1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // 11 // This pass is used to make Pc relative loads of constants. 12 // For now, only Mips16 will use this. 13 // 14 // Loading constants inline is expensive on Mips16 and it's in general better 15 // to place the constant nearby in code space and then it can be loaded with a 16 // simple 16 bit load instruction. 17 // 18 // The constants can be not just numbers but addresses of functions and labels. 19 // This can be particularly helpful in static relocation mode for embedded 20 // non-linux targets. 21 // 22 // 23 24 #include "Mips.h" 25 #include "MCTargetDesc/MipsBaseInfo.h" 26 #include "Mips16InstrInfo.h" 27 #include "MipsMachineFunction.h" 28 #include "MipsTargetMachine.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/Format.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include <algorithm> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "mips-constant-islands" 50 51 STATISTIC(NumCPEs, "Number of constpool entries"); 52 STATISTIC(NumSplit, "Number of uncond branches inserted"); 53 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 54 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 55 56 // FIXME: This option should be removed once it has received sufficient testing. 57 static cl::opt<bool> 58 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true), 59 cl::desc("Align constant islands in code")); 60 61 62 // Rather than do make check tests with huge amounts of code, we force 63 // the test to use this amount. 64 // 65 static cl::opt<int> ConstantIslandsSmallOffset( 66 "mips-constant-islands-small-offset", 67 cl::init(0), 68 cl::desc("Make small offsets be this amount for testing purposes"), 69 cl::Hidden); 70 71 // 72 // For testing purposes we tell it to not use relaxed load forms so that it 73 // will split blocks. 74 // 75 static cl::opt<bool> NoLoadRelaxation( 76 "mips-constant-islands-no-load-relaxation", 77 cl::init(false), 78 cl::desc("Don't relax loads to long loads - for testing purposes"), 79 cl::Hidden); 80 81 static unsigned int branchTargetOperand(MachineInstr *MI) { 82 switch (MI->getOpcode()) { 83 case Mips::Bimm16: 84 case Mips::BimmX16: 85 case Mips::Bteqz16: 86 case Mips::BteqzX16: 87 case Mips::Btnez16: 88 case Mips::BtnezX16: 89 case Mips::JalB16: 90 return 0; 91 case Mips::BeqzRxImm16: 92 case Mips::BeqzRxImmX16: 93 case Mips::BnezRxImm16: 94 case Mips::BnezRxImmX16: 95 return 1; 96 } 97 llvm_unreachable("Unknown branch type"); 98 } 99 100 static bool isUnconditionalBranch(unsigned int Opcode) { 101 switch (Opcode) { 102 default: return false; 103 case Mips::Bimm16: 104 case Mips::BimmX16: 105 case Mips::JalB16: 106 return true; 107 } 108 } 109 110 static unsigned int longformBranchOpcode(unsigned int Opcode) { 111 switch (Opcode) { 112 case Mips::Bimm16: 113 case Mips::BimmX16: 114 return Mips::BimmX16; 115 case Mips::Bteqz16: 116 case Mips::BteqzX16: 117 return Mips::BteqzX16; 118 case Mips::Btnez16: 119 case Mips::BtnezX16: 120 return Mips::BtnezX16; 121 case Mips::JalB16: 122 return Mips::JalB16; 123 case Mips::BeqzRxImm16: 124 case Mips::BeqzRxImmX16: 125 return Mips::BeqzRxImmX16; 126 case Mips::BnezRxImm16: 127 case Mips::BnezRxImmX16: 128 return Mips::BnezRxImmX16; 129 } 130 llvm_unreachable("Unknown branch type"); 131 } 132 133 // 134 // FIXME: need to go through this whole constant islands port and check the math 135 // for branch ranges and clean this up and make some functions to calculate things 136 // that are done many times identically. 137 // Need to refactor some of the code to call this routine. 138 // 139 static unsigned int branchMaxOffsets(unsigned int Opcode) { 140 unsigned Bits, Scale; 141 switch (Opcode) { 142 case Mips::Bimm16: 143 Bits = 11; 144 Scale = 2; 145 break; 146 case Mips::BimmX16: 147 Bits = 16; 148 Scale = 2; 149 break; 150 case Mips::BeqzRxImm16: 151 Bits = 8; 152 Scale = 2; 153 break; 154 case Mips::BeqzRxImmX16: 155 Bits = 16; 156 Scale = 2; 157 break; 158 case Mips::BnezRxImm16: 159 Bits = 8; 160 Scale = 2; 161 break; 162 case Mips::BnezRxImmX16: 163 Bits = 16; 164 Scale = 2; 165 break; 166 case Mips::Bteqz16: 167 Bits = 8; 168 Scale = 2; 169 break; 170 case Mips::BteqzX16: 171 Bits = 16; 172 Scale = 2; 173 break; 174 case Mips::Btnez16: 175 Bits = 8; 176 Scale = 2; 177 break; 178 case Mips::BtnezX16: 179 Bits = 16; 180 Scale = 2; 181 break; 182 default: 183 llvm_unreachable("Unknown branch type"); 184 } 185 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 186 return MaxOffs; 187 } 188 189 namespace { 190 191 192 typedef MachineBasicBlock::iterator Iter; 193 typedef MachineBasicBlock::reverse_iterator ReverseIter; 194 195 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips 196 /// requires constant pool entries to be scattered among the instructions 197 /// inside a function. To do this, it completely ignores the normal LLVM 198 /// constant pool; instead, it places constants wherever it feels like with 199 /// special instructions. 200 /// 201 /// The terminology used in this pass includes: 202 /// Islands - Clumps of constants placed in the function. 203 /// Water - Potential places where an island could be formed. 204 /// CPE - A constant pool entry that has been placed somewhere, which 205 /// tracks a list of users. 206 207 class MipsConstantIslands : public MachineFunctionPass { 208 209 /// BasicBlockInfo - Information about the offset and size of a single 210 /// basic block. 211 struct BasicBlockInfo { 212 /// Offset - Distance from the beginning of the function to the beginning 213 /// of this basic block. 214 /// 215 /// Offsets are computed assuming worst case padding before an aligned 216 /// block. This means that subtracting basic block offsets always gives a 217 /// conservative estimate of the real distance which may be smaller. 218 /// 219 /// Because worst case padding is used, the computed offset of an aligned 220 /// block may not actually be aligned. 221 unsigned Offset; 222 223 /// Size - Size of the basic block in bytes. If the block contains 224 /// inline assembly, this is a worst case estimate. 225 /// 226 /// The size does not include any alignment padding whether from the 227 /// beginning of the block, or from an aligned jump table at the end. 228 unsigned Size; 229 230 // FIXME: ignore LogAlign for this patch 231 // 232 unsigned postOffset(unsigned LogAlign = 0) const { 233 unsigned PO = Offset + Size; 234 return PO; 235 } 236 237 BasicBlockInfo() : Offset(0), Size(0) {} 238 239 }; 240 241 std::vector<BasicBlockInfo> BBInfo; 242 243 /// WaterList - A sorted list of basic blocks where islands could be placed 244 /// (i.e. blocks that don't fall through to the following block, due 245 /// to a return, unreachable, or unconditional branch). 246 std::vector<MachineBasicBlock*> WaterList; 247 248 /// NewWaterList - The subset of WaterList that was created since the 249 /// previous iteration by inserting unconditional branches. 250 SmallSet<MachineBasicBlock*, 4> NewWaterList; 251 252 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 253 254 /// CPUser - One user of a constant pool, keeping the machine instruction 255 /// pointer, the constant pool being referenced, and the max displacement 256 /// allowed from the instruction to the CP. The HighWaterMark records the 257 /// highest basic block where a new CPEntry can be placed. To ensure this 258 /// pass terminates, the CP entries are initially placed at the end of the 259 /// function and then move monotonically to lower addresses. The 260 /// exception to this rule is when the current CP entry for a particular 261 /// CPUser is out of range, but there is another CP entry for the same 262 /// constant value in range. We want to use the existing in-range CP 263 /// entry, but if it later moves out of range, the search for new water 264 /// should resume where it left off. The HighWaterMark is used to record 265 /// that point. 