1 //===-- MipsFastISel.cpp - Mips FastISel implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file defines the MIPS-specific support for the FastISel class. 12 /// Some of the target-specific code is generated by tablegen in the file 13 /// MipsGenFastISel.inc, which is #included here. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #include "MipsCCState.h" 18 #include "MipsInstrInfo.h" 19 #include "MipsISelLowering.h" 20 #include "MipsMachineFunction.h" 21 #include "MipsRegisterInfo.h" 22 #include "MipsSubtarget.h" 23 #include "MipsTargetMachine.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Support/Debug.h" 35 36 #define DEBUG_TYPE "mips-fastisel" 37 38 using namespace llvm; 39 40 namespace { 41 42 class MipsFastISel final : public FastISel { 43 44 // All possible address modes. 45 class Address { 46 public: 47 typedef enum { RegBase, FrameIndexBase } BaseKind; 48 49 private: 50 BaseKind Kind; 51 union { 52 unsigned Reg; 53 int FI; 54 } Base; 55 56 int64_t Offset; 57 58 const GlobalValue *GV; 59 60 public: 61 // Innocuous defaults for our address. 62 Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; } 63 void setKind(BaseKind K) { Kind = K; } 64 BaseKind getKind() const { return Kind; } 65 bool isRegBase() const { return Kind == RegBase; } 66 bool isFIBase() const { return Kind == FrameIndexBase; } 67 void setReg(unsigned Reg) { 68 assert(isRegBase() && "Invalid base register access!"); 69 Base.Reg = Reg; 70 } 71 unsigned getReg() const { 72 assert(isRegBase() && "Invalid base register access!"); 73 return Base.Reg; 74 } 75 void setFI(unsigned FI) { 76 assert(isFIBase() && "Invalid base frame index access!"); 77 Base.FI = FI; 78 } 79 unsigned getFI() const { 80 assert(isFIBase() && "Invalid base frame index access!"); 81 return Base.FI; 82 } 83 84 void setOffset(int64_t Offset_) { Offset = Offset_; } 85 int64_t getOffset() const { return Offset; } 86 void setGlobalValue(const GlobalValue *G) { GV = G; } 87 const GlobalValue *getGlobalValue() { return GV; } 88 }; 89 90 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can 91 /// make the right decision when generating code for different targets. 92 const TargetMachine &TM; 93 const MipsSubtarget *Subtarget; 94 const TargetInstrInfo &TII; 95 const TargetLowering &TLI; 96 MipsFunctionInfo *MFI; 97 98 // Convenience variables to avoid some queries. 99 LLVMContext *Context; 100 101 bool fastLowerArguments() override; 102 bool fastLowerCall(CallLoweringInfo &CLI) override; 103 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 104 105 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle 106 // floating point but not reject doing fast-isel in other 107 // situations 108 109 private: 110 // Selection routines. 111 bool selectLogicalOp(const Instruction *I); 112 bool selectLoad(const Instruction *I); 113 bool selectStore(const Instruction *I); 114 bool selectBranch(const Instruction *I); 115 bool selectSelect(const Instruction *I); 116 bool selectCmp(const Instruction *I); 117 bool selectFPExt(const Instruction *I); 118 bool selectFPTrunc(const Instruction *I); 119 bool selectFPToInt(const Instruction *I, bool IsSigned); 120 bool selectRet(const Instruction *I); 121 bool selectTrunc(const Instruction *I); 122 bool selectIntExt(const Instruction *I); 123 bool selectShift(const Instruction *I); 124 bool selectDivRem(const Instruction *I, unsigned ISDOpcode); 125 126 // Utility helper routines. 127 bool isTypeLegal(Type *Ty, MVT &VT); 128 bool isTypeSupported(Type *Ty, MVT &VT); 129 bool isLoadTypeLegal(Type *Ty, MVT &VT); 130 bool computeAddress(const Value *Obj, Address &Addr); 131 bool computeCallAddress(const Value *V, Address &Addr); 132 void simplifyAddress(Address &Addr); 133 134 // Emit helper routines. 135 bool emitCmp(unsigned DestReg, const CmpInst *CI); 136 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 137 unsigned Alignment = 0); 138 bool emitStore(MVT VT, unsigned SrcReg, Address Addr, 139 MachineMemOperand *MMO = nullptr); 140 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr, 141 unsigned Alignment = 0); 142 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 143 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg, 144 145 bool IsZExt); 146 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 147 148 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 149 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 150 unsigned DestReg); 151 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 152 unsigned DestReg); 153 154 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned); 155 156 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, 157 const Value *RHS); 158 159 unsigned materializeFP(const ConstantFP *CFP, MVT VT); 160 unsigned materializeGV(const GlobalValue *GV, MVT VT); 161 unsigned materializeInt(const Constant *C, MVT VT); 162 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); 163 unsigned materializeExternalCallSym(MCSymbol *Syn); 164 165 MachineInstrBuilder emitInst(unsigned Opc) { 166 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 167 } 168 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) { 169 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 170 DstReg); 171 } 172 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg, 173 unsigned MemReg, int64_t MemOffset) { 174 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset); 175 } 176 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg, 177 unsigned MemReg, int64_t MemOffset) { 178 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset); 179 } 180 181 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 182 const TargetRegisterClass *RC, 183 unsigned Op0, bool Op0IsKill, 184 unsigned Op1, bool Op1IsKill); 185 186 // for some reason, this default is not generated by tablegen 187 // so we explicitly generate it here. 188 // 189 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC, 190 unsigned Op0, bool Op0IsKill, uint64_t imm1, 191 uint64_t imm2, unsigned Op3, bool Op3IsKill) { 192 return 0; 193 } 194 195 // Call handling routines. 196 private: 197 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; 198 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs, 199 unsigned &NumBytes); 200 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes); 201 const MipsABIInfo &getABI() const { 202 return static_cast<const MipsTargetMachine &>(TM).getABI(); 203 } 204 205 public: 206 // Backend specific FastISel code. 207 explicit MipsFastISel(FunctionLoweringInfo &funcInfo, 208 const TargetLibraryInfo *libInfo) 209 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()), 210 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()), 211 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) { 212 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>(); 213 Context = &funcInfo.Fn->getContext(); 214 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat(); 215 } 216 217 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 218 unsigned fastMaterializeConstant(const Constant *C) override; 219 bool fastSelectInstruction(const Instruction *I) override; 220 221 #include "MipsGenFastISel.inc" 222 }; 223 } // end anonymous namespace. 224 225 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT, 226 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 227 CCState &State) LLVM_ATTRIBUTE_UNUSED; 228 229 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT, 230 CCValAssign::LocInfo LocInfo, 231 ISD::ArgFlagsTy ArgFlags, CCState &State) { 232 llvm_unreachable("should not be called"); 233 } 234 235 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT, 236 CCValAssign::LocInfo LocInfo, 237 ISD::ArgFlagsTy ArgFlags, CCState &State) { 238 llvm_unreachable("should not be called"); 239 } 240 241 #include "MipsGenCallingConv.inc" 242 243 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const { 244 return CC_MipsO32; 245 } 246 247 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT, 248 const Value *LHS, const Value *RHS) { 249 // Canonicalize immediates to the RHS first. 