1 //===--- HexagonBitSimplify.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "hexbit" 11 12 #include "HexagonBitTracker.h" 13 #include "HexagonTargetMachine.h" 14 #include "llvm/CodeGen/MachineDominators.h" 15 #include "llvm/CodeGen/MachineFunctionPass.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 using namespace llvm; 26 27 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden, 28 cl::init(true), cl::desc("Preserve subregisters in tied operands")); 29 30 namespace llvm { 31 void initializeHexagonBitSimplifyPass(PassRegistry& Registry); 32 FunctionPass *createHexagonBitSimplify(); 33 } 34 35 namespace { 36 // Set of virtual registers, based on BitVector. 37 struct RegisterSet : private BitVector { 38 RegisterSet() : BitVector() {} 39 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} 40 RegisterSet(const RegisterSet &RS) : BitVector(RS) {} 41 42 using BitVector::clear; 43 using BitVector::count; 44 45 unsigned find_first() const { 46 int First = BitVector::find_first(); 47 if (First < 0) 48 return 0; 49 return x2v(First); 50 } 51 52 unsigned find_next(unsigned Prev) const { 53 int Next = BitVector::find_next(v2x(Prev)); 54 if (Next < 0) 55 return 0; 56 return x2v(Next); 57 } 58 59 RegisterSet &insert(unsigned R) { 60 unsigned Idx = v2x(R); 61 ensure(Idx); 62 return static_cast<RegisterSet&>(BitVector::set(Idx)); 63 } 64 RegisterSet &remove(unsigned R) { 65 unsigned Idx = v2x(R); 66 if (Idx >= size()) 67 return *this; 68 return static_cast<RegisterSet&>(BitVector::reset(Idx)); 69 } 70 71 RegisterSet &insert(const RegisterSet &Rs) { 72 return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); 73 } 74 RegisterSet &remove(const RegisterSet &Rs) { 75 return static_cast<RegisterSet&>(BitVector::reset(Rs)); 76 } 77 78 reference operator[](unsigned R) { 79 unsigned Idx = v2x(R); 80 ensure(Idx); 81 return BitVector::operator[](Idx); 82 } 83 bool operator[](unsigned R) const { 84 unsigned Idx = v2x(R); 85 assert(Idx < size()); 86 return BitVector::operator[](Idx); 87 } 88 bool has(unsigned R) const { 89 unsigned Idx = v2x(R); 90 if (Idx >= size()) 91 return false; 92 return BitVector::test(Idx); 93 } 94 95 bool empty() const { 96 return !BitVector::any(); 97 } 98 bool includes(const RegisterSet &Rs) const { 99 // A.BitVector::test(B) <=> A-B != {} 100 return !Rs.BitVector::test(*this); 101 } 102 bool intersects(const RegisterSet &Rs) const { 103 return BitVector::anyCommon(Rs); 104 } 105 106 private: 107 void ensure(unsigned Idx) { 108 if (size() <= Idx) 109 resize(std::max(Idx+1, 32U)); 110 } 111 static inline unsigned v2x(unsigned v) { 112 return TargetRegisterInfo::virtReg2Index(v); 113 } 114 static inline unsigned x2v(unsigned x) { 115 return TargetRegisterInfo::index2VirtReg(x); 116 } 117 }; 118 119 120 struct PrintRegSet { 121 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) 122 : RS(S), TRI(RI) {} 123 friend raw_ostream &operator<< (raw_ostream &OS, 124 const PrintRegSet &P); 125 private: 126 const RegisterSet &RS; 127 const TargetRegisterInfo *TRI; 128 }; 129 130 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) 131 LLVM_ATTRIBUTE_UNUSED; 132 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { 133 OS << '{'; 134 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) 135 OS << ' ' << PrintReg(R, P.TRI); 136 OS << " }"; 137 return OS; 138 } 139 } 140 141 142 namespace { 143 class Transformation; 144 145 class HexagonBitSimplify : public MachineFunctionPass { 146 public: 147 static char ID; 148 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) { 149 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry()); 150 } 151 virtual StringRef getPassName() const { 152 return "Hexagon bit simplification"; 153 } 154 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 155 AU.addRequired<MachineDominatorTree>(); 156 AU.addPreserved<MachineDominatorTree>(); 157 MachineFunctionPass::getAnalysisUsage(AU); 158 } 159 virtual bool runOnMachineFunction(MachineFunction &MF); 160 161 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); 162 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); 163 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, 164 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); 165 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, 166 uint16_t W); 167 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, 168 uint16_t W, uint64_t &U); 169 static bool replaceReg(unsigned OldR, unsigned NewR, 170 MachineRegisterInfo &MRI); 171 static bool getSubregMask(const BitTracker::RegisterRef &RR, 172 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); 173 static bool replaceRegWithSub(unsigned OldR, unsigned NewR, 174 unsigned NewSR, MachineRegisterInfo &MRI); 175 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR, 176 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI); 177 static bool parseRegSequence(const MachineInstr &I, 178 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH); 179 180 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, 181 uint16_t Begin); 182 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, 183 uint16_t Begin, const HexagonInstrInfo &HII); 184 185 static const TargetRegisterClass *getFinalVRegClass( 186 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); 187 static bool isTransparentCopy(const BitTracker::RegisterRef &RD, 188 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); 189 190 private: 191 MachineDominatorTree *MDT; 192 193 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); 194 static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, 195 unsigned NewSub = Hexagon::NoSubRegister); 196 }; 197 198 char HexagonBitSimplify::ID = 0; 199 typedef HexagonBitSimplify HBS; 200 201 202 // The purpose of this class is to provide a common facility to traverse 203 // the function top-down or bottom-up via the dominator tree, and keep 204 // track of the available registers. 205 class Transformation { 206 public: 207 bool TopDown; 208 Transformation(bool TD) : TopDown(TD) {} 209 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; 210 virtual ~Transformation() {} 211 }; 212 } 213 214 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit", 215 "Hexagon bit simplification", false, false) 216 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 217 INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit", 218 "Hexagon bit simplification", false, false) 219 220 221 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, 222 RegisterSet &AVs) { 223 MachineDomTreeNode *N = MDT->getNode(&B); 224 typedef GraphTraits<MachineDomTreeNode*> GTN; 225 bool Changed = false; 226 227 if (T.TopDown) 228 Changed = T.processBlock(B, AVs); 229 230 RegisterSet Defs; 231 for (auto &I : B) 232 getInstrDefs(I, Defs); 233 RegisterSet NewAVs = AVs; 234 NewAVs.insert(Defs); 235 236 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) { 237 MachineBasicBlock *SB = (*I)->getBlock(); 238 Changed |= visitBlock(*SB, T, NewAVs); 239 } 240 if (!T.TopDown) 241 Changed |= T.processBlock(B, AVs); 242 243 return Changed; 244 } 245 246 // 247 // Utility functions: 248 // 249 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, 250 RegisterSet &Defs) { 251 for (auto &Op : MI.operands()) { 252 if (!Op.isReg() || !Op.isDef()) 253 continue; 254 unsigned R = Op.getReg(); 255 if (!TargetRegisterInfo::isVirtualRegister(R)) 256 continue; 257 Defs.insert(R); 258 } 259 } 260 261 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, 262 RegisterSet &Uses) { 263 for (auto &Op : MI.operands()) { 264 if (!Op.isReg() || !Op.isUse()) 265 continue; 266 unsigned R = Op.getReg(); 267 if (!TargetRegisterInfo::isVirtualRegister(R)) 268 continue; 269 Uses.insert(R); 270 } 271 } 272 273 // Check if all the bits in range [B, E) in both cells are equal. 274 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, 275 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, 276 uint16_t W) { 277 for (uint16_t i = 0; i < W; ++i) { 278 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. 279 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) 280 return false; 281 // Same for RC2[i]. 282 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) 283 return false; 284 if (RC1[B1+i] != RC2[B2+i]) 285 return false; 286 } 287 return true; 288 } 289 290 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, 291 uint16_t B, uint16_t W) { 292 assert(B < RC.width() && B+W <= RC.width()); 293 for (uint16_t i = B; i < B+W; ++i) 294 if (!RC[i].is(0)) 295 return false; 296 return true; 297 } 298 299 300 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, 301 uint16_t B, uint16_t W, uint64_t &U) { 302 assert(B < RC.width() && B+W <= RC.width()); 303 int64_t T = 0; 304 for (uint16_t i = B+W; i > B; --i) { 305 const BitTracker::BitValue &BV = RC[i-1]; 306 T <<= 1; 307 if (BV.is(1)) 308 T |= 1; 309 else if (!BV.is(0)) 310 return false; 311 } 312 U = T; 313 return true; 314 } 315 316 317 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR, 318 MachineRegisterInfo &MRI) { 319 if (!TargetRegisterInfo::isVirtualRegister(OldR) || 320 !TargetRegisterInfo::isVirtualRegister(NewR)) 321 return false; 322 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); 323 decltype(End) NextI; 324 for (auto I = Begin; I != End; I = NextI) { 325 NextI = std::next(I); 326 I->setReg(NewR); 327 } 328 return Begin != End; 329 } 330 331 332 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR, 333 unsigned NewSR, MachineRegisterInfo &MRI) { 334 if (!TargetRegisterInfo::isVirtualRegister(OldR) || 335 !TargetRegisterInfo::isVirtualRegister(NewR)) 336 return false; 337 if (hasTiedUse(OldR, MRI, NewSR)) 338 return false; 339 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); 340 decltype(End) NextI; 341 for (auto I = Begin; I != End; I = NextI) { 342 NextI = std::next(I); 343 I->setReg(NewR); 344 I->setSubReg(NewSR); 345 } 346 return Begin != End; 347 } 348 349 350 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR, 351 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) { 352 if (!TargetRegisterInfo::isVirtualRegister(OldR) || 353 !TargetRegisterInfo::isVirtualRegister(NewR)) 354 return false; 355 if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR)) 356 return false; 357 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); 358 decltype(End) NextI; 359 for (auto I = Begin; I != End; I = NextI) { 360 NextI = std::next(I); 361 if (I->getSubReg() != OldSR) 362 continue; 363 I->setReg(NewR); 364 I->setSubReg(NewSR); 365 } 366 return Begin != End; 367 } 368 369 370 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB 371 // of Sub in Reg, and set Width to the size of Sub in bits. Return true, 372 // if this succeeded, otherwise return false. 373 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, 374 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { 375 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg); 376 if (RR.Sub == 0) { 377 Begin = 0; 378 Width = RC->getSize()*8; 379 return true; 380 } 381 382 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg); 383 if (RR.Sub == Hexagon::subreg_loreg) 384 Begin = 0; 385 386 switch (RC->getID()) { 387 case Hexagon::DoubleRegsRegClassID: 388 case Hexagon::VecDblRegsRegClassID: 389 case Hexagon::VecDblRegs128BRegClassID: 390 Width = RC->getSize()*8 / 2; 391 if (RR.Sub == Hexagon::subreg_hireg) 392 Begin = Width; 393 break; 394 default: 395 return false; 396 } 397 return true; 398 } 399 400 401 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high 402 // subregister. 