1 //===--- BitTracker.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // SSA-based bit propagation. 11 // 12 // The purpose of this code is, for a given virtual register, to provide 13 // information about the value of each bit in the register. The values 14 // of bits are represented by the class BitValue, and take one of four 15 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the 16 // "ref" value means that the bit is a copy of another bit (which itself 17 // cannot be a copy of yet another bit---such chains are not allowed). 18 // A "ref" value is associated with a BitRef structure, which indicates 19 // which virtual register, and which bit in that register is the origin 20 // of the value. For example, given an instruction 21 // vreg2 = ASL vreg1, 1 22 // assuming that nothing is known about bits of vreg1, bit 1 of vreg2 23 // will be a "ref" to (vreg1, 0). If there is a subsequent instruction 24 // vreg3 = ASL vreg2, 2 25 // then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well. 26 // The "bottom" case means that the bit's value cannot be determined, 27 // and that this virtual register actually defines it. The "bottom" case 28 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref 29 // to self", so for the vreg1 above, the bit 0 of it will be a "ref" to 30 // (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc. 31 // 32 // The tracker implements the Wegman-Zadeck algorithm, originally developed 33 // for SSA-based constant propagation. Each register is represented as 34 // a sequence of bits, with the convention that bit 0 is the least signi- 35 // ficant bit. Each bit is propagated individually. The class RegisterCell 36 // implements the register's representation, and is also the subject of 37 // the lattice operations in the tracker. 38 // 39 // The intended usage of the bit tracker is to create a target-specific 40 // machine instruction evaluator, pass the evaluator to the BitTracker 41 // object, and run the tracker. The tracker will then collect the bit 42 // value information for a given machine function. After that, it can be 43 // queried for the cells for each virtual register. 44 // Sample code: 45 // const TargetSpecificEvaluator TSE(TRI, MRI); 46 // BitTracker BT(TSE, MF); 47 // BT.run(); 48 // ... 49 // unsigned Reg = interestingRegister(); 50 // RegisterCell RC = BT.get(Reg); 51 // if (RC[3].is(1)) 52 // Reg0bit3 = 1; 53 // 54 // The code below is intended to be fully target-independent. 55 56 #include "llvm/CodeGen/MachineBasicBlock.h" 57 #include "llvm/CodeGen/MachineFunction.h" 58 #include "llvm/CodeGen/MachineInstr.h" 59 #include "llvm/CodeGen/MachineRegisterInfo.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetRegisterInfo.h" 64 65 #include "BitTracker.h" 66 67 using namespace llvm; 68 69 typedef BitTracker BT; 70 71 namespace { 72 // Local trickery to pretty print a register (without the whole "%vreg" 73 // business). 74 struct printv { 75 printv(unsigned r) : R(r) {} 76 unsigned R; 77 }; 78 raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { 79 if (PV.R) 80 OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R); 81 else 82 OS << 's'; 83 return OS; 84 } 85 } 86 87 namespace llvm { 88 raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { 89 switch (BV.Type) { 90 case BT::BitValue::Top: 91 OS << 'T'; 92 break; 93 case BT::BitValue::Zero: 94 OS << '0'; 95 break; 96 case BT::BitValue::One: 97 OS << '1'; 98 break; 99 case BT::BitValue::Ref: 100 OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; 101 break; 102 } 103 return OS; 104 } 105 106 raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { 107 unsigned n = RC.Bits.size(); 108 OS << "{ w:" << n; 109 // Instead of printing each bit value individually, try to group them 110 // into logical segments, such as sequences of 0 or 1 bits or references 111 // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). 112 // "Start" will be the index of the beginning of the most recent segment. 