250 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS)) 251 std::swap(LHS, RHS); 252 253 unsigned Opc; 254 switch (ISDOpc) { 255 case ISD::AND: 256 Opc = Mips::AND; 257 break; 258 case ISD::OR: 259 Opc = Mips::OR; 260 break; 261 case ISD::XOR: 262 Opc = Mips::XOR; 263 break; 264 default: 265 llvm_unreachable("unexpected opcode"); 266 } 267 268 unsigned LHSReg = getRegForValue(LHS); 269 if (!LHSReg) 270 return 0; 271 272 unsigned RHSReg; 273 if (const auto *C = dyn_cast<ConstantInt>(RHS)) 274 RHSReg = materializeInt(C, MVT::i32); 275 else 276 RHSReg = getRegForValue(RHS); 277 if (!RHSReg) 278 return 0; 279 280 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 281 if (!ResultReg) 282 return 0; 283 284 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg); 285 return ResultReg; 286 } 287 288 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 289 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 && 290 "Alloca should always return a pointer."); 291 292 DenseMap<const AllocaInst *, int>::iterator SI = 293 FuncInfo.StaticAllocaMap.find(AI); 294 295 if (SI != FuncInfo.StaticAllocaMap.end()) { 296 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 297 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu), 298 ResultReg) 299 .addFrameIndex(SI->second) 300 .addImm(0); 301 return ResultReg; 302 } 303 304 return 0; 305 } 306 307 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) { 308 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 309 return 0; 310 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 311 const ConstantInt *CI = cast<ConstantInt>(C); 312 return materialize32BitInt(CI->getZExtValue(), RC); 313 } 314 315 unsigned MipsFastISel::materialize32BitInt(int64_t Imm, 316 const TargetRegisterClass *RC) { 317 unsigned ResultReg = createResultReg(RC); 318 319 if (isInt<16>(Imm)) { 320 unsigned Opc = Mips::ADDiu; 321 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm); 322 return ResultReg; 323 } else if (isUInt<16>(Imm)) { 324 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm); 325 return ResultReg; 326 } 327 unsigned Lo = Imm & 0xFFFF; 328 unsigned Hi = (Imm >> 16) & 0xFFFF; 329 if (Lo) { 330 // Both Lo and Hi have nonzero bits. 331 unsigned TmpReg = createResultReg(RC); 332 emitInst(Mips::LUi, TmpReg).addImm(Hi); 333 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo); 334 } else { 335 emitInst(Mips::LUi, ResultReg).addImm(Hi); 336 } 337 return ResultReg; 338 } 339 340 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) { 341 if (UnsupportedFPMode) 342 return 0; 343 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 344 if (VT == MVT::f32) { 345 const TargetRegisterClass *RC = &Mips::FGR32RegClass; 346 unsigned DestReg = createResultReg(RC); 347 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass); 348 emitInst(Mips::MTC1, DestReg).addReg(TempReg); 349 return DestReg; 350 } else if (VT == MVT::f64) { 351 const TargetRegisterClass *RC = &Mips::AFGR64RegClass; 352 unsigned DestReg = createResultReg(RC); 353 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass); 354 unsigned TempReg2 = 355 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass); 356 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1); 357 return DestReg; 358 } 359 return 0; 360 } 361 362 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) { 363 // For now 32-bit only. 364 if (VT != MVT::i32) 365 return 0; 366 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 367 unsigned DestReg = createResultReg(RC); 368 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 369 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 370 // TLS not supported at this time. 371 if (IsThreadLocal) 372 return 0; 373 emitInst(Mips::LW, DestReg) 374 .addReg(MFI->getGlobalBaseReg()) 375 .addGlobalAddress(GV, 0, MipsII::MO_GOT); 376 if ((GV->hasInternalLinkage() || 377 (GV->hasLocalLinkage() && !isa<Function>(GV)))) { 378 unsigned TempReg = createResultReg(RC); 379 emitInst(Mips::ADDiu, TempReg) 380 .addReg(DestReg) 381 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO); 382 DestReg = TempReg; 383 } 384 return DestReg; 385 } 386 387 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) { 388 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 389 unsigned DestReg = createResultReg(RC); 390 emitInst(Mips::LW, DestReg) 391 .addReg(MFI->getGlobalBaseReg()) 392 .addSym(Sym, MipsII::MO_GOT); 393 return DestReg; 394 } 395 396 // Materialize a constant into a register, and return the register 397 // number (or zero if we failed to handle it). 398 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) { 399 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 400 401 // Only handle simple types. 402 if (!CEVT.isSimple()) 403 return 0; 404 MVT VT = CEVT.getSimpleVT(); 405 406 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 407 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT); 408 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 409 return materializeGV(GV, VT); 410 else if (isa<ConstantInt>(C)) 411 return materializeInt(C, VT); 412 413 return 0; 414 } 415 416 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) { 417 418 const User *U = nullptr; 419 unsigned Opcode = Instruction::UserOp1; 420 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 421 // Don't walk into other basic blocks unless the object is an alloca from 422 // another block, otherwise it may not have a virtual register assigned. 423 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 424 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 425 Opcode = I->getOpcode(); 426 U = I; 427 } 428 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 429 Opcode = C->getOpcode(); 430 U = C; 431 } 432 switch (Opcode) { 433 default: 434 break; 435 case Instruction::BitCast: { 436 // Look through bitcasts. 437 return computeAddress(U->getOperand(0), Addr); 438 } 439 case Instruction::GetElementPtr: { 440 Address SavedAddr = Addr; 441 int64_t TmpOffset = Addr.getOffset(); 442 // Iterate through the GEP folding the constants into offsets where 443 // we can. 444 gep_type_iterator GTI = gep_type_begin(U); 445 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; 446 ++i, ++GTI) { 447 const Value *Op = *i; 448 if (StructType *STy = GTI.getStructTypeOrNull()) { 449 const StructLayout *SL = DL.getStructLayout(STy); 450 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 451 TmpOffset += SL->getElementOffset(Idx); 452 } else { 453 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 454 for (;;) { 455 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 456 // Constant-offset addressing. 457 TmpOffset += CI->getSExtValue() * S; 458 break; 459 } 460 if (canFoldAddIntoGEP(U, Op)) { 461 // A compatible add with a constant operand. Fold the constant. 462 ConstantInt *CI = 463 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 464 TmpOffset += CI->getSExtValue() * S; 465 // Iterate on the other operand. 466 Op = cast<AddOperator>(Op)->getOperand(0); 467 continue; 468 } 469 // Unsupported 470 goto unsupported_gep; 471 } 472 } 473 } 474 // Try to grab the base operand now. 475 Addr.setOffset(TmpOffset); 476 if (computeAddress(U->getOperand(0), Addr)) 477 return true; 478 // We failed, restore everything and try the other options. 479 Addr = SavedAddr; 480 unsupported_gep: 481 break; 482 } 483 case Instruction::Alloca: { 484 const AllocaInst *AI = cast<AllocaInst>(Obj); 485 DenseMap<const AllocaInst *, int>::iterator SI = 486 FuncInfo.StaticAllocaMap.find(AI); 487 if (SI != FuncInfo.StaticAllocaMap.end()) { 488 Addr.setKind(Address::FrameIndexBase); 489 Addr.setFI(SI->second); 490 return true; 491 } 492 break; 493 } 494 } 495 Addr.setReg(getRegForValue(Obj)); 496 return Addr.getReg() != 0; 497 } 498 499 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) { 500 const User *U = nullptr; 501 unsigned Opcode = Instruction::UserOp1; 502 503 if (const auto *I = dyn_cast<Instruction>(V)) { 504 // Check if the value is defined in the same basic block. This information 505 // is crucial to know whether or not folding an operand is valid. 