266 struct CPUser { 267 MachineInstr *MI; 268 MachineInstr *CPEMI; 269 MachineBasicBlock *HighWaterMark; 270 private: 271 unsigned MaxDisp; 272 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions 273 // with different displacements 274 unsigned LongFormOpcode; 275 public: 276 bool NegOk; 277 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 278 bool neg, 279 unsigned longformmaxdisp, unsigned longformopcode) 280 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), 281 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode), 282 NegOk(neg){ 283 HighWaterMark = CPEMI->getParent(); 284 } 285 /// getMaxDisp - Returns the maximum displacement supported by MI. 286 unsigned getMaxDisp() const { 287 unsigned xMaxDisp = ConstantIslandsSmallOffset? 288 ConstantIslandsSmallOffset: MaxDisp; 289 return xMaxDisp; 290 } 291 void setMaxDisp(unsigned val) { 292 MaxDisp = val; 293 } 294 unsigned getLongFormMaxDisp() const { 295 return LongFormMaxDisp; 296 } 297 unsigned getLongFormOpcode() const { 298 return LongFormOpcode; 299 } 300 }; 301 302 /// CPUsers - Keep track of all of the machine instructions that use various 303 /// constant pools and their max displacement. 304 std::vector<CPUser> CPUsers; 305 306 /// CPEntry - One per constant pool entry, keeping the machine instruction 307 /// pointer, the constpool index, and the number of CPUser's which 308 /// reference this entry. 309 struct CPEntry { 310 MachineInstr *CPEMI; 311 unsigned CPI; 312 unsigned RefCount; 313 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 314 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 315 }; 316 317 /// CPEntries - Keep track of all of the constant pool entry machine 318 /// instructions. For each original constpool index (i.e. those that 319 /// existed upon entry to this pass), it keeps a vector of entries. 320 /// Original elements are cloned as we go along; the clones are 321 /// put in the vector of the original element, but have distinct CPIs. 322 std::vector<std::vector<CPEntry> > CPEntries; 323 324 /// ImmBranch - One per immediate branch, keeping the machine instruction 325 /// pointer, conditional or unconditional, the max displacement, 326 /// and (if isCond is true) the corresponding unconditional branch 327 /// opcode. 328 struct ImmBranch { 329 MachineInstr *MI; 330 unsigned MaxDisp : 31; 331 bool isCond : 1; 332 int UncondBr; 333 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 334 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 335 }; 336 337 /// ImmBranches - Keep track of all the immediate branch instructions. 338 /// 339 std::vector<ImmBranch> ImmBranches; 340 341 /// HasFarJump - True if any far jump instruction has been emitted during 342 /// the branch fix up pass. 343 bool HasFarJump; 344 345 const TargetMachine &TM; 346 bool IsPIC; 347 const MipsSubtarget *STI; 348 const Mips16InstrInfo *TII; 349 MipsFunctionInfo *MFI; 350 MachineFunction *MF; 351 MachineConstantPool *MCP; 352 353 unsigned PICLabelUId; 354 bool PrescannedForConstants; 355 356 void initPICLabelUId(unsigned UId) { 357 PICLabelUId = UId; 358 } 359 360 361 unsigned createPICLabelUId() { 362 return PICLabelUId++; 363 } 364 365 public: 366 static char ID; 367 MipsConstantIslands(TargetMachine &tm) 368 : MachineFunctionPass(ID), TM(tm), 369 IsPIC(TM.getRelocationModel() == Reloc::PIC_), STI(nullptr), 370 MF(nullptr), MCP(nullptr), PrescannedForConstants(false) {} 371 372 const char *getPassName() const override { 373 return "Mips Constant Islands"; 374 } 375 376 bool runOnMachineFunction(MachineFunction &F) override; 377 378 MachineFunctionProperties getRequiredProperties() const override { 379 return MachineFunctionProperties().set( 380 MachineFunctionProperties::Property::AllVRegsAllocated); 381 } 382 383 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 384 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 385 unsigned getCPELogAlign(const MachineInstr *CPEMI); 386 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 387 unsigned getOffsetOf(MachineInstr *MI) const; 388 unsigned getUserOffset(CPUser&) const; 389 void dumpBBs(); 390 391 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 392 unsigned Disp, bool NegativeOK); 393 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 394 const CPUser &U); 395 396 void computeBlockSize(MachineBasicBlock *MBB); 397 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 398 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 399 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 400 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 401 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 402 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset); 403 bool findAvailableWater(CPUser&U, unsigned UserOffset, 404 water_iterator &WaterIter); 405 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 406 MachineBasicBlock *&NewMBB); 407 bool handleConstantPoolUser(unsigned CPUserIndex); 408 void removeDeadCPEMI(MachineInstr *CPEMI); 409 bool removeUnusedCPEntries(); 410 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 411 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 412 bool DoDump = false); 413 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 414 CPUser &U, unsigned &Growth); 415 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 416 bool fixupImmediateBr(ImmBranch &Br); 417 bool fixupConditionalBr(ImmBranch &Br); 418 bool fixupUnconditionalBr(ImmBranch &Br); 419 420 void prescanForConstants(); 421 422 private: 423 424 }; 425 426 char MipsConstantIslands::ID = 0; 427 } // end of anonymous namespace 428 429 bool MipsConstantIslands::isOffsetInRange 430 (unsigned UserOffset, unsigned TrialOffset, 431 const CPUser &U) { 432 return isOffsetInRange(UserOffset, TrialOffset, 433 U.getMaxDisp(), U.NegOk); 434 } 435 /// print block size and offset information - debugging 436 void MipsConstantIslands::dumpBBs() { 437 DEBUG({ 438 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 439 const BasicBlockInfo &BBI = BBInfo[J]; 440 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 441 << format(" size=%#x\n", BBInfo[J].Size); 442 } 443 }); 444 } 445 /// createMipsLongBranchPass - Returns a pass that converts branches to long 446 /// branches. 447 FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) { 448 return new MipsConstantIslands(tm); 449 } 450 451 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) { 452 // The intention is for this to be a mips16 only pass for now 453 // FIXME: 454 MF = &mf; 455 MCP = mf.getConstantPool(); 456 STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget()); 457 DEBUG(dbgs() << "constant island machine function " << "\n"); 458 if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) { 459 return false; 460 } 461 TII = (const Mips16InstrInfo *)STI->getInstrInfo(); 462 MFI = MF->getInfo<MipsFunctionInfo>(); 463 DEBUG(dbgs() << "constant island processing " << "\n"); 464 // 465 // will need to make predermination if there is any constants we need to 466 // put in constant islands. TBD. 467 // 468 if (!PrescannedForConstants) prescanForConstants(); 469 470 HasFarJump = false; 471 // This pass invalidates liveness information when it splits basic blocks. 472 MF->getRegInfo().invalidateLiveness(); 473 474 // Renumber all of the machine basic blocks in the function, guaranteeing that 475 // the numbers agree with the position of the block in the function. 476 MF->RenumberBlocks(); 477 478 bool MadeChange = false; 479 480 // Perform the initial placement of the constant pool entries. To start with, 481 // we put them all at the end of the function. 