1 //===-- MipsastISel.cpp - Mips FastISel implementation 2 //---------------------===// 3 4 #include "MipsCCState.h" 5 #include "MipsInstrInfo.h" 6 #include "MipsISelLowering.h" 7 #include "MipsMachineFunction.h" 8 #include "MipsRegisterInfo.h" 9 #include "MipsSubtarget.h" 10 #include "MipsTargetMachine.h" 11 #include "llvm/Analysis/TargetLibraryInfo.h" 12 #include "llvm/CodeGen/FastISel.h" 13 #include "llvm/CodeGen/FunctionLoweringInfo.h" 14 #include "llvm/CodeGen/MachineInstrBuilder.h" 15 #include "llvm/CodeGen/MachineRegisterInfo.h" 16 #include "llvm/IR/GetElementPtrTypeIterator.h" 17 #include "llvm/IR/GlobalAlias.h" 18 #include "llvm/IR/GlobalVariable.h" 19 #include "llvm/MC/MCSymbol.h" 20 #include "llvm/Target/TargetInstrInfo.h" 21 22 using namespace llvm; 23 24 namespace { 25 26 class MipsFastISel final : public FastISel { 27 28 // All possible address modes. 29 class Address { 30 public: 31 typedef enum { RegBase, FrameIndexBase } BaseKind; 32 33 private: 34 BaseKind Kind; 35 union { 36 unsigned Reg; 37 int FI; 38 } Base; 39 40 int64_t Offset; 41 42 const GlobalValue *GV; 43 44 public: 45 // Innocuous defaults for our address. 46 Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; } 47 void setKind(BaseKind K) { Kind = K; } 48 BaseKind getKind() const { return Kind; } 49 bool isRegBase() const { return Kind == RegBase; } 50 bool isFIBase() const { return Kind == FrameIndexBase; } 51 void setReg(unsigned Reg) { 52 assert(isRegBase() && "Invalid base register access!"); 53 Base.Reg = Reg; 54 } 55 unsigned getReg() const { 56 assert(isRegBase() && "Invalid base register access!"); 57 return Base.Reg; 58 } 59 void setFI(unsigned FI) { 60 assert(isFIBase() && "Invalid base frame index access!"); 61 Base.FI = FI; 62 } 63 unsigned getFI() const { 64 assert(isFIBase() && "Invalid base frame index access!"); 65 return Base.FI; 66 } 67 68 void setOffset(int64_t Offset_) { Offset = Offset_; } 69 int64_t getOffset() const { return Offset; } 70 void setGlobalValue(const GlobalValue *G) { GV = G; } 71 const GlobalValue *getGlobalValue() { return GV; } 72 }; 73 74 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can 75 /// make the right decision when generating code for different targets. 76 const TargetMachine &TM; 77 const MipsSubtarget *Subtarget; 78 const TargetInstrInfo &TII; 79 const TargetLowering &TLI; 80 MipsFunctionInfo *MFI; 81 82 // Convenience variables to avoid some queries. 83 LLVMContext *Context; 84 85 bool fastLowerCall(CallLoweringInfo &CLI) override; 86 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 87 88 bool TargetSupported; 89 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle 90 // floating point but not reject doing fast-isel in other 91 // situations 92 93 private: 94 // Selection routines. 95 bool selectLogicalOp(const Instruction *I); 96 bool selectLoad(const Instruction *I); 97 bool selectStore(const Instruction *I); 98 bool selectBranch(const Instruction *I); 99 bool selectSelect(const Instruction *I); 100 bool selectCmp(const Instruction *I); 101 bool selectFPExt(const Instruction *I); 102 bool selectFPTrunc(const Instruction *I); 103 bool selectFPToInt(const Instruction *I, bool IsSigned); 104 bool selectRet(const Instruction *I); 105 bool selectTrunc(const Instruction *I); 106 bool selectIntExt(const Instruction *I); 107 bool selectShift(const Instruction *I); 108 bool selectDivRem(const Instruction *I, unsigned ISDOpcode); 109 110 // Utility helper routines. 111 bool isTypeLegal(Type *Ty, MVT &VT); 112 bool isTypeSupported(Type *Ty, MVT &VT); 113 bool isLoadTypeLegal(Type *Ty, MVT &VT); 114 bool computeAddress(const Value *Obj, Address &Addr); 115 bool computeCallAddress(const Value *V, Address &Addr); 116 void simplifyAddress(Address &Addr); 117 118 // Emit helper routines. 119 bool emitCmp(unsigned DestReg, const CmpInst *CI); 120 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 121 unsigned Alignment = 0); 122 bool emitStore(MVT VT, unsigned SrcReg, Address Addr, 123 MachineMemOperand *MMO = nullptr); 124 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr, 125 unsigned Alignment = 0); 126 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 127 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg, 128 129 bool IsZExt); 130 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 131 132 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg); 133 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 134 unsigned DestReg); 135 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 136 unsigned DestReg); 137 138 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned); 139 140 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, 141 const Value *RHS); 142 143 unsigned materializeFP(const ConstantFP *CFP, MVT VT); 144 unsigned materializeGV(const GlobalValue *GV, MVT VT); 145 unsigned materializeInt(const Constant *C, MVT VT); 146 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); 147 unsigned materializeExternalCallSym(MCSymbol *Syn); 148 149 MachineInstrBuilder emitInst(unsigned Opc) { 150 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 151 } 152 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) { 153 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 154 DstReg); 155 } 156 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg, 157 unsigned MemReg, int64_t MemOffset) { 158 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset); 159 } 160 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg, 161 unsigned MemReg, int64_t MemOffset) { 162 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset); 163 } 164 165 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 166 const TargetRegisterClass *RC, 167 unsigned Op0, bool Op0IsKill, 168 unsigned Op1, bool Op1IsKill); 169 170 // for some reason, this default is not generated by tablegen 171 // so we explicitly generate it here. 172 // 173 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC, 174 unsigned Op0, bool Op0IsKill, uint64_t imm1, 175 uint64_t imm2, unsigned Op3, bool Op3IsKill) { 176 return 0; 177 } 178 179 // Call handling routines. 180 private: 181 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; 182 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs, 183 unsigned &NumBytes); 184 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes); 185 186 public: 187 // Backend specific FastISel code. 188 explicit MipsFastISel(FunctionLoweringInfo &funcInfo, 189 const TargetLibraryInfo *libInfo) 190 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()), 191 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()), 192 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) { 193 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>(); 194 Context = &funcInfo.Fn->getContext(); 195 TargetSupported = 196 ((TM.getRelocationModel() == Reloc::PIC_) && 197 ((Subtarget->hasMips32r2() || Subtarget->hasMips32()) && 198 (static_cast<const MipsTargetMachine &>(TM).getABI().IsO32()))); 199 UnsupportedFPMode = Subtarget->isFP64bit(); 200 } 201 202 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 203 unsigned fastMaterializeConstant(const Constant *C) override; 204 bool fastSelectInstruction(const Instruction *I) override; 205 206 #include "MipsGenFastISel.inc" 207 }; 208 } // end anonymous namespace. 