1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // Forked from lib/Bitcode/Writer 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DXILValueEnumerator.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Argument.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalIFunc.h" 25 #include "llvm/IR/GlobalObject.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Use.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/ValueSymbolTable.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <cstddef> 45 #include <iterator> 46 #include <tuple> 47 48 using namespace llvm; 49 using namespace llvm::dxil; 50 51 namespace { 52 53 struct OrderMap { 54 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 55 unsigned LastGlobalConstantID = 0; 56 unsigned LastGlobalValueID = 0; 57 58 OrderMap() = default; 59 60 bool isGlobalConstant(unsigned ID) const { 61 return ID <= LastGlobalConstantID; 62 } 63 64 bool isGlobalValue(unsigned ID) const { 65 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 66 } 67 68 unsigned size() const { return IDs.size(); } 69 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 70 71 std::pair<unsigned, bool> lookup(const Value *V) const { 72 return IDs.lookup(V); 73 } 74 75 void index(const Value *V) { 76 // Explicitly sequence get-size and insert-value operations to avoid UB. 77 unsigned ID = IDs.size() + 1; 78 IDs[V].first = ID; 79 } 80 }; 81 82 } // end anonymous namespace 83 84 static void orderValue(const Value *V, OrderMap &OM) { 85 if (OM.lookup(V).first) 86 return; 87 88 if (const Constant *C = dyn_cast<Constant>(V)) { 89 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 90 for (const Value *Op : C->operands()) 91 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 92 orderValue(Op, OM); 93 if (auto *CE = dyn_cast<ConstantExpr>(C)) 94 if (CE->getOpcode() == Instruction::ShuffleVector) 95 orderValue(CE->getShuffleMaskForBitcode(), OM); 96 } 97 } 98 99 // Note: we cannot cache this lookup above, since inserting into the map 100 // changes the map's size, and thus affects the other IDs. 101 OM.index(V); 102 } 103 104 static OrderMap orderModule(const Module &M) { 105 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 106 // and ValueEnumerator::incorporateFunction(). 107 OrderMap OM; 108 109 // In the reader, initializers of GlobalValues are set *after* all the 110 // globals have been read. Rather than awkwardly modeling this behaviour 111 // directly in predictValueUseListOrderImpl(), just assign IDs to 112 // initializers of GlobalValues before GlobalValues themselves to model this 113 // implicitly. 114 for (const GlobalVariable &G : M.globals()) 115 if (G.hasInitializer()) 116 if (!isa<GlobalValue>(G.getInitializer())) 117 orderValue(G.getInitializer(), OM); 118 for (const GlobalAlias &A : M.aliases()) 119 if (!isa<GlobalValue>(A.getAliasee())) 120 orderValue(A.getAliasee(), OM); 121 for (const GlobalIFunc &I : M.ifuncs()) 122 if (!isa<GlobalValue>(I.getResolver())) 123 orderValue(I.getResolver(), OM); 124 for (const Function &F : M) { 125 for (const Use &U : F.operands()) 126 if (!isa<GlobalValue>(U.get())) 127 orderValue(U.get(), OM); 128 } 129 130 // As constants used in metadata operands are emitted as module-level 131 // constants, we must order them before other operands. Also, we must order 132 // these before global values, as these will be read before setting the 133 // global values' initializers. The latter matters for constants which have 134 // uses towards other constants that are used as initializers. 135 auto orderConstantValue = [&OM](const Value *V) { 136 if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V)) 137 orderValue(V, OM); 138 }; 139 for (const Function &F : M) { 140 if (F.isDeclaration()) 141 continue; 142 for (const BasicBlock &BB : F) 143 for (const Instruction &I : BB) 144 for (const Value *V : I.operands()) { 145 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 146 if (const auto *VAM = 147 dyn_cast<ValueAsMetadata>(MAV->getMetadata())) { 148 orderConstantValue(VAM->getValue()); 149 } else if (const auto *AL = 150 dyn_cast<DIArgList>(MAV->getMetadata())) { 151 for (const auto *VAM : AL->getArgs()) 152 orderConstantValue(VAM->getValue()); 153 } 154 } 155 } 156 } 157 OM.LastGlobalConstantID = OM.size(); 158 159 // Initializers of GlobalValues are processed in 160 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 161 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 162 // by giving IDs in reverse order. 