1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass is used to make Pc relative loads of constants.
10 // For now, only Mips16 will use this.
11 //
12 // Loading constants inline is expensive on Mips16 and it's in general better
13 // to place the constant nearby in code space and then it can be loaded with a
14 // simple 16 bit load instruction.
15 //
16 // The constants can be not just numbers but addresses of functions and labels.
17 // This can be particularly helpful in static relocation mode for embedded
18 // non-linux targets.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "Mips.h"
23 #include "Mips16InstrInfo.h"
24 #include "MipsMachineFunction.h"
25 #include "MipsSubtarget.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "mips-constant-islands"
61 
62 STATISTIC(NumCPEs,       "Number of constpool entries");
63 STATISTIC(NumSplit,      "Number of uncond branches inserted");
64 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
65 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
66 
67 // FIXME: This option should be removed once it has received sufficient testing.
68 static cl::opt<bool>
69 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
70           cl::desc("Align constant islands in code"));
71 
72 // Rather than do make check tests with huge amounts of code, we force
73 // the test to use this amount.
74 static cl::opt<int> ConstantIslandsSmallOffset(
75   "mips-constant-islands-small-offset",
76   cl::init(0),
77   cl::desc("Make small offsets be this amount for testing purposes"),
78   cl::Hidden);
79 
80 // For testing purposes we tell it to not use relaxed load forms so that it
81 // will split blocks.
82 static cl::opt<bool> NoLoadRelaxation(
83   "mips-constant-islands-no-load-relaxation",
84   cl::init(false),
85   cl::desc("Don't relax loads to long loads - for testing purposes"),
86   cl::Hidden);
87 
88 static unsigned int branchTargetOperand(MachineInstr *MI) {
89   switch (MI->getOpcode()) {
90   case Mips::Bimm16:
91   case Mips::BimmX16:
92   case Mips::Bteqz16:
93   case Mips::BteqzX16:
94   case Mips::Btnez16:
95   case Mips::BtnezX16:
96   case Mips::JalB16:
97     return 0;
98   case Mips::BeqzRxImm16:
99   case Mips::BeqzRxImmX16:
100   case Mips::BnezRxImm16:
101   case Mips::BnezRxImmX16:
102     return 1;
103   }
104   llvm_unreachable("Unknown branch type");
105 }
106 
107 static unsigned int longformBranchOpcode(unsigned int Opcode) {
108   switch (Opcode) {
109   case Mips::Bimm16:
110   case Mips::BimmX16:
111     return Mips::BimmX16;
112   case Mips::Bteqz16:
113   case Mips::BteqzX16:
114     return Mips::BteqzX16;
115   case Mips::Btnez16:
116   case Mips::BtnezX16:
117     return Mips::BtnezX16;
118   case Mips::JalB16:
119     return Mips::JalB16;
120   case Mips::BeqzRxImm16:
121   case Mips::BeqzRxImmX16:
122     return Mips::BeqzRxImmX16;
123   case Mips::BnezRxImm16:
124   case Mips::BnezRxImmX16:
125     return Mips::BnezRxImmX16;
126   }
127   llvm_unreachable("Unknown branch type");
128 }
129 
130 // FIXME: need to go through this whole constant islands port and check the math
131 // for branch ranges and clean this up and make some functions to calculate things
132 // that are done many times identically.
133 // Need to refactor some of the code to call this routine.
134 static unsigned int branchMaxOffsets(unsigned int Opcode) {
135   unsigned Bits, Scale;
136   switch (Opcode) {
137     case Mips::Bimm16:
138       Bits = 11;
139       Scale = 2;
140       break;
141     case Mips::BimmX16:
142       Bits = 16;
143       Scale = 2;
144       break;
145     case Mips::BeqzRxImm16:
146       Bits = 8;
147       Scale = 2;
148       break;
149     case Mips::BeqzRxImmX16:
150       Bits = 16;
151       Scale = 2;
152       break;
153     case Mips::BnezRxImm16:
154       Bits = 8;
155       Scale = 2;
156       break;
157     case Mips::BnezRxImmX16:
158       Bits = 16;
159       Scale = 2;
160       break;
161     case Mips::Bteqz16:
162       Bits = 8;
163       Scale = 2;
164       break;
165     case Mips::BteqzX16:
166       Bits = 16;
167       Scale = 2;
168       break;
169     case Mips::Btnez16:
170       Bits = 8;
171       Scale = 2;
172       break;
173     case Mips::BtnezX16:
174       Bits = 16;
175       Scale = 2;
176       break;
177     default:
178       llvm_unreachable("Unknown branch type");
179   }
180   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
181   return MaxOffs;
182 }
183 
184 namespace {
185 
186   using Iter = MachineBasicBlock::iterator;
187   using ReverseIter = MachineBasicBlock::reverse_iterator;
188 
189   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
190   /// requires constant pool entries to be scattered among the instructions
191   /// inside a function.  To do this, it completely ignores the normal LLVM
192   /// constant pool; instead, it places constants wherever it feels like with
193   /// special instructions.
194   ///
195   /// The terminology used in this pass includes:
196   ///   Islands - Clumps of constants placed in the function.
197   ///   Water   - Potential places where an island could be formed.
198   ///   CPE     - A constant pool entry that has been placed somewhere, which
199   ///             tracks a list of users.
200 
201   class MipsConstantIslands : public MachineFunctionPass {
202     /// BasicBlockInfo - Information about the offset and size of a single
203     /// basic block.
204     struct BasicBlockInfo {
205       /// Offset - Distance from the beginning of the function to the beginning
206       /// of this basic block.
207       ///
208       /// Offsets are computed assuming worst case padding before an aligned
209       /// block. This means that subtracting basic block offsets always gives a
210       /// conservative estimate of the real distance which may be smaller.
211       ///
212       /// Because worst case padding is used, the computed offset of an aligned
213       /// block may not actually be aligned.
214       unsigned Offset = 0;
215 
216       /// Size - Size of the basic block in bytes.  If the block contains
217       /// inline assembly, this is a worst case estimate.
218       ///
219       /// The size does not include any alignment padding whether from the
220       /// beginning of the block, or from an aligned jump table at the end.
221       unsigned Size = 0;
222 
223       BasicBlockInfo() = default;
224 
225       // FIXME: ignore LogAlign for this patch
226       //
227       unsigned postOffset(unsigned LogAlign = 0) const {
228         unsigned PO = Offset + Size;
229         return PO;
230       }
231     };
232 
233     std::vector<BasicBlockInfo> BBInfo;
234 
235     /// WaterList - A sorted list of basic blocks where islands could be placed
236     /// (i.e. blocks that don't fall through to the following block, due
237     /// to a return, unreachable, or unconditional branch).
238     std::vector<MachineBasicBlock*> WaterList;
239 
240     /// NewWaterList - The subset of WaterList that was created since the
241     /// previous iteration by inserting unconditional branches.