482 std::vector<MachineInstr*> CPEMIs; 483 if (!MCP->isEmpty()) 484 doInitialPlacement(CPEMIs); 485 486 /// The next UID to take is the first unused one. 487 initPICLabelUId(CPEMIs.size()); 488 489 // Do the initial scan of the function, building up information about the 490 // sizes of each block, the location of all the water, and finding all of the 491 // constant pool users. 492 initializeFunctionInfo(CPEMIs); 493 CPEMIs.clear(); 494 DEBUG(dumpBBs()); 495 496 /// Remove dead constant pool entries. 497 MadeChange |= removeUnusedCPEntries(); 498 499 // Iteratively place constant pool entries and fix up branches until there 500 // is no change. 501 unsigned NoCPIters = 0, NoBRIters = 0; 502 (void)NoBRIters; 503 while (true) { 504 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 505 bool CPChange = false; 506 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 507 CPChange |= handleConstantPoolUser(i); 508 if (CPChange && ++NoCPIters > 30) 509 report_fatal_error("Constant Island pass failed to converge!"); 510 DEBUG(dumpBBs()); 511 512 // Clear NewWaterList now. If we split a block for branches, it should 513 // appear as "new water" for the next iteration of constant pool placement. 514 NewWaterList.clear(); 515 516 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 517 bool BRChange = false; 518 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 519 BRChange |= fixupImmediateBr(ImmBranches[i]); 520 if (BRChange && ++NoBRIters > 30) 521 report_fatal_error("Branch Fix Up pass failed to converge!"); 522 DEBUG(dumpBBs()); 523 if (!CPChange && !BRChange) 524 break; 525 MadeChange = true; 526 } 527 528 DEBUG(dbgs() << '\n'; dumpBBs()); 529 530 BBInfo.clear(); 531 WaterList.clear(); 532 CPUsers.clear(); 533 CPEntries.clear(); 534 ImmBranches.clear(); 535 return MadeChange; 536 } 537 538 /// doInitialPlacement - Perform the initial placement of the constant pool 539 /// entries. To start with, we put them all at the end of the function. 540 void 541 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 542 // Create the basic block to hold the CPE's. 543 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 544 MF->push_back(BB); 545 546 547 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 548 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 549 550 // Mark the basic block as required by the const-pool. 551 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 552 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); 553 554 // The function needs to be as aligned as the basic blocks. The linker may 555 // move functions around based on their alignment. 556 MF->ensureAlignment(BB->getAlignment()); 557 558 // Order the entries in BB by descending alignment. That ensures correct 559 // alignment of all entries as long as BB is sufficiently aligned. Keep 560 // track of the insertion point for each alignment. We are going to bucket 561 // sort the entries as they are created. 562 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 563 564 // Add all of the constants from the constant pool to the end block, use an 565 // identity mapping of CPI's to CPE's. 566 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 567 568 const DataLayout &TD = MF->getDataLayout(); 569 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 570 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 571 assert(Size >= 4 && "Too small constant pool entry"); 572 unsigned Align = CPs[i].getAlignment(); 573 assert(isPowerOf2_32(Align) && "Invalid alignment"); 574 // Verify that all constant pool entries are a multiple of their alignment. 575 // If not, we would have to pad them out so that instructions stay aligned. 576 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 577 578 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 579 unsigned LogAlign = Log2_32(Align); 580 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 581 582 MachineInstr *CPEMI = 583 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) 584 .addImm(i).addConstantPoolIndex(i).addImm(Size); 585 586 CPEMIs.push_back(CPEMI); 587 588 // Ensure that future entries with higher alignment get inserted before 589 // CPEMI. This is bucket sort with iterators. 590 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 591 if (InsPoint[a] == InsAt) 592 InsPoint[a] = CPEMI; 593 // Add a new CPEntry, but no corresponding CPUser yet. 594 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 595 ++NumCPEs; 596 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 597 << Size << ", align = " << Align <<'\n'); 598 } 599 DEBUG(BB->dump()); 600 } 601 602 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 603 /// into the block immediately after it. 604 static bool BBHasFallthrough(MachineBasicBlock *MBB) { 605 // Get the next machine basic block in the function. 606 MachineFunction::iterator MBBI = MBB->getIterator(); 607 // Can't fall off end of function. 608 if (std::next(MBBI) == MBB->getParent()->end()) 609 return false; 610 611 MachineBasicBlock *NextBB = &*std::next(MBBI); 612 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 613 E = MBB->succ_end(); I != E; ++I) 614 if (*I == NextBB) 615 return true; 616 617 return false; 618 } 619 620 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 621 /// look up the corresponding CPEntry. 622 MipsConstantIslands::CPEntry 623 *MipsConstantIslands::findConstPoolEntry(unsigned CPI, 624 const MachineInstr *CPEMI) { 625 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 626 // Number of entries per constpool index should be small, just do a 627 // linear search. 628 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 629 if (CPEs[i].CPEMI == CPEMI) 630 return &CPEs[i]; 631 } 632 return nullptr; 633 } 634 635 /// getCPELogAlign - Returns the required alignment of the constant pool entry 636 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 637 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 638 assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY); 639 640 // Everything is 4-byte aligned unless AlignConstantIslands is set. 641 if (!AlignConstantIslands) 642 return 2; 643 644 unsigned CPI = CPEMI->getOperand(1).getIndex(); 645 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 646 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 647 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 648 return Log2_32(Align); 649 } 650 651 /// initializeFunctionInfo - Do the initial scan of the function, building up 652 /// information about the sizes of each block, the location of all the water, 653 /// and finding all of the constant pool users. 654 void MipsConstantIslands:: 655 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 656 BBInfo.clear(); 657 BBInfo.resize(MF->getNumBlockIDs()); 658 659 // First thing, compute the size of all basic blocks, and see if the function 660 // has any inline assembly in it. If so, we have to be conservative about 661 // alignment assumptions, as we don't know for sure the size of any 662 // instructions in the inline assembly. 663 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 664 computeBlockSize(&*I); 665 666 667 // Compute block offsets. 668 adjustBBOffsetsAfter(&MF->front()); 669 670 // Now go back through the instructions and build up our data structures. 671 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 672 MBBI != E; ++MBBI) { 673 MachineBasicBlock &MBB = *MBBI; 674 675 // If this block doesn't fall through into the next MBB, then this is 676 // 'water' that a constant pool island could be placed. 