1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // Forked from lib/Bitcode/Writer 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DXILValueEnumerator.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Argument.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalIFunc.h" 25 #include "llvm/IR/GlobalObject.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Use.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/ValueSymbolTable.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <cstddef> 45 #include <iterator> 46 #include <tuple> 47 48 using namespace llvm; 49 using namespace llvm::dxil; 50 51 namespace { 52 53 struct OrderMap { 54 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 55 unsigned LastGlobalConstantID = 0; 56 unsigned LastGlobalValueID = 0; 57 58 OrderMap() = default; 59 60 bool isGlobalConstant(unsigned ID) const { 61 return ID <= LastGlobalConstantID; 62 } 63 64 bool isGlobalValue(unsigned ID) const { 65 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 66 } 67 68 unsigned size() const { return IDs.size(); } 69 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 70 71 std::pair<unsigned, bool> lookup(const Value *V) const { 72 return IDs.lookup(V); 73 } 74 75 void index(const Value *V) { 76 // Explicitly sequence get-size and insert-value operations to avoid UB. 77 unsigned ID = IDs.size() + 1; 78 IDs[V].first = ID; 79 } 80 }; 81 82 } // end anonymous namespace 83 84 static void orderValue(const Value *V, OrderMap &OM) { 85 if (OM.lookup(V).first) 86 return; 87 88 if (const Constant *C = dyn_cast<Constant>(V)) { 89 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 90 for (const Value *Op : C->operands()) 91 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 92 orderValue(Op, OM); 93 if (auto *CE = dyn_cast<ConstantExpr>(C)) 94 if (CE->getOpcode() == Instruction::ShuffleVector) 95 orderValue(CE->getShuffleMaskForBitcode(), OM); 96 } 97 } 98 99 // Note: we cannot cache this lookup above, since inserting into the map 100 // changes the map's size, and thus affects the other IDs. 101 OM.index(V); 102 } 103 104 static OrderMap orderModule(const Module &M) { 105 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 106 // and ValueEnumerator::incorporateFunction(). 107 OrderMap OM; 108 109 // In the reader, initializers of GlobalValues are set *after* all the 110 // globals have been read. Rather than awkwardly modeling this behaviour 111 // directly in predictValueUseListOrderImpl(), just assign IDs to 112 // initializers of GlobalValues before GlobalValues themselves to model this 113 // implicitly. 114 for (const GlobalVariable &G : M.globals()) 115 if (G.hasInitializer()) 116 if (!isa<GlobalValue>(G.getInitializer())) 117 orderValue(G.getInitializer(), OM); 118 for (const GlobalAlias &A : M.aliases()) 119 if (!isa<GlobalValue>(A.getAliasee())) 120 orderValue(A.getAliasee(), OM); 121 for (const GlobalIFunc &I : M.ifuncs()) 122 if (!isa<GlobalValue>(I.getResolver())) 123 orderValue(I.getResolver(), OM); 124 for (const Function &F : M) { 125 for (const Use &U : F.operands()) 126 if (!isa<GlobalValue>(U.get())) 127 orderValue(U.get(), OM); 128 } 129 130 // As constants used in metadata operands are emitted as module-level 131 // constants, we must order them before other operands. Also, we must order 132 // these before global values, as these will be read before setting the 133 // global values' initializers. The latter matters for constants which have 134 // uses towards other constants that are used as initializers. 135 auto orderConstantValue = [&OM](const Value *V) { 136 if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V)) 137 orderValue(V, OM); 138 }; 139 for (const Function &F : M) { 140 if (F.isDeclaration()) 141 continue; 142 for (const BasicBlock &BB : F) 143 for (const Instruction &I : BB) 144 for (const Value *V : I.operands()) { 145 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 146 if (const auto *VAM = 147 dyn_cast<ValueAsMetadata>(MAV->getMetadata())) { 148 orderConstantValue(VAM->getValue()); 149 } else if (const auto *AL = 150 dyn_cast<DIArgList>(MAV->getMetadata())) { 151 for (const auto *VAM : AL->getArgs()) 152 orderConstantValue(VAM->getValue()); 153 } 154 } 155 } 156 } 157 OM.LastGlobalConstantID = OM.size(); 158 159 // Initializers of GlobalValues are processed in 160 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 161 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 162 // by giving IDs in reverse order. 163 // 164 // Since GlobalValues never reference each other directly (just through 165 // initializers), their relative IDs only matter for determining order of 166 // uses in their initializers. 