1 //===--- BitTracker.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // SSA-based bit propagation. 11 // 12 // The purpose of this code is, for a given virtual register, to provide 13 // information about the value of each bit in the register. The values 14 // of bits are represented by the class BitValue, and take one of four 15 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the 16 // "ref" value means that the bit is a copy of another bit (which itself 17 // cannot be a copy of yet another bit---such chains are not allowed). 18 // A "ref" value is associated with a BitRef structure, which indicates 19 // which virtual register, and which bit in that register is the origin 20 // of the value. For example, given an instruction 21 // vreg2 = ASL vreg1, 1 22 // assuming that nothing is known about bits of vreg1, bit 1 of vreg2 23 // will be a "ref" to (vreg1, 0). If there is a subsequent instruction 24 // vreg3 = ASL vreg2, 2 25 // then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well. 26 // The "bottom" case means that the bit's value cannot be determined, 27 // and that this virtual register actually defines it. The "bottom" case 28 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref 29 // to self", so for the vreg1 above, the bit 0 of it will be a "ref" to 30 // (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc. 31 // 32 // The tracker implements the Wegman-Zadeck algorithm, originally developed 33 // for SSA-based constant propagation. Each register is represented as 34 // a sequence of bits, with the convention that bit 0 is the least signi- 35 // ficant bit. Each bit is propagated individually. The class RegisterCell 36 // implements the register's representation, and is also the subject of 37 // the lattice operations in the tracker. 38 // 39 // The intended usage of the bit tracker is to create a target-specific 40 // machine instruction evaluator, pass the evaluator to the BitTracker 41 // object, and run the tracker. The tracker will then collect the bit 42 // value information for a given machine function. After that, it can be 43 // queried for the cells for each virtual register. 44 // Sample code: 45 // const TargetSpecificEvaluator TSE(TRI, MRI); 46 // BitTracker BT(TSE, MF); 47 // BT.run(); 48 // ... 49 // unsigned Reg = interestingRegister(); 50 // RegisterCell RC = BT.get(Reg); 51 // if (RC[3].is(1)) 52 // Reg0bit3 = 1; 53 // 54 // The code below is intended to be fully target-independent. 55 56 #include "BitTracker.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/BitVector.h" 59 #include "llvm/CodeGen/MachineBasicBlock.h" 60 #include "llvm/CodeGen/MachineFunction.h" 61 #include "llvm/CodeGen/MachineInstr.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetRegisterInfo.h" 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 72 using namespace llvm; 73 74 typedef BitTracker BT; 75 76 namespace { 77 78 // Local trickery to pretty print a register (without the whole "%vreg" 79 // business). 80 struct printv { 81 printv(unsigned r) : R(r) {} 82 83 unsigned R; 84 }; 85 86 raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { 87 if (PV.R) 88 OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R); 89 else 90 OS << 's'; 91 return OS; 92 } 93 94 } // end anonymous namespace 95 96 namespace llvm { 97 98 raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { 99 switch (BV.Type) { 100 case BT::BitValue::Top: 101 OS << 'T'; 102 break; 103 case BT::BitValue::Zero: 104 OS << '0'; 105 break; 106 case BT::BitValue::One: 107 OS << '1'; 108 break; 109 case BT::BitValue::Ref: 110 OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; 111 break; 112 } 113 return OS; 114 } 115 116 raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { 117 unsigned n = RC.Bits.size(); 118 OS << "{ w:" << n; 119 // Instead of printing each bit value individually, try to group them 120 // into logical segments, such as sequences of 0 or 1 bits or references 121 // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). 122 // "Start" will be the index of the beginning of the most recent segment. 