163 // 164 // Since GlobalValues never reference each other directly (just through 165 // initializers), their relative IDs only matter for determining order of 166 // uses in their initializers. 167 for (const Function &F : M) 168 orderValue(&F, OM); 169 for (const GlobalAlias &A : M.aliases()) 170 orderValue(&A, OM); 171 for (const GlobalIFunc &I : M.ifuncs()) 172 orderValue(&I, OM); 173 for (const GlobalVariable &G : M.globals()) 174 orderValue(&G, OM); 175 OM.LastGlobalValueID = OM.size(); 176 177 for (const Function &F : M) { 178 if (F.isDeclaration()) 179 continue; 180 // Here we need to match the union of ValueEnumerator::incorporateFunction() 181 // and WriteFunction(). Basic blocks are implicitly declared before 182 // anything else (by declaring their size). 183 for (const BasicBlock &BB : F) 184 orderValue(&BB, OM); 185 for (const Argument &A : F.args()) 186 orderValue(&A, OM); 187 for (const BasicBlock &BB : F) 188 for (const Instruction &I : BB) { 189 for (const Value *Op : I.operands()) 190 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 191 isa<InlineAsm>(*Op)) 192 orderValue(Op, OM); 193 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 194 orderValue(SVI->getShuffleMaskForBitcode(), OM); 195 } 196 for (const BasicBlock &BB : F) 197 for (const Instruction &I : BB) 198 orderValue(&I, OM); 199 } 200 return OM; 201 } 202 203 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 204 unsigned ID, const OrderMap &OM, 205 UseListOrderStack &Stack) { 206 // Predict use-list order for this one. 207 using Entry = std::pair<const Use *, unsigned>; 208 SmallVector<Entry, 64> List; 209 for (const Use &U : V->uses()) 210 // Check if this user will be serialized. 211 if (OM.lookup(U.getUser()).first) 212 List.push_back(std::make_pair(&U, List.size())); 213 214 if (List.size() < 2) 215 // We may have lost some users. 216 return; 217 218 bool IsGlobalValue = OM.isGlobalValue(ID); 219 llvm::sort(List, [&](const Entry &L, const Entry &R) { 220 const Use *LU = L.first; 221 const Use *RU = R.first; 222 if (LU == RU) 223 return false; 224 225 auto LID = OM.lookup(LU->getUser()).first; 226 auto RID = OM.lookup(RU->getUser()).first; 227 228 // Global values are processed in reverse order. 229 // 230 // Moreover, initializers of GlobalValues are set *after* all the globals 231 // have been read (despite having earlier IDs). Rather than awkwardly 232 // modeling this behaviour here, orderModule() has assigned IDs to 233 // initializers of GlobalValues before GlobalValues themselves. 234 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) { 235 if (LID == RID) 236 return LU->getOperandNo() > RU->getOperandNo(); 237 return LID < RID; 238 } 239 240 // If ID is 4, then expect: 7 6 5 1 2 3. 241 if (LID < RID) { 242 if (RID <= ID) 243 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 244 return true; 245 return false; 246 } 247 if (RID < LID) { 248 if (LID <= ID) 249 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 250 return false; 251 return true; 252 } 253 254 // LID and RID are equal, so we have different operands of the same user. 255 // Assume operands are added in order for all instructions. 256 if (LID <= ID) 257 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 258 return LU->getOperandNo() < RU->getOperandNo(); 259 return LU->getOperandNo() > RU->getOperandNo(); 260 }); 261 262 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 263 return L.second < R.second; 264 })) 265 // Order is already correct. 266 return; 267 268 // Store the shuffle. 269 Stack.emplace_back(V, F, List.size()); 270 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 271 for (size_t I = 0, E = List.size(); I != E; ++I) 272 Stack.back().Shuffle[I] = List[I].second; 273 } 274 275 static void predictValueUseListOrder(const Value *V, const Function *F, 276 OrderMap &OM, UseListOrderStack &Stack) { 277 auto &IDPair = OM[V]; 278 assert(IDPair.first && "Unmapped value"); 279 if (IDPair.second) 280 // Already predicted. 