1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 // This pass is used to make Pc relative loads of constants.
12 // For now, only Mips16 will use this.
13 //
14 // Loading constants inline is expensive on Mips16 and it's in general better
15 // to place the constant nearby in code space and then it can be loaded with a
16 // simple 16 bit load instruction.
17 //
18 // The constants can be not just numbers but addresses of functions and labels.
19 // This can be particularly helpful in static relocation mode for embedded
20 // non-linux targets.
21 //
22 //
23 
24 #include "Mips.h"
25 #include "MCTargetDesc/MipsBaseInfo.h"
26 #include "Mips16InstrInfo.h"
27 #include "MipsMachineFunction.h"
28 #include "MipsTargetMachine.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Format.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetMachine.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include <algorithm>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "mips-constant-islands"
50 
51 STATISTIC(NumCPEs,       "Number of constpool entries");
52 STATISTIC(NumSplit,      "Number of uncond branches inserted");
53 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
54 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
55 
56 // FIXME: This option should be removed once it has received sufficient testing.
57 static cl::opt<bool>
58 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
59           cl::desc("Align constant islands in code"));
60 
61 
62 // Rather than do make check tests with huge amounts of code, we force
63 // the test to use this amount.
64 //
65 static cl::opt<int> ConstantIslandsSmallOffset(
66   "mips-constant-islands-small-offset",
67   cl::init(0),
68   cl::desc("Make small offsets be this amount for testing purposes"),
69   cl::Hidden);
70 
71 //
72 // For testing purposes we tell it to not use relaxed load forms so that it
73 // will split blocks.
74 //
75 static cl::opt<bool> NoLoadRelaxation(
76   "mips-constant-islands-no-load-relaxation",
77   cl::init(false),
78   cl::desc("Don't relax loads to long loads - for testing purposes"),
79   cl::Hidden);
80 
81 static unsigned int branchTargetOperand(MachineInstr *MI) {
82   switch (MI->getOpcode()) {
83   case Mips::Bimm16:
84   case Mips::BimmX16:
85   case Mips::Bteqz16:
86   case Mips::BteqzX16:
87   case Mips::Btnez16:
88   case Mips::BtnezX16:
89   case Mips::JalB16:
90     return 0;
91   case Mips::BeqzRxImm16:
92   case Mips::BeqzRxImmX16:
93   case Mips::BnezRxImm16:
94   case Mips::BnezRxImmX16:
95     return 1;
96   }
97   llvm_unreachable("Unknown branch type");
98 }
99 
100 static unsigned int longformBranchOpcode(unsigned int Opcode) {
101   switch (Opcode) {
102   case Mips::Bimm16:
103   case Mips::BimmX16:
104     return Mips::BimmX16;
105   case Mips::Bteqz16:
106   case Mips::BteqzX16:
107     return Mips::BteqzX16;
108   case Mips::Btnez16:
109   case Mips::BtnezX16:
110     return Mips::BtnezX16;
111   case Mips::JalB16:
112     return Mips::JalB16;
113   case Mips::BeqzRxImm16:
114   case Mips::BeqzRxImmX16:
115     return Mips::BeqzRxImmX16;
116   case Mips::BnezRxImm16:
117   case Mips::BnezRxImmX16:
118     return Mips::BnezRxImmX16;
119   }
120   llvm_unreachable("Unknown branch type");
121 }
122 
123 //
124 // FIXME: need to go through this whole constant islands port and check the math
125 // for branch ranges and clean this up and make some functions to calculate things
126 // that are done many times identically.
127 // Need to refactor some of the code to call this routine.
128 //
129 static unsigned int branchMaxOffsets(unsigned int Opcode) {
130   unsigned Bits, Scale;
131   switch (Opcode) {
132     case Mips::Bimm16:
133       Bits = 11;
134       Scale = 2;
135       break;
136     case Mips::BimmX16:
137       Bits = 16;
138       Scale = 2;
139       break;
140     case Mips::BeqzRxImm16:
141       Bits = 8;
142       Scale = 2;
143       break;
144     case Mips::BeqzRxImmX16:
145       Bits = 16;
146       Scale = 2;
147       break;
148     case Mips::BnezRxImm16:
149       Bits = 8;
150       Scale = 2;
151       break;
152     case Mips::BnezRxImmX16:
153       Bits = 16;
154       Scale = 2;
155       break;
156     case Mips::Bteqz16:
157       Bits = 8;
158       Scale = 2;
159       break;
160     case Mips::BteqzX16:
161       Bits = 16;
162       Scale = 2;
163       break;
164     case Mips::Btnez16:
165       Bits = 8;
166       Scale = 2;
167       break;
168     case Mips::BtnezX16:
169       Bits = 16;
170       Scale = 2;
171       break;
172     default:
173       llvm_unreachable("Unknown branch type");
174   }
175   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
176   return MaxOffs;
177 }
178 
179 namespace {
180 
181 
182   typedef MachineBasicBlock::iterator Iter;
183   typedef MachineBasicBlock::reverse_iterator ReverseIter;
184 
185   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
186   /// requires constant pool entries to be scattered among the instructions
187   /// inside a function.  To do this, it completely ignores the normal LLVM
188   /// constant pool; instead, it places constants wherever it feels like with
189   /// special instructions.
190   ///
191   /// The terminology used in this pass includes:
192   ///   Islands - Clumps of constants placed in the function.
193   ///   Water   - Potential places where an island could be formed.
194   ///   CPE     - A constant pool entry that has been placed somewhere, which
195   ///             tracks a list of users.
196 
197   class MipsConstantIslands : public MachineFunctionPass {
198 
199     /// BasicBlockInfo - Information about the offset and size of a single
200     /// basic block.
201     struct BasicBlockInfo {
202       /// Offset - Distance from the beginning of the function to the beginning
203       /// of this basic block.
204       ///
205       /// Offsets are computed assuming worst case padding before an aligned
206       /// block. This means that subtracting basic block offsets always gives a
207       /// conservative estimate of the real distance which may be smaller.
208       ///
209       /// Because worst case padding is used, the computed offset of an aligned
210       /// block may not actually be aligned.
211       unsigned Offset;
212 
213       /// Size - Size of the basic block in bytes.  If the block contains
214       /// inline assembly, this is a worst case estimate.
215       ///
216       /// The size does not include any alignment padding whether from the
217       /// beginning of the block, or from an aligned jump table at the end.
218       unsigned Size;
219 
220       // FIXME: ignore LogAlign for this patch
221       //
222       unsigned postOffset(unsigned LogAlign = 0) const {
223         unsigned PO = Offset + Size;
224         return PO;
225       }
226 
227       BasicBlockInfo() : Offset(0), Size(0) {}
228 
229     };
230 
231     std::vector<BasicBlockInfo> BBInfo;
232 
233     /// WaterList - A sorted list of basic blocks where islands could be placed
234     /// (i.e. blocks that don't fall through to the following block, due
235     /// to a return, unreachable, or unconditional branch).
236     std::vector<MachineBasicBlock*> WaterList;
237 
238     /// NewWaterList - The subset of WaterList that was created since the
239     /// previous iteration by inserting unconditional branches.