209 210 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT, 211 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 212 CCState &State) LLVM_ATTRIBUTE_UNUSED; 213 214 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT, 215 CCValAssign::LocInfo LocInfo, 216 ISD::ArgFlagsTy ArgFlags, CCState &State) { 217 llvm_unreachable("should not be called"); 218 } 219 220 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT, 221 CCValAssign::LocInfo LocInfo, 222 ISD::ArgFlagsTy ArgFlags, CCState &State) { 223 llvm_unreachable("should not be called"); 224 } 225 226 #include "MipsGenCallingConv.inc" 227 228 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const { 229 return CC_MipsO32; 230 } 231 232 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT, 233 const Value *LHS, const Value *RHS) { 234 // Canonicalize immediates to the RHS first. 235 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS)) 236 std::swap(LHS, RHS); 237 238 unsigned Opc; 239 if (ISDOpc == ISD::AND) { 240 Opc = Mips::AND; 241 } else if (ISDOpc == ISD::OR) { 242 Opc = Mips::OR; 243 } else if (ISDOpc == ISD::XOR) { 244 Opc = Mips::XOR; 245 } else 246 llvm_unreachable("unexpected opcode"); 247 248 unsigned LHSReg = getRegForValue(LHS); 249 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 250 if (!ResultReg) 251 return 0; 252 253 unsigned RHSReg; 254 if (!LHSReg) 255 return 0; 256 257 if (const auto *C = dyn_cast<ConstantInt>(RHS)) 258 RHSReg = materializeInt(C, MVT::i32); 259 else 260 RHSReg = getRegForValue(RHS); 261 262 if (!RHSReg) 263 return 0; 264 265 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg); 266 return ResultReg; 267 } 268 269 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 270 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 && 271 "Alloca should always return a pointer."); 272 273 DenseMap<const AllocaInst *, int>::iterator SI = 274 FuncInfo.StaticAllocaMap.find(AI); 275 276 if (SI != FuncInfo.StaticAllocaMap.end()) { 277 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu), 279 ResultReg) 280 .addFrameIndex(SI->second) 281 .addImm(0); 282 return ResultReg; 283 } 284 285 return 0; 286 } 287 288 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) { 289 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 290 return 0; 291 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 292 const ConstantInt *CI = cast<ConstantInt>(C); 293 int64_t Imm; 294 if ((VT != MVT::i1) && CI->isNegative()) 295 Imm = CI->getSExtValue(); 296 else 297 Imm = CI->getZExtValue(); 298 return materialize32BitInt(Imm, RC); 299 } 300 301 unsigned MipsFastISel::materialize32BitInt(int64_t Imm, 302 const TargetRegisterClass *RC) { 303 unsigned ResultReg = createResultReg(RC); 304 305 if (isInt<16>(Imm)) { 306 unsigned Opc = Mips::ADDiu; 307 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm); 308 return ResultReg; 309 } else if (isUInt<16>(Imm)) { 310 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm); 311 return ResultReg; 312 } 313 unsigned Lo = Imm & 0xFFFF; 314 unsigned Hi = (Imm >> 16) & 0xFFFF; 315 if (Lo) { 316 // Both Lo and Hi have nonzero bits. 317 unsigned TmpReg = createResultReg(RC); 318 emitInst(Mips::LUi, TmpReg).addImm(Hi); 319 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo); 320 } else { 321 emitInst(Mips::LUi, ResultReg).addImm(Hi); 322 } 323 return ResultReg; 324 } 325 326 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) { 327 if (UnsupportedFPMode) 328 return 0; 329 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 330 if (VT == MVT::f32) { 331 const TargetRegisterClass *RC = &Mips::FGR32RegClass; 332 unsigned DestReg = createResultReg(RC); 333 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass); 334 emitInst(Mips::MTC1, DestReg).addReg(TempReg); 335 return DestReg; 336 } else if (VT == MVT::f64) { 337 const TargetRegisterClass *RC = &Mips::AFGR64RegClass; 338 unsigned DestReg = createResultReg(RC); 339 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass); 340 unsigned TempReg2 = 341 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass); 342 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1); 343 return DestReg; 344 } 345 return 0; 346 } 347 348 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) { 349 // For now 32-bit only. 350 if (VT != MVT::i32) 351 return 0; 352 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 353 unsigned DestReg = createResultReg(RC); 354 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 355 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 356 // TLS not supported at this time. 357 if (IsThreadLocal) 358 return 0; 359 emitInst(Mips::LW, DestReg) 360 .addReg(MFI->getGlobalBaseReg()) 361 .addGlobalAddress(GV, 0, MipsII::MO_GOT); 362 if ((GV->hasInternalLinkage() || 363 (GV->hasLocalLinkage() && !isa<Function>(GV)))) { 364 unsigned TempReg = createResultReg(RC); 365 emitInst(Mips::ADDiu, TempReg) 366 .addReg(DestReg) 367 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO); 368 DestReg = TempReg; 369 } 370 return DestReg; 371 } 372 373 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) { 374 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 375 unsigned DestReg = createResultReg(RC); 376 emitInst(Mips::LW, DestReg) 377 .addReg(MFI->getGlobalBaseReg()) 378 .addSym(Sym, MipsII::MO_GOT); 379 return DestReg; 380 } 381 382 // Materialize a constant into a register, and return the register 383 // number (or zero if we failed to handle it). 384 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) { 385 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 386 387 // Only handle simple types. 388 if (!CEVT.isSimple()) 389 return 0; 390 MVT VT = CEVT.getSimpleVT(); 391 392 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 393 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT); 394 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 395 return materializeGV(GV, VT); 396 else if (isa<ConstantInt>(C)) 397 return materializeInt(C, VT); 398 399 return 0; 400 } 401 402 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) { 403 404 const User *U = nullptr; 405 unsigned Opcode = Instruction::UserOp1; 406 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 407 // Don't walk into other basic blocks unless the object is an alloca from 408 // another block, otherwise it may not have a virtual register assigned. 409 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 410 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 411 Opcode = I->getOpcode(); 412 U = I; 413 } 414 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 415 Opcode = C->getOpcode(); 416 U = C; 417 } 418 switch (Opcode) { 419 default: 420 break; 421 case Instruction::BitCast: { 422 // Look through bitcasts. 423 return computeAddress(U->getOperand(0), Addr); 424 } 425 case Instruction::GetElementPtr: { 426 Address SavedAddr = Addr; 427 uint64_t TmpOffset = Addr.getOffset(); 428 // Iterate through the GEP folding the constants into offsets where 429 // we can. 430 gep_type_iterator GTI = gep_type_begin(U); 431 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; 432 ++i, ++GTI) { 433 const Value *Op = *i; 434 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 435 const StructLayout *SL = DL.getStructLayout(STy); 436 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 437 TmpOffset += SL->getElementOffset(Idx); 438 } else { 439 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 440 for (;;) { 441 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 442 // Constant-offset addressing. 