281 return; 282 283 // Do the actual prediction. 284 IDPair.second = true; 285 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 286 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 287 288 // Recursive descent into constants. 289 if (const Constant *C = dyn_cast<Constant>(V)) { 290 if (C->getNumOperands()) { // Visit GlobalValues. 291 for (const Value *Op : C->operands()) 292 if (isa<Constant>(Op)) // Visit GlobalValues. 293 predictValueUseListOrder(Op, F, OM, Stack); 294 if (auto *CE = dyn_cast<ConstantExpr>(C)) 295 if (CE->getOpcode() == Instruction::ShuffleVector) 296 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 297 Stack); 298 } 299 } 300 } 301 302 static UseListOrderStack predictUseListOrder(const Module &M) { 303 OrderMap OM = orderModule(M); 304 305 // Use-list orders need to be serialized after all the users have been added 306 // to a value, or else the shuffles will be incomplete. Store them per 307 // function in a stack. 308 // 309 // Aside from function order, the order of values doesn't matter much here. 310 UseListOrderStack Stack; 311 312 // We want to visit the functions backward now so we can list function-local 313 // constants in the last Function they're used in. Module-level constants 314 // have already been visited above. 315 for (const Function &F : llvm::reverse(M)) { 316 if (F.isDeclaration()) 317 continue; 318 for (const BasicBlock &BB : F) 319 predictValueUseListOrder(&BB, &F, OM, Stack); 320 for (const Argument &A : F.args()) 321 predictValueUseListOrder(&A, &F, OM, Stack); 322 for (const BasicBlock &BB : F) 323 for (const Instruction &I : BB) { 324 for (const Value *Op : I.operands()) 325 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 326 predictValueUseListOrder(Op, &F, OM, Stack); 327 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 328 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 329 Stack); 330 } 331 for (const BasicBlock &BB : F) 332 for (const Instruction &I : BB) 333 predictValueUseListOrder(&I, &F, OM, Stack); 334 } 335 336 // Visit globals last, since the module-level use-list block will be seen 337 // before the function bodies are processed. 338 for (const GlobalVariable &G : M.globals()) 339 predictValueUseListOrder(&G, nullptr, OM, Stack); 340 for (const Function &F : M) 341 predictValueUseListOrder(&F, nullptr, OM, Stack); 342 for (const GlobalAlias &A : M.aliases()) 343 predictValueUseListOrder(&A, nullptr, OM, Stack); 344 for (const GlobalIFunc &I : M.ifuncs()) 345 predictValueUseListOrder(&I, nullptr, OM, Stack); 346 for (const GlobalVariable &G : M.globals()) 347 if (G.hasInitializer()) 348 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 349 for (const GlobalAlias &A : M.aliases()) 350 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 351 for (const GlobalIFunc &I : M.ifuncs()) 352 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 353 for (const Function &F : M) { 354 for (const Use &U : F.operands()) 355 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 356 } 357 358 return Stack; 359 } 360 361 static bool isIntOrIntVectorValue(const std::pair<const Value *, unsigned> &V) { 362 return V.first->getType()->isIntOrIntVectorTy(); 363 } 364 365 ValueEnumerator::ValueEnumerator(const Module &M, 366 bool ShouldPreserveUseListOrder) 367 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 368 if (ShouldPreserveUseListOrder) 369 UseListOrders = predictUseListOrder(M); 370 371 // Enumerate the global variables. 372 for (const GlobalVariable &GV : M.globals()) { 373 EnumerateValue(&GV); 374 EnumerateType(GV.getValueType()); 375 } 376 377 // Enumerate the functions. 378 for (const Function &F : M) { 379 EnumerateValue(&F); 380 EnumerateType(F.getValueType()); 381 EnumerateAttributes(F.getAttributes()); 382 } 383 384 // Enumerate the aliases. 385 for (const GlobalAlias &GA : M.aliases()) { 386 EnumerateValue(&GA); 387 EnumerateType(GA.getValueType()); 388 } 389 390 // Enumerate the ifuncs. 391 for (const GlobalIFunc &GIF : M.ifuncs()) { 392 EnumerateValue(&GIF); 393 EnumerateType(GIF.getValueType()); 394 } 395 396 // Remember what is the cutoff between globalvalue's and other constants. 