1 //===-- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file defines the MIPS-specific support for the FastISel class.
12 /// Some of the target-specific code is generated by tablegen in the file
13 /// MipsGenFastISel.inc, which is #included here.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #include "MipsCCState.h"
18 #include "MipsInstrInfo.h"
19 #include "MipsISelLowering.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Support/Debug.h"
35 
36 #define DEBUG_TYPE "mips-fastisel"
37 
38 using namespace llvm;
39 
40 namespace {
41 
42 class MipsFastISel final : public FastISel {
43 
44   // All possible address modes.
45   class Address {
46   public:
47     typedef enum { RegBase, FrameIndexBase } BaseKind;
48 
49   private:
50     BaseKind Kind;
51     union {
52       unsigned Reg;
53       int FI;
54     } Base;
55 
56     int64_t Offset;
57 
58     const GlobalValue *GV;
59 
60   public:
61     // Innocuous defaults for our address.
62     Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; }
63     void setKind(BaseKind K) { Kind = K; }
64     BaseKind getKind() const { return Kind; }
65     bool isRegBase() const { return Kind == RegBase; }
66     bool isFIBase() const { return Kind == FrameIndexBase; }
67     void setReg(unsigned Reg) {
68       assert(isRegBase() && "Invalid base register access!");
69       Base.Reg = Reg;
70     }
71     unsigned getReg() const {
72       assert(isRegBase() && "Invalid base register access!");
73       return Base.Reg;
74     }
75     void setFI(unsigned FI) {
76       assert(isFIBase() && "Invalid base frame index access!");
77       Base.FI = FI;
78     }
79     unsigned getFI() const {
80       assert(isFIBase() && "Invalid base frame index access!");
81       return Base.FI;
82     }
83 
84     void setOffset(int64_t Offset_) { Offset = Offset_; }
85     int64_t getOffset() const { return Offset; }
86     void setGlobalValue(const GlobalValue *G) { GV = G; }
87     const GlobalValue *getGlobalValue() { return GV; }
88   };
89 
90   /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
91   /// make the right decision when generating code for different targets.
92   const TargetMachine &TM;
93   const MipsSubtarget *Subtarget;
94   const TargetInstrInfo &TII;
95   const TargetLowering &TLI;
96   MipsFunctionInfo *MFI;
97 
98   // Convenience variables to avoid some queries.
99   LLVMContext *Context;
100 
101   bool fastLowerArguments() override;
102   bool fastLowerCall(CallLoweringInfo &CLI) override;
103   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
104 
105   bool TargetSupported;
106   bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
107   // floating point but not reject doing fast-isel in other
108   // situations
109 
110 private:
111   // Selection routines.
112   bool selectLogicalOp(const Instruction *I);
113   bool selectLoad(const Instruction *I);
114   bool selectStore(const Instruction *I);
115   bool selectBranch(const Instruction *I);
116   bool selectSelect(const Instruction *I);
117   bool selectCmp(const Instruction *I);
118   bool selectFPExt(const Instruction *I);
119   bool selectFPTrunc(const Instruction *I);
120   bool selectFPToInt(const Instruction *I, bool IsSigned);
121   bool selectRet(const Instruction *I);
122   bool selectTrunc(const Instruction *I);
123   bool selectIntExt(const Instruction *I);
124   bool selectShift(const Instruction *I);
125   bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
126 
127   // Utility helper routines.
128   bool isTypeLegal(Type *Ty, MVT &VT);
129   bool isTypeSupported(Type *Ty, MVT &VT);
130   bool isLoadTypeLegal(Type *Ty, MVT &VT);
131   bool computeAddress(const Value *Obj, Address &Addr);
132   bool computeCallAddress(const Value *V, Address &Addr);
133   void simplifyAddress(Address &Addr);
134 
135   // Emit helper routines.
136   bool emitCmp(unsigned DestReg, const CmpInst *CI);
137   bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
138                 unsigned Alignment = 0);
139   bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
140                  MachineMemOperand *MMO = nullptr);
141   bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
142                  unsigned Alignment = 0);
143   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
144   bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
145 
146                   bool IsZExt);
147   bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
148 
149   bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
150   bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
151                        unsigned DestReg);
152   bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
153                        unsigned DestReg);
154 
155   unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
156 
157   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
158                          const Value *RHS);
159 
160   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
161   unsigned materializeGV(const GlobalValue *GV, MVT VT);
162   unsigned materializeInt(const Constant *C, MVT VT);
163   unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
164   unsigned materializeExternalCallSym(MCSymbol *Syn);
165 
166   MachineInstrBuilder emitInst(unsigned Opc) {
167     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
168   }
169   MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
170     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
171                    DstReg);
172   }
173   MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
174                                     unsigned MemReg, int64_t MemOffset) {
175     return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
176   }
177   MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
178                                    unsigned MemReg, int64_t MemOffset) {
179     return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
180   }
181 
182   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
183                            const TargetRegisterClass *RC,
184                            unsigned Op0, bool Op0IsKill,
185                            unsigned Op1, bool Op1IsKill);
186 
187   // for some reason, this default is not generated by tablegen
188   // so we explicitly generate it here.
189   //
190   unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
191                              unsigned Op0, bool Op0IsKill, uint64_t imm1,
192                              uint64_t imm2, unsigned Op3, bool Op3IsKill) {
193     return 0;
194   }
195 
196   // Call handling routines.
197 private:
198   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
199   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
200                        unsigned &NumBytes);
201   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
202   const MipsABIInfo &getABI() const {
203     return static_cast<const MipsTargetMachine &>(TM).getABI();
204   }
205 
206 public:
207   // Backend specific FastISel code.
208   explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
209                         const TargetLibraryInfo *libInfo)
210       : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
211         Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
212         TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
213     MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
214     Context = &funcInfo.Fn->getContext();
215     bool ISASupported = !Subtarget->hasMips32r6() &&
216                         !Subtarget->inMicroMipsMode() && Subtarget->hasMips32();
217     TargetSupported =
218         ISASupported && TM.isPositionIndependent() && getABI().IsO32();
219     UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
220   }
221 
222   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
223   unsigned fastMaterializeConstant(const Constant *C) override;
224   bool fastSelectInstruction(const Instruction *I) override;
225 
226 #include "MipsGenFastISel.inc"
227 };
228 } // end anonymous namespace.
229 
230 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
231                     CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
232                     CCState &State) LLVM_ATTRIBUTE_UNUSED;
233 
234 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
235                             CCValAssign::LocInfo LocInfo,
236                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
237   llvm_unreachable("should not be called");
238 }
239 
240 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
241                             CCValAssign::LocInfo LocInfo,
242                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
243   llvm_unreachable("should not be called");
244 }
245 
246 #include "MipsGenCallingConv.inc"
247 
248 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
249   return CC_MipsO32;
250 }
251 
252 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
253                                      const Value *LHS, const Value *RHS) {
254   // Canonicalize immediates to the RHS first.