506 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) { 507 Opcode = I->getOpcode(); 508 U = I; 509 } 510 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) { 511 Opcode = C->getOpcode(); 512 U = C; 513 } 514 515 switch (Opcode) { 516 default: 517 break; 518 case Instruction::BitCast: 519 // Look past bitcasts if its operand is in the same BB. 520 return computeCallAddress(U->getOperand(0), Addr); 521 break; 522 case Instruction::IntToPtr: 523 // Look past no-op inttoptrs if its operand is in the same BB. 524 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 525 TLI.getPointerTy(DL)) 526 return computeCallAddress(U->getOperand(0), Addr); 527 break; 528 case Instruction::PtrToInt: 529 // Look past no-op ptrtoints if its operand is in the same BB. 530 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 531 return computeCallAddress(U->getOperand(0), Addr); 532 break; 533 } 534 535 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 536 Addr.setGlobalValue(GV); 537 return true; 538 } 539 540 // If all else fails, try to materialize the value in a register. 541 if (!Addr.getGlobalValue()) { 542 Addr.setReg(getRegForValue(V)); 543 return Addr.getReg() != 0; 544 } 545 546 return false; 547 } 548 549 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) { 550 EVT evt = TLI.getValueType(DL, Ty, true); 551 // Only handle simple types. 552 if (evt == MVT::Other || !evt.isSimple()) 553 return false; 554 VT = evt.getSimpleVT(); 555 556 // Handle all legal types, i.e. a register that will directly hold this 557 // value. 558 return TLI.isTypeLegal(VT); 559 } 560 561 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) { 562 if (Ty->isVectorTy()) 563 return false; 564 565 if (isTypeLegal(Ty, VT)) 566 return true; 567 568 // If this is a type than can be sign or zero-extended to a basic operation 569 // go ahead and accept it now. 570 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 571 return true; 572 573 return false; 574 } 575 576 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 577 if (isTypeLegal(Ty, VT)) 578 return true; 579 // We will extend this in a later patch: 580 // If this is a type than can be sign or zero-extended to a basic operation 581 // go ahead and accept it now. 582 if (VT == MVT::i8 || VT == MVT::i16) 583 return true; 584 return false; 585 } 586 // Because of how EmitCmp is called with fast-isel, you can 587 // end up with redundant "andi" instructions after the sequences emitted below. 588 // We should try and solve this issue in the future. 589 // 590 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) { 591 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1); 592 bool IsUnsigned = CI->isUnsigned(); 593 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned); 594 if (LeftReg == 0) 595 return false; 596 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned); 597 if (RightReg == 0) 598 return false; 599 CmpInst::Predicate P = CI->getPredicate(); 600 601 switch (P) { 602 default: 603 return false; 604 case CmpInst::ICMP_EQ: { 605 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 606 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 607 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1); 608 break; 609 } 610 case CmpInst::ICMP_NE: { 611 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 612 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 613 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg); 614 break; 615 } 616 case CmpInst::ICMP_UGT: { 617 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg); 618 break; 619 } 620 case CmpInst::ICMP_ULT: { 621 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg); 622 break; 623 } 624 case CmpInst::ICMP_UGE: { 625 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 626 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg); 627 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 628 break; 629 } 630 case CmpInst::ICMP_ULE: { 631 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 632 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg); 633 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 634 break; 635 } 636 case CmpInst::ICMP_SGT: { 637 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg); 638 break; 639 } 640 case CmpInst::ICMP_SLT: { 641 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg); 642 break; 643 } 644 case CmpInst::ICMP_SGE: { 645 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 646 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg); 647 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 648 break; 649 } 650 case CmpInst::ICMP_SLE: { 651 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 652 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg); 653 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 654 break; 655 } 656 case CmpInst::FCMP_OEQ: 657 case CmpInst::FCMP_UNE: 658 case CmpInst::FCMP_OLT: 659 case CmpInst::FCMP_OLE: 660 case CmpInst::FCMP_OGT: 661 case CmpInst::FCMP_OGE: { 662 if (UnsupportedFPMode) 663 return false; 664 bool IsFloat = Left->getType()->isFloatTy(); 665 bool IsDouble = Left->getType()->isDoubleTy(); 666 if (!IsFloat && !IsDouble) 667 return false; 668 unsigned Opc, CondMovOpc; 669 switch (P) { 670 case CmpInst::FCMP_OEQ: 671 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 672 CondMovOpc = Mips::MOVT_I; 673 break; 674 case CmpInst::FCMP_UNE: 675 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 676 CondMovOpc = Mips::MOVF_I; 677 break; 678 case CmpInst::FCMP_OLT: 679 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32; 680 CondMovOpc = Mips::MOVT_I; 681 break; 682 case CmpInst::FCMP_OLE: 683 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32; 684 CondMovOpc = Mips::MOVT_I; 685 break; 686 case CmpInst::FCMP_OGT: 687 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32; 688 CondMovOpc = Mips::MOVF_I; 689 break; 690 case CmpInst::FCMP_OGE: 691 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32; 692 CondMovOpc = Mips::MOVF_I; 693 break; 694 default: 695 llvm_unreachable("Only switching of a subset of CCs."); 696 } 697 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass); 698 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass); 699 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0); 700 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1); 701 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg) 702 .addReg(RightReg); 703 emitInst(CondMovOpc, ResultReg) 704 .addReg(RegWithOne) 705 .addReg(Mips::FCC0) 706 .addReg(RegWithZero); 707 break; 708 } 709 } 710 return true; 711 } 712 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 713 unsigned Alignment) { 714 // 715 // more cases will be handled here in following patches. 716 // 717 unsigned Opc; 718 switch (VT.SimpleTy) { 719 case MVT::i32: { 720 ResultReg = createResultReg(&Mips::GPR32RegClass); 721 Opc = Mips::LW; 722 break; 723 } 724 case MVT::i16: { 725 ResultReg = createResultReg(&Mips::GPR32RegClass); 726 Opc = Mips::LHu; 727 break; 728 } 729 case MVT::i8: { 730 ResultReg = createResultReg(&Mips::GPR32RegClass); 731 Opc = Mips::LBu; 732 break; 733 } 734 case MVT::f32: { 735 if (UnsupportedFPMode) 736 return false; 737 ResultReg = createResultReg(&Mips::FGR32RegClass); 738 Opc = Mips::LWC1; 739 break; 740 } 741 case MVT::f64: { 742 if (UnsupportedFPMode) 743 return false; 744 ResultReg = createResultReg(&Mips::AFGR64RegClass); 745 Opc = Mips::LDC1; 746 break; 747 } 748 default: 749 return false; 750 } 751 if (Addr.isRegBase()) { 752 simplifyAddress(Addr); 753 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset()); 754 return true; 755 } 756 if (Addr.isFIBase()) { 757 unsigned FI = Addr.getFI(); 758 unsigned Align = 4; 759 int64_t Offset = Addr.getOffset(); 760 MachineFrameInfo &MFI = MF->getFrameInfo(); 761 MachineMemOperand *MMO = MF->getMachineMemOperand( 762 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, 763 MFI.getObjectSize(FI), Align); 764 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 765 .addFrameIndex(FI) 766 .addImm(Offset) 767 .addMemOperand(MMO); 768 return true; 769 } 770 return false; 771 } 772 773 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr, 774 unsigned Alignment) { 775 // 776 // more cases will be handled here in following patches. 