240     SmallSet<MachineBasicBlock*, 4> NewWaterList;
241 
242     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
243 
244     /// CPUser - One user of a constant pool, keeping the machine instruction
245     /// pointer, the constant pool being referenced, and the max displacement
246     /// allowed from the instruction to the CP.  The HighWaterMark records the
247     /// highest basic block where a new CPEntry can be placed.  To ensure this
248     /// pass terminates, the CP entries are initially placed at the end of the
249     /// function and then move monotonically to lower addresses.  The
250     /// exception to this rule is when the current CP entry for a particular
251     /// CPUser is out of range, but there is another CP entry for the same
252     /// constant value in range.  We want to use the existing in-range CP
253     /// entry, but if it later moves out of range, the search for new water
254     /// should resume where it left off.  The HighWaterMark is used to record
255     /// that point.
256     struct CPUser {
257       MachineInstr *MI;
258       MachineInstr *CPEMI;
259       MachineBasicBlock *HighWaterMark;
260     private:
261       unsigned MaxDisp;
262       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
263                                 // with different displacements
264       unsigned LongFormOpcode;
265     public:
266       bool NegOk;
267       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
268              bool neg,
269              unsigned longformmaxdisp, unsigned longformopcode)
270         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
271           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
272           NegOk(neg){
273         HighWaterMark = CPEMI->getParent();
274       }
275       /// getMaxDisp - Returns the maximum displacement supported by MI.
276       unsigned getMaxDisp() const {
277         unsigned xMaxDisp = ConstantIslandsSmallOffset?
278                             ConstantIslandsSmallOffset: MaxDisp;
279         return xMaxDisp;
280       }
281       void setMaxDisp(unsigned val) {
282         MaxDisp = val;
283       }
284       unsigned getLongFormMaxDisp() const {
285         return LongFormMaxDisp;
286       }
287       unsigned getLongFormOpcode() const {
288           return LongFormOpcode;
289       }
290     };
291 
292     /// CPUsers - Keep track of all of the machine instructions that use various
293     /// constant pools and their max displacement.
294     std::vector<CPUser> CPUsers;
295 
296   /// CPEntry - One per constant pool entry, keeping the machine instruction
297   /// pointer, the constpool index, and the number of CPUser's which
298   /// reference this entry.
299   struct CPEntry {
300     MachineInstr *CPEMI;
301     unsigned CPI;
302     unsigned RefCount;
303     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
304       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
305   };
306 
307   /// CPEntries - Keep track of all of the constant pool entry machine
308   /// instructions. For each original constpool index (i.e. those that
309   /// existed upon entry to this pass), it keeps a vector of entries.
310   /// Original elements are cloned as we go along; the clones are
311   /// put in the vector of the original element, but have distinct CPIs.
312   std::vector<std::vector<CPEntry> > CPEntries;
313 
314   /// ImmBranch - One per immediate branch, keeping the machine instruction
315   /// pointer, conditional or unconditional, the max displacement,
316   /// and (if isCond is true) the corresponding unconditional branch
317   /// opcode.
318   struct ImmBranch {
319     MachineInstr *MI;
320     unsigned MaxDisp : 31;
321     bool isCond : 1;
322     int UncondBr;
323     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
324       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
325   };
326 
327   /// ImmBranches - Keep track of all the immediate branch instructions.
328   ///
329   std::vector<ImmBranch> ImmBranches;
330 
331   /// HasFarJump - True if any far jump instruction has been emitted during
332   /// the branch fix up pass.
333   bool HasFarJump;
334 
335   const MipsSubtarget *STI;
336   const Mips16InstrInfo *TII;
337   MipsFunctionInfo *MFI;
338   MachineFunction *MF;
339   MachineConstantPool *MCP;
340 
341   unsigned PICLabelUId;
342   bool PrescannedForConstants;
343 
344   void initPICLabelUId(unsigned UId) {
345     PICLabelUId = UId;
346   }
347 
348 
349   unsigned createPICLabelUId() {
350     return PICLabelUId++;
351   }
352 
353   public:
354     static char ID;
355     MipsConstantIslands()
356         : MachineFunctionPass(ID), STI(nullptr), MF(nullptr), MCP(nullptr),
357           PrescannedForConstants(false) {}
358 
359     StringRef getPassName() const override { return "Mips Constant Islands"; }
360 
361     bool runOnMachineFunction(MachineFunction &F) override;
362 
363     MachineFunctionProperties getRequiredProperties() const override {
364       return MachineFunctionProperties().set(
365           MachineFunctionProperties::Property::NoVRegs);
366     }
367 
368     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
369     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
370     unsigned getCPELogAlign(const MachineInstr &CPEMI);
371     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
372     unsigned getOffsetOf(MachineInstr *MI) const;
373     unsigned getUserOffset(CPUser&) const;
374     void dumpBBs();
375 
376     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
377                          unsigned Disp, bool NegativeOK);
378     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
379                          const CPUser &U);
380 
381     void computeBlockSize(MachineBasicBlock *MBB);
382     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
383     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
384     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
385     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
386     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
387     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
388     bool findAvailableWater(CPUser&U, unsigned UserOffset,
389                             water_iterator &WaterIter);
390     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
391                         MachineBasicBlock *&NewMBB);
392     bool handleConstantPoolUser(unsigned CPUserIndex);
393     void removeDeadCPEMI(MachineInstr *CPEMI);
394     bool removeUnusedCPEntries();
395     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
396                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
397                           bool DoDump = false);
398     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
399                         CPUser &U, unsigned &Growth);
400     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
401     bool fixupImmediateBr(ImmBranch &Br);
402     bool fixupConditionalBr(ImmBranch &Br);
403     bool fixupUnconditionalBr(ImmBranch &Br);
404 
405     void prescanForConstants();
406 
407   private:
408 
409   };
410 
411   char MipsConstantIslands::ID = 0;
412 } // end of anonymous namespace
413 
414 bool MipsConstantIslands::isOffsetInRange
415   (unsigned UserOffset, unsigned TrialOffset,
416    const CPUser &U) {
417   return isOffsetInRange(UserOffset, TrialOffset,
418                          U.getMaxDisp(), U.NegOk);
419 }
420 /// print block size and offset information - debugging
421 void MipsConstantIslands::dumpBBs() {
422   DEBUG({
423     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
424       const BasicBlockInfo &BBI = BBInfo[J];
425       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
426              << format(" size=%#x\n", BBInfo[J].Size);
427     }
428   });
429 }
430 /// Returns a pass that converts branches to long branches.
431 FunctionPass *llvm::createMipsConstantIslandPass() {
432   return new MipsConstantIslands();
433 }
434 
435 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
436   // The intention is for this to be a mips16 only pass for now
437   // FIXME:
438   MF = &mf;
439   MCP = mf.getConstantPool();
440   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
441   DEBUG(dbgs() << "constant island machine function " << "\n");
442   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
443     return false;
444   }
445   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
446   MFI = MF->getInfo<MipsFunctionInfo>();
447   DEBUG(dbgs() << "constant island processing " << "\n");
448   //
449   // will need to make predermination if there is any constants we need to
450   // put in constant islands. TBD.