113 unsigned Start = 0; 114 bool SeqRef = false; // A sequence of refs to consecutive bits. 115 bool ConstRef = false; // A sequence of refs to the same bit. 116 117 for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { 118 const BT::BitValue &V = RC[i]; 119 const BT::BitValue &SV = RC[Start]; 120 bool IsRef = (V.Type == BT::BitValue::Ref); 121 // If the current value is the same as Start, skip to the next one. 122 if (!IsRef && V == SV) 123 continue; 124 if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { 125 if (Start+1 == i) { 126 SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); 127 ConstRef = (V.RefI.Pos == SV.RefI.Pos); 128 } 129 if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) 130 continue; 131 if (ConstRef && V.RefI.Pos == SV.RefI.Pos) 132 continue; 133 } 134 135 // The current value is different. Print the previous one and reset 136 // the Start. 137 OS << " [" << Start; 138 unsigned Count = i - Start; 139 if (Count == 1) { 140 OS << "]:" << SV; 141 } else { 142 OS << '-' << i-1 << "]:"; 143 if (SV.Type == BT::BitValue::Ref && SeqRef) 144 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' 145 << SV.RefI.Pos+(Count-1) << ']'; 146 else 147 OS << SV; 148 } 149 Start = i; 150 SeqRef = ConstRef = false; 151 } 152 153 OS << " [" << Start; 154 unsigned Count = n - Start; 155 if (n-Start == 1) { 156 OS << "]:" << RC[Start]; 157 } else { 158 OS << '-' << n-1 << "]:"; 159 const BT::BitValue &SV = RC[Start]; 160 if (SV.Type == BT::BitValue::Ref && SeqRef) 161 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' 162 << SV.RefI.Pos+(Count-1) << ']'; 163 else 164 OS << SV; 165 } 166 OS << " }"; 167 168 return OS; 169 } 170 } 171 172 void BitTracker::print_cells(raw_ostream &OS) const { 173 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) 174 dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n"; 175 } 176 177 178 BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) 179 : Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {} 180 181 BitTracker::~BitTracker() { 182 delete ⤅ 183 } 184 185 186 // If we were allowed to update a cell for a part of a register, the meet 187 // operation would need to be parametrized by the register number and the 188 // exact part of the register, so that the computer BitRefs correspond to 189 // the actual bits of the "self" register. 190 // While this cannot happen in the current implementation, I'm not sure 191 // if this should be ruled out in the future. 192 bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { 193 // An example when "meet" can be invoked with SelfR == 0 is a phi node 194 // with a physical register as an operand. 195 assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR)); 196 bool Changed = false; 197 for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { 198 const BitValue &RCV = RC[i]; 199 Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); 200 } 201 return Changed; 202 } 203 204 205 // Insert the entire cell RC into the current cell at position given by M. 206 BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, 207 const BitMask &M) { 208 uint16_t B = M.first(), E = M.last(), W = width(); 209 // Sanity: M must be a valid mask for *this. 210 assert(B < W && E < W); 211 // Sanity: the masked part of *this must have the same number of bits 212 // as the source. 213 assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. 214 assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. 215 if (B <= E) { 216 for (uint16_t i = 0; i <= E-B; ++i) 217 Bits[i+B] = RC[i]; 218 } else { 219 for (uint16_t i = 0; i < W-B; ++i) 220 Bits[i+B] = RC[i]; 221 for (uint16_t i = 0; i <= E; ++i) 222 Bits[i] = RC[i+(W-B)]; 223 } 224 return *this; 225 } 226 227 228 BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { 229 uint16_t B = M.first(), E = M.last(), W = width(); 230 assert(B < W && E < W); 231 if (B <= E) { 232 RegisterCell RC(E-B+1); 233 for (uint16_t i = B; i <= E; ++i) 234 RC.Bits[i-B] = Bits[i]; 235 return RC; 236 } 237 238 RegisterCell RC(E+(W-B)+1); 239 for (uint16_t i = 0; i < W-B; ++i) 240 RC.Bits[i] = Bits[i+B]; 241 for (uint16_t i = 0; i <= E; ++i) 242 RC.Bits[i+(W-B)] = Bits[i]; 243 return RC; 244 } 245 246 247 BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { 248 // Rotate left (i.e. towards increasing bit indices). 249 // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] 250 uint16_t W = width(); 251 Sh = Sh % W; 252 if (Sh == 0) 253 return *this; 254 255 RegisterCell Tmp(W-Sh); 256 // Tmp = [0..W-Sh-1]. 257 for (uint16_t i = 0; i < W-Sh; ++i) 258 Tmp[i] = Bits[i]; 259 // Shift [W-Sh..W-1] to [0..Sh-1]. 260 for (uint16_t i = 0; i < Sh; ++i) 261 Bits[i] = Bits[W-Sh+i]; 262 // Copy Tmp to [Sh..W-1]. 