1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file defines the MIPS-specific support for the FastISel class. 12 /// Some of the target-specific code is generated by tablegen in the file 13 /// MipsGenFastISel.inc, which is #included here. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #include "MCTargetDesc/MipsABIInfo.h" 18 #include "MCTargetDesc/MipsBaseInfo.h" 19 #include "MipsCCState.h" 20 #include "MipsISelLowering.h" 21 #include "MipsInstrInfo.h" 22 #include "MipsMachineFunction.h" 23 #include "MipsSubtarget.h" 24 #include "MipsTargetMachine.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/ArrayRef.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/CodeGen/CallingConvLower.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetLowering.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/CallingConv.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/MC/MCInstrDesc.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/MachineValueType.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 74 #define DEBUG_TYPE "mips-fastisel" 75 76 using namespace llvm; 77 78 namespace { 79 80 class MipsFastISel final : public FastISel { 81 82 // All possible address modes. 83 class Address { 84 public: 85 using BaseKind = enum { RegBase, FrameIndexBase }; 86 87 private: 88 BaseKind Kind = RegBase; 89 union { 90 unsigned Reg; 91 int FI; 92 } Base; 93 94 int64_t Offset = 0; 95 96 const GlobalValue *GV = nullptr; 97 98 public: 99 // Innocuous defaults for our address. 100 Address() { Base.Reg = 0; } 101 102 void setKind(BaseKind K) { Kind = K; } 103 BaseKind getKind() const { return Kind; } 104 bool isRegBase() const { return Kind == RegBase; } 105 bool isFIBase() const { return Kind == FrameIndexBase; } 106 107 void setReg(unsigned Reg) { 108 assert(isRegBase() && "Invalid base register access!"); 109 Base.Reg = Reg; 110 } 111 112 unsigned getReg() const { 113 assert(isRegBase() && "Invalid base register access!"); 114 return Base.Reg; 115 } 116 117 void setFI(unsigned FI) { 118 assert(isFIBase() && "Invalid base frame index access!"); 119 Base.FI = FI; 120 } 121 122 unsigned getFI() const { 123 assert(isFIBase() && "Invalid base frame index access!"); 124 return Base.FI; 125 } 126 127 void setOffset(int64_t Offset_) { Offset = Offset_; } 128 int64_t getOffset() const { return Offset; } 129 void setGlobalValue(const GlobalValue *G) { GV = G; } 130 const GlobalValue *getGlobalValue() { return GV; } 131 }; 132 133 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can 134 /// make the right decision when generating code for different targets. 135 const TargetMachine &TM; 136 const MipsSubtarget *Subtarget; 137 const TargetInstrInfo &TII; 138 const TargetLowering &TLI; 139 MipsFunctionInfo *MFI; 140 141 // Convenience variables to avoid some queries. 142 LLVMContext *Context; 143 144 bool fastLowerArguments() override; 145 bool fastLowerCall(CallLoweringInfo &CLI) override; 146 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 147 148 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle 149 // floating point but not reject doing fast-isel in other 150 // situations 151 152 private: 153 // Selection routines. 154 bool selectLogicalOp(const Instruction *I); 155 bool selectLoad(const Instruction *I); 156 bool selectStore(const Instruction *I); 157 bool selectBranch(const Instruction *I); 158 bool selectSelect(const Instruction *I); 159 bool selectCmp(const Instruction *I); 160 bool selectFPExt(const Instruction *I); 161 bool selectFPTrunc(const Instruction *I); 162 bool selectFPToInt(const Instruction *I, bool IsSigned); 163 bool selectRet(const Instruction *I); 164 bool selectTrunc(const Instruction *I); 165 bool selectIntExt(const Instruction *I); 166 bool selectShift(const Instruction *I); 167 bool selectDivRem(const Instruction *I, unsigned ISDOpcode); 168 169 // Utility helper routines. 170 bool isTypeLegal(Type *Ty, MVT &VT); 171 bool isTypeSupported(Type *Ty, MVT &VT); 172 bool isLoadTypeLegal(Type *Ty, MVT &VT); 173 bool computeAddress(const Value *Obj, Address &Addr); 174 bool computeCallAddress(const Value *V, Address &Addr); 175 void simplifyAddress(Address &Addr); 176 177 // Emit helper routines. 178 bool emitCmp(unsigned DestReg, const CmpInst *CI); 179 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 180 unsigned Alignment = 0); 181 bool emitStore(MVT VT, unsigned SrcReg, Address Addr, 182 MachineMemOperand *MMO = nullptr); 183 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr, 184 unsigned Alignment = 0); 185 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 186 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg, 187 188 bool IsZExt); 189 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 190 191 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 192 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 193 unsigned DestReg); 194 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 195 unsigned DestReg); 196 197 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned); 198 199 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, 200 const Value *RHS); 201 202 unsigned materializeFP(const ConstantFP *CFP, MVT VT); 203 unsigned materializeGV(const GlobalValue *GV, MVT VT); 204 unsigned materializeInt(const Constant *C, MVT VT); 205 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); 206 unsigned materializeExternalCallSym(MCSymbol *Syn); 207 208 MachineInstrBuilder emitInst(unsigned Opc) { 209 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 210 } 211 212 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) { 213 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 214 DstReg); 215 } 216 217 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg, 218 unsigned MemReg, int64_t MemOffset) { 219 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset); 220 } 221 222 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg, 223 unsigned MemReg, int64_t MemOffset) { 224 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset); 225 } 226 227 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 228 const TargetRegisterClass *RC, 229 unsigned Op0, bool Op0IsKill, 230 unsigned Op1, bool Op1IsKill); 231 232 // for some reason, this default is not generated by tablegen 233 // so we explicitly generate it here. 234 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC, 235 unsigned Op0, bool Op0IsKill, uint64_t imm1, 236 uint64_t imm2, unsigned Op3, bool Op3IsKill) { 237 return 0; 238 } 239 240 // Call handling routines. 241 private: 242 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; 243 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs, 244 unsigned &NumBytes); 245 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes); 246 247 const MipsABIInfo &getABI() const { 248 return static_cast<const MipsTargetMachine &>(TM).getABI(); 249 } 250 251 public: 252 // Backend specific FastISel code. 253 explicit MipsFastISel(FunctionLoweringInfo &funcInfo, 254 const TargetLibraryInfo *libInfo) 255 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()), 256 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()), 257 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) { 258 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>(); 259 Context = &funcInfo.Fn->getContext(); 260 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat(); 261 } 262 263 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 264 unsigned fastMaterializeConstant(const Constant *C) override; 265 bool fastSelectInstruction(const Instruction *I) override; 266 267 #include "MipsGenFastISel.inc" 268 }; 269 270 } // end anonymous namespace 271 272 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT, 273 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 274 CCState &State) LLVM_ATTRIBUTE_UNUSED; 275 276 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT, 277 CCValAssign::LocInfo LocInfo, 278 ISD::ArgFlagsTy ArgFlags, CCState &State) { 279 llvm_unreachable("should not be called"); 280 } 281 282 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT, 283 CCValAssign::LocInfo LocInfo, 284 ISD::ArgFlagsTy ArgFlags, CCState &State) { 285 llvm_unreachable("should not be called"); 286 } 287 288 #include "MipsGenCallingConv.inc" 289 290 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const { 291 return CC_MipsO32; 292 } 293 294 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT, 295 const Value *LHS, const Value *RHS) { 296 // Canonicalize immediates to the RHS first. 