443 TmpOffset += CI->getSExtValue() * S; 444 break; 445 } 446 if (canFoldAddIntoGEP(U, Op)) { 447 // A compatible add with a constant operand. Fold the constant. 448 ConstantInt *CI = 449 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 450 TmpOffset += CI->getSExtValue() * S; 451 // Iterate on the other operand. 452 Op = cast<AddOperator>(Op)->getOperand(0); 453 continue; 454 } 455 // Unsupported 456 goto unsupported_gep; 457 } 458 } 459 } 460 // Try to grab the base operand now. 461 Addr.setOffset(TmpOffset); 462 if (computeAddress(U->getOperand(0), Addr)) 463 return true; 464 // We failed, restore everything and try the other options. 465 Addr = SavedAddr; 466 unsupported_gep: 467 break; 468 } 469 case Instruction::Alloca: { 470 const AllocaInst *AI = cast<AllocaInst>(Obj); 471 DenseMap<const AllocaInst *, int>::iterator SI = 472 FuncInfo.StaticAllocaMap.find(AI); 473 if (SI != FuncInfo.StaticAllocaMap.end()) { 474 Addr.setKind(Address::FrameIndexBase); 475 Addr.setFI(SI->second); 476 return true; 477 } 478 break; 479 } 480 } 481 Addr.setReg(getRegForValue(Obj)); 482 return Addr.getReg() != 0; 483 } 484 485 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) { 486 const User *U = nullptr; 487 unsigned Opcode = Instruction::UserOp1; 488 489 if (const auto *I = dyn_cast<Instruction>(V)) { 490 // Check if the value is defined in the same basic block. This information 491 // is crucial to know whether or not folding an operand is valid. 492 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) { 493 Opcode = I->getOpcode(); 494 U = I; 495 } 496 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) { 497 Opcode = C->getOpcode(); 498 U = C; 499 } 500 501 switch (Opcode) { 502 default: 503 break; 504 case Instruction::BitCast: 505 // Look past bitcasts if its operand is in the same BB. 506 return computeCallAddress(U->getOperand(0), Addr); 507 break; 508 case Instruction::IntToPtr: 509 // Look past no-op inttoptrs if its operand is in the same BB. 510 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 511 TLI.getPointerTy(DL)) 512 return computeCallAddress(U->getOperand(0), Addr); 513 break; 514 case Instruction::PtrToInt: 515 // Look past no-op ptrtoints if its operand is in the same BB. 516 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 517 return computeCallAddress(U->getOperand(0), Addr); 518 break; 519 } 520 521 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 522 Addr.setGlobalValue(GV); 523 return true; 524 } 525 526 // If all else fails, try to materialize the value in a register. 527 if (!Addr.getGlobalValue()) { 528 Addr.setReg(getRegForValue(V)); 529 return Addr.getReg() != 0; 530 } 531 532 return false; 533 } 534 535 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) { 536 EVT evt = TLI.getValueType(DL, Ty, true); 537 // Only handle simple types. 538 if (evt == MVT::Other || !evt.isSimple()) 539 return false; 540 VT = evt.getSimpleVT(); 541 542 // Handle all legal types, i.e. a register that will directly hold this 543 // value. 544 return TLI.isTypeLegal(VT); 545 } 546 547 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) { 548 if (Ty->isVectorTy()) 549 return false; 550 551 if (isTypeLegal(Ty, VT)) 552 return true; 553 554 // If this is a type than can be sign or zero-extended to a basic operation 555 // go ahead and accept it now. 556 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 557 return true; 558 559 return false; 560 } 561 562 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 563 if (isTypeLegal(Ty, VT)) 564 return true; 565 // We will extend this in a later patch: 566 // If this is a type than can be sign or zero-extended to a basic operation 567 // go ahead and accept it now. 568 if (VT == MVT::i8 || VT == MVT::i16) 569 return true; 570 return false; 571 } 572 // Because of how EmitCmp is called with fast-isel, you can 573 // end up with redundant "andi" instructions after the sequences emitted below. 574 // We should try and solve this issue in the future. 575 // 576 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) { 577 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1); 578 bool IsUnsigned = CI->isUnsigned(); 579 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned); 580 if (LeftReg == 0) 581 return false; 582 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned); 583 if (RightReg == 0) 584 return false; 585 CmpInst::Predicate P = CI->getPredicate(); 586 587 switch (P) { 588 default: 589 return false; 590 case CmpInst::ICMP_EQ: { 591 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 592 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 593 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1); 594 break; 595 } 596 case CmpInst::ICMP_NE: { 597 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 598 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg); 599 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg); 600 break; 601 } 602 case CmpInst::ICMP_UGT: { 603 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg); 604 break; 605 } 606 case CmpInst::ICMP_ULT: { 607 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg); 608 break; 609 } 610 case CmpInst::ICMP_UGE: { 611 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 612 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg); 613 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 614 break; 615 } 616 case CmpInst::ICMP_ULE: { 617 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 618 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg); 619 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 620 break; 621 } 622 case CmpInst::ICMP_SGT: { 623 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg); 624 break; 625 } 626 case CmpInst::ICMP_SLT: { 627 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg); 628 break; 629 } 630 case CmpInst::ICMP_SGE: { 631 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 632 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg); 633 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 634 break; 635 } 636 case CmpInst::ICMP_SLE: { 637 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 638 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg); 639 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1); 640 break; 641 } 642 case CmpInst::FCMP_OEQ: 643 case CmpInst::FCMP_UNE: 644 case CmpInst::FCMP_OLT: 645 case CmpInst::FCMP_OLE: 646 case CmpInst::FCMP_OGT: 647 case CmpInst::FCMP_OGE: { 648 if (UnsupportedFPMode) 649 return false; 650 bool IsFloat = Left->getType()->isFloatTy(); 651 bool IsDouble = Left->getType()->isDoubleTy(); 652 if (!IsFloat && !IsDouble) 653 return false; 654 unsigned Opc, CondMovOpc; 655 switch (P) { 656 case CmpInst::FCMP_OEQ: 657 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 658 CondMovOpc = Mips::MOVT_I; 659 break; 660 case CmpInst::FCMP_UNE: 661 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32; 662 CondMovOpc = Mips::MOVF_I; 663 