777 // 778 unsigned Opc; 779 switch (VT.SimpleTy) { 780 case MVT::i8: 781 Opc = Mips::SB; 782 break; 783 case MVT::i16: 784 Opc = Mips::SH; 785 break; 786 case MVT::i32: 787 Opc = Mips::SW; 788 break; 789 case MVT::f32: 790 if (UnsupportedFPMode) 791 return false; 792 Opc = Mips::SWC1; 793 break; 794 case MVT::f64: 795 if (UnsupportedFPMode) 796 return false; 797 Opc = Mips::SDC1; 798 break; 799 default: 800 return false; 801 } 802 if (Addr.isRegBase()) { 803 simplifyAddress(Addr); 804 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset()); 805 return true; 806 } 807 if (Addr.isFIBase()) { 808 unsigned FI = Addr.getFI(); 809 unsigned Align = 4; 810 int64_t Offset = Addr.getOffset(); 811 MachineFrameInfo &MFI = MF->getFrameInfo(); 812 MachineMemOperand *MMO = MF->getMachineMemOperand( 813 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, 814 MFI.getObjectSize(FI), Align); 815 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 816 .addReg(SrcReg) 817 .addFrameIndex(FI) 818 .addImm(Offset) 819 .addMemOperand(MMO); 820 return true; 821 } 822 return false; 823 } 824 825 bool MipsFastISel::selectLogicalOp(const Instruction *I) { 826 MVT VT; 827 if (!isTypeSupported(I->getType(), VT)) 828 return false; 829 830 unsigned ResultReg; 831 switch (I->getOpcode()) { 832 default: 833 llvm_unreachable("Unexpected instruction."); 834 case Instruction::And: 835 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1)); 836 break; 837 case Instruction::Or: 838 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1)); 839 break; 840 case Instruction::Xor: 841 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1)); 842 break; 843 } 844 845 if (!ResultReg) 846 return false; 847 848 updateValueMap(I, ResultReg); 849 return true; 850 } 851 852 bool MipsFastISel::selectLoad(const Instruction *I) { 853 // Atomic loads need special handling. 854 if (cast<LoadInst>(I)->isAtomic()) 855 return false; 856 857 // Verify we have a legal type before going any further. 858 MVT VT; 859 if (!isLoadTypeLegal(I->getType(), VT)) 860 return false; 861 862 // See if we can handle this address. 863 Address Addr; 864 if (!computeAddress(I->getOperand(0), Addr)) 865 return false; 866 867 unsigned ResultReg; 868 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 869 return false; 870 updateValueMap(I, ResultReg); 871 return true; 872 } 873 874 bool MipsFastISel::selectStore(const Instruction *I) { 875 Value *Op0 = I->getOperand(0); 876 unsigned SrcReg = 0; 877 878 // Atomic stores need special handling. 879 if (cast<StoreInst>(I)->isAtomic()) 880 return false; 881 882 // Verify we have a legal type before going any further. 883 MVT VT; 884 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 885 return false; 886 887 // Get the value to be stored into a register. 888 SrcReg = getRegForValue(Op0); 889 if (SrcReg == 0) 890 return false; 891 892 // See if we can handle this address. 893 Address Addr; 894 if (!computeAddress(I->getOperand(1), Addr)) 895 return false; 896 897 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 898 return false; 899 return true; 900 } 901 902 // 903 // This can cause a redundant sltiu to be generated. 904 // FIXME: try and eliminate this in a future patch. 905 // 906 bool MipsFastISel::selectBranch(const Instruction *I) { 907 const BranchInst *BI = cast<BranchInst>(I); 908 MachineBasicBlock *BrBB = FuncInfo.MBB; 909 // 910 // TBB is the basic block for the case where the comparison is true. 911 // FBB is the basic block for the case where the comparison is false. 912 // if (cond) goto TBB 913 // goto FBB 914 // TBB: 915 // 916 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 917 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 918 BI->getCondition(); 919 // For now, just try the simplest case where it's fed by a compare. 920 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 921 unsigned CondReg = createResultReg(&Mips::GPR32RegClass); 922 if (!emitCmp(CondReg, CI)) 923 return false; 924 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ)) 925 .addReg(CondReg) 926 .addMBB(TBB); 927 finishCondBranch(BI->getParent(), TBB, FBB); 928 return true; 929 } 930 return false; 931 } 932 933 bool MipsFastISel::selectCmp(const Instruction *I) { 934 const CmpInst *CI = cast<CmpInst>(I); 935 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 936 if (!emitCmp(ResultReg, CI)) 937 return false; 938 updateValueMap(I, ResultReg); 939 return true; 940 } 941 942 // Attempt to fast-select a floating-point extend instruction. 943 bool MipsFastISel::selectFPExt(const Instruction *I) { 944 if (UnsupportedFPMode) 945 return false; 946 Value *Src = I->getOperand(0); 947 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 948 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 949 950 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 951 return false; 952 953 unsigned SrcReg = 954 getRegForValue(Src); // this must be a 32bit floating point register class 955 // maybe we should handle this differently 956 if (!SrcReg) 957 return false; 958 959 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass); 960 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg); 961 updateValueMap(I, DestReg); 962 return true; 963 } 964 965 bool MipsFastISel::selectSelect(const Instruction *I) { 966 assert(isa<SelectInst>(I) && "Expected a select instruction."); 967 968 DEBUG(dbgs() << "selectSelect\n"); 969 970 MVT VT; 971 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) { 972 DEBUG(dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n"); 973 return false; 974 } 975 976 unsigned CondMovOpc; 977 const TargetRegisterClass *RC; 978 979 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) { 980 CondMovOpc = Mips::MOVN_I_I; 981 RC = &Mips::GPR32RegClass; 982 } else if (VT == MVT::f32) { 983 CondMovOpc = Mips::MOVN_I_S; 984 RC = &Mips::FGR32RegClass; 985 } else if (VT == MVT::f64) { 986 CondMovOpc = Mips::MOVN_I_D32; 987 RC = &Mips::AFGR64RegClass; 988 } else 989 return false; 990 991 const SelectInst *SI = cast<SelectInst>(I); 992 const Value *Cond = SI->getCondition(); 993 unsigned Src1Reg = getRegForValue(SI->getTrueValue()); 994 unsigned Src2Reg = getRegForValue(SI->getFalseValue()); 995 unsigned CondReg = getRegForValue(Cond); 996 997 if (!Src1Reg || !Src2Reg || !CondReg) 998 return false; 999 1000 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass); 1001 if (!ZExtCondReg) 1002 return false; 1003 1004 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true)) 1005 return false; 1006 1007 unsigned ResultReg = createResultReg(RC); 1008 unsigned TempReg = createResultReg(RC); 1009 1010 if (!ResultReg || !TempReg) 1011 return false; 1012 1013 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg); 1014 emitInst(CondMovOpc, ResultReg) 1015 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg); 1016 updateValueMap(I, ResultReg); 1017 return true; 1018 } 1019 1020 // Attempt to fast-select a floating-point truncate instruction. 1021 bool MipsFastISel::selectFPTrunc(const Instruction *I) { 1022 if (UnsupportedFPMode) 1023 return false; 1024 Value *Src = I->getOperand(0); 1025 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1026 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1027 1028 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 1029 return false; 1030 1031 unsigned SrcReg = getRegForValue(Src); 1032 if (!SrcReg) 1033 return false; 1034 1035 unsigned DestReg = createResultReg(&Mips::FGR32RegClass); 1036 if (!DestReg) 1037 return false; 1038 1039 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg); 1040 updateValueMap(I, DestReg); 1041 return true; 1042 } 1043 1044 // Attempt to fast-select a floating-point-to-integer conversion. 1045 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) { 1046 if (UnsupportedFPMode) 1047 return false; 1048 MVT DstVT, SrcVT; 1049 if (!IsSigned) 1050 return false; // We don't handle this case yet. There is no native 1051 // instruction for this but it can be synthesized. 