297 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS)) 298 std::swap(LHS, RHS); 299 300 unsigned Opc; 301 switch (ISDOpc) { 302 case ISD::AND: 303 Opc = Mips::AND; 304 break; 305 case ISD::OR: 306 Opc = Mips::OR; 307 break; 308 case ISD::XOR: 309 Opc = Mips::XOR; 310 break; 311 default: 312 llvm_unreachable("unexpected opcode"); 313 } 314 315 unsigned LHSReg = getRegForValue(LHS); 316 if (!LHSReg) 317 return 0; 318 319 unsigned RHSReg; 320 if (const auto *C = dyn_cast<ConstantInt>(RHS)) 321 RHSReg = materializeInt(C, MVT::i32); 322 else 323 RHSReg = getRegForValue(RHS); 324 if (!RHSReg) 325 return 0; 326 327 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 328 if (!ResultReg) 329 return 0; 330 331 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg); 332 return ResultReg; 333 } 334 335 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 336 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 && 337 "Alloca should always return a pointer."); 338 339 DenseMap<const AllocaInst *, int>::iterator SI = 340 FuncInfo.StaticAllocaMap.find(AI); 341 342 if (SI != FuncInfo.StaticAllocaMap.end()) { 343 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 344 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu), 345 ResultReg) 346 .addFrameIndex(SI->second) 347 .addImm(0); 348 return ResultReg; 349 } 350 351 return 0; 352 } 353 354 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) { 355 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 356 return 0; 357 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 358 const ConstantInt *CI = cast<ConstantInt>(C); 359 return materialize32BitInt(CI->getZExtValue(), RC); 360 } 361 362 unsigned MipsFastISel::materialize32BitInt(int64_t Imm, 363 const TargetRegisterClass *RC) { 364 unsigned ResultReg = createResultReg(RC); 365 366 if (isInt<16>(Imm)) { 367 unsigned Opc = Mips::ADDiu; 368 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm); 369 return ResultReg; 370 } else if (isUInt<16>(Imm)) { 371 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm); 372 return ResultReg; 373 } 374 unsigned Lo = Imm & 0xFFFF; 375 unsigned Hi = (Imm >> 16) & 0xFFFF; 376 if (Lo) { 377 // Both Lo and Hi have nonzero bits. 378 unsigned TmpReg = createResultReg(RC); 379 emitInst(Mips::LUi, TmpReg).addImm(Hi); 380 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo); 381 } else { 382 emitInst(Mips::LUi, ResultReg).addImm(Hi); 383 } 384 return ResultReg; 385 } 386 387 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) { 388 if (UnsupportedFPMode) 389 return 0; 390 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 391 if (VT == MVT::f32) { 392 const TargetRegisterClass *RC = &Mips::FGR32RegClass; 393 unsigned DestReg = createResultReg(RC); 394 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass); 395 emitInst(Mips::MTC1, DestReg).addReg(TempReg); 396 return DestReg; 397 } else if (VT == MVT::f64) { 398 const TargetRegisterClass *RC = &Mips::AFGR64RegClass; 399 unsigned DestReg = createResultReg(RC); 400 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass); 401 unsigned TempReg2 = 402 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass); 403 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1); 404 return DestReg; 405 } 406 return 0; 407 } 408 409 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) { 410 // For now 32-bit only. 411 if (VT != MVT::i32) 412 return 0; 413 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 414 unsigned DestReg = createResultReg(RC); 415 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 416 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 417 // TLS not supported at this time. 418 if (IsThreadLocal) 419 return 0; 420 emitInst(Mips::LW, DestReg) 421 .addReg(MFI->getGlobalBaseReg()) 422 .addGlobalAddress(GV, 0, MipsII::MO_GOT); 423 if ((GV->hasInternalLinkage() || 424 (GV->hasLocalLinkage() && !isa<Function>(GV)))) { 425 unsigned TempReg = createResultReg(RC); 426 emitInst(Mips::ADDiu, TempReg) 427 .addReg(DestReg) 428 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO); 429 DestReg = TempReg; 430 } 431 return DestReg; 432 } 433 434 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) { 435 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 436 unsigned DestReg = createResultReg(RC); 437 emitInst(Mips::LW, DestReg) 438 .addReg(MFI->getGlobalBaseReg()) 439 .addSym(Sym, MipsII::MO_GOT); 440 return DestReg; 441 } 442 443 // Materialize a constant into a register, and return the register 444 // number (or zero if we failed to handle it). 445 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) { 446 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 447 448 // Only handle simple types. 449 if (!CEVT.isSimple()) 450 return 0; 451 MVT VT = CEVT.getSimpleVT(); 452 453 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 454 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT); 455 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 456 return materializeGV(GV, VT); 457 else if (isa<ConstantInt>(C)) 458 return materializeInt(C, VT); 459 460 return 0; 461 } 462 463 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) { 464 const User *U = nullptr; 465 unsigned Opcode = Instruction::UserOp1; 466 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 467 // Don't walk into other basic blocks unless the object is an alloca from 468 // another block, otherwise it may not have a virtual register assigned. 469 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 470 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 471 Opcode = I->getOpcode(); 472 U = I; 473 } 474 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 475 Opcode = C->getOpcode(); 476 U = C; 477 } 478 switch (Opcode) { 479 default: 480 break; 481 case Instruction::BitCast: 482 // Look through bitcasts. 483 return computeAddress(U->getOperand(0), Addr); 484 case Instruction::GetElementPtr: { 485 Address SavedAddr = Addr; 486 int64_t TmpOffset = Addr.getOffset(); 487 // Iterate through the GEP folding the constants into offsets where 488 // we can. 489 gep_type_iterator GTI = gep_type_begin(U); 490 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; 491 ++i, ++GTI) { 492 const Value *Op = *i; 493 if (StructType *STy = GTI.getStructTypeOrNull()) { 494 const StructLayout *SL = DL.getStructLayout(STy); 495 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 496 TmpOffset += SL->getElementOffset(Idx); 497 } else { 498 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 499 while (true) { 500 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 501 // Constant-offset addressing. 502 TmpOffset += CI->getSExtValue() * S; 503 break; 504 } 505 if (canFoldAddIntoGEP(U, Op)) { 506 // A compatible add with a constant operand. Fold the constant. 507 ConstantInt *CI = 508 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 509 TmpOffset += CI->getSExtValue() * S; 510 // Iterate on the other operand. 511 Op = cast<AddOperator>(Op)->getOperand(0); 512 continue; 513 } 514 // Unsupported 515 goto unsupported_gep; 516 } 517 } 518 } 519 // Try to grab the base operand now. 520 Addr.setOffset(TmpOffset); 521 if (computeAddress(U->getOperand(0), Addr)) 522 return true; 523 // We failed, restore everything and try the other options. 524 Addr = SavedAddr; 525 unsupported_gep: 526 break; 527 } 528 case Instruction::Alloca: { 529 const AllocaInst *AI = cast<AllocaInst>(Obj); 530 DenseMap<const AllocaInst *, int>::iterator SI = 531 FuncInfo.StaticAllocaMap.find(AI); 532 if (SI != FuncInfo.StaticAllocaMap.end()) { 533 Addr.setKind(Address::FrameIndexBase); 534 Addr.setFI(SI->second); 535 return true; 536 } 537 break; 538 } 539 } 540 Addr.setReg(getRegForValue(Obj)); 541 return Addr.getReg() != 0; 542 } 543 544 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) { 545 const User *U = nullptr; 546 unsigned Opcode = Instruction::UserOp1; 547 548 if (const auto *I = dyn_cast<Instruction>(V)) { 549 // Check if the value is defined in the same basic block. This information 550 // is crucial to know whether or not folding an operand is valid. 