break; 664 case CmpInst::FCMP_OLT: 665 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32; 666 CondMovOpc = Mips::MOVT_I; 667 break; 668 case CmpInst::FCMP_OLE: 669 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32; 670 CondMovOpc = Mips::MOVT_I; 671 break; 672 case CmpInst::FCMP_OGT: 673 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32; 674 CondMovOpc = Mips::MOVF_I; 675 break; 676 case CmpInst::FCMP_OGE: 677 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32; 678 CondMovOpc = Mips::MOVF_I; 679 break; 680 default: 681 llvm_unreachable("Only switching of a subset of CCs."); 682 } 683 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass); 684 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass); 685 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0); 686 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1); 687 emitInst(Opc).addReg(LeftReg).addReg(RightReg).addReg( 688 Mips::FCC0, RegState::ImplicitDefine); 689 MachineInstrBuilder MI = emitInst(CondMovOpc, ResultReg) 690 .addReg(RegWithOne) 691 .addReg(Mips::FCC0) 692 .addReg(RegWithZero, RegState::Implicit); 693 MI->tieOperands(0, 3); 694 break; 695 } 696 } 697 return true; 698 } 699 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 700 unsigned Alignment) { 701 // 702 // more cases will be handled here in following patches. 703 // 704 unsigned Opc; 705 switch (VT.SimpleTy) { 706 case MVT::i32: { 707 ResultReg = createResultReg(&Mips::GPR32RegClass); 708 Opc = Mips::LW; 709 break; 710 } 711 case MVT::i16: { 712 ResultReg = createResultReg(&Mips::GPR32RegClass); 713 Opc = Mips::LHu; 714 break; 715 } 716 case MVT::i8: { 717 ResultReg = createResultReg(&Mips::GPR32RegClass); 718 Opc = Mips::LBu; 719 break; 720 } 721 case MVT::f32: { 722 if (UnsupportedFPMode) 723 return false; 724 ResultReg = createResultReg(&Mips::FGR32RegClass); 725 Opc = Mips::LWC1; 726 break; 727 } 728 case MVT::f64: { 729 if (UnsupportedFPMode) 730 return false; 731 ResultReg = createResultReg(&Mips::AFGR64RegClass); 732 Opc = Mips::LDC1; 733 break; 734 } 735 default: 736 return false; 737 } 738 if (Addr.isRegBase()) { 739 simplifyAddress(Addr); 740 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset()); 741 return true; 742 } 743 if (Addr.isFIBase()) { 744 unsigned FI = Addr.getFI(); 745 unsigned Align = 4; 746 unsigned Offset = Addr.getOffset(); 747 MachineFrameInfo &MFI = *MF->getFrameInfo(); 748 MachineMemOperand *MMO = MF->getMachineMemOperand( 749 MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad, 750 MFI.getObjectSize(FI), Align); 751 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 752 .addFrameIndex(FI) 753 .addImm(Offset) 754 .addMemOperand(MMO); 755 return true; 756 } 757 return false; 758 } 759 760 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr, 761 unsigned Alignment) { 762 // 763 // more cases will be handled here in following patches. 764 // 765 unsigned Opc; 766 switch (VT.SimpleTy) { 767 case MVT::i8: 768 Opc = Mips::SB; 769 break; 770 case MVT::i16: 771 Opc = Mips::SH; 772 break; 773 case MVT::i32: 774 Opc = Mips::SW; 775 break; 776 case MVT::f32: 777 if (UnsupportedFPMode) 778 return false; 779 Opc = Mips::SWC1; 780 break; 781 case MVT::f64: 782 if (UnsupportedFPMode) 783 return false; 784 Opc = Mips::SDC1; 785 break; 786 default: 787 return false; 788 } 789 if (Addr.isRegBase()) { 790 simplifyAddress(Addr); 791 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset()); 792 return true; 793 } 794 if (Addr.isFIBase()) { 795 unsigned FI = Addr.getFI(); 796 unsigned Align = 4; 797 unsigned Offset = Addr.getOffset(); 798 MachineFrameInfo &MFI = *MF->getFrameInfo(); 799 MachineMemOperand *MMO = MF->getMachineMemOperand( 800 MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad, 801 MFI.getObjectSize(FI), Align); 802 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 803 .addReg(SrcReg) 804 .addFrameIndex(FI) 805 .addImm(Offset) 806 .addMemOperand(MMO); 807 return true; 808 } 809 return false; 810 } 811 812 bool MipsFastISel::selectLogicalOp(const Instruction *I) { 813 MVT VT; 814 if (!isTypeSupported(I->getType(), VT)) 815 return false; 816 817 unsigned ResultReg; 818 switch (I->getOpcode()) { 819 default: 820 llvm_unreachable("Unexpected instruction."); 821 case Instruction::And: 822 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1)); 823 break; 824 case Instruction::Or: 825 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1)); 826 break; 827 case Instruction::Xor: 828 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1)); 829 break; 830 } 831 832 if (!ResultReg) 833 return false; 834 835 updateValueMap(I, ResultReg); 836 return true; 837 } 838 839 bool MipsFastISel::selectLoad(const Instruction *I) { 840 // Atomic loads need special handling. 841 if (cast<LoadInst>(I)->isAtomic()) 842 return false; 843 844 // Verify we have a legal type before going any further. 845 MVT VT; 846 if (!isLoadTypeLegal(I->getType(), VT)) 847 return false; 848 849 // See if we can handle this address. 850 Address Addr; 851 if (!computeAddress(I->getOperand(0), Addr)) 852 return false; 853 854 unsigned ResultReg; 855 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 856 return false; 857 updateValueMap(I, ResultReg); 858 return true; 859 } 860 861 bool MipsFastISel::selectStore(const Instruction *I) { 862 Value *Op0 = I->getOperand(0); 863 unsigned SrcReg = 0; 864 865 // Atomic stores need special handling. 866 if (cast<StoreInst>(I)->isAtomic()) 867 return false; 868 869 // Verify we have a legal type before going any further. 870 MVT VT; 871 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 872 return false; 873 874 // Get the value to be stored into a register. 875 SrcReg = getRegForValue(Op0); 876 if (SrcReg == 0) 877 return false; 878 879 // See if we can handle this address. 880 Address Addr; 881 if (!computeAddress(I->getOperand(1), Addr)) 882 return false; 883 884 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 885 return false; 886 return true; 887 } 888 889 // 890 // This can cause a redundant sltiu to be generated. 891 // FIXME: try and eliminate this in a future patch. 892 // 893 bool MipsFastISel::selectBranch(const Instruction *I) { 894 const BranchInst *BI = cast<BranchInst>(I); 895 MachineBasicBlock *BrBB = FuncInfo.MBB; 896 // 897 // TBB is the basic block for the case where the comparison is true. 898 // FBB is the basic block for the case where the comparison is false. 899 // if (cond) goto TBB 900 // goto FBB 901 // TBB: 902 // 903 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 904 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 905 BI->getCondition(); 906 // For now, just try the simplest case where it's fed by a compare. 907 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 908 unsigned CondReg = createResultReg(&Mips::GPR32RegClass); 909 if (!emitCmp(CondReg, CI)) 910 return false; 911 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ)) 912 .addReg(CondReg) 913 .addMBB(TBB); 914 fastEmitBranch(FBB, DbgLoc); 915 FuncInfo.MBB->addSuccessor(TBB); 916 return true; 917 } 918 return false; 919 } 920 921 bool MipsFastISel::selectCmp(const Instruction *I) { 922 const CmpInst *CI = cast<CmpInst>(I); 923 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 924 if (!emitCmp(ResultReg, CI)) 925 return false; 926 updateValueMap(I, ResultReg); 927 return true; 928 } 929 930 // Attempt to fast-select a floating-point extend instruction. 