263 for (uint16_t i = 0; i < W-Sh; ++i) 264 Bits[i+Sh] = Tmp.Bits[i]; 265 return *this; 266 } 267 268 269 BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, 270 const BitValue &V) { 271 assert(B <= E); 272 while (B < E) 273 Bits[B++] = V; 274 return *this; 275 } 276 277 278 BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { 279 // Append the cell given as the argument to the "this" cell. 280 // Bit 0 of RC becomes bit W of the result, where W is this->width(). 281 uint16_t W = width(), WRC = RC.width(); 282 Bits.resize(W+WRC); 283 for (uint16_t i = 0; i < WRC; ++i) 284 Bits[i+W] = RC.Bits[i]; 285 return *this; 286 } 287 288 289 uint16_t BT::RegisterCell::ct(bool B) const { 290 uint16_t W = width(); 291 uint16_t C = 0; 292 BitValue V = B; 293 while (C < W && Bits[C] == V) 294 C++; 295 return C; 296 } 297 298 299 uint16_t BT::RegisterCell::cl(bool B) const { 300 uint16_t W = width(); 301 uint16_t C = 0; 302 BitValue V = B; 303 while (C < W && Bits[W-(C+1)] == V) 304 C++; 305 return C; 306 } 307 308 309 bool BT::RegisterCell::operator== (const RegisterCell &RC) const { 310 uint16_t W = Bits.size(); 311 if (RC.Bits.size() != W) 312 return false; 313 for (uint16_t i = 0; i < W; ++i) 314 if (Bits[i] != RC[i]) 315 return false; 316 return true; 317 } 318 319 320 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { 321 // The general problem is with finding a register class that corresponds 322 // to a given reference reg:sub. There can be several such classes, and 323 // since we only care about the register size, it does not matter which 324 // such class we would find. 325 // The easiest way to accomplish what we want is to 326 // 1. find a physical register PhysR from the same class as RR.Reg, 327 // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, 328 // 3. find a register class that contains PhysS. 329 unsigned PhysR; 330 if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { 331 const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg); 332 assert(VC->begin() != VC->end() && "Empty register class"); 333 PhysR = *VC->begin(); 334 } else { 335 assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); 336 PhysR = RR.Reg; 337 } 338 339 unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub); 340 const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS); 341 uint16_t BW = RC->getSize()*8; 342 return BW; 343 } 344 345 346 BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, 347 const CellMapType &M) const { 348 uint16_t BW = getRegBitWidth(RR); 349 350 // Physical registers are assumed to be present in the map with an unknown 351 // value. Don't actually insert anything in the map, just return the cell. 352 if (TargetRegisterInfo::isPhysicalRegister(RR.Reg)) 353 return RegisterCell::self(0, BW); 354 355 assert(TargetRegisterInfo::isVirtualRegister(RR.Reg)); 356 // For virtual registers that belong to a class that is not tracked, 357 // generate an "unknown" value as well. 358 const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); 359 if (!track(C)) 360 return RegisterCell::self(0, BW); 361 362 CellMapType::const_iterator F = M.find(RR.Reg); 363 if (F != M.end()) { 364 if (!RR.Sub) 365 return F->second; 366 BitMask M = mask(RR.Reg, RR.Sub); 367 return F->second.extract(M); 368 } 369 // If not found, create a "top" entry, but do not insert it in the map. 370 return RegisterCell::top(BW); 371 } 372 373 374 void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, 375 CellMapType &M) const { 376 // While updating the cell map can be done in a meaningful way for 377 // a part of a register, it makes little sense to implement it as the 378 // SSA representation would never contain such "partial definitions". 379 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 380 return; 381 assert(RR.Sub == 0 && "Unexpected sub-register in definition"); 382 // Eliminate all ref-to-reg-0 bit values: replace them with "self". 383 for (unsigned i = 0, n = RC.width(); i < n; ++i) { 384 const BitValue &V = RC[i]; 385 if (V.Type == BitValue::Ref && V.RefI.Reg == 0) 386 RC[i].RefI = BitRef(RR.Reg, i); 387 } 388 M[RR.Reg] = RC; 389 } 390 391 392 // Check if the cell represents a compile-time integer value. 