123 unsigned Start = 0; 124 bool SeqRef = false; // A sequence of refs to consecutive bits. 125 bool ConstRef = false; // A sequence of refs to the same bit. 126 127 for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { 128 const BT::BitValue &V = RC[i]; 129 const BT::BitValue &SV = RC[Start]; 130 bool IsRef = (V.Type == BT::BitValue::Ref); 131 // If the current value is the same as Start, skip to the next one. 132 if (!IsRef && V == SV) 133 continue; 134 if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { 135 if (Start+1 == i) { 136 SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); 137 ConstRef = (V.RefI.Pos == SV.RefI.Pos); 138 } 139 if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) 140 continue; 141 if (ConstRef && V.RefI.Pos == SV.RefI.Pos) 142 continue; 143 } 144 145 // The current value is different. Print the previous one and reset 146 // the Start. 147 OS << " [" << Start; 148 unsigned Count = i - Start; 149 if (Count == 1) { 150 OS << "]:" << SV; 151 } else { 152 OS << '-' << i-1 << "]:"; 153 if (SV.Type == BT::BitValue::Ref && SeqRef) 154 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' 155 << SV.RefI.Pos+(Count-1) << ']'; 156 else 157 OS << SV; 158 } 159 Start = i; 160 SeqRef = ConstRef = false; 161 } 162 163 OS << " [" << Start; 164 unsigned Count = n - Start; 165 if (n-Start == 1) { 166 OS << "]:" << RC[Start]; 167 } else { 168 OS << '-' << n-1 << "]:"; 169 const BT::BitValue &SV = RC[Start]; 170 if (SV.Type == BT::BitValue::Ref && SeqRef) 171 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' 172 << SV.RefI.Pos+(Count-1) << ']'; 173 else 174 OS << SV; 175 } 176 OS << " }"; 177 178 return OS; 179 } 180 181 } // end namespace llvm 182 183 void BitTracker::print_cells(raw_ostream &OS) const { 184 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) 185 dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n"; 186 } 187 188 BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) 189 : Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {} 190 191 BitTracker::~BitTracker() { 192 delete ⤅ 193 } 194 195 // If we were allowed to update a cell for a part of a register, the meet 196 // operation would need to be parametrized by the register number and the 197 // exact part of the register, so that the computer BitRefs correspond to 198 // the actual bits of the "self" register. 199 // While this cannot happen in the current implementation, I'm not sure 200 // if this should be ruled out in the future. 201 bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { 202 // An example when "meet" can be invoked with SelfR == 0 is a phi node 203 // with a physical register as an operand. 204 assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR)); 205 bool Changed = false; 206 for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { 207 const BitValue &RCV = RC[i]; 208 Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); 209 } 210 return Changed; 211 } 212 213 // Insert the entire cell RC into the current cell at position given by M. 214 BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, 215 const BitMask &M) { 216 uint16_t B = M.first(), E = M.last(), W = width(); 217 // Sanity: M must be a valid mask for *this. 218 assert(B < W && E < W); 219 // Sanity: the masked part of *this must have the same number of bits 220 // as the source. 221 assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. 222 assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. 223 if (B <= E) { 224 for (uint16_t i = 0; i <= E-B; ++i) 225 Bits[i+B] = RC[i]; 226 } else { 227 for (uint16_t i = 0; i < W-B; ++i) 228 Bits[i+B] = RC[i]; 229 for (uint16_t i = 0; i <= E; ++i) 230 Bits[i] = RC[i+(W-B)]; 231 } 232 return *this; 233 } 234 235 BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { 236 uint16_t B = M.first(), E = M.last(), W = width(); 237 assert(B < W && E < W); 238 if (B <= E) { 239 RegisterCell RC(E-B+1); 240 for (uint16_t i = B; i <= E; ++i) 241 RC.Bits[i-B] = Bits[i]; 242 return RC; 243 } 244 245 RegisterCell RC(E+(W-B)+1); 246 for (uint16_t i = 0; i < W-B; ++i) 247 RC.Bits[i] = Bits[i+B]; 248 for (uint16_t i = 0; i <= E; ++i) 249 RC.Bits[i+(W-B)] = Bits[i]; 250 return RC; 251 } 252 253 BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { 254 // Rotate left (i.e. towards increasing bit indices). 255 // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] 256 uint16_t W = width(); 257 Sh = Sh % W; 258 if (Sh == 0) 259 return *this; 260 261 RegisterCell Tmp(W-Sh); 262 // Tmp = [0..W-Sh-1]. 263 for (uint16_t i = 0; i < W-Sh; ++i) 264 Tmp[i] = Bits[i]; 265 // Shift [W-Sh..W-1] to [0..Sh-1]. 