1 //===-- MipsastISel.cpp - Mips FastISel implementation
2 //---------------------===//
3 
4 #include "MipsCCState.h"
5 #include "MipsInstrInfo.h"
6 #include "MipsISelLowering.h"
7 #include "MipsMachineFunction.h"
8 #include "MipsRegisterInfo.h"
9 #include "MipsSubtarget.h"
10 #include "MipsTargetMachine.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/CodeGen/FastISel.h"
13 #include "llvm/CodeGen/FunctionLoweringInfo.h"
14 #include "llvm/CodeGen/MachineInstrBuilder.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/IR/GetElementPtrTypeIterator.h"
17 #include "llvm/IR/GlobalAlias.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/MC/MCSymbol.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 
22 using namespace llvm;
23 
24 namespace {
25 
26 class MipsFastISel final : public FastISel {
27 
28   // All possible address modes.
29   class Address {
30   public:
31     typedef enum { RegBase, FrameIndexBase } BaseKind;
32 
33   private:
34     BaseKind Kind;
35     union {
36       unsigned Reg;
37       int FI;
38     } Base;
39 
40     int64_t Offset;
41 
42     const GlobalValue *GV;
43 
44   public:
45     // Innocuous defaults for our address.
46     Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; }
47     void setKind(BaseKind K) { Kind = K; }
48     BaseKind getKind() const { return Kind; }
49     bool isRegBase() const { return Kind == RegBase; }
50     bool isFIBase() const { return Kind == FrameIndexBase; }
51     void setReg(unsigned Reg) {
52       assert(isRegBase() && "Invalid base register access!");
53       Base.Reg = Reg;
54     }
55     unsigned getReg() const {
56       assert(isRegBase() && "Invalid base register access!");
57       return Base.Reg;
58     }
59     void setFI(unsigned FI) {
60       assert(isFIBase() && "Invalid base frame index access!");
61       Base.FI = FI;
62     }
63     unsigned getFI() const {
64       assert(isFIBase() && "Invalid base frame index access!");
65       return Base.FI;
66     }
67 
68     void setOffset(int64_t Offset_) { Offset = Offset_; }
69     int64_t getOffset() const { return Offset; }
70     void setGlobalValue(const GlobalValue *G) { GV = G; }
71     const GlobalValue *getGlobalValue() { return GV; }
72   };
73 
74   /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
75   /// make the right decision when generating code for different targets.
76   const TargetMachine &TM;
77   const MipsSubtarget *Subtarget;
78   const TargetInstrInfo &TII;
79   const TargetLowering &TLI;
80   MipsFunctionInfo *MFI;
81 
82   // Convenience variables to avoid some queries.
83   LLVMContext *Context;
84 
85   bool fastLowerCall(CallLoweringInfo &CLI) override;
86   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
87 
88   bool TargetSupported;
89   bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
90   // floating point but not reject doing fast-isel in other
91   // situations
92 
93 private:
94   // Selection routines.
95   bool selectLogicalOp(const Instruction *I);
96   bool selectLoad(const Instruction *I);
97   bool selectStore(const Instruction *I);
98   bool selectBranch(const Instruction *I);
99   bool selectSelect(const Instruction *I);
100   bool selectCmp(const Instruction *I);
101   bool selectFPExt(const Instruction *I);
102   bool selectFPTrunc(const Instruction *I);
103   bool selectFPToInt(const Instruction *I, bool IsSigned);
104   bool selectRet(const Instruction *I);
105   bool selectTrunc(const Instruction *I);
106   bool selectIntExt(const Instruction *I);
107   bool selectShift(const Instruction *I);
108   bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
109 
110   // Utility helper routines.
111   bool isTypeLegal(Type *Ty, MVT &VT);
112   bool isTypeSupported(Type *Ty, MVT &VT);
113   bool isLoadTypeLegal(Type *Ty, MVT &VT);
114   bool computeAddress(const Value *Obj, Address &Addr);
115   bool computeCallAddress(const Value *V, Address &Addr);
116   void simplifyAddress(Address &Addr);
117 
118   // Emit helper routines.
119   bool emitCmp(unsigned DestReg, const CmpInst *CI);
120   bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
121                 unsigned Alignment = 0);
122   bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
123                  MachineMemOperand *MMO = nullptr);
124   bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
125                  unsigned Alignment = 0);
126   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
127   bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
128 
129                   bool IsZExt);
130   bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
131 
132   bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
133   bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
134                        unsigned DestReg);
135   bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
136                        unsigned DestReg);
137 
138   unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
139 
140   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
141                          const Value *RHS);
142 
143   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
144   unsigned materializeGV(const GlobalValue *GV, MVT VT);
145   unsigned materializeInt(const Constant *C, MVT VT);
146   unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
147   unsigned materializeExternalCallSym(MCSymbol *Syn);
148 
149   MachineInstrBuilder emitInst(unsigned Opc) {
150     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
151   }
152   MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
153     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
154                    DstReg);
155   }
156   MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
157                                     unsigned MemReg, int64_t MemOffset) {
158     return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
159   }
160   MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
161                                    unsigned MemReg, int64_t MemOffset) {
162     return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
163   }
164 
165   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
166                            const TargetRegisterClass *RC,
167                            unsigned Op0, bool Op0IsKill,
168                            unsigned Op1, bool Op1IsKill);
169 
170   // for some reason, this default is not generated by tablegen
171   // so we explicitly generate it here.
172   //
173   unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
174                              unsigned Op0, bool Op0IsKill, uint64_t imm1,
175                              uint64_t imm2, unsigned Op3, bool Op3IsKill) {
176     return 0;
177   }
178 
179   // Call handling routines.
180 private:
181   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
182   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
183                        unsigned &NumBytes);
184   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
185 
186 public:
187   // Backend specific FastISel code.
188   explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
189                         const TargetLibraryInfo *libInfo)
190       : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
191         Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
192         TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
193     MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
194     Context = &funcInfo.Fn->getContext();
195     bool ISASupported = !Subtarget->hasMips32r6() &&
196                         !Subtarget->inMicroMipsMode() && Subtarget->hasMips32();
197     TargetSupported =
198         ISASupported && (TM.getRelocationModel() == Reloc::PIC_) &&
199         (static_cast<const MipsTargetMachine &>(TM).getABI().IsO32());
200     UnsupportedFPMode = Subtarget->isFP64bit();
201   }
202 
203   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
204   unsigned fastMaterializeConstant(const Constant *C) override;
205   bool fastSelectInstruction(const Instruction *I) override;
206 
207 #include "MipsGenFastISel.inc"
208 };
209 } // end anonymous namespace.
210 
211 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
212                     CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
213                     CCState &State) LLVM_ATTRIBUTE_UNUSED;
214 
215 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
216                             CCValAssign::LocInfo LocInfo,
217                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
218   llvm_unreachable("should not be called");
219 }
220 
221 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
222                             CCValAssign::LocInfo LocInfo,
223                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
224   llvm_unreachable("should not be called");
225 }
226 
227 #include "MipsGenCallingConv.inc"
228 
229 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
230   return CC_MipsO32;
231 }
232 
233 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
234                                      const Value *LHS, const Value *RHS) {
235   // Canonicalize immediates to the RHS first.