397 unsigned FirstConstant = Values.size(); 398 399 // Enumerate the global variable initializers and attributes. 400 for (const GlobalVariable &GV : M.globals()) { 401 if (GV.hasInitializer()) 402 EnumerateValue(GV.getInitializer()); 403 if (GV.hasAttributes()) 404 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 405 } 406 407 // Enumerate the aliasees. 408 for (const GlobalAlias &GA : M.aliases()) 409 EnumerateValue(GA.getAliasee()); 410 411 // Enumerate the ifunc resolvers. 412 for (const GlobalIFunc &GIF : M.ifuncs()) 413 EnumerateValue(GIF.getResolver()); 414 415 // Enumerate any optional Function data. 416 for (const Function &F : M) 417 for (const Use &U : F.operands()) 418 EnumerateValue(U.get()); 419 420 // Enumerate the metadata type. 421 // 422 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 423 // only encodes the metadata type when it's used as a value. 424 EnumerateType(Type::getMetadataTy(M.getContext())); 425 426 // Insert constants and metadata that are named at module level into the slot 427 // pool so that the module symbol table can refer to them... 428 EnumerateValueSymbolTable(M.getValueSymbolTable()); 429 EnumerateNamedMetadata(M); 430 431 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 432 for (const GlobalVariable &GV : M.globals()) { 433 MDs.clear(); 434 GV.getAllMetadata(MDs); 435 for (const auto &I : MDs) 436 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 437 // to write metadata to the global variable's own metadata block 438 // (PR28134). 439 EnumerateMetadata(nullptr, I.second); 440 } 441 442 // Enumerate types used by function bodies and argument lists. 443 for (const Function &F : M) { 444 for (const Argument &A : F.args()) 445 EnumerateType(A.getType()); 446 447 // Enumerate metadata attached to this function. 448 MDs.clear(); 449 F.getAllMetadata(MDs); 450 for (const auto &I : MDs) 451 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 452 453 for (const BasicBlock &BB : F) 454 for (const Instruction &I : BB) { 455 for (const Use &Op : I.operands()) { 456 auto *MD = dyn_cast<MetadataAsValue>(&Op); 457 if (!MD) { 458 EnumerateOperandType(Op); 459 continue; 460 } 461 462 // Local metadata is enumerated during function-incorporation, but 463 // any ConstantAsMetadata arguments in a DIArgList should be examined 464 // now. 465 if (isa<LocalAsMetadata>(MD->getMetadata())) 466 continue; 467 if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) { 468 for (auto *VAM : AL->getArgs()) 469 if (isa<ConstantAsMetadata>(VAM)) 470 EnumerateMetadata(&F, VAM); 471 continue; 472 } 473 474 EnumerateMetadata(&F, MD->getMetadata()); 475 } 476 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 477 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 478 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 479 EnumerateType(GEP->getSourceElementType()); 480 if (auto *AI = dyn_cast<AllocaInst>(&I)) 481 EnumerateType(AI->getAllocatedType()); 482 EnumerateType(I.getType()); 483 if (const auto *Call = dyn_cast<CallBase>(&I)) { 484 EnumerateAttributes(Call->getAttributes()); 485 EnumerateType(Call->getFunctionType()); 486 } 487 488 // Enumerate metadata attached with this instruction. 489 MDs.clear(); 490 I.getAllMetadataOtherThanDebugLoc(MDs); 491 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 492 EnumerateMetadata(&F, MDs[i].second); 493 494 // Don't enumerate the location directly -- it has a special record 495 // type -- but enumerate its operands. 496 if (DILocation *L = I.getDebugLoc()) 497 for (const Metadata *Op : L->operands()) 498 EnumerateMetadata(&F, Op); 499 } 500 } 501 502 // Optimize constant ordering. 503 OptimizeConstants(FirstConstant, Values.size()); 504 505 // Organize metadata ordering. 