255   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
256     std::swap(LHS, RHS);
257 
258   unsigned Opc;
259   switch (ISDOpc) {
260   case ISD::AND:
261     Opc = Mips::AND;
262     break;
263   case ISD::OR:
264     Opc = Mips::OR;
265     break;
266   case ISD::XOR:
267     Opc = Mips::XOR;
268     break;
269   default:
270     llvm_unreachable("unexpected opcode");
271   }
272 
273   unsigned LHSReg = getRegForValue(LHS);
274   if (!LHSReg)
275     return 0;
276 
277   unsigned RHSReg;
278   if (const auto *C = dyn_cast<ConstantInt>(RHS))
279     RHSReg = materializeInt(C, MVT::i32);
280   else
281     RHSReg = getRegForValue(RHS);
282   if (!RHSReg)
283     return 0;
284 
285   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
286   if (!ResultReg)
287     return 0;
288 
289   emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
290   return ResultReg;
291 }
292 
293 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
294   if (!TargetSupported)
295     return 0;
296 
297   assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
298          "Alloca should always return a pointer.");
299 
300   DenseMap<const AllocaInst *, int>::iterator SI =
301       FuncInfo.StaticAllocaMap.find(AI);
302 
303   if (SI != FuncInfo.StaticAllocaMap.end()) {
304     unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
305     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
306             ResultReg)
307         .addFrameIndex(SI->second)
308         .addImm(0);
309     return ResultReg;
310   }
311 
312   return 0;
313 }
314 
315 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
316   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
317     return 0;
318   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
319   const ConstantInt *CI = cast<ConstantInt>(C);
320   return materialize32BitInt(CI->getZExtValue(), RC);
321 }
322 
323 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
324                                            const TargetRegisterClass *RC) {
325   unsigned ResultReg = createResultReg(RC);
326 
327   if (isInt<16>(Imm)) {
328     unsigned Opc = Mips::ADDiu;
329     emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
330     return ResultReg;
331   } else if (isUInt<16>(Imm)) {
332     emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
333     return ResultReg;
334   }
335   unsigned Lo = Imm & 0xFFFF;
336   unsigned Hi = (Imm >> 16) & 0xFFFF;
337   if (Lo) {
338     // Both Lo and Hi have nonzero bits.
339     unsigned TmpReg = createResultReg(RC);
340     emitInst(Mips::LUi, TmpReg).addImm(Hi);
341     emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
342   } else {
343     emitInst(Mips::LUi, ResultReg).addImm(Hi);
344   }
345   return ResultReg;
346 }
347 
348 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
349   if (UnsupportedFPMode)
350     return 0;
351   int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
352   if (VT == MVT::f32) {
353     const TargetRegisterClass *RC = &Mips::FGR32RegClass;
354     unsigned DestReg = createResultReg(RC);
355     unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
356     emitInst(Mips::MTC1, DestReg).addReg(TempReg);
357     return DestReg;
358   } else if (VT == MVT::f64) {
359     const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
360     unsigned DestReg = createResultReg(RC);
361     unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
362     unsigned TempReg2 =
363         materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
364     emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
365     return DestReg;
366   }
367   return 0;
368 }
369 
370 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
371   // For now 32-bit only.
372   if (VT != MVT::i32)
373     return 0;
374   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
375   unsigned DestReg = createResultReg(RC);
376   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
377   bool IsThreadLocal = GVar && GVar->isThreadLocal();
378   // TLS not supported at this time.
379   if (IsThreadLocal)
380     return 0;
381   emitInst(Mips::LW, DestReg)
382       .addReg(MFI->getGlobalBaseReg())
383       .addGlobalAddress(GV, 0, MipsII::MO_GOT);
384   if ((GV->hasInternalLinkage() ||
385        (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
386     unsigned TempReg = createResultReg(RC);
387     emitInst(Mips::ADDiu, TempReg)
388         .addReg(DestReg)
389         .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
390     DestReg = TempReg;
391   }
392   return DestReg;
393 }
394 
395 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
396   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
397   unsigned DestReg = createResultReg(RC);
398   emitInst(Mips::LW, DestReg)
399       .addReg(MFI->getGlobalBaseReg())
400       .addSym(Sym, MipsII::MO_GOT);
401   return DestReg;
402 }
403 
404 // Materialize a constant into a register, and return the register
405 // number (or zero if we failed to handle it).
406 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
407   if (!TargetSupported)
408     return 0;
409 
410   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
411 
412   // Only handle simple types.
413   if (!CEVT.isSimple())
414     return 0;
415   MVT VT = CEVT.getSimpleVT();
416 
417   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
418     return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
419   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
420     return materializeGV(GV, VT);
421   else if (isa<ConstantInt>(C))
422     return materializeInt(C, VT);
423 
424   return 0;
425 }
426 
427 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
428 
429   const User *U = nullptr;
430   unsigned Opcode = Instruction::UserOp1;
431   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
432     // Don't walk into other basic blocks unless the object is an alloca from
433     // another block, otherwise it may not have a virtual register assigned.
434     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
435         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
436       Opcode = I->getOpcode();
437       U = I;
438     }
439   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
440     Opcode = C->getOpcode();
441     U = C;
442   }
443   switch (Opcode) {
444   default:
445     break;
446   case Instruction::BitCast: {
447     // Look through bitcasts.
448     return computeAddress(U->getOperand(0), Addr);
449   }
450   case Instruction::GetElementPtr: {
451     Address SavedAddr = Addr;
452     uint64_t TmpOffset = Addr.getOffset();
453     // Iterate through the GEP folding the constants into offsets where
454     // we can.
455     gep_type_iterator GTI = gep_type_begin(U);
456     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
457          ++i, ++GTI) {
458       const Value *Op = *i;
459       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
460         const StructLayout *SL = DL.getStructLayout(STy);
461         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
462         TmpOffset += SL->getElementOffset(Idx);
463       } else {
464         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
465         for (;;) {
466           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
467             // Constant-offset addressing.
468             TmpOffset += CI->getSExtValue() * S;
469             break;
470           }
471           if (canFoldAddIntoGEP(U, Op)) {
472             // A compatible add with a constant operand. Fold the constant.
473             ConstantInt *CI =
474                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
475             TmpOffset += CI->getSExtValue() * S;
476             // Iterate on the other operand.
477             Op = cast<AddOperator>(Op)->getOperand(0);
478             continue;
479           }
480           // Unsupported
481           goto unsupported_gep;
482         }
483       }
484     }
485     // Try to grab the base operand now.
486     Addr.setOffset(TmpOffset);
487     if (computeAddress(U->getOperand(0), Addr))
488       return true;
489     // We failed, restore everything and try the other options.
490     Addr = SavedAddr;
491   unsupported_gep:
492     break;
493   }
494   case Instruction::Alloca: {
495     const AllocaInst *AI = cast<AllocaInst>(Obj);
496     DenseMap<const AllocaInst *, int>::iterator SI =
497         FuncInfo.StaticAllocaMap.find(AI);
498     if (SI != FuncInfo.StaticAllocaMap.end()) {
499       Addr.setKind(Address::FrameIndexBase);
500       Addr.setFI(SI->second);
501       return true;
502     }
503     break;
504   }
505   }
506   Addr.setReg(getRegForValue(Obj));
507   return Addr.getReg() != 0;
508 }
509 
510 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
511   const User *U = nullptr;
512   unsigned Opcode = Instruction::UserOp1;
513 
514   if (const auto *I = dyn_cast<Instruction>(V)) {
515     // Check if the value is defined in the same basic block. This information
516     // is crucial to know whether or not folding an operand is valid.
517     if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
518       Opcode = I->getOpcode();
519       U = I;
520     }
521   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
522     Opcode = C->getOpcode();
523     U = C;
524   }
525 
526   switch (Opcode) {
527   default:
528     break;
529   case Instruction::BitCast:
530     // Look past bitcasts if its operand is in the same BB.
531       return computeCallAddress(U->getOperand(0), Addr);
532     break;
533   case Instruction::IntToPtr:
534     // Look past no-op inttoptrs if its operand is in the same BB.
535     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
536         TLI.getPointerTy(DL))
537       return computeCallAddress(U->getOperand(0), Addr);
538     break;
539   case Instruction::PtrToInt:
540     // Look past no-op ptrtoints if its operand is in the same BB.