242     SmallSet<MachineBasicBlock*, 4> NewWaterList;
243 
244     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
245 
246     /// CPUser - One user of a constant pool, keeping the machine instruction
247     /// pointer, the constant pool being referenced, and the max displacement
248     /// allowed from the instruction to the CP.  The HighWaterMark records the
249     /// highest basic block where a new CPEntry can be placed.  To ensure this
250     /// pass terminates, the CP entries are initially placed at the end of the
251     /// function and then move monotonically to lower addresses.  The
252     /// exception to this rule is when the current CP entry for a particular
253     /// CPUser is out of range, but there is another CP entry for the same
254     /// constant value in range.  We want to use the existing in-range CP
255     /// entry, but if it later moves out of range, the search for new water
256     /// should resume where it left off.  The HighWaterMark is used to record
257     /// that point.
258     struct CPUser {
259       MachineInstr *MI;
260       MachineInstr *CPEMI;
261       MachineBasicBlock *HighWaterMark;
262 
263     private:
264       unsigned MaxDisp;
265       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
266                                 // with different displacements
267       unsigned LongFormOpcode;
268 
269     public:
270       bool NegOk;
271 
272       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
273              bool neg,
274              unsigned longformmaxdisp, unsigned longformopcode)
275         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
276           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
277           NegOk(neg){
278         HighWaterMark = CPEMI->getParent();
279       }
280 
281       /// getMaxDisp - Returns the maximum displacement supported by MI.
282       unsigned getMaxDisp() const {
283         unsigned xMaxDisp = ConstantIslandsSmallOffset?
284                             ConstantIslandsSmallOffset: MaxDisp;
285         return xMaxDisp;
286       }
287 
288       void setMaxDisp(unsigned val) {
289         MaxDisp = val;
290       }
291 
292       unsigned getLongFormMaxDisp() const {
293         return LongFormMaxDisp;
294       }
295 
296       unsigned getLongFormOpcode() const {
297           return LongFormOpcode;
298       }
299     };
300 
301     /// CPUsers - Keep track of all of the machine instructions that use various
302     /// constant pools and their max displacement.
303     std::vector<CPUser> CPUsers;
304 
305   /// CPEntry - One per constant pool entry, keeping the machine instruction
306   /// pointer, the constpool index, and the number of CPUser's which
307   /// reference this entry.
308   struct CPEntry {
309     MachineInstr *CPEMI;
310     unsigned CPI;
311     unsigned RefCount;
312 
313     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
314       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
315   };
316 
317   /// CPEntries - Keep track of all of the constant pool entry machine
318   /// instructions. For each original constpool index (i.e. those that
319   /// existed upon entry to this pass), it keeps a vector of entries.
320   /// Original elements are cloned as we go along; the clones are
321   /// put in the vector of the original element, but have distinct CPIs.
322   std::vector<std::vector<CPEntry>> CPEntries;
323 
324   /// ImmBranch - One per immediate branch, keeping the machine instruction
325   /// pointer, conditional or unconditional, the max displacement,
326   /// and (if isCond is true) the corresponding unconditional branch
327   /// opcode.
328   struct ImmBranch {
329     MachineInstr *MI;
330     unsigned MaxDisp : 31;
331     bool isCond : 1;
332     int UncondBr;
333 
334     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
335       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
336   };
337 
338   /// ImmBranches - Keep track of all the immediate branch instructions.
339   ///
340   std::vector<ImmBranch> ImmBranches;
341 
342   /// HasFarJump - True if any far jump instruction has been emitted during
343   /// the branch fix up pass.
344   bool HasFarJump;
345 
346   const MipsSubtarget *STI = nullptr;
347   const Mips16InstrInfo *TII;
348   MipsFunctionInfo *MFI;
349   MachineFunction *MF = nullptr;
350   MachineConstantPool *MCP = nullptr;
351 
352   unsigned PICLabelUId;
353   bool PrescannedForConstants = false;
354 
355   void initPICLabelUId(unsigned UId) {
356     PICLabelUId = UId;
357   }
358 
359   unsigned createPICLabelUId() {
360     return PICLabelUId++;
361   }
362 
363   public:
364     static char ID;
365 
366     MipsConstantIslands() : MachineFunctionPass(ID) {}
367 
368     StringRef getPassName() const override { return "Mips Constant Islands"; }
369 
370     bool runOnMachineFunction(MachineFunction &F) override;
371 
372     MachineFunctionProperties getRequiredProperties() const override {
373       return MachineFunctionProperties().set(
374           MachineFunctionProperties::Property::NoVRegs);
375     }
376 
377     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
378     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
379     unsigned getCPELogAlign(const MachineInstr &CPEMI);
380     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
381     unsigned getOffsetOf(MachineInstr *MI) const;
382     unsigned getUserOffset(CPUser&) const;
383     void dumpBBs();
384 
385     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
386                          unsigned Disp, bool NegativeOK);
387     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
388                          const CPUser &U);
389 
390     void computeBlockSize(MachineBasicBlock *MBB);
391     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
392     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
393     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
394     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
395     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
396     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
397     bool findAvailableWater(CPUser&U, unsigned UserOffset,
398                             water_iterator &WaterIter);
399     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
400                         MachineBasicBlock *&NewMBB);
401     bool handleConstantPoolUser(unsigned CPUserIndex);
402     void removeDeadCPEMI(MachineInstr *CPEMI);
403     bool removeUnusedCPEntries();
404     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
405                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
406                           bool DoDump = false);
407     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
408                         CPUser &U, unsigned &Growth);
409     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
410     bool fixupImmediateBr(ImmBranch &Br);
411     bool fixupConditionalBr(ImmBranch &Br);
412     bool fixupUnconditionalBr(ImmBranch &Br);
413 
414     void prescanForConstants();
415   };
416 
417 } // end anonymous namespace
418 
419 char MipsConstantIslands::ID = 0;
420 
421 bool MipsConstantIslands::isOffsetInRange
422   (unsigned UserOffset, unsigned TrialOffset,
423    const CPUser &U) {
424   return isOffsetInRange(UserOffset, TrialOffset,
425                          U.getMaxDisp(), U.NegOk);
426 }
427 
428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
429 /// print block size and offset information - debugging
430 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
431   for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
432     const BasicBlockInfo &BBI = BBInfo[J];
433     dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
434            << format(" size=%#x\n", BBInfo[J].Size);
435   }
436 }
437 #endif
438 
439 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
440   // The intention is for this to be a mips16 only pass for now
441   // FIXME:
442   MF = &mf;
443   MCP = mf.getConstantPool();
444   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
445   LLVM_DEBUG(dbgs() << "constant island machine function "
446                     << "\n");
447   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
448     return false;
449   }
450   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
451   MFI = MF->getInfo<MipsFunctionInfo>();
452   LLVM_DEBUG(dbgs() << "constant island processing "
453                     << "\n");
454   //
455   // will need to make predermination if there is any constants we need to
456   // put in constant islands. TBD.
457   //
458   if (!PrescannedForConstants) prescanForConstants();
459 
460   HasFarJump = false;
461   // This pass invalidates liveness information when it splits basic blocks.
462   MF->getRegInfo().invalidateLiveness();
463 
464   // Renumber all of the machine basic blocks in the function, guaranteeing that
465   // the numbers agree with the position of the block in the function.