266 for (uint16_t i = 0; i < Sh; ++i) 267 Bits[i] = Bits[W-Sh+i]; 268 // Copy Tmp to [Sh..W-1]. 269 for (uint16_t i = 0; i < W-Sh; ++i) 270 Bits[i+Sh] = Tmp.Bits[i]; 271 return *this; 272 } 273 274 BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, 275 const BitValue &V) { 276 assert(B <= E); 277 while (B < E) 278 Bits[B++] = V; 279 return *this; 280 } 281 282 BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { 283 // Append the cell given as the argument to the "this" cell. 284 // Bit 0 of RC becomes bit W of the result, where W is this->width(). 285 uint16_t W = width(), WRC = RC.width(); 286 Bits.resize(W+WRC); 287 for (uint16_t i = 0; i < WRC; ++i) 288 Bits[i+W] = RC.Bits[i]; 289 return *this; 290 } 291 292 uint16_t BT::RegisterCell::ct(bool B) const { 293 uint16_t W = width(); 294 uint16_t C = 0; 295 BitValue V = B; 296 while (C < W && Bits[C] == V) 297 C++; 298 return C; 299 } 300 301 uint16_t BT::RegisterCell::cl(bool B) const { 302 uint16_t W = width(); 303 uint16_t C = 0; 304 BitValue V = B; 305 while (C < W && Bits[W-(C+1)] == V) 306 C++; 307 return C; 308 } 309 310 bool BT::RegisterCell::operator== (const RegisterCell &RC) const { 311 uint16_t W = Bits.size(); 312 if (RC.Bits.size() != W) 313 return false; 314 for (uint16_t i = 0; i < W; ++i) 315 if (Bits[i] != RC[i]) 316 return false; 317 return true; 318 } 319 320 BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { 321 for (unsigned i = 0, n = width(); i < n; ++i) { 322 const BitValue &V = Bits[i]; 323 if (V.Type == BitValue::Ref && V.RefI.Reg == 0) 324 Bits[i].RefI = BitRef(R, i); 325 } 326 return *this; 327 } 328 329 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { 330 // The general problem is with finding a register class that corresponds 331 // to a given reference reg:sub. There can be several such classes, and 332 // since we only care about the register size, it does not matter which 333 // such class we would find. 334 // The easiest way to accomplish what we want is to 335 // 1. find a physical register PhysR from the same class as RR.Reg, 336 // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, 337 // 3. find a register class that contains PhysS. 338 unsigned PhysR; 339 if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { 340 const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg); 341 assert(VC->begin() != VC->end() && "Empty register class"); 342 PhysR = *VC->begin(); 343 } else { 344 assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); 345 PhysR = RR.Reg; 346 } 347 348 unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub); 349 const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS); 350 uint16_t BW = TRI.getRegSizeInBits(*RC); 351 return BW; 352 } 353 354 BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, 355 const CellMapType &M) const { 356 uint16_t BW = getRegBitWidth(RR); 357 358 // Physical registers are assumed to be present in the map with an unknown 359 // value. Don't actually insert anything in the map, just return the cell. 360 if (TargetRegisterInfo::isPhysicalRegister(RR.Reg)) 361 return RegisterCell::self(0, BW); 362 363 assert(TargetRegisterInfo::isVirtualRegister(RR.Reg)); 364 // For virtual registers that belong to a class that is not tracked, 365 // generate an "unknown" value as well. 366 const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); 367 if (!track(C)) 368 return RegisterCell::self(0, BW); 369 370 CellMapType::const_iterator F = M.find(RR.Reg); 371 if (F != M.end()) { 372 if (!RR.Sub) 373 return F->second; 374 BitMask M = mask(RR.Reg, RR.Sub); 375 return F->second.extract(M); 376 } 377 // If not found, create a "top" entry, but do not insert it in the map. 378 return RegisterCell::top(BW); 379 } 380 381 void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, 382 CellMapType &M) const { 383 // While updating the cell map can be done in a meaningful way for 384 // a part of a register, it makes little sense to implement it as the 385 // SSA representation would never contain such "partial definitions". 386 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 387 return; 388 assert(RR.Sub == 0 && "Unexpected sub-register in definition"); 389 // Eliminate all ref-to-reg-0 bit values: replace them with "self". 390 M[RR.Reg] = RC.regify(RR.Reg); 391 } 392 393 // Check if the cell represents a compile-time integer value. 