236   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
237     std::swap(LHS, RHS);
238 
239   unsigned Opc;
240   switch (ISDOpc) {
241   case ISD::AND:
242     Opc = Mips::AND;
243     break;
244   case ISD::OR:
245     Opc = Mips::OR;
246     break;
247   case ISD::XOR:
248     Opc = Mips::XOR;
249     break;
250   default:
251     llvm_unreachable("unexpected opcode");
252   }
253 
254   unsigned LHSReg = getRegForValue(LHS);
255   if (!LHSReg)
256     return 0;
257 
258   unsigned RHSReg;
259   if (const auto *C = dyn_cast<ConstantInt>(RHS))
260     RHSReg = materializeInt(C, MVT::i32);
261   else
262     RHSReg = getRegForValue(RHS);
263   if (!RHSReg)
264     return 0;
265 
266   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
267   if (!ResultReg)
268     return 0;
269 
270   emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
271   return ResultReg;
272 }
273 
274 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
275   if (!TargetSupported)
276     return 0;
277 
278   assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
279          "Alloca should always return a pointer.");
280 
281   DenseMap<const AllocaInst *, int>::iterator SI =
282       FuncInfo.StaticAllocaMap.find(AI);
283 
284   if (SI != FuncInfo.StaticAllocaMap.end()) {
285     unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
286     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
287             ResultReg)
288         .addFrameIndex(SI->second)
289         .addImm(0);
290     return ResultReg;
291   }
292 
293   return 0;
294 }
295 
296 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
297   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
298     return 0;
299   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
300   const ConstantInt *CI = cast<ConstantInt>(C);
301   return materialize32BitInt(CI->getZExtValue(), RC);
302 }
303 
304 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
305                                            const TargetRegisterClass *RC) {
306   unsigned ResultReg = createResultReg(RC);
307 
308   if (isInt<16>(Imm)) {
309     unsigned Opc = Mips::ADDiu;
310     emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
311     return ResultReg;
312   } else if (isUInt<16>(Imm)) {
313     emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
314     return ResultReg;
315   }
316   unsigned Lo = Imm & 0xFFFF;
317   unsigned Hi = (Imm >> 16) & 0xFFFF;
318   if (Lo) {
319     // Both Lo and Hi have nonzero bits.
320     unsigned TmpReg = createResultReg(RC);
321     emitInst(Mips::LUi, TmpReg).addImm(Hi);
322     emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
323   } else {
324     emitInst(Mips::LUi, ResultReg).addImm(Hi);
325   }
326   return ResultReg;
327 }
328 
329 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
330   if (UnsupportedFPMode)
331     return 0;
332   int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
333   if (VT == MVT::f32) {
334     const TargetRegisterClass *RC = &Mips::FGR32RegClass;
335     unsigned DestReg = createResultReg(RC);
336     unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
337     emitInst(Mips::MTC1, DestReg).addReg(TempReg);
338     return DestReg;
339   } else if (VT == MVT::f64) {
340     const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
341     unsigned DestReg = createResultReg(RC);
342     unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
343     unsigned TempReg2 =
344         materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
345     emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
346     return DestReg;
347   }
348   return 0;
349 }
350 
351 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
352   // For now 32-bit only.
353   if (VT != MVT::i32)
354     return 0;
355   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
356   unsigned DestReg = createResultReg(RC);
357   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
358   bool IsThreadLocal = GVar && GVar->isThreadLocal();
359   // TLS not supported at this time.
360   if (IsThreadLocal)
361     return 0;
362   emitInst(Mips::LW, DestReg)
363       .addReg(MFI->getGlobalBaseReg())
364       .addGlobalAddress(GV, 0, MipsII::MO_GOT);
365   if ((GV->hasInternalLinkage() ||
366        (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
367     unsigned TempReg = createResultReg(RC);
368     emitInst(Mips::ADDiu, TempReg)
369         .addReg(DestReg)
370         .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
371     DestReg = TempReg;
372   }
373   return DestReg;
374 }
375 
376 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
377   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
378   unsigned DestReg = createResultReg(RC);
379   emitInst(Mips::LW, DestReg)
380       .addReg(MFI->getGlobalBaseReg())
381       .addSym(Sym, MipsII::MO_GOT);
382   return DestReg;
383 }
384 
385 // Materialize a constant into a register, and return the register
386 // number (or zero if we failed to handle it).
387 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
388   if (!TargetSupported)
389     return 0;
390 
391   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
392 
393   // Only handle simple types.
394   if (!CEVT.isSimple())
395     return 0;
396   MVT VT = CEVT.getSimpleVT();
397 
398   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
399     return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
400   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
401     return materializeGV(GV, VT);
402   else if (isa<ConstantInt>(C))
403     return materializeInt(C, VT);
404 
405   return 0;
406 }
407 
408 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
409 
410   const User *U = nullptr;
411   unsigned Opcode = Instruction::UserOp1;
412   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
413     // Don't walk into other basic blocks unless the object is an alloca from
414     // another block, otherwise it may not have a virtual register assigned.
415     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
416         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
417       Opcode = I->getOpcode();
418       U = I;
419     }
420   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
421     Opcode = C->getOpcode();
422     U = C;
423   }
424   switch (Opcode) {
425   default:
426     break;
427   case Instruction::BitCast: {
428     // Look through bitcasts.
429     return computeAddress(U->getOperand(0), Addr);
430   }
431   case Instruction::GetElementPtr: {
432     Address SavedAddr = Addr;
433     uint64_t TmpOffset = Addr.getOffset();
434     // Iterate through the GEP folding the constants into offsets where
435     // we can.
436     gep_type_iterator GTI = gep_type_begin(U);
437     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
438          ++i, ++GTI) {
439       const Value *Op = *i;
440       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
441         const StructLayout *SL = DL.getStructLayout(STy);
442         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
443         TmpOffset += SL->getElementOffset(Idx);
444       } else {
445         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
446         for (;;) {
447           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
448             // Constant-offset addressing.
449             TmpOffset += CI->getSExtValue() * S;
450             break;
451           }
452           if (canFoldAddIntoGEP(U, Op)) {
453             // A compatible add with a constant operand. Fold the constant.
454             ConstantInt *CI =
455                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
456             TmpOffset += CI->getSExtValue() * S;
457             // Iterate on the other operand.
458             Op = cast<AddOperator>(Op)->getOperand(0);
459             continue;
460           }
461           // Unsupported
462           goto unsupported_gep;
463         }
464       }
465     }
466     // Try to grab the base operand now.
467     Addr.setOffset(TmpOffset);
468     if (computeAddress(U->getOperand(0), Addr))
469       return true;
470     // We failed, restore everything and try the other options.