451   //
452   if (!PrescannedForConstants) prescanForConstants();
453 
454   HasFarJump = false;
455   // This pass invalidates liveness information when it splits basic blocks.
456   MF->getRegInfo().invalidateLiveness();
457 
458   // Renumber all of the machine basic blocks in the function, guaranteeing that
459   // the numbers agree with the position of the block in the function.
460   MF->RenumberBlocks();
461 
462   bool MadeChange = false;
463 
464   // Perform the initial placement of the constant pool entries.  To start with,
465   // we put them all at the end of the function.
466   std::vector<MachineInstr*> CPEMIs;
467   if (!MCP->isEmpty())
468     doInitialPlacement(CPEMIs);
469 
470   /// The next UID to take is the first unused one.
471   initPICLabelUId(CPEMIs.size());
472 
473   // Do the initial scan of the function, building up information about the
474   // sizes of each block, the location of all the water, and finding all of the
475   // constant pool users.
476   initializeFunctionInfo(CPEMIs);
477   CPEMIs.clear();
478   DEBUG(dumpBBs());
479 
480   /// Remove dead constant pool entries.
481   MadeChange |= removeUnusedCPEntries();
482 
483   // Iteratively place constant pool entries and fix up branches until there
484   // is no change.
485   unsigned NoCPIters = 0, NoBRIters = 0;
486   (void)NoBRIters;
487   while (true) {
488     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
489     bool CPChange = false;
490     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
491       CPChange |= handleConstantPoolUser(i);
492     if (CPChange && ++NoCPIters > 30)
493       report_fatal_error("Constant Island pass failed to converge!");
494     DEBUG(dumpBBs());
495 
496     // Clear NewWaterList now.  If we split a block for branches, it should
497     // appear as "new water" for the next iteration of constant pool placement.
498     NewWaterList.clear();
499 
500     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
501     bool BRChange = false;
502     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
503       BRChange |= fixupImmediateBr(ImmBranches[i]);
504     if (BRChange && ++NoBRIters > 30)
505       report_fatal_error("Branch Fix Up pass failed to converge!");
506     DEBUG(dumpBBs());
507     if (!CPChange && !BRChange)
508       break;
509     MadeChange = true;
510   }
511 
512   DEBUG(dbgs() << '\n'; dumpBBs());
513 
514   BBInfo.clear();
515   WaterList.clear();
516   CPUsers.clear();
517   CPEntries.clear();
518   ImmBranches.clear();
519   return MadeChange;
520 }
521 
522 /// doInitialPlacement - Perform the initial placement of the constant pool
523 /// entries.  To start with, we put them all at the end of the function.
524 void
525 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
526   // Create the basic block to hold the CPE's.
527   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
528   MF->push_back(BB);
529 
530 
531   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
532   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
533 
534   // Mark the basic block as required by the const-pool.
535   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
536   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
537 
538   // The function needs to be as aligned as the basic blocks. The linker may
539   // move functions around based on their alignment.
540   MF->ensureAlignment(BB->getAlignment());
541 
542   // Order the entries in BB by descending alignment.  That ensures correct
543   // alignment of all entries as long as BB is sufficiently aligned.  Keep
544   // track of the insertion point for each alignment.  We are going to bucket
545   // sort the entries as they are created.
546   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
547 
548   // Add all of the constants from the constant pool to the end block, use an
549   // identity mapping of CPI's to CPE's.
550   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
551 
552   const DataLayout &TD = MF->getDataLayout();
553   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
554     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
555     assert(Size >= 4 && "Too small constant pool entry");
556     unsigned Align = CPs[i].getAlignment();
557     assert(isPowerOf2_32(Align) && "Invalid alignment");
558     // Verify that all constant pool entries are a multiple of their alignment.
559     // If not, we would have to pad them out so that instructions stay aligned.
560     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
561 
562     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
563     unsigned LogAlign = Log2_32(Align);
564     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
565 
566     MachineInstr *CPEMI =
567       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
568         .addImm(i).addConstantPoolIndex(i).addImm(Size);
569 
570     CPEMIs.push_back(CPEMI);
571 
572     // Ensure that future entries with higher alignment get inserted before
573     // CPEMI. This is bucket sort with iterators.
574     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
575       if (InsPoint[a] == InsAt)
576         InsPoint[a] = CPEMI;
577     // Add a new CPEntry, but no corresponding CPUser yet.
578     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
579     ++NumCPEs;
580     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
581                  << Size << ", align = " << Align <<'\n');
582   }
583   DEBUG(BB->dump());
584 }
585 
586 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
587 /// into the block immediately after it.
588 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
589   // Get the next machine basic block in the function.
590   MachineFunction::iterator MBBI = MBB->getIterator();
591   // Can't fall off end of function.
592   if (std::next(MBBI) == MBB->getParent()->end())
593     return false;
594 
595   MachineBasicBlock *NextBB = &*std::next(MBBI);
596   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
597        E = MBB->succ_end(); I != E; ++I)
598     if (*I == NextBB)
599       return true;
600 
601   return false;
602 }
603 
604 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
605 /// look up the corresponding CPEntry.
606 MipsConstantIslands::CPEntry
607 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
608                                         const MachineInstr *CPEMI) {
609   std::vector<CPEntry> &CPEs = CPEntries[CPI];
610   // Number of entries per constpool index should be small, just do a
611   // linear search.
612   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
613     if (CPEs[i].CPEMI == CPEMI)
614       return &CPEs[i];
615   }
616   return nullptr;
617 }
618 
619 /// getCPELogAlign - Returns the required alignment of the constant pool entry
620 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
621 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr &CPEMI) {
622   assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
623 
624   // Everything is 4-byte aligned unless AlignConstantIslands is set.
625   if (!AlignConstantIslands)
626     return 2;
627 
628   unsigned CPI = CPEMI.getOperand(1).getIndex();
629   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
630   unsigned Align = MCP->getConstants()[CPI].getAlignment();
631   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
632   return Log2_32(Align);
633 }
634 
635 /// initializeFunctionInfo - Do the initial scan of the function, building up
636 /// information about the sizes of each block, the location of all the water,
637 /// and finding all of the constant pool users.
638 void MipsConstantIslands::
639 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
640   BBInfo.clear();
641   BBInfo.resize(MF->getNumBlockIDs());
642 
643   // First thing, compute the size of all basic blocks, and see if the function
644   // has any inline assembly in it. If so, we have to be conservative about
645   // alignment assumptions, as we don't know for sure the size of any
646   // instructions in the inline assembly.
647   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
648     computeBlockSize(&*I);
649 
650 
651   // Compute block offsets.
652   adjustBBOffsetsAfter(&MF->front());
653 
654   // Now go back through the instructions and build up our data structures.
655   for (MachineBasicBlock &MBB : *MF) {
656     // If this block doesn't fall through into the next MBB, then this is
657     // 'water' that a constant pool island could be placed.
