1 //===- BitTracker.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // SSA-based bit propagation. 11 // 12 // The purpose of this code is, for a given virtual register, to provide 13 // information about the value of each bit in the register. The values 14 // of bits are represented by the class BitValue, and take one of four 15 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the 16 // "ref" value means that the bit is a copy of another bit (which itself 17 // cannot be a copy of yet another bit---such chains are not allowed). 18 // A "ref" value is associated with a BitRef structure, which indicates 19 // which virtual register, and which bit in that register is the origin 20 // of the value. For example, given an instruction 21 // %2 = ASL %1, 1 22 // assuming that nothing is known about bits of %1, bit 1 of %2 23 // will be a "ref" to (%1, 0). If there is a subsequent instruction 24 // %3 = ASL %2, 2 25 // then bit 3 of %3 will be a "ref" to (%1, 0) as well. 26 // The "bottom" case means that the bit's value cannot be determined, 27 // and that this virtual register actually defines it. The "bottom" case 28 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref 29 // to self", so for the %1 above, the bit 0 of it will be a "ref" to 30 // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc. 31 // 32 // The tracker implements the Wegman-Zadeck algorithm, originally developed 33 // for SSA-based constant propagation. Each register is represented as 34 // a sequence of bits, with the convention that bit 0 is the least signi- 35 // ficant bit. Each bit is propagated individually. The class RegisterCell 36 // implements the register's representation, and is also the subject of 37 // the lattice operations in the tracker. 38 // 39 // The intended usage of the bit tracker is to create a target-specific 40 // machine instruction evaluator, pass the evaluator to the BitTracker 41 // object, and run the tracker. The tracker will then collect the bit 42 // value information for a given machine function. After that, it can be 43 // queried for the cells for each virtual register. 44 // Sample code: 45 // const TargetSpecificEvaluator TSE(TRI, MRI); 46 // BitTracker BT(TSE, MF); 47 // BT.run(); 48 // ... 49 // unsigned Reg = interestingRegister(); 50 // RegisterCell RC = BT.get(Reg); 51 // if (RC[3].is(1)) 52 // Reg0bit3 = 1; 53 // 54 // The code below is intended to be fully target-independent. 55 56 #include "BitTracker.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/BitVector.h" 59 #include "llvm/CodeGen/MachineBasicBlock.h" 60 #include "llvm/CodeGen/MachineFunction.h" 61 #include "llvm/CodeGen/MachineInstr.h" 62 #include "llvm/CodeGen/MachineOperand.h" 63 #include "llvm/CodeGen/MachineRegisterInfo.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 72 using namespace llvm; 73 74 using BT = BitTracker; 75 76 namespace { 77 78 // Local trickery to pretty print a register (without the whole "%number" 79 // business). 80 struct printv { 81 printv(unsigned r) : R(r) {} 82 83 unsigned R; 84 }; 85 86 raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { 87 if (PV.R) 88 OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R); 89 else 90 OS << 's'; 91 return OS; 92 } 93 94 } // end anonymous namespace 95 96 namespace llvm { 97 98 raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { 99 switch (BV.Type) { 100 case BT::BitValue::Top: 101 OS << 'T'; 102 break; 103 case BT::BitValue::Zero: 104 OS << '0'; 105 break; 106 case BT::BitValue::One: 107 OS << '1'; 108 break; 109 case BT::BitValue::Ref: 110 OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; 111 break; 112 } 113 return OS; 114 } 115 116 raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { 117 unsigned n = RC.Bits.size(); 118 OS << "{ w:" << n; 119 // Instead of printing each bit value individually, try to group them 120 // into logical segments, such as sequences of 0 or 1 bits or references 121 // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). 122 // "Start" will be the index of the beginning of the most recent segment. 