167 for (const Function &F : M) 168 orderValue(&F, OM); 169 for (const GlobalAlias &A : M.aliases()) 170 orderValue(&A, OM); 171 for (const GlobalIFunc &I : M.ifuncs()) 172 orderValue(&I, OM); 173 for (const GlobalVariable &G : M.globals()) 174 orderValue(&G, OM); 175 OM.LastGlobalValueID = OM.size(); 176 177 for (const Function &F : M) { 178 if (F.isDeclaration()) 179 continue; 180 // Here we need to match the union of ValueEnumerator::incorporateFunction() 181 // and WriteFunction(). Basic blocks are implicitly declared before 182 // anything else (by declaring their size). 183 for (const BasicBlock &BB : F) 184 orderValue(&BB, OM); 185 for (const Argument &A : F.args()) 186 orderValue(&A, OM); 187 for (const BasicBlock &BB : F) 188 for (const Instruction &I : BB) { 189 for (const Value *Op : I.operands()) 190 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 191 isa<InlineAsm>(*Op)) 192 orderValue(Op, OM); 193 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 194 orderValue(SVI->getShuffleMaskForBitcode(), OM); 195 } 196 for (const BasicBlock &BB : F) 197 for (const Instruction &I : BB) 198 orderValue(&I, OM); 199 } 200 return OM; 201 } 202 203 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 204 unsigned ID, const OrderMap &OM, 205 UseListOrderStack &Stack) { 206 // Predict use-list order for this one. 207 using Entry = std::pair<const Use *, unsigned>; 208 SmallVector<Entry, 64> List; 209 for (const Use &U : V->uses()) 210 // Check if this user will be serialized. 211 if (OM.lookup(U.getUser()).first) 212 List.push_back(std::make_pair(&U, List.size())); 213 214 if (List.size() < 2) 215 // We may have lost some users. 216 return; 217 218 bool IsGlobalValue = OM.isGlobalValue(ID); 219 llvm::sort(List, [&](const Entry &L, const Entry &R) { 220 const Use *LU = L.first; 221 const Use *RU = R.first; 222 if (LU == RU) 223 return false; 224 225 auto LID = OM.lookup(LU->getUser()).first; 226 auto RID = OM.lookup(RU->getUser()).first; 227 228 // Global values are processed in reverse order. 229 // 230 // Moreover, initializers of GlobalValues are set *after* all the globals 231 // have been read (despite having earlier IDs). Rather than awkwardly 232 // modeling this behaviour here, orderModule() has assigned IDs to 233 // initializers of GlobalValues before GlobalValues themselves. 234 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) { 235 if (LID == RID) 236 return LU->getOperandNo() > RU->getOperandNo(); 237 return LID < RID; 238 } 239 240 // If ID is 4, then expect: 7 6 5 1 2 3. 241 if (LID < RID) { 242 if (RID <= ID) 243 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 244 return true; 245 return false; 246 } 247 if (RID < LID) { 248 if (LID <= ID) 249 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 250 return false; 251 return true; 252 } 253 254 // LID and RID are equal, so we have different operands of the same user. 255 // Assume operands are added in order for all instructions. 256 if (LID <= ID) 257 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 258 return LU->getOperandNo() < RU->getOperandNo(); 259 return LU->getOperandNo() > RU->getOperandNo(); 260 }); 261 262 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 263 return L.second < R.second; 264 })) 265 // Order is already correct. 266 return; 267 268 // Store the shuffle. 269 Stack.emplace_back(V, F, List.size()); 270 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 271 for (size_t I = 0, E = List.size(); I != E; ++I) 272 Stack.back().Shuffle[I] = List[I].second; 273 } 274 275 static void predictValueUseListOrder(const Value *V, const Function *F, 276 OrderMap &OM, UseListOrderStack &Stack) { 277 auto &IDPair = OM[V]; 278 assert(IDPair.first && "Unmapped value"); 279 if (IDPair.second) 280 // Already predicted. 281 return; 282 283 // Do the actual prediction. 284 IDPair.second = true; 285 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 286 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 287 288 // Recursive descent into constants. 289 if (const Constant *C = dyn_cast<Constant>(V)) { 290 if (C->getNumOperands()) { // Visit GlobalValues. 291 for (const Value *Op : C->operands()) 292 if (isa<Constant>(Op)) // Visit GlobalValues. 293 predictValueUseListOrder(Op, F, OM, Stack); 294 if (auto *CE = dyn_cast<ConstantExpr>(C)) 295 if (CE->getOpcode() == Instruction::ShuffleVector) 296 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 297 Stack); 298 } 299 } 300 } 301 302 static UseListOrderStack predictUseListOrder(const Module &M) { 303 OrderMap OM = orderModule(M); 304 305 // Use-list orders need to be serialized after all the users have been added 306 // to a value, or else the shuffles will be incomplete. Store them per 307 // function in a stack. 