658     if (!BBHasFallthrough(&MBB))
659       WaterList.push_back(&MBB);
660     for (MachineInstr &MI : MBB) {
661       if (MI.isDebugValue())
662         continue;
663 
664       int Opc = MI.getOpcode();
665       if (MI.isBranch()) {
666         bool isCond = false;
667         unsigned Bits = 0;
668         unsigned Scale = 1;
669         int UOpc = Opc;
670         switch (Opc) {
671         default:
672           continue;  // Ignore other branches for now
673         case Mips::Bimm16:
674           Bits = 11;
675           Scale = 2;
676           isCond = false;
677           break;
678         case Mips::BimmX16:
679           Bits = 16;
680           Scale = 2;
681           isCond = false;
682           break;
683         case Mips::BeqzRxImm16:
684           UOpc=Mips::Bimm16;
685           Bits = 8;
686           Scale = 2;
687           isCond = true;
688           break;
689         case Mips::BeqzRxImmX16:
690           UOpc=Mips::Bimm16;
691           Bits = 16;
692           Scale = 2;
693           isCond = true;
694           break;
695         case Mips::BnezRxImm16:
696           UOpc=Mips::Bimm16;
697           Bits = 8;
698           Scale = 2;
699           isCond = true;
700           break;
701         case Mips::BnezRxImmX16:
702           UOpc=Mips::Bimm16;
703           Bits = 16;
704           Scale = 2;
705           isCond = true;
706           break;
707         case Mips::Bteqz16:
708           UOpc=Mips::Bimm16;
709           Bits = 8;
710           Scale = 2;
711           isCond = true;
712           break;
713         case Mips::BteqzX16:
714           UOpc=Mips::Bimm16;
715           Bits = 16;
716           Scale = 2;
717           isCond = true;
718           break;
719         case Mips::Btnez16:
720           UOpc=Mips::Bimm16;
721           Bits = 8;
722           Scale = 2;
723           isCond = true;
724           break;
725         case Mips::BtnezX16:
726           UOpc=Mips::Bimm16;
727           Bits = 16;
728           Scale = 2;
729           isCond = true;
730           break;
731         }
732         // Record this immediate branch.
733         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
734         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
735       }
736 
737       if (Opc == Mips::CONSTPOOL_ENTRY)
738         continue;
739 
740 
741       // Scan the instructions for constant pool operands.
742       for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
743         if (MI.getOperand(op).isCPI()) {
744 
745           // We found one.  The addressing mode tells us the max displacement
746           // from the PC that this instruction permits.
747 
748           // Basic size info comes from the TSFlags field.
749           unsigned Bits = 0;
750           unsigned Scale = 1;
751           bool NegOk = false;
752           unsigned LongFormBits = 0;
753           unsigned LongFormScale = 0;
754           unsigned LongFormOpcode = 0;
755           switch (Opc) {
756           default:
757             llvm_unreachable("Unknown addressing mode for CP reference!");
758           case Mips::LwRxPcTcp16:
759             Bits = 8;
760             Scale = 4;
761             LongFormOpcode = Mips::LwRxPcTcpX16;
762             LongFormBits = 14;
763             LongFormScale = 1;
764             break;
765           case Mips::LwRxPcTcpX16:
766             Bits = 14;
767             Scale = 1;
768             NegOk = true;
769             break;
770           }
771           // Remember that this is a user of a CP entry.
772           unsigned CPI = MI.getOperand(op).getIndex();
773           MachineInstr *CPEMI = CPEMIs[CPI];
774           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
775           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
776           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
777                                    LongFormOpcode));
778 
779           // Increment corresponding CPEntry reference count.
780           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
781           assert(CPE && "Cannot find a corresponding CPEntry!");
782           CPE->RefCount++;
783 
784           // Instructions can only use one CP entry, don't bother scanning the
785           // rest of the operands.
786           break;
787 
788         }
789 
790     }
791   }
792 
793 }
794 
795 /// computeBlockSize - Compute the size and some alignment information for MBB.
796 /// This function updates BBInfo directly.
797 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
798   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
799   BBI.Size = 0;
800 
801   for (const MachineInstr &MI : *MBB)
802     BBI.Size += TII->getInstSizeInBytes(MI);
803 }
804 
805 /// getOffsetOf - Return the current offset of the specified machine instruction
806 /// from the start of the function.  This offset changes as stuff is moved
807 /// around inside the function.
808 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
809   MachineBasicBlock *MBB = MI->getParent();
810 
811   // The offset is composed of two things: the sum of the sizes of all MBB's
812   // before this instruction's block, and the offset from the start of the block
813   // it is in.
814   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
815 
816   // Sum instructions before MI in MBB.
817   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
818     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
819     Offset += TII->getInstSizeInBytes(*I);
820   }
821   return Offset;
822 }
823 
824 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
825 /// ID.
826 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
827                               const MachineBasicBlock *RHS) {
828   return LHS->getNumber() < RHS->getNumber();
829 }
830 
831 /// updateForInsertedWaterBlock - When a block is newly inserted into the
832 /// machine function, it upsets all of the block numbers.  Renumber the blocks
833 /// and update the arrays that parallel this numbering.
834 void MipsConstantIslands::updateForInsertedWaterBlock
835   (MachineBasicBlock *NewBB) {
836   // Renumber the MBB's to keep them consecutive.
837   NewBB->getParent()->RenumberBlocks(NewBB);
838 
839   // Insert an entry into BBInfo to align it properly with the (newly
840   // renumbered) block numbers.
841   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
842 
843   // Next, update WaterList.  Specifically, we need to add NewMBB as having
844   // available water after it.
845   water_iterator IP =
846     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
847                      CompareMBBNumbers);
848   WaterList.insert(IP, NewBB);
849 }
850 
851 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
852   return getOffsetOf(U.MI);
853 }
854 
855 /// Split the basic block containing MI into two blocks, which are joined by
856 /// an unconditional branch.  Update data structures and renumber blocks to
857 /// account for this change and returns the newly created block.
858 MachineBasicBlock *
859 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
860   MachineBasicBlock *OrigBB = MI.getParent();
861 
862   // Create a new MBB for the code after the OrigBB.
863   MachineBasicBlock *NewBB =
864     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
865   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
866   MF->insert(MBBI, NewBB);
867 
868   // Splice the instructions starting with MI over to NewBB.
869   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
870 
871   // Add an unconditional branch from OrigBB to NewBB.
872   // Note the new unconditional branch is not being recorded.
873   // There doesn't seem to be meaningful DebugInfo available; this doesn't
874   // correspond to anything in the source.
875   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
876   ++NumSplit;
877 
878   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
879   NewBB->transferSuccessors(OrigBB);
880 
881   // OrigBB branches to NewBB.
882   OrigBB->addSuccessor(NewBB);
883 
884   // Update internal data structures to account for the newly inserted MBB.
885   // This is almost the same as updateForInsertedWaterBlock, except that
886   // the Water goes after OrigBB, not NewBB.
887   MF->RenumberBlocks(NewBB);
888 
889   // Insert an entry into BBInfo to align it properly with the (newly
890   // renumbered) block numbers.
891   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
892 
893   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
894   // available water after it (but not if it's already there, which happens
895   // when splitting before a conditional branch that is followed by an
896   // unconditional branch - in that case we want to insert NewBB).