551 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) { 552 Opcode = I->getOpcode(); 553 U = I; 554 } 555 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) { 556 Opcode = C->getOpcode(); 557 U = C; 558 } 559 560 switch (Opcode) { 561 default: 562 break; 563 case Instruction::BitCast: 564 // Look past bitcasts if its operand is in the same BB. 565 return computeCallAddress(U->getOperand(0), Addr); 566 break; 567 case Instruction::IntToPtr: 568 // Look past no-op inttoptrs if its operand is in the same BB. 569 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 570 TLI.getPointerTy(DL)) 571 return computeCallAddress(U->getOperand(0), Addr); 572 break; 573 case Instruction::PtrToInt: 574 // Look past no-op ptrtoints if its operand is in the same BB. 575 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 576 return computeCallAddress(U->getOperand(0), Addr); 577 break; 578 } 579 580 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 581 Addr.setGlobalValue(GV); 582 return true; 583 } 584 585 // If all else fails, try to materialize the value in a register. 586 if (!Addr.getGlobalValue()) { 587 Addr.setReg(getRegForValue(V)); 588 return Addr.getReg() != 0; 589 } 590 591 return false; 592 } 593 594 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) { 595 EVT evt = TLI.getValueType(DL, Ty, true); 596 // Only handle simple types. 597 if (evt == MVT::Other || !evt.isSimple()) 598 return false; 599 VT = evt.getSimpleVT(); 600 601 // Handle all legal types, i.e. a register that will directly hold this 602 // value. 603 return TLI.isTypeLegal(VT); 604 } 605 606 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) { 607 if (Ty->isVectorTy()) 608 return false; 609 610 if (isTypeLegal(Ty, VT)) 611 return true; 612 613 // If this is a type than can be sign or zero-extended to a basic operation 614 // go ahead and accept it now. 615 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 616 return true; 617 618 return false; 619 } 620 621 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 622 if (isTypeLegal(Ty, VT)) 623 return true; 624 // We will extend this in a later patch: 625 // If this is a type than can be sign or zero-extended to a basic operation 626 // go ahead and accept it now. 627 if (VT == MVT::i8 || VT == MVT::i16) 628 return true; 629 return false; 630 } 631 632 // Because of how EmitCmp is called with fast-isel, you can 633 // end up with redundant "andi" instructions after the sequences emitted below. 634 // We should try and solve this issue in the future. 635 // 636 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) { 637 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1); 638 bool IsUnsigned = CI->isUnsigned(); 639 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned); 640 if (LeftReg == 0) 641 return false; 642 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned); 643 if (RightReg == 0) 644 return false; 645 CmpInst::Predicate P = CI->getPredicate(); 646 647 switch (P) { 648 default: 649 return false; 650 case CmpInst::ICMP_EQ: { 651 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 652 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 653 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1); 654 break; 655 } 656 case CmpInst::ICMP_NE: { 657 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 658 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 659 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg); 660 break; 661 } 662 case CmpInst::ICMP_UGT: 663 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg); 664 break; 665 case CmpInst::ICMP_ULT: 666 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg); 667 break; 668 case CmpInst::ICMP_UGE: { 669 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 670 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg); 671 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 672 break; 673 } 674 case CmpInst::ICMP_ULE: { 675 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 676 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg); 677 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 678 break; 679 } 680 case CmpInst::ICMP_SGT: 681 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg); 682 break; 683 case CmpInst::ICMP_SLT: 684 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg); 685 break; 686 case CmpInst::ICMP_SGE: { 687 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 688 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg); 689 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 690 break; 691 } 692 case CmpInst::ICMP_SLE: { 693 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 694 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg); 695 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 696 break; 697 } 698 case CmpInst::FCMP_OEQ: 699 case CmpInst::FCMP_UNE: 700 case CmpInst::FCMP_OLT: 701 case CmpInst::FCMP_OLE: 702 case CmpInst::FCMP_OGT: 703 case CmpInst::FCMP_OGE: { 704 if (UnsupportedFPMode) 705 return false; 706 bool IsFloat = Left->getType()->isFloatTy(); 707 bool IsDouble = Left->getType()->isDoubleTy(); 708 if (!IsFloat && !IsDouble) 709 return false; 710 unsigned Opc, CondMovOpc; 711 switch (P) { 712 case CmpInst::FCMP_OEQ: 713 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 714 CondMovOpc = Mips::MOVT_I; 715 break; 716 case CmpInst::FCMP_UNE: 717 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 718 CondMovOpc = Mips::MOVF_I; 719 break; 720 case CmpInst::FCMP_OLT: 721 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32; 722 CondMovOpc = Mips::MOVT_I; 723 break; 724 case CmpInst::FCMP_OLE: 725 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32; 726 CondMovOpc = Mips::MOVT_I; 727 break; 728 case CmpInst::FCMP_OGT: 729 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32; 730 CondMovOpc = Mips::MOVF_I; 731 break; 732 case CmpInst::FCMP_OGE: 733 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32; 734 CondMovOpc = Mips::MOVF_I; 735 break; 736 default: 737 llvm_unreachable("Only switching of a subset of CCs."); 738 } 739 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass); 740 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass); 741 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0); 742 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1); 743 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg) 744 .addReg(RightReg); 745 emitInst(CondMovOpc, ResultReg) 746 .addReg(RegWithOne) 747 .addReg(Mips::FCC0) 748 .addReg(RegWithZero); 749 break; 750 } 751 } 752 return true; 753 } 754 755 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 756 unsigned Alignment) { 757 // 758 // more cases will be handled here in following patches. 759 // 760 unsigned Opc; 761 switch (VT.SimpleTy) { 762 case MVT::i32: 763 ResultReg = createResultReg(&Mips::GPR32RegClass); 764 Opc = Mips::LW; 765 break; 766 case MVT::i16: 767 ResultReg = createResultReg(&Mips::GPR32RegClass); 768 Opc = Mips::LHu; 769 break; 770 case MVT::i8: 771 ResultReg = createResultReg(&Mips::GPR32RegClass); 772 Opc = Mips::LBu; 773 break; 774 case MVT::f32: 775 if (UnsupportedFPMode) 776 return false; 777 ResultReg = createResultReg(&Mips::FGR32RegClass); 778 Opc = Mips::LWC1; 779 break; 780 case MVT::f64: 781 if (UnsupportedFPMode) 782 return false; 783 ResultReg = createResultReg(&Mips::AFGR64RegClass); 784 Opc = Mips::LDC1; 785 break; 786 default: 787 return false; 788 } 789 if (Addr.isRegBase()) { 790 simplifyAddress(Addr); 791 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset()); 792 return true; 793 } 794 if (Addr.isFIBase()) { 795 unsigned FI = Addr.getFI(); 796 unsigned Align = 4; 797 int64_t Offset = Addr.getOffset(); 798 MachineFrameInfo &MFI = MF->getFrameInfo(); 799 MachineMemOperand *MMO = MF->getMachineMemOperand( 800 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, 801 MFI.getObjectSize(FI), Align); 802 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 803 .addFrameIndex(FI) 804 .addImm(Offset) 805 .addMemOperand(MMO); 806 return true; 807 } 808 return false; 809 } 810 811 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr, 812 unsigned Alignment) { 813 // 814 // more cases will be handled here in following patches. 