541     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
542       return computeCallAddress(U->getOperand(0), Addr);
543     break;
544   }
545 
546   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
547     Addr.setGlobalValue(GV);
548     return true;
549   }
550 
551   // If all else fails, try to materialize the value in a register.
552   if (!Addr.getGlobalValue()) {
553     Addr.setReg(getRegForValue(V));
554     return Addr.getReg() != 0;
555   }
556 
557   return false;
558 }
559 
560 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
561   EVT evt = TLI.getValueType(DL, Ty, true);
562   // Only handle simple types.
563   if (evt == MVT::Other || !evt.isSimple())
564     return false;
565   VT = evt.getSimpleVT();
566 
567   // Handle all legal types, i.e. a register that will directly hold this
568   // value.
569   return TLI.isTypeLegal(VT);
570 }
571 
572 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
573   if (Ty->isVectorTy())
574     return false;
575 
576   if (isTypeLegal(Ty, VT))
577     return true;
578 
579   // If this is a type than can be sign or zero-extended to a basic operation
580   // go ahead and accept it now.
581   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
582     return true;
583 
584   return false;
585 }
586 
587 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
588   if (isTypeLegal(Ty, VT))
589     return true;
590   // We will extend this in a later patch:
591   //   If this is a type than can be sign or zero-extended to a basic operation
592   //   go ahead and accept it now.
593   if (VT == MVT::i8 || VT == MVT::i16)
594     return true;
595   return false;
596 }
597 // Because of how EmitCmp is called with fast-isel, you can
598 // end up with redundant "andi" instructions after the sequences emitted below.
599 // We should try and solve this issue in the future.
600 //
601 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
602   const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
603   bool IsUnsigned = CI->isUnsigned();
604   unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
605   if (LeftReg == 0)
606     return false;
607   unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
608   if (RightReg == 0)
609     return false;
610   CmpInst::Predicate P = CI->getPredicate();
611 
612   switch (P) {
613   default:
614     return false;
615   case CmpInst::ICMP_EQ: {
616     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
617     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
618     emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
619     break;
620   }
621   case CmpInst::ICMP_NE: {
622     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
623     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
624     emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
625     break;
626   }
627   case CmpInst::ICMP_UGT: {
628     emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
629     break;
630   }
631   case CmpInst::ICMP_ULT: {
632     emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
633     break;
634   }
635   case CmpInst::ICMP_UGE: {
636     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
637     emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
638     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
639     break;
640   }
641   case CmpInst::ICMP_ULE: {
642     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
643     emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
644     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
645     break;
646   }
647   case CmpInst::ICMP_SGT: {
648     emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
649     break;
650   }
651   case CmpInst::ICMP_SLT: {
652     emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
653     break;
654   }
655   case CmpInst::ICMP_SGE: {
656     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
657     emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
658     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
659     break;
660   }
661   case CmpInst::ICMP_SLE: {
662     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
663     emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
664     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
665     break;
666   }
667   case CmpInst::FCMP_OEQ:
668   case CmpInst::FCMP_UNE:
669   case CmpInst::FCMP_OLT:
670   case CmpInst::FCMP_OLE:
671   case CmpInst::FCMP_OGT:
672   case CmpInst::FCMP_OGE: {
673     if (UnsupportedFPMode)
674       return false;
675     bool IsFloat = Left->getType()->isFloatTy();
676     bool IsDouble = Left->getType()->isDoubleTy();
677     if (!IsFloat && !IsDouble)
678       return false;
679     unsigned Opc, CondMovOpc;
680     switch (P) {
681     case CmpInst::FCMP_OEQ:
682       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
683       CondMovOpc = Mips::MOVT_I;
684       break;
685     case CmpInst::FCMP_UNE:
686       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
687       CondMovOpc = Mips::MOVF_I;
688       break;
689     case CmpInst::FCMP_OLT:
690       Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
691       CondMovOpc = Mips::MOVT_I;
692       break;
693     case CmpInst::FCMP_OLE:
694       Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
695       CondMovOpc = Mips::MOVT_I;
696       break;
697     case CmpInst::FCMP_OGT:
698       Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
699       CondMovOpc = Mips::MOVF_I;
700       break;
701     case CmpInst::FCMP_OGE:
702       Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
703       CondMovOpc = Mips::MOVF_I;
704       break;
705     default:
706       llvm_unreachable("Only switching of a subset of CCs.");
707     }
708     unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
709     unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
710     emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
711     emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
712     emitInst(Opc).addReg(LeftReg).addReg(RightReg).addReg(
713         Mips::FCC0, RegState::ImplicitDefine);
714     emitInst(CondMovOpc, ResultReg)
715         .addReg(RegWithOne)
716         .addReg(Mips::FCC0)
717         .addReg(RegWithZero);
718     break;
719   }
720   }
721   return true;
722 }
723 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
724                             unsigned Alignment) {
725   //
726   // more cases will be handled here in following patches.
727   //
728   unsigned Opc;
729   switch (VT.SimpleTy) {
730   case MVT::i32: {
731     ResultReg = createResultReg(&Mips::GPR32RegClass);
732     Opc = Mips::LW;
733     break;
734   }
735   case MVT::i16: {
736     ResultReg = createResultReg(&Mips::GPR32RegClass);
737     Opc = Mips::LHu;
738     break;
739   }
740   case MVT::i8: {
741     ResultReg = createResultReg(&Mips::GPR32RegClass);
742     Opc = Mips::LBu;
743     break;
744   }
745   case MVT::f32: {
746     if (UnsupportedFPMode)
747       return false;
748     ResultReg = createResultReg(&Mips::FGR32RegClass);
749     Opc = Mips::LWC1;
750     break;
751   }
752   case MVT::f64: {
753     if (UnsupportedFPMode)
754       return false;
755     ResultReg = createResultReg(&Mips::AFGR64RegClass);
756     Opc = Mips::LDC1;
757     break;
758   }
759   default:
760     return false;
761   }
762   if (Addr.isRegBase()) {
763     simplifyAddress(Addr);
764     emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
765     return true;
766   }
767   if (Addr.isFIBase()) {
768     unsigned FI = Addr.getFI();
769     unsigned Align = 4;
770     unsigned Offset = Addr.getOffset();
771     MachineFrameInfo &MFI = MF->getFrameInfo();
772     MachineMemOperand *MMO = MF->getMachineMemOperand(
773         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
774         MFI.getObjectSize(FI), Align);
775     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
776         .addFrameIndex(FI)
777         .addImm(Offset)
778         .addMemOperand(MMO);
779     return true;
780   }
781   return false;
782 }
783 
784 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
785                              unsigned Alignment) {
786   //
787   // more cases will be handled here in following patches.
788   //
789   unsigned Opc;
790   switch (VT.SimpleTy) {
791   case MVT::i8:
792     Opc = Mips::SB;
793     break;
794   case MVT::i16:
795     Opc = Mips::SH;
796     break;
797   case MVT::i32:
798     Opc = Mips::SW;
799     break;
800   case MVT::f32:
801     if (UnsupportedFPMode)
802       return false;
803     Opc = Mips::SWC1;
804     break;
805   case MVT::f64:
806     if (UnsupportedFPMode)
807       return false;
808     Opc = Mips::SDC1;
809     break;
810   default:
811     return false;
812   }
813   if (Addr.isRegBase()) {
814     simplifyAddress(Addr);
815     emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
816     return true;
817   }
818   if (Addr.isFIBase()) {
819     unsigned FI = Addr.getFI();
820     unsigned Align = 4;
821     unsigned Offset = Addr.getOffset();
822     MachineFrameInfo &MFI = MF->getFrameInfo();
823     MachineMemOperand *MMO = MF->getMachineMemOperand(
824         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
825         MFI.getObjectSize(FI), Align);
826     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
827         .addReg(SrcReg)
828         .addFrameIndex(FI)
829         .addImm(Offset)
830         .addMemOperand(MMO);
831     return true;
832   }
833   return false;
834 }
835 
836 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
837   MVT VT;
838   if (!isTypeSupported(I->getType(), VT))
839     return false;
840 
841   unsigned ResultReg;
842   switch (I->getOpcode()) {
843   default:
844     llvm_unreachable("Unexpected instruction.");
845   case Instruction::And:
846     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
847     break;
848   case Instruction::Or:
849     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
850     break;
851   case Instruction::Xor:
852     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
853     break;
854   }
855 
856   if (!ResultReg)
857     return false;
858 
859   updateValueMap(I, ResultReg);
860   return true;
861 }
862 
863 bool MipsFastISel::selectLoad(const Instruction *I) {
864   // Atomic loads need special handling.