466   MF->RenumberBlocks();
467 
468   bool MadeChange = false;
469 
470   // Perform the initial placement of the constant pool entries.  To start with,
471   // we put them all at the end of the function.
472   std::vector<MachineInstr*> CPEMIs;
473   if (!MCP->isEmpty())
474     doInitialPlacement(CPEMIs);
475 
476   /// The next UID to take is the first unused one.
477   initPICLabelUId(CPEMIs.size());
478 
479   // Do the initial scan of the function, building up information about the
480   // sizes of each block, the location of all the water, and finding all of the
481   // constant pool users.
482   initializeFunctionInfo(CPEMIs);
483   CPEMIs.clear();
484   LLVM_DEBUG(dumpBBs());
485 
486   /// Remove dead constant pool entries.
487   MadeChange |= removeUnusedCPEntries();
488 
489   // Iteratively place constant pool entries and fix up branches until there
490   // is no change.
491   unsigned NoCPIters = 0, NoBRIters = 0;
492   (void)NoBRIters;
493   while (true) {
494     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
495     bool CPChange = false;
496     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
497       CPChange |= handleConstantPoolUser(i);
498     if (CPChange && ++NoCPIters > 30)
499       report_fatal_error("Constant Island pass failed to converge!");
500     LLVM_DEBUG(dumpBBs());
501 
502     // Clear NewWaterList now.  If we split a block for branches, it should
503     // appear as "new water" for the next iteration of constant pool placement.
504     NewWaterList.clear();
505 
506     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
507     bool BRChange = false;
508     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
509       BRChange |= fixupImmediateBr(ImmBranches[i]);
510     if (BRChange && ++NoBRIters > 30)
511       report_fatal_error("Branch Fix Up pass failed to converge!");
512     LLVM_DEBUG(dumpBBs());
513     if (!CPChange && !BRChange)
514       break;
515     MadeChange = true;
516   }
517 
518   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
519 
520   BBInfo.clear();
521   WaterList.clear();
522   CPUsers.clear();
523   CPEntries.clear();
524   ImmBranches.clear();
525   return MadeChange;
526 }
527 
528 /// doInitialPlacement - Perform the initial placement of the constant pool
529 /// entries.  To start with, we put them all at the end of the function.
530 void
531 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
532   // Create the basic block to hold the CPE's.
533   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
534   MF->push_back(BB);
535 
536   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
537   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
538 
539   // Mark the basic block as required by the const-pool.
540   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
541   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
542 
543   // The function needs to be as aligned as the basic blocks. The linker may
544   // move functions around based on their alignment.
545   MF->ensureAlignment(BB->getAlignment());
546 
547   // Order the entries in BB by descending alignment.  That ensures correct
548   // alignment of all entries as long as BB is sufficiently aligned.  Keep
549   // track of the insertion point for each alignment.  We are going to bucket
550   // sort the entries as they are created.
551   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
552 
553   // Add all of the constants from the constant pool to the end block, use an
554   // identity mapping of CPI's to CPE's.
555   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
556 
557   const DataLayout &TD = MF->getDataLayout();
558   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
559     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
560     assert(Size >= 4 && "Too small constant pool entry");
561     unsigned Align = CPs[i].getAlignment();
562     assert(isPowerOf2_32(Align) && "Invalid alignment");
563     // Verify that all constant pool entries are a multiple of their alignment.
564     // If not, we would have to pad them out so that instructions stay aligned.
565     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
566 
567     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
568     unsigned LogAlign = Log2_32(Align);
569     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
570 
571     MachineInstr *CPEMI =
572       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
573         .addImm(i).addConstantPoolIndex(i).addImm(Size);
574 
575     CPEMIs.push_back(CPEMI);
576 
577     // Ensure that future entries with higher alignment get inserted before
578     // CPEMI. This is bucket sort with iterators.
579     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
580       if (InsPoint[a] == InsAt)
581         InsPoint[a] = CPEMI;
582     // Add a new CPEntry, but no corresponding CPUser yet.
583     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
584     ++NumCPEs;
585     LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
586                       << Size << ", align = " << Align << '\n');
587   }
588   LLVM_DEBUG(BB->dump());
589 }
590 
591 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
592 /// into the block immediately after it.
593 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
594   // Get the next machine basic block in the function.
595   MachineFunction::iterator MBBI = MBB->getIterator();
596   // Can't fall off end of function.
597   if (std::next(MBBI) == MBB->getParent()->end())
598     return false;
599 
600   MachineBasicBlock *NextBB = &*std::next(MBBI);
601   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
602        E = MBB->succ_end(); I != E; ++I)
603     if (*I == NextBB)
604       return true;
605 
606   return false;
607 }
608 
609 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
610 /// look up the corresponding CPEntry.
611 MipsConstantIslands::CPEntry
612 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
613                                         const MachineInstr *CPEMI) {
614   std::vector<CPEntry> &CPEs = CPEntries[CPI];
615   // Number of entries per constpool index should be small, just do a
616   // linear search.
617   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
618     if (CPEs[i].CPEMI == CPEMI)
619       return &CPEs[i];
620   }
621   return nullptr;
622 }
623 
624 /// getCPELogAlign - Returns the required alignment of the constant pool entry
625 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
626 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
627   assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
628 
629   // Everything is 4-byte aligned unless AlignConstantIslands is set.
630   if (!AlignConstantIslands)
631     return 2;
632 
633   unsigned CPI = CPEMI.getOperand(1).getIndex();
634   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
635   unsigned Align = MCP->getConstants()[CPI].getAlignment();
636   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
637   return Log2_32(Align);
638 }
639 
640 /// initializeFunctionInfo - Do the initial scan of the function, building up
641 /// information about the sizes of each block, the location of all the water,
642 /// and finding all of the constant pool users.
643 void MipsConstantIslands::
644 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
645   BBInfo.clear();
646   BBInfo.resize(MF->getNumBlockIDs());
647 
648   // First thing, compute the size of all basic blocks, and see if the function
649   // has any inline assembly in it. If so, we have to be conservative about
650   // alignment assumptions, as we don't know for sure the size of any
651   // instructions in the inline assembly.
652   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
653     computeBlockSize(&*I);
654 
655   // Compute block offsets.
656   adjustBBOffsetsAfter(&MF->front());
657 
658   // Now go back through the instructions and build up our data structures.
659   for (MachineBasicBlock &MBB : *MF) {
660     // If this block doesn't fall through into the next MBB, then this is
661     // 'water' that a constant pool island could be placed.