815 // 816 unsigned Opc; 817 switch (VT.SimpleTy) { 818 case MVT::i8: 819 Opc = Mips::SB; 820 break; 821 case MVT::i16: 822 Opc = Mips::SH; 823 break; 824 case MVT::i32: 825 Opc = Mips::SW; 826 break; 827 case MVT::f32: 828 if (UnsupportedFPMode) 829 return false; 830 Opc = Mips::SWC1; 831 break; 832 case MVT::f64: 833 if (UnsupportedFPMode) 834 return false; 835 Opc = Mips::SDC1; 836 break; 837 default: 838 return false; 839 } 840 if (Addr.isRegBase()) { 841 simplifyAddress(Addr); 842 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset()); 843 return true; 844 } 845 if (Addr.isFIBase()) { 846 unsigned FI = Addr.getFI(); 847 unsigned Align = 4; 848 int64_t Offset = Addr.getOffset(); 849 MachineFrameInfo &MFI = MF->getFrameInfo(); 850 MachineMemOperand *MMO = MF->getMachineMemOperand( 851 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, 852 MFI.getObjectSize(FI), Align); 853 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 854 .addReg(SrcReg) 855 .addFrameIndex(FI) 856 .addImm(Offset) 857 .addMemOperand(MMO); 858 return true; 859 } 860 return false; 861 } 862 863 bool MipsFastISel::selectLogicalOp(const Instruction *I) { 864 MVT VT; 865 if (!isTypeSupported(I->getType(), VT)) 866 return false; 867 868 unsigned ResultReg; 869 switch (I->getOpcode()) { 870 default: 871 llvm_unreachable("Unexpected instruction."); 872 case Instruction::And: 873 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1)); 874 break; 875 case Instruction::Or: 876 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1)); 877 break; 878 case Instruction::Xor: 879 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1)); 880 break; 881 } 882 883 if (!ResultReg) 884 return false; 885 886 updateValueMap(I, ResultReg); 887 return true; 888 } 889 890 bool MipsFastISel::selectLoad(const Instruction *I) { 891 // Atomic loads need special handling. 892 if (cast<LoadInst>(I)->isAtomic()) 893 return false; 894 895 // Verify we have a legal type before going any further. 896 MVT VT; 897 if (!isLoadTypeLegal(I->getType(), VT)) 898 return false; 899 900 // See if we can handle this address. 901 Address Addr; 902 if (!computeAddress(I->getOperand(0), Addr)) 903 return false; 904 905 unsigned ResultReg; 906 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 907 return false; 908 updateValueMap(I, ResultReg); 909 return true; 910 } 911 912 bool MipsFastISel::selectStore(const Instruction *I) { 913 Value *Op0 = I->getOperand(0); 914 unsigned SrcReg = 0; 915 916 // Atomic stores need special handling. 917 if (cast<StoreInst>(I)->isAtomic()) 918 return false; 919 920 // Verify we have a legal type before going any further. 921 MVT VT; 922 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 923 return false; 924 925 // Get the value to be stored into a register. 926 SrcReg = getRegForValue(Op0); 927 if (SrcReg == 0) 928 return false; 929 930 // See if we can handle this address. 931 Address Addr; 932 if (!computeAddress(I->getOperand(1), Addr)) 933 return false; 934 935 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 936 return false; 937 return true; 938 } 939 940 // This can cause a redundant sltiu to be generated. 941 // FIXME: try and eliminate this in a future patch. 942 bool MipsFastISel::selectBranch(const Instruction *I) { 943 const BranchInst *BI = cast<BranchInst>(I); 944 MachineBasicBlock *BrBB = FuncInfo.MBB; 945 // 946 // TBB is the basic block for the case where the comparison is true. 947 // FBB is the basic block for the case where the comparison is false. 948 // if (cond) goto TBB 949 // goto FBB 950 // TBB: 951 // 952 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 953 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 954 BI->getCondition(); 955 // For now, just try the simplest case where it's fed by a compare. 956 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 957 unsigned CondReg = createResultReg(&Mips::GPR32RegClass); 958 if (!emitCmp(CondReg, CI)) 959 return false; 960 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ)) 961 .addReg(CondReg) 962 .addMBB(TBB); 963 finishCondBranch(BI->getParent(), TBB, FBB); 964 return true; 965 } 966 return false; 967 } 968 969 bool MipsFastISel::selectCmp(const Instruction *I) { 970 const CmpInst *CI = cast<CmpInst>(I); 971 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 972 if (!emitCmp(ResultReg, CI)) 973 return false; 974 updateValueMap(I, ResultReg); 975 return true; 976 } 977 978 // Attempt to fast-select a floating-point extend instruction. 979 bool MipsFastISel::selectFPExt(const Instruction *I) { 980 if (UnsupportedFPMode) 981 return false; 982 Value *Src = I->getOperand(0); 983 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 984 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 985 986 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 987 return false; 988 989 unsigned SrcReg = 990 getRegForValue(Src); // this must be a 32bit floating point register class 991 // maybe we should handle this differently 992 if (!SrcReg) 993 return false; 994 995 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass); 996 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg); 997 updateValueMap(I, DestReg); 998 return true; 999 } 1000 1001 bool MipsFastISel::selectSelect(const Instruction *I) { 1002 assert(isa<SelectInst>(I) && "Expected a select instruction."); 1003 1004 DEBUG(dbgs() << "selectSelect\n"); 1005 1006 MVT VT; 1007 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) { 1008 DEBUG(dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n"); 1009 return false; 1010 } 1011 1012 unsigned CondMovOpc; 1013 const TargetRegisterClass *RC; 1014 1015 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) { 1016 CondMovOpc = Mips::MOVN_I_I; 1017 RC = &Mips::GPR32RegClass; 1018 } else if (VT == MVT::f32) { 1019 CondMovOpc = Mips::MOVN_I_S; 1020 RC = &Mips::FGR32RegClass; 1021 } else if (VT == MVT::f64) { 1022 CondMovOpc = Mips::MOVN_I_D32; 1023 RC = &Mips::AFGR64RegClass; 1024 } else 1025 return false; 1026 1027 const SelectInst *SI = cast<SelectInst>(I); 1028 const Value *Cond = SI->getCondition(); 1029 unsigned Src1Reg = getRegForValue(SI->getTrueValue()); 1030 unsigned Src2Reg = getRegForValue(SI->getFalseValue()); 1031 unsigned CondReg = getRegForValue(Cond); 1032 1033 if (!Src1Reg || !Src2Reg || !CondReg) 1034 return false; 1035 1036 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass); 1037 if (!ZExtCondReg) 1038 return false; 1039 1040 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true)) 1041 return false; 1042 1043 unsigned ResultReg = createResultReg(RC); 1044 unsigned TempReg = createResultReg(RC); 1045 1046 if (!ResultReg || !TempReg) 1047 return false; 1048 1049 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg); 1050 emitInst(CondMovOpc, ResultReg) 1051 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg); 1052 updateValueMap(I, ResultReg); 1053 return true; 1054 } 1055 1056 // Attempt to fast-select a floating-point truncate instruction. 1057 bool MipsFastISel::selectFPTrunc(const Instruction *I) { 1058 if (UnsupportedFPMode) 1059 return false; 1060 Value *Src = I->getOperand(0); 1061 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1062 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1063 1064 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 1065 return false; 1066 1067 unsigned SrcReg = getRegForValue(Src); 1068 if (!SrcReg) 1069 return false; 1070 1071 unsigned DestReg = createResultReg(&Mips::FGR32RegClass); 1072 if (!DestReg) 1073 return false; 1074 1075 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg); 1076 updateValueMap(I, DestReg); 1077 return true; 1078 } 1079 1080 // Attempt to fast-select a floating-point-to-integer conversion. 