677 if (!BBHasFallthrough(&MBB)) 678 WaterList.push_back(&MBB); 679 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 680 I != E; ++I) { 681 if (I->isDebugValue()) 682 continue; 683 684 int Opc = I->getOpcode(); 685 if (I->isBranch()) { 686 bool isCond = false; 687 unsigned Bits = 0; 688 unsigned Scale = 1; 689 int UOpc = Opc; 690 switch (Opc) { 691 default: 692 continue; // Ignore other branches for now 693 case Mips::Bimm16: 694 Bits = 11; 695 Scale = 2; 696 isCond = false; 697 break; 698 case Mips::BimmX16: 699 Bits = 16; 700 Scale = 2; 701 isCond = false; 702 break; 703 case Mips::BeqzRxImm16: 704 UOpc=Mips::Bimm16; 705 Bits = 8; 706 Scale = 2; 707 isCond = true; 708 break; 709 case Mips::BeqzRxImmX16: 710 UOpc=Mips::Bimm16; 711 Bits = 16; 712 Scale = 2; 713 isCond = true; 714 break; 715 case Mips::BnezRxImm16: 716 UOpc=Mips::Bimm16; 717 Bits = 8; 718 Scale = 2; 719 isCond = true; 720 break; 721 case Mips::BnezRxImmX16: 722 UOpc=Mips::Bimm16; 723 Bits = 16; 724 Scale = 2; 725 isCond = true; 726 break; 727 case Mips::Bteqz16: 728 UOpc=Mips::Bimm16; 729 Bits = 8; 730 Scale = 2; 731 isCond = true; 732 break; 733 case Mips::BteqzX16: 734 UOpc=Mips::Bimm16; 735 Bits = 16; 736 Scale = 2; 737 isCond = true; 738 break; 739 case Mips::Btnez16: 740 UOpc=Mips::Bimm16; 741 Bits = 8; 742 Scale = 2; 743 isCond = true; 744 break; 745 case Mips::BtnezX16: 746 UOpc=Mips::Bimm16; 747 Bits = 16; 748 Scale = 2; 749 isCond = true; 750 break; 751 } 752 // Record this immediate branch. 753 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 754 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 755 } 756 757 if (Opc == Mips::CONSTPOOL_ENTRY) 758 continue; 759 760 761 // Scan the instructions for constant pool operands. 762 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 763 if (I->getOperand(op).isCPI()) { 764 765 // We found one. The addressing mode tells us the max displacement 766 // from the PC that this instruction permits. 767 768 // Basic size info comes from the TSFlags field. 769 unsigned Bits = 0; 770 unsigned Scale = 1; 771 bool NegOk = false; 772 unsigned LongFormBits = 0; 773 unsigned LongFormScale = 0; 774 unsigned LongFormOpcode = 0; 775 switch (Opc) { 776 default: 777 llvm_unreachable("Unknown addressing mode for CP reference!"); 778 case Mips::LwRxPcTcp16: 779 Bits = 8; 780 Scale = 4; 781 LongFormOpcode = Mips::LwRxPcTcpX16; 782 LongFormBits = 14; 783 LongFormScale = 1; 784 break; 785 case Mips::LwRxPcTcpX16: 786 Bits = 14; 787 Scale = 1; 788 NegOk = true; 789 break; 790 } 791 // Remember that this is a user of a CP entry. 792 unsigned CPI = I->getOperand(op).getIndex(); 793 MachineInstr *CPEMI = CPEMIs[CPI]; 794 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 795 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale; 796 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, 797 LongFormMaxOffs, LongFormOpcode)); 798 799 // Increment corresponding CPEntry reference count. 800 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 801 assert(CPE && "Cannot find a corresponding CPEntry!"); 802 CPE->RefCount++; 803 804 // Instructions can only use one CP entry, don't bother scanning the 805 // rest of the operands. 806 break; 807 808 } 809 810 } 811 } 812 813 } 814 815 /// computeBlockSize - Compute the size and some alignment information for MBB. 816 /// This function updates BBInfo directly. 817 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 818 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 819 BBI.Size = 0; 820 821 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 822 ++I) 823 BBI.Size += TII->GetInstSizeInBytes(I); 824 825 } 826 827 /// getOffsetOf - Return the current offset of the specified machine instruction 828 /// from the start of the function. This offset changes as stuff is moved 829 /// around inside the function. 830 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const { 831 MachineBasicBlock *MBB = MI->getParent(); 832 833 // The offset is composed of two things: the sum of the sizes of all MBB's 834 // before this instruction's block, and the offset from the start of the block 835 // it is in. 836 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 837 838 // Sum instructions before MI in MBB. 839 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 840 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 841 Offset += TII->GetInstSizeInBytes(I); 842 } 843 return Offset; 844 } 845 846 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 847 /// ID. 848 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 849 const MachineBasicBlock *RHS) { 850 return LHS->getNumber() < RHS->getNumber(); 851 } 852 853 /// updateForInsertedWaterBlock - When a block is newly inserted into the 854 /// machine function, it upsets all of the block numbers. Renumber the blocks 855 /// and update the arrays that parallel this numbering. 856 void MipsConstantIslands::updateForInsertedWaterBlock 857 (MachineBasicBlock *NewBB) { 858 // Renumber the MBB's to keep them consecutive. 859 NewBB->getParent()->RenumberBlocks(NewBB); 860 861 // Insert an entry into BBInfo to align it properly with the (newly 862 // renumbered) block numbers. 863 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 864 865 // Next, update WaterList. Specifically, we need to add NewMBB as having 866 // available water after it. 867 water_iterator IP = 868 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 869 CompareMBBNumbers); 870 WaterList.insert(IP, NewBB); 871 } 872 873 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const { 874 return getOffsetOf(U.MI); 875 } 876 877 /// Split the basic block containing MI into two blocks, which are joined by 878 /// an unconditional branch. Update data structures and renumber blocks to 879 /// account for this change and returns the newly created block. 880 MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr 881 (MachineInstr *MI) { 882 MachineBasicBlock *OrigBB = MI->getParent(); 883 884 // Create a new MBB for the code after the OrigBB. 885 MachineBasicBlock *NewBB = 886 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 887 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 888 MF->insert(MBBI, NewBB); 889 890 // Splice the instructions starting with MI over to NewBB. 891 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 892 893 // Add an unconditional branch from OrigBB to NewBB. 894 // Note the new unconditional branch is not being recorded. 895 // There doesn't seem to be meaningful DebugInfo available; this doesn't 896 // correspond to anything in the source. 897 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB); 898 ++NumSplit; 899 900 // Update the CFG. All succs of OrigBB are now succs of NewBB. 901 NewBB->transferSuccessors(OrigBB); 902 903 // OrigBB branches to NewBB. 904 OrigBB->addSuccessor(NewBB); 905 906 // Update internal data structures to account for the newly inserted MBB. 907 // This is almost the same as updateForInsertedWaterBlock, except that 908 // the Water goes after OrigBB, not NewBB. 909 MF->RenumberBlocks(NewBB); 910 911 // Insert an entry into BBInfo to align it properly with the (newly 912 // renumbered) block numbers. 913 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 914 915 // Next, update WaterList. Specifically, we need to add OrigMBB as having 916 // available water after it (but not if it's already there, which happens 917 // when splitting before a conditional branch that is followed by an 918 // unconditional branch - in that case we want to insert NewBB). 919 water_iterator IP = 920 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 921 CompareMBBNumbers); 922 MachineBasicBlock* WaterBB = *IP; 923 if (WaterBB == OrigBB) 924 WaterList.insert(std::next(IP), NewBB); 925 else 926 WaterList.insert(IP, OrigBB); 927 NewWaterList.insert(OrigBB); 928 929 // Figure out how large the OrigBB is. As the first half of the original 930 // block, it cannot contain a tablejump. The size includes 931 // the new jump we added. (It should be possible to do this without 932 // recounting everything, but it's very confusing, and this is rarely 933 // executed.) 