394 bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { 395 uint16_t W = A.width(); 396 for (uint16_t i = 0; i < W; ++i) 397 if (!A[i].is(0) && !A[i].is(1)) 398 return false; 399 return true; 400 } 401 402 // Convert a cell to the integer value. The result must fit in uint64_t. 403 uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { 404 assert(isInt(A)); 405 uint64_t Val = 0; 406 uint16_t W = A.width(); 407 for (uint16_t i = 0; i < W; ++i) { 408 Val <<= 1; 409 Val |= A[i].is(1); 410 } 411 return Val; 412 } 413 414 // Evaluator helper functions. These implement some common operation on 415 // register cells that can be used to implement target-specific instructions 416 // in a target-specific evaluator. 417 418 BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { 419 RegisterCell Res(W); 420 // For bits beyond the 63rd, this will generate the sign bit of V. 421 for (uint16_t i = 0; i < W; ++i) { 422 Res[i] = BitValue(V & 1); 423 V >>= 1; 424 } 425 return Res; 426 } 427 428 BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { 429 const APInt &A = CI->getValue(); 430 uint16_t BW = A.getBitWidth(); 431 assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); 432 RegisterCell Res(BW); 433 for (uint16_t i = 0; i < BW; ++i) 434 Res[i] = A[i]; 435 return Res; 436 } 437 438 BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, 439 const RegisterCell &A2) const { 440 uint16_t W = A1.width(); 441 assert(W == A2.width()); 442 RegisterCell Res(W); 443 bool Carry = false; 444 uint16_t I; 445 for (I = 0; I < W; ++I) { 446 const BitValue &V1 = A1[I]; 447 const BitValue &V2 = A2[I]; 448 if (!V1.num() || !V2.num()) 449 break; 450 unsigned S = bool(V1) + bool(V2) + Carry; 451 Res[I] = BitValue(S & 1); 452 Carry = (S > 1); 453 } 454 for (; I < W; ++I) { 455 const BitValue &V1 = A1[I]; 456 const BitValue &V2 = A2[I]; 457 // If the next bit is same as Carry, the result will be 0 plus the 458 // other bit. The Carry bit will remain unchanged. 459 if (V1.is(Carry)) 460 Res[I] = BitValue::ref(V2); 461 else if (V2.is(Carry)) 462 Res[I] = BitValue::ref(V1); 463 else 464 break; 465 } 466 for (; I < W; ++I) 467 Res[I] = BitValue::self(); 468 return Res; 469 } 470 471 BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, 472 const RegisterCell &A2) const { 473 uint16_t W = A1.width(); 474 assert(W == A2.width()); 475 RegisterCell Res(W); 476 bool Borrow = false; 477 uint16_t I; 478 for (I = 0; I < W; ++I) { 479 const BitValue &V1 = A1[I]; 480 const BitValue &V2 = A2[I]; 481 if (!V1.num() || !V2.num()) 482 break; 483 unsigned S = bool(V1) - bool(V2) - Borrow; 484 Res[I] = BitValue(S & 1); 485 Borrow = (S > 1); 486 } 487 for (; I < W; ++I) { 488 const BitValue &V1 = A1[I]; 489 const BitValue &V2 = A2[I]; 490 if (V1.is(Borrow)) { 491 Res[I] = BitValue::ref(V2); 492 break; 493 } 494 if (V2.is(Borrow)) 495 Res[I] = BitValue::ref(V1); 496 else 497 break; 498 } 499 for (; I < W; ++I) 500 Res[I] = BitValue::self(); 501 return Res; 502 } 503 504 BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, 505 const RegisterCell &A2) const { 506 uint16_t W = A1.width() + A2.width(); 507 uint16_t Z = A1.ct(false) + A2.ct(false); 508 RegisterCell Res(W); 509 Res.fill(0, Z, BitValue::Zero); 510 Res.fill(Z, W, BitValue::self()); 511 return Res; 512 } 513 514 BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, 515 const RegisterCell &A2) const { 516 uint16_t W = A1.width() + A2.width(); 517 uint16_t Z = A1.ct(false) + A2.ct(false); 518 RegisterCell Res(W); 519 Res.fill(0, Z, BitValue::Zero); 520 Res.fill(Z, W, BitValue::self()); 521 return Res; 522 } 523 524 BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, 525 uint16_t Sh) const { 526 assert(Sh <= A1.width()); 527 RegisterCell Res = RegisterCell::ref(A1); 528 Res.rol(Sh); 529 Res.fill(0, Sh, BitValue::Zero); 530 return Res; 531 } 532 533 BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, 534 uint16_t Sh) const { 535 uint16_t W = A1.width(); 536 assert(Sh <= W); 537 RegisterCell Res = RegisterCell::ref(A1); 538 Res.rol(W-Sh); 539 Res.fill(W-Sh, W, BitValue::Zero); 540 return Res; 541 } 542 543 BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, 544 uint16_t Sh) const { 545 uint16_t W = A1.width(); 546 assert(Sh <= W); 547 RegisterCell Res = RegisterCell::ref(A1); 548 BitValue Sign = Res[W-1]; 549 Res.rol(W-Sh); 550 Res.fill(W-Sh, W, Sign); 551 