308 // 309 // Aside from function order, the order of values doesn't matter much here. 310 UseListOrderStack Stack; 311 312 // We want to visit the functions backward now so we can list function-local 313 // constants in the last Function they're used in. Module-level constants 314 // have already been visited above. 315 for (const Function &F : llvm::reverse(M)) { 316 if (F.isDeclaration()) 317 continue; 318 for (const BasicBlock &BB : F) 319 predictValueUseListOrder(&BB, &F, OM, Stack); 320 for (const Argument &A : F.args()) 321 predictValueUseListOrder(&A, &F, OM, Stack); 322 for (const BasicBlock &BB : F) 323 for (const Instruction &I : BB) { 324 for (const Value *Op : I.operands()) 325 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 326 predictValueUseListOrder(Op, &F, OM, Stack); 327 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 328 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 329 Stack); 330 } 331 for (const BasicBlock &BB : F) 332 for (const Instruction &I : BB) 333 predictValueUseListOrder(&I, &F, OM, Stack); 334 } 335 336 // Visit globals last, since the module-level use-list block will be seen 337 // before the function bodies are processed. 338 for (const GlobalVariable &G : M.globals()) 339 predictValueUseListOrder(&G, nullptr, OM, Stack); 340 for (const Function &F : M) 341 predictValueUseListOrder(&F, nullptr, OM, Stack); 342 for (const GlobalAlias &A : M.aliases()) 343 predictValueUseListOrder(&A, nullptr, OM, Stack); 344 for (const GlobalIFunc &I : M.ifuncs()) 345 predictValueUseListOrder(&I, nullptr, OM, Stack); 346 for (const GlobalVariable &G : M.globals()) 347 if (G.hasInitializer()) 348 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 349 for (const GlobalAlias &A : M.aliases()) 350 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 351 for (const GlobalIFunc &I : M.ifuncs()) 352 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 353 for (const Function &F : M) { 354 for (const Use &U : F.operands()) 355 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 356 } 357 358 return Stack; 359 } 360 361 ValueEnumerator::ValueEnumerator(const Module &M, Type *PrefixType) { 362 EnumerateType(PrefixType); 363 364 UseListOrders = predictUseListOrder(M); 365 366 // Enumerate the global variables. 367 for (const GlobalVariable &GV : M.globals()) { 368 EnumerateValue(&GV); 369 EnumerateType(GV.getValueType()); 370 } 371 372 // Enumerate the functions. 373 for (const Function &F : M) { 374 EnumerateValue(&F); 375 EnumerateType(F.getValueType()); 376 EnumerateAttributes(F.getAttributes()); 377 } 378 379 // Enumerate the aliases. 380 for (const GlobalAlias &GA : M.aliases()) { 381 EnumerateValue(&GA); 382 EnumerateType(GA.getValueType()); 383 } 384 385 // Enumerate the ifuncs. 386 for (const GlobalIFunc &GIF : M.ifuncs()) { 387 EnumerateValue(&GIF); 388 EnumerateType(GIF.getValueType()); 389 } 390 391 // Enumerate the global variable initializers and attributes. 392 for (const GlobalVariable &GV : M.globals()) { 393 if (GV.hasInitializer()) 394 EnumerateValue(GV.getInitializer()); 395 if (GV.hasAttributes()) 396 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 397 } 398 399 // Enumerate the aliasees. 400 for (const GlobalAlias &GA : M.aliases()) 401 EnumerateValue(GA.getAliasee()); 402 403 // Enumerate the ifunc resolvers. 404 for (const GlobalIFunc &GIF : M.ifuncs()) 405 EnumerateValue(GIF.getResolver()); 406 407 // Enumerate any optional Function data. 408 for (const Function &F : M) 409 for (const Use &U : F.operands()) 410 EnumerateValue(U.get()); 411 412 // Enumerate the metadata type. 413 // 414 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 415 // only encodes the metadata type when it's used as a value. 416 EnumerateType(Type::getMetadataTy(M.getContext())); 417 418 // Insert constants and metadata that are named at module level into the slot 419 // pool so that the module symbol table can refer to them... 420 EnumerateValueSymbolTable(M.getValueSymbolTable()); 421 EnumerateNamedMetadata(M); 422 423 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 424 for (const GlobalVariable &GV : M.globals()) { 425 MDs.clear(); 426 GV.getAllMetadata(MDs); 427 for (const auto &I : MDs) 428 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 429 // to write metadata to the global variable's own metadata block 430 // (PR28134). 431 EnumerateMetadata(nullptr, I.second); 432 } 433 434 // Enumerate types used by function bodies and argument lists. 