 int *BytesRemoved) const { 149 assert(!BytesRemoved && "code size not handled"); 150 151 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 152 unsigned removed; 153 154 // Skip all the debug instructions. 155 while (I != REnd && I->isDebugValue()) 156 ++I; 157 158 if (I == REnd) 159 return 0; 160 161 MachineBasicBlock::iterator FirstBr = ++I.getReverse(); 162 163 // Up to 2 branches are removed. 164 // Note that indirect branches are not removed. 165 for (removed = 0; I != REnd && removed < 2; ++I, ++removed) 166 if (!getAnalyzableBrOpc(I->getOpcode())) 167 break; 168 169 MBB.erase((--I).getReverse(), FirstBr); 170 171 return removed; 172 } 173 174 /// reverseBranchCondition - Return the inverse opcode of the 175 /// specified Branch instruction. 176 bool MipsInstrInfo::reverseBranchCondition( 177 SmallVectorImpl<MachineOperand> &Cond) const { 178 assert( (Cond.size() && Cond.size() <= 3) && 179 "Invalid Mips branch condition!"); 180 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 181 return false; 182 } 183 184 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch( 185 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 186 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 187 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 188 189 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 190 191 // Skip all the debug instructions. 192 while (I != REnd && I->isDebugValue()) 193 ++I; 194 195 if (I == REnd || !isUnpredicatedTerminator(*I)) { 196 // This block ends with no branches (it just falls through to its succ). 197 // Leave TBB/FBB null. 198 TBB = FBB = nullptr; 199 return BT_NoBranch; 200 } 201 202 MachineInstr *LastInst = &*I; 203 unsigned LastOpc = LastInst->getOpcode(); 204 BranchInstrs.push_back(LastInst); 205 206 // Not an analyzable branch (e.g., indirect jump). 207 if (!getAnalyzableBrOpc(LastOpc)) 208 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 209 210 // Get the second to last instruction in the block. 211 unsigned SecondLastOpc = 0; 212 MachineInstr *SecondLastInst = nullptr; 213 214 if (++I != REnd) { 215 SecondLastInst = &*I; 216 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 217 218 // Not an analyzable branch (must be an indirect jump). 219 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 220 return BT_None; 221 } 222 223 // If there is only one terminator instruction, process it. 224 if (!SecondLastOpc) { 225 // Unconditional branch. 226 if (LastInst->isUnconditionalBranch()) { 227 TBB = LastInst->getOperand(0).getMBB(); 228 return BT_Uncond; 229 } 230 231 // Conditional branch 232 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 233 return BT_Cond; 234 } 235 236 // If we reached here, there are two branches. 237 // If there are three terminators, we don't know what sort of block this is. 238 if (++I != REnd && isUnpredicatedTerminator(*I)) 239 return BT_None; 240 241 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 242 243 // If second to last instruction is an unconditional branch, 244 // analyze it and remove the last instruction. 245 if (SecondLastInst->isUnconditionalBranch()) { 246 // Return if the last instruction cannot be removed. 247 if (!AllowModify) 248 return BT_None; 249 250 TBB = SecondLastInst->getOperand(0).getMBB(); 251 LastInst->eraseFromParent(); 252 BranchInstrs.pop_back(); 253 return BT_Uncond; 254 } 255 256 // Conditional branch followed by an unconditional branch. 257 // The last one must be unconditional. 258 if (!LastInst->isUnconditionalBranch()) 259 return BT_None; 260 261 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 262 FBB = LastInst->getOperand(0).getMBB(); 263 264 return BT_CondUncond; 265 } 266 267 /// Return the corresponding compact (no delay slot) form of a branch. 268 unsigned MipsInstrInfo::getEquivalentCompactForm( 269 const MachineBasicBlock::iterator I) const { 270 unsigned Opcode = I->getOpcode(); 271 bool canUseShortMicroMipsCTI = false; 272 273 if (Subtarget.inMicroMipsMode()) { 274 switch (Opcode) { 275 case Mips::BNE: 276 case Mips::BNE_MM: 277 case Mips::BEQ: 278 case Mips::BEQ_MM: 279 // microMIPS has NE,EQ branches that do not have delay slots provided one 280 // of the operands is zero. 281 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 282 canUseShortMicroMipsCTI = true; 283 break; 284 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 285 // expanded to JR_MM, so they can be replaced with JRC16_MM. 286 case Mips::JR: 287 case Mips::PseudoReturn: 288 case Mips::PseudoIndirectBranch: 289 case Mips::TAILCALLREG: 290 canUseShortMicroMipsCTI = true; 291 break; 292 } 293 } 294 295 // MIPSR6 forbids both operands being the zero register. 296 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 297 (I->getOperand(0).isReg() && 298 (I->getOperand(0).getReg() == Mips::ZERO || 299 I->getOperand(0).getReg() == Mips::ZERO_64)) && 300 (I->getOperand(1).isReg() && 301 (I->getOperand(1).getReg() == Mips::ZERO || 302 I->getOperand(1).getReg() == Mips::ZERO_64))) 303 return 0; 304 305 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 306 switch (Opcode) { 307 case Mips::B: 308 return Mips::BC; 309 case Mips::BAL: 310 return Mips::BALC; 311 case Mips::BEQ: 312 case Mips::BEQ_MM: 313 if (canUseShortMicroMipsCTI) 314 return Mips::BEQZC_MM; 315 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 316 return 0; 317 return Mips::BEQC; 318 case Mips::BNE: 319 case Mips::BNE_MM: 320 if (canUseShortMicroMipsCTI) 321 return Mips::BNEZC_MM; 322 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 323 return 0; 324 return Mips::BNEC; 325 case Mips::BGE: 326 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 327 return 0; 328 return Mips::BGEC; 329 case Mips::BGEU: 330 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 331 return 0; 332 return Mips::BGEUC; 333 case Mips::BGEZ: 