865   if (cast<LoadInst>(I)->isAtomic())
866     return false;
867 
868   // Verify we have a legal type before going any further.
869   MVT VT;
870   if (!isLoadTypeLegal(I->getType(), VT))
871     return false;
872 
873   // See if we can handle this address.
874   Address Addr;
875   if (!computeAddress(I->getOperand(0), Addr))
876     return false;
877 
878   unsigned ResultReg;
879   if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
880     return false;
881   updateValueMap(I, ResultReg);
882   return true;
883 }
884 
885 bool MipsFastISel::selectStore(const Instruction *I) {
886   Value *Op0 = I->getOperand(0);
887   unsigned SrcReg = 0;
888 
889   // Atomic stores need special handling.
890   if (cast<StoreInst>(I)->isAtomic())
891     return false;
892 
893   // Verify we have a legal type before going any further.
894   MVT VT;
895   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
896     return false;
897 
898   // Get the value to be stored into a register.
899   SrcReg = getRegForValue(Op0);
900   if (SrcReg == 0)
901     return false;
902 
903   // See if we can handle this address.
904   Address Addr;
905   if (!computeAddress(I->getOperand(1), Addr))
906     return false;
907 
908   if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
909     return false;
910   return true;
911 }
912 
913 //
914 // This can cause a redundant sltiu to be generated.
915 // FIXME: try and eliminate this in a future patch.
916 //
917 bool MipsFastISel::selectBranch(const Instruction *I) {
918   const BranchInst *BI = cast<BranchInst>(I);
919   MachineBasicBlock *BrBB = FuncInfo.MBB;
920   //
921   // TBB is the basic block for the case where the comparison is true.
922   // FBB is the basic block for the case where the comparison is false.
923   // if (cond) goto TBB
924   // goto FBB
925   // TBB:
926   //
927   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
928   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
929   BI->getCondition();
930   // For now, just try the simplest case where it's fed by a compare.
931   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
932     unsigned CondReg = createResultReg(&Mips::GPR32RegClass);
933     if (!emitCmp(CondReg, CI))
934       return false;
935     BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
936         .addReg(CondReg)
937         .addMBB(TBB);
938     finishCondBranch(BI->getParent(), TBB, FBB);
939     return true;
940   }
941   return false;
942 }
943 
944 bool MipsFastISel::selectCmp(const Instruction *I) {
945   const CmpInst *CI = cast<CmpInst>(I);
946   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
947   if (!emitCmp(ResultReg, CI))
948     return false;
949   updateValueMap(I, ResultReg);
950   return true;
951 }
952 
953 // Attempt to fast-select a floating-point extend instruction.
954 bool MipsFastISel::selectFPExt(const Instruction *I) {
955   if (UnsupportedFPMode)
956     return false;
957   Value *Src = I->getOperand(0);
958   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
959   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
960 
961   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
962     return false;
963 
964   unsigned SrcReg =
965       getRegForValue(Src); // this must be a 32bit floating point register class
966                            // maybe we should handle this differently
967   if (!SrcReg)
968     return false;
969 
970   unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
971   emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
972   updateValueMap(I, DestReg);
973   return true;
974 }
975 
976 bool MipsFastISel::selectSelect(const Instruction *I) {
977   assert(isa<SelectInst>(I) && "Expected a select instruction.");
978 
979   DEBUG(dbgs() << "selectSelect\n");
980 
981   MVT VT;
982   if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
983     DEBUG(dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
984     return false;
985   }
986 
987   unsigned CondMovOpc;
988   const TargetRegisterClass *RC;
989 
990   if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
991     CondMovOpc = Mips::MOVN_I_I;
992     RC = &Mips::GPR32RegClass;
993   } else if (VT == MVT::f32) {
994     CondMovOpc = Mips::MOVN_I_S;
995     RC = &Mips::FGR32RegClass;
996   } else if (VT == MVT::f64) {
997     CondMovOpc = Mips::MOVN_I_D32;
998     RC = &Mips::AFGR64RegClass;
999   } else
1000     return false;
1001 
1002   const SelectInst *SI = cast<SelectInst>(I);
1003   const Value *Cond = SI->getCondition();
1004   unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1005   unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1006   unsigned CondReg = getRegForValue(Cond);
1007 
1008   if (!Src1Reg || !Src2Reg || !CondReg)
1009     return false;
1010 
1011   unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1012   if (!ZExtCondReg)
1013     return false;
1014 
1015   if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1016     return false;
1017 
1018   unsigned ResultReg = createResultReg(RC);
1019   unsigned TempReg = createResultReg(RC);
1020 
1021   if (!ResultReg || !TempReg)
1022     return false;
1023 
1024   emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1025   emitInst(CondMovOpc, ResultReg)
1026     .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1027   updateValueMap(I, ResultReg);
1028   return true;
1029 }
1030 
1031 // Attempt to fast-select a floating-point truncate instruction.
1032 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1033   if (UnsupportedFPMode)
1034     return false;
1035   Value *Src = I->getOperand(0);
1036   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1037   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1038 
1039   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1040     return false;
1041 
1042   unsigned SrcReg = getRegForValue(Src);
1043   if (!SrcReg)
1044     return false;
1045 
1046   unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1047   if (!DestReg)
1048     return false;
1049 
1050   emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1051   updateValueMap(I, DestReg);
1052   return true;
1053 }
1054 
1055 // Attempt to fast-select a floating-point-to-integer conversion.
1056 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1057   if (UnsupportedFPMode)
1058     return false;
1059   MVT DstVT, SrcVT;
1060   if (!IsSigned)
1061     return false; // We don't handle this case yet. There is no native
1062                   // instruction for this but it can be synthesized.
1063   Type *DstTy = I->getType();
1064   if (!isTypeLegal(DstTy, DstVT))
1065     return false;
1066 
1067   if (DstVT != MVT::i32)
1068     return false;
1069 
1070   Value *Src = I->getOperand(0);
1071   Type *SrcTy = Src->getType();
1072   if (!isTypeLegal(SrcTy, SrcVT))
1073     return false;
1074 
1075   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1076     return false;
1077 
1078   unsigned SrcReg = getRegForValue(Src);
1079   if (SrcReg == 0)
1080     return false;
1081 
1082   // Determine the opcode for the conversion, which takes place
1083   // entirely within FPRs.
1084   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1085   unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1086   unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1087 
1088   // Generate the convert.
1089   emitInst(Opc, TempReg).addReg(SrcReg);
1090   emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1091 
1092   updateValueMap(I, DestReg);
1093   return true;
1094 }
1095 
1096 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1097                                    SmallVectorImpl<MVT> &OutVTs,
1098                                    unsigned &NumBytes) {
1099   CallingConv::ID CC = CLI.CallConv;
1100   SmallVector<CCValAssign, 16> ArgLocs;
1101   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1102   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1103   // Get a count of how many bytes are to be pushed on the stack.