662     if (!BBHasFallthrough(&MBB))
663       WaterList.push_back(&MBB);
664     for (MachineInstr &MI : MBB) {
665       if (MI.isDebugInstr())
666         continue;
667 
668       int Opc = MI.getOpcode();
669       if (MI.isBranch()) {
670         bool isCond = false;
671         unsigned Bits = 0;
672         unsigned Scale = 1;
673         int UOpc = Opc;
674         switch (Opc) {
675         default:
676           continue;  // Ignore other branches for now
677         case Mips::Bimm16:
678           Bits = 11;
679           Scale = 2;
680           isCond = false;
681           break;
682         case Mips::BimmX16:
683           Bits = 16;
684           Scale = 2;
685           isCond = false;
686           break;
687         case Mips::BeqzRxImm16:
688           UOpc=Mips::Bimm16;
689           Bits = 8;
690           Scale = 2;
691           isCond = true;
692           break;
693         case Mips::BeqzRxImmX16:
694           UOpc=Mips::Bimm16;
695           Bits = 16;
696           Scale = 2;
697           isCond = true;
698           break;
699         case Mips::BnezRxImm16:
700           UOpc=Mips::Bimm16;
701           Bits = 8;
702           Scale = 2;
703           isCond = true;
704           break;
705         case Mips::BnezRxImmX16:
706           UOpc=Mips::Bimm16;
707           Bits = 16;
708           Scale = 2;
709           isCond = true;
710           break;
711         case Mips::Bteqz16:
712           UOpc=Mips::Bimm16;
713           Bits = 8;
714           Scale = 2;
715           isCond = true;
716           break;
717         case Mips::BteqzX16:
718           UOpc=Mips::Bimm16;
719           Bits = 16;
720           Scale = 2;
721           isCond = true;
722           break;
723         case Mips::Btnez16:
724           UOpc=Mips::Bimm16;
725           Bits = 8;
726           Scale = 2;
727           isCond = true;
728           break;
729         case Mips::BtnezX16:
730           UOpc=Mips::Bimm16;
731           Bits = 16;
732           Scale = 2;
733           isCond = true;
734           break;
735         }
736         // Record this immediate branch.
737         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
738         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
739       }
740 
741       if (Opc == Mips::CONSTPOOL_ENTRY)
742         continue;
743 
744       // Scan the instructions for constant pool operands.
745       for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
746         if (MI.getOperand(op).isCPI()) {
747           // We found one.  The addressing mode tells us the max displacement
748           // from the PC that this instruction permits.
749 
750           // Basic size info comes from the TSFlags field.
751           unsigned Bits = 0;
752           unsigned Scale = 1;
753           bool NegOk = false;
754           unsigned LongFormBits = 0;
755           unsigned LongFormScale = 0;
756           unsigned LongFormOpcode = 0;
757           switch (Opc) {
758           default:
759             llvm_unreachable("Unknown addressing mode for CP reference!");
760           case Mips::LwRxPcTcp16:
761             Bits = 8;
762             Scale = 4;
763             LongFormOpcode = Mips::LwRxPcTcpX16;
764             LongFormBits = 14;
765             LongFormScale = 1;
766             break;
767           case Mips::LwRxPcTcpX16:
768             Bits = 14;
769             Scale = 1;
770             NegOk = true;
771             break;
772           }
773           // Remember that this is a user of a CP entry.
774           unsigned CPI = MI.getOperand(op).getIndex();
775           MachineInstr *CPEMI = CPEMIs[CPI];
776           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
777           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
778           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
779                                    LongFormOpcode));
780 
781           // Increment corresponding CPEntry reference count.
782           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
783           assert(CPE && "Cannot find a corresponding CPEntry!");
784           CPE->RefCount++;
785 
786           // Instructions can only use one CP entry, don't bother scanning the
787           // rest of the operands.
788           break;
789         }
790     }
791   }
792 }
793 
794 /// computeBlockSize - Compute the size and some alignment information for MBB.
795 /// This function updates BBInfo directly.
796 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
797   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
798   BBI.Size = 0;
799 
800   for (const MachineInstr &MI : *MBB)
801     BBI.Size += TII->getInstSizeInBytes(MI);
802 }
803 
804 /// getOffsetOf - Return the current offset of the specified machine instruction
805 /// from the start of the function.  This offset changes as stuff is moved
806 /// around inside the function.
807 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
808   MachineBasicBlock *MBB = MI->getParent();
809 
810   // The offset is composed of two things: the sum of the sizes of all MBB's
811   // before this instruction's block, and the offset from the start of the block
812   // it is in.
813   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
814 
815   // Sum instructions before MI in MBB.
816   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
817     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
818     Offset += TII->getInstSizeInBytes(*I);
819   }
820   return Offset;
821 }
822 
823 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
824 /// ID.
825 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
826                               const MachineBasicBlock *RHS) {
827   return LHS->getNumber() < RHS->getNumber();
828 }
829 
830 /// updateForInsertedWaterBlock - When a block is newly inserted into the
831 /// machine function, it upsets all of the block numbers.  Renumber the blocks
832 /// and update the arrays that parallel this numbering.
833 void MipsConstantIslands::updateForInsertedWaterBlock
834   (MachineBasicBlock *NewBB) {
835   // Renumber the MBB's to keep them consecutive.
836   NewBB->getParent()->RenumberBlocks(NewBB);
837 
838   // Insert an entry into BBInfo to align it properly with the (newly
839   // renumbered) block numbers.
840   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
841 
842   // Next, update WaterList.  Specifically, we need to add NewMBB as having
843   // available water after it.
844   water_iterator IP =
845     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
846                      CompareMBBNumbers);
847   WaterList.insert(IP, NewBB);
848 }
849 
850 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
851   return getOffsetOf(U.MI);
852 }
853 
854 /// Split the basic block containing MI into two blocks, which are joined by
855 /// an unconditional branch.  Update data structures and renumber blocks to
856 /// account for this change and returns the newly created block.
857 MachineBasicBlock *
858 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
859   MachineBasicBlock *OrigBB = MI.getParent();
860 
861   // Create a new MBB for the code after the OrigBB.
862   MachineBasicBlock *NewBB =
863     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
864   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
865   MF->insert(MBBI, NewBB);
866 
867   // Splice the instructions starting with MI over to NewBB.
868   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
869 
870   // Add an unconditional branch from OrigBB to NewBB.
871   // Note the new unconditional branch is not being recorded.
872   // There doesn't seem to be meaningful DebugInfo available; this doesn't
873   // correspond to anything in the source.
874   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
875   ++NumSplit;
876 
877   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
878   NewBB->transferSuccessors(OrigBB);
879 
880   // OrigBB branches to NewBB.
881   OrigBB->addSuccessor(NewBB);
882 
883   // Update internal data structures to account for the newly inserted MBB.
884   // This is almost the same as updateForInsertedWaterBlock, except that
885   // the Water goes after OrigBB, not NewBB.
886   MF->RenumberBlocks(NewBB);
887 
888   // Insert an entry into BBInfo to align it properly with the (newly
889   // renumbered) block numbers.
890   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
891 
892   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
893   // available water after it (but not if it's already there, which happens
894   // when splitting before a conditional branch that is followed by an
895   // unconditional branch - in that case we want to insert NewBB).
896   water_iterator IP =
897     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
898                      CompareMBBNumbers);
899   MachineBasicBlock* WaterBB = *IP;
900   if (WaterBB == OrigBB)
901     WaterList.insert(std::next(IP), NewBB);
902   else
903     WaterList.insert(IP, OrigBB);
904   NewWaterList.insert(OrigBB);
905 
906   // Figure out how large the OrigBB is.  As the first half of the original
907   // block, it cannot contain a tablejump.  The size includes
908   // the new jump we added.  (It should be possible to do this without
909   // recounting everything, but it's very confusing, and this is rarely
910   // executed.)