934 computeBlockSize(OrigBB); 935 936 // Figure out how large the NewMBB is. As the second half of the original 937 // block, it may contain a tablejump. 938 computeBlockSize(NewBB); 939 940 // All BBOffsets following these blocks must be modified. 941 adjustBBOffsetsAfter(OrigBB); 942 943 return NewBB; 944 } 945 946 947 948 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 949 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 950 /// constant pool entry). 951 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset, 952 unsigned TrialOffset, unsigned MaxDisp, 953 bool NegativeOK) { 954 if (UserOffset <= TrialOffset) { 955 // User before the Trial. 956 if (TrialOffset - UserOffset <= MaxDisp) 957 return true; 958 } else if (NegativeOK) { 959 if (UserOffset - TrialOffset <= MaxDisp) 960 return true; 961 } 962 return false; 963 } 964 965 /// isWaterInRange - Returns true if a CPE placed after the specified 966 /// Water (a basic block) will be in range for the specific MI. 967 /// 968 /// Compute how much the function will grow by inserting a CPE after Water. 969 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset, 970 MachineBasicBlock* Water, CPUser &U, 971 unsigned &Growth) { 972 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 973 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 974 unsigned NextBlockOffset, NextBlockAlignment; 975 MachineFunction::const_iterator NextBlock = ++Water->getIterator(); 976 if (NextBlock == MF->end()) { 977 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 978 NextBlockAlignment = 0; 979 } else { 980 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 981 NextBlockAlignment = NextBlock->getAlignment(); 982 } 983 unsigned Size = U.CPEMI->getOperand(2).getImm(); 984 unsigned CPEEnd = CPEOffset + Size; 985 986 // The CPE may be able to hide in the alignment padding before the next 987 // block. It may also cause more padding to be required if it is more aligned 988 // that the next block. 989 if (CPEEnd > NextBlockOffset) { 990 Growth = CPEEnd - NextBlockOffset; 991 // Compute the padding that would go at the end of the CPE to align the next 992 // block. 993 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 994 995 // If the CPE is to be inserted before the instruction, that will raise 996 // the offset of the instruction. Also account for unknown alignment padding 997 // in blocks between CPE and the user. 998 if (CPEOffset < UserOffset) 999 UserOffset += Growth; 1000 } else 1001 // CPE fits in existing padding. 1002 Growth = 0; 1003 1004 return isOffsetInRange(UserOffset, CPEOffset, U); 1005 } 1006 1007 /// isCPEntryInRange - Returns true if the distance between specific MI and 1008 /// specific ConstPool entry instruction can fit in MI's displacement field. 1009 bool MipsConstantIslands::isCPEntryInRange 1010 (MachineInstr *MI, unsigned UserOffset, 1011 MachineInstr *CPEMI, unsigned MaxDisp, 1012 bool NegOk, bool DoDump) { 1013 unsigned CPEOffset = getOffsetOf(CPEMI); 1014 1015 if (DoDump) { 1016 DEBUG({ 1017 unsigned Block = MI->getParent()->getNumber(); 1018 const BasicBlockInfo &BBI = BBInfo[Block]; 1019 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1020 << " max delta=" << MaxDisp 1021 << format(" insn address=%#x", UserOffset) 1022 << " in BB#" << Block << ": " 1023 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1024 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1025 int(CPEOffset-UserOffset)); 1026 }); 1027 } 1028 1029 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1030 } 1031 1032 #ifndef NDEBUG 1033 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1034 /// unconditionally branches to its only successor. 1035 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1036 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1037 return false; 1038 MachineBasicBlock *Succ = *MBB->succ_begin(); 1039 MachineBasicBlock *Pred = *MBB->pred_begin(); 1040 MachineInstr *PredMI = &Pred->back(); 1041 if (PredMI->getOpcode() == Mips::Bimm16) 1042 return PredMI->getOperand(0).getMBB() == Succ; 1043 return false; 1044 } 1045 #endif 1046 1047 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1048 unsigned BBNum = BB->getNumber(); 1049 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1050 // Get the offset and known bits at the end of the layout predecessor. 1051 // Include the alignment of the current block. 1052 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size; 1053 BBInfo[i].Offset = Offset; 1054 } 1055 } 1056 1057 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1058 /// and instruction CPEMI, and decrement its refcount. If the refcount 1059 /// becomes 0 remove the entry and instruction. Returns true if we removed 1060 /// the entry, false if we didn't. 1061 1062 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1063 MachineInstr *CPEMI) { 1064 // Find the old entry. Eliminate it if it is no longer used. 1065 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1066 assert(CPE && "Unexpected!"); 1067 if (--CPE->RefCount == 0) { 1068 removeDeadCPEMI(CPEMI); 1069 CPE->CPEMI = nullptr; 1070 --NumCPEs; 1071 return true; 1072 } 1073 return false; 1074 } 1075 1076 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1077 /// if not, see if an in-range clone of the CPE is in range, and if so, 1078 /// change the data structures so the user references the clone. Returns: 1079 /// 0 = no existing entry found 1080 /// 1 = entry found, and there were no code insertions or deletions 1081 /// 2 = entry found, and there were code insertions or deletions 1082 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1083 { 1084 MachineInstr *UserMI = U.MI; 1085 MachineInstr *CPEMI = U.CPEMI; 1086 1087 // Check to see if the CPE is already in-range. 1088 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1089 true)) { 1090 DEBUG(dbgs() << "In range\n"); 1091 return 1; 1092 } 1093 1094 // No. Look for previously created clones of the CPE that are in range. 1095 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1096 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1097 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1098 // We already tried this one 1099 if (CPEs[i].CPEMI == CPEMI) 1100 continue; 1101 // Removing CPEs can leave empty entries, skip 1102 if (CPEs[i].CPEMI == nullptr) 1103 continue; 1104 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1105 U.NegOk)) { 1106 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1107 << CPEs[i].CPI << "\n"); 1108 // Point the CPUser node to the replacement 1109 U.CPEMI = CPEs[i].CPEMI; 1110 // Change the CPI in the instruction operand to refer to the clone. 1111 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1112 if (UserMI->getOperand(j).isCPI()) { 1113 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1114 break; 1115 } 1116 // Adjust the refcount of the clone... 1117 CPEs[i].RefCount++; 1118 // ...and the original. If we didn't remove the old entry, none of the 1119 // addresses changed, so we don't need another pass. 1120 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1121 } 1122 } 1123 return 0; 1124 } 1125 1126 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1127 /// This version checks if the longer form of the instruction can be used to 1128 /// to satisfy things. 1129 /// if not, see if an in-range clone of the CPE is in range, and if so, 1130 /// change the data structures so the user references the clone. Returns: 1131 /// 0 = no existing entry found 1132 /// 1 = entry found, and there were no code insertions or deletions 1133 /// 2 = entry found, and there were code insertions or deletions 1134 int MipsConstantIslands::findLongFormInRangeCPEntry 1135 (CPUser& U, unsigned UserOffset) 1136 { 1137 MachineInstr *UserMI = U.MI; 1138 MachineInstr *CPEMI = U.CPEMI; 1139 1140 // Check to see if the CPE is already in-range. 