471     Addr = SavedAddr;
472   unsupported_gep:
473     break;
474   }
475   case Instruction::Alloca: {
476     const AllocaInst *AI = cast<AllocaInst>(Obj);
477     DenseMap<const AllocaInst *, int>::iterator SI =
478         FuncInfo.StaticAllocaMap.find(AI);
479     if (SI != FuncInfo.StaticAllocaMap.end()) {
480       Addr.setKind(Address::FrameIndexBase);
481       Addr.setFI(SI->second);
482       return true;
483     }
484     break;
485   }
486   }
487   Addr.setReg(getRegForValue(Obj));
488   return Addr.getReg() != 0;
489 }
490 
491 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
492   const User *U = nullptr;
493   unsigned Opcode = Instruction::UserOp1;
494 
495   if (const auto *I = dyn_cast<Instruction>(V)) {
496     // Check if the value is defined in the same basic block. This information
497     // is crucial to know whether or not folding an operand is valid.
498     if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
499       Opcode = I->getOpcode();
500       U = I;
501     }
502   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
503     Opcode = C->getOpcode();
504     U = C;
505   }
506 
507   switch (Opcode) {
508   default:
509     break;
510   case Instruction::BitCast:
511     // Look past bitcasts if its operand is in the same BB.
512       return computeCallAddress(U->getOperand(0), Addr);
513     break;
514   case Instruction::IntToPtr:
515     // Look past no-op inttoptrs if its operand is in the same BB.
516     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
517         TLI.getPointerTy(DL))
518       return computeCallAddress(U->getOperand(0), Addr);
519     break;
520   case Instruction::PtrToInt:
521     // Look past no-op ptrtoints if its operand is in the same BB.
522     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
523       return computeCallAddress(U->getOperand(0), Addr);
524     break;
525   }
526 
527   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
528     Addr.setGlobalValue(GV);
529     return true;
530   }
531 
532   // If all else fails, try to materialize the value in a register.
533   if (!Addr.getGlobalValue()) {
534     Addr.setReg(getRegForValue(V));
535     return Addr.getReg() != 0;
536   }
537 
538   return false;
539 }
540 
541 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
542   EVT evt = TLI.getValueType(DL, Ty, true);
543   // Only handle simple types.
544   if (evt == MVT::Other || !evt.isSimple())
545     return false;
546   VT = evt.getSimpleVT();
547 
548   // Handle all legal types, i.e. a register that will directly hold this
549   // value.
550   return TLI.isTypeLegal(VT);
551 }
552 
553 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
554   if (Ty->isVectorTy())
555     return false;
556 
557   if (isTypeLegal(Ty, VT))
558     return true;
559 
560   // If this is a type than can be sign or zero-extended to a basic operation
561   // go ahead and accept it now.
562   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
563     return true;
564 
565   return false;
566 }
567 
568 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
569   if (isTypeLegal(Ty, VT))
570     return true;
571   // We will extend this in a later patch:
572   //   If this is a type than can be sign or zero-extended to a basic operation
573   //   go ahead and accept it now.
574   if (VT == MVT::i8 || VT == MVT::i16)
575     return true;
576   return false;
577 }
578 // Because of how EmitCmp is called with fast-isel, you can
579 // end up with redundant "andi" instructions after the sequences emitted below.
580 // We should try and solve this issue in the future.
581 //
582 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
583   const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
584   bool IsUnsigned = CI->isUnsigned();
585   unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
586   if (LeftReg == 0)
587     return false;
588   unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
589   if (RightReg == 0)
590     return false;
591   CmpInst::Predicate P = CI->getPredicate();
592 
593   switch (P) {
594   default:
595     return false;
596   case CmpInst::ICMP_EQ: {
597     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
598     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
599     emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
600     break;
601   }
602   case CmpInst::ICMP_NE: {
603     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
604     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
605     emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
606     break;
607   }
608   case CmpInst::ICMP_UGT: {
609     emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
610     break;
611   }
612   case CmpInst::ICMP_ULT: {
613     emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
614     break;
615   }
616   case CmpInst::ICMP_UGE: {
617     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
618     emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
619     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
620     break;
621   }
622   case CmpInst::ICMP_ULE: {
623     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
624     emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
625     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
626     break;
627   }
628   case CmpInst::ICMP_SGT: {
629     emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
630     break;
631   }
632   case CmpInst::ICMP_SLT: {
633     emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
634     break;
635   }
636   case CmpInst::ICMP_SGE: {
637     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
638     emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
639     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
640     break;
641   }
642   case CmpInst::ICMP_SLE: {
643     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
644     emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
645     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
646     break;
647   }
648   case CmpInst::FCMP_OEQ:
649   case CmpInst::FCMP_UNE:
650   case CmpInst::FCMP_OLT:
651   case CmpInst::FCMP_OLE:
652   case CmpInst::FCMP_OGT:
653   case CmpInst::FCMP_OGE: {
654     if (UnsupportedFPMode)
655       return false;
656     bool IsFloat = Left->getType()->isFloatTy();
657     bool IsDouble = Left->getType()->isDoubleTy();
658     if (!IsFloat && !IsDouble)
659       return false;
660     unsigned Opc, CondMovOpc;
661     switch (P) {
662     case CmpInst::FCMP_OEQ:
663       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
664       CondMovOpc = Mips::MOVT_I;
665       break;
666     case CmpInst::FCMP_UNE:
667       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
668       CondMovOpc = Mips::MOVF_I;
669       break;
670     case CmpInst::FCMP_OLT:
671       Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
672       CondMovOpc = Mips::MOVT_I;
673       break;
674     case CmpInst::FCMP_OLE:
675       Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
676       CondMovOpc = Mips::MOVT_I;
677       break;
678     case CmpInst::FCMP_OGT:
679       Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
680       CondMovOpc = Mips::MOVF_I;
681       break;
682     case CmpInst::FCMP_OGE:
683       Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
684       CondMovOpc = Mips::MOVF_I;
685       break;
686     default:
687       llvm_unreachable("Only switching of a subset of CCs.");
688     }
689     unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
690     unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
691     emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
692     emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
693     emitInst(Opc).addReg(LeftReg).addReg(RightReg).addReg(
694         Mips::FCC0, RegState::ImplicitDefine);
695     MachineInstrBuilder MI = emitInst(CondMovOpc, ResultReg)
696                                  .addReg(RegWithOne)
697                                  .addReg(Mips::FCC0)
698                                  .addReg(RegWithZero, RegState::Implicit);
699     MI->tieOperands(0, 3);
700     break;
701   }
702   }
703   return true;
704 }
705 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
706                             unsigned Alignment) {
707   //
708   // more cases will be handled here in following patches.