334 return Mips::BGEZC; 335 case Mips::BGTZ: 336 return Mips::BGTZC; 337 case Mips::BLEZ: 338 return Mips::BLEZC; 339 case Mips::BLT: 340 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 341 return 0; 342 return Mips::BLTC; 343 case Mips::BLTU: 344 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 345 return 0; 346 return Mips::BLTUC; 347 case Mips::BLTZ: 348 return Mips::BLTZC; 349 case Mips::BEQ64: 350 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 351 return 0; 352 return Mips::BEQC64; 353 case Mips::BNE64: 354 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 355 return 0; 356 return Mips::BNEC64; 357 case Mips::BGTZ64: 358 return Mips::BGTZC64; 359 case Mips::BGEZ64: 360 return Mips::BGEZC64; 361 case Mips::BLTZ64: 362 return Mips::BLTZC64; 363 case Mips::BLEZ64: 364 return Mips::BLEZC64; 365 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 366 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 367 case Mips::JR: 368 case Mips::PseudoReturn: 369 case Mips::PseudoIndirectBranch: 370 case Mips::TAILCALLREG: 371 if (canUseShortMicroMipsCTI) 372 return Mips::JRC16_MM; 373 return Mips::JIC; 374 case Mips::JALRPseudo: 375 return Mips::JIALC; 376 case Mips::JR64: 377 case Mips::PseudoReturn64: 378 case Mips::PseudoIndirectBranch64: 379 case Mips::TAILCALLREG64: 380 return Mips::JIC64; 381 case Mips::JALR64Pseudo: 382 return Mips::JIALC64; 383 default: 384 return 0; 385 } 386 } 387 388 return 0; 389 } 390 391 /// Predicate for distingushing between control transfer instructions and all 392 /// other instructions for handling forbidden slots. Consider inline assembly 393 /// as unsafe as well. 394 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 395 if (MI.isInlineAsm()) 396 return false; 397 398 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 399 400 } 401 402 /// Predicate for distingushing instructions that have forbidden slots. 403 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 404 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 405 } 406 407 /// Return the number of bytes of code the specified instruction may be. 408 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 409 switch (MI.getOpcode()) { 410 default: 411 return MI.getDesc().getSize(); 412 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. 413 const MachineFunction *MF = MI.getParent()->getParent(); 414 const char *AsmStr = MI.getOperand(0).getSymbolName(); 415 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 416 } 417 case Mips::CONSTPOOL_ENTRY: 418 // If this machine instr is a constant pool entry, its size is recorded as 419 // operand #2. 420 return MI.getOperand(2).getImm(); 421 } 422 } 423 424 MachineInstrBuilder 425 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 426 MachineBasicBlock::iterator I) const { 427 MachineInstrBuilder MIB; 428 429 // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest 430 // Pick the zero form of the branch for readable assembly and for greater 431 // branch distance in non-microMIPS mode. 432 // Additional MIPSR6 does not permit the use of register $zero for compact 433 // branches. 434 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 435 // Mips::ZERO, which is incorrect. This test should be updated to use 436 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 437 // are fixed. 438 int ZeroOperandPosition = -1; 439 bool BranchWithZeroOperand = false; 440 if (I->isBranch() && !I->isPseudo()) { 441 auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo(); 442 ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI); 443 BranchWithZeroOperand = ZeroOperandPosition != -1; 444 } 445 446 if (BranchWithZeroOperand) { 447 switch (NewOpc) { 448 case Mips::BEQC: 449 NewOpc = Mips::BEQZC; 450 break; 451 case Mips::BNEC: 452 NewOpc = Mips::BNEZC; 453 break; 454 case Mips::BGEC: 455 NewOpc = Mips::BGEZC; 456 break; 457 case Mips::BLTC: 458 NewOpc = Mips::BLTZC; 459 break; 460 case Mips::BEQC64: 461 NewOpc = Mips::BEQZC64; 462 break; 463 case Mips::BNEC64: 464 NewOpc = Mips::BNEZC64; 465 break; 466 } 467 } 468 469 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 470 471 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 472 // immediate 0 as an operand and requires the removal of it's %RA<imp-def> 473 // implicit operand as copying the implicit operations of the instructio we're 474 // looking at will give us the correct flags. 475 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 476 NewOpc == Mips::JIALC64) { 477 478 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 479 MIB->RemoveOperand(0); 480 481 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 482 MIB.add(I->getOperand(J)); 483 } 484 485 MIB.addImm(0); 486 487 } else { 488 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 489 if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J) 490 continue; 491 492 MIB.add(I->getOperand(J)); 493 } 494 } 495 496 MIB.copyImplicitOps(*I); 497 498 MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end()); 499 return MIB; 500 } 501 502 bool MipsInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 503 unsigned &SrcOpIdx2) const { 504 assert(!MI.isBundle() && 505 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 506 507 const MCInstrDesc &MCID = MI.getDesc(); 508 if (!MCID.isCommutable()) 509 return false; 510 511 switch (MI.getOpcode()) { 512 case Mips::DPADD_U_H: 513 case Mips::DPADD_U_W: 514 case Mips::DPADD_U_D: 515 case Mips::DPADD_S_H: 516 case Mips::DPADD_S_W: 517 case Mips::DPADD_S_D: { 518 // The first operand is both input and output, so it should not commute 519 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3)) 520 return false; 521 522 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 523 return false; 524 return true; 525 } 526 } 527 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 528 } 529