123 unsigned Start = 0; 124 bool SeqRef = false; // A sequence of refs to consecutive bits. 125 bool ConstRef = false; // A sequence of refs to the same bit. 126 127 for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { 128 const BT::BitValue &V = RC[i]; 129 const BT::BitValue &SV = RC[Start]; 130 bool IsRef = (V.Type == BT::BitValue::Ref); 131 // If the current value is the same as Start, skip to the next one. 132 if (!IsRef && V == SV) 133 continue; 134 if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { 135 if (Start+1 == i) { 136 SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); 137 ConstRef = (V.RefI.Pos == SV.RefI.Pos); 138 } 139 if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) 140 continue; 141 if (ConstRef && V.RefI.Pos == SV.RefI.Pos) 142 continue; 143 } 144 145 // The current value is different. Print the previous one and reset 146 // the Start. 147 OS << " [" << Start; 148 unsigned Count = i - Start; 149 if (Count == 1) { 150 OS << "]:" << SV; 151 } else { 152 OS << '-' << i-1 << "]:"; 153 if (SV.Type == BT::BitValue::Ref && SeqRef) 154 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' 155 << SV.RefI.Pos+(Count-1) << ']'; 156 else 157 OS << SV; 158 } 159 Start = i; 160 SeqRef = ConstRef = false; 161 } 162 163 OS << " [" << Start; 164 unsigned Count = n - Start; 165 if (n-Start == 1) { 166 OS << "]:" << RC[Start]; 167 } else { 168 OS << '-' << n-1 << "]:"; 169 const BT::BitValue &SV = RC[Start]; 170 if (SV.Type == BT::BitValue::Ref && SeqRef) 171 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' 172 << SV.RefI.Pos+(Count-1) << ']'; 173 else 174 OS << SV; 175 } 176 OS << " }"; 177 178 return OS; 179 } 180 181 } // end namespace llvm 182 183 void BitTracker::print_cells(raw_ostream &OS) const { 184 for (const std::pair<unsigned, RegisterCell> P : Map) 185 dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n"; 186 } 187 188 BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) 189 : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) { 190 } 191 192 BitTracker::~BitTracker() { 193 delete ⤅ 194 } 195 196 // If we were allowed to update a cell for a part of a register, the meet 197 // operation would need to be parametrized by the register number and the 198 // exact part of the register, so that the computer BitRefs correspond to 199 // the actual bits of the "self" register. 200 // While this cannot happen in the current implementation, I'm not sure 201 // if this should be ruled out in the future. 202 bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { 203 // An example when "meet" can be invoked with SelfR == 0 is a phi node 204 // with a physical register as an operand. 205 assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR)); 206 bool Changed = false; 207 for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { 208 const BitValue &RCV = RC[i]; 209 Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); 210 } 211 return Changed; 212 } 213 214 // Insert the entire cell RC into the current cell at position given by M. 215 BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, 216 const BitMask &M) { 217 uint16_t B = M.first(), E = M.last(), W = width(); 218 // Sanity: M must be a valid mask for *this. 219 assert(B < W && E < W); 220 // Sanity: the masked part of *this must have the same number of bits 221 // as the source. 222 assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|. 223 assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|. 224 if (B <= E) { 225 for (uint16_t i = 0; i <= E-B; ++i) 226 Bits[i+B] = RC[i]; 227 } else { 228 for (uint16_t i = 0; i < W-B; ++i) 229 Bits[i+B] = RC[i]; 230 for (uint16_t i = 0; i <= E; ++i) 231 Bits[i] = RC[i+(W-B)]; 232 } 233 return *this; 234 } 235 236 BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { 237 uint16_t B = M.first(), E = M.last(), W = width(); 238 assert(B < W && E < W); 239 if (B <= E) { 240 RegisterCell RC(E-B+1); 241 for (uint16_t i = B; i <= E; ++i) 242 RC.Bits[i-B] = Bits[i]; 243 return RC; 244 } 245 246 RegisterCell RC(E+(W-B)+1); 247 for (uint16_t i = 0; i < W-B; ++i) 248 RC.Bits[i] = Bits[i+B]; 249 for (uint16_t i = 0; i <= E; ++i) 250 RC.Bits[i+(W-B)] = Bits[i]; 251 return RC; 252 } 253 254 BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { 255 // Rotate left (i.e. towards increasing bit indices). 256 // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1] 257 uint16_t W = width(); 258 Sh = Sh % W; 259 if (Sh == 0) 260 return *this; 261 262 RegisterCell Tmp(W-Sh); 263 // Tmp = [0..W-Sh-1]. 264 for (uint16_t i = 0; i < W-Sh; ++i) 265 Tmp[i] = Bits[i]; 266 // Shift [W-Sh..W-1] to [0..Sh-1]. 267 for (uint16_t i = 0; i < Sh; ++i) 268 Bits[i] = Bits[W-Sh+i]; 269 // Copy Tmp to [Sh..W-1]. 