435 for (const Function &F : M) { 436 for (const Argument &A : F.args()) 437 EnumerateType(A.getType()); 438 439 // Enumerate metadata attached to this function. 440 MDs.clear(); 441 F.getAllMetadata(MDs); 442 for (const auto &I : MDs) 443 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 444 445 for (const BasicBlock &BB : F) 446 for (const Instruction &I : BB) { 447 for (const Use &Op : I.operands()) { 448 auto *MD = dyn_cast<MetadataAsValue>(&Op); 449 if (!MD) { 450 EnumerateOperandType(Op); 451 continue; 452 } 453 454 // Local metadata is enumerated during function-incorporation, but 455 // any ConstantAsMetadata arguments in a DIArgList should be examined 456 // now. 457 if (isa<LocalAsMetadata>(MD->getMetadata())) 458 continue; 459 if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) { 460 for (auto *VAM : AL->getArgs()) 461 if (isa<ConstantAsMetadata>(VAM)) 462 EnumerateMetadata(&F, VAM); 463 continue; 464 } 465 466 EnumerateMetadata(&F, MD->getMetadata()); 467 } 468 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 469 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 470 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 471 EnumerateType(GEP->getSourceElementType()); 472 if (auto *AI = dyn_cast<AllocaInst>(&I)) 473 EnumerateType(AI->getAllocatedType()); 474 EnumerateType(I.getType()); 475 if (const auto *Call = dyn_cast<CallBase>(&I)) { 476 EnumerateAttributes(Call->getAttributes()); 477 EnumerateType(Call->getFunctionType()); 478 } 479 480 // Enumerate metadata attached with this instruction. 481 MDs.clear(); 482 I.getAllMetadataOtherThanDebugLoc(MDs); 483 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 484 EnumerateMetadata(&F, MDs[i].second); 485 486 // Don't enumerate the location directly -- it has a special record 487 // type -- but enumerate its operands. 488 if (DILocation *L = I.getDebugLoc()) 489 for (const Metadata *Op : L->operands()) 490 EnumerateMetadata(&F, Op); 491 } 492 } 493 494 // Organize metadata ordering. 495 organizeMetadata(); 496 } 497 498 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 499 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 500 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 501 return I->second; 502 } 503 504 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 505 unsigned ComdatID = Comdats.idFor(C); 506 assert(ComdatID && "Comdat not found!"); 507 return ComdatID; 508 } 509 510 void ValueEnumerator::setInstructionID(const Instruction *I) { 511 InstructionMap[I] = InstructionCount++; 512 } 513 514 unsigned ValueEnumerator::getValueID(const Value *V) const { 515 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 516 return getMetadataID(MD->getMetadata()); 517 518 ValueMapType::const_iterator I = ValueMap.find(V); 519 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 520 return I->second - 1; 521 } 522 523 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 524 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 525 print(dbgs(), ValueMap, "Default"); 526 dbgs() << '\n'; 527 print(dbgs(), MetadataMap, "MetaData"); 528 dbgs() << '\n'; 529 } 530 #endif 531 532 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 533 const char *Name) const { 534 OS << "Map Name: " << Name << "\n"; 535 OS << "Size: " << Map.size() << "\n"; 536 for (const auto &I : Map) { 537 const Value *V = I.first; 538 if (V->hasName()) 539 OS << "Value: " << V->getName(); 540 else 541 OS << "Value: [null]\n"; 542 V->print(errs()); 543 errs() << '\n'; 544 545 OS << " Uses(" << V->getNumUses() << "):"; 546 for (const Use &U : V->uses()) { 547 if (&U != &*V->use_begin()) 548 OS << ","; 549 if (U->hasName()) 550 OS << " " << U->getName(); 551 else 552 OS << " [null]"; 553 } 554 OS << "\n\n"; 555 } 556 } 557 558 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 559 const char *Name) const { 560 OS << "Map Name: " << Name << "\n"; 561 OS << "Size: " << Map.size() << "\n"; 562 for (const auto &I : Map) { 563 const Metadata *MD = I.first; 564 OS << "Metadata: slot = " << I.second.ID << "\n"; 565 OS << "Metadata: function = " << I.second.F << "\n"; 566 MD->print(OS); 567 OS << "\n"; 568 } 569 } 570 571 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 572 /// table into the values table. 573 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 574 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 575 VI != VE; ++VI) 576 EnumerateValue(VI->getValue()); 577 } 578 579 /// Insert all of the values referenced by named metadata in the specified 580 /// module. 