1104   NumBytes = CCInfo.getNextStackOffset();
1105   // This is the minimum argument area used for A0-A3.
1106   if (NumBytes < 16)
1107     NumBytes = 16;
1108 
1109   emitInst(Mips::ADJCALLSTACKDOWN).addImm(16);
1110   // Process the args.
1111   MVT firstMVT;
1112   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1113     CCValAssign &VA = ArgLocs[i];
1114     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1115     MVT ArgVT = OutVTs[VA.getValNo()];
1116 
1117     if (i == 0) {
1118       firstMVT = ArgVT;
1119       if (ArgVT == MVT::f32) {
1120         VA.convertToReg(Mips::F12);
1121       } else if (ArgVT == MVT::f64) {
1122         VA.convertToReg(Mips::D6);
1123       }
1124     } else if (i == 1) {
1125       if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1126         if (ArgVT == MVT::f32) {
1127           VA.convertToReg(Mips::F14);
1128         } else if (ArgVT == MVT::f64) {
1129           VA.convertToReg(Mips::D7);
1130         }
1131       }
1132     }
1133     if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1134          (ArgVT == MVT::i8)) &&
1135         VA.isMemLoc()) {
1136       switch (VA.getLocMemOffset()) {
1137       case 0:
1138         VA.convertToReg(Mips::A0);
1139         break;
1140       case 4:
1141         VA.convertToReg(Mips::A1);
1142         break;
1143       case 8:
1144         VA.convertToReg(Mips::A2);
1145         break;
1146       case 12:
1147         VA.convertToReg(Mips::A3);
1148         break;
1149       default:
1150         break;
1151       }
1152     }
1153     unsigned ArgReg = getRegForValue(ArgVal);
1154     if (!ArgReg)
1155       return false;
1156 
1157     // Handle arg promotion: SExt, ZExt, AExt.
1158     switch (VA.getLocInfo()) {
1159     case CCValAssign::Full:
1160       break;
1161     case CCValAssign::AExt:
1162     case CCValAssign::SExt: {
1163       MVT DestVT = VA.getLocVT();
1164       MVT SrcVT = ArgVT;
1165       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1166       if (!ArgReg)
1167         return false;
1168       break;
1169     }
1170     case CCValAssign::ZExt: {
1171       MVT DestVT = VA.getLocVT();
1172       MVT SrcVT = ArgVT;
1173       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1174       if (!ArgReg)
1175         return false;
1176       break;
1177     }
1178     default:
1179       llvm_unreachable("Unknown arg promotion!");
1180     }
1181 
1182     // Now copy/store arg to correct locations.
1183     if (VA.isRegLoc() && !VA.needsCustom()) {
1184       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1185               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1186       CLI.OutRegs.push_back(VA.getLocReg());
1187     } else if (VA.needsCustom()) {
1188       llvm_unreachable("Mips does not use custom args.");
1189       return false;
1190     } else {
1191       //
1192       // FIXME: This path will currently return false. It was copied
1193       // from the AArch64 port and should be essentially fine for Mips too.
1194       // The work to finish up this path will be done in a follow-on patch.
1195       //
1196       assert(VA.isMemLoc() && "Assuming store on stack.");
1197       // Don't emit stores for undef values.
1198       if (isa<UndefValue>(ArgVal))
1199         continue;
1200 
1201       // Need to store on the stack.
1202       // FIXME: This alignment is incorrect but this path is disabled
1203       // for now (will return false). We need to determine the right alignment
1204       // based on the normal alignment for the underlying machine type.
1205       //
1206       unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1207 
1208       unsigned BEAlign = 0;
1209       if (ArgSize < 8 && !Subtarget->isLittle())
1210         BEAlign = 8 - ArgSize;
1211 
1212       Address Addr;
1213       Addr.setKind(Address::RegBase);
1214       Addr.setReg(Mips::SP);
1215       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1216 
1217       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1218       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1219           MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1220           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1221       (void)(MMO);
1222       // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1223       return false; // can't store on the stack yet.
1224     }
1225   }
1226 
1227   return true;
1228 }
1229 
1230 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1231                               unsigned NumBytes) {
1232   CallingConv::ID CC = CLI.CallConv;
1233   emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1234   if (RetVT != MVT::isVoid) {
1235     SmallVector<CCValAssign, 16> RVLocs;
1236     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1237     CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips);
1238 
1239     // Only handle a single return value.
1240     if (RVLocs.size() != 1)
1241       return false;
1242     // Copy all of the result registers out of their specified physreg.
1243     MVT CopyVT = RVLocs[0].getValVT();
1244     // Special handling for extended integers.
1245     if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1246       CopyVT = MVT::i32;
1247 
1248     unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1249     if (!ResultReg)
1250       return false;
1251     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1252             TII.get(TargetOpcode::COPY),
1253             ResultReg).addReg(RVLocs[0].getLocReg());
1254     CLI.InRegs.push_back(RVLocs[0].getLocReg());
1255 
1256     CLI.ResultReg = ResultReg;
1257     CLI.NumResultRegs = 1;
1258   }
1259   return true;
1260 }
1261 
1262 bool MipsFastISel::fastLowerArguments() {
1263   DEBUG(dbgs() << "fastLowerArguments\n");
1264 
1265   if (!FuncInfo.CanLowerReturn) {
1266     DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1267     return false;
1268   }
1269 
1270   const Function *F = FuncInfo.Fn;
1271   if (F->isVarArg()) {
1272     DEBUG(dbgs() << ".. gave up (varargs)\n");
1273     return false;
1274   }
1275 
1276   CallingConv::ID CC = F->getCallingConv();
1277   if (CC != CallingConv::C) {
1278     DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1279     return false;
1280   }
1281 
1282   const ArrayRef<MCPhysReg> GPR32ArgRegs = {Mips::A0, Mips::A1, Mips::A2,
1283                                             Mips::A3};
1284   const ArrayRef<MCPhysReg> FGR32ArgRegs = {Mips::F12, Mips::F14};
1285   const ArrayRef<MCPhysReg> AFGR64ArgRegs = {Mips::D6, Mips::D7};
1286   ArrayRef<MCPhysReg>::iterator NextGPR32 = GPR32ArgRegs.begin();
1287   ArrayRef<MCPhysReg>::iterator NextFGR32 = FGR32ArgRegs.begin();
1288   ArrayRef<MCPhysReg>::iterator NextAFGR64 = AFGR64ArgRegs.begin();
1289 
1290   struct AllocatedReg {
1291     const TargetRegisterClass *RC;
1292     unsigned Reg;
1293     AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1294         : RC(RC), Reg(Reg) {}
1295   };
1296 
1297   // Only handle simple cases. i.e. All arguments are directly mapped to
1298   // registers of the appropriate type.
1299   SmallVector<AllocatedReg, 4> Allocation;
1300   unsigned Idx = 1;
1301   for (const auto &FormalArg : F->args()) {
1302     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
1303         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
1304         F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
1305       DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1306       return false;
1307     }
1308 
1309     Type *ArgTy = FormalArg.getType();
1310     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1311       DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1312       return false;
1313     }
1314 
1315     EVT ArgVT = TLI.getValueType(DL, ArgTy);
1316     DEBUG(dbgs() << ".. " << (Idx - 1) << ": " << ArgVT.getEVTString() << "\n");
1317     if (!ArgVT.isSimple()) {
1318       DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1319       return false;
1320     }
1321 
1322     switch (ArgVT.getSimpleVT().SimpleTy) {
1323     case MVT::i1:
1324     case MVT::i8:
1325     case MVT::i16:
1326       if (!F->getAttributes().hasAttribute(Idx, Attribute::SExt) &&
1327           !F->getAttributes().hasAttribute(Idx, Attribute::ZExt)) {
1328         // It must be any extend, this shouldn't happen for clang-generated IR
1329         // so just fall back on SelectionDAG.