931 bool MipsFastISel::selectFPExt(const Instruction *I) { 932 if (UnsupportedFPMode) 933 return false; 934 Value *Src = I->getOperand(0); 935 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 936 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 937 938 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 939 return false; 940 941 unsigned SrcReg = 942 getRegForValue(Src); // his must be a 32 bit floating point register class 943 // maybe we should handle this differently 944 if (!SrcReg) 945 return false; 946 947 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass); 948 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg); 949 updateValueMap(I, DestReg); 950 return true; 951 } 952 953 bool MipsFastISel::selectSelect(const Instruction *I) { 954 assert(isa<SelectInst>(I) && "Expected a select instruction."); 955 956 MVT VT; 957 if (!isTypeSupported(I->getType(), VT)) 958 return false; 959 960 unsigned CondMovOpc; 961 const TargetRegisterClass *RC; 962 963 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) { 964 CondMovOpc = Mips::MOVN_I_I; 965 RC = &Mips::GPR32RegClass; 966 } else if (VT == MVT::f32) { 967 CondMovOpc = Mips::MOVN_I_S; 968 RC = &Mips::FGR32RegClass; 969 } else if (VT == MVT::f64) { 970 CondMovOpc = Mips::MOVN_I_D32; 971 RC = &Mips::AFGR64RegClass; 972 } else 973 return false; 974 975 const SelectInst *SI = cast<SelectInst>(I); 976 const Value *Cond = SI->getCondition(); 977 unsigned Src1Reg = getRegForValue(SI->getTrueValue()); 978 unsigned Src2Reg = getRegForValue(SI->getFalseValue()); 979 unsigned CondReg = getRegForValue(Cond); 980 981 if (!Src1Reg || !Src2Reg || !CondReg) 982 return false; 983 984 unsigned ResultReg = createResultReg(RC); 985 unsigned TempReg = createResultReg(RC); 986 987 if (!ResultReg || !TempReg) 988 return false; 989 990 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg); 991 emitInst(CondMovOpc, ResultReg) 992 .addReg(Src1Reg).addReg(CondReg).addReg(TempReg); 993 updateValueMap(I, ResultReg); 994 return true; 995 } 996 997 // Attempt to fast-select a floating-point truncate instruction. 998 bool MipsFastISel::selectFPTrunc(const Instruction *I) { 999 if (UnsupportedFPMode) 1000 return false; 1001 Value *Src = I->getOperand(0); 1002 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1003 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1004 1005 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 1006 return false; 1007 1008 unsigned SrcReg = getRegForValue(Src); 1009 if (!SrcReg) 1010 return false; 1011 1012 unsigned DestReg = createResultReg(&Mips::FGR32RegClass); 1013 if (!DestReg) 1014 return false; 1015 1016 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg); 1017 updateValueMap(I, DestReg); 1018 return true; 1019 } 1020 1021 // Attempt to fast-select a floating-point-to-integer conversion. 1022 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) { 1023 if (UnsupportedFPMode) 1024 return false; 1025 MVT DstVT, SrcVT; 1026 if (!IsSigned) 1027 return false; // We don't handle this case yet. There is no native 1028 // instruction for this but it can be synthesized. 1029 Type *DstTy = I->getType(); 1030 if (!isTypeLegal(DstTy, DstVT)) 1031 return false; 1032 1033 if (DstVT != MVT::i32) 1034 return false; 1035 1036 Value *Src = I->getOperand(0); 1037 Type *SrcTy = Src->getType(); 1038 if (!isTypeLegal(SrcTy, SrcVT)) 1039 return false; 1040 1041 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1042 return false; 1043 1044 unsigned SrcReg = getRegForValue(Src); 1045 if (SrcReg == 0) 1046 return false; 1047 1048 // Determine the opcode for the conversion, which takes place 1049 // entirely within FPRs. 1050 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1051 unsigned TempReg = createResultReg(&Mips::FGR32RegClass); 1052 unsigned Opc; 1053 1054 if (SrcVT == MVT::f32) 1055 Opc = Mips::TRUNC_W_S; 1056 else 1057 Opc = Mips::TRUNC_W_D32; 1058 1059 // Generate the convert. 1060 emitInst(Opc, TempReg).addReg(SrcReg); 1061 1062 emitInst(Mips::MFC1, DestReg).addReg(TempReg); 1063 1064 updateValueMap(I, DestReg); 1065 return true; 1066 } 1067 // 1068 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI, 1069 SmallVectorImpl<MVT> &OutVTs, 1070 unsigned &NumBytes) { 1071 CallingConv::ID CC = CLI.CallConv; 1072 SmallVector<CCValAssign, 16> ArgLocs; 1073 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); 1074 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC)); 1075 // Get a count of how many bytes are to be pushed on the stack. 1076 NumBytes = CCInfo.getNextStackOffset(); 1077 // This is the minimum argument area used for A0-A3. 1078 if (NumBytes < 16) 1079 NumBytes = 16; 1080 1081 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16); 1082 // Process the args. 1083 MVT firstMVT; 1084 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1085 CCValAssign &VA = ArgLocs[i]; 1086 const Value *ArgVal = CLI.OutVals[VA.getValNo()]; 1087 MVT ArgVT = OutVTs[VA.getValNo()]; 1088 1089 if (i == 0) { 1090 firstMVT = ArgVT; 1091 if (ArgVT == MVT::f32) { 1092 VA.convertToReg(Mips::F12); 1093 } else if (ArgVT == MVT::f64) { 1094 VA.convertToReg(Mips::D6); 1095 } 1096 } else if (i == 1) { 1097 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) { 1098 if (ArgVT == MVT::f32) { 1099 VA.convertToReg(Mips::F14); 1100 } else if (ArgVT == MVT::f64) { 1101 VA.convertToReg(Mips::D7); 1102 } 1103 } 1104 } 1105 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) || 1106 (ArgVT == MVT::i8)) && 1107 VA.isMemLoc()) { 1108 switch (VA.getLocMemOffset()) { 1109 case 0: 1110 VA.convertToReg(Mips::A0); 1111 break; 1112 case 4: 1113 VA.convertToReg(Mips::A1); 1114 break; 1115 case 8: 1116 VA.convertToReg(Mips::A2); 1117 break; 1118 case 12: 1119 VA.convertToReg(Mips::A3); 1120 break; 1121 default: 1122 break; 1123 } 1124 } 1125 unsigned ArgReg = getRegForValue(ArgVal); 1126 if (!ArgReg) 1127 return false; 1128 1129 // Handle arg promotion: SExt, ZExt, AExt. 1130 switch (VA.getLocInfo()) { 1131 case CCValAssign::Full: 1132 break; 1133 case CCValAssign::AExt: 1134 case CCValAssign::SExt: { 1135 MVT DestVT = VA.getLocVT(); 1136 MVT SrcVT = ArgVT; 1137 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false); 1138 if (!ArgReg) 1139 return false; 1140 break; 1141 } 1142 case CCValAssign::ZExt: { 1143 MVT DestVT = VA.getLocVT(); 1144 MVT SrcVT = ArgVT; 1145 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true); 1146 if (!ArgReg) 1147 return false; 1148 break; 1149 } 1150 default: 1151 llvm_unreachable("Unknown arg promotion!"); 1152 } 1153 1154 // Now copy/store arg to correct locations. 1155 if (VA.isRegLoc() && !VA.needsCustom()) { 1156 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1157 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 1158 CLI.OutRegs.push_back(VA.getLocReg()); 1159 } else if (VA.needsCustom()) { 1160 llvm_unreachable("Mips does not use custom args."); 1161 return false; 1162 } else { 1163 // 1164 // FIXME: This path will currently return false. It was copied 1165 // from the AArch64 port and should be essentially fine for Mips too. 1166 // The work to finish up this path will be done in a follow-on patch. 