1141 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, 1142 U.getLongFormMaxDisp(), U.NegOk, 1143 true)) { 1144 DEBUG(dbgs() << "In range\n"); 1145 UserMI->setDesc(TII->get(U.getLongFormOpcode())); 1146 U.setMaxDisp(U.getLongFormMaxDisp()); 1147 return 2; // instruction is longer length now 1148 } 1149 1150 // No. Look for previously created clones of the CPE that are in range. 1151 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1152 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1153 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1154 // We already tried this one 1155 if (CPEs[i].CPEMI == CPEMI) 1156 continue; 1157 // Removing CPEs can leave empty entries, skip 1158 if (CPEs[i].CPEMI == nullptr) 1159 continue; 1160 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, 1161 U.getLongFormMaxDisp(), U.NegOk)) { 1162 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1163 << CPEs[i].CPI << "\n"); 1164 // Point the CPUser node to the replacement 1165 U.CPEMI = CPEs[i].CPEMI; 1166 // Change the CPI in the instruction operand to refer to the clone. 1167 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1168 if (UserMI->getOperand(j).isCPI()) { 1169 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1170 break; 1171 } 1172 // Adjust the refcount of the clone... 1173 CPEs[i].RefCount++; 1174 // ...and the original. If we didn't remove the old entry, none of the 1175 // addresses changed, so we don't need another pass. 1176 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1177 } 1178 } 1179 return 0; 1180 } 1181 1182 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1183 /// the specific unconditional branch instruction. 1184 static inline unsigned getUnconditionalBrDisp(int Opc) { 1185 switch (Opc) { 1186 case Mips::Bimm16: 1187 return ((1<<10)-1)*2; 1188 case Mips::BimmX16: 1189 return ((1<<16)-1)*2; 1190 default: 1191 break; 1192 } 1193 return ((1<<16)-1)*2; 1194 } 1195 1196 /// findAvailableWater - Look for an existing entry in the WaterList in which 1197 /// we can place the CPE referenced from U so it's within range of U's MI. 1198 /// Returns true if found, false if not. If it returns true, WaterIter 1199 /// is set to the WaterList entry. 1200 /// To ensure that this pass 1201 /// terminates, the CPE location for a particular CPUser is only allowed to 1202 /// move to a lower address, so search backward from the end of the list and 1203 /// prefer the first water that is in range. 1204 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1205 water_iterator &WaterIter) { 1206 if (WaterList.empty()) 1207 return false; 1208 1209 unsigned BestGrowth = ~0u; 1210 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1211 --IP) { 1212 MachineBasicBlock* WaterBB = *IP; 1213 // Check if water is in range and is either at a lower address than the 1214 // current "high water mark" or a new water block that was created since 1215 // the previous iteration by inserting an unconditional branch. In the 1216 // latter case, we want to allow resetting the high water mark back to 1217 // this new water since we haven't seen it before. Inserting branches 1218 // should be relatively uncommon and when it does happen, we want to be 1219 // sure to take advantage of it for all the CPEs near that block, so that 1220 // we don't insert more branches than necessary. 1221 unsigned Growth; 1222 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1223 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1224 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1225 // This is the least amount of required padding seen so far. 1226 BestGrowth = Growth; 1227 WaterIter = IP; 1228 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1229 << " Growth=" << Growth << '\n'); 1230 1231 // Keep looking unless it is perfect. 1232 if (BestGrowth == 0) 1233 return true; 1234 } 1235 if (IP == B) 1236 break; 1237 } 1238 return BestGrowth != ~0u; 1239 } 1240 1241 /// createNewWater - No existing WaterList entry will work for 1242 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1243 /// block is used if in range, and the conditional branch munged so control 1244 /// flow is correct. Otherwise the block is split to create a hole with an 1245 /// unconditional branch around it. In either case NewMBB is set to a 1246 /// block following which the new island can be inserted (the WaterList 1247 /// is not adjusted). 1248 void MipsConstantIslands::createNewWater(unsigned CPUserIndex, 1249 unsigned UserOffset, 1250 MachineBasicBlock *&NewMBB) { 1251 CPUser &U = CPUsers[CPUserIndex]; 1252 MachineInstr *UserMI = U.MI; 1253 MachineInstr *CPEMI = U.CPEMI; 1254 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1255 MachineBasicBlock *UserMBB = UserMI->getParent(); 1256 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1257 1258 // If the block does not end in an unconditional branch already, and if the 1259 // end of the block is within range, make new water there. 1260 if (BBHasFallthrough(UserMBB)) { 1261 // Size of branch to insert. 1262 unsigned Delta = 2; 1263 // Compute the offset where the CPE will begin. 1264 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1265 1266 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1267 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1268 << format(", expected CPE offset %#x\n", CPEOffset)); 1269 NewMBB = &*++UserMBB->getIterator(); 1270 // Add an unconditional branch from UserMBB to fallthrough block. Record 1271 // it for branch lengthening; this new branch will not get out of range, 1272 // but if the preceding conditional branch is out of range, the targets 1273 // will be exchanged, and the altered branch may be out of range, so the 1274 // machinery has to know about it. 1275 int UncondBr = Mips::Bimm16; 1276 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1277 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1278 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1279 MaxDisp, false, UncondBr)); 1280 BBInfo[UserMBB->getNumber()].Size += Delta; 1281 adjustBBOffsetsAfter(UserMBB); 1282 return; 1283 } 1284 } 1285 1286 // What a big block. Find a place within the block to split it. 1287 1288 // Try to split the block so it's fully aligned. Compute the latest split 1289 // point where we can add a 4-byte branch instruction, and then align to 1290 // LogAlign which is the largest possible alignment in the function. 1291 unsigned LogAlign = MF->getAlignment(); 1292 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1293 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1294 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1295 BaseInsertOffset)); 1296 1297 // The 4 in the following is for the unconditional branch we'll be inserting 1298 // Alignment of the island is handled 1299 // inside isOffsetInRange. 1300 BaseInsertOffset -= 4; 1301 1302 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1303 << " la=" << LogAlign << '\n'); 1304 1305 // This could point off the end of the block if we've already got constant 1306 // pool entries following this block; only the last one is in the water list. 1307 // Back past any possible branches (allow for a conditional and a maximally 1308 // long unconditional). 