709   //
710   unsigned Opc;
711   switch (VT.SimpleTy) {
712   case MVT::i32: {
713     ResultReg = createResultReg(&Mips::GPR32RegClass);
714     Opc = Mips::LW;
715     break;
716   }
717   case MVT::i16: {
718     ResultReg = createResultReg(&Mips::GPR32RegClass);
719     Opc = Mips::LHu;
720     break;
721   }
722   case MVT::i8: {
723     ResultReg = createResultReg(&Mips::GPR32RegClass);
724     Opc = Mips::LBu;
725     break;
726   }
727   case MVT::f32: {
728     if (UnsupportedFPMode)
729       return false;
730     ResultReg = createResultReg(&Mips::FGR32RegClass);
731     Opc = Mips::LWC1;
732     break;
733   }
734   case MVT::f64: {
735     if (UnsupportedFPMode)
736       return false;
737     ResultReg = createResultReg(&Mips::AFGR64RegClass);
738     Opc = Mips::LDC1;
739     break;
740   }
741   default:
742     return false;
743   }
744   if (Addr.isRegBase()) {
745     simplifyAddress(Addr);
746     emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
747     return true;
748   }
749   if (Addr.isFIBase()) {
750     unsigned FI = Addr.getFI();
751     unsigned Align = 4;
752     unsigned Offset = Addr.getOffset();
753     MachineFrameInfo &MFI = *MF->getFrameInfo();
754     MachineMemOperand *MMO = MF->getMachineMemOperand(
755         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
756         MFI.getObjectSize(FI), Align);
757     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
758         .addFrameIndex(FI)
759         .addImm(Offset)
760         .addMemOperand(MMO);
761     return true;
762   }
763   return false;
764 }
765 
766 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
767                              unsigned Alignment) {
768   //
769   // more cases will be handled here in following patches.
770   //
771   unsigned Opc;
772   switch (VT.SimpleTy) {
773   case MVT::i8:
774     Opc = Mips::SB;
775     break;
776   case MVT::i16:
777     Opc = Mips::SH;
778     break;
779   case MVT::i32:
780     Opc = Mips::SW;
781     break;
782   case MVT::f32:
783     if (UnsupportedFPMode)
784       return false;
785     Opc = Mips::SWC1;
786     break;
787   case MVT::f64:
788     if (UnsupportedFPMode)
789       return false;
790     Opc = Mips::SDC1;
791     break;
792   default:
793     return false;
794   }
795   if (Addr.isRegBase()) {
796     simplifyAddress(Addr);
797     emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
798     return true;
799   }
800   if (Addr.isFIBase()) {
801     unsigned FI = Addr.getFI();
802     unsigned Align = 4;
803     unsigned Offset = Addr.getOffset();
804     MachineFrameInfo &MFI = *MF->getFrameInfo();
805     MachineMemOperand *MMO = MF->getMachineMemOperand(
806         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
807         MFI.getObjectSize(FI), Align);
808     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
809         .addReg(SrcReg)
810         .addFrameIndex(FI)
811         .addImm(Offset)
812         .addMemOperand(MMO);
813     return true;
814   }
815   return false;
816 }
817 
818 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
819   MVT VT;
820   if (!isTypeSupported(I->getType(), VT))
821     return false;
822 
823   unsigned ResultReg;
824   switch (I->getOpcode()) {
825   default:
826     llvm_unreachable("Unexpected instruction.");
827   case Instruction::And:
828     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
829     break;
830   case Instruction::Or:
831     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
832     break;
833   case Instruction::Xor:
834     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
835     break;
836   }
837 
838   if (!ResultReg)
839     return false;
840 
841   updateValueMap(I, ResultReg);
842   return true;
843 }
844 
845 bool MipsFastISel::selectLoad(const Instruction *I) {
846   // Atomic loads need special handling.
847   if (cast<LoadInst>(I)->isAtomic())
848     return false;
849 
850   // Verify we have a legal type before going any further.
851   MVT VT;
852   if (!isLoadTypeLegal(I->getType(), VT))
853     return false;
854 
855   // See if we can handle this address.
856   Address Addr;
857   if (!computeAddress(I->getOperand(0), Addr))
858     return false;
859 
860   unsigned ResultReg;
861   if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
862     return false;
863   updateValueMap(I, ResultReg);
864   return true;
865 }
866 
867 bool MipsFastISel::selectStore(const Instruction *I) {
868   Value *Op0 = I->getOperand(0);
869   unsigned SrcReg = 0;
870 
871   // Atomic stores need special handling.
872   if (cast<StoreInst>(I)->isAtomic())
873     return false;
874 
875   // Verify we have a legal type before going any further.
876   MVT VT;
877   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
878     return false;
879 
880   // Get the value to be stored into a register.
881   SrcReg = getRegForValue(Op0);
882   if (SrcReg == 0)
883     return false;
884 
885   // See if we can handle this address.
886   Address Addr;
887   if (!computeAddress(I->getOperand(1), Addr))
888     return false;
889 
890   if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
891     return false;
892   return true;
893 }
894 
895 //
896 // This can cause a redundant sltiu to be generated.
897 // FIXME: try and eliminate this in a future patch.
898 //
899 bool MipsFastISel::selectBranch(const Instruction *I) {
900   const BranchInst *BI = cast<BranchInst>(I);
901   MachineBasicBlock *BrBB = FuncInfo.MBB;
902   //
903   // TBB is the basic block for the case where the comparison is true.
904   // FBB is the basic block for the case where the comparison is false.
905   // if (cond) goto TBB
906   // goto FBB
907   // TBB:
908   //
909   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
910   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
911   BI->getCondition();
912   // For now, just try the simplest case where it's fed by a compare.
913   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
914     unsigned CondReg = createResultReg(&Mips::GPR32RegClass);
915     if (!emitCmp(CondReg, CI))
916       return false;
917     BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
918         .addReg(CondReg)
919         .addMBB(TBB);
920     finishCondBranch(BI->getParent(), TBB, FBB);
921     return true;
922   }
923   return false;
924 }
925 
926 bool MipsFastISel::selectCmp(const Instruction *I) {
927   const CmpInst *CI = cast<CmpInst>(I);
928   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
929   if (!emitCmp(ResultReg, CI))
930     return false;
931   updateValueMap(I, ResultReg);
932   return true;
933 }
934 
935 // Attempt to fast-select a floating-point extend instruction.