581 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 582 for (const auto &I : M.named_metadata()) 583 EnumerateNamedMDNode(&I); 584 } 585 586 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 587 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 588 EnumerateMetadata(nullptr, MD->getOperand(i)); 589 } 590 591 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 592 return F ? getValueID(F) + 1 : 0; 593 } 594 595 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 596 EnumerateMetadata(getMetadataFunctionID(F), MD); 597 } 598 599 void ValueEnumerator::EnumerateFunctionLocalMetadata( 600 const Function &F, const LocalAsMetadata *Local) { 601 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 602 } 603 604 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 605 const Function &F, const DIArgList *ArgList) { 606 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList); 607 } 608 609 void ValueEnumerator::dropFunctionFromMetadata( 610 MetadataMapType::value_type &FirstMD) { 611 SmallVector<const MDNode *, 64> Worklist; 612 auto push = [&Worklist](MetadataMapType::value_type &MD) { 613 auto &Entry = MD.second; 614 615 // Nothing to do if this metadata isn't tagged. 616 if (!Entry.F) 617 return; 618 619 // Drop the function tag. 620 Entry.F = 0; 621 622 // If this is has an ID and is an MDNode, then its operands have entries as 623 // well. We need to drop the function from them too. 624 if (Entry.ID) 625 if (auto *N = dyn_cast<MDNode>(MD.first)) 626 Worklist.push_back(N); 627 }; 628 push(FirstMD); 629 while (!Worklist.empty()) 630 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 631 if (!Op) 632 continue; 633 auto MD = MetadataMap.find(Op); 634 if (MD != MetadataMap.end()) 635 push(*MD); 636 } 637 } 638 639 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 640 // It's vital for reader efficiency that uniqued subgraphs are done in 641 // post-order; it's expensive when their operands have forward references. 642 // If a distinct node is referenced from a uniqued node, it'll be delayed 643 // until the uniqued subgraph has been completely traversed. 644 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 645 646 // Start by enumerating MD, and then work through its transitive operands in 647 // post-order. This requires a depth-first search. 648 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 649 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 650 Worklist.push_back(std::make_pair(N, N->op_begin())); 651 652 while (!Worklist.empty()) { 653 const MDNode *N = Worklist.back().first; 654 655 // Enumerate operands until we hit a new node. We need to traverse these 656 // nodes' operands before visiting the rest of N's operands. 657 MDNode::op_iterator I = std::find_if( 658 Worklist.back().second, N->op_end(), 659 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 660 if (I != N->op_end()) { 661 auto *Op = cast<MDNode>(*I); 662 Worklist.back().second = ++I; 663 664 // Delay traversing Op if it's a distinct node and N is uniqued. 665 if (Op->isDistinct() && !N->isDistinct()) 666 DelayedDistinctNodes.push_back(Op); 667 else 668 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 669 continue; 670 } 671 672 // All the operands have been visited. Now assign an ID. 673 Worklist.pop_back(); 674 MDs.push_back(N); 675 MetadataMap[N].ID = MDs.size(); 676 677 // Flush out any delayed distinct nodes; these are all the distinct nodes 678 // that are leaves in last uniqued subgraph. 679 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 680 for (const MDNode *N : DelayedDistinctNodes) 681 Worklist.push_back(std::make_pair(N, N->op_begin())); 682 DelayedDistinctNodes.clear(); 683 } 684 } 685 } 686 687 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, 688 const Metadata *MD) { 689 if (!MD) 690 return nullptr; 691 692 assert( 693 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 694 "Invalid metadata kind"); 695 696 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 697 MDIndex &Entry = Insertion.first->second; 698 if (!Insertion.second) { 699 // Already mapped. If F doesn't match the function tag, drop it. 700 if (Entry.hasDifferentFunction(F)) 701 dropFunctionFromMetadata(*Insertion.first); 702 return nullptr; 703 } 704 705 // Don't assign IDs to metadata nodes. 706 if (auto *N = dyn_cast<MDNode>(MD)) 707 return N; 708 709 // Save the metadata. 710 MDs.push_back(MD); 711 Entry.ID = MDs.size(); 712 713 // Enumerate the constant, if any. 714 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 715 EnumerateValue(C->getValue()); 716 717 return nullptr; 718 } 719 720 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata 721 /// information reachable from the metadata. 