return Res; 552 } 553 554 BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, 555 const RegisterCell &A2) const { 556 uint16_t W = A1.width(); 557 assert(W == A2.width()); 558 RegisterCell Res(W); 559 for (uint16_t i = 0; i < W; ++i) { 560 const BitValue &V1 = A1[i]; 561 const BitValue &V2 = A2[i]; 562 if (V1.is(1)) 563 Res[i] = BitValue::ref(V2); 564 else if (V2.is(1)) 565 Res[i] = BitValue::ref(V1); 566 else if (V1.is(0) || V2.is(0)) 567 Res[i] = BitValue::Zero; 568 else if (V1 == V2) 569 Res[i] = V1; 570 else 571 Res[i] = BitValue::self(); 572 } 573 return Res; 574 } 575 576 BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, 577 const RegisterCell &A2) const { 578 uint16_t W = A1.width(); 579 assert(W == A2.width()); 580 RegisterCell Res(W); 581 for (uint16_t i = 0; i < W; ++i) { 582 const BitValue &V1 = A1[i]; 583 const BitValue &V2 = A2[i]; 584 if (V1.is(1) || V2.is(1)) 585 Res[i] = BitValue::One; 586 else if (V1.is(0)) 587 Res[i] = BitValue::ref(V2); 588 else if (V2.is(0)) 589 Res[i] = BitValue::ref(V1); 590 else if (V1 == V2) 591 Res[i] = V1; 592 else 593 Res[i] = BitValue::self(); 594 } 595 return Res; 596 } 597 598 BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, 599 const RegisterCell &A2) const { 600 uint16_t W = A1.width(); 601 assert(W == A2.width()); 602 RegisterCell Res(W); 603 for (uint16_t i = 0; i < W; ++i) { 604 const BitValue &V1 = A1[i]; 605 const BitValue &V2 = A2[i]; 606 if (V1.is(0)) 607 Res[i] = BitValue::ref(V2); 608 else if (V2.is(0)) 609 Res[i] = BitValue::ref(V1); 610 else if (V1 == V2) 611 Res[i] = BitValue::Zero; 612 else 613 Res[i] = BitValue::self(); 614 } 615 return Res; 616 } 617 618 BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { 619 uint16_t W = A1.width(); 620 RegisterCell Res(W); 621 for (uint16_t i = 0; i < W; ++i) { 622 const BitValue &V = A1[i]; 623 if (V.is(0)) 624 Res[i] = BitValue::One; 625 else if (V.is(1)) 626 Res[i] = BitValue::Zero; 627 else 628 Res[i] = BitValue::self(); 629 } 630 return Res; 631 } 632 633 BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, 634 uint16_t BitN) const { 635 assert(BitN < A1.width()); 636 RegisterCell Res = RegisterCell::ref(A1); 637 Res[BitN] = BitValue::One; 638 return Res; 639 } 640 641 BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, 642 uint16_t BitN) const { 643 assert(BitN < A1.width()); 644 RegisterCell Res = RegisterCell::ref(A1); 645 Res[BitN] = BitValue::Zero; 646 return Res; 647 } 648 649 BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, 650 uint16_t W) const { 651 uint16_t C = A1.cl(B), AW = A1.width(); 652 // If the last leading non-B bit is not a constant, then we don't know 653 // the real count. 654 if ((C < AW && A1[AW-1-C].num()) || C == AW) 655 return eIMM(C, W); 656 return RegisterCell::self(0, W); 657 } 658 659 BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, 660 uint16_t W) const { 661 uint16_t C = A1.ct(B), AW = A1.width(); 662 // If the last trailing non-B bit is not a constant, then we don't know 663 // the real count. 664 if ((C < AW && A1[C].num()) || C == AW) 665 return eIMM(C, W); 666 return RegisterCell::self(0, W); 667 } 668 669 BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, 670 uint16_t FromN) const { 671 uint16_t W = A1.width(); 672 assert(FromN <= W); 673 RegisterCell Res = RegisterCell::ref(A1); 674 BitValue Sign = Res[FromN-1]; 675 // Sign-extend "inreg". 676 Res.fill(FromN, W, Sign); 677 return Res; 678 } 679 680 BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, 681 uint16_t FromN) const { 682 uint16_t W = A1.width(); 683 assert(FromN <= W); 684 RegisterCell Res = RegisterCell::ref(A1); 685 Res.fill(FromN, W, BitValue::Zero); 686 return Res; 687 } 688 689 BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, 690 uint16_t B, uint16_t E) const { 691 uint16_t W = A1.width(); 692 assert(B < W && E <= W); 693 if (B == E) 694 return RegisterCell(0); 695 uint16_t Last = (E > 0) ? E-1 : W-1; 696 RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); 697 // Return shorter cell. 698 return Res; 699 } 700 701 BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, 702 const RegisterCell &A2, uint16_t AtN) const { 703 uint16_t W1 = A1.width(), W2 = A2.width(); 704 (void)W1; 705 assert(AtN < W1 && AtN+W2 <= W1); 706 // Copy bits from A1, insert A2 at position AtN. 707 RegisterCell Res = RegisterCell::ref(A1); 