393 bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { 394 uint16_t W = A.width(); 395 for (uint16_t i = 0; i < W; ++i) 396 if (!A[i].is(0) && !A[i].is(1)) 397 return false; 398 return true; 399 } 400 401 402 // Convert a cell to the integer value. The result must fit in uint64_t. 403 uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { 404 assert(isInt(A)); 405 uint64_t Val = 0; 406 uint16_t W = A.width(); 407 for (uint16_t i = 0; i < W; ++i) { 408 Val <<= 1; 409 Val |= A[i].is(1); 410 } 411 return Val; 412 } 413 414 415 // Evaluator helper functions. These implement some common operation on 416 // register cells that can be used to implement target-specific instructions 417 // in a target-specific evaluator. 418 419 BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { 420 RegisterCell Res(W); 421 // For bits beyond the 63rd, this will generate the sign bit of V. 422 for (uint16_t i = 0; i < W; ++i) { 423 Res[i] = BitValue(V & 1); 424 V >>= 1; 425 } 426 return Res; 427 } 428 429 430 BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { 431 const APInt &A = CI->getValue(); 432 uint16_t BW = A.getBitWidth(); 433 assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); 434 RegisterCell Res(BW); 435 for (uint16_t i = 0; i < BW; ++i) 436 Res[i] = A[i]; 437 return Res; 438 } 439 440 441 BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, 442 const RegisterCell &A2) const { 443 uint16_t W = A1.width(); 444 assert(W == A2.width()); 445 RegisterCell Res(W); 446 bool Carry = false; 447 uint16_t I; 448 for (I = 0; I < W; ++I) { 449 const BitValue &V1 = A1[I]; 450 const BitValue &V2 = A2[I]; 451 if (!V1.num() || !V2.num()) 452 break; 453 unsigned S = bool(V1) + bool(V2) + Carry; 454 Res[I] = BitValue(S & 1); 455 Carry = (S > 1); 456 } 457 for (; I < W; ++I) { 458 const BitValue &V1 = A1[I]; 459 const BitValue &V2 = A2[I]; 460 // If the next bit is same as Carry, the result will be 0 plus the 461 // other bit. The Carry bit will remain unchanged. 462 if (V1.is(Carry)) 463 Res[I] = BitValue::ref(V2); 464 else if (V2.is(Carry)) 465 Res[I] = BitValue::ref(V1); 466 else 467 break; 468 } 469 for (; I < W; ++I) 470 Res[I] = BitValue::self(); 471 return Res; 472 } 473 474 475 BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, 476 const RegisterCell &A2) const { 477 uint16_t W = A1.width(); 478 assert(W == A2.width()); 479 RegisterCell Res(W); 480 bool Borrow = false; 481 uint16_t I; 482 for (I = 0; I < W; ++I) { 483 const BitValue &V1 = A1[I]; 484 const BitValue &V2 = A2[I]; 485 if (!V1.num() || !V2.num()) 486 break; 487 unsigned S = bool(V1) - bool(V2) - Borrow; 488 Res[I] = BitValue(S & 1); 489 Borrow = (S > 1); 490 } 491 for (; I < W; ++I) { 492 const BitValue &V1 = A1[I]; 493 const BitValue &V2 = A2[I]; 494 if (V1.is(Borrow)) { 495 Res[I] = BitValue::ref(V2); 496 break; 497 } 498 if (V2.is(Borrow)) 499 Res[I] = BitValue::ref(V1); 500 else 501 break; 502 } 503 for (; I < W; ++I) 504 Res[I] = BitValue::self(); 505 return Res; 506 } 507 508 509 BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, 510 const RegisterCell &A2) const { 511 uint16_t W = A1.width() + A2.width(); 512 uint16_t Z = A1.ct(0) + A2.ct(0); 513 RegisterCell Res(W); 514 Res.fill(0, Z, BitValue::Zero); 515 Res.fill(Z, W, BitValue::self()); 516 return Res; 517 } 518 519 520 BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, 521 const RegisterCell &A2) const { 522 uint16_t W = A1.width() + A2.width(); 523 uint16_t Z = A1.ct(0) + A2.ct(0); 524 RegisterCell Res(W); 525 Res.fill(0, Z, BitValue::Zero); 526 Res.fill(Z, W, BitValue::self()); 527 return Res; 528 } 529 530 531 BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, 532 uint16_t Sh) const { 533 assert(Sh <= A1.width()); 534 RegisterCell Res = RegisterCell::ref(A1); 535 Res.rol(Sh); 536 Res.fill(0, Sh, BitValue::Zero); 537 return Res; 538 } 539 540 541 BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, 542 uint16_t Sh) const { 543 uint16_t W = A1.width(); 544 assert(Sh <= W); 545 RegisterCell Res = RegisterCell::ref(A1); 546 Res.rol(W-Sh); 547 Res.fill(W-Sh, W, BitValue::Zero); 548 return Res; 549 } 550 551 552 BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, 553 uint16_t Sh) const { 554 uint16_t W = A1.width(); 555 assert(Sh <= W); 556 RegisterCell Res = RegisterCell::ref(A1); 557 BitValue Sign = Res[W-1]; 558 Res.rol(W-Sh); 559 Res.fill(W-Sh, W, Sign); 560 return Res; 561 } 562 563 564 BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, 565 const RegisterCell &A2) const { 566 uint16_t W = A1.width(); 567 assert(W == A2.width()); 568 RegisterCell Res(W); 569 for (uint16_t i = 0; i < W; ++i) { 570 const BitValue &V1 = A1[i]; 571 const BitValue &V2 = A2[i]; 572 if (V1.is(1)) 573 Res[i] = BitValue::ref(V2); 574 else if (V2.is(1)) 575 Res[i] = BitValue::ref(V1); 576 else if (V1.is(0) || V2.is(0)) 577 Res[i] = BitValue::Zero; 578 else if (V1 == V2) 579 Res[i] = V1; 580 else 581 Res[i] = BitValue::self(); 582 } 583 return Res; 584 } 585 586 587 BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, 588 const RegisterCell &A2) const { 589 uint16_t W = A1.width(); 590 assert(W == A2.width()); 591 RegisterCell Res(W); 592 for (uint16_t i = 0; i < W; ++i) { 593 const BitValue &V1 = A1[i]; 594 const BitValue &V2 = A2[i]; 595 if (V1.is(1) || V2.is(1)) 596 Res[i] = BitValue::One; 597 else if (V1.is(0)) 598 Res[i] = BitValue::ref(V2); 599 else if (V2.is(0)) 600 Res[i] = BitValue::ref(V1); 601 else if (V1 == V2) 602 Res[i] = V1; 603 else 604 Res[i] = BitValue::self(); 605 } 606 return Res; 607 } 608 609 610 BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, 611 const RegisterCell &A2) const { 612 uint16_t W = A1.width(); 613 assert(W == A2.width()); 614 RegisterCell Res(W); 615 for (uint16_t i = 0; i < W; ++i) { 616 const BitValue &V1 = A1[i]; 617 const BitValue &V2 = A2[i]; 618 if (V1.is(0)) 619 Res[i] = BitValue::ref(V2); 620 else if (V2.is(0)) 621 Res[i] = BitValue::ref(V1); 622 else if (V1 == V2) 623 Res[i] = BitValue::Zero; 624 else 625 Res[i] = BitValue::self(); 626 } 627 return Res; 628 } 629 630 631 BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { 632 uint16_t W = A1.width(); 633 RegisterCell Res(W); 634 for (uint16_t i = 0; i < W; ++i) { 635 const BitValue &V = A1[i]; 636 if (V.is(0)) 637 Res[i] = BitValue::One; 638 else if (V.is(1)) 639 Res[i] = BitValue::Zero; 640 else 641 Res[i] = BitValue::self(); 642 } 643 return Res; 644 } 645 646 647 BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, 648 uint16_t BitN) const { 649 assert(BitN < A1.width()); 650 RegisterCell Res = RegisterCell::ref(A1); 651 Res[BitN] = BitValue::One; 652 return Res; 653 } 654 655 656 BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, 657 uint16_t BitN) const { 658 assert(BitN < A1.width()); 659 RegisterCell Res = RegisterCell::ref(A1); 660 Res[BitN] = BitValue::Zero; 661 return Res; 662 } 663 664 665 BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, 666 uint16_t W) const { 667 uint16_t C = A1.cl(B), AW = A1.width(); 668 // If the last leading non-B bit is not a constant, then we don't know 669 // the real count. 670 if ((C < AW && A1[AW-1-C].num()) || C == AW) 671 return eIMM(C, W); 672 return RegisterCell::self(0, W); 673 } 674 675 676 BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, 677 uint16_t W) const { 678 uint16_t C = A1.ct(B), AW = A1.width(); 679 // If the last trailing non-B bit is not a constant, then we don't know 680 // the real count. 681 if ((C < AW && A1[C].num()) || C == AW) 682 return eIMM(C, W); 683 return RegisterCell::self(0, W); 684 } 685 686 687 BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, 688 uint16_t FromN) const { 689 uint16_t W = A1.width(); 690 assert(FromN <= W); 691 RegisterCell Res = RegisterCell::ref(A1); 692 BitValue Sign = Res[FromN-1]; 693 // Sign-extend "inreg". 694 Res.fill(FromN, W, Sign); 695 return Res; 696 } 697 698 699 BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, 700 uint16_t FromN) const { 701 uint16_t W = A1.width(); 702 assert(FromN <= W); 703 RegisterCell Res = RegisterCell::ref(A1); 704 Res.fill(FromN, W, BitValue::Zero); 705 return Res; 706 } 707 708 709 BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, 710 uint16_t B, uint16_t E) const { 711 uint16_t W = A1.width(); 712 assert(B < W && E <= W); 713 if (B == E) 714 return RegisterCell(0); 715 uint16_t Last = (E > 0) ? E-1 : W-1; 716 RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); 717 // Return shorter cell. 718 return Res; 719 } 720 721 722 BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, 723 const RegisterCell &A2, uint16_t AtN) const { 724 uint16_t W1 = A1.width(), W2 = A2.width(); 725 (void)W1; 726 assert(AtN < W1 && AtN+W2 <= W1); 727 // Copy bits from A1, insert A2 at position AtN. 728 RegisterCell Res = RegisterCell::ref(A1); 729 if (W2 > 0) 730 Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); 731 return Res; 732 } 733 734 735 BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { 736 assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); 737 uint16_t W = getRegBitWidth(Reg); 738 assert(W > 0 && "Cannot generate mask for empty register"); 739 return BitMask(0, W-1); 740 } 741 742 bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, 743 const CellMapType &Inputs, 744 CellMapType &Outputs) const { 745 unsigned Opc = MI.getOpcode(); 746 switch (Opc) { 747 case TargetOpcode::REG_SEQUENCE: { 748 RegisterRef RD = MI.getOperand(0); 749 assert(RD.Sub == 0); 750 RegisterRef RS = MI.getOperand(1); 751 unsigned SS = MI.getOperand(2).getImm(); 752 RegisterRef RT = MI.getOperand(3); 753 unsigned ST = MI.getOperand(4).getImm(); 754 assert(SS != ST); 755 756 uint16_t W = getRegBitWidth(RD); 757 RegisterCell Res(W); 758 Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); 759 Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); 760 putCell(RD, Res, Outputs); 761 break; 762 } 763 764 case TargetOpcode::COPY: { 765 // COPY can transfer a smaller register into a wider one. 766 // If that is the case, fill the remaining high bits with 0. 767 RegisterRef RD = MI.getOperand(0); 768 RegisterRef RS = MI.getOperand(1); 769 assert(RD.Sub == 0); 770 uint16_t WD = getRegBitWidth(RD); 771 uint16_t WS = getRegBitWidth(RS); 772 assert(WD >= WS); 773 RegisterCell Src = getCell(RS, Inputs); 774 RegisterCell Res(WD); 775 Res.insert(Src, BitMask(0, WS-1)); 776 Res.fill(WS, WD, BitValue::Zero); 777 putCell(RD, Res, Outputs); 778 break; 779 } 780 781 default: 782 return false; 783 } 784 785 return true; 786 } 787 788 789 // Main W-Z implementation. 790 791 void BT::visitPHI(const MachineInstr &PI) { 792 int ThisN = PI.getParent()->getNumber(); 793 if (Trace) 794 dbgs() << "Visit FI(BB#" << ThisN << "): " << PI; 795 796 const MachineOperand &MD = PI.getOperand(0); 797 assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); 798 RegisterRef DefRR(MD); 799 uint16_t DefBW = ME.getRegBitWidth(DefRR); 800 801 RegisterCell DefC = ME.getCell(DefRR, Map); 802 if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow 803 return; 804 805 bool Changed = false; 806 807 for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { 808 const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); 809 int PredN = PB->getNumber(); 810 if (Trace) 811 dbgs() << " edge BB#" << PredN << "->BB#" << ThisN; 812 if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { 813 if (Trace) 814 dbgs() << " not executable\n"; 815 continue; 816 } 817 818 RegisterRef RU = PI.getOperand(i); 819 RegisterCell ResC = ME.getCell(RU, Map); 820 if (Trace) 821 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) 822 << " cell: " << ResC << "\n"; 823 Changed |= DefC.meet(ResC, DefRR.Reg); 824 } 825 826 if (Changed) { 827 if (Trace) 828 dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub) 829 << " cell: " << DefC << "\n"; 830 ME.putCell(DefRR, DefC, Map); 831 visitUsesOf(DefRR.Reg); 832 } 833 } 834 835 void BT::visitNonBranch(const MachineInstr &MI) { 836 if (Trace) { 837 int ThisN = MI.getParent()->getNumber(); 838 dbgs() << "Visit MI(BB#" << ThisN << "): " << MI; 839 } 840 if (MI.isDebugValue()) 841 return; 842 assert(!MI.isBranch() && "Unexpected branch instruction"); 843 844 CellMapType ResMap; 845 bool Eval = ME.evaluate(MI, Map, ResMap); 846 847 if (Trace && Eval) { 848 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { 849 const MachineOperand &MO = MI.getOperand(i); 850 if (!MO.isReg() || !MO.isUse()) 851 continue; 852 RegisterRef RU(MO); 853 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) 854 << " cell: " << ME.getCell(RU, Map) << "\n"; 855 } 856 dbgs() << "Outputs:\n"; 857 for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end(); 858 I != E; ++I) { 859 RegisterRef RD(I->first); 860 dbgs() << " " << PrintReg(I->first, &ME.TRI) << " cell: " 861 << ME.getCell(RD, ResMap) << "\n"; 862 } 863 } 864 865 // Iterate over all definitions of the instruction, and update the 866 // cells accordingly. 867 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { 868 const MachineOperand &MO = MI.getOperand(i); 869 // Visit register defs only. 870 if (!MO.isReg() || !MO.isDef()) 871 continue; 872 RegisterRef RD(MO); 873 assert(RD.Sub == 0 && "Unexpected sub-register in definition"); 874 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg)) 875 continue; 876 877 bool Changed = false; 878 if (!Eval || ResMap.count(RD.Reg) == 0) { 879 // Set to "ref" (aka "bottom"). 