403 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, 404 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) { 405 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); 406 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm(); 407 assert(Sub1 != Sub2); 408 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) { 409 SL = I.getOperand(1); 410 SH = I.getOperand(3); 411 return true; 412 } 413 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) { 414 SH = I.getOperand(1); 415 SL = I.getOperand(3); 416 return true; 417 } 418 return false; 419 } 420 421 422 // All stores (except 64-bit stores) take a 32-bit register as the source 423 // of the value to be stored. If the instruction stores into a location 424 // that is shorter than 32 bits, some bits of the source register are not 425 // used. For each store instruction, calculate the set of used bits in 426 // the source register, and set appropriate bits in Bits. Return true if 427 // the bits are calculated, false otherwise. 428 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, 429 uint16_t Begin) { 430 using namespace Hexagon; 431 432 switch (Opc) { 433 // Store byte 434 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32 435 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new 436 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32 437 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32 438 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 439 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 440 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new 441 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new 442 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new 443 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new 444 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32 445 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new 446 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32 447 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32 448 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 449 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 450 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new 451 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new 452 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new 453 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new 454 case S4_storerb_ap: // memb(Re32=#U6)=Rt32 455 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new 456 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32 457 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new 458 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32 459 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new 460 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32 461 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new 462 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32 463 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new 464 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32 465 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new 466 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32 467 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new 468 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 469 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 470 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 471 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 472 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new 473 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new 474 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new 475 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new 476 case S2_storerbgp: // memb(gp+#u16:0)=Rt32 477 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new 478 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32 479 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32 480 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32 481 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32 482 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new 483 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new 484 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new 485 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new 486 Bits.set(Begin, Begin+8); 487 return true; 488 489 // Store low half 490 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32 491 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new 492 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32 493 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32 494 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 495 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 496 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new 497 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new 498 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new 499 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new 500 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32 501 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new 502 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32 503 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32 504 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 505 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 506 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new 507 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new 508 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new 509 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new 510 case S4_storerh_ap: // memh(Re32=#U6)=Rt32 511 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new 512 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32 513 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new 514 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32 515 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new 516 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32 517 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new 518 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32 519 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new 520 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32 521 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new 522 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32 523 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 524 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 525 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 526 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 527 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new 528 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new 529 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new 530 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new 531 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new 532 case S2_storerhgp: // memh(gp+#u16:1)=Rt32 533 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new 534 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32 535 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32 536 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32 537 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32 538 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new 539 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new 540 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new 541 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new 542 Bits.set(Begin, Begin+16); 543 return true; 544 545 // Store high half 546 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32 547 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 548 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 549 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 550 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 551 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32 552 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 553 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 554 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 555 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 556 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32 557 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32 558 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32 559 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32 560 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 561 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32 562 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32 563 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 564 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 565 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 566 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 567 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32 568 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32 569 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32 570 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32 571 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32 572 Bits.set(Begin+16, Begin+32); 573 return true; 574 } 575 576 return false; 577 } 578 579 580 // For an instruction with opcode Opc, calculate the set of bits that it 581 // uses in a register in operand OpN. This only calculates the set of used 582 // bits for cases where it does not depend on any operands (as is the case 583 // in shifts, for example). For concrete instructions from a program, the 584 // operand may be a subregister of a larger register, while Bits would 585 // correspond to the larger register in its entirety. Because of that, 586 // the parameter Begin can be used to indicate which bit of Bits should be 587 // considered the LSB of of the operand. 588 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, 589 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { 590 using namespace Hexagon; 591 592 const MCInstrDesc &D = HII.get(Opc); 593 if (D.mayStore()) { 594 if (OpN == D.getNumOperands()-1) 595 return getUsedBitsInStore(Opc, Bits, Begin); 596 return false; 597 } 598 599 switch (Opc) { 600 // One register source. Used bits: R1[0-7]. 601 case A2_sxtb: 602 case A2_zxtb: 603 case A4_cmpbeqi: 604 case A4_cmpbgti: 605 case A4_cmpbgtui: 606 if (OpN == 1) { 607 Bits.set(Begin, Begin+8); 608 return true; 609 } 610 break; 611 612 // One register source. Used bits: R1[0-15]. 613 case A2_aslh: 614 case A2_sxth: 615 case A2_zxth: 616 case A4_cmpheqi: 617 case A4_cmphgti: 618 case A4_cmphgtui: 619 if (OpN == 1) { 620 Bits.set(Begin, Begin+16); 621 return true; 622 } 623 break; 624 625 // One register source. Used bits: R1[16-31]. 626 case A2_asrh: 627 if (OpN == 1) { 628 Bits.set(Begin+16, Begin+32); 629 return true; 630 } 631 break; 632 633 // Two register sources. Used bits: R1[0-7], R2[0-7]. 634 case A4_cmpbeq: 635 case A4_cmpbgt: 636 case A4_cmpbgtu: 637 if (OpN == 1) { 638 Bits.set(Begin, Begin+8); 639 return true; 640 } 641 break; 642 643 // Two register sources. Used bits: R1[0-15], R2[0-15]. 