270 for (uint16_t i = 0; i < W-Sh; ++i) 271 Bits[i+Sh] = Tmp.Bits[i]; 272 return *this; 273 } 274 275 BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, 276 const BitValue &V) { 277 assert(B <= E); 278 while (B < E) 279 Bits[B++] = V; 280 return *this; 281 } 282 283 BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { 284 // Append the cell given as the argument to the "this" cell. 285 // Bit 0 of RC becomes bit W of the result, where W is this->width(). 286 uint16_t W = width(), WRC = RC.width(); 287 Bits.resize(W+WRC); 288 for (uint16_t i = 0; i < WRC; ++i) 289 Bits[i+W] = RC.Bits[i]; 290 return *this; 291 } 292 293 uint16_t BT::RegisterCell::ct(bool B) const { 294 uint16_t W = width(); 295 uint16_t C = 0; 296 BitValue V = B; 297 while (C < W && Bits[C] == V) 298 C++; 299 return C; 300 } 301 302 uint16_t BT::RegisterCell::cl(bool B) const { 303 uint16_t W = width(); 304 uint16_t C = 0; 305 BitValue V = B; 306 while (C < W && Bits[W-(C+1)] == V) 307 C++; 308 return C; 309 } 310 311 bool BT::RegisterCell::operator== (const RegisterCell &RC) const { 312 uint16_t W = Bits.size(); 313 if (RC.Bits.size() != W) 314 return false; 315 for (uint16_t i = 0; i < W; ++i) 316 if (Bits[i] != RC[i]) 317 return false; 318 return true; 319 } 320 321 BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { 322 for (unsigned i = 0, n = width(); i < n; ++i) { 323 const BitValue &V = Bits[i]; 324 if (V.Type == BitValue::Ref && V.RefI.Reg == 0) 325 Bits[i].RefI = BitRef(R, i); 326 } 327 return *this; 328 } 329 330 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { 331 // The general problem is with finding a register class that corresponds 332 // to a given reference reg:sub. There can be several such classes, and 333 // since we only care about the register size, it does not matter which 334 // such class we would find. 335 // The easiest way to accomplish what we want is to 336 // 1. find a physical register PhysR from the same class as RR.Reg, 337 // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, 338 // 3. find a register class that contains PhysS. 339 if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { 340 const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub); 341 return TRI.getRegSizeInBits(VC); 342 } 343 assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); 344 unsigned PhysR = (RR.Sub == 0) ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub); 345 return getPhysRegBitWidth(PhysR); 346 } 347 348 BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, 349 const CellMapType &M) const { 350 uint16_t BW = getRegBitWidth(RR); 351 352 // Physical registers are assumed to be present in the map with an unknown 353 // value. Don't actually insert anything in the map, just return the cell. 354 if (TargetRegisterInfo::isPhysicalRegister(RR.Reg)) 355 return RegisterCell::self(0, BW); 356 357 assert(TargetRegisterInfo::isVirtualRegister(RR.Reg)); 358 // For virtual registers that belong to a class that is not tracked, 359 // generate an "unknown" value as well. 360 const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); 361 if (!track(C)) 362 return RegisterCell::self(0, BW); 363 364 CellMapType::const_iterator F = M.find(RR.Reg); 365 if (F != M.end()) { 366 if (!RR.Sub) 367 return F->second; 368 BitMask M = mask(RR.Reg, RR.Sub); 369 return F->second.extract(M); 370 } 371 // If not found, create a "top" entry, but do not insert it in the map. 372 return RegisterCell::top(BW); 373 } 374 375 void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, 376 CellMapType &M) const { 377 // While updating the cell map can be done in a meaningful way for 378 // a part of a register, it makes little sense to implement it as the 379 // SSA representation would never contain such "partial definitions". 380 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 381 return; 382 assert(RR.Sub == 0 && "Unexpected sub-register in definition"); 383 // Eliminate all ref-to-reg-0 bit values: replace them with "self". 384 M[RR.Reg] = RC.regify(RR.Reg); 385 } 386 387 // Check if the cell represents a compile-time integer value. 388 bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { 389 uint16_t W = A.width(); 390 for (uint16_t i = 0; i < W; ++i) 391 if (!A[i].is(0) && !A[i].is(1)) 392 return false; 393 return true; 394 } 395 396 // Convert a cell to the integer value. The result must fit in uint64_t. 397 uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { 398 assert(isInt(A)); 399 uint64_t Val = 0; 400 uint16_t W = A.width(); 401 for (uint16_t i = 0; i < W; ++i) { 402 Val <<= 1; 403 Val |= A[i].is(1); 404 } 405 return Val; 406 } 407 408 // Evaluator helper functions. These implement some common operation on 409 // register cells that can be used to implement target-specific instructions 410 // in a target-specific evaluator. 