1052 Type *DstTy = I->getType(); 1053 if (!isTypeLegal(DstTy, DstVT)) 1054 return false; 1055 1056 if (DstVT != MVT::i32) 1057 return false; 1058 1059 Value *Src = I->getOperand(0); 1060 Type *SrcTy = Src->getType(); 1061 if (!isTypeLegal(SrcTy, SrcVT)) 1062 return false; 1063 1064 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1065 return false; 1066 1067 unsigned SrcReg = getRegForValue(Src); 1068 if (SrcReg == 0) 1069 return false; 1070 1071 // Determine the opcode for the conversion, which takes place 1072 // entirely within FPRs. 1073 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1074 unsigned TempReg = createResultReg(&Mips::FGR32RegClass); 1075 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32; 1076 1077 // Generate the convert. 1078 emitInst(Opc, TempReg).addReg(SrcReg); 1079 emitInst(Mips::MFC1, DestReg).addReg(TempReg); 1080 1081 updateValueMap(I, DestReg); 1082 return true; 1083 } 1084 1085 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI, 1086 SmallVectorImpl<MVT> &OutVTs, 1087 unsigned &NumBytes) { 1088 CallingConv::ID CC = CLI.CallConv; 1089 SmallVector<CCValAssign, 16> ArgLocs; 1090 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); 1091 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC)); 1092 // Get a count of how many bytes are to be pushed on the stack. 1093 NumBytes = CCInfo.getNextStackOffset(); 1094 // This is the minimum argument area used for A0-A3. 1095 if (NumBytes < 16) 1096 NumBytes = 16; 1097 1098 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16); 1099 // Process the args. 1100 MVT firstMVT; 1101 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1102 CCValAssign &VA = ArgLocs[i]; 1103 const Value *ArgVal = CLI.OutVals[VA.getValNo()]; 1104 MVT ArgVT = OutVTs[VA.getValNo()]; 1105 1106 if (i == 0) { 1107 firstMVT = ArgVT; 1108 if (ArgVT == MVT::f32) { 1109 VA.convertToReg(Mips::F12); 1110 } else if (ArgVT == MVT::f64) { 1111 VA.convertToReg(Mips::D6); 1112 } 1113 } else if (i == 1) { 1114 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) { 1115 if (ArgVT == MVT::f32) { 1116 VA.convertToReg(Mips::F14); 1117 } else if (ArgVT == MVT::f64) { 1118 VA.convertToReg(Mips::D7); 1119 } 1120 } 1121 } 1122 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) || 1123 (ArgVT == MVT::i8)) && 1124 VA.isMemLoc()) { 1125 switch (VA.getLocMemOffset()) { 1126 case 0: 1127 VA.convertToReg(Mips::A0); 1128 break; 1129 case 4: 1130 VA.convertToReg(Mips::A1); 1131 break; 1132 case 8: 1133 VA.convertToReg(Mips::A2); 1134 break; 1135 case 12: 1136 VA.convertToReg(Mips::A3); 1137 break; 1138 default: 1139 break; 1140 } 1141 } 1142 unsigned ArgReg = getRegForValue(ArgVal); 1143 if (!ArgReg) 1144 return false; 1145 1146 // Handle arg promotion: SExt, ZExt, AExt. 1147 switch (VA.getLocInfo()) { 1148 case CCValAssign::Full: 1149 break; 1150 case CCValAssign::AExt: 1151 case CCValAssign::SExt: { 1152 MVT DestVT = VA.getLocVT(); 1153 MVT SrcVT = ArgVT; 1154 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false); 1155 if (!ArgReg) 1156 return false; 1157 break; 1158 } 1159 case CCValAssign::ZExt: { 1160 MVT DestVT = VA.getLocVT(); 1161 MVT SrcVT = ArgVT; 1162 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true); 1163 if (!ArgReg) 1164 return false; 1165 break; 1166 } 1167 default: 1168 llvm_unreachable("Unknown arg promotion!"); 1169 } 1170 1171 // Now copy/store arg to correct locations. 1172 if (VA.isRegLoc() && !VA.needsCustom()) { 1173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1174 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 1175 CLI.OutRegs.push_back(VA.getLocReg()); 1176 } else if (VA.needsCustom()) { 1177 llvm_unreachable("Mips does not use custom args."); 1178 return false; 1179 } else { 1180 // 1181 // FIXME: This path will currently return false. It was copied 1182 // from the AArch64 port and should be essentially fine for Mips too. 1183 // The work to finish up this path will be done in a follow-on patch. 1184 // 1185 assert(VA.isMemLoc() && "Assuming store on stack."); 1186 // Don't emit stores for undef values. 1187 if (isa<UndefValue>(ArgVal)) 1188 continue; 1189 1190 // Need to store on the stack. 1191 // FIXME: This alignment is incorrect but this path is disabled 1192 // for now (will return false). We need to determine the right alignment 1193 // based on the normal alignment for the underlying machine type. 1194 // 1195 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4); 1196 1197 unsigned BEAlign = 0; 1198 if (ArgSize < 8 && !Subtarget->isLittle()) 1199 BEAlign = 8 - ArgSize; 1200 1201 Address Addr; 1202 Addr.setKind(Address::RegBase); 1203 Addr.setReg(Mips::SP); 1204 Addr.setOffset(VA.getLocMemOffset() + BEAlign); 1205 1206 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 1207 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1208 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()), 1209 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 1210 (void)(MMO); 1211 // if (!emitStore(ArgVT, ArgReg, Addr, MMO)) 1212 return false; // can't store on the stack yet. 1213 } 1214 } 1215 1216 return true; 1217 } 1218 1219 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT, 1220 unsigned NumBytes) { 1221 CallingConv::ID CC = CLI.CallConv; 1222 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0); 1223 if (RetVT != MVT::isVoid) { 1224 SmallVector<CCValAssign, 16> RVLocs; 1225 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1226 CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips); 1227 1228 // Only handle a single return value. 1229 if (RVLocs.size() != 1) 1230 return false; 1231 // Copy all of the result registers out of their specified physreg. 1232 MVT CopyVT = RVLocs[0].getValVT(); 1233 // Special handling for extended integers. 1234 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 1235 CopyVT = MVT::i32; 1236 1237 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); 1238 if (!ResultReg) 1239 return false; 1240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1241 TII.get(TargetOpcode::COPY), 1242 ResultReg).addReg(RVLocs[0].getLocReg()); 1243 CLI.InRegs.push_back(RVLocs[0].getLocReg()); 1244 1245 CLI.ResultReg = ResultReg; 1246 CLI.NumResultRegs = 1; 1247 } 1248 return true; 1249 } 1250 1251 bool MipsFastISel::fastLowerArguments() { 1252 DEBUG(dbgs() << "fastLowerArguments\n"); 1253 1254 if (!FuncInfo.CanLowerReturn) { 1255 DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n"); 1256 return false; 1257 } 1258 1259 const Function *F = FuncInfo.Fn; 1260 if (F->isVarArg()) { 1261 DEBUG(dbgs() << ".. gave up (varargs)\n"); 1262 return false; 1263 } 1264 1265 CallingConv::ID CC = F->getCallingConv(); 1266 if (CC != CallingConv::C) { 1267 DEBUG(dbgs() << ".. gave up (calling convention is not C)\n"); 1268 return false; 1269 } 1270 1271 const ArrayRef<MCPhysReg> GPR32ArgRegs = {Mips::A0, Mips::A1, Mips::A2, 1272 Mips::A3}; 1273 const ArrayRef<MCPhysReg> FGR32ArgRegs = {Mips::F12, Mips::F14}; 1274 const ArrayRef<MCPhysReg> AFGR64ArgRegs = {Mips::D6, Mips::D7}; 1275 ArrayRef<MCPhysReg>::iterator NextGPR32 = GPR32ArgRegs.begin(); 1276 ArrayRef<MCPhysReg>::iterator NextFGR32 = FGR32ArgRegs.begin(); 1277 ArrayRef<MCPhysReg>::iterator NextAFGR64 = AFGR64ArgRegs.begin(); 1278 1279 struct AllocatedReg { 1280 const TargetRegisterClass *RC; 1281 unsigned Reg; 1282 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg) 1283 : RC(RC), Reg(Reg) {} 1284 }; 1285 1286 // Only handle simple cases. i.e. All arguments are directly mapped to 1287 // registers of the appropriate type. 1288 SmallVector<AllocatedReg, 4> Allocation; 1289 unsigned Idx = 1; 1290 for (const auto &FormalArg : F->args()) { 1291 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 1292 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 1293 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) { 1294 DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n"); 1295 return false; 1296 } 1297 1298 Type *ArgTy = FormalArg.getType(); 1299 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) { 1300 DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n"); 1301 return false; 1302 } 1303 1304 EVT ArgVT = TLI.getValueType(DL, ArgTy); 1305 DEBUG(dbgs() << ".. " << (Idx - 1) << ": " << ArgVT.getEVTString() << "\n"); 1306 if (!ArgVT.isSimple()) { 1307 DEBUG(dbgs() << ".. .. gave up (not a simple type)\n"); 1308 return false; 1309 } 1310 1311 switch (ArgVT.getSimpleVT().SimpleTy) { 1312 case MVT::i1: 1313 case MVT::i8: 1314 case MVT::i16: 1315 if (!F->getAttributes().hasAttribute(Idx, Attribute::SExt) && 1316 !F->getAttributes().hasAttribute(Idx, Attribute::ZExt)) { 1317 // It must be any extend, this shouldn't happen for clang-generated IR 1318 // so just fall back on SelectionDAG. 