644 case A4_cmpheq: 645 case A4_cmphgt: 646 case A4_cmphgtu: 647 case A2_addh_h16_ll: 648 case A2_addh_h16_sat_ll: 649 case A2_addh_l16_ll: 650 case A2_addh_l16_sat_ll: 651 case A2_combine_ll: 652 case A2_subh_h16_ll: 653 case A2_subh_h16_sat_ll: 654 case A2_subh_l16_ll: 655 case A2_subh_l16_sat_ll: 656 case M2_mpy_acc_ll_s0: 657 case M2_mpy_acc_ll_s1: 658 case M2_mpy_acc_sat_ll_s0: 659 case M2_mpy_acc_sat_ll_s1: 660 case M2_mpy_ll_s0: 661 case M2_mpy_ll_s1: 662 case M2_mpy_nac_ll_s0: 663 case M2_mpy_nac_ll_s1: 664 case M2_mpy_nac_sat_ll_s0: 665 case M2_mpy_nac_sat_ll_s1: 666 case M2_mpy_rnd_ll_s0: 667 case M2_mpy_rnd_ll_s1: 668 case M2_mpy_sat_ll_s0: 669 case M2_mpy_sat_ll_s1: 670 case M2_mpy_sat_rnd_ll_s0: 671 case M2_mpy_sat_rnd_ll_s1: 672 case M2_mpyd_acc_ll_s0: 673 case M2_mpyd_acc_ll_s1: 674 case M2_mpyd_ll_s0: 675 case M2_mpyd_ll_s1: 676 case M2_mpyd_nac_ll_s0: 677 case M2_mpyd_nac_ll_s1: 678 case M2_mpyd_rnd_ll_s0: 679 case M2_mpyd_rnd_ll_s1: 680 case M2_mpyu_acc_ll_s0: 681 case M2_mpyu_acc_ll_s1: 682 case M2_mpyu_ll_s0: 683 case M2_mpyu_ll_s1: 684 case M2_mpyu_nac_ll_s0: 685 case M2_mpyu_nac_ll_s1: 686 case M2_mpyud_acc_ll_s0: 687 case M2_mpyud_acc_ll_s1: 688 case M2_mpyud_ll_s0: 689 case M2_mpyud_ll_s1: 690 case M2_mpyud_nac_ll_s0: 691 case M2_mpyud_nac_ll_s1: 692 if (OpN == 1 || OpN == 2) { 693 Bits.set(Begin, Begin+16); 694 return true; 695 } 696 break; 697 698 // Two register sources. Used bits: R1[0-15], R2[16-31]. 699 case A2_addh_h16_lh: 700 case A2_addh_h16_sat_lh: 701 case A2_combine_lh: 702 case A2_subh_h16_lh: 703 case A2_subh_h16_sat_lh: 704 case M2_mpy_acc_lh_s0: 705 case M2_mpy_acc_lh_s1: 706 case M2_mpy_acc_sat_lh_s0: 707 case M2_mpy_acc_sat_lh_s1: 708 case M2_mpy_lh_s0: 709 case M2_mpy_lh_s1: 710 case M2_mpy_nac_lh_s0: 711 case M2_mpy_nac_lh_s1: 712 case M2_mpy_nac_sat_lh_s0: 713 case M2_mpy_nac_sat_lh_s1: 714 case M2_mpy_rnd_lh_s0: 715 case M2_mpy_rnd_lh_s1: 716 case M2_mpy_sat_lh_s0: 717 case M2_mpy_sat_lh_s1: 718 case M2_mpy_sat_rnd_lh_s0: 719 case M2_mpy_sat_rnd_lh_s1: 720 case M2_mpyd_acc_lh_s0: 721 case M2_mpyd_acc_lh_s1: 722 case M2_mpyd_lh_s0: 723 case M2_mpyd_lh_s1: 724 case M2_mpyd_nac_lh_s0: 725 case M2_mpyd_nac_lh_s1: 726 case M2_mpyd_rnd_lh_s0: 727 case M2_mpyd_rnd_lh_s1: 728 case M2_mpyu_acc_lh_s0: 729 case M2_mpyu_acc_lh_s1: 730 case M2_mpyu_lh_s0: 731 case M2_mpyu_lh_s1: 732 case M2_mpyu_nac_lh_s0: 733 case M2_mpyu_nac_lh_s1: 734 case M2_mpyud_acc_lh_s0: 735 case M2_mpyud_acc_lh_s1: 736 case M2_mpyud_lh_s0: 737 case M2_mpyud_lh_s1: 738 case M2_mpyud_nac_lh_s0: 739 case M2_mpyud_nac_lh_s1: 740 // These four are actually LH. 741 case A2_addh_l16_hl: 742 case A2_addh_l16_sat_hl: 743 case A2_subh_l16_hl: 744 case A2_subh_l16_sat_hl: 745 if (OpN == 1) { 746 Bits.set(Begin, Begin+16); 747 return true; 748 } 749 if (OpN == 2) { 750 Bits.set(Begin+16, Begin+32); 751 return true; 752 } 753 break; 754 755 // Two register sources, used bits: R1[16-31], R2[0-15]. 756 case A2_addh_h16_hl: 757 case A2_addh_h16_sat_hl: 758 case A2_combine_hl: 759 case A2_subh_h16_hl: 760 case A2_subh_h16_sat_hl: 761 case M2_mpy_acc_hl_s0: 762 case M2_mpy_acc_hl_s1: 763 case M2_mpy_acc_sat_hl_s0: 764 case M2_mpy_acc_sat_hl_s1: 765 case M2_mpy_hl_s0: 766 case M2_mpy_hl_s1: 767 case M2_mpy_nac_hl_s0: 768 case M2_mpy_nac_hl_s1: 769 case M2_mpy_nac_sat_hl_s0: 770 case M2_mpy_nac_sat_hl_s1: 771 case M2_mpy_rnd_hl_s0: 772 case M2_mpy_rnd_hl_s1: 773 case M2_mpy_sat_hl_s0: 774 case M2_mpy_sat_hl_s1: 775 case M2_mpy_sat_rnd_hl_s0: 776 case M2_mpy_sat_rnd_hl_s1: 777 case M2_mpyd_acc_hl_s0: 778 case M2_mpyd_acc_hl_s1: 779 case M2_mpyd_hl_s0: 780 case M2_mpyd_hl_s1: 781 case M2_mpyd_nac_hl_s0: 782 case M2_mpyd_nac_hl_s1: 783 case M2_mpyd_rnd_hl_s0: 784 case M2_mpyd_rnd_hl_s1: 785 case M2_mpyu_acc_hl_s0: 786 case M2_mpyu_acc_hl_s1: 787 case M2_mpyu_hl_s0: 788 case M2_mpyu_hl_s1: 789 case M2_mpyu_nac_hl_s0: 790 case M2_mpyu_nac_hl_s1: 791 case M2_mpyud_acc_hl_s0: 792 case M2_mpyud_acc_hl_s1: 793 case M2_mpyud_hl_s0: 794 case M2_mpyud_hl_s1: 795 case M2_mpyud_nac_hl_s0: 796 case M2_mpyud_nac_hl_s1: 797 if (OpN == 1) { 798 Bits.set(Begin+16, Begin+32); 799 return true; 800 } 801 if (OpN == 2) { 802 Bits.set(Begin, Begin+16); 803 return true; 804 } 805 break; 806 807 // Two register sources, used bits: R1[16-31], R2[16-31]. 808 case A2_addh_h16_hh: 809 case A2_addh_h16_sat_hh: 810 case A2_combine_hh: 811 case A2_subh_h16_hh: 812 case A2_subh_h16_sat_hh: 813 case M2_mpy_acc_hh_s0: 814 case M2_mpy_acc_hh_s1: 815 case M2_mpy_acc_sat_hh_s0: 816 case M2_mpy_acc_sat_hh_s1: 817 case M2_mpy_hh_s0: 818 case M2_mpy_hh_s1: 819 case M2_mpy_nac_hh_s0: 820 case M2_mpy_nac_hh_s1: 821 case M2_mpy_nac_sat_hh_s0: 822 case M2_mpy_nac_sat_hh_s1: 823 case M2_mpy_rnd_hh_s0: 824 case M2_mpy_rnd_hh_s1: 825 case M2_mpy_sat_hh_s0: 826 case M2_mpy_sat_hh_s1: 827 case M2_mpy_sat_rnd_hh_s0: 828 case M2_mpy_sat_rnd_hh_s1: 829 case M2_mpyd_acc_hh_s0: 830 case M2_mpyd_acc_hh_s1: 831 case M2_mpyd_hh_s0: 832 case M2_mpyd_hh_s1: 833 case M2_mpyd_nac_hh_s0: 834 case M2_mpyd_nac_hh_s1: 835 case M2_mpyd_rnd_hh_s0: 836 case M2_mpyd_rnd_hh_s1: 837 case M2_mpyu_acc_hh_s0: 838 case M2_mpyu_acc_hh_s1: 839 case M2_mpyu_hh_s0: 840 case M2_mpyu_hh_s1: 841 case M2_mpyu_nac_hh_s0: 842 case M2_mpyu_nac_hh_s1: 843 case M2_mpyud_acc_hh_s0: 844 case M2_mpyud_acc_hh_s1: 845 case M2_mpyud_hh_s0: 846 case M2_mpyud_hh_s1: 847 case M2_mpyud_nac_hh_s0: 848 case M2_mpyud_nac_hh_s1: 849 if (OpN == 1 || OpN == 2) { 850 Bits.set(Begin+16, Begin+32); 851 return true; 852 } 853 break; 854 } 855 856 return false; 857 } 858 859 860 // Calculate the register class that matches Reg:Sub. For example, if 861 // vreg1 is a double register, then vreg1:subreg_hireg would match "int" 862 // register class. 863 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( 864 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { 865 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 866 return nullptr; 867 auto *RC = MRI.getRegClass(RR.Reg); 868 if (RR.Sub == 0) 869 return RC; 870 871 auto VerifySR = [] (unsigned Sub) -> void { 872 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg); 873 }; 874 875 switch (RC->getID()) { 876 case Hexagon::DoubleRegsRegClassID: 877 VerifySR(RR.Sub); 878 return &Hexagon::IntRegsRegClass; 879 case Hexagon::VecDblRegsRegClassID: 880 VerifySR(RR.Sub); 881 return &Hexagon::VectorRegsRegClass; 882 case Hexagon::VecDblRegs128BRegClassID: 883 VerifySR(RR.Sub); 884 return &Hexagon::VectorRegs128BRegClass; 885 } 886 return nullptr; 887 } 888 889 890 // Check if RD could be replaced with RS at any possible use of RD. 891 // For example a predicate register cannot be replaced with a integer 892 // register, but a 64-bit register with a subregister can be replaced 893 // with a 32-bit register. 894 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, 895 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { 896 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) || 897 !TargetRegisterInfo::isVirtualRegister(RS.Reg)) 898 return false; 899 // Return false if one (or both) classes are nullptr. 900 auto *DRC = getFinalVRegClass(RD, MRI); 901 if (!DRC) 902 return false; 903 904 return DRC == getFinalVRegClass(RS, MRI); 905 } 906 907 908 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI, 909 unsigned NewSub) { 910 if (!PreserveTiedOps) 911 return false; 912 return any_of(MRI.use_operands(Reg), 913 [NewSub] (const MachineOperand &Op) -> bool { 914 return Op.getSubReg() != NewSub && Op.isTied(); 915 }); 916 } 917 918 // 919 // Dead code elimination 920 // 921 namespace { 922 class DeadCodeElimination { 923 public: 924 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) 925 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), 926 MDT(mdt), MRI(mf.getRegInfo()) {} 927 928 bool run() { 929 return runOnNode(MDT.getRootNode()); 930 } 931 932 private: 933 bool isDead(unsigned R) const; 934 bool runOnNode(MachineDomTreeNode *N); 935 936 MachineFunction &MF; 937 const HexagonInstrInfo &HII; 938 MachineDominatorTree &MDT; 939 MachineRegisterInfo &MRI; 940 }; 941 } 942 943 944 bool DeadCodeElimination::isDead(unsigned R) const { 945 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { 946 MachineInstr *UseI = I->getParent(); 947 if (UseI->isDebugValue()) 948 continue; 949 if (UseI->isPHI()) { 950 assert(!UseI->getOperand(0).getSubReg()); 951 unsigned DR = UseI->getOperand(0).getReg(); 952 if (DR == R) 953 continue; 954 } 955 return false; 956 } 957 return true; 958 } 959 960 961 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { 962 bool Changed = false; 963 typedef GraphTraits<MachineDomTreeNode*> GTN; 964 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) 965 Changed |= runOnNode(*I); 966 967 MachineBasicBlock *B = N->getBlock(); 968 std::vector<MachineInstr*> Instrs; 969 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) 970 Instrs.push_back(&*I); 971 972 for (auto MI : Instrs) { 973 unsigned Opc = MI->getOpcode(); 974 // Do not touch lifetime markers. This is why the target-independent DCE 975 // cannot be used. 976 if (Opc == TargetOpcode::LIFETIME_START || 977 Opc == TargetOpcode::LIFETIME_END) 978 continue; 979 bool Store = false; 980 if (MI->isInlineAsm()) 981 continue; 982 // Delete PHIs if possible. 983 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store)) 984 continue; 985 986 bool AllDead = true; 987 SmallVector<unsigned,2> Regs; 988 for (auto &Op : MI->operands()) { 989 if (!Op.isReg() || !Op.isDef()) 990 continue; 991 unsigned R = Op.getReg(); 992 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) { 993 AllDead = false; 994 break; 995 } 996 Regs.push_back(R); 997 } 998 if (!AllDead) 999 continue; 1000 1001 B->erase(MI); 1002 for (unsigned i = 0, n = Regs.size(); i != n; ++i) 1003 MRI.markUsesInDebugValueAsUndef(Regs[i]); 1004 Changed = true; 1005 } 1006 1007 return Changed; 1008 } 1009 1010 1011 // 1012 // Eliminate redundant instructions 1013 // 1014 // This transformation will identify instructions where the output register 1015 // is the same as one of its input registers. This only works on instructions 1016 // that define a single register (unlike post-increment loads, for example). 1017 // The equality check is actually more detailed: the code calculates which 1018 // bits of the output are used, and only compares these bits with the input 1019 // registers. 1020 // If the output matches an input, the instruction is replaced with COPY. 1021 // The copies will be removed by another transformation. 