411 412 BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { 413 RegisterCell Res(W); 414 // For bits beyond the 63rd, this will generate the sign bit of V. 415 for (uint16_t i = 0; i < W; ++i) { 416 Res[i] = BitValue(V & 1); 417 V >>= 1; 418 } 419 return Res; 420 } 421 422 BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { 423 const APInt &A = CI->getValue(); 424 uint16_t BW = A.getBitWidth(); 425 assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); 426 RegisterCell Res(BW); 427 for (uint16_t i = 0; i < BW; ++i) 428 Res[i] = A[i]; 429 return Res; 430 } 431 432 BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, 433 const RegisterCell &A2) const { 434 uint16_t W = A1.width(); 435 assert(W == A2.width()); 436 RegisterCell Res(W); 437 bool Carry = false; 438 uint16_t I; 439 for (I = 0; I < W; ++I) { 440 const BitValue &V1 = A1[I]; 441 const BitValue &V2 = A2[I]; 442 if (!V1.num() || !V2.num()) 443 break; 444 unsigned S = bool(V1) + bool(V2) + Carry; 445 Res[I] = BitValue(S & 1); 446 Carry = (S > 1); 447 } 448 for (; I < W; ++I) { 449 const BitValue &V1 = A1[I]; 450 const BitValue &V2 = A2[I]; 451 // If the next bit is same as Carry, the result will be 0 plus the 452 // other bit. The Carry bit will remain unchanged. 453 if (V1.is(Carry)) 454 Res[I] = BitValue::ref(V2); 455 else if (V2.is(Carry)) 456 Res[I] = BitValue::ref(V1); 457 else 458 break; 459 } 460 for (; I < W; ++I) 461 Res[I] = BitValue::self(); 462 return Res; 463 } 464 465 BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, 466 const RegisterCell &A2) const { 467 uint16_t W = A1.width(); 468 assert(W == A2.width()); 469 RegisterCell Res(W); 470 bool Borrow = false; 471 uint16_t I; 472 for (I = 0; I < W; ++I) { 473 const BitValue &V1 = A1[I]; 474 const BitValue &V2 = A2[I]; 475 if (!V1.num() || !V2.num()) 476 break; 477 unsigned S = bool(V1) - bool(V2) - Borrow; 478 Res[I] = BitValue(S & 1); 479 Borrow = (S > 1); 480 } 481 for (; I < W; ++I) { 482 const BitValue &V1 = A1[I]; 483 const BitValue &V2 = A2[I]; 484 if (V1.is(Borrow)) { 485 Res[I] = BitValue::ref(V2); 486 break; 487 } 488 if (V2.is(Borrow)) 489 Res[I] = BitValue::ref(V1); 490 else 491 break; 492 } 493 for (; I < W; ++I) 494 Res[I] = BitValue::self(); 495 return Res; 496 } 497 498 BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, 499 const RegisterCell &A2) const { 500 uint16_t W = A1.width() + A2.width(); 501 uint16_t Z = A1.ct(false) + A2.ct(false); 502 RegisterCell Res(W); 503 Res.fill(0, Z, BitValue::Zero); 504 Res.fill(Z, W, BitValue::self()); 505 return Res; 506 } 507 508 BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, 509 const RegisterCell &A2) const { 510 uint16_t W = A1.width() + A2.width(); 511 uint16_t Z = A1.ct(false) + A2.ct(false); 512 RegisterCell Res(W); 513 Res.fill(0, Z, BitValue::Zero); 514 Res.fill(Z, W, BitValue::self()); 515 return Res; 516 } 517 518 BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, 519 uint16_t Sh) const { 520 assert(Sh <= A1.width()); 521 RegisterCell Res = RegisterCell::ref(A1); 522 Res.rol(Sh); 523 Res.fill(0, Sh, BitValue::Zero); 524 return Res; 525 } 526 527 BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, 528 uint16_t Sh) const { 529 uint16_t W = A1.width(); 530 assert(Sh <= W); 531 RegisterCell Res = RegisterCell::ref(A1); 532 Res.rol(W-Sh); 533 Res.fill(W-Sh, W, BitValue::Zero); 534 return Res; 535 } 536 537 BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, 538 uint16_t Sh) const { 539 uint16_t W = A1.width(); 540 assert(Sh <= W); 541 RegisterCell Res = RegisterCell::ref(A1); 542 BitValue Sign = Res[W-1]; 543 Res.rol(W-Sh); 544 Res.fill(W-Sh, W, Sign); 545 return Res; 546 } 547 548 BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, 549 const RegisterCell &A2) const { 550 uint16_t W = A1.width(); 551 assert(W == A2.width()); 552 RegisterCell Res(W); 553 for (uint16_t i = 0; i < W; ++i) { 554 const BitValue &V1 = A1[i]; 555 const BitValue &V2 = A2[i]; 556 if (V1.is(1)) 557 Res[i] = BitValue::ref(V2); 558 else if (V2.is(1)) 559 Res[i] = BitValue::ref(V1); 560 else if (V1.is(0) || V2.is(0)) 561 Res[i] = BitValue::Zero; 562 else if (V1 == V2) 563 Res[i] = V1; 564 else 565 Res[i] = BitValue::self(); 566 } 567 return Res; 568 } 569 570 BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, 571 const RegisterCell &A2) const { 572 uint16_t W = A1.width(); 573 assert(W == A2.width()); 574 