936 bool MipsFastISel::selectFPExt(const Instruction *I) {
937   if (UnsupportedFPMode)
938     return false;
939   Value *Src = I->getOperand(0);
940   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
941   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
942 
943   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
944     return false;
945 
946   unsigned SrcReg =
947       getRegForValue(Src); // his must be a 32 bit floating point register class
948                            // maybe we should handle this differently
949   if (!SrcReg)
950     return false;
951 
952   unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
953   emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
954   updateValueMap(I, DestReg);
955   return true;
956 }
957 
958 bool MipsFastISel::selectSelect(const Instruction *I) {
959   assert(isa<SelectInst>(I) && "Expected a select instruction.");
960 
961   MVT VT;
962   if (!isTypeSupported(I->getType(), VT))
963     return false;
964 
965   unsigned CondMovOpc;
966   const TargetRegisterClass *RC;
967 
968   if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
969     CondMovOpc = Mips::MOVN_I_I;
970     RC = &Mips::GPR32RegClass;
971   } else if (VT == MVT::f32) {
972     CondMovOpc = Mips::MOVN_I_S;
973     RC = &Mips::FGR32RegClass;
974   } else if (VT == MVT::f64) {
975     CondMovOpc = Mips::MOVN_I_D32;
976     RC = &Mips::AFGR64RegClass;
977   } else
978     return false;
979 
980   const SelectInst *SI = cast<SelectInst>(I);
981   const Value *Cond = SI->getCondition();
982   unsigned Src1Reg = getRegForValue(SI->getTrueValue());
983   unsigned Src2Reg = getRegForValue(SI->getFalseValue());
984   unsigned CondReg = getRegForValue(Cond);
985 
986   if (!Src1Reg || !Src2Reg || !CondReg)
987     return false;
988 
989   unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
990   if (!ZExtCondReg)
991     return false;
992 
993   if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
994     return false;
995 
996   unsigned ResultReg = createResultReg(RC);
997   unsigned TempReg = createResultReg(RC);
998 
999   if (!ResultReg || !TempReg)
1000     return false;
1001 
1002   emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1003   emitInst(CondMovOpc, ResultReg)
1004     .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1005   updateValueMap(I, ResultReg);
1006   return true;
1007 }
1008 
1009 // Attempt to fast-select a floating-point truncate instruction.
1010 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1011   if (UnsupportedFPMode)
1012     return false;
1013   Value *Src = I->getOperand(0);
1014   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1015   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1016 
1017   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1018     return false;
1019 
1020   unsigned SrcReg = getRegForValue(Src);
1021   if (!SrcReg)
1022     return false;
1023 
1024   unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1025   if (!DestReg)
1026     return false;
1027 
1028   emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1029   updateValueMap(I, DestReg);
1030   return true;
1031 }
1032 
1033 // Attempt to fast-select a floating-point-to-integer conversion.
1034 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1035   if (UnsupportedFPMode)
1036     return false;
1037   MVT DstVT, SrcVT;
1038   if (!IsSigned)
1039     return false; // We don't handle this case yet. There is no native
1040                   // instruction for this but it can be synthesized.
1041   Type *DstTy = I->getType();
1042   if (!isTypeLegal(DstTy, DstVT))
1043     return false;
1044 
1045   if (DstVT != MVT::i32)
1046     return false;
1047 
1048   Value *Src = I->getOperand(0);
1049   Type *SrcTy = Src->getType();
1050   if (!isTypeLegal(SrcTy, SrcVT))
1051     return false;
1052 
1053   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1054     return false;
1055 
1056   unsigned SrcReg = getRegForValue(Src);
1057   if (SrcReg == 0)
1058     return false;
1059 
1060   // Determine the opcode for the conversion, which takes place
1061   // entirely within FPRs.
1062   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1063   unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1064   unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1065 
1066   // Generate the convert.
1067   emitInst(Opc, TempReg).addReg(SrcReg);
1068   emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1069 
1070   updateValueMap(I, DestReg);
1071   return true;
1072 }
1073 
1074 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1075                                    SmallVectorImpl<MVT> &OutVTs,
1076                                    unsigned &NumBytes) {
1077   CallingConv::ID CC = CLI.CallConv;
1078   SmallVector<CCValAssign, 16> ArgLocs;
1079   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1080   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1081   // Get a count of how many bytes are to be pushed on the stack.
1082   NumBytes = CCInfo.getNextStackOffset();
1083   // This is the minimum argument area used for A0-A3.
1084   if (NumBytes < 16)
1085     NumBytes = 16;
1086 
1087   emitInst(Mips::ADJCALLSTACKDOWN).addImm(16);
1088   // Process the args.
1089   MVT firstMVT;
1090   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1091     CCValAssign &VA = ArgLocs[i];
1092     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1093     MVT ArgVT = OutVTs[VA.getValNo()];
1094 
1095     if (i == 0) {
1096       firstMVT = ArgVT;
1097       if (ArgVT == MVT::f32) {
1098         VA.convertToReg(Mips::F12);
1099       } else if (ArgVT == MVT::f64) {
1100         VA.convertToReg(Mips::D6);
1101       }
1102     } else if (i == 1) {
1103       if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1104         if (ArgVT == MVT::f32) {
1105           VA.convertToReg(Mips::F14);
1106         } else if (ArgVT == MVT::f64) {
1107           VA.convertToReg(Mips::D7);
1108         }
1109       }
1110     }
1111     if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1112          (ArgVT == MVT::i8)) &&
1113         VA.isMemLoc()) {
1114       switch (VA.getLocMemOffset()) {
1115       case 0:
1116         VA.convertToReg(Mips::A0);
1117         break;
1118       case 4:
1119         VA.convertToReg(Mips::A1);
1120         break;
1121       case 8:
1122         VA.convertToReg(Mips::A2);
1123         break;
1124       case 12:
1125         VA.convertToReg(Mips::A3);
1126         break;
1127       default:
1128         break;
1129       }
1130     }
1131     unsigned ArgReg = getRegForValue(ArgVal);
1132     if (!ArgReg)
1133       return false;
1134 
1135     // Handle arg promotion: SExt, ZExt, AExt.
1136     switch (VA.getLocInfo()) {
1137     case CCValAssign::Full:
1138       break;
1139     case CCValAssign::AExt:
1140     case CCValAssign::SExt: {
1141       MVT DestVT = VA.getLocVT();
1142       MVT SrcVT = ArgVT;
1143       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1144       if (!ArgReg)
1145         return false;
1146       break;
1147     }
1148     case CCValAssign::ZExt: {
1149       MVT DestVT = VA.getLocVT();
1150       MVT SrcVT = ArgVT;
1151       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1152       if (!ArgReg)
1153         return false;
1154       break;
1155     }
1156     default:
1157       llvm_unreachable("Unknown arg promotion!");
1158     }
1159 
1160     // Now copy/store arg to correct locations.
1161     if (VA.isRegLoc() && !VA.needsCustom()) {
1162       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1163               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1164       CLI.OutRegs.push_back(VA.getLocReg());
1165     } else if (VA.needsCustom()) {
1166       llvm_unreachable("Mips does not use custom args.");
1167       return false;
1168     } else {
1169       //
1170       // FIXME: This path will currently return false. It was copied
1171       // from the AArch64 port and should be essentially fine for Mips too.
1172       // The work to finish up this path will be done in a follow-on patch.
1173       //
1174       assert(VA.isMemLoc() && "Assuming store on stack.");
1175       // Don't emit stores for undef values.
1176       if (isa<UndefValue>(ArgVal))
1177         continue;
1178 
1179       // Need to store on the stack.