897   water_iterator IP =
898     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
899                      CompareMBBNumbers);
900   MachineBasicBlock* WaterBB = *IP;
901   if (WaterBB == OrigBB)
902     WaterList.insert(std::next(IP), NewBB);
903   else
904     WaterList.insert(IP, OrigBB);
905   NewWaterList.insert(OrigBB);
906 
907   // Figure out how large the OrigBB is.  As the first half of the original
908   // block, it cannot contain a tablejump.  The size includes
909   // the new jump we added.  (It should be possible to do this without
910   // recounting everything, but it's very confusing, and this is rarely
911   // executed.)
912   computeBlockSize(OrigBB);
913 
914   // Figure out how large the NewMBB is.  As the second half of the original
915   // block, it may contain a tablejump.
916   computeBlockSize(NewBB);
917 
918   // All BBOffsets following these blocks must be modified.
919   adjustBBOffsetsAfter(OrigBB);
920 
921   return NewBB;
922 }
923 
924 
925 
926 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
927 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
928 /// constant pool entry).
929 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
930                                          unsigned TrialOffset, unsigned MaxDisp,
931                                          bool NegativeOK) {
932   if (UserOffset <= TrialOffset) {
933     // User before the Trial.
934     if (TrialOffset - UserOffset <= MaxDisp)
935       return true;
936   } else if (NegativeOK) {
937     if (UserOffset - TrialOffset <= MaxDisp)
938       return true;
939   }
940   return false;
941 }
942 
943 /// isWaterInRange - Returns true if a CPE placed after the specified
944 /// Water (a basic block) will be in range for the specific MI.
945 ///
946 /// Compute how much the function will grow by inserting a CPE after Water.
947 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
948                                         MachineBasicBlock* Water, CPUser &U,
949                                         unsigned &Growth) {
950   unsigned CPELogAlign = getCPELogAlign(*U.CPEMI);
951   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
952   unsigned NextBlockOffset, NextBlockAlignment;
953   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
954   if (NextBlock == MF->end()) {
955     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
956     NextBlockAlignment = 0;
957   } else {
958     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
959     NextBlockAlignment = NextBlock->getAlignment();
960   }
961   unsigned Size = U.CPEMI->getOperand(2).getImm();
962   unsigned CPEEnd = CPEOffset + Size;
963 
964   // The CPE may be able to hide in the alignment padding before the next
965   // block. It may also cause more padding to be required if it is more aligned
966   // that the next block.
967   if (CPEEnd > NextBlockOffset) {
968     Growth = CPEEnd - NextBlockOffset;
969     // Compute the padding that would go at the end of the CPE to align the next
970     // block.
971     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
972 
973     // If the CPE is to be inserted before the instruction, that will raise
974     // the offset of the instruction. Also account for unknown alignment padding
975     // in blocks between CPE and the user.
976     if (CPEOffset < UserOffset)
977       UserOffset += Growth;
978   } else
979     // CPE fits in existing padding.
980     Growth = 0;
981 
982   return isOffsetInRange(UserOffset, CPEOffset, U);
983 }
984 
985 /// isCPEntryInRange - Returns true if the distance between specific MI and
986 /// specific ConstPool entry instruction can fit in MI's displacement field.
987 bool MipsConstantIslands::isCPEntryInRange
988   (MachineInstr *MI, unsigned UserOffset,
989    MachineInstr *CPEMI, unsigned MaxDisp,
990    bool NegOk, bool DoDump) {
991   unsigned CPEOffset  = getOffsetOf(CPEMI);
992 
993   if (DoDump) {
994     DEBUG({
995       unsigned Block = MI->getParent()->getNumber();
996       const BasicBlockInfo &BBI = BBInfo[Block];
997       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
998              << " max delta=" << MaxDisp
999              << format(" insn address=%#x", UserOffset)
1000              << " in BB#" << Block << ": "
1001              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1002              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1003                        int(CPEOffset-UserOffset));
1004     });
1005   }
1006 
1007   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1008 }
1009 
1010 #ifndef NDEBUG
1011 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1012 /// unconditionally branches to its only successor.
1013 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1014   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1015     return false;
1016   MachineBasicBlock *Succ = *MBB->succ_begin();
1017   MachineBasicBlock *Pred = *MBB->pred_begin();
1018   MachineInstr *PredMI = &Pred->back();
1019   if (PredMI->getOpcode() == Mips::Bimm16)
1020     return PredMI->getOperand(0).getMBB() == Succ;
1021   return false;
1022 }
1023 #endif
1024 
1025 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1026   unsigned BBNum = BB->getNumber();
1027   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1028     // Get the offset and known bits at the end of the layout predecessor.
1029     // Include the alignment of the current block.
1030     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1031     BBInfo[i].Offset = Offset;
1032   }
1033 }
1034 
1035 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1036 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1037 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1038 /// the entry, false if we didn't.
1039 
1040 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1041                                                     MachineInstr *CPEMI) {
1042   // Find the old entry. Eliminate it if it is no longer used.
1043   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1044   assert(CPE && "Unexpected!");
1045   if (--CPE->RefCount == 0) {
1046     removeDeadCPEMI(CPEMI);
1047     CPE->CPEMI = nullptr;
1048     --NumCPEs;
1049     return true;
1050   }
1051   return false;
1052 }
1053 
1054 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1055 /// if not, see if an in-range clone of the CPE is in range, and if so,
1056 /// change the data structures so the user references the clone.  Returns:
1057 /// 0 = no existing entry found
1058 /// 1 = entry found, and there were no code insertions or deletions
1059 /// 2 = entry found, and there were code insertions or deletions
1060 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1061 {
1062   MachineInstr *UserMI = U.MI;
1063   MachineInstr *CPEMI  = U.CPEMI;
1064 
1065   // Check to see if the CPE is already in-range.
1066   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1067                        true)) {
1068     DEBUG(dbgs() << "In range\n");
1069     return 1;
1070   }
1071 
1072   // No.  Look for previously created clones of the CPE that are in range.
1073   unsigned CPI = CPEMI->getOperand(1).getIndex();
1074   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1075   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1076     // We already tried this one
1077     if (CPEs[i].CPEMI == CPEMI)
1078       continue;
1079     // Removing CPEs can leave empty entries, skip
1080     if (CPEs[i].CPEMI == nullptr)
1081       continue;
1082     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1083                      U.NegOk)) {
1084       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1085                    << CPEs[i].CPI << "\n");
1086       // Point the CPUser node to the replacement
1087       U.CPEMI = CPEs[i].CPEMI;
1088       // Change the CPI in the instruction operand to refer to the clone.
1089       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1090         if (UserMI->getOperand(j).isCPI()) {
1091           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1092           break;
1093         }
1094       // Adjust the refcount of the clone...
1095       CPEs[i].RefCount++;
1096       // ...and the original.  If we didn't remove the old entry, none of the
1097       // addresses changed, so we don't need another pass.
1098       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1099     }
1100   }
1101   return 0;
1102 }
1103 
1104 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1105 /// This version checks if the longer form of the instruction can be used to
1106 /// to satisfy things.