RegisterCell Res(W); 575 for (uint16_t i = 0; i < W; ++i) { 576 const BitValue &V1 = A1[i]; 577 const BitValue &V2 = A2[i]; 578 if (V1.is(1) || V2.is(1)) 579 Res[i] = BitValue::One; 580 else if (V1.is(0)) 581 Res[i] = BitValue::ref(V2); 582 else if (V2.is(0)) 583 Res[i] = BitValue::ref(V1); 584 else if (V1 == V2) 585 Res[i] = V1; 586 else 587 Res[i] = BitValue::self(); 588 } 589 return Res; 590 } 591 592 BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, 593 const RegisterCell &A2) const { 594 uint16_t W = A1.width(); 595 assert(W == A2.width()); 596 RegisterCell Res(W); 597 for (uint16_t i = 0; i < W; ++i) { 598 const BitValue &V1 = A1[i]; 599 const BitValue &V2 = A2[i]; 600 if (V1.is(0)) 601 Res[i] = BitValue::ref(V2); 602 else if (V2.is(0)) 603 Res[i] = BitValue::ref(V1); 604 else if (V1 == V2) 605 Res[i] = BitValue::Zero; 606 else 607 Res[i] = BitValue::self(); 608 } 609 return Res; 610 } 611 612 BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { 613 uint16_t W = A1.width(); 614 RegisterCell Res(W); 615 for (uint16_t i = 0; i < W; ++i) { 616 const BitValue &V = A1[i]; 617 if (V.is(0)) 618 Res[i] = BitValue::One; 619 else if (V.is(1)) 620 Res[i] = BitValue::Zero; 621 else 622 Res[i] = BitValue::self(); 623 } 624 return Res; 625 } 626 627 BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, 628 uint16_t BitN) const { 629 assert(BitN < A1.width()); 630 RegisterCell Res = RegisterCell::ref(A1); 631 Res[BitN] = BitValue::One; 632 return Res; 633 } 634 635 BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, 636 uint16_t BitN) const { 637 assert(BitN < A1.width()); 638 RegisterCell Res = RegisterCell::ref(A1); 639 Res[BitN] = BitValue::Zero; 640 return Res; 641 } 642 643 BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, 644 uint16_t W) const { 645 uint16_t C = A1.cl(B), AW = A1.width(); 646 // If the last leading non-B bit is not a constant, then we don't know 647 // the real count. 648 if ((C < AW && A1[AW-1-C].num()) || C == AW) 649 return eIMM(C, W); 650 return RegisterCell::self(0, W); 651 } 652 653 BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, 654 uint16_t W) const { 655 uint16_t C = A1.ct(B), AW = A1.width(); 656 // If the last trailing non-B bit is not a constant, then we don't know 657 // the real count. 658 if ((C < AW && A1[C].num()) || C == AW) 659 return eIMM(C, W); 660 return RegisterCell::self(0, W); 661 } 662 663 BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, 664 uint16_t FromN) const { 665 uint16_t W = A1.width(); 666 assert(FromN <= W); 667 RegisterCell Res = RegisterCell::ref(A1); 668 BitValue Sign = Res[FromN-1]; 669 // Sign-extend "inreg". 670 Res.fill(FromN, W, Sign); 671 return Res; 672 } 673 674 BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, 675 uint16_t FromN) const { 676 uint16_t W = A1.width(); 677 assert(FromN <= W); 678 RegisterCell Res = RegisterCell::ref(A1); 679 Res.fill(FromN, W, BitValue::Zero); 680 return Res; 681 } 682 683 BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, 684 uint16_t B, uint16_t E) const { 685 uint16_t W = A1.width(); 686 assert(B < W && E <= W); 687 if (B == E) 688 return RegisterCell(0); 689 uint16_t Last = (E > 0) ? E-1 : W-1; 690 RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); 691 // Return shorter cell. 692 return Res; 693 } 694 695 BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, 696 const RegisterCell &A2, uint16_t AtN) const { 697 uint16_t W1 = A1.width(), W2 = A2.width(); 698 (void)W1; 699 assert(AtN < W1 && AtN+W2 <= W1); 700 // Copy bits from A1, insert A2 at position AtN. 701 RegisterCell Res = RegisterCell::ref(A1); 702 if (W2 > 0) 703 Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); 704 return Res; 705 } 706 707 BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { 708 assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); 709 uint16_t W = getRegBitWidth(Reg); 710 assert(W > 0 && "Cannot generate mask for empty register"); 711 return BitMask(0, W-1); 712 } 713 714 uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const { 715 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 716 const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg); 717 return TRI.getRegSizeInBits(PC); 718 } 719 720 bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, 721 const CellMapType &Inputs, 722 CellMapType &Outputs) const { 723 unsigned Opc = MI.getOpcode(); 724 switch (Opc) { 725 case TargetOpcode::REG_SEQUENCE: { 726 RegisterRef RD = MI.getOperand(0); 727 assert(RD.Sub == 0); 728 RegisterRef RS = MI.getOperand(1); 729 unsigned SS = MI.getOperand(2).getImm(); 730 RegisterRef RT = MI.getOperand(3); 731 unsigned ST = MI.getOperand(4).getImm(); 732 assert(SS != ST); 733 734 uint16_t W = getRegBitWidth(RD); 735 RegisterCell Res(W); 736 Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); 737 Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); 738 putCell(RD, Res, Outputs); 739 break; 740 } 741 742 case TargetOpcode::COPY: { 743 // COPY can transfer a smaller register into a wider one. 744 // If that is the case, fill the remaining high bits with 0. 