722 void ValueEnumerator::EnumerateFunctionLocalMetadata( 723 unsigned F, const LocalAsMetadata *Local) { 724 assert(F && "Expected a function"); 725 726 // Check to see if it's already in! 727 MDIndex &Index = MetadataMap[Local]; 728 if (Index.ID) { 729 assert(Index.F == F && "Expected the same function"); 730 return; 731 } 732 733 MDs.push_back(Local); 734 Index.F = F; 735 Index.ID = MDs.size(); 736 737 EnumerateValue(Local->getValue()); 738 } 739 740 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata 741 /// information reachable from the metadata. 742 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 743 unsigned F, const DIArgList *ArgList) { 744 assert(F && "Expected a function"); 745 746 // Check to see if it's already in! 747 MDIndex &Index = MetadataMap[ArgList]; 748 if (Index.ID) { 749 assert(Index.F == F && "Expected the same function"); 750 return; 751 } 752 753 for (ValueAsMetadata *VAM : ArgList->getArgs()) { 754 if (isa<LocalAsMetadata>(VAM)) { 755 assert(MetadataMap.count(VAM) && 756 "LocalAsMetadata should be enumerated before DIArgList"); 757 assert(MetadataMap[VAM].F == F && 758 "Expected LocalAsMetadata in the same function"); 759 } else { 760 assert(isa<ConstantAsMetadata>(VAM) && 761 "Expected LocalAsMetadata or ConstantAsMetadata"); 762 assert(ValueMap.count(VAM->getValue()) && 763 "Constant should be enumerated beforeDIArgList"); 764 EnumerateMetadata(F, VAM); 765 } 766 } 767 768 MDs.push_back(ArgList); 769 Index.F = F; 770 Index.ID = MDs.size(); 771 } 772 773 static unsigned getMetadataTypeOrder(const Metadata *MD) { 774 // Strings are emitted in bulk and must come first. 775 if (isa<MDString>(MD)) 776 return 0; 777 778 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 779 // to the front since we can detect it. 780 auto *N = dyn_cast<MDNode>(MD); 781 if (!N) 782 return 1; 783 784 // The reader is fast forward references for distinct node operands, but slow 785 // when uniqued operands are unresolved. 786 return N->isDistinct() ? 2 : 3; 787 } 788 789 void ValueEnumerator::organizeMetadata() { 790 assert(MetadataMap.size() == MDs.size() && 791 "Metadata map and vector out of sync"); 792 793 if (MDs.empty()) 794 return; 795 796 // Copy out the index information from MetadataMap in order to choose a new 797 // order. 798 SmallVector<MDIndex, 64> Order; 799 Order.reserve(MetadataMap.size()); 800 for (const Metadata *MD : MDs) 801 Order.push_back(MetadataMap.lookup(MD)); 802 803 // Partition: 804 // - by function, then 805 // - by isa<MDString> 806 // and then sort by the original/current ID. Since the IDs are guaranteed to 807 // be unique, the result of std::sort will be deterministic. There's no need 808 // for std::stable_sort. 809 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 810 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 811 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 812 }); 813 814 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 815 // and fix up MetadataMap. 816 std::vector<const Metadata *> OldMDs; 817 MDs.swap(OldMDs); 818 MDs.reserve(OldMDs.size()); 819 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 820 auto *MD = Order[I].get(OldMDs); 821 MDs.push_back(MD); 822 MetadataMap[MD].ID = I + 1; 823 if (isa<MDString>(MD)) 824 ++NumMDStrings; 825 } 826 827 // Return early if there's nothing for the functions. 828 if (MDs.size() == Order.size()) 829 return; 830 831 // Build the function metadata ranges. 832 MDRange R; 833 FunctionMDs.reserve(OldMDs.size()); 834 unsigned PrevF = 0; 835 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 836 ++I) { 837 unsigned F = Order[I].F; 838 if (!PrevF) { 839 PrevF = F; 840 } else if (PrevF != F) { 841 R.Last = FunctionMDs.size(); 842 std::swap(R, FunctionMDInfo[PrevF]); 843 R.First = FunctionMDs.size(); 844 845 ID = MDs.size(); 846 PrevF = F; 847 } 848 849 auto *MD = Order[I].get(OldMDs); 850 FunctionMDs.push_back(MD); 851 MetadataMap[MD].ID = ++ID; 852 if (isa<MDString>(MD)) 853 ++R.NumStrings; 854 } 855 R.Last = FunctionMDs.size(); 856 FunctionMDInfo[PrevF] = R; 857 } 858 859 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 860 NumModuleMDs = MDs.size(); 861 862 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 863 NumMDStrings = R.NumStrings; 864 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 865 FunctionMDs.begin() + R.Last); 866 } 867 868 void ValueEnumerator::EnumerateValue(const Value *V) { 869 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 870 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 871 872 // Check to see if it's already in! 873 unsigned &ValueID = ValueMap[V]; 874 if (ValueID) { 875 // Increment use count. 