506 organizeMetadata(); 507 } 508 509 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 510 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 511 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 512 return I->second; 513 } 514 515 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 516 unsigned ComdatID = Comdats.idFor(C); 517 assert(ComdatID && "Comdat not found!"); 518 return ComdatID; 519 } 520 521 void ValueEnumerator::setInstructionID(const Instruction *I) { 522 InstructionMap[I] = InstructionCount++; 523 } 524 525 unsigned ValueEnumerator::getValueID(const Value *V) const { 526 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 527 return getMetadataID(MD->getMetadata()); 528 529 ValueMapType::const_iterator I = ValueMap.find(V); 530 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 531 return I->second - 1; 532 } 533 534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 535 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 536 print(dbgs(), ValueMap, "Default"); 537 dbgs() << '\n'; 538 print(dbgs(), MetadataMap, "MetaData"); 539 dbgs() << '\n'; 540 } 541 #endif 542 543 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 544 const char *Name) const { 545 OS << "Map Name: " << Name << "\n"; 546 OS << "Size: " << Map.size() << "\n"; 547 for (const auto &I : Map) { 548 const Value *V = I.first; 549 if (V->hasName()) 550 OS << "Value: " << V->getName(); 551 else 552 OS << "Value: [null]\n"; 553 V->print(errs()); 554 errs() << '\n'; 555 556 OS << " Uses(" << V->getNumUses() << "):"; 557 for (const Use &U : V->uses()) { 558 if (&U != &*V->use_begin()) 559 OS << ","; 560 if (U->hasName()) 561 OS << " " << U->getName(); 562 else 563 OS << " [null]"; 564 } 565 OS << "\n\n"; 566 } 567 } 568 569 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 570 const char *Name) const { 571 OS << "Map Name: " << Name << "\n"; 572 OS << "Size: " << Map.size() << "\n"; 573 for (const auto &I : Map) { 574 const Metadata *MD = I.first; 575 OS << "Metadata: slot = " << I.second.ID << "\n"; 576 OS << "Metadata: function = " << I.second.F << "\n"; 577 MD->print(OS); 578 OS << "\n"; 579 } 580 } 581 582 /// OptimizeConstants - Reorder constant pool for denser encoding. 583 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 584 if (CstStart == CstEnd || CstStart + 1 == CstEnd) 585 return; 586 587 if (ShouldPreserveUseListOrder) 588 // Optimizing constants makes the use-list order difficult to predict. 589 // Disable it for now when trying to preserve the order. 590 return; 591 592 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 593 [this](const std::pair<const Value *, unsigned> &LHS, 594 const std::pair<const Value *, unsigned> &RHS) { 595 // Sort by plane. 596 if (LHS.first->getType() != RHS.first->getType()) 597 return getTypeID(LHS.first->getType()) < 598 getTypeID(RHS.first->getType()); 599 // Then by frequency. 600 return LHS.second > RHS.second; 601 }); 602 603 // Ensure that integer and vector of integer constants are at the start of the 604 // constant pool. This is important so that GEP structure indices come before 605 // gep constant exprs. 606 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 607 isIntOrIntVectorValue); 608 609 // Rebuild the modified portion of ValueMap. 610 for (; CstStart != CstEnd; ++CstStart) 611 ValueMap[Values[CstStart].first] = CstStart + 1; 612 } 613 614 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 615 /// table into the values table. 616 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 617 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 618 VI != VE; ++VI) 619 EnumerateValue(VI->getValue()); 620 } 621 622 /// Insert all of the values referenced by named metadata in the specified 623 /// module. 624 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 625 for (const auto &I : M.named_metadata()) 626 EnumerateNamedMDNode(&I); 627 } 628 629 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 630 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 631 EnumerateMetadata(nullptr, MD->getOperand(i)); 632 } 633 634 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 635 return F ? getValueID(F) + 1 : 0; 636 } 637 638 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 639 EnumerateMetadata(getMetadataFunctionID(F), MD); 640 } 641 642 void ValueEnumerator::EnumerateFunctionLocalMetadata( 643 const Function &F, const LocalAsMetadata *Local) { 644 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 645 } 646 647 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 648 const Function &F, const DIArgList *ArgList) { 649 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList); 650 } 651 652 void ValueEnumerator::dropFunctionFromMetadata( 653 MetadataMapType::value_type &FirstMD) { 654 SmallVector<const MDNode *, 64> Worklist; 655 auto push = [&Worklist](MetadataMapType::value_type &MD) { 656 auto &Entry = MD.second; 657 658 // Nothing to do if this metadata isn't tagged. 