1022 namespace { 1023 class RedundantInstrElimination : public Transformation { 1024 public: 1025 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, 1026 MachineRegisterInfo &mri) 1027 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} 1028 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1029 private: 1030 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, 1031 unsigned &LostB, unsigned &LostE); 1032 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, 1033 unsigned &LostB, unsigned &LostE); 1034 bool computeUsedBits(unsigned Reg, BitVector &Bits); 1035 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, 1036 uint16_t Begin); 1037 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); 1038 1039 const HexagonInstrInfo &HII; 1040 MachineRegisterInfo &MRI; 1041 BitTracker &BT; 1042 }; 1043 } 1044 1045 1046 // Check if the instruction is a lossy shift left, where the input being 1047 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range 1048 // of bit indices that are lost. 1049 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, 1050 unsigned OpN, unsigned &LostB, unsigned &LostE) { 1051 using namespace Hexagon; 1052 unsigned Opc = MI.getOpcode(); 1053 unsigned ImN, RegN, Width; 1054 switch (Opc) { 1055 case S2_asl_i_p: 1056 ImN = 2; 1057 RegN = 1; 1058 Width = 64; 1059 break; 1060 case S2_asl_i_p_acc: 1061 case S2_asl_i_p_and: 1062 case S2_asl_i_p_nac: 1063 case S2_asl_i_p_or: 1064 case S2_asl_i_p_xacc: 1065 ImN = 3; 1066 RegN = 2; 1067 Width = 64; 1068 break; 1069 case S2_asl_i_r: 1070 ImN = 2; 1071 RegN = 1; 1072 Width = 32; 1073 break; 1074 case S2_addasl_rrri: 1075 case S4_andi_asl_ri: 1076 case S4_ori_asl_ri: 1077 case S4_addi_asl_ri: 1078 case S4_subi_asl_ri: 1079 case S2_asl_i_r_acc: 1080 case S2_asl_i_r_and: 1081 case S2_asl_i_r_nac: 1082 case S2_asl_i_r_or: 1083 case S2_asl_i_r_sat: 1084 case S2_asl_i_r_xacc: 1085 ImN = 3; 1086 RegN = 2; 1087 Width = 32; 1088 break; 1089 default: 1090 return false; 1091 } 1092 1093 if (RegN != OpN) 1094 return false; 1095 1096 assert(MI.getOperand(ImN).isImm()); 1097 unsigned S = MI.getOperand(ImN).getImm(); 1098 if (S == 0) 1099 return false; 1100 LostB = Width-S; 1101 LostE = Width; 1102 return true; 1103 } 1104 1105 1106 // Check if the instruction is a lossy shift right, where the input being 1107 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range 1108 // of bit indices that are lost. 1109 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, 1110 unsigned OpN, unsigned &LostB, unsigned &LostE) { 1111 using namespace Hexagon; 1112 unsigned Opc = MI.getOpcode(); 1113 unsigned ImN, RegN; 1114 switch (Opc) { 1115 case S2_asr_i_p: 1116 case S2_lsr_i_p: 1117 ImN = 2; 1118 RegN = 1; 1119 break; 1120 case S2_asr_i_p_acc: 1121 case S2_asr_i_p_and: 1122 case S2_asr_i_p_nac: 1123 case S2_asr_i_p_or: 1124 case S2_lsr_i_p_acc: 1125 case S2_lsr_i_p_and: 1126 case S2_lsr_i_p_nac: 1127 case S2_lsr_i_p_or: 1128 case S2_lsr_i_p_xacc: 1129 ImN = 3; 1130 RegN = 2; 1131 break; 1132 case S2_asr_i_r: 1133 case S2_lsr_i_r: 1134 ImN = 2; 1135 RegN = 1; 1136 break; 1137 case S4_andi_lsr_ri: 1138 case S4_ori_lsr_ri: 1139 case S4_addi_lsr_ri: 1140 case S4_subi_lsr_ri: 1141 case S2_asr_i_r_acc: 1142 case S2_asr_i_r_and: 1143 case S2_asr_i_r_nac: 1144 case S2_asr_i_r_or: 1145 case S2_lsr_i_r_acc: 1146 case S2_lsr_i_r_and: 1147 case S2_lsr_i_r_nac: 1148 case S2_lsr_i_r_or: 1149 case S2_lsr_i_r_xacc: 1150 ImN = 3; 1151 RegN = 2; 1152 break; 1153 1154 default: 1155 return false; 1156 } 1157 1158 if (RegN != OpN) 1159 return false; 1160 1161 assert(MI.getOperand(ImN).isImm()); 1162 unsigned S = MI.getOperand(ImN).getImm(); 1163 LostB = 0; 1164 LostE = S; 1165 return true; 1166 } 1167 1168 1169 // Calculate the bit vector that corresponds to the used bits of register Reg. 1170 // The vector Bits has the same size, as the size of Reg in bits. If the cal- 1171 // culation fails (i.e. the used bits are unknown), it returns false. Other- 1172 // wise, it returns true and sets the corresponding bits in Bits. 1173 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { 1174 BitVector Used(Bits.size()); 1175 RegisterSet Visited; 1176 std::vector<unsigned> Pending; 1177 Pending.push_back(Reg); 1178 1179 for (unsigned i = 0; i < Pending.size(); ++i) { 1180 unsigned R = Pending[i]; 1181 if (Visited.has(R)) 1182 continue; 1183 Visited.insert(R); 1184 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { 1185 BitTracker::RegisterRef UR = *I; 1186 unsigned B, W; 1187 if (!HBS::getSubregMask(UR, B, W, MRI)) 1188 return false; 1189 MachineInstr &UseI = *I->getParent(); 1190 if (UseI.isPHI() || UseI.isCopy()) { 1191 unsigned DefR = UseI.getOperand(0).getReg(); 1192 if (!TargetRegisterInfo::isVirtualRegister(DefR)) 1193 return false; 1194 Pending.push_back(DefR); 1195 } else { 1196 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B)) 1197 return false; 1198 } 1199 } 1200 } 1201 Bits |= Used; 1202 return true; 1203 } 1204 1205 1206 // Calculate the bits used by instruction MI in a register in operand OpN. 1207 // Return true/false if the calculation succeeds/fails. If is succeeds, set 1208 // used bits in Bits. This function does not reset any bits in Bits, so 1209 // subsequent calls over different instructions will result in the union 1210 // of the used bits in all these instructions. 1211 // The register in question may be used with a sub-register, whereas Bits 1212 // holds the bits for the entire register. To keep track of that, the 1213 // argument Begin indicates where in Bits is the lowest-significant bit 1214 // of the register used in operand OpN. For example, in instruction: 1215 // vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10 1216 // the operand 1 is a 32-bit register, which happens to be a subregister 1217 // of the 64-bit register vreg2, and that subregister starts at position 32. 1218 // In this case Begin=32, since Bits[32] would be the lowest-significant bit 1219 // of vreg2:subreg_hireg. 1220 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, 1221 unsigned OpN, BitVector &Bits, uint16_t Begin) { 1222 unsigned Opc = MI.getOpcode(); 1223 BitVector T(Bits.size()); 1224 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII); 1225 // Even if we don't have bits yet, we could still provide some information 1226 // if the instruction is a lossy shift: the lost bits will be marked as 1227 // not used. 1228 unsigned LB, LE; 1229 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) { 1230 assert(MI.getOperand(OpN).isReg()); 1231 BitTracker::RegisterRef RR = MI.getOperand(OpN); 1232 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); 1233 uint16_t Width = RC->getSize()*8; 1234 1235 if (!GotBits) 1236 T.set(Begin, Begin+Width); 1237 assert(LB <= LE && LB < Width && LE <= Width); 1238 T.reset(Begin+LB, Begin+LE); 1239 GotBits = true; 1240 } 1241 if (GotBits) 1242 Bits |= T; 1243 return GotBits; 1244 } 1245 1246 1247 // Calculates the used bits in RD ("defined register"), and checks if these 1248 // bits in RS ("used register") and RD are identical. 1249 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, 1250 BitTracker::RegisterRef RS) { 1251 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); 1252 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 1253 1254 unsigned DB, DW; 1255 if (!HBS::getSubregMask(RD, DB, DW, MRI)) 1256 return false; 1257 unsigned SB, SW; 1258 if (!HBS::getSubregMask(RS, SB, SW, MRI)) 1259 return false; 1260 if (SW != DW) 1261 return false; 1262 1263 BitVector Used(DC.width()); 1264 if (!computeUsedBits(RD.Reg, Used)) 1265 return false; 1266 1267 for (unsigned i = 0; i != DW; ++i) 1268 if (Used[i+DB] && DC[DB+i] != SC[SB+i]) 1269 return false; 1270 return true; 1271 } 1272 1273 1274 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, 1275 const RegisterSet&) { 1276 if (!BT.reached(&B)) 1277 return false; 1278 bool Changed = false; 1279 1280 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) { 1281 NextI = std::next(I); 1282 MachineInstr *MI = &*I; 1283 1284 if (MI->getOpcode() == TargetOpcode::COPY) 1285 continue; 1286 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) 1287 continue; 1288 unsigned NumD = MI->getDesc().getNumDefs(); 1289 if (NumD != 1) 1290 continue; 1291 1292 BitTracker::RegisterRef RD = MI->getOperand(0); 1293 if (!BT.has(RD.Reg)) 1294 continue; 1295 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); 1296 auto At = MI->isPHI() ? B.getFirstNonPHI() 1297 : MachineBasicBlock::iterator(MI); 1298 1299 // Find a source operand that is equal to the result. 1300 for (auto &Op : MI->uses()) { 1301 if (!Op.isReg()) 1302 continue; 1303 BitTracker::RegisterRef RS = Op; 1304 if (!BT.has(RS.Reg)) 1305 continue; 1306 if (!HBS::isTransparentCopy(RD, RS, MRI)) 1307 continue; 1308 1309 unsigned BN, BW; 1310 if (!HBS::getSubregMask(RS, BN, BW, MRI)) 1311 continue; 1312 1313 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 1314 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW)) 1315 continue; 1316 1317 // If found, replace the instruction with a COPY. 1318 const DebugLoc &DL = MI->getDebugLoc(); 1319 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); 1320 unsigned NewR = MRI.createVirtualRegister(FRC); 1321 MachineInstr *CopyI = 1322 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 1323 .addReg(RS.Reg, 0, RS.Sub); 1324 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 1325 // This pass can create copies between registers that don't have the 1326 // exact same values. Updating the tracker has to involve updating 1327 // all dependent cells. Example: 1328 // vreg1 = inst vreg2 ; vreg1 != vreg2, but used bits are equal 1329 // 1330 // vreg3 = copy vreg2 ; <- inserted 1331 // ... = vreg3 ; <- replaced from vreg2 1332 // Indirectly, we can create a "copy" between vreg1 and vreg2 even 1333 // though their exact values do not match. 1334 BT.visit(*CopyI); 1335 Changed = true; 1336 break; 1337 } 1338 } 1339 1340 return Changed; 1341 } 1342 1343 1344 // 1345 // Const generation 1346 // 1347 // Recognize instructions that produce constant values known at compile-time. 1348 // Replace them with register definitions that load these constants directly. 1349 namespace { 1350 class ConstGeneration : public Transformation { 1351 public: 1352 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, 1353 MachineRegisterInfo &mri) 1354 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} 1355 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1356 static bool isTfrConst(const MachineInstr &MI); 1357 private: 1358 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C, 1359 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL); 1360 1361 const HexagonInstrInfo &HII; 1362 MachineRegisterInfo &MRI; 1363 BitTracker &BT; 1364 }; 1365 } 1366 1367 bool ConstGeneration::isTfrConst(const MachineInstr &MI) { 1368 unsigned Opc = MI.getOpcode(); 1369 switch (Opc) { 1370 case Hexagon::A2_combineii: 1371 case Hexagon::A4_combineii: 1372 case Hexagon::A2_tfrsi: 1373 case Hexagon::A2_tfrpi: 1374 case Hexagon::PS_true: 1375 case Hexagon::PS_false: 1376 case Hexagon::CONST32: 1377 case Hexagon::CONST64: 1378 return true; 1379 } 1380 return false; 1381 } 1382 1383 1384 // Generate a transfer-immediate instruction that is appropriate for the 1385 // register class and the actual value being transferred. 