1081 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) { 1082 if (UnsupportedFPMode) 1083 return false; 1084 MVT DstVT, SrcVT; 1085 if (!IsSigned) 1086 return false; // We don't handle this case yet. There is no native 1087 // instruction for this but it can be synthesized. 1088 Type *DstTy = I->getType(); 1089 if (!isTypeLegal(DstTy, DstVT)) 1090 return false; 1091 1092 if (DstVT != MVT::i32) 1093 return false; 1094 1095 Value *Src = I->getOperand(0); 1096 Type *SrcTy = Src->getType(); 1097 if (!isTypeLegal(SrcTy, SrcVT)) 1098 return false; 1099 1100 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1101 return false; 1102 1103 unsigned SrcReg = getRegForValue(Src); 1104 if (SrcReg == 0) 1105 return false; 1106 1107 // Determine the opcode for the conversion, which takes place 1108 // entirely within FPRs. 1109 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1110 unsigned TempReg = createResultReg(&Mips::FGR32RegClass); 1111 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32; 1112 1113 // Generate the convert. 1114 emitInst(Opc, TempReg).addReg(SrcReg); 1115 emitInst(Mips::MFC1, DestReg).addReg(TempReg); 1116 1117 updateValueMap(I, DestReg); 1118 return true; 1119 } 1120 1121 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI, 1122 SmallVectorImpl<MVT> &OutVTs, 1123 unsigned &NumBytes) { 1124 CallingConv::ID CC = CLI.CallConv; 1125 SmallVector<CCValAssign, 16> ArgLocs; 1126 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); 1127 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC)); 1128 // Get a count of how many bytes are to be pushed on the stack. 1129 NumBytes = CCInfo.getNextStackOffset(); 1130 // This is the minimum argument area used for A0-A3. 1131 if (NumBytes < 16) 1132 NumBytes = 16; 1133 1134 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0); 1135 // Process the args. 1136 MVT firstMVT; 1137 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1138 CCValAssign &VA = ArgLocs[i]; 1139 const Value *ArgVal = CLI.OutVals[VA.getValNo()]; 1140 MVT ArgVT = OutVTs[VA.getValNo()]; 1141 1142 if (i == 0) { 1143 firstMVT = ArgVT; 1144 if (ArgVT == MVT::f32) { 1145 VA.convertToReg(Mips::F12); 1146 } else if (ArgVT == MVT::f64) { 1147 VA.convertToReg(Mips::D6); 1148 } 1149 } else if (i == 1) { 1150 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) { 1151 if (ArgVT == MVT::f32) { 1152 VA.convertToReg(Mips::F14); 1153 } else if (ArgVT == MVT::f64) { 1154 VA.convertToReg(Mips::D7); 1155 } 1156 } 1157 } 1158 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) || 1159 (ArgVT == MVT::i8)) && 1160 VA.isMemLoc()) { 1161 switch (VA.getLocMemOffset()) { 1162 case 0: 1163 VA.convertToReg(Mips::A0); 1164 break; 1165 case 4: 1166 VA.convertToReg(Mips::A1); 1167 break; 1168 case 8: 1169 VA.convertToReg(Mips::A2); 1170 break; 1171 case 12: 1172 VA.convertToReg(Mips::A3); 1173 break; 1174 default: 1175 break; 1176 } 1177 } 1178 unsigned ArgReg = getRegForValue(ArgVal); 1179 if (!ArgReg) 1180 return false; 1181 1182 // Handle arg promotion: SExt, ZExt, AExt. 1183 switch (VA.getLocInfo()) { 1184 case CCValAssign::Full: 1185 break; 1186 case CCValAssign::AExt: 1187 case CCValAssign::SExt: { 1188 MVT DestVT = VA.getLocVT(); 1189 MVT SrcVT = ArgVT; 1190 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false); 1191 if (!ArgReg) 1192 return false; 1193 break; 1194 } 1195 case CCValAssign::ZExt: { 1196 MVT DestVT = VA.getLocVT(); 1197 MVT SrcVT = ArgVT; 1198 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true); 1199 if (!ArgReg) 1200 return false; 1201 break; 1202 } 1203 default: 1204 llvm_unreachable("Unknown arg promotion!"); 1205 } 1206 1207 // Now copy/store arg to correct locations. 1208 if (VA.isRegLoc() && !VA.needsCustom()) { 1209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1210 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 1211 CLI.OutRegs.push_back(VA.getLocReg()); 1212 } else if (VA.needsCustom()) { 1213 llvm_unreachable("Mips does not use custom args."); 1214 return false; 1215 } else { 1216 // 1217 // FIXME: This path will currently return false. It was copied 1218 // from the AArch64 port and should be essentially fine for Mips too. 1219 // The work to finish up this path will be done in a follow-on patch. 1220 // 1221 assert(VA.isMemLoc() && "Assuming store on stack."); 1222 // Don't emit stores for undef values. 1223 if (isa<UndefValue>(ArgVal)) 1224 continue; 1225 1226 // Need to store on the stack. 1227 // FIXME: This alignment is incorrect but this path is disabled 1228 // for now (will return false). We need to determine the right alignment 1229 // based on the normal alignment for the underlying machine type. 1230 // 1231 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4); 1232 1233 unsigned BEAlign = 0; 1234 if (ArgSize < 8 && !Subtarget->isLittle()) 1235 BEAlign = 8 - ArgSize; 1236 1237 Address Addr; 1238 Addr.setKind(Address::RegBase); 1239 Addr.setReg(Mips::SP); 1240 Addr.setOffset(VA.getLocMemOffset() + BEAlign); 1241 1242 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 1243 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1244 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()), 1245 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 1246 (void)(MMO); 1247 // if (!emitStore(ArgVT, ArgReg, Addr, MMO)) 1248 return false; // can't store on the stack yet. 1249 } 1250 } 1251 1252 return true; 1253 } 1254 1255 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT, 1256 unsigned NumBytes) { 1257 CallingConv::ID CC = CLI.CallConv; 1258 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0); 1259 if (RetVT != MVT::isVoid) { 1260 SmallVector<CCValAssign, 16> RVLocs; 1261 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1262 1263 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy, 1264 CLI.Symbol ? CLI.Symbol->getName().data() 1265 : nullptr); 1266 1267 // Only handle a single return value. 1268 if (RVLocs.size() != 1) 1269 return false; 1270 // Copy all of the result registers out of their specified physreg. 1271 MVT CopyVT = RVLocs[0].getValVT(); 1272 // Special handling for extended integers. 1273 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 1274 CopyVT = MVT::i32; 1275 1276 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); 1277 if (!ResultReg) 1278 return false; 1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1280 TII.get(TargetOpcode::COPY), 1281 ResultReg).addReg(RVLocs[0].getLocReg()); 1282 CLI.InRegs.push_back(RVLocs[0].getLocReg()); 1283 1284 CLI.ResultReg = ResultReg; 1285 CLI.NumResultRegs = 1; 1286 } 1287 return true; 1288 } 1289 1290 bool MipsFastISel::fastLowerArguments() { 1291 DEBUG(dbgs() << "fastLowerArguments\n"); 1292 1293 if (!FuncInfo.CanLowerReturn) { 1294 DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n"); 1295 return false; 1296 } 1297 1298 const Function *F = FuncInfo.Fn; 1299 if (F->isVarArg()) { 1300 DEBUG(dbgs() << ".. gave up (varargs)\n"); 1301 return false; 1302 } 1303 1304 CallingConv::ID CC = F->getCallingConv(); 1305 if (CC != CallingConv::C) { 1306 DEBUG(dbgs() << ".. gave up (calling convention is not C)\n"); 1307 return false; 1308 } 1309 1310 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2, 1311 Mips::A3}}; 1312 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}}; 1313 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}}; 1314 auto NextGPR32 = GPR32ArgRegs.begin(); 1315 auto NextFGR32 = FGR32ArgRegs.begin(); 1316 auto NextAFGR64 = AFGR64ArgRegs.begin(); 1317 1318 struct AllocatedReg { 1319 const TargetRegisterClass *RC; 1320 unsigned Reg; 1321 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg) 1322 : RC(RC), Reg(Reg) {} 1323 }; 1324 1325 // Only handle simple cases. i.e. All arguments are directly mapped to 1326 // registers of the appropriate type. 1327 SmallVector<AllocatedReg, 4> Allocation; 1328 for (const auto &FormalArg : F->args()) { 1329 if (FormalArg.hasAttribute(Attribute::InReg) || 1330 FormalArg.hasAttribute(Attribute::StructRet) || 1331 FormalArg.hasAttribute(Attribute::ByVal)) { 1332 DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n"); 1333 return false; 1334 } 1335 1336 Type *ArgTy = FormalArg.getType(); 1337 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) { 1338 DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n"); 1339 return false; 1340 } 1341 1342 EVT ArgVT = TLI.getValueType(DL, ArgTy); 1343 DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": " 1344 << ArgVT.getEVTString() << "\n"); 1345 if (!ArgVT.isSimple()) { 1346 DEBUG(dbgs() << ".. .. gave up (not a simple type)\n"); 1347 return false; 1348 } 1349 1350 switch (ArgVT.getSimpleVT().SimpleTy) { 1351 case MVT::i1: 1352 case MVT::i8: 1353 case MVT::i16: 1354 if (!FormalArg.hasAttribute(Attribute::SExt) && 1355 !FormalArg.hasAttribute(Attribute::ZExt)) { 1356 // It must be any extend, this shouldn't happen for clang-generated IR 1357 // so just fall back on SelectionDAG. 