880 uint16_t DefBW = ME.getRegBitWidth(RD); 881 RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); 882 if (RefC != ME.getCell(RD, Map)) { 883 ME.putCell(RD, RefC, Map); 884 Changed = true; 885 } 886 } else { 887 RegisterCell DefC = ME.getCell(RD, Map); 888 RegisterCell ResC = ME.getCell(RD, ResMap); 889 // This is a non-phi instruction, so the values of the inputs come 890 // from the same registers each time this instruction is evaluated. 891 // During the propagation, the values of the inputs can become lowered 892 // in the sense of the lattice operation, which may cause different 893 // results to be calculated in subsequent evaluations. This should 894 // not cause the bottoming of the result in the map, since the new 895 // result is already reflecting the lowered inputs. 896 for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { 897 BitValue &V = DefC[i]; 898 // Bits that are already "bottom" should not be updated. 899 if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) 900 continue; 901 // Same for those that are identical in DefC and ResC. 902 if (V == ResC[i]) 903 continue; 904 V = ResC[i]; 905 Changed = true; 906 } 907 if (Changed) 908 ME.putCell(RD, DefC, Map); 909 } 910 if (Changed) 911 visitUsesOf(RD.Reg); 912 } 913 } 914 915 void BT::visitBranchesFrom(const MachineInstr &BI) { 916 const MachineBasicBlock &B = *BI.getParent(); 917 MachineBasicBlock::const_iterator It = BI, End = B.end(); 918 BranchTargetList Targets, BTs; 919 bool FallsThrough = true, DefaultToAll = false; 920 int ThisN = B.getNumber(); 921 922 do { 923 BTs.clear(); 924 const MachineInstr &MI = *It; 925 if (Trace) 926 dbgs() << "Visit BR(BB#" << ThisN << "): " << MI; 927 assert(MI.isBranch() && "Expecting branch instruction"); 928 InstrExec.insert(&MI); 929 bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); 930 if (!Eval) { 931 // If the evaluation failed, we will add all targets. Keep going in 932 // the loop to mark all executable branches as such. 933 DefaultToAll = true; 934 FallsThrough = true; 935 if (Trace) 936 dbgs() << " failed to evaluate: will add all CFG successors\n"; 937 } else if (!DefaultToAll) { 938 // If evaluated successfully add the targets to the cumulative list. 939 if (Trace) { 940 dbgs() << " adding targets:"; 941 for (unsigned i = 0, n = BTs.size(); i < n; ++i) 942 dbgs() << " BB#" << BTs[i]->getNumber(); 943 if (FallsThrough) 944 dbgs() << "\n falls through\n"; 945 else 946 dbgs() << "\n does not fall through\n"; 947 } 948 Targets.insert(BTs.begin(), BTs.end()); 949 } 950 ++It; 951 } while (FallsThrough && It != End); 952 953 typedef MachineBasicBlock::const_succ_iterator succ_iterator; 954 if (!DefaultToAll) { 955 // Need to add all CFG successors that lead to EH landing pads. 956 // There won't be explicit branches to these blocks, but they must 957 // be processed. 958 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) { 959 const MachineBasicBlock *SB = *I; 960 if (SB->isEHPad()) 961 Targets.insert(SB); 962 } 963 if (FallsThrough) { 964 MachineFunction::const_iterator BIt = B.getIterator(); 965 MachineFunction::const_iterator Next = std::next(BIt); 966 if (Next != MF.end()) 967 Targets.insert(&*Next); 968 } 969 } else { 970 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) 971 Targets.insert(*I); 972 } 973 974 for (unsigned i = 0, n = Targets.size(); i < n; ++i) { 975 int TargetN = Targets[i]->getNumber(); 976 FlowQ.push(CFGEdge(ThisN, TargetN)); 977 } 978 } 979 980 981 void BT::visitUsesOf(unsigned Reg) { 982 if (Trace) 983 dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n"; 984 985 typedef MachineRegisterInfo::use_nodbg_iterator use_iterator; 986 use_iterator End = MRI.use_nodbg_end(); 987 for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) { 988 MachineInstr *UseI = I->getParent(); 989 if (!InstrExec.count(UseI)) 990 continue; 991 if (UseI->isPHI()) 992 visitPHI(*UseI); 993 else if (!UseI->isBranch()) 994 visitNonBranch(*UseI); 995 else 996 visitBranchesFrom(*UseI); 997 } 998 } 999 1000 1001 BT::RegisterCell BT::get(RegisterRef RR) const { 1002 return ME.getCell(RR, Map); 1003 } 1004 1005 1006 void BT::put(RegisterRef RR, const RegisterCell &RC) { 1007 ME.putCell(RR, RC, Map); 1008 } 1009 1010 1011 // Replace all references to bits from OldRR with the corresponding bits 1012 // in NewRR. 