745 RegisterRef RD = MI.getOperand(0); 746 RegisterRef RS = MI.getOperand(1); 747 assert(RD.Sub == 0); 748 uint16_t WD = getRegBitWidth(RD); 749 uint16_t WS = getRegBitWidth(RS); 750 assert(WD >= WS); 751 RegisterCell Src = getCell(RS, Inputs); 752 RegisterCell Res(WD); 753 Res.insert(Src, BitMask(0, WS-1)); 754 Res.fill(WS, WD, BitValue::Zero); 755 putCell(RD, Res, Outputs); 756 break; 757 } 758 759 default: 760 return false; 761 } 762 763 return true; 764 } 765 766 bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA, 767 const MachineInstr *InstB) const { 768 // This is a comparison function for a priority queue: give higher priority 769 // to earlier instructions. 770 // This operator is used as "less", so returning "true" gives InstB higher 771 // priority (because then InstA < InstB). 772 if (InstA == InstB) 773 return false; 774 const MachineBasicBlock *BA = InstA->getParent(); 775 const MachineBasicBlock *BB = InstB->getParent(); 776 if (BA != BB) { 777 // If the blocks are different, ideally the dominating block would 778 // have a higher priority, but it may be too expensive to check. 779 return BA->getNumber() > BB->getNumber(); 780 } 781 782 MachineBasicBlock::const_iterator ItA = InstA->getIterator(); 783 MachineBasicBlock::const_iterator ItB = InstB->getIterator(); 784 MachineBasicBlock::const_iterator End = BA->end(); 785 while (ItA != End) { 786 if (ItA == ItB) 787 return false; // ItA was before ItB. 788 ++ItA; 789 } 790 return true; 791 } 792 793 // Main W-Z implementation. 794 795 void BT::visitPHI(const MachineInstr &PI) { 796 int ThisN = PI.getParent()->getNumber(); 797 if (Trace) 798 dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI; 799 800 const MachineOperand &MD = PI.getOperand(0); 801 assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); 802 RegisterRef DefRR(MD); 803 uint16_t DefBW = ME.getRegBitWidth(DefRR); 804 805 RegisterCell DefC = ME.getCell(DefRR, Map); 806 if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow 807 return; 808 809 bool Changed = false; 810 811 for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { 812 const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); 813 int PredN = PB->getNumber(); 814 if (Trace) 815 dbgs() << " edge " << printMBBReference(*PB) << "->" 816 << printMBBReference(*PI.getParent()); 817 if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { 818 if (Trace) 819 dbgs() << " not executable\n"; 820 continue; 821 } 822 823 RegisterRef RU = PI.getOperand(i); 824 RegisterCell ResC = ME.getCell(RU, Map); 825 if (Trace) 826 dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) 827 << " cell: " << ResC << "\n"; 828 Changed |= DefC.meet(ResC, DefRR.Reg); 829 } 830 831 if (Changed) { 832 if (Trace) 833 dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub) 834 << " cell: " << DefC << "\n"; 835 ME.putCell(DefRR, DefC, Map); 836 visitUsesOf(DefRR.Reg); 837 } 838 } 839 840 void BT::visitNonBranch(const MachineInstr &MI) { 841 if (Trace) 842 dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI; 843 if (MI.isDebugValue()) 844 return; 845 assert(!MI.isBranch() && "Unexpected branch instruction"); 846 847 CellMapType ResMap; 848 bool Eval = ME.evaluate(MI, Map, ResMap); 849 850 if (Trace && Eval) { 851 for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { 852 const MachineOperand &MO = MI.getOperand(i); 853 if (!MO.isReg() || !MO.isUse()) 854 continue; 855 RegisterRef RU(MO); 856 dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) 857 << " cell: " << ME.getCell(RU, Map) << "\n"; 858 } 859 dbgs() << "Outputs:\n"; 860 for (const std::pair<unsigned, RegisterCell> &P : ResMap) { 861 RegisterRef RD(P.first); 862 dbgs() << " " << printReg(P.first, &ME.TRI) << " cell: " 863 << ME.getCell(RD, ResMap) << "\n"; 864 } 865 } 866 867 // Iterate over all definitions of the instruction, and update the 868 // cells accordingly. 