1358 DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n"); 1359 return false; 1360 } 1361 1362 if (NextGPR32 == GPR32ArgRegs.end()) { 1363 DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1364 return false; 1365 } 1366 1367 DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1368 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1369 1370 // Allocating any GPR32 prohibits further use of floating point arguments. 1371 NextFGR32 = FGR32ArgRegs.end(); 1372 NextAFGR64 = AFGR64ArgRegs.end(); 1373 break; 1374 1375 case MVT::i32: 1376 if (FormalArg.hasAttribute(Attribute::ZExt)) { 1377 // The O32 ABI does not permit a zero-extended i32. 1378 DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n"); 1379 return false; 1380 } 1381 1382 if (NextGPR32 == GPR32ArgRegs.end()) { 1383 DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1384 return false; 1385 } 1386 1387 DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1388 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1389 1390 // Allocating any GPR32 prohibits further use of floating point arguments. 1391 NextFGR32 = FGR32ArgRegs.end(); 1392 NextAFGR64 = AFGR64ArgRegs.end(); 1393 break; 1394 1395 case MVT::f32: 1396 if (UnsupportedFPMode) { 1397 DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1398 return false; 1399 } 1400 if (NextFGR32 == FGR32ArgRegs.end()) { 1401 DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n"); 1402 return false; 1403 } 1404 DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n"); 1405 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++); 1406 // Allocating an FGR32 also allocates the super-register AFGR64, and 1407 // ABI rules require us to skip the corresponding GPR32. 1408 if (NextGPR32 != GPR32ArgRegs.end()) 1409 NextGPR32++; 1410 if (NextAFGR64 != AFGR64ArgRegs.end()) 1411 NextAFGR64++; 1412 break; 1413 1414 case MVT::f64: 1415 if (UnsupportedFPMode) { 1416 DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1417 return false; 1418 } 1419 if (NextAFGR64 == AFGR64ArgRegs.end()) { 1420 DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n"); 1421 return false; 1422 } 1423 DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n"); 1424 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++); 1425 // Allocating an FGR32 also allocates the super-register AFGR64, and 1426 // ABI rules require us to skip the corresponding GPR32 pair. 1427 if (NextGPR32 != GPR32ArgRegs.end()) 1428 NextGPR32++; 1429 if (NextGPR32 != GPR32ArgRegs.end()) 1430 NextGPR32++; 1431 if (NextFGR32 != FGR32ArgRegs.end()) 1432 NextFGR32++; 1433 break; 1434 1435 default: 1436 DEBUG(dbgs() << ".. .. gave up (unknown type)\n"); 1437 return false; 1438 } 1439 } 1440 1441 for (const auto &FormalArg : F->args()) { 1442 unsigned ArgNo = FormalArg.getArgNo(); 1443 unsigned SrcReg = Allocation[ArgNo].Reg; 1444 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC); 1445 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 1446 // Without this, EmitLiveInCopies may eliminate the livein if its only 1447 // use is a bitcast (which isn't turned into an instruction). 1448 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC); 1449 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1450 TII.get(TargetOpcode::COPY), ResultReg) 1451 .addReg(DstReg, getKillRegState(true)); 1452 updateValueMap(&FormalArg, ResultReg); 1453 } 1454 1455 // Calculate the size of the incoming arguments area. 1456 // We currently reject all the cases where this would be non-zero. 1457 unsigned IncomingArgSizeInBytes = 0; 1458 1459 // Account for the reserved argument area on ABI's that have one (O32). 1460 // It seems strange to do this on the caller side but it's necessary in 1461 // SelectionDAG's implementation. 1462 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC), 1463 IncomingArgSizeInBytes); 1464 1465 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes, 1466 false); 1467 1468 return true; 1469 } 1470 1471 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1472 CallingConv::ID CC = CLI.CallConv; 1473 bool IsTailCall = CLI.IsTailCall; 1474 bool IsVarArg = CLI.IsVarArg; 1475 const Value *Callee = CLI.Callee; 1476 MCSymbol *Symbol = CLI.Symbol; 1477 1478 // Do not handle FastCC. 1479 if (CC == CallingConv::Fast) 1480 return false; 1481 1482 // Allow SelectionDAG isel to handle tail calls. 1483 if (IsTailCall) 1484 return false; 1485 1486 // Let SDISel handle vararg functions. 1487 if (IsVarArg) 1488 return false; 1489 1490 // FIXME: Only handle *simple* calls for now. 1491 MVT RetVT; 1492 if (CLI.RetTy->isVoidTy()) 1493 RetVT = MVT::isVoid; 1494 else if (!isTypeSupported(CLI.RetTy, RetVT)) 1495 return false; 1496 1497 for (auto Flag : CLI.OutFlags) 1498 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal()) 1499 return false; 1500 1501 // Set up the argument vectors. 1502 SmallVector<MVT, 16> OutVTs; 1503 OutVTs.reserve(CLI.OutVals.size()); 1504 1505 for (auto *Val : CLI.OutVals) { 1506 MVT VT; 1507 if (!isTypeLegal(Val->getType(), VT) && 1508 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) 1509 return false; 1510 1511 // We don't handle vector parameters yet. 1512 if (VT.isVector() || VT.getSizeInBits() > 64) 1513 return false; 1514 1515 OutVTs.push_back(VT); 1516 } 1517 1518 Address Addr; 1519 if (!computeCallAddress(Callee, Addr)) 1520 return false; 1521 1522 // Handle the arguments now that we've gotten them. 1523 unsigned NumBytes; 1524 if (!processCallArgs(CLI, OutVTs, NumBytes)) 1525 return false; 1526 1527 if (!Addr.getGlobalValue()) 1528 return false; 1529 1530 // Issue the call. 1531 unsigned DestAddress; 1532 if (Symbol) 1533 DestAddress = materializeExternalCallSym(Symbol); 1534 else 1535 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32); 1536 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress); 1537 MachineInstrBuilder MIB = 1538 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR), 1539 Mips::RA).addReg(Mips::T9); 1540 1541 // Add implicit physical register uses to the call. 1542 for (auto Reg : CLI.OutRegs) 1543 MIB.addReg(Reg, RegState::Implicit); 1544 1545 // Add a register mask with the call-preserved registers. 1546 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 1547 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1548 1549 CLI.Call = MIB; 1550 1551 // Finish off the call including any return values. 