1386 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, 1387 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) { 1388 unsigned Reg = MRI.createVirtualRegister(RC); 1389 if (RC == &Hexagon::IntRegsRegClass) { 1390 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg) 1391 .addImm(int32_t(C)); 1392 return Reg; 1393 } 1394 1395 if (RC == &Hexagon::DoubleRegsRegClass) { 1396 if (isInt<8>(C)) { 1397 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg) 1398 .addImm(C); 1399 return Reg; 1400 } 1401 1402 unsigned Lo = Lo_32(C), Hi = Hi_32(C); 1403 if (isInt<8>(Lo) || isInt<8>(Hi)) { 1404 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii 1405 : Hexagon::A4_combineii; 1406 BuildMI(B, At, DL, HII.get(Opc), Reg) 1407 .addImm(int32_t(Hi)) 1408 .addImm(int32_t(Lo)); 1409 return Reg; 1410 } 1411 1412 BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg) 1413 .addImm(C); 1414 return Reg; 1415 } 1416 1417 if (RC == &Hexagon::PredRegsRegClass) { 1418 unsigned Opc; 1419 if (C == 0) 1420 Opc = Hexagon::PS_false; 1421 else if ((C & 0xFF) == 0xFF) 1422 Opc = Hexagon::PS_true; 1423 else 1424 return 0; 1425 BuildMI(B, At, DL, HII.get(Opc), Reg); 1426 return Reg; 1427 } 1428 1429 return 0; 1430 } 1431 1432 1433 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { 1434 if (!BT.reached(&B)) 1435 return false; 1436 bool Changed = false; 1437 RegisterSet Defs; 1438 1439 for (auto I = B.begin(), E = B.end(); I != E; ++I) { 1440 if (isTfrConst(*I)) 1441 continue; 1442 Defs.clear(); 1443 HBS::getInstrDefs(*I, Defs); 1444 if (Defs.count() != 1) 1445 continue; 1446 unsigned DR = Defs.find_first(); 1447 if (!TargetRegisterInfo::isVirtualRegister(DR)) 1448 continue; 1449 uint64_t U; 1450 const BitTracker::RegisterCell &DRC = BT.lookup(DR); 1451 if (HBS::getConst(DRC, 0, DRC.width(), U)) { 1452 int64_t C = U; 1453 DebugLoc DL = I->getDebugLoc(); 1454 auto At = I->isPHI() ? B.getFirstNonPHI() : I; 1455 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL); 1456 if (ImmReg) { 1457 HBS::replaceReg(DR, ImmReg, MRI); 1458 BT.put(ImmReg, DRC); 1459 Changed = true; 1460 } 1461 } 1462 } 1463 return Changed; 1464 } 1465 1466 1467 // 1468 // Copy generation 1469 // 1470 // Identify pairs of available registers which hold identical values. 1471 // In such cases, only one of them needs to be calculated, the other one 1472 // will be defined as a copy of the first. 1473 // 1474 // Copy propagation 1475 // 1476 // Eliminate register copies RD = RS, by replacing the uses of RD with 1477 // with uses of RS. 1478 namespace { 1479 class CopyGeneration : public Transformation { 1480 public: 1481 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, 1482 MachineRegisterInfo &mri) 1483 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} 1484 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1485 private: 1486 bool findMatch(const BitTracker::RegisterRef &Inp, 1487 BitTracker::RegisterRef &Out, const RegisterSet &AVs); 1488 1489 const HexagonInstrInfo &HII; 1490 MachineRegisterInfo &MRI; 1491 BitTracker &BT; 1492 RegisterSet Forbidden; 1493 }; 1494 1495 class CopyPropagation : public Transformation { 1496 public: 1497 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) 1498 : Transformation(false), MRI(mri) {} 1499 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1500 static bool isCopyReg(unsigned Opc, bool NoConv); 1501 private: 1502 bool propagateRegCopy(MachineInstr &MI); 1503 1504 MachineRegisterInfo &MRI; 1505 }; 1506 1507 } 1508 1509 1510 /// Check if there is a register in AVs that is identical to Inp. If so, 1511 /// set Out to the found register. The output may be a pair Reg:Sub. 1512 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, 1513 BitTracker::RegisterRef &Out, const RegisterSet &AVs) { 1514 if (!BT.has(Inp.Reg)) 1515 return false; 1516 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg); 1517 auto *FRC = HBS::getFinalVRegClass(Inp, MRI); 1518 unsigned B, W; 1519 if (!HBS::getSubregMask(Inp, B, W, MRI)) 1520 return false; 1521 1522 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) { 1523 if (!BT.has(R) || Forbidden[R]) 1524 continue; 1525 const BitTracker::RegisterCell &RC = BT.lookup(R); 1526 unsigned RW = RC.width(); 1527 if (W == RW) { 1528 if (FRC != MRI.getRegClass(R)) 1529 continue; 1530 if (!HBS::isTransparentCopy(R, Inp, MRI)) 1531 continue; 1532 if (!HBS::isEqual(InpRC, B, RC, 0, W)) 1533 continue; 1534 Out.Reg = R; 1535 Out.Sub = 0; 1536 return true; 1537 } 1538 // Check if there is a super-register, whose part (with a subregister) 1539 // is equal to the input. 1540 // Only do double registers for now. 1541 if (W*2 != RW) 1542 continue; 1543 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass) 1544 continue; 1545 1546 if (HBS::isEqual(InpRC, B, RC, 0, W)) 1547 Out.Sub = Hexagon::subreg_loreg; 1548 else if (HBS::isEqual(InpRC, B, RC, W, W)) 1549 Out.Sub = Hexagon::subreg_hireg; 1550 else 1551 continue; 1552 Out.Reg = R; 1553 if (HBS::isTransparentCopy(Out, Inp, MRI)) 1554 return true; 1555 } 1556 return false; 1557 } 1558 1559 1560 bool CopyGeneration::processBlock(MachineBasicBlock &B, 1561 const RegisterSet &AVs) { 1562 if (!BT.reached(&B)) 1563 return false; 1564 RegisterSet AVB(AVs); 1565 bool Changed = false; 1566 RegisterSet Defs; 1567 1568 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; 1569 ++I, AVB.insert(Defs)) { 1570 NextI = std::next(I); 1571 Defs.clear(); 1572 HBS::getInstrDefs(*I, Defs); 1573 1574 unsigned Opc = I->getOpcode(); 1575 if (CopyPropagation::isCopyReg(Opc, false) || 1576 ConstGeneration::isTfrConst(*I)) 1577 continue; 1578 1579 DebugLoc DL = I->getDebugLoc(); 1580 auto At = I->isPHI() ? B.getFirstNonPHI() : I; 1581 1582 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) { 1583 BitTracker::RegisterRef MR; 1584 auto *FRC = HBS::getFinalVRegClass(R, MRI); 1585 1586 if (findMatch(R, MR, AVB)) { 1587 unsigned NewR = MRI.createVirtualRegister(FRC); 1588 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) 1589 .addReg(MR.Reg, 0, MR.Sub); 1590 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR)); 1591 HBS::replaceReg(R, NewR, MRI); 1592 Forbidden.insert(R); 1593 continue; 1594 } 1595 1596 if (FRC == &Hexagon::DoubleRegsRegClass || 1597 FRC == &Hexagon::VecDblRegsRegClass || 1598 FRC == &Hexagon::VecDblRegs128BRegClass) { 1599 // Try to generate REG_SEQUENCE. 1600 BitTracker::RegisterRef TL = { R, Hexagon::subreg_loreg }; 1601 BitTracker::RegisterRef TH = { R, Hexagon::subreg_hireg }; 1602 BitTracker::RegisterRef ML, MH; 1603 if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) { 1604 auto *FRC = HBS::getFinalVRegClass(R, MRI); 1605 unsigned NewR = MRI.createVirtualRegister(FRC); 1606 BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR) 1607 .addReg(ML.Reg, 0, ML.Sub) 1608 .addImm(Hexagon::subreg_loreg) 1609 .addReg(MH.Reg, 0, MH.Sub) 1610 .addImm(Hexagon::subreg_hireg); 1611 BT.put(BitTracker::RegisterRef(NewR), BT.get(R)); 1612 HBS::replaceReg(R, NewR, MRI); 1613 Forbidden.insert(R); 1614 } 1615 } 1616 } 1617 } 1618 1619 return Changed; 1620 } 1621 1622 1623 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) { 1624 switch (Opc) { 1625 case TargetOpcode::COPY: 1626 case TargetOpcode::REG_SEQUENCE: 1627 case Hexagon::A4_combineir: 1628 case Hexagon::A4_combineri: 1629 return true; 1630 case Hexagon::A2_tfr: 1631 case Hexagon::A2_tfrp: 1632 case Hexagon::A2_combinew: 1633 case Hexagon::V6_vcombine: 1634 case Hexagon::V6_vcombine_128B: 1635 return NoConv; 1636 default: 1637 break; 1638 } 1639 return false; 1640 } 1641 1642 1643 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { 1644 bool Changed = false; 1645 unsigned Opc = MI.getOpcode(); 1646 BitTracker::RegisterRef RD = MI.getOperand(0); 1647 assert(MI.getOperand(0).getSubReg() == 0); 1648 1649 switch (Opc) { 1650 case TargetOpcode::COPY: 1651 case Hexagon::A2_tfr: 1652 case Hexagon::A2_tfrp: { 1653 BitTracker::RegisterRef RS = MI.getOperand(1); 1654 if (!HBS::isTransparentCopy(RD, RS, MRI)) 1655 break; 1656 if (RS.Sub != 0) 1657 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI); 1658 else 1659 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI); 1660 break; 1661 } 1662 case TargetOpcode::REG_SEQUENCE: { 1663 BitTracker::RegisterRef SL, SH; 1664 if (HBS::parseRegSequence(MI, SL, SH)) { 1665 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, 1666 SL.Reg, SL.Sub, MRI); 1667 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, 1668 SH.Reg, SH.Sub, MRI); 1669 } 1670 break; 1671 } 1672 case Hexagon::A2_combinew: 1673 case Hexagon::V6_vcombine: 1674 case Hexagon::V6_vcombine_128B: { 1675 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2); 1676 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, 1677 RL.Reg, RL.Sub, MRI); 1678 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, 1679 RH.Reg, RH.Sub, MRI); 1680 break; 1681 } 1682 case Hexagon::A4_combineir: 1683 case Hexagon::A4_combineri: { 1684 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; 1685 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg 1686 : Hexagon::subreg_hireg; 1687 BitTracker::RegisterRef RS = MI.getOperand(SrcX); 1688 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI); 1689 break; 1690 } 1691 } 1692 return Changed; 1693 } 1694 1695 1696 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { 1697 std::vector<MachineInstr*> Instrs; 1698 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) 1699 Instrs.push_back(&*I); 1700 1701 bool Changed = false; 1702 for (auto I : Instrs) { 1703 unsigned Opc = I->getOpcode(); 1704 if (!CopyPropagation::isCopyReg(Opc, true)) 1705 continue; 1706 Changed |= propagateRegCopy(*I); 1707 } 1708 1709 return Changed; 1710 } 1711 1712 1713 // 1714 // Bit simplification 1715 // 1716 // Recognize patterns that can be simplified and replace them with the 1717 // simpler forms. 1718 // This is by no means complete 1719 namespace { 1720 class BitSimplification : public Transformation { 1721 public: 1722 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii, 1723 const HexagonRegisterInfo &hri, MachineRegisterInfo &mri, 1724 MachineFunction &mf) 1725 : Transformation(true), HII(hii), HRI(hri), MRI(mri), MF(mf), BT(bt) {} 1726 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; 1727 private: 1728 struct RegHalf : public BitTracker::RegisterRef { 1729 bool Low; // Low/High halfword. 1730 }; 1731 1732 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, 1733 unsigned B, RegHalf &RH); 1734 bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum); 1735 1736 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, 1737 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); 1738 unsigned getCombineOpcode(bool HLow, bool LLow); 1739 1740 bool genStoreUpperHalf(MachineInstr *MI); 1741 bool genStoreImmediate(MachineInstr *MI); 1742 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, 1743 const BitTracker::RegisterCell &RC); 1744 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, 1745 const BitTracker::RegisterCell &RC); 1746 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, 1747 const BitTracker::RegisterCell &RC); 1748 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, 1749 const BitTracker::RegisterCell &RC); 1750 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, 1751 const BitTracker::RegisterCell &RC); 1752 1753 const HexagonInstrInfo &HII; 1754 const HexagonRegisterInfo &HRI; 1755 MachineRegisterInfo &MRI; 1756 MachineFunction &MF; 1757 BitTracker &BT; 1758 }; 1759 } 1760 1761 1762 // Check if the bits [B..B+16) in register cell RC form a valid halfword, 1763 // i.e. [0..16), [16..32), etc. of some register. If so, return true and 1764 // set the information about the found register in RH. 1765 bool BitSimplification::matchHalf(unsigned SelfR, 1766 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { 1767 // XXX This could be searching in the set of available registers, in case 1768 // the match is not exact. 1769 1770 // Match 16-bit chunks, where the RC[B..B+15] references exactly one 1771 // register and all the bits B..B+15 match between RC and the register. 1772 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, 1773 // and RC = { [0]:0 [1-15]:v1[1-15]... }. 