659 if (!Entry.F) 660 return; 661 662 // Drop the function tag. 663 Entry.F = 0; 664 665 // If this is has an ID and is an MDNode, then its operands have entries as 666 // well. We need to drop the function from them too. 667 if (Entry.ID) 668 if (auto *N = dyn_cast<MDNode>(MD.first)) 669 Worklist.push_back(N); 670 }; 671 push(FirstMD); 672 while (!Worklist.empty()) 673 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 674 if (!Op) 675 continue; 676 auto MD = MetadataMap.find(Op); 677 if (MD != MetadataMap.end()) 678 push(*MD); 679 } 680 } 681 682 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 683 // It's vital for reader efficiency that uniqued subgraphs are done in 684 // post-order; it's expensive when their operands have forward references. 685 // If a distinct node is referenced from a uniqued node, it'll be delayed 686 // until the uniqued subgraph has been completely traversed. 687 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 688 689 // Start by enumerating MD, and then work through its transitive operands in 690 // post-order. This requires a depth-first search. 691 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 692 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 693 Worklist.push_back(std::make_pair(N, N->op_begin())); 694 695 while (!Worklist.empty()) { 696 const MDNode *N = Worklist.back().first; 697 698 // Enumerate operands until we hit a new node. We need to traverse these 699 // nodes' operands before visiting the rest of N's operands. 700 MDNode::op_iterator I = std::find_if( 701 Worklist.back().second, N->op_end(), 702 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 703 if (I != N->op_end()) { 704 auto *Op = cast<MDNode>(*I); 705 Worklist.back().second = ++I; 706 707 // Delay traversing Op if it's a distinct node and N is uniqued. 708 if (Op->isDistinct() && !N->isDistinct()) 709 DelayedDistinctNodes.push_back(Op); 710 else 711 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 712 continue; 713 } 714 715 // All the operands have been visited. Now assign an ID. 716 Worklist.pop_back(); 717 MDs.push_back(N); 718 MetadataMap[N].ID = MDs.size(); 719 720 // Flush out any delayed distinct nodes; these are all the distinct nodes 721 // that are leaves in last uniqued subgraph. 722 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 723 for (const MDNode *N : DelayedDistinctNodes) 724 Worklist.push_back(std::make_pair(N, N->op_begin())); 725 DelayedDistinctNodes.clear(); 726 } 727 } 728 } 729 730 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, 731 const Metadata *MD) { 732 if (!MD) 733 return nullptr; 734 735 assert( 736 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 737 "Invalid metadata kind"); 738 739 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 740 MDIndex &Entry = Insertion.first->second; 741 if (!Insertion.second) { 742 // Already mapped. If F doesn't match the function tag, drop it. 743 if (Entry.hasDifferentFunction(F)) 744 dropFunctionFromMetadata(*Insertion.first); 745 return nullptr; 746 } 747 748 // Don't assign IDs to metadata nodes. 749 if (auto *N = dyn_cast<MDNode>(MD)) 750 return N; 751 752 // Save the metadata. 753 MDs.push_back(MD); 754 Entry.ID = MDs.size(); 755 756 // Enumerate the constant, if any. 757 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 758 EnumerateValue(C->getValue()); 759 760 return nullptr; 761 } 762 763 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata 764 /// information reachable from the metadata. 765 void ValueEnumerator::EnumerateFunctionLocalMetadata( 766 unsigned F, const LocalAsMetadata *Local) { 767 assert(F && "Expected a function"); 768 769 // Check to see if it's already in! 770 MDIndex &Index = MetadataMap[Local]; 771 if (Index.ID) { 772 assert(Index.F == F && "Expected the same function"); 773 return; 774 } 775 776 MDs.push_back(Local); 777 Index.F = F; 778 Index.ID = MDs.size(); 779 780 EnumerateValue(Local->getValue()); 781 } 782 783 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata 784 /// information reachable from the metadata. 