911   computeBlockSize(OrigBB);
912 
913   // Figure out how large the NewMBB is.  As the second half of the original
914   // block, it may contain a tablejump.
915   computeBlockSize(NewBB);
916 
917   // All BBOffsets following these blocks must be modified.
918   adjustBBOffsetsAfter(OrigBB);
919 
920   return NewBB;
921 }
922 
923 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
924 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
925 /// constant pool entry).
926 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
927                                          unsigned TrialOffset, unsigned MaxDisp,
928                                          bool NegativeOK) {
929   if (UserOffset <= TrialOffset) {
930     // User before the Trial.
931     if (TrialOffset - UserOffset <= MaxDisp)
932       return true;
933   } else if (NegativeOK) {
934     if (UserOffset - TrialOffset <= MaxDisp)
935       return true;
936   }
937   return false;
938 }
939 
940 /// isWaterInRange - Returns true if a CPE placed after the specified
941 /// Water (a basic block) will be in range for the specific MI.
942 ///
943 /// Compute how much the function will grow by inserting a CPE after Water.
944 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
945                                         MachineBasicBlock* Water, CPUser &U,
946                                         unsigned &Growth) {
947   unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
948   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
949   unsigned NextBlockOffset, NextBlockAlignment;
950   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
951   if (NextBlock == MF->end()) {
952     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
953     NextBlockAlignment = 0;
954   } else {
955     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
956     NextBlockAlignment = NextBlock->getAlignment();
957   }
958   unsigned Size = U.CPEMI->getOperand(2).getImm();
959   unsigned CPEEnd = CPEOffset + Size;
960 
961   // The CPE may be able to hide in the alignment padding before the next
962   // block. It may also cause more padding to be required if it is more aligned
963   // that the next block.
964   if (CPEEnd > NextBlockOffset) {
965     Growth = CPEEnd - NextBlockOffset;
966     // Compute the padding that would go at the end of the CPE to align the next
967     // block.
968     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
969 
970     // If the CPE is to be inserted before the instruction, that will raise
971     // the offset of the instruction. Also account for unknown alignment padding
972     // in blocks between CPE and the user.
973     if (CPEOffset < UserOffset)
974       UserOffset += Growth;
975   } else
976     // CPE fits in existing padding.
977     Growth = 0;
978 
979   return isOffsetInRange(UserOffset, CPEOffset, U);
980 }
981 
982 /// isCPEntryInRange - Returns true if the distance between specific MI and
983 /// specific ConstPool entry instruction can fit in MI's displacement field.
984 bool MipsConstantIslands::isCPEntryInRange
985   (MachineInstr *MI, unsigned UserOffset,
986    MachineInstr *CPEMI, unsigned MaxDisp,
987    bool NegOk, bool DoDump) {
988   unsigned CPEOffset  = getOffsetOf(CPEMI);
989 
990   if (DoDump) {
991     LLVM_DEBUG({
992       unsigned Block = MI->getParent()->getNumber();
993       const BasicBlockInfo &BBI = BBInfo[Block];
994       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
995              << " max delta=" << MaxDisp
996              << format(" insn address=%#x", UserOffset) << " in "
997              << printMBBReference(*MI->getParent()) << ": "
998              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
999              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1000                        int(CPEOffset - UserOffset));
1001     });
1002   }
1003 
1004   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1005 }
1006 
1007 #ifndef NDEBUG
1008 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1009 /// unconditionally branches to its only successor.
1010 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1011   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1012     return false;
1013   MachineBasicBlock *Succ = *MBB->succ_begin();
1014   MachineBasicBlock *Pred = *MBB->pred_begin();
1015   MachineInstr *PredMI = &Pred->back();
1016   if (PredMI->getOpcode() == Mips::Bimm16)
1017     return PredMI->getOperand(0).getMBB() == Succ;
1018   return false;
1019 }
1020 #endif
1021 
1022 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1023   unsigned BBNum = BB->getNumber();
1024   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1025     // Get the offset and known bits at the end of the layout predecessor.
1026     // Include the alignment of the current block.
1027     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1028     BBInfo[i].Offset = Offset;
1029   }
1030 }
1031 
1032 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1033 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1034 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1035 /// the entry, false if we didn't.
1036 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1037                                                     MachineInstr *CPEMI) {
1038   // Find the old entry. Eliminate it if it is no longer used.
1039   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1040   assert(CPE && "Unexpected!");
1041   if (--CPE->RefCount == 0) {
1042     removeDeadCPEMI(CPEMI);
1043     CPE->CPEMI = nullptr;
1044     --NumCPEs;
1045     return true;
1046   }
1047   return false;
1048 }
1049 
1050 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1051 /// if not, see if an in-range clone of the CPE is in range, and if so,
1052 /// change the data structures so the user references the clone.  Returns:
1053 /// 0 = no existing entry found
1054 /// 1 = entry found, and there were no code insertions or deletions
1055 /// 2 = entry found, and there were code insertions or deletions
1056 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1057 {
1058   MachineInstr *UserMI = U.MI;
1059   MachineInstr *CPEMI  = U.CPEMI;
1060 
1061   // Check to see if the CPE is already in-range.
1062   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1063                        true)) {
1064     LLVM_DEBUG(dbgs() << "In range\n");
1065     return 1;
1066   }
1067 
1068   // No.  Look for previously created clones of the CPE that are in range.
1069   unsigned CPI = CPEMI->getOperand(1).getIndex();
1070   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1071   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1072     // We already tried this one
1073     if (CPEs[i].CPEMI == CPEMI)
1074       continue;
1075     // Removing CPEs can leave empty entries, skip
1076     if (CPEs[i].CPEMI == nullptr)
1077       continue;
1078     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1079                      U.NegOk)) {
1080       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1081                         << CPEs[i].CPI << "\n");
1082       // Point the CPUser node to the replacement
1083       U.CPEMI = CPEs[i].CPEMI;
1084       // Change the CPI in the instruction operand to refer to the clone.
1085       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1086         if (UserMI->getOperand(j).isCPI()) {
1087           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1088           break;
1089         }
1090       // Adjust the refcount of the clone...
1091       CPEs[i].RefCount++;
1092       // ...and the original.  If we didn't remove the old entry, none of the
1093       // addresses changed, so we don't need another pass.
1094       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1095     }
1096   }
1097   return 0;
1098 }
1099 
1100 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1101 /// This version checks if the longer form of the instruction can be used to
1102 /// to satisfy things.
1103 /// if not, see if an in-range clone of the CPE is in range, and if so,
1104 /// change the data structures so the user references the clone.  Returns:
1105 /// 0 = no existing entry found
1106 /// 1 = entry found, and there were no code insertions or deletions
1107 /// 2 = entry found, and there were code insertions or deletions
1108 int MipsConstantIslands::findLongFormInRangeCPEntry
1109   (CPUser& U, unsigned UserOffset)
1110 {
1111   MachineInstr *UserMI = U.MI;
1112   MachineInstr *CPEMI  = U.CPEMI;
1113 
1114   // Check to see if the CPE is already in-range.