708 if (W2 > 0) 709 Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); 710 return Res; 711 } 712 713 BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { 714 assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); 715 uint16_t W = getRegBitWidth(Reg); 716 assert(W > 0 && "Cannot generate mask for empty register"); 717 return BitMask(0, W-1); 718 } 719 720 bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, 721 const CellMapType &Inputs, 722 CellMapType &Outputs) const { 723 unsigned Opc = MI.getOpcode(); 724 switch (Opc) { 725 case TargetOpcode::REG_SEQUENCE: { 726 RegisterRef RD = MI.getOperand(0); 727 assert(RD.Sub == 0); 728 RegisterRef RS = MI.getOperand(1); 729 unsigned SS = MI.getOperand(2).getImm(); 730 RegisterRef RT = MI.getOperand(3); 731 unsigned ST = MI.getOperand(4).getImm(); 732 assert(SS != ST); 733 734 uint16_t W = getRegBitWidth(RD); 735 RegisterCell Res(W); 736 Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); 737 Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); 738 putCell(RD, Res, Outputs); 739 break; 740 } 741 742 case TargetOpcode::COPY: { 743 // COPY can transfer a smaller register into a wider one. 744 // If that is the case, fill the remaining high bits with 0. 745 RegisterRef RD = MI.getOperand(0); 746 RegisterRef RS = MI.getOperand(1); 747 assert(RD.Sub == 0); 748 uint16_t WD = getRegBitWidth(RD); 749 uint16_t WS = getRegBitWidth(RS); 750 assert(WD >= WS); 751 RegisterCell Src = getCell(RS, Inputs); 752 RegisterCell Res(WD); 753 Res.insert(Src, BitMask(0, WS-1)); 754 Res.fill(WS, WD, BitValue::Zero); 755 putCell(RD, Res, Outputs); 756 break; 757 } 758 759 default: 760 return false; 761 } 762 763 return true; 764 } 765 766 // Main W-Z implementation. 767 768 void BT::visitPHI(const MachineInstr &PI) { 769 int ThisN = PI.getParent()->getNumber(); 770 if (Trace) 771 dbgs() << "Visit FI(BB#" << ThisN << "): " << PI; 772 773 const MachineOperand &MD = PI.getOperand(0); 774 assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); 775 RegisterRef DefRR(MD); 776 uint16_t DefBW = ME.getRegBitWidth(DefRR); 777 778 RegisterCell DefC = ME.getCell(DefRR, Map); 779 if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow 780 return; 781 782 bool Changed = false; 783 784 for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { 785 const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); 786 int PredN = PB->getNumber(); 787 if (Trace) 788 dbgs() << " edge BB#" << PredN << "->BB#" << ThisN; 789 if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { 790 if (Trace) 791 dbgs() << " not executable\n"; 792 continue; 793 } 794 795 RegisterRef RU = PI.getOperand(i); 796 RegisterCell ResC = ME.getCell(RU, Map); 797 if (Trace) 798 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) 799 << " cell: " << ResC << "\n"; 800 Changed |= DefC.meet(ResC, DefRR.Reg); 801 } 802 803 if (Changed) { 804 if (Trace) 805 dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub) 806 << " cell: " << DefC << "\n"; 807 ME.putCell(DefRR, DefC, Map); 808 visitUsesOf(DefRR.Reg); 809 } 810 } 811 812 void BT::visitNonBranch(const MachineInstr &MI) { 813 if (Trace) { 814 int ThisN = MI.getParent()->getNumber(); 815 dbgs() << "Visit MI(BB#" << ThisN << "): " << MI; 816 } 817 if (MI.isDebugValue()) 818 return; 819 assert(!MI.isBranch() && "Unexpected branch instruction"); 820 821 CellMapType ResMap; 822 bool Eval = ME.evaluate(MI, Map, ResMap); 823 824 if (Trace && Eval) { 825 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { 826 const MachineOperand &MO = MI.getOperand(i); 827 if (!MO.isReg() || !MO.isUse()) 828 continue; 829 RegisterRef RU(MO); 830 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) 831 << " cell: " << ME.getCell(RU, Map) << "\n"; 832 } 833 dbgs() << "Outputs:\n"; 834 for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end(); 835 I != E; ++I) { 836 RegisterRef RD(I->first); 837 dbgs() << " " << PrintReg(I->first, &ME.TRI) << " cell: " 838 << ME.getCell(RD, ResMap) << "\n"; 839 } 840 } 841 842 // Iterate over all definitions of the instruction, and update the 843 // cells accordingly. 844 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { 845 const MachineOperand &MO = MI.getOperand(i); 846 // Visit register defs only. 847 if (!MO.isReg() || !MO.isDef()) 848 continue; 849 RegisterRef RD(MO); 850 assert(RD.Sub == 0 && "Unexpected sub-register in definition"); 851 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg)) 852 continue; 853 854 bool Changed = false; 855 if (!Eval || ResMap.count(RD.Reg) == 0) { 856 // Set to "ref" (aka "bottom"). 