1180       // FIXME: This alignment is incorrect but this path is disabled
1181       // for now (will return false). We need to determine the right alignment
1182       // based on the normal alignment for the underlying machine type.
1183       //
1184       unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1185 
1186       unsigned BEAlign = 0;
1187       if (ArgSize < 8 && !Subtarget->isLittle())
1188         BEAlign = 8 - ArgSize;
1189 
1190       Address Addr;
1191       Addr.setKind(Address::RegBase);
1192       Addr.setReg(Mips::SP);
1193       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1194 
1195       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1196       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1197           MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1198           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1199       (void)(MMO);
1200       // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1201       return false; // can't store on the stack yet.
1202     }
1203   }
1204 
1205   return true;
1206 }
1207 
1208 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1209                               unsigned NumBytes) {
1210   CallingConv::ID CC = CLI.CallConv;
1211   emitInst(Mips::ADJCALLSTACKUP).addImm(16);
1212   if (RetVT != MVT::isVoid) {
1213     SmallVector<CCValAssign, 16> RVLocs;
1214     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1215     CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips);
1216 
1217     // Only handle a single return value.
1218     if (RVLocs.size() != 1)
1219       return false;
1220     // Copy all of the result registers out of their specified physreg.
1221     MVT CopyVT = RVLocs[0].getValVT();
1222     // Special handling for extended integers.
1223     if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1224       CopyVT = MVT::i32;
1225 
1226     unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1227     if (!ResultReg)
1228       return false;
1229     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1230             TII.get(TargetOpcode::COPY),
1231             ResultReg).addReg(RVLocs[0].getLocReg());
1232     CLI.InRegs.push_back(RVLocs[0].getLocReg());
1233 
1234     CLI.ResultReg = ResultReg;
1235     CLI.NumResultRegs = 1;
1236   }
1237   return true;
1238 }
1239 
1240 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1241   if (!TargetSupported)
1242     return false;
1243 
1244   CallingConv::ID CC = CLI.CallConv;
1245   bool IsTailCall = CLI.IsTailCall;
1246   bool IsVarArg = CLI.IsVarArg;
1247   const Value *Callee = CLI.Callee;
1248   MCSymbol *Symbol = CLI.Symbol;
1249 
1250   // Do not handle FastCC.
1251   if (CC == CallingConv::Fast)
1252     return false;
1253 
1254   // Allow SelectionDAG isel to handle tail calls.
1255   if (IsTailCall)
1256     return false;
1257 
1258   // Let SDISel handle vararg functions.
1259   if (IsVarArg)
1260     return false;
1261 
1262   // FIXME: Only handle *simple* calls for now.
1263   MVT RetVT;
1264   if (CLI.RetTy->isVoidTy())
1265     RetVT = MVT::isVoid;
1266   else if (!isTypeSupported(CLI.RetTy, RetVT))
1267     return false;
1268 
1269   for (auto Flag : CLI.OutFlags)
1270     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1271       return false;
1272 
1273   // Set up the argument vectors.
1274   SmallVector<MVT, 16> OutVTs;
1275   OutVTs.reserve(CLI.OutVals.size());
1276 
1277   for (auto *Val : CLI.OutVals) {
1278     MVT VT;
1279     if (!isTypeLegal(Val->getType(), VT) &&
1280         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1281       return false;
1282 
1283     // We don't handle vector parameters yet.
1284     if (VT.isVector() || VT.getSizeInBits() > 64)
1285       return false;
1286 
1287     OutVTs.push_back(VT);
1288   }
1289 
1290   Address Addr;
1291   if (!computeCallAddress(Callee, Addr))
1292     return false;
1293 
1294   // Handle the arguments now that we've gotten them.
1295   unsigned NumBytes;
1296   if (!processCallArgs(CLI, OutVTs, NumBytes))
1297     return false;
1298 
1299   if (!Addr.getGlobalValue())
1300     return false;
1301 
1302   // Issue the call.
1303   unsigned DestAddress;
1304   if (Symbol)
1305     DestAddress = materializeExternalCallSym(Symbol);
1306   else
1307     DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1308   emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1309   MachineInstrBuilder MIB =
1310       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1311               Mips::RA).addReg(Mips::T9);
1312 
1313   // Add implicit physical register uses to the call.
1314   for (auto Reg : CLI.OutRegs)
1315     MIB.addReg(Reg, RegState::Implicit);
1316 
1317   // Add a register mask with the call-preserved registers.
1318   // Proper defs for return values will be added by setPhysRegsDeadExcept().
1319   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1320 
1321   CLI.Call = MIB;
1322 
1323   // Finish off the call including any return values.
1324   return finishCall(CLI, RetVT, NumBytes);
1325 }
1326 
1327 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1328   if (!TargetSupported)
1329     return false;
1330 
1331   switch (II->getIntrinsicID()) {
1332   default:
1333     return false;
1334   case Intrinsic::bswap: {
1335     Type *RetTy = II->getCalledFunction()->getReturnType();
1336 
1337     MVT VT;
1338     if (!isTypeSupported(RetTy, VT))
1339       return false;
1340 
1341     unsigned SrcReg = getRegForValue(II->getOperand(0));
1342     if (SrcReg == 0)
1343       return false;
1344     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1345     if (DestReg == 0)
1346       return false;
1347     if (VT == MVT::i16) {
1348       if (Subtarget->hasMips32r2()) {
1349         emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1350         updateValueMap(II, DestReg);
1351         return true;
1352       } else {
1353         unsigned TempReg[3];
1354         for (int i = 0; i < 3; i++) {
1355           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1356           if (TempReg[i] == 0)
1357             return false;
1358         }
1359         emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1360         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1361         emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1362         emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1363         updateValueMap(II, DestReg);
1364         return true;
1365       }
1366     } else if (VT == MVT::i32) {
1367       if (Subtarget->hasMips32r2()) {
1368         unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1369         emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1370         emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1371         updateValueMap(II, DestReg);
1372         return true;
1373       } else {
1374         unsigned TempReg[8];
1375         for (int i = 0; i < 8; i++) {
1376           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1377           if (TempReg[i] == 0)
1378             return false;
1379         }
1380 
1381         emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1382         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1383         emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1384         emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1385 
1386         emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1387         emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1388 
1389         emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1390         emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1391         emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1392         updateValueMap(II, DestReg);
1393         return true;
1394       }
1395     }
1396     return false;
1397   }
1398   case Intrinsic::memcpy:
1399   case Intrinsic::memmove: {
1400     const auto *MTI = cast<MemTransferInst>(II);
1401     // Don't handle volatile.
1402     if (MTI->isVolatile())
1403       return false;
1404     if (!MTI->getLength()->getType()->isIntegerTy(32))
1405       return false;
1406     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1407     return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
1408   }
1409   case Intrinsic::memset: {
1410     const MemSetInst *MSI = cast<MemSetInst>(II);
1411     // Don't handle volatile.