1115   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1116                        U.getLongFormMaxDisp(), U.NegOk,
1117                        true)) {
1118     LLVM_DEBUG(dbgs() << "In range\n");
1119     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1120     U.setMaxDisp(U.getLongFormMaxDisp());
1121     return 2;  // instruction is longer length now
1122   }
1123 
1124   // No.  Look for previously created clones of the CPE that are in range.
1125   unsigned CPI = CPEMI->getOperand(1).getIndex();
1126   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1127   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1128     // We already tried this one
1129     if (CPEs[i].CPEMI == CPEMI)
1130       continue;
1131     // Removing CPEs can leave empty entries, skip
1132     if (CPEs[i].CPEMI == nullptr)
1133       continue;
1134     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1135                          U.getLongFormMaxDisp(), U.NegOk)) {
1136       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1137                         << CPEs[i].CPI << "\n");
1138       // Point the CPUser node to the replacement
1139       U.CPEMI = CPEs[i].CPEMI;
1140       // Change the CPI in the instruction operand to refer to the clone.
1141       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1142         if (UserMI->getOperand(j).isCPI()) {
1143           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1144           break;
1145         }
1146       // Adjust the refcount of the clone...
1147       CPEs[i].RefCount++;
1148       // ...and the original.  If we didn't remove the old entry, none of the
1149       // addresses changed, so we don't need another pass.
1150       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1151     }
1152   }
1153   return 0;
1154 }
1155 
1156 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1157 /// the specific unconditional branch instruction.
1158 static inline unsigned getUnconditionalBrDisp(int Opc) {
1159   switch (Opc) {
1160   case Mips::Bimm16:
1161     return ((1<<10)-1)*2;
1162   case Mips::BimmX16:
1163     return ((1<<16)-1)*2;
1164   default:
1165     break;
1166   }
1167   return ((1<<16)-1)*2;
1168 }
1169 
1170 /// findAvailableWater - Look for an existing entry in the WaterList in which
1171 /// we can place the CPE referenced from U so it's within range of U's MI.
1172 /// Returns true if found, false if not.  If it returns true, WaterIter
1173 /// is set to the WaterList entry.
1174 /// To ensure that this pass
1175 /// terminates, the CPE location for a particular CPUser is only allowed to
1176 /// move to a lower address, so search backward from the end of the list and
1177 /// prefer the first water that is in range.
1178 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1179                                       water_iterator &WaterIter) {
1180   if (WaterList.empty())
1181     return false;
1182 
1183   unsigned BestGrowth = ~0u;
1184   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1185        --IP) {
1186     MachineBasicBlock* WaterBB = *IP;
1187     // Check if water is in range and is either at a lower address than the
1188     // current "high water mark" or a new water block that was created since
1189     // the previous iteration by inserting an unconditional branch.  In the
1190     // latter case, we want to allow resetting the high water mark back to
1191     // this new water since we haven't seen it before.  Inserting branches
1192     // should be relatively uncommon and when it does happen, we want to be
1193     // sure to take advantage of it for all the CPEs near that block, so that
1194     // we don't insert more branches than necessary.
1195     unsigned Growth;
1196     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1197         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1198          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1199       // This is the least amount of required padding seen so far.
1200       BestGrowth = Growth;
1201       WaterIter = IP;
1202       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1203                         << " Growth=" << Growth << '\n');
1204 
1205       // Keep looking unless it is perfect.
1206       if (BestGrowth == 0)
1207         return true;
1208     }
1209     if (IP == B)
1210       break;
1211   }
1212   return BestGrowth != ~0u;
1213 }
1214 
1215 /// createNewWater - No existing WaterList entry will work for
1216 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1217 /// block is used if in range, and the conditional branch munged so control
1218 /// flow is correct.  Otherwise the block is split to create a hole with an
1219 /// unconditional branch around it.  In either case NewMBB is set to a
1220 /// block following which the new island can be inserted (the WaterList
1221 /// is not adjusted).
1222 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1223                                         unsigned UserOffset,
1224                                         MachineBasicBlock *&NewMBB) {
1225   CPUser &U = CPUsers[CPUserIndex];
1226   MachineInstr *UserMI = U.MI;
1227   MachineInstr *CPEMI  = U.CPEMI;
1228   unsigned CPELogAlign = getCPELogAlign(*CPEMI);
1229   MachineBasicBlock *UserMBB = UserMI->getParent();
1230   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1231 
1232   // If the block does not end in an unconditional branch already, and if the
1233   // end of the block is within range, make new water there.
1234   if (BBHasFallthrough(UserMBB)) {
1235     // Size of branch to insert.
1236     unsigned Delta = 2;
1237     // Compute the offset where the CPE will begin.
1238     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1239 
1240     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1241       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1242                         << format(", expected CPE offset %#x\n", CPEOffset));
1243       NewMBB = &*++UserMBB->getIterator();
1244       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1245       // it for branch lengthening; this new branch will not get out of range,
1246       // but if the preceding conditional branch is out of range, the targets
1247       // will be exchanged, and the altered branch may be out of range, so the
1248       // machinery has to know about it.
1249       int UncondBr = Mips::Bimm16;
1250       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1251       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1252       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1253                                       MaxDisp, false, UncondBr));
1254       BBInfo[UserMBB->getNumber()].Size += Delta;
1255       adjustBBOffsetsAfter(UserMBB);
1256       return;
1257     }
1258   }
1259 
1260   // What a big block.  Find a place within the block to split it.
1261 
1262   // Try to split the block so it's fully aligned.  Compute the latest split
1263   // point where we can add a 4-byte branch instruction, and then align to
1264   // LogAlign which is the largest possible alignment in the function.
1265   unsigned LogAlign = MF->getAlignment();
1266   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1267   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1268   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1269                               BaseInsertOffset));
1270 
1271   // The 4 in the following is for the unconditional branch we'll be inserting
1272   // Alignment of the island is handled
1273   // inside isOffsetInRange.
1274   BaseInsertOffset -= 4;
1275 
1276   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1277                     << " la=" << LogAlign << '\n');
1278 
1279   // This could point off the end of the block if we've already got constant
1280   // pool entries following this block; only the last one is in the water list.
1281   // Back past any possible branches (allow for a conditional and a maximally
1282   // long unconditional).
1283   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1284     BaseInsertOffset = UserBBI.postOffset() - 8;
1285     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1286   }
1287   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1288     CPEMI->getOperand(2).getImm();
1289   MachineBasicBlock::iterator MI = UserMI;
1290   ++MI;
1291   unsigned CPUIndex = CPUserIndex+1;
1292   unsigned NumCPUsers = CPUsers.size();
1293   //MachineInstr *LastIT = 0;
1294   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1295        Offset < BaseInsertOffset;
1296        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1297     assert(MI != UserMBB->end() && "Fell off end of block");
1298     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1299       CPUser &U = CPUsers[CPUIndex];
1300       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1301         // Shift intertion point by one unit of alignment so it is within reach.