1552 return finishCall(CLI, RetVT, NumBytes); 1553 } 1554 1555 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 1556 switch (II->getIntrinsicID()) { 1557 default: 1558 return false; 1559 case Intrinsic::bswap: { 1560 Type *RetTy = II->getCalledFunction()->getReturnType(); 1561 1562 MVT VT; 1563 if (!isTypeSupported(RetTy, VT)) 1564 return false; 1565 1566 unsigned SrcReg = getRegForValue(II->getOperand(0)); 1567 if (SrcReg == 0) 1568 return false; 1569 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1570 if (DestReg == 0) 1571 return false; 1572 if (VT == MVT::i16) { 1573 if (Subtarget->hasMips32r2()) { 1574 emitInst(Mips::WSBH, DestReg).addReg(SrcReg); 1575 updateValueMap(II, DestReg); 1576 return true; 1577 } else { 1578 unsigned TempReg[3]; 1579 for (int i = 0; i < 3; i++) { 1580 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1581 if (TempReg[i] == 0) 1582 return false; 1583 } 1584 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8); 1585 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8); 1586 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]); 1587 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF); 1588 updateValueMap(II, DestReg); 1589 return true; 1590 } 1591 } else if (VT == MVT::i32) { 1592 if (Subtarget->hasMips32r2()) { 1593 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1594 emitInst(Mips::WSBH, TempReg).addReg(SrcReg); 1595 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16); 1596 updateValueMap(II, DestReg); 1597 return true; 1598 } else { 1599 unsigned TempReg[8]; 1600 for (int i = 0; i < 8; i++) { 1601 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1602 if (TempReg[i] == 0) 1603 return false; 1604 } 1605 1606 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8); 1607 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24); 1608 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00); 1609 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]); 1610 1611 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00); 1612 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8); 1613 1614 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24); 1615 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]); 1616 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]); 1617 updateValueMap(II, DestReg); 1618 return true; 1619 } 1620 } 1621 return false; 1622 } 1623 case Intrinsic::memcpy: 1624 case Intrinsic::memmove: { 1625 const auto *MTI = cast<MemTransferInst>(II); 1626 // Don't handle volatile. 1627 if (MTI->isVolatile()) 1628 return false; 1629 if (!MTI->getLength()->getType()->isIntegerTy(32)) 1630 return false; 1631 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove"; 1632 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1); 1633 } 1634 case Intrinsic::memset: { 1635 const MemSetInst *MSI = cast<MemSetInst>(II); 1636 // Don't handle volatile. 1637 if (MSI->isVolatile()) 1638 return false; 1639 if (!MSI->getLength()->getType()->isIntegerTy(32)) 1640 return false; 1641 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); 1642 } 1643 } 1644 return false; 1645 } 1646 1647 bool MipsFastISel::selectRet(const Instruction *I) { 1648 const Function &F = *I->getParent()->getParent(); 1649 const ReturnInst *Ret = cast<ReturnInst>(I); 1650 1651 DEBUG(dbgs() << "selectRet\n"); 1652 1653 if (!FuncInfo.CanLowerReturn) 1654 return false; 1655 1656 // Build a list of return value registers. 1657 SmallVector<unsigned, 4> RetRegs; 1658 1659 if (Ret->getNumOperands() > 0) { 1660 CallingConv::ID CC = F.getCallingConv(); 1661 1662 // Do not handle FastCC. 1663 if (CC == CallingConv::Fast) 1664 return false; 1665 1666 SmallVector<ISD::OutputArg, 4> Outs; 1667 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1668 1669 // Analyze operands of the call, assigning locations to each operand. 1670 SmallVector<CCValAssign, 16> ValLocs; 1671 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, 1672 I->getContext()); 1673 CCAssignFn *RetCC = RetCC_Mips; 1674 CCInfo.AnalyzeReturn(Outs, RetCC); 1675 1676 // Only handle a single return value for now. 1677 if (ValLocs.size() != 1) 1678 return false; 1679 1680 CCValAssign &VA = ValLocs[0]; 1681 const Value *RV = Ret->getOperand(0); 1682 1683 // Don't bother handling odd stuff for now. 1684 if ((VA.getLocInfo() != CCValAssign::Full) && 1685 (VA.getLocInfo() != CCValAssign::BCvt)) 1686 return false; 1687 1688 // Only handle register returns for now. 1689 if (!VA.isRegLoc()) 1690 return false; 1691 1692 unsigned Reg = getRegForValue(RV); 1693 if (Reg == 0) 1694 return false; 1695 1696 unsigned SrcReg = Reg + VA.getValNo(); 1697 unsigned DestReg = VA.getLocReg(); 1698 // Avoid a cross-class copy. This is very unlikely. 1699 if (!MRI.getRegClass(SrcReg)->contains(DestReg)) 1700 return false; 1701 1702 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1703 if (!RVEVT.isSimple()) 1704 return false; 1705 1706 if (RVEVT.isVector()) 1707 return false; 1708 1709 MVT RVVT = RVEVT.getSimpleVT(); 1710 if (RVVT == MVT::f128) 1711 return false; 1712 1713 // Do not handle FGR64 returns for now. 1714 if (RVVT == MVT::f64 && UnsupportedFPMode) { 1715 DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n"); 1716 return false; 1717 } 1718 1719 MVT DestVT = VA.getValVT(); 1720 // Special handling for extended integers. 1721 if (RVVT != DestVT) { 1722 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 1723 return false; 1724 1725 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 1726 bool IsZExt = Outs[0].Flags.isZExt(); 1727 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt); 1728 if (SrcReg == 0) 1729 return false; 1730 } 1731 } 1732 1733 // Make the copy. 1734 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1735 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); 1736 1737 // Add register to return instruction. 1738 RetRegs.push_back(VA.getLocReg()); 1739 } 1740 MachineInstrBuilder MIB = emitInst(Mips::RetRA); 1741 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1742 MIB.addReg(RetRegs[i], RegState::Implicit); 1743 return true; 1744 } 1745 1746 bool MipsFastISel::selectTrunc(const Instruction *I) { 1747 // The high bits for a type smaller than the register size are assumed to be 1748 // undefined. 1749 Value *Op = I->getOperand(0); 1750 1751 EVT SrcVT, DestVT; 1752 SrcVT = TLI.getValueType(DL, Op->getType(), true); 1753 DestVT = TLI.getValueType(DL, I->getType(), true); 1754 1755 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1756 return false; 1757 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1758 return false; 1759 1760 unsigned SrcReg = getRegForValue(Op); 1761 if (!SrcReg) 1762 return false; 1763 1764 // Because the high bits are undefined, a truncate doesn't generate 1765 // any code. 1766 updateValueMap(I, SrcReg); 1767 return true; 1768 } 1769 1770 bool MipsFastISel::selectIntExt(const Instruction *I) { 1771 Type *DestTy = I->getType(); 1772 Value *Src = I->getOperand(0); 1773 Type *SrcTy = Src->getType(); 1774 1775 bool isZExt = isa<ZExtInst>(I); 1776 unsigned SrcReg = getRegForValue(Src); 1777 if (!SrcReg) 1778 return false; 1779 1780 EVT SrcEVT, DestEVT; 1781 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1782 DestEVT = TLI.getValueType(DL, DestTy, true); 1783 if (!SrcEVT.isSimple()) 1784 return false; 1785 if (!DestEVT.isSimple()) 1786 return false; 1787 1788 MVT SrcVT = SrcEVT.getSimpleVT(); 1789 MVT DestVT = DestEVT.getSimpleVT(); 1790 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1791 1792 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt)) 1793 return false; 1794 updateValueMap(I, ResultReg); 1795 return true; 1796 } 1797 1798 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1799 unsigned DestReg) { 1800 unsigned ShiftAmt; 1801 switch (SrcVT.SimpleTy) { 1802 default: 1803 return false; 1804 case MVT::i8: 1805 ShiftAmt = 24; 1806 break; 1807 case MVT::i16: 1808 ShiftAmt = 16; 1809 break; 1810 } 1811 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1812 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt); 1813 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt); 1814 return true; 1815 } 1816 1817 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1818 unsigned DestReg) { 1819 switch (SrcVT.SimpleTy) { 1820 default: 1821 return false; 1822 case MVT::i8: 1823 emitInst(Mips::SEB, DestReg).addReg(SrcReg); 1824 break; 1825 case MVT::i16: 1826 emitInst(Mips::SEH, DestReg).addReg(SrcReg); 1827 break; 1828 } 1829 return true; 1830 } 1831 1832 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1833 unsigned DestReg) { 1834 if ((DestVT != MVT::i32) && (DestVT != MVT::i16)) 1835 return false; 1836 if (Subtarget->hasMips32r2()) 1837 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg); 1838 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg); 1839 } 1840 1841 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1842 unsigned DestReg) { 1843 int64_t Imm; 1844 1845 switch (SrcVT.SimpleTy) { 1846 default: 1847 return false; 1848 case MVT::i1: 1849 Imm = 1; 1850 break; 1851 case MVT::i8: 1852 Imm = 0xff; 1853 break; 1854 case MVT::i16: 1855 Imm = 0xffff; 1856 break; 1857 } 1858 1859 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm); 1860 return true; 1861 } 1862 1863 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1864 unsigned DestReg, bool IsZExt) { 1865 // FastISel does not have plumbing to deal with extensions where the SrcVT or 1866 // DestVT are odd things, so test to make sure that they are both types we can 1867 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise 1868 // bail out to SelectionDAG. 