1319 DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n"); 1320 return false; 1321 } 1322 1323 if (NextGPR32 == GPR32ArgRegs.end()) { 1324 DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1325 return false; 1326 } 1327 1328 DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1329 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1330 1331 // Allocating any GPR32 prohibits further use of floating point arguments. 1332 NextFGR32 = FGR32ArgRegs.end(); 1333 NextAFGR64 = AFGR64ArgRegs.end(); 1334 break; 1335 1336 case MVT::i32: 1337 if (F->getAttributes().hasAttribute(Idx, Attribute::ZExt)) { 1338 // The O32 ABI does not permit a zero-extended i32. 1339 DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n"); 1340 return false; 1341 } 1342 1343 if (NextGPR32 == GPR32ArgRegs.end()) { 1344 DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n"); 1345 return false; 1346 } 1347 1348 DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n"); 1349 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++); 1350 1351 // Allocating any GPR32 prohibits further use of floating point arguments. 1352 NextFGR32 = FGR32ArgRegs.end(); 1353 NextAFGR64 = AFGR64ArgRegs.end(); 1354 break; 1355 1356 case MVT::f32: 1357 if (UnsupportedFPMode) { 1358 DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1359 return false; 1360 } 1361 if (NextFGR32 == FGR32ArgRegs.end()) { 1362 DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n"); 1363 return false; 1364 } 1365 DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n"); 1366 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++); 1367 // Allocating an FGR32 also allocates the super-register AFGR64, and 1368 // ABI rules require us to skip the corresponding GPR32. 1369 if (NextGPR32 != GPR32ArgRegs.end()) 1370 NextGPR32++; 1371 if (NextAFGR64 != AFGR64ArgRegs.end()) 1372 NextAFGR64++; 1373 break; 1374 1375 case MVT::f64: 1376 if (UnsupportedFPMode) { 1377 DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n"); 1378 return false; 1379 } 1380 if (NextAFGR64 == AFGR64ArgRegs.end()) { 1381 DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n"); 1382 return false; 1383 } 1384 DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n"); 1385 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++); 1386 // Allocating an FGR32 also allocates the super-register AFGR64, and 1387 // ABI rules require us to skip the corresponding GPR32 pair. 1388 if (NextGPR32 != GPR32ArgRegs.end()) 1389 NextGPR32++; 1390 if (NextGPR32 != GPR32ArgRegs.end()) 1391 NextGPR32++; 1392 if (NextFGR32 != FGR32ArgRegs.end()) 1393 NextFGR32++; 1394 break; 1395 1396 default: 1397 DEBUG(dbgs() << ".. .. gave up (unknown type)\n"); 1398 return false; 1399 } 1400 1401 ++Idx; 1402 } 1403 1404 Idx = 0; 1405 for (const auto &FormalArg : F->args()) { 1406 unsigned SrcReg = Allocation[Idx].Reg; 1407 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[Idx].RC); 1408 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 1409 // Without this, EmitLiveInCopies may eliminate the livein if its only 1410 // use is a bitcast (which isn't turned into an instruction). 1411 unsigned ResultReg = createResultReg(Allocation[Idx].RC); 1412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1413 TII.get(TargetOpcode::COPY), ResultReg) 1414 .addReg(DstReg, getKillRegState(true)); 1415 updateValueMap(&FormalArg, ResultReg); 1416 ++Idx; 1417 } 1418 1419 // Calculate the size of the incoming arguments area. 1420 // We currently reject all the cases where this would be non-zero. 1421 unsigned IncomingArgSizeInBytes = 0; 1422 1423 // Account for the reserved argument area on ABI's that have one (O32). 1424 // It seems strange to do this on the caller side but it's necessary in 1425 // SelectionDAG's implementation. 1426 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC), 1427 IncomingArgSizeInBytes); 1428 1429 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes, 1430 false); 1431 1432 return true; 1433 } 1434 1435 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1436 CallingConv::ID CC = CLI.CallConv; 1437 bool IsTailCall = CLI.IsTailCall; 1438 bool IsVarArg = CLI.IsVarArg; 1439 const Value *Callee = CLI.Callee; 1440 MCSymbol *Symbol = CLI.Symbol; 1441 1442 // Do not handle FastCC. 1443 if (CC == CallingConv::Fast) 1444 return false; 1445 1446 // Allow SelectionDAG isel to handle tail calls. 1447 if (IsTailCall) 1448 return false; 1449 1450 // Let SDISel handle vararg functions. 1451 if (IsVarArg) 1452 return false; 1453 1454 // FIXME: Only handle *simple* calls for now. 1455 MVT RetVT; 1456 if (CLI.RetTy->isVoidTy()) 1457 RetVT = MVT::isVoid; 1458 else if (!isTypeSupported(CLI.RetTy, RetVT)) 1459 return false; 1460 1461 for (auto Flag : CLI.OutFlags) 1462 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal()) 1463 return false; 1464 1465 // Set up the argument vectors. 1466 SmallVector<MVT, 16> OutVTs; 1467 OutVTs.reserve(CLI.OutVals.size()); 1468 1469 for (auto *Val : CLI.OutVals) { 1470 MVT VT; 1471 if (!isTypeLegal(Val->getType(), VT) && 1472 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) 1473 return false; 1474 1475 // We don't handle vector parameters yet. 1476 if (VT.isVector() || VT.getSizeInBits() > 64) 1477 return false; 1478 1479 OutVTs.push_back(VT); 1480 } 1481 1482 Address Addr; 1483 if (!computeCallAddress(Callee, Addr)) 1484 return false; 1485 1486 // Handle the arguments now that we've gotten them. 1487 unsigned NumBytes; 1488 if (!processCallArgs(CLI, OutVTs, NumBytes)) 1489 return false; 1490 1491 if (!Addr.getGlobalValue()) 1492 return false; 1493 1494 // Issue the call. 1495 unsigned DestAddress; 1496 if (Symbol) 1497 DestAddress = materializeExternalCallSym(Symbol); 1498 else 1499 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32); 1500 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress); 1501 MachineInstrBuilder MIB = 1502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR), 1503 Mips::RA).addReg(Mips::T9); 1504 1505 // Add implicit physical register uses to the call. 1506 for (auto Reg : CLI.OutRegs) 1507 MIB.addReg(Reg, RegState::Implicit); 1508 1509 // Add a register mask with the call-preserved registers. 1510 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 1511 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1512 1513 CLI.Call = MIB; 1514 1515 // Finish off the call including any return values. 