1302         BaseInsertOffset -= 1u << LogAlign;
1303         EndInsertOffset  -= 1u << LogAlign;
1304       }
1305       // This is overly conservative, as we don't account for CPEMIs being
1306       // reused within the block, but it doesn't matter much.  Also assume CPEs
1307       // are added in order with alignment padding.  We may eventually be able
1308       // to pack the aligned CPEs better.
1309       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1310       CPUIndex++;
1311     }
1312   }
1313 
1314   NewMBB = splitBlockBeforeInstr(*--MI);
1315 }
1316 
1317 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1318 /// is out-of-range.  If so, pick up the constant pool value and move it some
1319 /// place in-range.  Return true if we changed any addresses (thus must run
1320 /// another pass of branch lengthening), false otherwise.
1321 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1322   CPUser &U = CPUsers[CPUserIndex];
1323   MachineInstr *UserMI = U.MI;
1324   MachineInstr *CPEMI  = U.CPEMI;
1325   unsigned CPI = CPEMI->getOperand(1).getIndex();
1326   unsigned Size = CPEMI->getOperand(2).getImm();
1327   // Compute this only once, it's expensive.
1328   unsigned UserOffset = getUserOffset(U);
1329 
1330   // See if the current entry is within range, or there is a clone of it
1331   // in range.
1332   int result = findInRangeCPEntry(U, UserOffset);
1333   if (result==1) return false;
1334   else if (result==2) return true;
1335 
1336   // Look for water where we can place this CPE.
1337   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1338   MachineBasicBlock *NewMBB;
1339   water_iterator IP;
1340   if (findAvailableWater(U, UserOffset, IP)) {
1341     LLVM_DEBUG(dbgs() << "Found water in range\n");
1342     MachineBasicBlock *WaterBB = *IP;
1343 
1344     // If the original WaterList entry was "new water" on this iteration,
1345     // propagate that to the new island.  This is just keeping NewWaterList
1346     // updated to match the WaterList, which will be updated below.
1347     if (NewWaterList.erase(WaterBB))
1348       NewWaterList.insert(NewIsland);
1349 
1350     // The new CPE goes before the following block (NewMBB).
1351     NewMBB = &*++WaterBB->getIterator();
1352   } else {
1353     // No water found.
1354     // we first see if a longer form of the instrucion could have reached
1355     // the constant. in that case we won't bother to split
1356     if (!NoLoadRelaxation) {
1357       result = findLongFormInRangeCPEntry(U, UserOffset);
1358       if (result != 0) return true;
1359     }
1360     LLVM_DEBUG(dbgs() << "No water found\n");
1361     createNewWater(CPUserIndex, UserOffset, NewMBB);
1362 
1363     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1364     // called while handling branches so that the water will be seen on the
1365     // next iteration for constant pools, but in this context, we don't want
1366     // it.  Check for this so it will be removed from the WaterList.
1367     // Also remove any entry from NewWaterList.
1368     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1369     IP = llvm::find(WaterList, WaterBB);
1370     if (IP != WaterList.end())
1371       NewWaterList.erase(WaterBB);
1372 
1373     // We are adding new water.  Update NewWaterList.
1374     NewWaterList.insert(NewIsland);
1375   }
1376 
1377   // Remove the original WaterList entry; we want subsequent insertions in
1378   // this vicinity to go after the one we're about to insert.  This
1379   // considerably reduces the number of times we have to move the same CPE
1380   // more than once and is also important to ensure the algorithm terminates.
1381   if (IP != WaterList.end())
1382     WaterList.erase(IP);
1383 
1384   // Okay, we know we can put an island before NewMBB now, do it!
1385   MF->insert(NewMBB->getIterator(), NewIsland);
1386 
1387   // Update internal data structures to account for the newly inserted MBB.
1388   updateForInsertedWaterBlock(NewIsland);
1389 
1390   // Decrement the old entry, and remove it if refcount becomes 0.
1391   decrementCPEReferenceCount(CPI, CPEMI);
1392 
1393   // No existing clone of this CPE is within range.
1394   // We will be generating a new clone.  Get a UID for it.
1395   unsigned ID = createPICLabelUId();
1396 
1397   // Now that we have an island to add the CPE to, clone the original CPE and
1398   // add it to the island.
1399   U.HighWaterMark = NewIsland;
1400   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1401                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1402   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1403   ++NumCPEs;
1404 
1405   // Mark the basic block as aligned as required by the const-pool entry.
1406   NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
1407 
1408   // Increase the size of the island block to account for the new entry.
1409   BBInfo[NewIsland->getNumber()].Size += Size;
1410   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1411 
1412   // Finally, change the CPI in the instruction operand to be ID.
1413   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1414     if (UserMI->getOperand(i).isCPI()) {
1415       UserMI->getOperand(i).setIndex(ID);
1416       break;
1417     }
1418 
1419   LLVM_DEBUG(
1420       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1421              << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1422 
1423   return true;
1424 }
1425 
1426 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1427 /// sizes and offsets of impacted basic blocks.
1428 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1429   MachineBasicBlock *CPEBB = CPEMI->getParent();
1430   unsigned Size = CPEMI->getOperand(2).getImm();
1431   CPEMI->eraseFromParent();
1432   BBInfo[CPEBB->getNumber()].Size -= Size;
1433   // All succeeding offsets have the current size value added in, fix this.
1434   if (CPEBB->empty()) {
1435     BBInfo[CPEBB->getNumber()].Size = 0;
1436 
1437     // This block no longer needs to be aligned.
1438     CPEBB->setAlignment(0);
1439   } else
1440     // Entries are sorted by descending alignment, so realign from the front.
1441     CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
1442 
1443   adjustBBOffsetsAfter(CPEBB);
1444   // An island has only one predecessor BB and one successor BB. Check if
1445   // this BB's predecessor jumps directly to this BB's successor. This
1446   // shouldn't happen currently.
1447   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1448   // FIXME: remove the empty blocks after all the work is done?
1449 }
1450 
1451 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1452 /// are zero.
1453 bool MipsConstantIslands::removeUnusedCPEntries() {
1454   unsigned MadeChange = false;
1455   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1456       std::vector<CPEntry> &CPEs = CPEntries[i];
1457       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1458         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1459           removeDeadCPEMI(CPEs[j].CPEMI);
1460           CPEs[j].CPEMI = nullptr;
1461           MadeChange = true;
1462         }
1463       }
1464   }
1465   return MadeChange;
1466 }
1467 
1468 /// isBBInRange - Returns true if the distance between specific MI and
1469 /// specific BB can fit in MI's displacement field.
1470 bool MipsConstantIslands::isBBInRange
1471   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1472   unsigned PCAdj = 4;
1473   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1474   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1475 
1476   LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1477                     << " from " << printMBBReference(*MI->getParent())
1478                     << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1479                     << " to " << DestOffset << " offset "
1480                     << int(DestOffset - BrOffset) << "\t" << *MI);
1481 
1482   if (BrOffset <= DestOffset) {
1483     // Branch before the Dest.