1107 /// if not, see if an in-range clone of the CPE is in range, and if so,
1108 /// change the data structures so the user references the clone.  Returns:
1109 /// 0 = no existing entry found
1110 /// 1 = entry found, and there were no code insertions or deletions
1111 /// 2 = entry found, and there were code insertions or deletions
1112 int MipsConstantIslands::findLongFormInRangeCPEntry
1113   (CPUser& U, unsigned UserOffset)
1114 {
1115   MachineInstr *UserMI = U.MI;
1116   MachineInstr *CPEMI  = U.CPEMI;
1117 
1118   // Check to see if the CPE is already in-range.
1119   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1120                        U.getLongFormMaxDisp(), U.NegOk,
1121                        true)) {
1122     DEBUG(dbgs() << "In range\n");
1123     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1124     U.setMaxDisp(U.getLongFormMaxDisp());
1125     return 2;  // instruction is longer length now
1126   }
1127 
1128   // No.  Look for previously created clones of the CPE that are in range.
1129   unsigned CPI = CPEMI->getOperand(1).getIndex();
1130   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1131   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1132     // We already tried this one
1133     if (CPEs[i].CPEMI == CPEMI)
1134       continue;
1135     // Removing CPEs can leave empty entries, skip
1136     if (CPEs[i].CPEMI == nullptr)
1137       continue;
1138     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1139                          U.getLongFormMaxDisp(), U.NegOk)) {
1140       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1141                    << CPEs[i].CPI << "\n");
1142       // Point the CPUser node to the replacement
1143       U.CPEMI = CPEs[i].CPEMI;
1144       // Change the CPI in the instruction operand to refer to the clone.
1145       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1146         if (UserMI->getOperand(j).isCPI()) {
1147           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1148           break;
1149         }
1150       // Adjust the refcount of the clone...
1151       CPEs[i].RefCount++;
1152       // ...and the original.  If we didn't remove the old entry, none of the
1153       // addresses changed, so we don't need another pass.
1154       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1155     }
1156   }
1157   return 0;
1158 }
1159 
1160 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1161 /// the specific unconditional branch instruction.
1162 static inline unsigned getUnconditionalBrDisp(int Opc) {
1163   switch (Opc) {
1164   case Mips::Bimm16:
1165     return ((1<<10)-1)*2;
1166   case Mips::BimmX16:
1167     return ((1<<16)-1)*2;
1168   default:
1169     break;
1170   }
1171   return ((1<<16)-1)*2;
1172 }
1173 
1174 /// findAvailableWater - Look for an existing entry in the WaterList in which
1175 /// we can place the CPE referenced from U so it's within range of U's MI.
1176 /// Returns true if found, false if not.  If it returns true, WaterIter
1177 /// is set to the WaterList entry.
1178 /// To ensure that this pass
1179 /// terminates, the CPE location for a particular CPUser is only allowed to
1180 /// move to a lower address, so search backward from the end of the list and
1181 /// prefer the first water that is in range.
1182 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1183                                       water_iterator &WaterIter) {
1184   if (WaterList.empty())
1185     return false;
1186 
1187   unsigned BestGrowth = ~0u;
1188   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1189        --IP) {
1190     MachineBasicBlock* WaterBB = *IP;
1191     // Check if water is in range and is either at a lower address than the
1192     // current "high water mark" or a new water block that was created since
1193     // the previous iteration by inserting an unconditional branch.  In the
1194     // latter case, we want to allow resetting the high water mark back to
1195     // this new water since we haven't seen it before.  Inserting branches
1196     // should be relatively uncommon and when it does happen, we want to be
1197     // sure to take advantage of it for all the CPEs near that block, so that
1198     // we don't insert more branches than necessary.
1199     unsigned Growth;
1200     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1201         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1202          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1203       // This is the least amount of required padding seen so far.
1204       BestGrowth = Growth;
1205       WaterIter = IP;
1206       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1207                    << " Growth=" << Growth << '\n');
1208 
1209       // Keep looking unless it is perfect.
1210       if (BestGrowth == 0)
1211         return true;
1212     }
1213     if (IP == B)
1214       break;
1215   }
1216   return BestGrowth != ~0u;
1217 }
1218 
1219 /// createNewWater - No existing WaterList entry will work for
1220 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1221 /// block is used if in range, and the conditional branch munged so control
1222 /// flow is correct.  Otherwise the block is split to create a hole with an
1223 /// unconditional branch around it.  In either case NewMBB is set to a
1224 /// block following which the new island can be inserted (the WaterList
1225 /// is not adjusted).
1226 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1227                                         unsigned UserOffset,
1228                                         MachineBasicBlock *&NewMBB) {
1229   CPUser &U = CPUsers[CPUserIndex];
1230   MachineInstr *UserMI = U.MI;
1231   MachineInstr *CPEMI  = U.CPEMI;
1232   unsigned CPELogAlign = getCPELogAlign(*CPEMI);
1233   MachineBasicBlock *UserMBB = UserMI->getParent();
1234   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1235 
1236   // If the block does not end in an unconditional branch already, and if the
1237   // end of the block is within range, make new water there.
1238   if (BBHasFallthrough(UserMBB)) {
1239     // Size of branch to insert.
1240     unsigned Delta = 2;
1241     // Compute the offset where the CPE will begin.
1242     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1243 
1244     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1245       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1246             << format(", expected CPE offset %#x\n", CPEOffset));
1247       NewMBB = &*++UserMBB->getIterator();
1248       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1249       // it for branch lengthening; this new branch will not get out of range,
1250       // but if the preceding conditional branch is out of range, the targets
1251       // will be exchanged, and the altered branch may be out of range, so the
1252       // machinery has to know about it.
1253       int UncondBr = Mips::Bimm16;
1254       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1255       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1256       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1257                                       MaxDisp, false, UncondBr));
1258       BBInfo[UserMBB->getNumber()].Size += Delta;
1259       adjustBBOffsetsAfter(UserMBB);
1260       return;
1261     }
1262   }
1263 
1264   // What a big block.  Find a place within the block to split it.
1265 
1266   // Try to split the block so it's fully aligned.  Compute the latest split
1267   // point where we can add a 4-byte branch instruction, and then align to
1268   // LogAlign which is the largest possible alignment in the function.
1269   unsigned LogAlign = MF->getAlignment();
1270   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1271   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1272   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1273                          BaseInsertOffset));
1274 
1275   // The 4 in the following is for the unconditional branch we'll be inserting
1276   // Alignment of the island is handled
1277   // inside isOffsetInRange.
1278   BaseInsertOffset -= 4;
1279 
1280   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1281                << " la=" << LogAlign << '\n');
1282 
1283   // This could point off the end of the block if we've already got constant
1284   // pool entries following this block; only the last one is in the water list.
1285   // Back past any possible branches (allow for a conditional and a maximally
1286   // long unconditional).
1287   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1288     BaseInsertOffset = UserBBI.postOffset() - 8;
1289     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1290   }
1291   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1292     CPEMI->getOperand(2).getImm();
1293   MachineBasicBlock::iterator MI = UserMI;
1294   ++MI;
1295   unsigned CPUIndex = CPUserIndex+1;
1296   unsigned NumCPUsers = CPUsers.size();
1297   //MachineInstr *LastIT = 0;
1298   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1299        Offset < BaseInsertOffset;
1300        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1301     assert(MI != UserMBB->end() && "Fell off end of block");
1302     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1303       CPUser &U = CPUsers[CPUIndex];
1304       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1305         // Shift intertion point by one unit of alignment so it is within reach.