869 for (const MachineOperand &MO : MI.operands()) { 870 // Visit register defs only. 871 if (!MO.isReg() || !MO.isDef()) 872 continue; 873 RegisterRef RD(MO); 874 assert(RD.Sub == 0 && "Unexpected sub-register in definition"); 875 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg)) 876 continue; 877 878 bool Changed = false; 879 if (!Eval || ResMap.count(RD.Reg) == 0) { 880 // Set to "ref" (aka "bottom"). 881 uint16_t DefBW = ME.getRegBitWidth(RD); 882 RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); 883 if (RefC != ME.getCell(RD, Map)) { 884 ME.putCell(RD, RefC, Map); 885 Changed = true; 886 } 887 } else { 888 RegisterCell DefC = ME.getCell(RD, Map); 889 RegisterCell ResC = ME.getCell(RD, ResMap); 890 // This is a non-phi instruction, so the values of the inputs come 891 // from the same registers each time this instruction is evaluated. 892 // During the propagation, the values of the inputs can become lowered 893 // in the sense of the lattice operation, which may cause different 894 // results to be calculated in subsequent evaluations. This should 895 // not cause the bottoming of the result in the map, since the new 896 // result is already reflecting the lowered inputs. 897 for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { 898 BitValue &V = DefC[i]; 899 // Bits that are already "bottom" should not be updated. 900 if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) 901 continue; 902 // Same for those that are identical in DefC and ResC. 903 if (V == ResC[i]) 904 continue; 905 V = ResC[i]; 906 Changed = true; 907 } 908 if (Changed) 909 ME.putCell(RD, DefC, Map); 910 } 911 if (Changed) 912 visitUsesOf(RD.Reg); 913 } 914 } 915 916 void BT::visitBranchesFrom(const MachineInstr &BI) { 917 const MachineBasicBlock &B = *BI.getParent(); 918 MachineBasicBlock::const_iterator It = BI, End = B.end(); 919 BranchTargetList Targets, BTs; 920 bool FallsThrough = true, DefaultToAll = false; 921 int ThisN = B.getNumber(); 922 923 do { 924 BTs.clear(); 925 const MachineInstr &MI = *It; 926 if (Trace) 927 dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI; 928 assert(MI.isBranch() && "Expecting branch instruction"); 929 InstrExec.insert(&MI); 930 bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); 931 if (!Eval) { 932 // If the evaluation failed, we will add all targets. Keep going in 933 // the loop to mark all executable branches as such. 934 DefaultToAll = true; 935 FallsThrough = true; 936 if (Trace) 937 dbgs() << " failed to evaluate: will add all CFG successors\n"; 938 } else if (!DefaultToAll) { 939 // If evaluated successfully add the targets to the cumulative list. 940 if (Trace) { 941 dbgs() << " adding targets:"; 942 for (unsigned i = 0, n = BTs.size(); i < n; ++i) 943 dbgs() << " " << printMBBReference(*BTs[i]); 944 if (FallsThrough) 945 dbgs() << "\n falls through\n"; 946 else 947 dbgs() << "\n does not fall through\n"; 948 } 949 Targets.insert(BTs.begin(), BTs.end()); 950 } 951 ++It; 952 } while (FallsThrough && It != End); 953 954 if (!DefaultToAll) { 955 // Need to add all CFG successors that lead to EH landing pads. 956 // There won't be explicit branches to these blocks, but they must 957 // be processed. 958 for (const MachineBasicBlock *SB : B.successors()) { 959 if (SB->isEHPad()) 960 Targets.insert(SB); 961 } 962 if (FallsThrough) { 963 MachineFunction::const_iterator BIt = B.getIterator(); 964 MachineFunction::const_iterator Next = std::next(BIt); 965 if (Next != MF.end()) 966 Targets.insert(&*Next); 967 } 968 } else { 969 for (const MachineBasicBlock *SB : B.successors()) 970 Targets.insert(SB); 971 } 972 973 for (const MachineBasicBlock *TB : Targets) 974 FlowQ.push(CFGEdge(ThisN, TB->getNumber())); 975 } 976 977 void BT::visitUsesOf(unsigned Reg) { 978 if (Trace) 979 dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI) 980 << " cell: " << ME.getCell(Reg, Map) << '\n'; 981 982 for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg)) 983 UseQ.push(&UseI); 984 } 985 986 BT::RegisterCell BT::get(RegisterRef RR) const { 987 return ME.getCell(RR, Map); 988 } 989 990 void BT::put(RegisterRef RR, const RegisterCell &RC) { 991 ME.putCell(RR, RC, Map); 992 } 993 994 // Replace all references to bits from OldRR with the corresponding bits 995 // in NewRR. 