1774 bool Low = false; 1775 unsigned I = B; 1776 while (I < B+16 && RC[I].num()) 1777 I++; 1778 if (I == B+16) 1779 return false; 1780 1781 unsigned Reg = RC[I].RefI.Reg; 1782 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B. 1783 if (P < I-B) 1784 return false; 1785 unsigned Pos = P - (I-B); 1786 1787 if (Reg == 0 || Reg == SelfR) // Don't match "self". 1788 return false; 1789 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1790 return false; 1791 if (!BT.has(Reg)) 1792 return false; 1793 1794 const BitTracker::RegisterCell &SC = BT.lookup(Reg); 1795 if (Pos+16 > SC.width()) 1796 return false; 1797 1798 for (unsigned i = 0; i < 16; ++i) { 1799 const BitTracker::BitValue &RV = RC[i+B]; 1800 if (RV.Type == BitTracker::BitValue::Ref) { 1801 if (RV.RefI.Reg != Reg) 1802 return false; 1803 if (RV.RefI.Pos != i+Pos) 1804 return false; 1805 continue; 1806 } 1807 if (RC[i+B] != SC[i+Pos]) 1808 return false; 1809 } 1810 1811 unsigned Sub = 0; 1812 switch (Pos) { 1813 case 0: 1814 Sub = Hexagon::subreg_loreg; 1815 Low = true; 1816 break; 1817 case 16: 1818 Sub = Hexagon::subreg_loreg; 1819 Low = false; 1820 break; 1821 case 32: 1822 Sub = Hexagon::subreg_hireg; 1823 Low = true; 1824 break; 1825 case 48: 1826 Sub = Hexagon::subreg_hireg; 1827 Low = false; 1828 break; 1829 default: 1830 return false; 1831 } 1832 1833 RH.Reg = Reg; 1834 RH.Sub = Sub; 1835 RH.Low = Low; 1836 // If the subregister is not valid with the register, set it to 0. 1837 if (!HBS::getFinalVRegClass(RH, MRI)) 1838 RH.Sub = 0; 1839 1840 return true; 1841 } 1842 1843 1844 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc, 1845 unsigned OpNum) { 1846 auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF); 1847 auto *RRC = HBS::getFinalVRegClass(R, MRI); 1848 return OpRC->hasSubClassEq(RRC); 1849 } 1850 1851 1852 // Check if RC matches the pattern of a S2_packhl. If so, return true and 1853 // set the inputs Rs and Rt. 1854 bool BitSimplification::matchPackhl(unsigned SelfR, 1855 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, 1856 BitTracker::RegisterRef &Rt) { 1857 RegHalf L1, H1, L2, H2; 1858 1859 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1)) 1860 return false; 1861 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1)) 1862 return false; 1863 1864 // Rs = H1.L1, Rt = H2.L2 1865 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) 1866 return false; 1867 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) 1868 return false; 1869 1870 Rs = H1; 1871 Rt = H2; 1872 return true; 1873 } 1874 1875 1876 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { 1877 return HLow ? LLow ? Hexagon::A2_combine_ll 1878 : Hexagon::A2_combine_lh 1879 : LLow ? Hexagon::A2_combine_hl 1880 : Hexagon::A2_combine_hh; 1881 } 1882 1883 1884 // If MI stores the upper halfword of a register (potentially obtained via 1885 // shifts or extracts), replace it with a storerf instruction. This could 1886 // cause the "extraction" code to become dead. 1887 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { 1888 unsigned Opc = MI->getOpcode(); 1889 if (Opc != Hexagon::S2_storerh_io) 1890 return false; 1891 1892 MachineOperand &ValOp = MI->getOperand(2); 1893 BitTracker::RegisterRef RS = ValOp; 1894 if (!BT.has(RS.Reg)) 1895 return false; 1896 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); 1897 RegHalf H; 1898 if (!matchHalf(0, RC, 0, H)) 1899 return false; 1900 if (H.Low) 1901 return false; 1902 MI->setDesc(HII.get(Hexagon::S2_storerf_io)); 1903 ValOp.setReg(H.Reg); 1904 ValOp.setSubReg(H.Sub); 1905 return true; 1906 } 1907 1908 1909 // If MI stores a value known at compile-time, and the value is within a range 1910 // that avoids using constant-extenders, replace it with a store-immediate. 1911 bool BitSimplification::genStoreImmediate(MachineInstr *MI) { 1912 unsigned Opc = MI->getOpcode(); 1913 unsigned Align = 0; 1914 switch (Opc) { 1915 case Hexagon::S2_storeri_io: 1916 Align++; 1917 case Hexagon::S2_storerh_io: 1918 Align++; 1919 case Hexagon::S2_storerb_io: 1920 break; 1921 default: 1922 return false; 1923 } 1924 1925 // Avoid stores to frame-indices (due to an unknown offset). 1926 if (!MI->getOperand(0).isReg()) 1927 return false; 1928 MachineOperand &OffOp = MI->getOperand(1); 1929 if (!OffOp.isImm()) 1930 return false; 1931 1932 int64_t Off = OffOp.getImm(); 1933 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). 1934 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1))) 1935 return false; 1936 // Source register: 1937 BitTracker::RegisterRef RS = MI->getOperand(2); 1938 if (!BT.has(RS.Reg)) 1939 return false; 1940 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); 1941 uint64_t U; 1942 if (!HBS::getConst(RC, 0, RC.width(), U)) 1943 return false; 1944 1945 // Only consider 8-bit values to avoid constant-extenders. 1946 int V; 1947 switch (Opc) { 1948 case Hexagon::S2_storerb_io: 1949 V = int8_t(U); 1950 break; 1951 case Hexagon::S2_storerh_io: 1952 V = int16_t(U); 1953 break; 1954 case Hexagon::S2_storeri_io: 1955 V = int32_t(U); 1956 break; 1957 } 1958 if (!isInt<8>(V)) 1959 return false; 1960 1961 MI->RemoveOperand(2); 1962 switch (Opc) { 1963 case Hexagon::S2_storerb_io: 1964 MI->setDesc(HII.get(Hexagon::S4_storeirb_io)); 1965 break; 1966 case Hexagon::S2_storerh_io: 1967 MI->setDesc(HII.get(Hexagon::S4_storeirh_io)); 1968 break; 1969 case Hexagon::S2_storeri_io: 1970 MI->setDesc(HII.get(Hexagon::S4_storeiri_io)); 1971 break; 1972 } 1973 MI->addOperand(MachineOperand::CreateImm(V)); 1974 return true; 1975 } 1976 1977 1978 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the 1979 // last instruction in a sequence that results in something equivalent to 1980 // the pack-halfwords. The intent is to cause the entire sequence to become 1981 // dead. 1982 bool BitSimplification::genPackhl(MachineInstr *MI, 1983 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 1984 unsigned Opc = MI->getOpcode(); 1985 if (Opc == Hexagon::S2_packhl) 1986 return false; 1987 BitTracker::RegisterRef Rs, Rt; 1988 if (!matchPackhl(RD.Reg, RC, Rs, Rt)) 1989 return false; 1990 if (!validateReg(Rs, Hexagon::S2_packhl, 1) || 1991 !validateReg(Rt, Hexagon::S2_packhl, 2)) 1992 return false; 1993 1994 MachineBasicBlock &B = *MI->getParent(); 1995 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); 1996 DebugLoc DL = MI->getDebugLoc(); 1997 auto At = MI->isPHI() ? B.getFirstNonPHI() 1998 : MachineBasicBlock::iterator(MI); 1999 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR) 2000 .addReg(Rs.Reg, 0, Rs.Sub) 2001 .addReg(Rt.Reg, 0, Rt.Sub); 2002 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2003 BT.put(BitTracker::RegisterRef(NewR), RC); 2004 return true; 2005 } 2006 2007 2008 // If MI produces halfword of the input in the low half of the output, 2009 // replace it with zero-extend or extractu. 2010 bool BitSimplification::genExtractHalf(MachineInstr *MI, 2011 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2012 RegHalf L; 2013 // Check for halfword in low 16 bits, zeros elsewhere. 2014 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16)) 2015 return false; 2016 2017 unsigned Opc = MI->getOpcode(); 2018 MachineBasicBlock &B = *MI->getParent(); 2019 DebugLoc DL = MI->getDebugLoc(); 2020 2021 // Prefer zxth, since zxth can go in any slot, while extractu only in 2022 // slots 2 and 3. 2023 unsigned NewR = 0; 2024 auto At = MI->isPHI() ? B.getFirstNonPHI() 2025 : MachineBasicBlock::iterator(MI); 2026 if (L.Low && Opc != Hexagon::A2_zxth) { 2027 if (validateReg(L, Hexagon::A2_zxth, 1)) { 2028 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2029 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR) 2030 .addReg(L.Reg, 0, L.Sub); 2031 } 2032 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { 2033 if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) { 2034 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2035 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR) 2036 .addReg(L.Reg, 0, L.Sub) 2037 .addImm(16); 2038 } 2039 } 2040 if (NewR == 0) 2041 return false; 2042 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2043 BT.put(BitTracker::RegisterRef(NewR), RC); 2044 return true; 2045 } 2046 2047 2048 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the 2049 // combine. 2050 bool BitSimplification::genCombineHalf(MachineInstr *MI, 2051 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2052 RegHalf L, H; 2053 // Check for combine h/l 2054 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H)) 2055 return false; 2056 // Do nothing if this is just a reg copy. 2057 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) 2058 return false; 2059 2060 unsigned Opc = MI->getOpcode(); 2061 unsigned COpc = getCombineOpcode(H.Low, L.Low); 2062 if (COpc == Opc) 2063 return false; 2064 if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2)) 2065 return false; 2066 2067 MachineBasicBlock &B = *MI->getParent(); 2068 DebugLoc DL = MI->getDebugLoc(); 2069 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2070 auto At = MI->isPHI() ? B.getFirstNonPHI() 2071 : MachineBasicBlock::iterator(MI); 2072 BuildMI(B, At, DL, HII.get(COpc), NewR) 2073 .addReg(H.Reg, 0, H.Sub) 2074 .addReg(L.Reg, 0, L.Sub); 2075 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2076 BT.put(BitTracker::RegisterRef(NewR), RC); 2077 return true; 2078 } 2079 2080 2081 // If MI resets high bits of a register and keeps the lower ones, replace it 2082 // with zero-extend byte/half, and-immediate, or extractu, as appropriate. 2083 bool BitSimplification::genExtractLow(MachineInstr *MI, 2084 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2085 unsigned Opc = MI->getOpcode(); 2086 switch (Opc) { 2087 case Hexagon::A2_zxtb: 2088 case Hexagon::A2_zxth: 2089 case Hexagon::S2_extractu: 2090 return false; 2091 } 2092 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) { 2093 int32_t Imm = MI->getOperand(2).getImm(); 2094 if (isInt<10>(Imm)) 2095 return false; 2096 } 2097 2098 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) 2099 return false; 2100 unsigned W = RC.width(); 2101 while (W > 0 && RC[W-1].is(0)) 2102 W--; 2103 if (W == 0 || W == RC.width()) 2104 return false; 2105 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb 2106 : (W == 16) ? Hexagon::A2_zxth 2107 : (W < 10) ? Hexagon::A2_andir 2108 : Hexagon::S2_extractu; 2109 MachineBasicBlock &B = *MI->getParent(); 2110 DebugLoc DL = MI->getDebugLoc(); 2111 2112 for (auto &Op : MI->uses()) { 2113 if (!Op.isReg()) 2114 continue; 2115 BitTracker::RegisterRef RS = Op; 2116 if (!BT.has(RS.Reg)) 2117 continue; 2118 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 2119 unsigned BN, BW; 2120 if (!HBS::getSubregMask(RS, BN, BW, MRI)) 2121 continue; 2122 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W)) 2123 continue; 2124 if (!validateReg(RS, NewOpc, 1)) 2125 continue; 2126 2127 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); 2128 auto At = MI->isPHI() ? B.getFirstNonPHI() 2129 : MachineBasicBlock::iterator(MI); 2130 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR) 2131 .addReg(RS.Reg, 0, RS.Sub); 2132 if (NewOpc == Hexagon::A2_andir) 2133 MIB.addImm((1 << W) - 1); 2134 else if (NewOpc == Hexagon::S2_extractu) 2135 MIB.addImm(W).addImm(0); 2136 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); 2137 BT.put(BitTracker::RegisterRef(NewR), RC); 2138 return true; 2139 } 2140 return false; 2141 } 2142 2143 2144 // Check for tstbit simplification opportunity, where the bit being checked 2145 // can be tracked back to another register. For example: 2146 // vreg2 = S2_lsr_i_r vreg1, 5 2147 // vreg3 = S2_tstbit_i vreg2, 0 2148 // => 2149 // vreg3 = S2_tstbit_i vreg1, 5 2150 bool BitSimplification::simplifyTstbit(MachineInstr *MI, 2151 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { 2152 unsigned Opc = MI->getOpcode(); 2153 if (Opc != Hexagon::S2_tstbit_i) 2154 return false; 2155 2156 unsigned BN = MI->getOperand(2).getImm(); 2157 BitTracker::RegisterRef RS = MI->getOperand(1); 2158 unsigned F, W; 2159 DebugLoc DL = MI->getDebugLoc(); 2160 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI)) 2161 return false; 2162 MachineBasicBlock &B = *MI->getParent(); 2163 auto At = MI->isPHI() ? B.getFirstNonPHI() 2164 : MachineBasicBlock::iterator(MI); 2165 2166 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); 2167 const BitTracker::BitValue &V = SC[F+BN]; 2168 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { 2169 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg); 2170 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is 2171 // a double register, need to use a subregister and adjust bit 2172 // number. 