876 Values[ValueID - 1].second++; 877 return; 878 } 879 880 if (auto *GO = dyn_cast<GlobalObject>(V)) 881 if (const Comdat *C = GO->getComdat()) 882 Comdats.insert(C); 883 884 // Enumerate the type of this value. 885 EnumerateType(V->getType()); 886 887 if (const Constant *C = dyn_cast<Constant>(V)) { 888 if (isa<GlobalValue>(C)) { 889 // Initializers for globals are handled explicitly elsewhere. 890 } else if (C->getNumOperands()) { 891 // If a constant has operands, enumerate them. This makes sure that if a 892 // constant has uses (for example an array of const ints), that they are 893 // inserted also. 894 895 // We prefer to enumerate them with values before we enumerate the user 896 // itself. This makes it more likely that we can avoid forward references 897 // in the reader. We know that there can be no cycles in the constants 898 // graph that don't go through a global variable. 899 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; 900 ++I) 901 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 902 EnumerateValue(*I); 903 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 904 if (CE->getOpcode() == Instruction::ShuffleVector) 905 EnumerateValue(CE->getShuffleMaskForBitcode()); 906 if (auto *GEP = dyn_cast<GEPOperator>(CE)) 907 EnumerateType(GEP->getSourceElementType()); 908 } 909 910 // Finally, add the value. Doing this could make the ValueID reference be 911 // dangling, don't reuse it. 912 Values.push_back(std::make_pair(V, 1U)); 913 ValueMap[V] = Values.size(); 914 return; 915 } 916 } 917 918 // Add the value. 919 Values.push_back(std::make_pair(V, 1U)); 920 ValueID = Values.size(); 921 } 922 923 void ValueEnumerator::EnumerateType(Type *Ty) { 924 unsigned *TypeID = &TypeMap[Ty]; 925 926 // We've already seen this type. 927 if (*TypeID) 928 return; 929 930 // If it is a non-anonymous struct, mark the type as being visited so that we 931 // don't recursively visit it. This is safe because we allow forward 932 // references of these in the bitcode reader. 933 if (StructType *STy = dyn_cast<StructType>(Ty)) 934 if (!STy->isLiteral()) 935 *TypeID = ~0U; 936 937 // Enumerate all of the subtypes before we enumerate this type. This ensures 938 // that the type will be enumerated in an order that can be directly built. 939 for (Type *SubTy : Ty->subtypes()) 940 EnumerateType(SubTy); 941 942 // Refresh the TypeID pointer in case the table rehashed. 943 TypeID = &TypeMap[Ty]; 944 945 // Check to see if we got the pointer another way. This can happen when 946 // enumerating recursive types that hit the base case deeper than they start. 947 // 948 // If this is actually a struct that we are treating as forward ref'able, 949 // then emit the definition now that all of its contents are available. 950 if (*TypeID && *TypeID != ~0U) 951 return; 952 953 // Add this type now that its contents are all happily enumerated. 954 Types.push_back(Ty); 955 956 *TypeID = Types.size(); 957 } 958 959 // Enumerate the types for the specified value. If the value is a constant, 960 // walk through it, enumerating the types of the constant. 961 void ValueEnumerator::EnumerateOperandType(const Value *V) { 962 EnumerateType(V->getType()); 963 964 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 965 966 const Constant *C = dyn_cast<Constant>(V); 967 if (!C) 968 return; 969 970 // If this constant is already enumerated, ignore it, we know its type must 971 // be enumerated. 972 if (ValueMap.count(C)) 973 return; 974 975 // This constant may have operands, make sure to enumerate the types in 976 // them. 977 for (const Value *Op : C->operands()) { 978 // Don't enumerate basic blocks here, this happens as operands to 979 // blockaddress. 980 if (isa<BasicBlock>(Op)) 981 continue; 982 983 EnumerateOperandType(Op); 984 } 985 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 986 if (CE->getOpcode() == Instruction::ShuffleVector) 987 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 988 if (CE->getOpcode() == Instruction::GetElementPtr) 989 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType()); 990 } 991 } 992 993 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 994 if (PAL.isEmpty()) 995 return; // null is always 0. 996 997 // Do a lookup. 998 unsigned &Entry = AttributeListMap[PAL]; 999 if (Entry == 0) { 1000 // Never saw this before, add it. 1001 AttributeLists.push_back(PAL); 1002 Entry = AttributeLists.size(); 1003 } 1004 1005 // Do lookups for all attribute groups. 