1167 // 1168 assert(VA.isMemLoc() && "Assuming store on stack."); 1169 // Don't emit stores for undef values. 1170 if (isa<UndefValue>(ArgVal)) 1171 continue; 1172 1173 // Need to store on the stack. 1174 // FIXME: This alignment is incorrect but this path is disabled 1175 // for now (will return false). We need to determine the right alignment 1176 // based on the normal alignment for the underlying machine type. 1177 // 1178 unsigned ArgSize = RoundUpToAlignment(ArgVT.getSizeInBits(), 4); 1179 1180 unsigned BEAlign = 0; 1181 if (ArgSize < 8 && !Subtarget->isLittle()) 1182 BEAlign = 8 - ArgSize; 1183 1184 Address Addr; 1185 Addr.setKind(Address::RegBase); 1186 Addr.setReg(Mips::SP); 1187 Addr.setOffset(VA.getLocMemOffset() + BEAlign); 1188 1189 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 1190 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 1191 MachinePointerInfo::getStack(Addr.getOffset()), 1192 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 1193 (void)(MMO); 1194 // if (!emitStore(ArgVT, ArgReg, Addr, MMO)) 1195 return false; // can't store on the stack yet. 1196 } 1197 } 1198 1199 return true; 1200 } 1201 1202 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT, 1203 unsigned NumBytes) { 1204 CallingConv::ID CC = CLI.CallConv; 1205 emitInst(Mips::ADJCALLSTACKUP).addImm(16); 1206 if (RetVT != MVT::isVoid) { 1207 SmallVector<CCValAssign, 16> RVLocs; 1208 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1209 CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips); 1210 1211 // Only handle a single return value. 1212 if (RVLocs.size() != 1) 1213 return false; 1214 // Copy all of the result registers out of their specified physreg. 1215 MVT CopyVT = RVLocs[0].getValVT(); 1216 // Special handling for extended integers. 1217 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 1218 CopyVT = MVT::i32; 1219 1220 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); 1221 if (!ResultReg) 1222 return false; 1223 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1224 TII.get(TargetOpcode::COPY), 1225 ResultReg).addReg(RVLocs[0].getLocReg()); 1226 CLI.InRegs.push_back(RVLocs[0].getLocReg()); 1227 1228 CLI.ResultReg = ResultReg; 1229 CLI.NumResultRegs = 1; 1230 } 1231 return true; 1232 } 1233 1234 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1235 CallingConv::ID CC = CLI.CallConv; 1236 bool IsTailCall = CLI.IsTailCall; 1237 bool IsVarArg = CLI.IsVarArg; 1238 const Value *Callee = CLI.Callee; 1239 MCSymbol *Symbol = CLI.Symbol; 1240 1241 // Allow SelectionDAG isel to handle tail calls. 1242 if (IsTailCall) 1243 return false; 1244 1245 // Let SDISel handle vararg functions. 1246 if (IsVarArg) 1247 return false; 1248 1249 // FIXME: Only handle *simple* calls for now. 1250 MVT RetVT; 1251 if (CLI.RetTy->isVoidTy()) 1252 RetVT = MVT::isVoid; 1253 else if (!isTypeSupported(CLI.RetTy, RetVT)) 1254 return false; 1255 1256 for (auto Flag : CLI.OutFlags) 1257 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal()) 1258 return false; 1259 1260 // Set up the argument vectors. 1261 SmallVector<MVT, 16> OutVTs; 1262 OutVTs.reserve(CLI.OutVals.size()); 1263 1264 for (auto *Val : CLI.OutVals) { 1265 MVT VT; 1266 if (!isTypeLegal(Val->getType(), VT) && 1267 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) 1268 return false; 1269 1270 // We don't handle vector parameters yet. 1271 if (VT.isVector() || VT.getSizeInBits() > 64) 1272 return false; 1273 1274 OutVTs.push_back(VT); 1275 } 1276 1277 Address Addr; 1278 if (!computeCallAddress(Callee, Addr)) 1279 return false; 1280 1281 // Handle the arguments now that we've gotten them. 1282 unsigned NumBytes; 1283 if (!processCallArgs(CLI, OutVTs, NumBytes)) 1284 return false; 1285 1286 if (!Addr.getGlobalValue()) 1287 return false; 1288 1289 // Issue the call. 1290 unsigned DestAddress; 1291 if (Symbol) 1292 DestAddress = materializeExternalCallSym(Symbol); 1293 else 1294 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32); 1295 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress); 1296 MachineInstrBuilder MIB = 1297 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR), 1298 Mips::RA).addReg(Mips::T9); 1299 1300 // Add implicit physical register uses to the call. 1301 for (auto Reg : CLI.OutRegs) 1302 MIB.addReg(Reg, RegState::Implicit); 1303 1304 // Add a register mask with the call-preserved registers. 1305 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 1306 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1307 1308 CLI.Call = MIB; 1309 1310 // Finish off the call including any return values. 1311 return finishCall(CLI, RetVT, NumBytes); 1312 } 1313 1314 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 1315 switch (II->getIntrinsicID()) { 1316 default: 1317 return false; 1318 case Intrinsic::bswap: { 1319 Type *RetTy = II->getCalledFunction()->getReturnType(); 1320 1321 MVT VT; 1322 if (!isTypeSupported(RetTy, VT)) 1323 return false; 1324 1325 unsigned SrcReg = getRegForValue(II->getOperand(0)); 1326 if (SrcReg == 0) 1327 return false; 1328 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1329 if (DestReg == 0) 1330 return false; 1331 if (VT == MVT::i16) { 1332 if (Subtarget->hasMips32r2()) { 1333 emitInst(Mips::WSBH, DestReg).addReg(SrcReg); 1334 updateValueMap(II, DestReg); 1335 return true; 1336 } else { 1337 unsigned TempReg[3]; 1338 for (int i = 0; i < 3; i++) { 1339 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1340 if (TempReg[i] == 0) 1341 return false; 1342 } 1343 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8); 1344 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8); 1345 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]); 1346 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF); 1347 updateValueMap(II, DestReg); 1348 return true; 1349 } 1350 } else if (VT == MVT::i32) { 1351 if (Subtarget->hasMips32r2()) { 1352 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1353 emitInst(Mips::WSBH, TempReg).addReg(SrcReg); 1354 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16); 1355 updateValueMap(II, DestReg); 1356 return true; 1357 } else { 1358 unsigned TempReg[8]; 1359 for (int i = 0; i < 8; i++) { 1360 TempReg[i] = createResultReg(&Mips::GPR32RegClass); 1361 if (TempReg[i] == 0) 1362 return false; 1363 } 1364 1365 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8); 1366 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24); 1367 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00); 1368 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]); 1369 1370 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00); 1371 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8); 1372 1373 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24); 1374 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]); 1375 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]); 1376 updateValueMap(II, DestReg); 1377 return true; 1378 } 1379 } 1380 return false; 1381 } 1382 case Intrinsic::memcpy: 1383 case Intrinsic::memmove: { 1384 const auto *MTI = cast<MemTransferInst>(II); 1385 // Don't handle volatile. 