1412     if (MSI->isVolatile())
1413       return false;
1414     if (!MSI->getLength()->getType()->isIntegerTy(32))
1415       return false;
1416     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
1417   }
1418   }
1419   return false;
1420 }
1421 
1422 bool MipsFastISel::selectRet(const Instruction *I) {
1423   const Function &F = *I->getParent()->getParent();
1424   const ReturnInst *Ret = cast<ReturnInst>(I);
1425 
1426   if (!FuncInfo.CanLowerReturn)
1427     return false;
1428 
1429   // Build a list of return value registers.
1430   SmallVector<unsigned, 4> RetRegs;
1431 
1432   if (Ret->getNumOperands() > 0) {
1433     CallingConv::ID CC = F.getCallingConv();
1434 
1435     // Do not handle FastCC.
1436     if (CC == CallingConv::Fast)
1437       return false;
1438 
1439     SmallVector<ISD::OutputArg, 4> Outs;
1440     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1441 
1442     // Analyze operands of the call, assigning locations to each operand.
1443     SmallVector<CCValAssign, 16> ValLocs;
1444     MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1445                        I->getContext());
1446     CCAssignFn *RetCC = RetCC_Mips;
1447     CCInfo.AnalyzeReturn(Outs, RetCC);
1448 
1449     // Only handle a single return value for now.
1450     if (ValLocs.size() != 1)
1451       return false;
1452 
1453     CCValAssign &VA = ValLocs[0];
1454     const Value *RV = Ret->getOperand(0);
1455 
1456     // Don't bother handling odd stuff for now.
1457     if ((VA.getLocInfo() != CCValAssign::Full) &&
1458         (VA.getLocInfo() != CCValAssign::BCvt))
1459       return false;
1460 
1461     // Only handle register returns for now.
1462     if (!VA.isRegLoc())
1463       return false;
1464 
1465     unsigned Reg = getRegForValue(RV);
1466     if (Reg == 0)
1467       return false;
1468 
1469     unsigned SrcReg = Reg + VA.getValNo();
1470     unsigned DestReg = VA.getLocReg();
1471     // Avoid a cross-class copy. This is very unlikely.
1472     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1473       return false;
1474 
1475     EVT RVEVT = TLI.getValueType(DL, RV->getType());
1476     if (!RVEVT.isSimple())
1477       return false;
1478 
1479     if (RVEVT.isVector())
1480       return false;
1481 
1482     MVT RVVT = RVEVT.getSimpleVT();
1483     if (RVVT == MVT::f128)
1484       return false;
1485 
1486     MVT DestVT = VA.getValVT();
1487     // Special handling for extended integers.
1488     if (RVVT != DestVT) {
1489       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1490         return false;
1491 
1492       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1493         bool IsZExt = Outs[0].Flags.isZExt();
1494         SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1495         if (SrcReg == 0)
1496           return false;
1497       }
1498     }
1499 
1500     // Make the copy.
1501     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1502             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1503 
1504     // Add register to return instruction.
1505     RetRegs.push_back(VA.getLocReg());
1506   }
1507   MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1508   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1509     MIB.addReg(RetRegs[i], RegState::Implicit);
1510   return true;
1511 }
1512 
1513 bool MipsFastISel::selectTrunc(const Instruction *I) {
1514   // The high bits for a type smaller than the register size are assumed to be
1515   // undefined.
1516   Value *Op = I->getOperand(0);
1517 
1518   EVT SrcVT, DestVT;
1519   SrcVT = TLI.getValueType(DL, Op->getType(), true);
1520   DestVT = TLI.getValueType(DL, I->getType(), true);
1521 
1522   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1523     return false;
1524   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1525     return false;
1526 
1527   unsigned SrcReg = getRegForValue(Op);
1528   if (!SrcReg)
1529     return false;
1530 
1531   // Because the high bits are undefined, a truncate doesn't generate
1532   // any code.
1533   updateValueMap(I, SrcReg);
1534   return true;
1535 }
1536 bool MipsFastISel::selectIntExt(const Instruction *I) {
1537   Type *DestTy = I->getType();
1538   Value *Src = I->getOperand(0);
1539   Type *SrcTy = Src->getType();
1540 
1541   bool isZExt = isa<ZExtInst>(I);
1542   unsigned SrcReg = getRegForValue(Src);
1543   if (!SrcReg)
1544     return false;
1545 
1546   EVT SrcEVT, DestEVT;
1547   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1548   DestEVT = TLI.getValueType(DL, DestTy, true);
1549   if (!SrcEVT.isSimple())
1550     return false;
1551   if (!DestEVT.isSimple())
1552     return false;
1553 
1554   MVT SrcVT = SrcEVT.getSimpleVT();
1555   MVT DestVT = DestEVT.getSimpleVT();
1556   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1557 
1558   if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1559     return false;
1560   updateValueMap(I, ResultReg);
1561   return true;
1562 }
1563 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1564                                    unsigned DestReg) {
1565   unsigned ShiftAmt;
1566   switch (SrcVT.SimpleTy) {
1567   default:
1568     return false;
1569   case MVT::i8:
1570     ShiftAmt = 24;
1571     break;
1572   case MVT::i16:
1573     ShiftAmt = 16;
1574     break;
1575   }
1576   unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1577   emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1578   emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1579   return true;
1580 }
1581 
1582 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1583                                    unsigned DestReg) {
1584   switch (SrcVT.SimpleTy) {
1585   default:
1586     return false;
1587   case MVT::i8:
1588     emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1589     break;
1590   case MVT::i16:
1591     emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1592     break;
1593   }
1594   return true;
1595 }
1596 
1597 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1598                                unsigned DestReg) {
1599   if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1600     return false;
1601   if (Subtarget->hasMips32r2())
1602     return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1603   return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1604 }
1605 
1606 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1607                                unsigned DestReg) {
1608   int64_t Imm;
1609 
1610   switch (SrcVT.SimpleTy) {
1611   default:
1612     return false;
1613   case MVT::i1:
1614     Imm = 1;
1615     break;
1616   case MVT::i8:
1617     Imm = 0xff;
1618     break;
1619   case MVT::i16:
1620     Imm = 0xffff;
1621     break;
1622   }
1623 
1624   emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1625   return true;
1626 }
1627 
1628 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1629                               unsigned DestReg, bool IsZExt) {
1630   // FastISel does not have plumbing to deal with extensions where the SrcVT or
1631   // DestVT are odd things, so test to make sure that they are both types we can
1632   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1633   // bail out to SelectionDAG.