857 uint16_t DefBW = ME.getRegBitWidth(RD); 858 RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); 859 if (RefC != ME.getCell(RD, Map)) { 860 ME.putCell(RD, RefC, Map); 861 Changed = true; 862 } 863 } else { 864 RegisterCell DefC = ME.getCell(RD, Map); 865 RegisterCell ResC = ME.getCell(RD, ResMap); 866 // This is a non-phi instruction, so the values of the inputs come 867 // from the same registers each time this instruction is evaluated. 868 // During the propagation, the values of the inputs can become lowered 869 // in the sense of the lattice operation, which may cause different 870 // results to be calculated in subsequent evaluations. This should 871 // not cause the bottoming of the result in the map, since the new 872 // result is already reflecting the lowered inputs. 873 for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { 874 BitValue &V = DefC[i]; 875 // Bits that are already "bottom" should not be updated. 876 if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) 877 continue; 878 // Same for those that are identical in DefC and ResC. 879 if (V == ResC[i]) 880 continue; 881 V = ResC[i]; 882 Changed = true; 883 } 884 if (Changed) 885 ME.putCell(RD, DefC, Map); 886 } 887 if (Changed) 888 visitUsesOf(RD.Reg); 889 } 890 } 891 892 void BT::visitBranchesFrom(const MachineInstr &BI) { 893 const MachineBasicBlock &B = *BI.getParent(); 894 MachineBasicBlock::const_iterator It = BI, End = B.end(); 895 BranchTargetList Targets, BTs; 896 bool FallsThrough = true, DefaultToAll = false; 897 int ThisN = B.getNumber(); 898 899 do { 900 BTs.clear(); 901 const MachineInstr &MI = *It; 902 if (Trace) 903 dbgs() << "Visit BR(BB#" << ThisN << "): " << MI; 904 assert(MI.isBranch() && "Expecting branch instruction"); 905 InstrExec.insert(&MI); 906 bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); 907 if (!Eval) { 908 // If the evaluation failed, we will add all targets. Keep going in 909 // the loop to mark all executable branches as such. 910 DefaultToAll = true; 911 FallsThrough = true; 912 if (Trace) 913 dbgs() << " failed to evaluate: will add all CFG successors\n"; 914 } else if (!DefaultToAll) { 915 // If evaluated successfully add the targets to the cumulative list. 916 if (Trace) { 917 dbgs() << " adding targets:"; 918 for (unsigned i = 0, n = BTs.size(); i < n; ++i) 919 dbgs() << " BB#" << BTs[i]->getNumber(); 920 if (FallsThrough) 921 dbgs() << "\n falls through\n"; 922 else 923 dbgs() << "\n does not fall through\n"; 924 } 925 Targets.insert(BTs.begin(), BTs.end()); 926 } 927 ++It; 928 } while (FallsThrough && It != End); 929 930 typedef MachineBasicBlock::const_succ_iterator succ_iterator; 931 if (!DefaultToAll) { 932 // Need to add all CFG successors that lead to EH landing pads. 933 // There won't be explicit branches to these blocks, but they must 934 // be processed. 935 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) { 936 const MachineBasicBlock *SB = *I; 937 if (SB->isEHPad()) 938 Targets.insert(SB); 939 } 940 if (FallsThrough) { 941 MachineFunction::const_iterator BIt = B.getIterator(); 942 MachineFunction::const_iterator Next = std::next(BIt); 943 if (Next != MF.end()) 944 Targets.insert(&*Next); 945 } 946 } else { 947 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) 948 Targets.insert(*I); 949 } 950 951 for (unsigned i = 0, n = Targets.size(); i < n; ++i) { 952 int TargetN = Targets[i]->getNumber(); 953 FlowQ.push(CFGEdge(ThisN, TargetN)); 954 } 955 } 956 957 void BT::visitUsesOf(unsigned Reg) { 958 if (Trace) 959 dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n"; 960 961 typedef MachineRegisterInfo::use_nodbg_iterator use_iterator; 962 use_iterator End = MRI.use_nodbg_end(); 963 for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) { 964 MachineInstr *UseI = I->getParent(); 965 if (!InstrExec.count(UseI)) 966 continue; 967 if (UseI->isPHI()) 968 visitPHI(*UseI); 969 else if (!UseI->isBranch()) 970 visitNonBranch(*UseI); 971 else 972 visitBranchesFrom(*UseI); 973 } 974 } 975 976 BT::RegisterCell BT::get(RegisterRef RR) const { 977 return ME.getCell(RR, Map); 978 } 979 980 void BT::put(RegisterRef RR, const RegisterCell &RC) { 981 ME.putCell(RR, RC, Map); 982 } 983 984 // Replace all references to bits from OldRR with the corresponding bits 985 // in NewRR. 