1869 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) || 1870 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16))) 1871 return false; 1872 if (IsZExt) 1873 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg); 1874 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg); 1875 } 1876 1877 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1878 bool isZExt) { 1879 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1880 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt); 1881 return Success ? DestReg : 0; 1882 } 1883 1884 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) { 1885 EVT DestEVT = TLI.getValueType(DL, I->getType(), true); 1886 if (!DestEVT.isSimple()) 1887 return false; 1888 1889 MVT DestVT = DestEVT.getSimpleVT(); 1890 if (DestVT != MVT::i32) 1891 return false; 1892 1893 unsigned DivOpc; 1894 switch (ISDOpcode) { 1895 default: 1896 return false; 1897 case ISD::SDIV: 1898 case ISD::SREM: 1899 DivOpc = Mips::SDIV; 1900 break; 1901 case ISD::UDIV: 1902 case ISD::UREM: 1903 DivOpc = Mips::UDIV; 1904 break; 1905 } 1906 1907 unsigned Src0Reg = getRegForValue(I->getOperand(0)); 1908 unsigned Src1Reg = getRegForValue(I->getOperand(1)); 1909 if (!Src0Reg || !Src1Reg) 1910 return false; 1911 1912 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg); 1913 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7); 1914 1915 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1916 if (!ResultReg) 1917 return false; 1918 1919 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM) 1920 ? Mips::MFHI 1921 : Mips::MFLO; 1922 emitInst(MFOpc, ResultReg); 1923 1924 updateValueMap(I, ResultReg); 1925 return true; 1926 } 1927 1928 bool MipsFastISel::selectShift(const Instruction *I) { 1929 MVT RetVT; 1930 1931 if (!isTypeSupported(I->getType(), RetVT)) 1932 return false; 1933 1934 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1935 if (!ResultReg) 1936 return false; 1937 1938 unsigned Opcode = I->getOpcode(); 1939 const Value *Op0 = I->getOperand(0); 1940 unsigned Op0Reg = getRegForValue(Op0); 1941 if (!Op0Reg) 1942 return false; 1943 1944 // If AShr or LShr, then we need to make sure the operand0 is sign extended. 1945 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) { 1946 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1947 if (!TempReg) 1948 return false; 1949 1950 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT(); 1951 bool IsZExt = Opcode == Instruction::LShr; 1952 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt)) 1953 return false; 1954 1955 Op0Reg = TempReg; 1956 } 1957 1958 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) { 1959 uint64_t ShiftVal = C->getZExtValue(); 1960 1961 switch (Opcode) { 1962 default: 1963 llvm_unreachable("Unexpected instruction."); 1964 case Instruction::Shl: 1965 Opcode = Mips::SLL; 1966 break; 1967 case Instruction::AShr: 1968 Opcode = Mips::SRA; 1969 break; 1970 case Instruction::LShr: 1971 Opcode = Mips::SRL; 1972 break; 1973 } 1974 1975 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal); 1976 updateValueMap(I, ResultReg); 1977 return true; 1978 } 1979 1980 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1981 if (!Op1Reg) 1982 return false; 1983 1984 switch (Opcode) { 1985 default: 1986 llvm_unreachable("Unexpected instruction."); 1987 case Instruction::Shl: 1988 Opcode = Mips::SLLV; 1989 break; 1990 case Instruction::AShr: 1991 Opcode = Mips::SRAV; 1992 break; 1993 case Instruction::LShr: 1994 Opcode = Mips::SRLV; 1995 break; 1996 } 1997 1998 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg); 1999 updateValueMap(I, ResultReg); 2000 return true; 2001 } 2002 2003 bool MipsFastISel::fastSelectInstruction(const Instruction *I) { 2004 switch (I->getOpcode()) { 2005 default: 2006 break; 2007 case Instruction::Load: 2008 return selectLoad(I); 2009 case Instruction::Store: 2010 return selectStore(I); 2011 case Instruction::SDiv: 2012 if (!selectBinaryOp(I, ISD::SDIV)) 2013 return selectDivRem(I, ISD::SDIV); 2014 return true; 2015 case Instruction::UDiv: 2016 if (!selectBinaryOp(I, ISD::UDIV)) 2017 return selectDivRem(I, ISD::UDIV); 2018 return true; 2019 case Instruction::SRem: 2020 if (!selectBinaryOp(I, ISD::SREM)) 2021 return selectDivRem(I, ISD::SREM); 2022 return true; 2023 case Instruction::URem: 2024 if (!selectBinaryOp(I, ISD::UREM)) 2025 return selectDivRem(I, ISD::UREM); 2026 return true; 2027 case Instruction::Shl: 2028 case Instruction::LShr: 2029 case Instruction::AShr: 2030 return selectShift(I); 2031 case Instruction::And: 2032 case Instruction::Or: 2033 case Instruction::Xor: 2034 return selectLogicalOp(I); 2035 case Instruction::Br: 2036 return selectBranch(I); 2037 case Instruction::Ret: 2038 return selectRet(I); 2039 case Instruction::Trunc: 2040 return selectTrunc(I); 2041 case Instruction::ZExt: 2042 case Instruction::SExt: 2043 return selectIntExt(I); 2044 case Instruction::FPTrunc: 2045 return selectFPTrunc(I); 2046 case Instruction::FPExt: 2047 return selectFPExt(I); 2048 case Instruction::FPToSI: 2049 return selectFPToInt(I, /*isSigned*/ true); 2050 case Instruction::FPToUI: 2051 return selectFPToInt(I, /*isSigned*/ false); 2052 case Instruction::ICmp: 2053 case Instruction::FCmp: 2054 return selectCmp(I); 2055 case Instruction::Select: 2056 return selectSelect(I); 2057 } 2058 return false; 2059 } 2060 2061 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V, 2062 bool IsUnsigned) { 2063 unsigned VReg = getRegForValue(V); 2064 if (VReg == 0) 2065 return 0; 2066 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT(); 2067 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) { 2068 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 2069 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned)) 2070 return 0; 2071 VReg = TempReg; 2072 } 2073 return VReg; 2074 } 2075 2076 void MipsFastISel::simplifyAddress(Address &Addr) { 2077 if (!isInt<16>(Addr.getOffset())) { 2078 unsigned TempReg = 2079 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass); 2080 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 2081 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg()); 2082 Addr.setReg(DestReg); 2083 Addr.setOffset(0); 2084 } 2085 } 2086 2087 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2088 const TargetRegisterClass *RC, 2089 unsigned Op0, bool Op0IsKill, 2090 unsigned Op1, bool Op1IsKill) { 2091 // We treat the MUL instruction in a special way because it clobbers 2092 // the HI0 & LO0 registers. The TableGen definition of this instruction can 2093 // mark these registers only as implicitly defined. As a result, the 2094 // register allocator runs out of registers when this instruction is 2095 // followed by another instruction that defines the same registers too. 2096 // We can fix this by explicitly marking those registers as dead. 2097 if (MachineInstOpcode == Mips::MUL) { 2098 unsigned ResultReg = createResultReg(RC); 2099 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2100 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2101 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2103 .addReg(Op0, getKillRegState(Op0IsKill)) 2104 .addReg(Op1, getKillRegState(Op1IsKill)) 2105 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead) 2106 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead); 2107 return ResultReg; 2108 } 2109 2110 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1, 2111 Op1IsKill); 2112 } 2113 2114 namespace llvm { 2115 2116 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo, 2117 const TargetLibraryInfo *libInfo) { 2118 return new MipsFastISel(funcInfo, libInfo); 2119 } 2120 2121 } // end namespace llvm 2122