1516 return finishCall(CLI, RetVT, NumBytes); 1517 } 1518 1519 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 1520 switch (II->getIntrinsicID()) { 1521 default: 1522 return false; 1523 case Intrinsic::bswap: { 1524 Type *RetTy = II->getCalledFunction()->getReturnType(); 1525 1526 MVT VT; 1527 if (!isTypeSupported(RetTy, VT)) 1528 return false; 1529 1530 unsigned SrcReg = getRegForValue(II->getOperand(0)); 1531 if (SrcReg == 0) 1532 return false; 1533 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1534 if (DestReg == 0) 1535 return false; 1536 if (VT == MVT::i16) { 1537 if (Subtarget->hasMips32r2()) { 1538 emitInst(Mips::WSBH, DestReg).addReg(SrcReg); 1539 updateValueMap(II, DestReg); 1540 return true; 1541 } else { 1542 unsigned TempReg[3]; 1543 for (int i = 0; i < 3; i++) { 1544 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1545 if (TempReg[i] == 0) 1546 return false; 1547 } 1548 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8); 1549 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8); 1550 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]); 1551 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF); 1552 updateValueMap(II, DestReg); 1553 return true; 1554 } 1555 } else if (VT == MVT::i32) { 1556 if (Subtarget->hasMips32r2()) { 1557 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1558 emitInst(Mips::WSBH, TempReg).addReg(SrcReg); 1559 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16); 1560 updateValueMap(II, DestReg); 1561 return true; 1562 } else { 1563 unsigned TempReg[8]; 1564 for (int i = 0; i < 8; i++) { 1565 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1566 if (TempReg[i] == 0) 1567 return false; 1568 } 1569 1570 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8); 1571 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24); 1572 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00); 1573 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]); 1574 1575 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00); 1576 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8); 1577 1578 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24); 1579 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]); 1580 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]); 1581 updateValueMap(II, DestReg); 1582 return true; 1583 } 1584 } 1585 return false; 1586 } 1587 case Intrinsic::memcpy: 1588 case Intrinsic::memmove: { 1589 const auto *MTI = cast<MemTransferInst>(II); 1590 // Don't handle volatile. 1591 if (MTI->isVolatile()) 1592 return false; 1593 if (!MTI->getLength()->getType()->isIntegerTy(32)) 1594 return false; 1595 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove"; 1596 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2); 1597 } 1598 case Intrinsic::memset: { 1599 const MemSetInst *MSI = cast<MemSetInst>(II); 1600 // Don't handle volatile. 1601 if (MSI->isVolatile()) 1602 return false; 1603 if (!MSI->getLength()->getType()->isIntegerTy(32)) 1604 return false; 1605 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2); 1606 } 1607 } 1608 return false; 1609 } 1610 1611 bool MipsFastISel::selectRet(const Instruction *I) { 1612 const Function &F = *I->getParent()->getParent(); 1613 const ReturnInst *Ret = cast<ReturnInst>(I); 1614 1615 DEBUG(dbgs() << "selectRet\n"); 1616 1617 if (!FuncInfo.CanLowerReturn) 1618 return false; 1619 1620 // Build a list of return value registers. 1621 SmallVector<unsigned, 4> RetRegs; 1622 1623 if (Ret->getNumOperands() > 0) { 1624 CallingConv::ID CC = F.getCallingConv(); 1625 1626 // Do not handle FastCC. 1627 if (CC == CallingConv::Fast) 1628 return false; 1629 1630 SmallVector<ISD::OutputArg, 4> Outs; 1631 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1632 1633 // Analyze operands of the call, assigning locations to each operand. 1634 SmallVector<CCValAssign, 16> ValLocs; 1635 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, 1636 I->getContext()); 1637 CCAssignFn *RetCC = RetCC_Mips; 1638 CCInfo.AnalyzeReturn(Outs, RetCC); 1639 1640 // Only handle a single return value for now. 1641 if (ValLocs.size() != 1) 1642 return false; 1643 1644 CCValAssign &VA = ValLocs[0]; 1645 const Value *RV = Ret->getOperand(0); 1646 1647 // Don't bother handling odd stuff for now. 1648 if ((VA.getLocInfo() != CCValAssign::Full) && 1649 (VA.getLocInfo() != CCValAssign::BCvt)) 1650 return false; 1651 1652 // Only handle register returns for now. 1653 if (!VA.isRegLoc()) 1654 return false; 1655 1656 unsigned Reg = getRegForValue(RV); 1657 if (Reg == 0) 1658 return false; 1659 1660 unsigned SrcReg = Reg + VA.getValNo(); 1661 unsigned DestReg = VA.getLocReg(); 1662 // Avoid a cross-class copy. This is very unlikely. 1663 if (!MRI.getRegClass(SrcReg)->contains(DestReg)) 1664 return false; 1665 1666 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1667 if (!RVEVT.isSimple()) 1668 return false; 1669 1670 if (RVEVT.isVector()) 1671 return false; 1672 1673 MVT RVVT = RVEVT.getSimpleVT(); 1674 if (RVVT == MVT::f128) 1675 return false; 1676 1677 // Do not handle FGR64 returns for now. 1678 if (RVVT == MVT::f64 && UnsupportedFPMode) { 1679 DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n"); 1680 return false; 1681 } 1682 1683 MVT DestVT = VA.getValVT(); 1684 // Special handling for extended integers. 1685 if (RVVT != DestVT) { 1686 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 1687 return false; 1688 1689 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 1690 bool IsZExt = Outs[0].Flags.isZExt(); 1691 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt); 1692 if (SrcReg == 0) 1693 return false; 1694 } 1695 } 1696 1697 // Make the copy. 1698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1699 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); 1700 1701 // Add register to return instruction. 1702 RetRegs.push_back(VA.getLocReg()); 1703 } 1704 MachineInstrBuilder MIB = emitInst(Mips::RetRA); 1705 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1706 MIB.addReg(RetRegs[i], RegState::Implicit); 1707 return true; 1708 } 1709 1710 bool MipsFastISel::selectTrunc(const Instruction *I) { 1711 // The high bits for a type smaller than the register size are assumed to be 1712 // undefined. 1713 Value *Op = I->getOperand(0); 1714 1715 EVT SrcVT, DestVT; 1716 SrcVT = TLI.getValueType(DL, Op->getType(), true); 1717 DestVT = TLI.getValueType(DL, I->getType(), true); 1718 1719 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1720 return false; 1721 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1722 return false; 1723 1724 unsigned SrcReg = getRegForValue(Op); 1725 if (!SrcReg) 1726 return false; 1727 1728 // Because the high bits are undefined, a truncate doesn't generate 1729 // any code. 1730 updateValueMap(I, SrcReg); 1731 return true; 1732 } 1733 bool MipsFastISel::selectIntExt(const Instruction *I) { 1734 Type *DestTy = I->getType(); 1735 Value *Src = I->getOperand(0); 1736 Type *SrcTy = Src->getType(); 1737 1738 bool isZExt = isa<ZExtInst>(I); 1739 unsigned SrcReg = getRegForValue(Src); 1740 if (!SrcReg) 1741 return false; 1742 1743 EVT SrcEVT, DestEVT; 1744 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1745 DestEVT = TLI.getValueType(DL, DestTy, true); 1746 if (!SrcEVT.isSimple()) 1747 return false; 1748 if (!DestEVT.isSimple()) 1749 return false; 1750 1751 MVT SrcVT = SrcEVT.getSimpleVT(); 1752 MVT DestVT = DestEVT.getSimpleVT(); 1753 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1754 1755 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt)) 1756 return false; 1757 updateValueMap(I, ResultReg); 1758 return true; 1759 } 1760 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1761 unsigned DestReg) { 1762 unsigned ShiftAmt; 1763 switch (SrcVT.SimpleTy) { 1764 default: 1765 return false; 1766 case MVT::i8: 1767 ShiftAmt = 24; 1768 break; 1769 case MVT::i16: 1770 ShiftAmt = 16; 1771 break; 1772 } 1773 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1774 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt); 1775 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt); 1776 return true; 1777 } 1778 1779 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1780 unsigned DestReg) { 1781 switch (SrcVT.SimpleTy) { 1782 default: 1783 return false; 1784 case MVT::i8: 1785 emitInst(Mips::SEB, DestReg).addReg(SrcReg); 1786 break; 1787 case MVT::i16: 1788 emitInst(Mips::SEH, DestReg).addReg(SrcReg); 1789 break; 1790 } 1791 return true; 1792 } 1793 1794 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1795 unsigned DestReg) { 1796 if ((DestVT != MVT::i32) && (DestVT != MVT::i16)) 1797 return false; 1798 if (Subtarget->hasMips32r2()) 1799 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg); 1800 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg); 1801 } 1802 1803 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1804 unsigned DestReg) { 1805 int64_t Imm; 1806 1807 switch (SrcVT.SimpleTy) { 1808 default: 1809 return false; 1810 case MVT::i1: 1811 Imm = 1; 1812 break; 1813 case MVT::i8: 1814 Imm = 0xff; 1815 break; 1816 case MVT::i16: 1817 Imm = 0xffff; 1818 break; 1819 } 1820 1821 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm); 1822 return true; 1823 } 1824 1825 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1826 unsigned DestReg, bool IsZExt) { 1827 // FastISel does not have plumbing to deal with extensions where the SrcVT or 1828 // DestVT are odd things, so test to make sure that they are both types we can 1829 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise 1830 // bail out to SelectionDAG. 