1330         DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1331         return false;
1332       }
1333 
1334       if (NextGPR32 == GPR32ArgRegs.end()) {
1335         DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1336         return false;
1337       }
1338 
1339       DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1340       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1341 
1342       // Allocating any GPR32 prohibits further use of floating point arguments.
1343       NextFGR32 = FGR32ArgRegs.end();
1344       NextAFGR64 = AFGR64ArgRegs.end();
1345       break;
1346 
1347     case MVT::i32:
1348       if (F->getAttributes().hasAttribute(Idx, Attribute::ZExt)) {
1349         // The O32 ABI does not permit a zero-extended i32.
1350         DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1351         return false;
1352       }
1353 
1354       if (NextGPR32 == GPR32ArgRegs.end()) {
1355         DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1356         return false;
1357       }
1358 
1359       DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1360       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1361 
1362       // Allocating any GPR32 prohibits further use of floating point arguments.
1363       NextFGR32 = FGR32ArgRegs.end();
1364       NextAFGR64 = AFGR64ArgRegs.end();
1365       break;
1366 
1367     case MVT::f32:
1368       if (UnsupportedFPMode) {
1369         DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1370         return false;
1371       }
1372       if (NextFGR32 == FGR32ArgRegs.end()) {
1373         DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1374         return false;
1375       }
1376       DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1377       Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1378       // Allocating an FGR32 also allocates the super-register AFGR64, and
1379       // ABI rules require us to skip the corresponding GPR32.
1380       if (NextGPR32 != GPR32ArgRegs.end())
1381         NextGPR32++;
1382       if (NextAFGR64 != AFGR64ArgRegs.end())
1383         NextAFGR64++;
1384       break;
1385 
1386     case MVT::f64:
1387       if (UnsupportedFPMode) {
1388         DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1389         return false;
1390       }
1391       if (NextAFGR64 == AFGR64ArgRegs.end()) {
1392         DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1393         return false;
1394       }
1395       DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1396       Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1397       // Allocating an FGR32 also allocates the super-register AFGR64, and
1398       // ABI rules require us to skip the corresponding GPR32 pair.
1399       if (NextGPR32 != GPR32ArgRegs.end())
1400         NextGPR32++;
1401       if (NextGPR32 != GPR32ArgRegs.end())
1402         NextGPR32++;
1403       if (NextFGR32 != FGR32ArgRegs.end())
1404         NextFGR32++;
1405       break;
1406 
1407     default:
1408       DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1409       return false;
1410     }
1411 
1412     ++Idx;
1413   }
1414 
1415   Idx = 0;
1416   for (const auto &FormalArg : F->args()) {
1417     unsigned SrcReg = Allocation[Idx].Reg;
1418     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[Idx].RC);
1419     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1420     // Without this, EmitLiveInCopies may eliminate the livein if its only
1421     // use is a bitcast (which isn't turned into an instruction).
1422     unsigned ResultReg = createResultReg(Allocation[Idx].RC);
1423     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1424             TII.get(TargetOpcode::COPY), ResultReg)
1425         .addReg(DstReg, getKillRegState(true));
1426     updateValueMap(&FormalArg, ResultReg);
1427     ++Idx;
1428   }
1429 
1430   // Calculate the size of the incoming arguments area.
1431   // We currently reject all the cases where this would be non-zero.
1432   unsigned IncomingArgSizeInBytes = 0;
1433 
1434   // Account for the reserved argument area on ABI's that have one (O32).
1435   // It seems strange to do this on the caller side but it's necessary in
1436   // SelectionDAG's implementation.
1437   IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1438                                     IncomingArgSizeInBytes);
1439 
1440   MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1441                                                     false);
1442 
1443   return true;
1444 }
1445 
1446 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1447   if (!TargetSupported)
1448     return false;
1449 
1450   CallingConv::ID CC = CLI.CallConv;
1451   bool IsTailCall = CLI.IsTailCall;
1452   bool IsVarArg = CLI.IsVarArg;
1453   const Value *Callee = CLI.Callee;
1454   MCSymbol *Symbol = CLI.Symbol;
1455 
1456   // Do not handle FastCC.
1457   if (CC == CallingConv::Fast)
1458     return false;
1459 
1460   // Allow SelectionDAG isel to handle tail calls.
1461   if (IsTailCall)
1462     return false;
1463 
1464   // Let SDISel handle vararg functions.
1465   if (IsVarArg)
1466     return false;
1467 
1468   // FIXME: Only handle *simple* calls for now.
1469   MVT RetVT;
1470   if (CLI.RetTy->isVoidTy())
1471     RetVT = MVT::isVoid;
1472   else if (!isTypeSupported(CLI.RetTy, RetVT))
1473     return false;
1474 
1475   for (auto Flag : CLI.OutFlags)
1476     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1477       return false;
1478 
1479   // Set up the argument vectors.
1480   SmallVector<MVT, 16> OutVTs;
1481   OutVTs.reserve(CLI.OutVals.size());
1482 
1483   for (auto *Val : CLI.OutVals) {
1484     MVT VT;
1485     if (!isTypeLegal(Val->getType(), VT) &&
1486         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1487       return false;
1488 
1489     // We don't handle vector parameters yet.
1490     if (VT.isVector() || VT.getSizeInBits() > 64)
1491       return false;
1492 
1493     OutVTs.push_back(VT);
1494   }
1495 
1496   Address Addr;
1497   if (!computeCallAddress(Callee, Addr))
1498     return false;
1499 
1500   // Handle the arguments now that we've gotten them.
1501   unsigned NumBytes;
1502   if (!processCallArgs(CLI, OutVTs, NumBytes))
1503     return false;
1504 
1505   if (!Addr.getGlobalValue())
1506     return false;
1507 
1508   // Issue the call.
1509   unsigned DestAddress;
1510   if (Symbol)
1511     DestAddress = materializeExternalCallSym(Symbol);
1512   else
1513     DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1514   emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1515   MachineInstrBuilder MIB =
1516       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1517               Mips::RA).addReg(Mips::T9);
1518 
1519   // Add implicit physical register uses to the call.
1520   for (auto Reg : CLI.OutRegs)
1521     MIB.addReg(Reg, RegState::Implicit);
1522 
1523   // Add a register mask with the call-preserved registers.
1524   // Proper defs for return values will be added by setPhysRegsDeadExcept().
1525   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1526 
1527   CLI.Call = MIB;
1528 
1529   // Finish off the call including any return values.
1530   return finishCall(CLI, RetVT, NumBytes);
1531 }
1532 
1533 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1534   if (!TargetSupported)
1535     return false;
1536 
1537   switch (II->getIntrinsicID()) {
1538   default:
1539     return false;
1540   case Intrinsic::bswap: {
1541     Type *RetTy = II->getCalledFunction()->getReturnType();
1542 
1543     MVT VT;
1544     if (!isTypeSupported(RetTy, VT))
1545       return false;
1546 
1547     unsigned SrcReg = getRegForValue(II->getOperand(0));
1548     if (SrcReg == 0)
1549       return false;
1550     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1551     if (DestReg == 0)
1552       return false;
1553     if (VT == MVT::i16) {
1554       if (Subtarget->hasMips32r2()) {
1555         emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1556         updateValueMap(II, DestReg);
1557         return true;
1558       } else {
1559         unsigned TempReg[3];
1560         for (int i = 0; i < 3; i++) {
1561           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1562           if (TempReg[i] == 0)
1563             return false;
1564         }
1565         emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1566         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1567         emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1568         emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1569         updateValueMap(II, DestReg);
1570         return true;
1571       }
1572     } else if (VT == MVT::i32) {
1573       if (Subtarget->hasMips32r2()) {
1574         unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1575         emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1576         emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1577         updateValueMap(II, DestReg);
1578         return true;
1579       } else {
1580         unsigned TempReg[8];
1581         for (int i = 0; i < 8; i++) {
1582           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1583           if (TempReg[i] == 0)
1584             return false;
1585         }
1586 
1587         emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1588         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1589         emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1590         emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1591 
1592         emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1593         emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1594 
1595         emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1596         emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1597         emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1598         updateValueMap(II, DestReg);
1599         return true;
1600       }
1601     }
1602     return false;
1603   }
1604   case Intrinsic::memcpy:
1605   case Intrinsic::memmove: {
1606     const auto *MTI = cast<MemTransferInst>(II);
1607     // Don't handle volatile.