2173 unsigned P = UINT_MAX; 2174 BitTracker::RegisterRef RR(V.RefI.Reg, 0); 2175 if (TC == &Hexagon::DoubleRegsRegClass) { 2176 P = V.RefI.Pos; 2177 RR.Sub = Hexagon::subreg_loreg; 2178 if (P >= 32) { 2179 P -= 32; 2180 RR.Sub = Hexagon::subreg_hireg; 2181 } 2182 } else if (TC == &Hexagon::IntRegsRegClass) { 2183 P = V.RefI.Pos; 2184 } 2185 if (P != UINT_MAX) { 2186 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 2187 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR) 2188 .addReg(RR.Reg, 0, RR.Sub) 2189 .addImm(P); 2190 HBS::replaceReg(RD.Reg, NewR, MRI); 2191 BT.put(NewR, RC); 2192 return true; 2193 } 2194 } else if (V.is(0) || V.is(1)) { 2195 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); 2196 unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true; 2197 BuildMI(B, At, DL, HII.get(NewOpc), NewR); 2198 HBS::replaceReg(RD.Reg, NewR, MRI); 2199 return true; 2200 } 2201 2202 return false; 2203 } 2204 2205 2206 bool BitSimplification::processBlock(MachineBasicBlock &B, 2207 const RegisterSet &AVs) { 2208 if (!BT.reached(&B)) 2209 return false; 2210 bool Changed = false; 2211 RegisterSet AVB = AVs; 2212 RegisterSet Defs; 2213 2214 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) { 2215 MachineInstr *MI = &*I; 2216 Defs.clear(); 2217 HBS::getInstrDefs(*MI, Defs); 2218 2219 unsigned Opc = MI->getOpcode(); 2220 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) 2221 continue; 2222 2223 if (MI->mayStore()) { 2224 bool T = genStoreUpperHalf(MI); 2225 T = T || genStoreImmediate(MI); 2226 Changed |= T; 2227 continue; 2228 } 2229 2230 if (Defs.count() != 1) 2231 continue; 2232 const MachineOperand &Op0 = MI->getOperand(0); 2233 if (!Op0.isReg() || !Op0.isDef()) 2234 continue; 2235 BitTracker::RegisterRef RD = Op0; 2236 if (!BT.has(RD.Reg)) 2237 continue; 2238 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); 2239 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg); 2240 2241 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { 2242 bool T = genPackhl(MI, RD, RC); 2243 Changed |= T; 2244 continue; 2245 } 2246 2247 if (FRC->getID() == Hexagon::IntRegsRegClassID) { 2248 bool T = genExtractHalf(MI, RD, RC); 2249 T = T || genCombineHalf(MI, RD, RC); 2250 T = T || genExtractLow(MI, RD, RC); 2251 Changed |= T; 2252 continue; 2253 } 2254 2255 if (FRC->getID() == Hexagon::PredRegsRegClassID) { 2256 bool T = simplifyTstbit(MI, RD, RC); 2257 Changed |= T; 2258 continue; 2259 } 2260 } 2261 return Changed; 2262 } 2263 2264 2265 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { 2266 if (skipFunction(*MF.getFunction())) 2267 return false; 2268 2269 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2270 auto &HRI = *HST.getRegisterInfo(); 2271 auto &HII = *HST.getInstrInfo(); 2272 2273 MDT = &getAnalysis<MachineDominatorTree>(); 2274 MachineRegisterInfo &MRI = MF.getRegInfo(); 2275 bool Changed; 2276 2277 Changed = DeadCodeElimination(MF, *MDT).run(); 2278 2279 const HexagonEvaluator HE(HRI, MRI, HII, MF); 2280 BitTracker BT(HE, MF); 2281 DEBUG(BT.trace(true)); 2282 BT.run(); 2283 2284 MachineBasicBlock &Entry = MF.front(); 2285 2286 RegisterSet AIG; // Available registers for IG. 2287 ConstGeneration ImmG(BT, HII, MRI); 2288 Changed |= visitBlock(Entry, ImmG, AIG); 2289 2290 RegisterSet ARE; // Available registers for RIE. 2291 RedundantInstrElimination RIE(BT, HII, MRI); 2292 bool Ried = visitBlock(Entry, RIE, ARE); 2293 if (Ried) { 2294 Changed = true; 2295 BT.run(); 2296 } 2297 2298 RegisterSet ACG; // Available registers for CG. 2299 CopyGeneration CopyG(BT, HII, MRI); 2300 Changed |= visitBlock(Entry, CopyG, ACG); 2301 2302 RegisterSet ACP; // Available registers for CP. 2303 CopyPropagation CopyP(HRI, MRI); 2304 Changed |= visitBlock(Entry, CopyP, ACP); 2305 2306 Changed = DeadCodeElimination(MF, *MDT).run() || Changed; 2307 2308 BT.run(); 2309 RegisterSet ABS; // Available registers for BS. 2310 BitSimplification BitS(BT, HII, HRI, MRI, MF); 2311 Changed |= visitBlock(Entry, BitS, ABS); 2312 2313 Changed = DeadCodeElimination(MF, *MDT).run() || Changed; 2314 2315 if (Changed) { 2316 for (auto &B : MF) 2317 for (auto &I : B) 2318 I.clearKillInfo(); 2319 DeadCodeElimination(MF, *MDT).run(); 2320 } 2321 return Changed; 2322 } 2323 2324 2325 // Recognize loops where the code at the end of the loop matches the code 2326 // before the entry of the loop, and the matching code is such that is can 2327 // be simplified. This pass relies on the bit simplification above and only 2328 // prepares code in a way that can be handled by the bit simplifcation. 2329 // 2330 // This is the motivating testcase (and explanation): 2331 // 2332 // { 2333 // loop0(.LBB0_2, r1) // %for.body.preheader 2334 // r5:4 = memd(r0++#8) 2335 // } 2336 // { 2337 // r3 = lsr(r4, #16) 2338 // r7:6 = combine(r5, r5) 2339 // } 2340 // { 2341 // r3 = insert(r5, #16, #16) 2342 // r7:6 = vlsrw(r7:6, #16) 2343 // } 2344 // .LBB0_2: 2345 // { 2346 // memh(r2+#4) = r5 2347 // memh(r2+#6) = r6 # R6 is really R5.H 2348 // } 2349 // { 2350 // r2 = add(r2, #8) 2351 // memh(r2+#0) = r4 2352 // memh(r2+#2) = r3 # R3 is really R4.H 2353 // } 2354 // { 2355 // r5:4 = memd(r0++#8) 2356 // } 2357 // { # "Shuffling" code that sets up R3 and R6 2358 // r3 = lsr(r4, #16) # so that their halves can be stored in the 2359 // r7:6 = combine(r5, r5) # next iteration. This could be folded into 2360 // } # the stores if the code was at the beginning 2361 // { # of the loop iteration. Since the same code 2362 // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved 2363 // r7:6 = vlsrw(r7:6, #16) # there. 2364 // }:endloop0 2365 // 2366 // 2367 // The outcome: 2368 // 2369 // { 2370 // loop0(.LBB0_2, r1) 2371 // r5:4 = memd(r0++#8) 2372 // } 2373 // .LBB0_2: 2374 // { 2375 // memh(r2+#4) = r5 2376 // memh(r2+#6) = r5.h 2377 // } 2378 // { 2379 // r2 = add(r2, #8) 2380 // memh(r2+#0) = r4 2381 // memh(r2+#2) = r4.h 2382 // } 2383 // { 2384 // r5:4 = memd(r0++#8) 2385 // }:endloop0 2386 2387 namespace llvm { 2388 FunctionPass *createHexagonLoopRescheduling(); 2389 void initializeHexagonLoopReschedulingPass(PassRegistry&); 2390 } 2391 2392 namespace { 2393 class HexagonLoopRescheduling : public MachineFunctionPass { 2394 public: 2395 static char ID; 2396 HexagonLoopRescheduling() : MachineFunctionPass(ID), 2397 HII(0), HRI(0), MRI(0), BTP(0) { 2398 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry()); 2399 } 2400 2401 bool runOnMachineFunction(MachineFunction &MF) override; 2402 2403 private: 2404 const HexagonInstrInfo *HII; 2405 const HexagonRegisterInfo *HRI; 2406 MachineRegisterInfo *MRI; 2407 BitTracker *BTP; 2408 2409 struct LoopCand { 2410 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, 2411 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} 2412 MachineBasicBlock *LB, *PB, *EB; 2413 }; 2414 typedef std::vector<MachineInstr*> InstrList; 2415 struct InstrGroup { 2416 BitTracker::RegisterRef Inp, Out; 2417 InstrList Ins; 2418 }; 2419 struct PhiInfo { 2420 PhiInfo(MachineInstr &P, MachineBasicBlock &B); 2421 unsigned DefR; 2422 BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register 2423 MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block 2424 }; 2425 2426 static unsigned getDefReg(const MachineInstr *MI); 2427 bool isConst(unsigned Reg) const; 2428 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; 2429 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; 2430 bool isShuffleOf(unsigned OutR, unsigned InpR) const; 2431 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, 2432 unsigned &InpR2) const; 2433 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, 2434 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); 2435 bool processLoop(LoopCand &C); 2436 }; 2437 } 2438 2439 char HexagonLoopRescheduling::ID = 0; 2440 2441 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched", 2442 "Hexagon Loop Rescheduling", false, false) 2443 2444 2445 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, 2446 MachineBasicBlock &B) { 2447 DefR = HexagonLoopRescheduling::getDefReg(&P); 2448 LB = &B; 2449 PB = nullptr; 2450 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { 2451 const MachineOperand &OpB = P.getOperand(i+1); 2452 if (OpB.getMBB() == &B) { 2453 LR = P.getOperand(i); 2454 continue; 2455 } 2456 PB = OpB.getMBB(); 2457 PR = P.getOperand(i); 2458 } 2459 } 2460 2461 2462 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { 2463 RegisterSet Defs; 2464 HBS::getInstrDefs(*MI, Defs); 2465 if (Defs.count() != 1) 2466 return 0; 2467 return Defs.find_first(); 2468 } 2469 2470 2471 bool HexagonLoopRescheduling::isConst(unsigned Reg) const { 2472 if (!BTP->has(Reg)) 2473 return false; 2474 const BitTracker::RegisterCell &RC = BTP->lookup(Reg); 2475 for (unsigned i = 0, w = RC.width(); i < w; ++i) { 2476 const BitTracker::BitValue &V = RC[i]; 2477 if (!V.is(0) && !V.is(1)) 2478 return false; 2479 } 2480 return true; 2481 } 2482 2483 2484 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, 2485 unsigned DefR) const { 2486 unsigned Opc = MI->getOpcode(); 2487 switch (Opc) { 2488 case TargetOpcode::COPY: 2489 case Hexagon::S2_lsr_i_r: 2490 case Hexagon::S2_asr_i_r: 2491 case Hexagon::S2_asl_i_r: 2492 case Hexagon::S2_lsr_i_p: 2493 case Hexagon::S2_asr_i_p: 2494 case Hexagon::S2_asl_i_p: 2495 case Hexagon::S2_insert: 2496 case Hexagon::A2_or: 2497 case Hexagon::A2_orp: 2498 case Hexagon::A2_and: 2499 case Hexagon::A2_andp: 2500 case Hexagon::A2_combinew: 2501 case Hexagon::A4_combineri: 2502 case Hexagon::A4_combineir: 2503 case Hexagon::A2_combineii: 2504 case Hexagon::A4_combineii: 2505 case Hexagon::A2_combine_ll: 2506 case Hexagon::A2_combine_lh: 2507 case Hexagon::A2_combine_hl: 2508 case Hexagon::A2_combine_hh: 2509 return true; 2510 } 2511 return false; 2512 } 2513 2514 2515 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, 2516 unsigned InpR) const { 2517 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { 2518 const MachineOperand &Op = MI->getOperand(i); 2519 if (!Op.isReg()) 2520 continue; 2521 if (Op.getReg() == InpR) 2522 return i == n-1; 2523 } 2524 return false; 2525 } 2526 2527 2528 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { 2529 if (!BTP->has(OutR) || !BTP->has(InpR)) 2530 return false; 2531 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR); 2532 for (unsigned i = 0, w = OutC.width(); i < w; ++i) { 2533 const BitTracker::BitValue &V = OutC[i]; 2534 if (V.Type != BitTracker::BitValue::Ref) 2535 continue; 2536 if (V.RefI.Reg != InpR) 2537 return false; 2538 } 2539 return true; 2540 } 2541 2542 2543 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, 2544 unsigned OutR2, unsigned &InpR2) const { 2545 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2)) 2546 return false; 2547 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1); 2548 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2); 2549 unsigned W = OutC1.width(); 2550 unsigned MatchR = 0; 2551 if (W != OutC2.width()) 2552 return false; 2553 for (unsigned i = 0; i < W; ++i) { 2554 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; 2555 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) 2556 return false; 2557 if (V1.Type != BitTracker::BitValue::Ref) 2558 continue; 2559 if (V1.RefI.Pos != V2.RefI.Pos) 2560 return false; 2561 if (V1.RefI.Reg != InpR1) 2562 return false; 2563 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) 2564 return false; 2565 if (!MatchR) 2566 MatchR = V2.RefI.Reg; 2567 else if (V2.RefI.Reg != MatchR) 2568 return false; 2569 } 2570 InpR2 = MatchR; 2571 return true; 2572 } 2573 2574 2575 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, 2576 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, 2577 unsigned NewPredR) { 2578 DenseMap<unsigned,unsigned> RegMap; 2579 2580 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR); 2581 unsigned PhiR = MRI->createVirtualRegister(PhiRC); 2582 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR) 2583 .addReg(NewPredR) 2584 .addMBB(&PB) 2585 .addReg(G.Inp.Reg) 2586 .addMBB(&LB); 2587 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR)); 2588 2589 for (unsigned i = G.Ins.size(); i > 0; --i) { 2590 const MachineInstr *SI = G.Ins[i-1]; 2591 unsigned DR = getDefReg(SI); 2592 const TargetRegisterClass *RC = MRI->getRegClass(DR); 2593 unsigned NewDR = MRI->createVirtualRegister(RC); 2594 DebugLoc DL = SI->getDebugLoc(); 2595 2596 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR); 2597 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) { 2598 const MachineOperand &Op = SI->getOperand(j); 2599 if (!Op.isReg()) { 2600 MIB.addOperand(Op); 2601 continue; 2602 } 2603 if (!Op.isUse()) 2604 continue; 2605 unsigned UseR = RegMap[Op.getReg()]; 2606 MIB.addReg(UseR, 0, Op.getSubReg()); 2607 } 2608 RegMap.insert(std::make_pair(DR, NewDR)); 2609 } 2610 2611 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI); 2612 } 2613 2614 2615 bool HexagonLoopRescheduling::processLoop(LoopCand &C) { 2616 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n"); 2617 std::vector<PhiInfo> Phis; 2618 for (auto &I : *C.LB) { 2619 if (!I.isPHI()) 2620 break; 2621 unsigned PR = getDefReg(&I); 2622 if (isConst(PR)) 2623 continue; 2624 bool BadUse = false, GoodUse = false; 2625 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) { 2626 MachineInstr *UseI = UI->getParent(); 2627 if (UseI->getParent() != C.LB) { 2628 BadUse = true; 2629 break; 2630 } 2631 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR)) 2632 GoodUse = true; 2633 } 2634 if (BadUse || !GoodUse) 2635 continue; 2636 2637 Phis.push_back(PhiInfo(I, *C.LB)); 2638 } 2639 2640 DEBUG({ 2641 dbgs() << "Phis: {"; 2642 for (auto &I : Phis) { 2643 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi(" 2644 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() 2645 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" 2646 << I.LB->getNumber() << ')'; 2647 } 2648 dbgs() << " }\n"; 2649 }); 2650 2651 if (Phis.empty()) 2652 return false; 2653 2654 bool Changed = false; 2655 InstrList ShufIns; 2656 2657 // Go backwards in the block: for each bit shuffling instruction, check 2658 // if that instruction could potentially be moved to the front of the loop: 2659 // the output of the loop cannot be used in a non-shuffling instruction 2660 // in this loop. 2661 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) { 2662 if (I->isTerminator()) 2663 continue; 2664 if (I->isPHI()) 2665 break; 2666 2667 RegisterSet Defs; 2668 HBS::getInstrDefs(*I, Defs); 2669 if (Defs.count() != 1) 2670 continue; 2671 unsigned DefR = Defs.find_first(); 2672 if (!TargetRegisterInfo::isVirtualRegister(DefR)) 2673 continue; 2674 if (!isBitShuffle(&*I, DefR)) 2675 continue; 2676 2677 bool BadUse = false; 2678 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) { 2679 MachineInstr *UseI = UI->getParent(); 2680 if (UseI->getParent() == C.LB) { 2681 if (UseI->isPHI()) { 2682 // If the use is in a phi node in this loop, then it should be 2683 // the value corresponding to the back edge. 2684 unsigned Idx = UI.getOperandNo(); 2685 if (UseI->getOperand(Idx+1).getMBB() != C.LB) 2686 BadUse = true; 2687 } else { 2688 auto F = find(ShufIns, UseI); 2689 if (F == ShufIns.end()) 2690 BadUse = true; 2691 } 2692 } else { 2693 // There is a use outside of the loop, but there is no epilog block 2694 // suitable for a copy-out. 2695 if (C.EB == nullptr) 2696 BadUse = true; 2697 } 2698 if (BadUse) 2699 break; 2700 } 2701 2702 if (BadUse) 2703 continue; 2704 ShufIns.push_back(&*I); 2705 } 2706 2707 // Partition the list of shuffling instructions into instruction groups, 2708 // where each group has to be moved as a whole (i.e. a group is a chain of 2709 // dependent instructions). A group produces a single live output register, 2710 // which is meant to be the input of the loop phi node (although this is 2711 // not checked here yet). It also uses a single register as its input, 2712 // which is some value produced in the loop body. After moving the group 2713 // to the beginning of the loop, that input register would need to be 2714 // the loop-carried register (through a phi node) instead of the (currently 2715 // loop-carried) output register. 2716 typedef std::vector<InstrGroup> InstrGroupList; 2717 InstrGroupList Groups; 2718 2719 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { 2720 MachineInstr *SI = ShufIns[i]; 2721 if (SI == nullptr) 2722 continue; 2723 2724 InstrGroup G; 2725 G.Ins.push_back(SI); 2726 G.Out.Reg = getDefReg(SI); 2727 RegisterSet Inputs; 2728 HBS::getInstrUses(*SI, Inputs); 2729 2730 for (unsigned j = i+1; j < n; ++j) { 2731 MachineInstr *MI = ShufIns[j]; 2732 if (MI == nullptr) 2733 continue; 2734 RegisterSet Defs; 2735 HBS::getInstrDefs(*MI, Defs); 2736 // If this instruction does not define any pending inputs, skip it. 2737 if (!Defs.intersects(Inputs)) 2738 continue; 2739 // Otherwise, add it to the current group and remove the inputs that 2740 // are defined by MI. 2741 G.Ins.push_back(MI); 2742 Inputs.remove(Defs); 2743 // Then add all registers used by MI. 2744 HBS::getInstrUses(*MI, Inputs); 2745 ShufIns[j] = nullptr; 2746 } 2747 2748 // Only add a group if it requires at most one register. 2749 if (Inputs.count() > 1) 2750 continue; 2751 auto LoopInpEq = [G] (const PhiInfo &P) -> bool { 2752 return G.Out.Reg == P.LR.Reg; 2753 }; 2754 if (find_if(Phis, LoopInpEq) == Phis.end()) 2755 continue; 2756 2757 G.Inp.Reg = Inputs.find_first(); 2758 Groups.push_back(G); 2759 } 2760 2761 DEBUG({ 2762 for (unsigned i = 0, n = Groups.size(); i < n; ++i) { 2763 InstrGroup &G = Groups[i]; 2764 dbgs() << "Group[" << i << "] inp: " 2765 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub) 2766 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n"; 2767 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j) 2768 dbgs() << " " << *G.Ins[j]; 2769 } 2770 }); 2771 2772 for (unsigned i = 0, n = Groups.size(); i < n; ++i) { 2773 InstrGroup &G = Groups[i]; 2774 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg)) 2775 continue; 2776 auto LoopInpEq = [G] (const PhiInfo &P) -> bool { 2777 return G.Out.Reg == P.LR.Reg; 2778 }; 2779 auto F = find_if(Phis, LoopInpEq); 2780 if (F == Phis.end()) 2781 continue; 2782 unsigned PrehR = 0; 2783 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) { 2784 const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg); 2785 unsigned Opc = DefPrehR->getOpcode(); 2786 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) 2787 continue; 2788 if (!DefPrehR->getOperand(1).isImm()) 2789 continue; 2790 if (DefPrehR->getOperand(1).getImm() != 0) 2791 continue; 2792 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg); 2793 if (RC != MRI->getRegClass(F->PR.Reg)) { 2794 PrehR = MRI->createVirtualRegister(RC); 2795 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi 2796 : Hexagon::A2_tfrpi; 2797 auto T = C.PB->getFirstTerminator(); 2798 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); 2799 BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR) 2800 .addImm(0); 2801 } else { 2802 PrehR = F->PR.Reg; 2803 } 2804 } 2805 // isSameShuffle could match with PrehR being of a wider class than 2806 // G.Inp.Reg, for example if G shuffles the low 32 bits of its input, 2807 // it would match for the input being a 32-bit register, and PrehR 2808 // being a 64-bit register (where the low 32 bits match). This could 2809 // be handled, but for now skip these cases. 2810 if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg)) 2811 continue; 2812 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR); 2813 Changed = true; 2814 } 2815 2816 return Changed; 2817 } 2818 2819 2820 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { 2821 if (skipFunction(*MF.getFunction())) 2822 return false; 2823 2824 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 2825 HII = HST.getInstrInfo(); 2826 HRI = HST.getRegisterInfo(); 2827 MRI = &MF.getRegInfo(); 2828 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); 2829 BitTracker BT(HE, MF); 2830 DEBUG(BT.trace(true)); 2831 BT.run(); 2832 BTP = &BT; 2833 2834 std::vector<LoopCand> Cand; 2835 2836 for (auto &B : MF) { 2837 if (B.pred_size() != 2 || B.succ_size() != 2) 2838 continue; 2839 MachineBasicBlock *PB = nullptr; 2840 bool IsLoop = false; 2841 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) { 2842 if (*PI != &B) 2843 PB = *PI; 2844 else 2845 IsLoop = true; 2846 } 2847 if (!IsLoop) 2848 continue; 2849 2850 MachineBasicBlock *EB = nullptr; 2851 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) { 2852 if (*SI == &B) 2853 continue; 2854 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the 2855 // edge from B to EP is non-critical. 2856 if ((*SI)->pred_size() == 1) 2857 EB = *SI; 2858 break; 2859 } 2860 2861 Cand.push_back(LoopCand(&B, PB, EB)); 2862 } 2863 2864 bool Changed = false; 2865 for (auto &C : Cand) 2866 Changed |= processLoop(C); 2867 2868 return Changed; 2869 } 2870 2871 //===----------------------------------------------------------------------===// 2872 // Public Constructor Functions 2873 //===----------------------------------------------------------------------===// 2874 2875 FunctionPass *llvm::createHexagonLoopRescheduling() { 2876 return new HexagonLoopRescheduling(); 2877 } 2878 2879 FunctionPass *llvm::createHexagonBitSimplify() { 2880 return new HexagonBitSimplify(); 2881 } 2882 2883