1386 if (MTI->isVolatile()) 1387 return false; 1388 if (!MTI->getLength()->getType()->isIntegerTy(32)) 1389 return false; 1390 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove"; 1391 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2); 1392 } 1393 case Intrinsic::memset: { 1394 const MemSetInst *MSI = cast<MemSetInst>(II); 1395 // Don't handle volatile. 1396 if (MSI->isVolatile()) 1397 return false; 1398 if (!MSI->getLength()->getType()->isIntegerTy(32)) 1399 return false; 1400 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2); 1401 } 1402 } 1403 return false; 1404 } 1405 1406 bool MipsFastISel::selectRet(const Instruction *I) { 1407 const Function &F = *I->getParent()->getParent(); 1408 const ReturnInst *Ret = cast<ReturnInst>(I); 1409 1410 if (!FuncInfo.CanLowerReturn) 1411 return false; 1412 1413 // Build a list of return value registers. 1414 SmallVector<unsigned, 4> RetRegs; 1415 1416 if (Ret->getNumOperands() > 0) { 1417 CallingConv::ID CC = F.getCallingConv(); 1418 SmallVector<ISD::OutputArg, 4> Outs; 1419 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1420 1421 // Analyze operands of the call, assigning locations to each operand. 1422 SmallVector<CCValAssign, 16> ValLocs; 1423 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, 1424 I->getContext()); 1425 CCAssignFn *RetCC = RetCC_Mips; 1426 CCInfo.AnalyzeReturn(Outs, RetCC); 1427 1428 // Only handle a single return value for now. 1429 if (ValLocs.size() != 1) 1430 return false; 1431 1432 CCValAssign &VA = ValLocs[0]; 1433 const Value *RV = Ret->getOperand(0); 1434 1435 // Don't bother handling odd stuff for now. 1436 if ((VA.getLocInfo() != CCValAssign::Full) && 1437 (VA.getLocInfo() != CCValAssign::BCvt)) 1438 return false; 1439 1440 // Only handle register returns for now. 1441 if (!VA.isRegLoc()) 1442 return false; 1443 1444 unsigned Reg = getRegForValue(RV); 1445 if (Reg == 0) 1446 return false; 1447 1448 unsigned SrcReg = Reg + VA.getValNo(); 1449 unsigned DestReg = VA.getLocReg(); 1450 // Avoid a cross-class copy. This is very unlikely. 1451 if (!MRI.getRegClass(SrcReg)->contains(DestReg)) 1452 return false; 1453 1454 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1455 if (!RVEVT.isSimple()) 1456 return false; 1457 1458 if (RVEVT.isVector()) 1459 return false; 1460 1461 MVT RVVT = RVEVT.getSimpleVT(); 1462 if (RVVT == MVT::f128) 1463 return false; 1464 1465 MVT DestVT = VA.getValVT(); 1466 // Special handling for extended integers. 1467 if (RVVT != DestVT) { 1468 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 1469 return false; 1470 1471 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 1472 bool IsZExt = Outs[0].Flags.isZExt(); 1473 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt); 1474 if (SrcReg == 0) 1475 return false; 1476 } 1477 } 1478 1479 // Make the copy. 1480 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1481 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); 1482 1483 // Add register to return instruction. 1484 RetRegs.push_back(VA.getLocReg()); 1485 } 1486 MachineInstrBuilder MIB = emitInst(Mips::RetRA); 1487 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1488 MIB.addReg(RetRegs[i], RegState::Implicit); 1489 return true; 1490 } 1491 1492 bool MipsFastISel::selectTrunc(const Instruction *I) { 1493 // The high bits for a type smaller than the register size are assumed to be 1494 // undefined. 1495 Value *Op = I->getOperand(0); 1496 1497 EVT SrcVT, DestVT; 1498 SrcVT = TLI.getValueType(DL, Op->getType(), true); 1499 DestVT = TLI.getValueType(DL, I->getType(), true); 1500 1501 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1502 return false; 1503 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1504 return false; 1505 1506 unsigned SrcReg = getRegForValue(Op); 1507 if (!SrcReg) 1508 return false; 1509 1510 // Because the high bits are undefined, a truncate doesn't generate 1511 // any code. 1512 updateValueMap(I, SrcReg); 1513 return true; 1514 } 1515 bool MipsFastISel::selectIntExt(const Instruction *I) { 1516 Type *DestTy = I->getType(); 1517 Value *Src = I->getOperand(0); 1518 Type *SrcTy = Src->getType(); 1519 1520 bool isZExt = isa<ZExtInst>(I); 1521 unsigned SrcReg = getRegForValue(Src); 1522 if (!SrcReg) 1523 return false; 1524 1525 EVT SrcEVT, DestEVT; 1526 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1527 DestEVT = TLI.getValueType(DL, DestTy, true); 1528 if (!SrcEVT.isSimple()) 1529 return false; 1530 if (!DestEVT.isSimple()) 1531 return false; 1532 1533 MVT SrcVT = SrcEVT.getSimpleVT(); 1534 MVT DestVT = DestEVT.getSimpleVT(); 1535 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1536 1537 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt)) 1538 return false; 1539 updateValueMap(I, ResultReg); 1540 return true; 1541 } 1542 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1543 unsigned DestReg) { 1544 unsigned ShiftAmt; 1545 switch (SrcVT.SimpleTy) { 1546 default: 1547 return false; 1548 case MVT::i8: 1549 ShiftAmt = 24; 1550 break; 1551 case MVT::i16: 1552 ShiftAmt = 16; 1553 break; 1554 } 1555 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1556 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt); 1557 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt); 1558 return true; 1559 } 1560 1561 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1562 unsigned DestReg) { 1563 switch (SrcVT.SimpleTy) { 1564 default: 1565 return false; 1566 case MVT::i8: 1567 emitInst(Mips::SEB, DestReg).addReg(SrcReg); 1568 break; 1569 case MVT::i16: 1570 emitInst(Mips::SEH, DestReg).addReg(SrcReg); 1571 break; 1572 } 1573 return true; 1574 } 1575 1576 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1577 unsigned DestReg) { 1578 if ((DestVT != MVT::i32) && (DestVT != MVT::i16)) 1579 return false; 1580 if (Subtarget->hasMips32r2()) 1581 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg); 1582 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg); 1583 } 1584 1585 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1586 unsigned DestReg) { 1587 switch (SrcVT.SimpleTy) { 1588 default: 1589 return false; 1590 case MVT::i1: 1591 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(1); 1592 break; 1593 case MVT::i8: 1594 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(0xff); 1595 break; 1596 case MVT::i16: 1597 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(0xffff); 1598 break; 1599 } 1600 return true; 1601 } 1602 1603 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1604 unsigned DestReg, bool IsZExt) { 1605 // FastISel does not have plumbing to deal with extensions where the SrcVT or 1606 // DestVT are odd things, so test to make sure that they are both types we can 1607 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise 1608 // bail out to SelectionDAG. 