986 void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { 987 assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); 988 BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); 989 BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); 990 uint16_t OMB = OM.first(), OME = OM.last(); 991 uint16_t NMB = NM.first(), NME = NM.last(); 992 (void)NME; 993 assert((OME-OMB == NME-NMB) && 994 "Substituting registers of different lengths"); 995 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) { 996 RegisterCell &RC = I->second; 997 for (uint16_t i = 0, w = RC.width(); i < w; ++i) { 998 BitValue &V = RC[i]; 999 if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) 1000 continue; 1001 if (V.RefI.Pos < OMB || V.RefI.Pos > OME) 1002 continue; 1003 V.RefI.Reg = NewRR.Reg; 1004 V.RefI.Pos += NMB-OMB; 1005 } 1006 } 1007 } 1008 1009 // Check if the block has been "executed" during propagation. (If not, the 1010 // block is dead, but it may still appear to be reachable.) 1011 bool BT::reached(const MachineBasicBlock *B) const { 1012 int BN = B->getNumber(); 1013 assert(BN >= 0); 1014 return ReachedBB.count(BN); 1015 } 1016 1017 // Visit an individual instruction. This could be a newly added instruction, 1018 // or one that has been modified by an optimization. 1019 void BT::visit(const MachineInstr &MI) { 1020 assert(!MI.isBranch() && "Only non-branches are allowed"); 1021 InstrExec.insert(&MI); 1022 visitNonBranch(MI); 1023 // The call to visitNonBranch could propagate the changes until a branch 1024 // is actually visited. This could result in adding CFG edges to the flow 1025 // queue. Since the queue won't be processed, clear it. 1026 while (!FlowQ.empty()) 1027 FlowQ.pop(); 1028 } 1029 1030 void BT::reset() { 1031 EdgeExec.clear(); 1032 InstrExec.clear(); 1033 Map.clear(); 1034 ReachedBB.clear(); 1035 ReachedBB.reserve(MF.size()); 1036 } 1037 1038 void BT::run() { 1039 reset(); 1040 assert(FlowQ.empty()); 1041 1042 typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits; 1043 const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); 1044 1045 unsigned MaxBN = 0; 1046 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); 1047 I != E; ++I) { 1048 assert(I->getNumber() >= 0 && "Disconnected block"); 1049 unsigned BN = I->getNumber(); 1050 if (BN > MaxBN) 1051 MaxBN = BN; 1052 } 1053 1054 // Keep track of visited blocks. 1055 BitVector BlockScanned(MaxBN+1); 1056 1057 int EntryN = Entry->getNumber(); 1058 // Generate a fake edge to get something to start with. 1059 FlowQ.push(CFGEdge(-1, EntryN)); 1060 1061 while (!FlowQ.empty()) { 1062 CFGEdge Edge = FlowQ.front(); 1063 FlowQ.pop(); 1064 1065 if (EdgeExec.count(Edge)) 1066 continue; 1067 EdgeExec.insert(Edge); 1068 ReachedBB.insert(Edge.second); 1069 1070 const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); 1071 MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); 1072 // Visit PHI nodes first. 1073 while (It != End && It->isPHI()) { 1074 const MachineInstr &PI = *It++; 1075 InstrExec.insert(&PI); 1076 visitPHI(PI); 1077 } 1078 1079 // If this block has already been visited through a flow graph edge, 1080 // then the instructions have already been processed. Any updates to 1081 // the cells would now only happen through visitUsesOf... 1082 if (BlockScanned[Edge.second]) 1083 continue; 1084 BlockScanned[Edge.second] = true; 1085 1086 // Visit non-branch instructions. 1087 while (It != End && !It->isBranch()) { 1088 const MachineInstr &MI = *It++; 1089 InstrExec.insert(&MI); 1090 visitNonBranch(MI); 1091 } 1092 // If block end has been reached, add the fall-through edge to the queue. 1093 if (It == End) { 1094 MachineFunction::const_iterator BIt = B.getIterator(); 1095 MachineFunction::const_iterator Next = std::next(BIt); 1096 if (Next != MF.end() && B.isSuccessor(&*Next)) { 1097 int ThisN = B.getNumber(); 1098 int NextN = Next->getNumber(); 1099 FlowQ.push(CFGEdge(ThisN, NextN)); 1100 } 1101 } else { 1102 // Handle the remaining sequence of branches. This function will update 1103 // the work queue. 1104 visitBranchesFrom(*It); 1105 } 1106 } // while (!FlowQ->empty()) 1107 1108 if (Trace) 1109 print_cells(dbgs() << "Cells after propagation:\n"); 1110 } 1111