1309 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1310 BaseInsertOffset = UserBBI.postOffset() - 8; 1311 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1312 } 1313 unsigned EndInsertOffset = BaseInsertOffset + 4 + 1314 CPEMI->getOperand(2).getImm(); 1315 MachineBasicBlock::iterator MI = UserMI; 1316 ++MI; 1317 unsigned CPUIndex = CPUserIndex+1; 1318 unsigned NumCPUsers = CPUsers.size(); 1319 //MachineInstr *LastIT = 0; 1320 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1321 Offset < BaseInsertOffset; 1322 Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) { 1323 assert(MI != UserMBB->end() && "Fell off end of block"); 1324 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1325 CPUser &U = CPUsers[CPUIndex]; 1326 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1327 // Shift intertion point by one unit of alignment so it is within reach. 1328 BaseInsertOffset -= 1u << LogAlign; 1329 EndInsertOffset -= 1u << LogAlign; 1330 } 1331 // This is overly conservative, as we don't account for CPEMIs being 1332 // reused within the block, but it doesn't matter much. Also assume CPEs 1333 // are added in order with alignment padding. We may eventually be able 1334 // to pack the aligned CPEs better. 1335 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1336 CPUIndex++; 1337 } 1338 } 1339 1340 --MI; 1341 NewMBB = splitBlockBeforeInstr(MI); 1342 } 1343 1344 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1345 /// is out-of-range. If so, pick up the constant pool value and move it some 1346 /// place in-range. Return true if we changed any addresses (thus must run 1347 /// another pass of branch lengthening), false otherwise. 1348 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1349 CPUser &U = CPUsers[CPUserIndex]; 1350 MachineInstr *UserMI = U.MI; 1351 MachineInstr *CPEMI = U.CPEMI; 1352 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1353 unsigned Size = CPEMI->getOperand(2).getImm(); 1354 // Compute this only once, it's expensive. 1355 unsigned UserOffset = getUserOffset(U); 1356 1357 // See if the current entry is within range, or there is a clone of it 1358 // in range. 1359 int result = findInRangeCPEntry(U, UserOffset); 1360 if (result==1) return false; 1361 else if (result==2) return true; 1362 1363 1364 // Look for water where we can place this CPE. 1365 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1366 MachineBasicBlock *NewMBB; 1367 water_iterator IP; 1368 if (findAvailableWater(U, UserOffset, IP)) { 1369 DEBUG(dbgs() << "Found water in range\n"); 1370 MachineBasicBlock *WaterBB = *IP; 1371 1372 // If the original WaterList entry was "new water" on this iteration, 1373 // propagate that to the new island. This is just keeping NewWaterList 1374 // updated to match the WaterList, which will be updated below. 1375 if (NewWaterList.erase(WaterBB)) 1376 NewWaterList.insert(NewIsland); 1377 1378 // The new CPE goes before the following block (NewMBB). 1379 NewMBB = &*++WaterBB->getIterator(); 1380 } else { 1381 // No water found. 1382 // we first see if a longer form of the instrucion could have reached 1383 // the constant. in that case we won't bother to split 1384 if (!NoLoadRelaxation) { 1385 result = findLongFormInRangeCPEntry(U, UserOffset); 1386 if (result != 0) return true; 1387 } 1388 DEBUG(dbgs() << "No water found\n"); 1389 createNewWater(CPUserIndex, UserOffset, NewMBB); 1390 1391 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1392 // called while handling branches so that the water will be seen on the 1393 // next iteration for constant pools, but in this context, we don't want 1394 // it. Check for this so it will be removed from the WaterList. 1395 // Also remove any entry from NewWaterList. 1396 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1397 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1398 if (IP != WaterList.end()) 1399 NewWaterList.erase(WaterBB); 1400 1401 // We are adding new water. Update NewWaterList. 1402 NewWaterList.insert(NewIsland); 1403 } 1404 1405 // Remove the original WaterList entry; we want subsequent insertions in 1406 // this vicinity to go after the one we're about to insert. This 1407 // considerably reduces the number of times we have to move the same CPE 1408 // more than once and is also important to ensure the algorithm terminates. 1409 if (IP != WaterList.end()) 1410 WaterList.erase(IP); 1411 1412 // Okay, we know we can put an island before NewMBB now, do it! 1413 MF->insert(NewMBB->getIterator(), NewIsland); 1414 1415 // Update internal data structures to account for the newly inserted MBB. 1416 updateForInsertedWaterBlock(NewIsland); 1417 1418 // Decrement the old entry, and remove it if refcount becomes 0. 1419 decrementCPEReferenceCount(CPI, CPEMI); 1420 1421 // No existing clone of this CPE is within range. 1422 // We will be generating a new clone. Get a UID for it. 1423 unsigned ID = createPICLabelUId(); 1424 1425 // Now that we have an island to add the CPE to, clone the original CPE and 1426 // add it to the island. 1427 U.HighWaterMark = NewIsland; 1428 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) 1429 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1430 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1431 ++NumCPEs; 1432 1433 // Mark the basic block as aligned as required by the const-pool entry. 1434 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1435 1436 // Increase the size of the island block to account for the new entry. 1437 BBInfo[NewIsland->getNumber()].Size += Size; 1438 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1439 1440 // Finally, change the CPI in the instruction operand to be ID. 1441 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1442 if (UserMI->getOperand(i).isCPI()) { 1443 UserMI->getOperand(i).setIndex(ID); 1444 break; 1445 } 1446 1447 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1448 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1449 1450 return true; 1451 } 1452 1453 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1454 /// sizes and offsets of impacted basic blocks. 1455 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1456 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1457 unsigned Size = CPEMI->getOperand(2).getImm(); 1458 CPEMI->eraseFromParent(); 1459 BBInfo[CPEBB->getNumber()].Size -= Size; 1460 // All succeeding offsets have the current size value added in, fix this. 1461 if (CPEBB->empty()) { 1462 BBInfo[CPEBB->getNumber()].Size = 0; 1463 1464 // This block no longer needs to be aligned. 1465 CPEBB->setAlignment(0); 1466 } else 1467 // Entries are sorted by descending alignment, so realign from the front. 1468 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1469 1470 adjustBBOffsetsAfter(CPEBB); 1471 // An island has only one predecessor BB and one successor BB. Check if 1472 // this BB's predecessor jumps directly to this BB's successor. This 1473 // shouldn't happen currently. 1474 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1475 // FIXME: remove the empty blocks after all the work is done? 1476 } 1477 1478 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1479 /// are zero. 1480 bool MipsConstantIslands::removeUnusedCPEntries() { 1481 unsigned MadeChange = false; 1482 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1483 std::vector<CPEntry> &CPEs = CPEntries[i]; 1484 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1485 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1486 removeDeadCPEMI(CPEs[j].CPEMI); 1487 CPEs[j].CPEMI = nullptr; 1488 MadeChange = true; 1489 } 1490 } 1491 } 1492 return MadeChange; 1493 } 1494 1495 /// isBBInRange - Returns true if the distance between specific MI and 1496 /// specific BB can fit in MI's displacement field. 