1013 void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { 1014 assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); 1015 BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); 1016 BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); 1017 uint16_t OMB = OM.first(), OME = OM.last(); 1018 uint16_t NMB = NM.first(), NME = NM.last(); 1019 (void)NME; 1020 assert((OME-OMB == NME-NMB) && 1021 "Substituting registers of different lengths"); 1022 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) { 1023 RegisterCell &RC = I->second; 1024 for (uint16_t i = 0, w = RC.width(); i < w; ++i) { 1025 BitValue &V = RC[i]; 1026 if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) 1027 continue; 1028 if (V.RefI.Pos < OMB || V.RefI.Pos > OME) 1029 continue; 1030 V.RefI.Reg = NewRR.Reg; 1031 V.RefI.Pos += NMB-OMB; 1032 } 1033 } 1034 } 1035 1036 1037 // Check if the block has been "executed" during propagation. (If not, the 1038 // block is dead, but it may still appear to be reachable.) 1039 bool BT::reached(const MachineBasicBlock *B) const { 1040 int BN = B->getNumber(); 1041 assert(BN >= 0); 1042 for (EdgeSetType::iterator I = EdgeExec.begin(), E = EdgeExec.end(); 1043 I != E; ++I) { 1044 if (I->second == BN) 1045 return true; 1046 } 1047 return false; 1048 } 1049 1050 1051 // Visit an individual instruction. This could be a newly added instruction, 1052 // or one that has been modified by an optimization. 1053 void BT::visit(const MachineInstr &MI) { 1054 assert(!MI.isBranch() && "Only non-branches are allowed"); 1055 InstrExec.insert(&MI); 1056 visitNonBranch(MI); 1057 // The call to visitNonBranch could propagate the changes until a branch 1058 // is actually visited. This could result in adding CFG edges to the flow 1059 // queue. Since the queue won't be processed, clear it. 1060 while (!FlowQ.empty()) 1061 FlowQ.pop(); 1062 } 1063 1064 1065 void BT::reset() { 1066 EdgeExec.clear(); 1067 InstrExec.clear(); 1068 Map.clear(); 1069 } 1070 1071 1072 void BT::run() { 1073 reset(); 1074 assert(FlowQ.empty()); 1075 1076 typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits; 1077 const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); 1078 1079 unsigned MaxBN = 0; 1080 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); 1081 I != E; ++I) { 1082 assert(I->getNumber() >= 0 && "Disconnected block"); 1083 unsigned BN = I->getNumber(); 1084 if (BN > MaxBN) 1085 MaxBN = BN; 1086 } 1087 1088 // Keep track of visited blocks. 1089 BitVector BlockScanned(MaxBN+1); 1090 1091 int EntryN = Entry->getNumber(); 1092 // Generate a fake edge to get something to start with. 1093 FlowQ.push(CFGEdge(-1, EntryN)); 1094 1095 while (!FlowQ.empty()) { 1096 CFGEdge Edge = FlowQ.front(); 1097 FlowQ.pop(); 1098 1099 if (EdgeExec.count(Edge)) 1100 continue; 1101 EdgeExec.insert(Edge); 1102 1103 const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); 1104 MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); 1105 // Visit PHI nodes first. 1106 while (It != End && It->isPHI()) { 1107 const MachineInstr &PI = *It++; 1108 InstrExec.insert(&PI); 1109 visitPHI(PI); 1110 } 1111 1112 // If this block has already been visited through a flow graph edge, 1113 // then the instructions have already been processed. Any updates to 1114 // the cells would now only happen through visitUsesOf... 1115 if (BlockScanned[Edge.second]) 1116 continue; 1117 BlockScanned[Edge.second] = true; 1118 1119 // Visit non-branch instructions. 1120 while (It != End && !It->isBranch()) { 1121 const MachineInstr &MI = *It++; 1122 InstrExec.insert(&MI); 1123 visitNonBranch(MI); 1124 } 1125 // If block end has been reached, add the fall-through edge to the queue. 1126 if (It == End) { 1127 MachineFunction::const_iterator BIt = B.getIterator(); 1128 MachineFunction::const_iterator Next = std::next(BIt); 1129 if (Next != MF.end() && B.isSuccessor(&*Next)) { 1130 int ThisN = B.getNumber(); 1131 int NextN = Next->getNumber(); 1132 FlowQ.push(CFGEdge(ThisN, NextN)); 1133 } 1134 } else { 1135 // Handle the remaining sequence of branches. This function will update 1136 // the work queue. 1137 visitBranchesFrom(*It); 1138 } 1139 } // while (!FlowQ->empty()) 1140 1141 if (Trace) 1142 print_cells(dbgs() << "Cells after propagation:\n"); 1143 } 1144 1145