1306         BaseInsertOffset -= 1u << LogAlign;
1307         EndInsertOffset  -= 1u << LogAlign;
1308       }
1309       // This is overly conservative, as we don't account for CPEMIs being
1310       // reused within the block, but it doesn't matter much.  Also assume CPEs
1311       // are added in order with alignment padding.  We may eventually be able
1312       // to pack the aligned CPEs better.
1313       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1314       CPUIndex++;
1315     }
1316   }
1317 
1318   NewMBB = splitBlockBeforeInstr(*--MI);
1319 }
1320 
1321 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1322 /// is out-of-range.  If so, pick up the constant pool value and move it some
1323 /// place in-range.  Return true if we changed any addresses (thus must run
1324 /// another pass of branch lengthening), false otherwise.
1325 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1326   CPUser &U = CPUsers[CPUserIndex];
1327   MachineInstr *UserMI = U.MI;
1328   MachineInstr *CPEMI  = U.CPEMI;
1329   unsigned CPI = CPEMI->getOperand(1).getIndex();
1330   unsigned Size = CPEMI->getOperand(2).getImm();
1331   // Compute this only once, it's expensive.
1332   unsigned UserOffset = getUserOffset(U);
1333 
1334   // See if the current entry is within range, or there is a clone of it
1335   // in range.
1336   int result = findInRangeCPEntry(U, UserOffset);
1337   if (result==1) return false;
1338   else if (result==2) return true;
1339 
1340 
1341   // Look for water where we can place this CPE.
1342   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1343   MachineBasicBlock *NewMBB;
1344   water_iterator IP;
1345   if (findAvailableWater(U, UserOffset, IP)) {
1346     DEBUG(dbgs() << "Found water in range\n");
1347     MachineBasicBlock *WaterBB = *IP;
1348 
1349     // If the original WaterList entry was "new water" on this iteration,
1350     // propagate that to the new island.  This is just keeping NewWaterList
1351     // updated to match the WaterList, which will be updated below.
1352     if (NewWaterList.erase(WaterBB))
1353       NewWaterList.insert(NewIsland);
1354 
1355     // The new CPE goes before the following block (NewMBB).
1356     NewMBB = &*++WaterBB->getIterator();
1357   } else {
1358     // No water found.
1359     // we first see if a longer form of the instrucion could have reached
1360     // the constant. in that case we won't bother to split
1361     if (!NoLoadRelaxation) {
1362       result = findLongFormInRangeCPEntry(U, UserOffset);
1363       if (result != 0) return true;
1364     }
1365     DEBUG(dbgs() << "No water found\n");
1366     createNewWater(CPUserIndex, UserOffset, NewMBB);
1367 
1368     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1369     // called while handling branches so that the water will be seen on the
1370     // next iteration for constant pools, but in this context, we don't want
1371     // it.  Check for this so it will be removed from the WaterList.
1372     // Also remove any entry from NewWaterList.
1373     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1374     IP = find(WaterList, WaterBB);
1375     if (IP != WaterList.end())
1376       NewWaterList.erase(WaterBB);
1377 
1378     // We are adding new water.  Update NewWaterList.
1379     NewWaterList.insert(NewIsland);
1380   }
1381 
1382   // Remove the original WaterList entry; we want subsequent insertions in
1383   // this vicinity to go after the one we're about to insert.  This
1384   // considerably reduces the number of times we have to move the same CPE
1385   // more than once and is also important to ensure the algorithm terminates.
1386   if (IP != WaterList.end())
1387     WaterList.erase(IP);
1388 
1389   // Okay, we know we can put an island before NewMBB now, do it!
1390   MF->insert(NewMBB->getIterator(), NewIsland);
1391 
1392   // Update internal data structures to account for the newly inserted MBB.
1393   updateForInsertedWaterBlock(NewIsland);
1394 
1395   // Decrement the old entry, and remove it if refcount becomes 0.
1396   decrementCPEReferenceCount(CPI, CPEMI);
1397 
1398   // No existing clone of this CPE is within range.
1399   // We will be generating a new clone.  Get a UID for it.
1400   unsigned ID = createPICLabelUId();
1401 
1402   // Now that we have an island to add the CPE to, clone the original CPE and
1403   // add it to the island.
1404   U.HighWaterMark = NewIsland;
1405   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1406                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1407   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1408   ++NumCPEs;
1409 
1410   // Mark the basic block as aligned as required by the const-pool entry.
1411   NewIsland->setAlignment(getCPELogAlign(*U.CPEMI));
1412 
1413   // Increase the size of the island block to account for the new entry.
1414   BBInfo[NewIsland->getNumber()].Size += Size;
1415   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1416 
1417   // Finally, change the CPI in the instruction operand to be ID.
1418   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1419     if (UserMI->getOperand(i).isCPI()) {
1420       UserMI->getOperand(i).setIndex(ID);
1421       break;
1422     }
1423 
1424   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1425         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1426 
1427   return true;
1428 }
1429 
1430 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1431 /// sizes and offsets of impacted basic blocks.
1432 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1433   MachineBasicBlock *CPEBB = CPEMI->getParent();
1434   unsigned Size = CPEMI->getOperand(2).getImm();
1435   CPEMI->eraseFromParent();
1436   BBInfo[CPEBB->getNumber()].Size -= Size;
1437   // All succeeding offsets have the current size value added in, fix this.
1438   if (CPEBB->empty()) {
1439     BBInfo[CPEBB->getNumber()].Size = 0;
1440 
1441     // This block no longer needs to be aligned.
1442     CPEBB->setAlignment(0);
1443   } else
1444     // Entries are sorted by descending alignment, so realign from the front.
1445     CPEBB->setAlignment(getCPELogAlign(*CPEBB->begin()));
1446 
1447   adjustBBOffsetsAfter(CPEBB);
1448   // An island has only one predecessor BB and one successor BB. Check if
1449   // this BB's predecessor jumps directly to this BB's successor. This
1450   // shouldn't happen currently.
1451   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1452   // FIXME: remove the empty blocks after all the work is done?
1453 }
1454 
1455 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1456 /// are zero.
1457 bool MipsConstantIslands::removeUnusedCPEntries() {
1458   unsigned MadeChange = false;
1459   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1460       std::vector<CPEntry> &CPEs = CPEntries[i];
1461       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1462         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1463           removeDeadCPEMI(CPEs[j].CPEMI);
1464           CPEs[j].CPEMI = nullptr;
1465           MadeChange = true;
1466         }
1467       }
1468   }
1469   return MadeChange;
1470 }
1471 
1472 /// isBBInRange - Returns true if the distance between specific MI and
1473 /// specific BB can fit in MI's displacement field.
1474 bool MipsConstantIslands::isBBInRange
1475   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1476 
1477 unsigned PCAdj = 4;
1478 
1479   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1480   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1481 
1482   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1483                << " from BB#" << MI->getParent()->getNumber()
1484                << " max delta=" << MaxDisp
1485                << " from " << getOffsetOf(MI) << " to " << DestOffset
1486                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1487 
1488   if (BrOffset <= DestOffset) {
1489     // Branch before the Dest.