1484     if (DestOffset-BrOffset <= MaxDisp)
1485       return true;
1486   } else {
1487     if (BrOffset-DestOffset <= MaxDisp)
1488       return true;
1489   }
1490   return false;
1491 }
1492 
1493 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1494 /// away to fit in its displacement field.
1495 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1496   MachineInstr *MI = Br.MI;
1497   unsigned TargetOperand = branchTargetOperand(MI);
1498   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1499 
1500   // Check to see if the DestBB is already in-range.
1501   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1502     return false;
1503 
1504   if (!Br.isCond)
1505     return fixupUnconditionalBr(Br);
1506   return fixupConditionalBr(Br);
1507 }
1508 
1509 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1510 /// too far away to fit in its displacement field. If the LR register has been
1511 /// spilled in the epilogue, then we can use BL to implement a far jump.
1512 /// Otherwise, add an intermediate branch instruction to a branch.
1513 bool
1514 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1515   MachineInstr *MI = Br.MI;
1516   MachineBasicBlock *MBB = MI->getParent();
1517   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1518   // Use BL to implement far jump.
1519   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1520   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1521     Br.MaxDisp = BimmX16MaxDisp;
1522     MI->setDesc(TII->get(Mips::BimmX16));
1523   }
1524   else {
1525     // need to give the math a more careful look here
1526     // this is really a segment address and not
1527     // a PC relative address. FIXME. But I think that
1528     // just reducing the bits by 1 as I've done is correct.
1529     // The basic block we are branching too much be longword aligned.
1530     // we know that RA is saved because we always save it right now.
1531     // this requirement will be relaxed later but we also have an alternate
1532     // way to implement this that I will implement that does not need jal.
1533     // We should have a way to back out this alignment restriction if we "can" later.
1534     // but it is not harmful.
1535     //
1536     DestBB->setAlignment(2);
1537     Br.MaxDisp = ((1<<24)-1) * 2;
1538     MI->setDesc(TII->get(Mips::JalB16));
1539   }
1540   BBInfo[MBB->getNumber()].Size += 2;
1541   adjustBBOffsetsAfter(MBB);
1542   HasFarJump = true;
1543   ++NumUBrFixed;
1544 
1545   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1546 
1547   return true;
1548 }
1549 
1550 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1551 /// far away to fit in its displacement field. It is converted to an inverse
1552 /// conditional branch + an unconditional branch to the destination.
1553 bool
1554 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1555   MachineInstr *MI = Br.MI;
1556   unsigned TargetOperand = branchTargetOperand(MI);
1557   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1558   unsigned Opcode = MI->getOpcode();
1559   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1560   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1561 
1562   // Check to see if the DestBB is already in-range.
1563   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1564     Br.MaxDisp = LongFormMaxOff;
1565     MI->setDesc(TII->get(LongFormOpcode));
1566     return true;
1567   }
1568 
1569   // Add an unconditional branch to the destination and invert the branch
1570   // condition to jump over it:
1571   // bteqz L1
1572   // =>
1573   // bnez L2
1574   // b   L1
1575   // L2:
1576 
1577   // If the branch is at the end of its MBB and that has a fall-through block,
1578   // direct the updated conditional branch to the fall-through block. Otherwise,
1579   // split the MBB before the next instruction.
1580   MachineBasicBlock *MBB = MI->getParent();
1581   MachineInstr *BMI = &MBB->back();
1582   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1583   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1584 
1585   ++NumCBrFixed;
1586   if (BMI != MI) {
1587     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1588         BMI->isUnconditionalBranch()) {
1589       // Last MI in the BB is an unconditional branch. Can we simply invert the
1590       // condition and swap destinations:
1591       // beqz L1
1592       // b   L2
1593       // =>
1594       // bnez L2
1595       // b   L1
1596       unsigned BMITargetOperand = branchTargetOperand(BMI);
1597       MachineBasicBlock *NewDest =
1598         BMI->getOperand(BMITargetOperand).getMBB();
1599       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1600         LLVM_DEBUG(
1601             dbgs() << "  Invert Bcc condition and swap its destination with "
1602                    << *BMI);
1603         MI->setDesc(TII->get(OppositeBranchOpcode));
1604         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1605         MI->getOperand(TargetOperand).setMBB(NewDest);
1606         return true;
1607       }
1608     }
1609   }
1610 
1611   if (NeedSplit) {
1612     splitBlockBeforeInstr(*MI);
1613     // No need for the branch to the next block. We're adding an unconditional
1614     // branch to the destination.
1615     int delta = TII->getInstSizeInBytes(MBB->back());
1616     BBInfo[MBB->getNumber()].Size -= delta;
1617     MBB->back().eraseFromParent();
1618     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1619   }
1620   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1621 
1622   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1623                     << " also invert condition and change dest. to "
1624                     << printMBBReference(*NextBB) << "\n");
1625 
1626   // Insert a new conditional branch and a new unconditional branch.
1627   // Also update the ImmBranch as well as adding a new entry for the new branch.
1628   if (MI->getNumExplicitOperands() == 2) {
1629     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1630            .addReg(MI->getOperand(0).getReg())
1631            .addMBB(NextBB);
1632   } else {
1633     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1634            .addMBB(NextBB);
1635   }
1636   Br.MI = &MBB->back();
1637   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1638   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1639   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1640   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1641   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1642 
1643   // Remove the old conditional branch.  It may or may not still be in MBB.
1644   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1645   MI->eraseFromParent();
1646   adjustBBOffsetsAfter(MBB);
1647   return true;
1648 }
1649 
1650 void MipsConstantIslands::prescanForConstants() {
1651   unsigned J = 0;
1652   (void)J;
1653   for (MachineFunction::iterator B =
1654          MF->begin(), E = MF->end(); B != E; ++B) {
1655     for (MachineBasicBlock::instr_iterator I =
1656         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1657       switch(I->getDesc().getOpcode()) {
1658         case Mips::LwConstant32: {
1659           PrescannedForConstants = true;
1660           LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1661           J = I->getNumOperands();
1662           LLVM_DEBUG(dbgs() << "num operands " << J << "\n");
1663           MachineOperand& Literal = I->getOperand(1);
1664           if (Literal.isImm()) {
1665             int64_t V = Literal.getImm();
1666             LLVM_DEBUG(dbgs() << "literal " << V << "\n");
1667             Type *Int32Ty =
1668               Type::getInt32Ty(MF->getFunction().getContext());
1669             const Constant *C = ConstantInt::get(Int32Ty, V);
1670             unsigned index = MCP->getConstantPoolIndex(C, 4);
1671             I->getOperand(2).ChangeToImmediate(index);
1672             LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1673             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1674             I->RemoveOperand(1);
1675             I->RemoveOperand(1);
1676             I->addOperand(MachineOperand::CreateCPI(index, 0));
1677             I->addOperand(MachineOperand::CreateImm(4));
1678           }
1679           break;
1680         }
1681         default:
1682           break;
1683       }
1684     }
1685   }
1686 }
1687 
1688 /// Returns a pass that converts branches to long branches.
1689 FunctionPass *llvm::createMipsConstantIslandPass() {
1690   return new MipsConstantIslands();
1691 }
1692