1608     if (MTI->isVolatile())
1609       return false;
1610     if (!MTI->getLength()->getType()->isIntegerTy(32))
1611       return false;
1612     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1613     return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
1614   }
1615   case Intrinsic::memset: {
1616     const MemSetInst *MSI = cast<MemSetInst>(II);
1617     // Don't handle volatile.
1618     if (MSI->isVolatile())
1619       return false;
1620     if (!MSI->getLength()->getType()->isIntegerTy(32))
1621       return false;
1622     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
1623   }
1624   }
1625   return false;
1626 }
1627 
1628 bool MipsFastISel::selectRet(const Instruction *I) {
1629   const Function &F = *I->getParent()->getParent();
1630   const ReturnInst *Ret = cast<ReturnInst>(I);
1631 
1632   DEBUG(dbgs() << "selectRet\n");
1633 
1634   if (!FuncInfo.CanLowerReturn)
1635     return false;
1636 
1637   // Build a list of return value registers.
1638   SmallVector<unsigned, 4> RetRegs;
1639 
1640   if (Ret->getNumOperands() > 0) {
1641     CallingConv::ID CC = F.getCallingConv();
1642 
1643     // Do not handle FastCC.
1644     if (CC == CallingConv::Fast)
1645       return false;
1646 
1647     SmallVector<ISD::OutputArg, 4> Outs;
1648     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1649 
1650     // Analyze operands of the call, assigning locations to each operand.
1651     SmallVector<CCValAssign, 16> ValLocs;
1652     MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1653                        I->getContext());
1654     CCAssignFn *RetCC = RetCC_Mips;
1655     CCInfo.AnalyzeReturn(Outs, RetCC);
1656 
1657     // Only handle a single return value for now.
1658     if (ValLocs.size() != 1)
1659       return false;
1660 
1661     CCValAssign &VA = ValLocs[0];
1662     const Value *RV = Ret->getOperand(0);
1663 
1664     // Don't bother handling odd stuff for now.
1665     if ((VA.getLocInfo() != CCValAssign::Full) &&
1666         (VA.getLocInfo() != CCValAssign::BCvt))
1667       return false;
1668 
1669     // Only handle register returns for now.
1670     if (!VA.isRegLoc())
1671       return false;
1672 
1673     unsigned Reg = getRegForValue(RV);
1674     if (Reg == 0)
1675       return false;
1676 
1677     unsigned SrcReg = Reg + VA.getValNo();
1678     unsigned DestReg = VA.getLocReg();
1679     // Avoid a cross-class copy. This is very unlikely.
1680     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1681       return false;
1682 
1683     EVT RVEVT = TLI.getValueType(DL, RV->getType());
1684     if (!RVEVT.isSimple())
1685       return false;
1686 
1687     if (RVEVT.isVector())
1688       return false;
1689 
1690     MVT RVVT = RVEVT.getSimpleVT();
1691     if (RVVT == MVT::f128)
1692       return false;
1693 
1694     // Do not handle FGR64 returns for now.
1695     if (RVVT == MVT::f64 && UnsupportedFPMode) {
1696       DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1697       return false;
1698     }
1699 
1700     MVT DestVT = VA.getValVT();
1701     // Special handling for extended integers.
1702     if (RVVT != DestVT) {
1703       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1704         return false;
1705 
1706       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1707         bool IsZExt = Outs[0].Flags.isZExt();
1708         SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1709         if (SrcReg == 0)
1710           return false;
1711       }
1712     }
1713 
1714     // Make the copy.
1715     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1716             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1717 
1718     // Add register to return instruction.
1719     RetRegs.push_back(VA.getLocReg());
1720   }
1721   MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1722   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1723     MIB.addReg(RetRegs[i], RegState::Implicit);
1724   return true;
1725 }
1726 
1727 bool MipsFastISel::selectTrunc(const Instruction *I) {
1728   // The high bits for a type smaller than the register size are assumed to be
1729   // undefined.
1730   Value *Op = I->getOperand(0);
1731 
1732   EVT SrcVT, DestVT;
1733   SrcVT = TLI.getValueType(DL, Op->getType(), true);
1734   DestVT = TLI.getValueType(DL, I->getType(), true);
1735 
1736   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1737     return false;
1738   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1739     return false;
1740 
1741   unsigned SrcReg = getRegForValue(Op);
1742   if (!SrcReg)
1743     return false;
1744 
1745   // Because the high bits are undefined, a truncate doesn't generate
1746   // any code.
1747   updateValueMap(I, SrcReg);
1748   return true;
1749 }
1750 bool MipsFastISel::selectIntExt(const Instruction *I) {
1751   Type *DestTy = I->getType();
1752   Value *Src = I->getOperand(0);
1753   Type *SrcTy = Src->getType();
1754 
1755   bool isZExt = isa<ZExtInst>(I);
1756   unsigned SrcReg = getRegForValue(Src);
1757   if (!SrcReg)
1758     return false;
1759 
1760   EVT SrcEVT, DestEVT;
1761   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1762   DestEVT = TLI.getValueType(DL, DestTy, true);
1763   if (!SrcEVT.isSimple())
1764     return false;
1765   if (!DestEVT.isSimple())
1766     return false;
1767 
1768   MVT SrcVT = SrcEVT.getSimpleVT();
1769   MVT DestVT = DestEVT.getSimpleVT();
1770   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1771 
1772   if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1773     return false;
1774   updateValueMap(I, ResultReg);
1775   return true;
1776 }
1777 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1778                                    unsigned DestReg) {
1779   unsigned ShiftAmt;
1780   switch (SrcVT.SimpleTy) {
1781   default:
1782     return false;
1783   case MVT::i8:
1784     ShiftAmt = 24;
1785     break;
1786   case MVT::i16:
1787     ShiftAmt = 16;
1788     break;
1789   }
1790   unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1791   emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1792   emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1793   return true;
1794 }
1795 
1796 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1797                                    unsigned DestReg) {
1798   switch (SrcVT.SimpleTy) {
1799   default:
1800     return false;
1801   case MVT::i8:
1802     emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1803     break;
1804   case MVT::i16:
1805     emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1806     break;
1807   }
1808   return true;
1809 }
1810 
1811 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1812                                unsigned DestReg) {
1813   if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1814     return false;
1815   if (Subtarget->hasMips32r2())
1816     return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1817   return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1818 }
1819 
1820 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1821                                unsigned DestReg) {
1822   int64_t Imm;
1823 
1824   switch (SrcVT.SimpleTy) {
1825   default:
1826     return false;
1827   case MVT::i1:
1828     Imm = 1;
1829     break;
1830   case MVT::i8:
1831     Imm = 0xff;
1832     break;
1833   case MVT::i16:
1834     Imm = 0xffff;
1835     break;
1836   }
1837 
1838   emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1839   return true;
1840 }
1841 
1842 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1843                               unsigned DestReg, bool IsZExt) {
1844   // FastISel does not have plumbing to deal with extensions where the SrcVT or
1845   // DestVT are odd things, so test to make sure that they are both types we can
1846   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1847   // bail out to SelectionDAG.