1497 bool MipsConstantIslands::isBBInRange 1498 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { 1499 1500 unsigned PCAdj = 4; 1501 1502 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1503 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1504 1505 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1506 << " from BB#" << MI->getParent()->getNumber() 1507 << " max delta=" << MaxDisp 1508 << " from " << getOffsetOf(MI) << " to " << DestOffset 1509 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1510 1511 if (BrOffset <= DestOffset) { 1512 // Branch before the Dest. 1513 if (DestOffset-BrOffset <= MaxDisp) 1514 return true; 1515 } else { 1516 if (BrOffset-DestOffset <= MaxDisp) 1517 return true; 1518 } 1519 return false; 1520 } 1521 1522 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1523 /// away to fit in its displacement field. 1524 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1525 MachineInstr *MI = Br.MI; 1526 unsigned TargetOperand = branchTargetOperand(MI); 1527 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); 1528 1529 // Check to see if the DestBB is already in-range. 1530 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1531 return false; 1532 1533 if (!Br.isCond) 1534 return fixupUnconditionalBr(Br); 1535 return fixupConditionalBr(Br); 1536 } 1537 1538 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1539 /// too far away to fit in its displacement field. If the LR register has been 1540 /// spilled in the epilogue, then we can use BL to implement a far jump. 1541 /// Otherwise, add an intermediate branch instruction to a branch. 1542 bool 1543 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1544 MachineInstr *MI = Br.MI; 1545 MachineBasicBlock *MBB = MI->getParent(); 1546 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1547 // Use BL to implement far jump. 1548 unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2; 1549 if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) { 1550 Br.MaxDisp = BimmX16MaxDisp; 1551 MI->setDesc(TII->get(Mips::BimmX16)); 1552 } 1553 else { 1554 // need to give the math a more careful look here 1555 // this is really a segment address and not 1556 // a PC relative address. FIXME. But I think that 1557 // just reducing the bits by 1 as I've done is correct. 1558 // The basic block we are branching too much be longword aligned. 1559 // we know that RA is saved because we always save it right now. 1560 // this requirement will be relaxed later but we also have an alternate 1561 // way to implement this that I will implement that does not need jal. 1562 // We should have a way to back out this alignment restriction if we "can" later. 1563 // but it is not harmful. 1564 // 1565 DestBB->setAlignment(2); 1566 Br.MaxDisp = ((1<<24)-1) * 2; 1567 MI->setDesc(TII->get(Mips::JalB16)); 1568 } 1569 BBInfo[MBB->getNumber()].Size += 2; 1570 adjustBBOffsetsAfter(MBB); 1571 HasFarJump = true; 1572 ++NumUBrFixed; 1573 1574 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1575 1576 return true; 1577 } 1578 1579 1580 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1581 /// far away to fit in its displacement field. It is converted to an inverse 1582 /// conditional branch + an unconditional branch to the destination. 1583 bool 1584 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1585 MachineInstr *MI = Br.MI; 1586 unsigned TargetOperand = branchTargetOperand(MI); 1587 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); 1588 unsigned Opcode = MI->getOpcode(); 1589 unsigned LongFormOpcode = longformBranchOpcode(Opcode); 1590 unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode); 1591 1592 // Check to see if the DestBB is already in-range. 1593 if (isBBInRange(MI, DestBB, LongFormMaxOff)) { 1594 Br.MaxDisp = LongFormMaxOff; 1595 MI->setDesc(TII->get(LongFormOpcode)); 1596 return true; 1597 } 1598 1599 // Add an unconditional branch to the destination and invert the branch 1600 // condition to jump over it: 1601 // bteqz L1 1602 // => 1603 // bnez L2 1604 // b L1 1605 // L2: 1606 1607 // If the branch is at the end of its MBB and that has a fall-through block, 1608 // direct the updated conditional branch to the fall-through block. Otherwise, 1609 // split the MBB before the next instruction. 1610 MachineBasicBlock *MBB = MI->getParent(); 1611 MachineInstr *BMI = &MBB->back(); 1612 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1613 unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode); 1614 1615 ++NumCBrFixed; 1616 if (BMI != MI) { 1617 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1618 isUnconditionalBranch(BMI->getOpcode())) { 1619 // Last MI in the BB is an unconditional branch. Can we simply invert the 1620 // condition and swap destinations: 1621 // beqz L1 1622 // b L2 1623 // => 1624 // bnez L2 1625 // b L1 1626 unsigned BMITargetOperand = branchTargetOperand(BMI); 1627 MachineBasicBlock *NewDest = 1628 BMI->getOperand(BMITargetOperand).getMBB(); 1629 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1630 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1631 << *BMI); 1632 MI->setDesc(TII->get(OppositeBranchOpcode)); 1633 BMI->getOperand(BMITargetOperand).setMBB(DestBB); 1634 MI->getOperand(TargetOperand).setMBB(NewDest); 1635 return true; 1636 } 1637 } 1638 } 1639 1640 1641 if (NeedSplit) { 1642 splitBlockBeforeInstr(MI); 1643 // No need for the branch to the next block. We're adding an unconditional 1644 // branch to the destination. 1645 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1646 BBInfo[MBB->getNumber()].Size -= delta; 1647 MBB->back().eraseFromParent(); 1648 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1649 } 1650 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1651 1652 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1653 << " also invert condition and change dest. to BB#" 1654 << NextBB->getNumber() << "\n"); 1655 1656 // Insert a new conditional branch and a new unconditional branch. 1657 // Also update the ImmBranch as well as adding a new entry for the new branch. 1658 if (MI->getNumExplicitOperands() == 2) { 1659 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) 1660 .addReg(MI->getOperand(0).getReg()) 1661 .addMBB(NextBB); 1662 } else { 1663 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) 1664 .addMBB(NextBB); 1665 } 1666 Br.MI = &MBB->back(); 1667 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1668 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1669 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1670 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1671 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1672 1673 // Remove the old conditional branch. It may or may not still be in MBB. 1674 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1675 MI->eraseFromParent(); 1676 adjustBBOffsetsAfter(MBB); 1677 return true; 1678 } 1679 1680 1681 void MipsConstantIslands::prescanForConstants() { 1682 unsigned J = 0; 1683 (void)J; 1684 for (MachineFunction::iterator B = 1685 MF->begin(), E = MF->end(); B != E; ++B) { 1686 for (MachineBasicBlock::instr_iterator I = 1687 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) { 1688 switch(I->getDesc().getOpcode()) { 1689 case Mips::LwConstant32: { 1690 PrescannedForConstants = true; 1691 DEBUG(dbgs() << "constant island constant " << *I << "\n"); 1692 J = I->getNumOperands(); 1693 DEBUG(dbgs() << "num operands " << J << "\n"); 1694 MachineOperand& Literal = I->getOperand(1); 1695 if (Literal.isImm()) { 1696 int64_t V = Literal.getImm(); 1697 DEBUG(dbgs() << "literal " << V << "\n"); 1698 Type *Int32Ty = 1699 Type::getInt32Ty(MF->getFunction()->getContext()); 1700 const Constant *C = ConstantInt::get(Int32Ty, V); 1701 unsigned index = MCP->getConstantPoolIndex(C, 4); 1702 I->getOperand(2).ChangeToImmediate(index); 1703 DEBUG(dbgs() << "constant island constant " << *I << "\n"); 1704 I->setDesc(TII->get(Mips::LwRxPcTcp16)); 1705 I->RemoveOperand(1); 1706 I->RemoveOperand(1); 1707 I->addOperand(MachineOperand::CreateCPI(index, 0)); 1708 I->addOperand(MachineOperand::CreateImm(4)); 1709 } 1710 break; 1711 } 1712 default: 1713 break; 1714 } 1715 } 1716 } 1717 } 1718