1490     if (DestOffset-BrOffset <= MaxDisp)
1491       return true;
1492   } else {
1493     if (BrOffset-DestOffset <= MaxDisp)
1494       return true;
1495   }
1496   return false;
1497 }
1498 
1499 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1500 /// away to fit in its displacement field.
1501 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1502   MachineInstr *MI = Br.MI;
1503   unsigned TargetOperand = branchTargetOperand(MI);
1504   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1505 
1506   // Check to see if the DestBB is already in-range.
1507   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1508     return false;
1509 
1510   if (!Br.isCond)
1511     return fixupUnconditionalBr(Br);
1512   return fixupConditionalBr(Br);
1513 }
1514 
1515 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1516 /// too far away to fit in its displacement field. If the LR register has been
1517 /// spilled in the epilogue, then we can use BL to implement a far jump.
1518 /// Otherwise, add an intermediate branch instruction to a branch.
1519 bool
1520 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1521   MachineInstr *MI = Br.MI;
1522   MachineBasicBlock *MBB = MI->getParent();
1523   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1524   // Use BL to implement far jump.
1525   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1526   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1527     Br.MaxDisp = BimmX16MaxDisp;
1528     MI->setDesc(TII->get(Mips::BimmX16));
1529   }
1530   else {
1531     // need to give the math a more careful look here
1532     // this is really a segment address and not
1533     // a PC relative address. FIXME. But I think that
1534     // just reducing the bits by 1 as I've done is correct.
1535     // The basic block we are branching too much be longword aligned.
1536     // we know that RA is saved because we always save it right now.
1537     // this requirement will be relaxed later but we also have an alternate
1538     // way to implement this that I will implement that does not need jal.
1539     // We should have a way to back out this alignment restriction if we "can" later.
1540     // but it is not harmful.
1541     //
1542     DestBB->setAlignment(2);
1543     Br.MaxDisp = ((1<<24)-1) * 2;
1544     MI->setDesc(TII->get(Mips::JalB16));
1545   }
1546   BBInfo[MBB->getNumber()].Size += 2;
1547   adjustBBOffsetsAfter(MBB);
1548   HasFarJump = true;
1549   ++NumUBrFixed;
1550 
1551   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1552 
1553   return true;
1554 }
1555 
1556 
1557 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1558 /// far away to fit in its displacement field. It is converted to an inverse
1559 /// conditional branch + an unconditional branch to the destination.
1560 bool
1561 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1562   MachineInstr *MI = Br.MI;
1563   unsigned TargetOperand = branchTargetOperand(MI);
1564   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1565   unsigned Opcode = MI->getOpcode();
1566   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1567   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1568 
1569   // Check to see if the DestBB is already in-range.
1570   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1571     Br.MaxDisp = LongFormMaxOff;
1572     MI->setDesc(TII->get(LongFormOpcode));
1573     return true;
1574   }
1575 
1576   // Add an unconditional branch to the destination and invert the branch
1577   // condition to jump over it:
1578   // bteqz L1
1579   // =>
1580   // bnez L2
1581   // b   L1
1582   // L2:
1583 
1584   // If the branch is at the end of its MBB and that has a fall-through block,
1585   // direct the updated conditional branch to the fall-through block. Otherwise,
1586   // split the MBB before the next instruction.
1587   MachineBasicBlock *MBB = MI->getParent();
1588   MachineInstr *BMI = &MBB->back();
1589   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1590   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1591 
1592   ++NumCBrFixed;
1593   if (BMI != MI) {
1594     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1595         BMI->isUnconditionalBranch()) {
1596       // Last MI in the BB is an unconditional branch. Can we simply invert the
1597       // condition and swap destinations:
1598       // beqz L1
1599       // b   L2
1600       // =>
1601       // bnez L2
1602       // b   L1
1603       unsigned BMITargetOperand = branchTargetOperand(BMI);
1604       MachineBasicBlock *NewDest =
1605         BMI->getOperand(BMITargetOperand).getMBB();
1606       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1607         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1608                      << *BMI);
1609         MI->setDesc(TII->get(OppositeBranchOpcode));
1610         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1611         MI->getOperand(TargetOperand).setMBB(NewDest);
1612         return true;
1613       }
1614     }
1615   }
1616 
1617 
1618   if (NeedSplit) {
1619     splitBlockBeforeInstr(*MI);
1620     // No need for the branch to the next block. We're adding an unconditional
1621     // branch to the destination.
1622     int delta = TII->getInstSizeInBytes(MBB->back());
1623     BBInfo[MBB->getNumber()].Size -= delta;
1624     MBB->back().eraseFromParent();
1625     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1626   }
1627   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1628 
1629   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1630                << " also invert condition and change dest. to BB#"
1631                << NextBB->getNumber() << "\n");
1632 
1633   // Insert a new conditional branch and a new unconditional branch.
1634   // Also update the ImmBranch as well as adding a new entry for the new branch.
1635   if (MI->getNumExplicitOperands() == 2) {
1636     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1637            .addReg(MI->getOperand(0).getReg())
1638            .addMBB(NextBB);
1639   } else {
1640     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1641            .addMBB(NextBB);
1642   }
1643   Br.MI = &MBB->back();
1644   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1645   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1646   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1647   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1648   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1649 
1650   // Remove the old conditional branch.  It may or may not still be in MBB.
1651   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1652   MI->eraseFromParent();
1653   adjustBBOffsetsAfter(MBB);
1654   return true;
1655 }
1656 
1657 
1658 void MipsConstantIslands::prescanForConstants() {
1659   unsigned J = 0;
1660   (void)J;
1661   for (MachineFunction::iterator B =
1662          MF->begin(), E = MF->end(); B != E; ++B) {
1663     for (MachineBasicBlock::instr_iterator I =
1664         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1665       switch(I->getDesc().getOpcode()) {
1666         case Mips::LwConstant32: {
1667           PrescannedForConstants = true;
1668           DEBUG(dbgs() << "constant island constant " << *I << "\n");
1669           J = I->getNumOperands();
1670           DEBUG(dbgs() << "num operands " << J  << "\n");
1671           MachineOperand& Literal = I->getOperand(1);
1672           if (Literal.isImm()) {
1673             int64_t V = Literal.getImm();
1674             DEBUG(dbgs() << "literal " << V  << "\n");
1675             Type *Int32Ty =
1676               Type::getInt32Ty(MF->getFunction()->getContext());
1677             const Constant *C = ConstantInt::get(Int32Ty, V);
1678             unsigned index = MCP->getConstantPoolIndex(C, 4);
1679             I->getOperand(2).ChangeToImmediate(index);
1680             DEBUG(dbgs() << "constant island constant " << *I << "\n");
1681             I->setDesc(TII->get(Mips::LwRxPcTcp16));
1682             I->RemoveOperand(1);
1683             I->RemoveOperand(1);
1684             I->addOperand(MachineOperand::CreateCPI(index, 0));
1685             I->addOperand(MachineOperand::CreateImm(4));
1686           }
1687           break;
1688         }
1689         default:
1690           break;
1691       }
1692     }
1693   }
1694 }
1695