996 void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { 997 assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); 998 BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); 999 BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); 1000 uint16_t OMB = OM.first(), OME = OM.last(); 1001 uint16_t NMB = NM.first(), NME = NM.last(); 1002 (void)NME; 1003 assert((OME-OMB == NME-NMB) && 1004 "Substituting registers of different lengths"); 1005 for (std::pair<const unsigned, RegisterCell> &P : Map) { 1006 RegisterCell &RC = P.second; 1007 for (uint16_t i = 0, w = RC.width(); i < w; ++i) { 1008 BitValue &V = RC[i]; 1009 if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) 1010 continue; 1011 if (V.RefI.Pos < OMB || V.RefI.Pos > OME) 1012 continue; 1013 V.RefI.Reg = NewRR.Reg; 1014 V.RefI.Pos += NMB-OMB; 1015 } 1016 } 1017 } 1018 1019 // Check if the block has been "executed" during propagation. (If not, the 1020 // block is dead, but it may still appear to be reachable.) 1021 bool BT::reached(const MachineBasicBlock *B) const { 1022 int BN = B->getNumber(); 1023 assert(BN >= 0); 1024 return ReachedBB.count(BN); 1025 } 1026 1027 // Visit an individual instruction. This could be a newly added instruction, 1028 // or one that has been modified by an optimization. 1029 void BT::visit(const MachineInstr &MI) { 1030 assert(!MI.isBranch() && "Only non-branches are allowed"); 1031 InstrExec.insert(&MI); 1032 visitNonBranch(MI); 1033 // Make sure to flush all the pending use updates. 1034 runUseQueue(); 1035 // The call to visitNonBranch could propagate the changes until a branch 1036 // is actually visited. This could result in adding CFG edges to the flow 1037 // queue. Since the queue won't be processed, clear it. 1038 while (!FlowQ.empty()) 1039 FlowQ.pop(); 1040 } 1041 1042 void BT::reset() { 1043 EdgeExec.clear(); 1044 InstrExec.clear(); 1045 Map.clear(); 1046 ReachedBB.clear(); 1047 ReachedBB.reserve(MF.size()); 1048 } 1049 1050 void BT::runEdgeQueue(BitVector &BlockScanned) { 1051 while (!FlowQ.empty()) { 1052 CFGEdge Edge = FlowQ.front(); 1053 FlowQ.pop(); 1054 1055 if (EdgeExec.count(Edge)) 1056 return; 1057 EdgeExec.insert(Edge); 1058 ReachedBB.insert(Edge.second); 1059 1060 const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); 1061 MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); 1062 // Visit PHI nodes first. 1063 while (It != End && It->isPHI()) { 1064 const MachineInstr &PI = *It++; 1065 InstrExec.insert(&PI); 1066 visitPHI(PI); 1067 } 1068 1069 // If this block has already been visited through a flow graph edge, 1070 // then the instructions have already been processed. Any updates to 1071 // the cells would now only happen through visitUsesOf... 1072 if (BlockScanned[Edge.second]) 1073 return; 1074 BlockScanned[Edge.second] = true; 1075 1076 // Visit non-branch instructions. 1077 while (It != End && !It->isBranch()) { 1078 const MachineInstr &MI = *It++; 1079 InstrExec.insert(&MI); 1080 visitNonBranch(MI); 1081 } 1082 // If block end has been reached, add the fall-through edge to the queue. 1083 if (It == End) { 1084 MachineFunction::const_iterator BIt = B.getIterator(); 1085 MachineFunction::const_iterator Next = std::next(BIt); 1086 if (Next != MF.end() && B.isSuccessor(&*Next)) { 1087 int ThisN = B.getNumber(); 1088 int NextN = Next->getNumber(); 1089 FlowQ.push(CFGEdge(ThisN, NextN)); 1090 } 1091 } else { 1092 // Handle the remaining sequence of branches. This function will update 1093 // the work queue. 1094 visitBranchesFrom(*It); 1095 } 1096 } // while (!FlowQ->empty()) 1097 } 1098 1099 void BT::runUseQueue() { 1100 while (!UseQ.empty()) { 1101 MachineInstr &UseI = *UseQ.front(); 1102 UseQ.pop(); 1103 1104 if (!InstrExec.count(&UseI)) 1105 continue; 1106 if (UseI.isPHI()) 1107 visitPHI(UseI); 1108 else if (!UseI.isBranch()) 1109 visitNonBranch(UseI); 1110 else 1111 visitBranchesFrom(UseI); 1112 } 1113 } 1114 1115 void BT::run() { 1116 reset(); 1117 assert(FlowQ.empty()); 1118 1119 using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>; 1120 const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); 1121 1122 unsigned MaxBN = 0; 1123 for (const MachineBasicBlock &B : MF) { 1124 assert(B.getNumber() >= 0 && "Disconnected block"); 1125 unsigned BN = B.getNumber(); 1126 if (BN > MaxBN) 1127 MaxBN = BN; 1128 } 1129 1130 // Keep track of visited blocks. 1131 BitVector BlockScanned(MaxBN+1); 1132 1133 int EntryN = Entry->getNumber(); 1134 // Generate a fake edge to get something to start with. 1135 FlowQ.push(CFGEdge(-1, EntryN)); 1136 1137 while (!FlowQ.empty() || !UseQ.empty()) { 1138 runEdgeQueue(BlockScanned); 1139 runUseQueue(); 1140 } 1141 1142 if (Trace) 1143 print_cells(dbgs() << "Cells after propagation:\n"); 1144 } 1145