1634   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1635       ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1636     return false;
1637   if (IsZExt)
1638     return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1639   return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1640 }
1641 
1642 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1643                                   bool isZExt) {
1644   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1645   bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1646   return Success ? DestReg : 0;
1647 }
1648 
1649 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1650   EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1651   if (!DestEVT.isSimple())
1652     return false;
1653 
1654   MVT DestVT = DestEVT.getSimpleVT();
1655   if (DestVT != MVT::i32)
1656     return false;
1657 
1658   unsigned DivOpc;
1659   switch (ISDOpcode) {
1660   default:
1661     return false;
1662   case ISD::SDIV:
1663   case ISD::SREM:
1664     DivOpc = Mips::SDIV;
1665     break;
1666   case ISD::UDIV:
1667   case ISD::UREM:
1668     DivOpc = Mips::UDIV;
1669     break;
1670   }
1671 
1672   unsigned Src0Reg = getRegForValue(I->getOperand(0));
1673   unsigned Src1Reg = getRegForValue(I->getOperand(1));
1674   if (!Src0Reg || !Src1Reg)
1675     return false;
1676 
1677   emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1678   emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1679 
1680   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1681   if (!ResultReg)
1682     return false;
1683 
1684   unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1685                        ? Mips::MFHI
1686                        : Mips::MFLO;
1687   emitInst(MFOpc, ResultReg);
1688 
1689   updateValueMap(I, ResultReg);
1690   return true;
1691 }
1692 
1693 bool MipsFastISel::selectShift(const Instruction *I) {
1694   MVT RetVT;
1695 
1696   if (!isTypeSupported(I->getType(), RetVT))
1697     return false;
1698 
1699   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1700   if (!ResultReg)
1701     return false;
1702 
1703   unsigned Opcode = I->getOpcode();
1704   const Value *Op0 = I->getOperand(0);
1705   unsigned Op0Reg = getRegForValue(Op0);
1706   if (!Op0Reg)
1707     return false;
1708 
1709   // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1710   if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1711     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1712     if (!TempReg)
1713       return false;
1714 
1715     MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1716     bool IsZExt = Opcode == Instruction::LShr;
1717     if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1718       return false;
1719 
1720     Op0Reg = TempReg;
1721   }
1722 
1723   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1724     uint64_t ShiftVal = C->getZExtValue();
1725 
1726     switch (Opcode) {
1727     default:
1728       llvm_unreachable("Unexpected instruction.");
1729     case Instruction::Shl:
1730       Opcode = Mips::SLL;
1731       break;
1732     case Instruction::AShr:
1733       Opcode = Mips::SRA;
1734       break;
1735     case Instruction::LShr:
1736       Opcode = Mips::SRL;
1737       break;
1738     }
1739 
1740     emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
1741     updateValueMap(I, ResultReg);
1742     return true;
1743   }
1744 
1745   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1746   if (!Op1Reg)
1747     return false;
1748 
1749   switch (Opcode) {
1750   default:
1751     llvm_unreachable("Unexpected instruction.");
1752   case Instruction::Shl:
1753     Opcode = Mips::SLLV;
1754     break;
1755   case Instruction::AShr:
1756     Opcode = Mips::SRAV;
1757     break;
1758   case Instruction::LShr:
1759     Opcode = Mips::SRLV;
1760     break;
1761   }
1762 
1763   emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
1764   updateValueMap(I, ResultReg);
1765   return true;
1766 }
1767 
1768 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
1769   if (!TargetSupported)
1770     return false;
1771   switch (I->getOpcode()) {
1772   default:
1773     break;
1774   case Instruction::Load:
1775     return selectLoad(I);
1776   case Instruction::Store:
1777     return selectStore(I);
1778   case Instruction::SDiv:
1779     if (!selectBinaryOp(I, ISD::SDIV))
1780       return selectDivRem(I, ISD::SDIV);
1781     return true;
1782   case Instruction::UDiv:
1783     if (!selectBinaryOp(I, ISD::UDIV))
1784       return selectDivRem(I, ISD::UDIV);
1785     return true;
1786   case Instruction::SRem:
1787     if (!selectBinaryOp(I, ISD::SREM))
1788       return selectDivRem(I, ISD::SREM);
1789     return true;
1790   case Instruction::URem:
1791     if (!selectBinaryOp(I, ISD::UREM))
1792       return selectDivRem(I, ISD::UREM);
1793     return true;
1794   case Instruction::Shl:
1795   case Instruction::LShr:
1796   case Instruction::AShr:
1797     return selectShift(I);
1798   case Instruction::And:
1799   case Instruction::Or:
1800   case Instruction::Xor:
1801     return selectLogicalOp(I);
1802   case Instruction::Br:
1803     return selectBranch(I);
1804   case Instruction::Ret:
1805     return selectRet(I);
1806   case Instruction::Trunc:
1807     return selectTrunc(I);
1808   case Instruction::ZExt:
1809   case Instruction::SExt:
1810     return selectIntExt(I);
1811   case Instruction::FPTrunc:
1812     return selectFPTrunc(I);
1813   case Instruction::FPExt:
1814     return selectFPExt(I);
1815   case Instruction::FPToSI:
1816     return selectFPToInt(I, /*isSigned*/ true);
1817   case Instruction::FPToUI:
1818     return selectFPToInt(I, /*isSigned*/ false);
1819   case Instruction::ICmp:
1820   case Instruction::FCmp:
1821     return selectCmp(I);
1822   case Instruction::Select:
1823     return selectSelect(I);
1824   }
1825   return false;
1826 }
1827 
1828 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
1829                                                            bool IsUnsigned) {
1830   unsigned VReg = getRegForValue(V);
1831   if (VReg == 0)
1832     return 0;
1833   MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
1834   if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
1835     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1836     if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
1837       return 0;
1838     VReg = TempReg;
1839   }
1840   return VReg;
1841 }
1842 
1843 void MipsFastISel::simplifyAddress(Address &Addr) {
1844   if (!isInt<16>(Addr.getOffset())) {
1845     unsigned TempReg =
1846         materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
1847     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1848     emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
1849     Addr.setReg(DestReg);
1850     Addr.setOffset(0);
1851   }
1852 }
1853 
1854 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1855                                        const TargetRegisterClass *RC,
1856                                        unsigned Op0, bool Op0IsKill,
1857                                        unsigned Op1, bool Op1IsKill) {
1858   // We treat the MUL instruction in a special way because it clobbers
1859   // the HI0 & LO0 registers. The TableGen definition of this instruction can
1860   // mark these registers only as implicitly defined. As a result, the
1861   // register allocator runs out of registers when this instruction is
1862   // followed by another instruction that defines the same registers too.
1863   // We can fix this by explicitly marking those registers as dead.
1864   if (MachineInstOpcode == Mips::MUL) {
1865     unsigned ResultReg = createResultReg(RC);
1866     const MCInstrDesc &II = TII.get(MachineInstOpcode);
1867     Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1868     Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1869     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1870       .addReg(Op0, getKillRegState(Op0IsKill))
1871       .addReg(Op1, getKillRegState(Op1IsKill))
1872       .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
1873       .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
1874     return ResultReg;
1875   }
1876 
1877   return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
1878                                    Op1IsKill);
1879 }
1880 
1881 namespace llvm {
1882 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
1883                                const TargetLibraryInfo *libInfo) {
1884   return new MipsFastISel(funcInfo, libInfo);
1885 }
1886 }
1887