1831 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) || 1832 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16))) 1833 return false; 1834 if (IsZExt) 1835 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg); 1836 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg); 1837 } 1838 1839 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1840 bool isZExt) { 1841 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1842 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt); 1843 return Success ? DestReg : 0; 1844 } 1845 1846 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) { 1847 EVT DestEVT = TLI.getValueType(DL, I->getType(), true); 1848 if (!DestEVT.isSimple()) 1849 return false; 1850 1851 MVT DestVT = DestEVT.getSimpleVT(); 1852 if (DestVT != MVT::i32) 1853 return false; 1854 1855 unsigned DivOpc; 1856 switch (ISDOpcode) { 1857 default: 1858 return false; 1859 case ISD::SDIV: 1860 case ISD::SREM: 1861 DivOpc = Mips::SDIV; 1862 break; 1863 case ISD::UDIV: 1864 case ISD::UREM: 1865 DivOpc = Mips::UDIV; 1866 break; 1867 } 1868 1869 unsigned Src0Reg = getRegForValue(I->getOperand(0)); 1870 unsigned Src1Reg = getRegForValue(I->getOperand(1)); 1871 if (!Src0Reg || !Src1Reg) 1872 return false; 1873 1874 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg); 1875 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7); 1876 1877 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1878 if (!ResultReg) 1879 return false; 1880 1881 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM) 1882 ? Mips::MFHI 1883 : Mips::MFLO; 1884 emitInst(MFOpc, ResultReg); 1885 1886 updateValueMap(I, ResultReg); 1887 return true; 1888 } 1889 1890 bool MipsFastISel::selectShift(const Instruction *I) { 1891 MVT RetVT; 1892 1893 if (!isTypeSupported(I->getType(), RetVT)) 1894 return false; 1895 1896 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1897 if (!ResultReg) 1898 return false; 1899 1900 unsigned Opcode = I->getOpcode(); 1901 const Value *Op0 = I->getOperand(0); 1902 unsigned Op0Reg = getRegForValue(Op0); 1903 if (!Op0Reg) 1904 return false; 1905 1906 // If AShr or LShr, then we need to make sure the operand0 is sign extended. 1907 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) { 1908 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1909 if (!TempReg) 1910 return false; 1911 1912 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT(); 1913 bool IsZExt = Opcode == Instruction::LShr; 1914 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt)) 1915 return false; 1916 1917 Op0Reg = TempReg; 1918 } 1919 1920 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) { 1921 uint64_t ShiftVal = C->getZExtValue(); 1922 1923 switch (Opcode) { 1924 default: 1925 llvm_unreachable("Unexpected instruction."); 1926 case Instruction::Shl: 1927 Opcode = Mips::SLL; 1928 break; 1929 case Instruction::AShr: 1930 Opcode = Mips::SRA; 1931 break; 1932 case Instruction::LShr: 1933 Opcode = Mips::SRL; 1934 break; 1935 } 1936 1937 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal); 1938 updateValueMap(I, ResultReg); 1939 return true; 1940 } 1941 1942 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1943 if (!Op1Reg) 1944 return false; 1945 1946 switch (Opcode) { 1947 default: 1948 llvm_unreachable("Unexpected instruction."); 1949 case Instruction::Shl: 1950 Opcode = Mips::SLLV; 1951 break; 1952 case Instruction::AShr: 1953 Opcode = Mips::SRAV; 1954 break; 1955 case Instruction::LShr: 1956 Opcode = Mips::SRLV; 1957 break; 1958 } 1959 1960 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg); 1961 updateValueMap(I, ResultReg); 1962 return true; 1963 } 1964 1965 bool MipsFastISel::fastSelectInstruction(const Instruction *I) { 1966 switch (I->getOpcode()) { 1967 default: 1968 break; 1969 case Instruction::Load: 1970 return selectLoad(I); 1971 case Instruction::Store: 1972 return selectStore(I); 1973 case Instruction::SDiv: 1974 if (!selectBinaryOp(I, ISD::SDIV)) 1975 return selectDivRem(I, ISD::SDIV); 1976 return true; 1977 case Instruction::UDiv: 1978 if (!selectBinaryOp(I, ISD::UDIV)) 1979 return selectDivRem(I, ISD::UDIV); 1980 return true; 1981 case Instruction::SRem: 1982 if (!selectBinaryOp(I, ISD::SREM)) 1983 return selectDivRem(I, ISD::SREM); 1984 return true; 1985 case Instruction::URem: 1986 if (!selectBinaryOp(I, ISD::UREM)) 1987 return selectDivRem(I, ISD::UREM); 1988 return true; 1989 case Instruction::Shl: 1990 case Instruction::LShr: 1991 case Instruction::AShr: 1992 return selectShift(I); 1993 case Instruction::And: 1994 case Instruction::Or: 1995 case Instruction::Xor: 1996 return selectLogicalOp(I); 1997 case Instruction::Br: 1998 return selectBranch(I); 1999 case Instruction::Ret: 2000 return selectRet(I); 2001 case Instruction::Trunc: 2002 return selectTrunc(I); 2003 case Instruction::ZExt: 2004 case Instruction::SExt: 2005 return selectIntExt(I); 2006 case Instruction::FPTrunc: 2007 return selectFPTrunc(I); 2008 case Instruction::FPExt: 2009 return selectFPExt(I); 2010 case Instruction::FPToSI: 2011 return selectFPToInt(I, /*isSigned*/ true); 2012 case Instruction::FPToUI: 2013 return selectFPToInt(I, /*isSigned*/ false); 2014 case Instruction::ICmp: 2015 case Instruction::FCmp: 2016 return selectCmp(I); 2017 case Instruction::Select: 2018 return selectSelect(I); 2019 } 2020 return false; 2021 } 2022 2023 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V, 2024 bool IsUnsigned) { 2025 unsigned VReg = getRegForValue(V); 2026 if (VReg == 0) 2027 return 0; 2028 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT(); 2029 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) { 2030 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 2031 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned)) 2032 return 0; 2033 VReg = TempReg; 2034 } 2035 return VReg; 2036 } 2037 2038 void MipsFastISel::simplifyAddress(Address &Addr) { 2039 if (!isInt<16>(Addr.getOffset())) { 2040 unsigned TempReg = 2041 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass); 2042 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 2043 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg()); 2044 Addr.setReg(DestReg); 2045 Addr.setOffset(0); 2046 } 2047 } 2048 2049 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2050 const TargetRegisterClass *RC, 2051 unsigned Op0, bool Op0IsKill, 2052 unsigned Op1, bool Op1IsKill) { 2053 // We treat the MUL instruction in a special way because it clobbers 2054 // the HI0 & LO0 registers. The TableGen definition of this instruction can 2055 // mark these registers only as implicitly defined. As a result, the 2056 // register allocator runs out of registers when this instruction is 2057 // followed by another instruction that defines the same registers too. 2058 // We can fix this by explicitly marking those registers as dead. 2059 if (MachineInstOpcode == Mips::MUL) { 2060 unsigned ResultReg = createResultReg(RC); 2061 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2062 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2063 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2064 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2065 .addReg(Op0, getKillRegState(Op0IsKill)) 2066 .addReg(Op1, getKillRegState(Op1IsKill)) 2067 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead) 2068 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead); 2069 return ResultReg; 2070 } 2071 2072 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1, 2073 Op1IsKill); 2074 } 2075 2076 namespace llvm { 2077 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo, 2078 const TargetLibraryInfo *libInfo) { 2079 return new MipsFastISel(funcInfo, libInfo); 2080 } 2081 } 2082