1848   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1849       ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1850     return false;
1851   if (IsZExt)
1852     return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1853   return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1854 }
1855 
1856 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1857                                   bool isZExt) {
1858   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1859   bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1860   return Success ? DestReg : 0;
1861 }
1862 
1863 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1864   EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1865   if (!DestEVT.isSimple())
1866     return false;
1867 
1868   MVT DestVT = DestEVT.getSimpleVT();
1869   if (DestVT != MVT::i32)
1870     return false;
1871 
1872   unsigned DivOpc;
1873   switch (ISDOpcode) {
1874   default:
1875     return false;
1876   case ISD::SDIV:
1877   case ISD::SREM:
1878     DivOpc = Mips::SDIV;
1879     break;
1880   case ISD::UDIV:
1881   case ISD::UREM:
1882     DivOpc = Mips::UDIV;
1883     break;
1884   }
1885 
1886   unsigned Src0Reg = getRegForValue(I->getOperand(0));
1887   unsigned Src1Reg = getRegForValue(I->getOperand(1));
1888   if (!Src0Reg || !Src1Reg)
1889     return false;
1890 
1891   emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1892   emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1893 
1894   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1895   if (!ResultReg)
1896     return false;
1897 
1898   unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1899                        ? Mips::MFHI
1900                        : Mips::MFLO;
1901   emitInst(MFOpc, ResultReg);
1902 
1903   updateValueMap(I, ResultReg);
1904   return true;
1905 }
1906 
1907 bool MipsFastISel::selectShift(const Instruction *I) {
1908   MVT RetVT;
1909 
1910   if (!isTypeSupported(I->getType(), RetVT))
1911     return false;
1912 
1913   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1914   if (!ResultReg)
1915     return false;
1916 
1917   unsigned Opcode = I->getOpcode();
1918   const Value *Op0 = I->getOperand(0);
1919   unsigned Op0Reg = getRegForValue(Op0);
1920   if (!Op0Reg)
1921     return false;
1922 
1923   // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1924   if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1925     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1926     if (!TempReg)
1927       return false;
1928 
1929     MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1930     bool IsZExt = Opcode == Instruction::LShr;
1931     if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1932       return false;
1933 
1934     Op0Reg = TempReg;
1935   }
1936 
1937   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1938     uint64_t ShiftVal = C->getZExtValue();
1939 
1940     switch (Opcode) {
1941     default:
1942       llvm_unreachable("Unexpected instruction.");
1943     case Instruction::Shl:
1944       Opcode = Mips::SLL;
1945       break;
1946     case Instruction::AShr:
1947       Opcode = Mips::SRA;
1948       break;
1949     case Instruction::LShr:
1950       Opcode = Mips::SRL;
1951       break;
1952     }
1953 
1954     emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
1955     updateValueMap(I, ResultReg);
1956     return true;
1957   }
1958 
1959   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1960   if (!Op1Reg)
1961     return false;
1962 
1963   switch (Opcode) {
1964   default:
1965     llvm_unreachable("Unexpected instruction.");
1966   case Instruction::Shl:
1967     Opcode = Mips::SLLV;
1968     break;
1969   case Instruction::AShr:
1970     Opcode = Mips::SRAV;
1971     break;
1972   case Instruction::LShr:
1973     Opcode = Mips::SRLV;
1974     break;
1975   }
1976 
1977   emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
1978   updateValueMap(I, ResultReg);
1979   return true;
1980 }
1981 
1982 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
1983   if (!TargetSupported)
1984     return false;
1985   switch (I->getOpcode()) {
1986   default:
1987     break;
1988   case Instruction::Load:
1989     return selectLoad(I);
1990   case Instruction::Store:
1991     return selectStore(I);
1992   case Instruction::SDiv:
1993     if (!selectBinaryOp(I, ISD::SDIV))
1994       return selectDivRem(I, ISD::SDIV);
1995     return true;
1996   case Instruction::UDiv:
1997     if (!selectBinaryOp(I, ISD::UDIV))
1998       return selectDivRem(I, ISD::UDIV);
1999     return true;
2000   case Instruction::SRem:
2001     if (!selectBinaryOp(I, ISD::SREM))
2002       return selectDivRem(I, ISD::SREM);
2003     return true;
2004   case Instruction::URem:
2005     if (!selectBinaryOp(I, ISD::UREM))
2006       return selectDivRem(I, ISD::UREM);
2007     return true;
2008   case Instruction::Shl:
2009   case Instruction::LShr:
2010   case Instruction::AShr:
2011     return selectShift(I);
2012   case Instruction::And:
2013   case Instruction::Or:
2014   case Instruction::Xor:
2015     return selectLogicalOp(I);
2016   case Instruction::Br:
2017     return selectBranch(I);
2018   case Instruction::Ret:
2019     return selectRet(I);
2020   case Instruction::Trunc:
2021     return selectTrunc(I);
2022   case Instruction::ZExt:
2023   case Instruction::SExt:
2024     return selectIntExt(I);
2025   case Instruction::FPTrunc:
2026     return selectFPTrunc(I);
2027   case Instruction::FPExt:
2028     return selectFPExt(I);
2029   case Instruction::FPToSI:
2030     return selectFPToInt(I, /*isSigned*/ true);
2031   case Instruction::FPToUI:
2032     return selectFPToInt(I, /*isSigned*/ false);
2033   case Instruction::ICmp:
2034   case Instruction::FCmp:
2035     return selectCmp(I);
2036   case Instruction::Select:
2037     return selectSelect(I);
2038   }
2039   return false;
2040 }
2041 
2042 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2043                                                            bool IsUnsigned) {
2044   unsigned VReg = getRegForValue(V);
2045   if (VReg == 0)
2046     return 0;
2047   MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2048   if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2049     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2050     if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2051       return 0;
2052     VReg = TempReg;
2053   }
2054   return VReg;
2055 }
2056 
2057 void MipsFastISel::simplifyAddress(Address &Addr) {
2058   if (!isInt<16>(Addr.getOffset())) {
2059     unsigned TempReg =
2060         materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2061     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2062     emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2063     Addr.setReg(DestReg);
2064     Addr.setOffset(0);
2065   }
2066 }
2067 
2068 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2069                                        const TargetRegisterClass *RC,
2070                                        unsigned Op0, bool Op0IsKill,
2071                                        unsigned Op1, bool Op1IsKill) {
2072   // We treat the MUL instruction in a special way because it clobbers
2073   // the HI0 & LO0 registers. The TableGen definition of this instruction can
2074   // mark these registers only as implicitly defined. As a result, the
2075   // register allocator runs out of registers when this instruction is
2076   // followed by another instruction that defines the same registers too.
2077   // We can fix this by explicitly marking those registers as dead.
2078   if (MachineInstOpcode == Mips::MUL) {
2079     unsigned ResultReg = createResultReg(RC);
2080     const MCInstrDesc &II = TII.get(MachineInstOpcode);
2081     Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2082     Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2083     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2084       .addReg(Op0, getKillRegState(Op0IsKill))
2085       .addReg(Op1, getKillRegState(Op1IsKill))
2086       .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2087       .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2088     return ResultReg;
2089   }
2090 
2091   return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2092                                    Op1IsKill);
2093 }
2094 
2095 namespace llvm {
2096 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2097                                const TargetLibraryInfo *libInfo) {
2098   return new MipsFastISel(funcInfo, libInfo);
2099 }
2100 }
2101