1609 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) || 1610 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16))) 1611 return false; 1612 if (IsZExt) 1613 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg); 1614 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg); 1615 } 1616 1617 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1618 bool isZExt) { 1619 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1620 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt); 1621 return Success ? DestReg : 0; 1622 } 1623 1624 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) { 1625 EVT DestEVT = TLI.getValueType(DL, I->getType(), true); 1626 if (!DestEVT.isSimple()) 1627 return false; 1628 1629 MVT DestVT = DestEVT.getSimpleVT(); 1630 if (DestVT != MVT::i32) 1631 return false; 1632 1633 unsigned DivOpc; 1634 switch (ISDOpcode) { 1635 default: 1636 return false; 1637 case ISD::SDIV: 1638 case ISD::SREM: 1639 DivOpc = Mips::SDIV; 1640 break; 1641 case ISD::UDIV: 1642 case ISD::UREM: 1643 DivOpc = Mips::UDIV; 1644 break; 1645 } 1646 1647 unsigned Src0Reg = getRegForValue(I->getOperand(0)); 1648 unsigned Src1Reg = getRegForValue(I->getOperand(1)); 1649 if (!Src0Reg || !Src1Reg) 1650 return false; 1651 1652 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg); 1653 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7); 1654 1655 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1656 if (!ResultReg) 1657 return false; 1658 1659 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM) 1660 ? Mips::MFHI 1661 : Mips::MFLO; 1662 emitInst(MFOpc, ResultReg); 1663 1664 updateValueMap(I, ResultReg); 1665 return true; 1666 } 1667 1668 bool MipsFastISel::selectShift(const Instruction *I) { 1669 MVT RetVT; 1670 1671 if (!isTypeSupported(I->getType(), RetVT)) 1672 return false; 1673 1674 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass); 1675 if (!ResultReg) 1676 return false; 1677 1678 unsigned Opcode = I->getOpcode(); 1679 const Value *Op0 = I->getOperand(0); 1680 unsigned Op0Reg = getRegForValue(Op0); 1681 if (!Op0Reg) 1682 return false; 1683 1684 // If AShr or LShr, then we need to make sure the operand0 is sign extended. 1685 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) { 1686 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1687 if (!TempReg) 1688 return false; 1689 1690 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT(); 1691 bool IsZExt = Opcode == Instruction::LShr; 1692 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt)) 1693 return false; 1694 1695 Op0Reg = TempReg; 1696 } 1697 1698 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) { 1699 uint64_t ShiftVal = C->getZExtValue(); 1700 1701 switch (Opcode) { 1702 default: 1703 llvm_unreachable("Unexpected instruction."); 1704 case Instruction::Shl: 1705 Opcode = Mips::SLL; 1706 break; 1707 case Instruction::AShr: 1708 Opcode = Mips::SRA; 1709 break; 1710 case Instruction::LShr: 1711 Opcode = Mips::SRL; 1712 break; 1713 } 1714 1715 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal); 1716 updateValueMap(I, ResultReg); 1717 return true; 1718 } 1719 1720 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1721 if (!Op1Reg) 1722 return false; 1723 1724 switch (Opcode) { 1725 default: 1726 llvm_unreachable("Unexpected instruction."); 1727 case Instruction::Shl: 1728 Opcode = Mips::SLLV; 1729 break; 1730 case Instruction::AShr: 1731 Opcode = Mips::SRAV; 1732 break; 1733 case Instruction::LShr: 1734 Opcode = Mips::SRLV; 1735 break; 1736 } 1737 1738 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg); 1739 updateValueMap(I, ResultReg); 1740 return true; 1741 } 1742 1743 bool MipsFastISel::fastSelectInstruction(const Instruction *I) { 1744 if (!TargetSupported) 1745 return false; 1746 switch (I->getOpcode()) { 1747 default: 1748 break; 1749 case Instruction::Load: 1750 return selectLoad(I); 1751 case Instruction::Store: 1752 return selectStore(I); 1753 case Instruction::SDiv: 1754 if (!selectBinaryOp(I, ISD::SDIV)) 1755 return selectDivRem(I, ISD::SDIV); 1756 return true; 1757 case Instruction::UDiv: 1758 if (!selectBinaryOp(I, ISD::UDIV)) 1759 return selectDivRem(I, ISD::UDIV); 1760 return true; 1761 case Instruction::SRem: 1762 if (!selectBinaryOp(I, ISD::SREM)) 1763 return selectDivRem(I, ISD::SREM); 1764 return true; 1765 case Instruction::URem: 1766 if (!selectBinaryOp(I, ISD::UREM)) 1767 return selectDivRem(I, ISD::UREM); 1768 return true; 1769 case Instruction::Shl: 1770 case Instruction::LShr: 1771 case Instruction::AShr: 1772 return selectShift(I); 1773 case Instruction::And: 1774 case Instruction::Or: 1775 case Instruction::Xor: 1776 return selectLogicalOp(I); 1777 case Instruction::Br: 1778 return selectBranch(I); 1779 case Instruction::Ret: 1780 return selectRet(I); 1781 case Instruction::Trunc: 1782 return selectTrunc(I); 1783 case Instruction::ZExt: 1784 case Instruction::SExt: 1785 return selectIntExt(I); 1786 case Instruction::FPTrunc: 1787 return selectFPTrunc(I); 1788 case Instruction::FPExt: 1789 return selectFPExt(I); 1790 case Instruction::FPToSI: 1791 return selectFPToInt(I, /*isSigned*/ true); 1792 case Instruction::FPToUI: 1793 return selectFPToInt(I, /*isSigned*/ false); 1794 case Instruction::ICmp: 1795 case Instruction::FCmp: 1796 return selectCmp(I); 1797 case Instruction::Select: 1798 return selectSelect(I); 1799 } 1800 return false; 1801 } 1802 1803 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V, 1804 bool IsUnsigned) { 1805 unsigned VReg = getRegForValue(V); 1806 if (VReg == 0) 1807 return 0; 1808 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT(); 1809 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) { 1810 unsigned TempReg = createResultReg(&Mips::GPR32RegClass); 1811 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned)) 1812 return 0; 1813 VReg = TempReg; 1814 } 1815 return VReg; 1816 } 1817 1818 void MipsFastISel::simplifyAddress(Address &Addr) { 1819 if (!isInt<16>(Addr.getOffset())) { 1820 unsigned TempReg = 1821 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass); 1822 unsigned DestReg = createResultReg(&Mips::GPR32RegClass); 1823 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg()); 1824 Addr.setReg(DestReg); 1825 Addr.setOffset(0); 1826 } 1827 } 1828 1829 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1830 const TargetRegisterClass *RC, 1831 unsigned Op0, bool Op0IsKill, 1832 unsigned Op1, bool Op1IsKill) { 1833 // We treat the MUL instruction in a special way because it clobbers 1834 // the HI0 & LO0 registers. The TableGen definition of this instruction can 1835 // mark these registers only as implicitly defined. As a result, the 1836 // register allocator runs out of registers when this instruction is 1837 // followed by another instruction that defines the same registers too. 1838 // We can fix this by explicitly marking those registers as dead. 1839 if (MachineInstOpcode == Mips::MUL) { 1840 unsigned ResultReg = createResultReg(RC); 1841 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1842 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1843 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1844 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1845 .addReg(Op0, getKillRegState(Op0IsKill)) 1846 .addReg(Op1, getKillRegState(Op1IsKill)) 1847 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead) 1848 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead); 1849 return ResultReg; 1850 } 1851 1852 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1, 1853 Op1IsKill); 1854 } 1855 1856 namespace llvm { 1857 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo, 1858 const TargetLibraryInfo *libInfo) { 1859 return new MipsFastISel(funcInfo, libInfo); 1860 } 1861 } 1862