1006 for (unsigned i : PAL.indexes()) { 1007 AttributeSet AS = PAL.getAttributes(i); 1008 if (!AS.hasAttributes()) 1009 continue; 1010 IndexAndAttrSet Pair = {i, AS}; 1011 unsigned &Entry = AttributeGroupMap[Pair]; 1012 if (Entry == 0) { 1013 AttributeGroups.push_back(Pair); 1014 Entry = AttributeGroups.size(); 1015 1016 for (Attribute Attr : AS) { 1017 if (Attr.isTypeAttribute()) 1018 EnumerateType(Attr.getValueAsType()); 1019 } 1020 } 1021 } 1022 } 1023 1024 void ValueEnumerator::incorporateFunction(const Function &F) { 1025 InstructionCount = 0; 1026 NumModuleValues = Values.size(); 1027 1028 // Add global metadata to the function block. This doesn't include 1029 // LocalAsMetadata. 1030 incorporateFunctionMetadata(F); 1031 1032 // Adding function arguments to the value table. 1033 for (const auto &I : F.args()) { 1034 EnumerateValue(&I); 1035 if (I.hasAttribute(Attribute::ByVal)) 1036 EnumerateType(I.getParamByValType()); 1037 else if (I.hasAttribute(Attribute::StructRet)) 1038 EnumerateType(I.getParamStructRetType()); 1039 else if (I.hasAttribute(Attribute::ByRef)) 1040 EnumerateType(I.getParamByRefType()); 1041 } 1042 FirstFuncConstantID = Values.size(); 1043 1044 // Add all function-level constants to the value table. 1045 for (const BasicBlock &BB : F) { 1046 for (const Instruction &I : BB) { 1047 for (const Use &OI : I.operands()) { 1048 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1049 EnumerateValue(OI); 1050 } 1051 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1052 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1053 } 1054 BasicBlocks.push_back(&BB); 1055 ValueMap[&BB] = BasicBlocks.size(); 1056 } 1057 1058 // Add the function's parameter attributes so they are available for use in 1059 // the function's instruction. 1060 EnumerateAttributes(F.getAttributes()); 1061 1062 FirstInstID = Values.size(); 1063 1064 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1065 SmallVector<DIArgList *, 8> ArgListMDVector; 1066 // Add all of the instructions. 1067 for (const BasicBlock &BB : F) { 1068 for (const Instruction &I : BB) { 1069 for (const Use &OI : I.operands()) { 1070 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) { 1071 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) { 1072 // Enumerate metadata after the instructions they might refer to. 1073 FnLocalMDVector.push_back(Local); 1074 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) { 1075 ArgListMDVector.push_back(ArgList); 1076 for (ValueAsMetadata *VMD : ArgList->getArgs()) { 1077 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) { 1078 // Enumerate metadata after the instructions they might refer 1079 // to. 1080 FnLocalMDVector.push_back(Local); 1081 } 1082 } 1083 } 1084 } 1085 } 1086 1087 if (!I.getType()->isVoidTy()) 1088 EnumerateValue(&I); 1089 } 1090 } 1091 1092 // Add all of the function-local metadata. 1093 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1094 // At this point, every local values have been incorporated, we shouldn't 1095 // have a metadata operand that references a value that hasn't been seen. 1096 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1097 "Missing value for metadata operand"); 1098 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1099 } 1100 // DIArgList entries must come after function-local metadata, as it is not 1101 // possible to forward-reference them. 1102 for (const DIArgList *ArgList : ArgListMDVector) 1103 EnumerateFunctionLocalListMetadata(F, ArgList); 1104 } 1105 1106 void ValueEnumerator::purgeFunction() { 1107 /// Remove purged values from the ValueMap. 1108 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1109 ValueMap.erase(Values[i].first); 1110 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1111 MetadataMap.erase(MDs[i]); 1112 for (const BasicBlock *BB : BasicBlocks) 1113 ValueMap.erase(BB); 1114 1115 Values.resize(NumModuleValues); 1116 MDs.resize(NumModuleMDs); 1117 BasicBlocks.clear(); 1118 NumMDStrings = 0; 1119 } 1120 1121 static void IncorporateFunctionInfoGlobalBBIDs( 1122 const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) { 1123 unsigned Counter = 0; 1124 for (const BasicBlock &BB : *F) 1125 IDMap[&BB] = ++Counter; 1126 } 1127 1128 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1129 /// specified basic block. This is relatively expensive information, so it 1130 /// should only be used by rare constructs such as address-of-label. 1131 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1132 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1133 if (Idx != 0) 1134 return Idx - 1; 1135 1136 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1137 return getGlobalBasicBlockID(BB); 1138 } 1139 1140 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1141 return Log2_32_Ceil(getTypes().size() + 1); 1142 } 1143