785 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 786 unsigned F, const DIArgList *ArgList) { 787 assert(F && "Expected a function"); 788 789 // Check to see if it's already in! 790 MDIndex &Index = MetadataMap[ArgList]; 791 if (Index.ID) { 792 assert(Index.F == F && "Expected the same function"); 793 return; 794 } 795 796 for (ValueAsMetadata *VAM : ArgList->getArgs()) { 797 if (isa<LocalAsMetadata>(VAM)) { 798 assert(MetadataMap.count(VAM) && 799 "LocalAsMetadata should be enumerated before DIArgList"); 800 assert(MetadataMap[VAM].F == F && 801 "Expected LocalAsMetadata in the same function"); 802 } else { 803 assert(isa<ConstantAsMetadata>(VAM) && 804 "Expected LocalAsMetadata or ConstantAsMetadata"); 805 assert(ValueMap.count(VAM->getValue()) && 806 "Constant should be enumerated beforeDIArgList"); 807 EnumerateMetadata(F, VAM); 808 } 809 } 810 811 MDs.push_back(ArgList); 812 Index.F = F; 813 Index.ID = MDs.size(); 814 } 815 816 static unsigned getMetadataTypeOrder(const Metadata *MD) { 817 // Strings are emitted in bulk and must come first. 818 if (isa<MDString>(MD)) 819 return 0; 820 821 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 822 // to the front since we can detect it. 823 auto *N = dyn_cast<MDNode>(MD); 824 if (!N) 825 return 1; 826 827 // The reader is fast forward references for distinct node operands, but slow 828 // when uniqued operands are unresolved. 829 return N->isDistinct() ? 2 : 3; 830 } 831 832 void ValueEnumerator::organizeMetadata() { 833 assert(MetadataMap.size() == MDs.size() && 834 "Metadata map and vector out of sync"); 835 836 if (MDs.empty()) 837 return; 838 839 // Copy out the index information from MetadataMap in order to choose a new 840 // order. 841 SmallVector<MDIndex, 64> Order; 842 Order.reserve(MetadataMap.size()); 843 for (const Metadata *MD : MDs) 844 Order.push_back(MetadataMap.lookup(MD)); 845 846 // Partition: 847 // - by function, then 848 // - by isa<MDString> 849 // and then sort by the original/current ID. Since the IDs are guaranteed to 850 // be unique, the result of std::sort will be deterministic. There's no need 851 // for std::stable_sort. 852 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 853 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 854 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 855 }); 856 857 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 858 // and fix up MetadataMap. 859 std::vector<const Metadata *> OldMDs; 860 MDs.swap(OldMDs); 861 MDs.reserve(OldMDs.size()); 862 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 863 auto *MD = Order[I].get(OldMDs); 864 MDs.push_back(MD); 865 MetadataMap[MD].ID = I + 1; 866 if (isa<MDString>(MD)) 867 ++NumMDStrings; 868 } 869 870 // Return early if there's nothing for the functions. 871 if (MDs.size() == Order.size()) 872 return; 873 874 // Build the function metadata ranges. 875 MDRange R; 876 FunctionMDs.reserve(OldMDs.size()); 877 unsigned PrevF = 0; 878 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 879 ++I) { 880 unsigned F = Order[I].F; 881 if (!PrevF) { 882 PrevF = F; 883 } else if (PrevF != F) { 884 R.Last = FunctionMDs.size(); 885 std::swap(R, FunctionMDInfo[PrevF]); 886 R.First = FunctionMDs.size(); 887 888 ID = MDs.size(); 889 PrevF = F; 890 } 891 892 auto *MD = Order[I].get(OldMDs); 893 FunctionMDs.push_back(MD); 894 MetadataMap[MD].ID = ++ID; 895 if (isa<MDString>(MD)) 896 ++R.NumStrings; 897 } 898 R.Last = FunctionMDs.size(); 899 FunctionMDInfo[PrevF] = R; 900 } 901 902 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 903 NumModuleMDs = MDs.size(); 904 905 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 906 NumMDStrings = R.NumStrings; 907 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 908 FunctionMDs.begin() + R.Last); 909 } 910 911 void ValueEnumerator::EnumerateValue(const Value *V) { 912 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 913 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 914 915 // Check to see if it's already in! 916 unsigned &ValueID = ValueMap[V]; 917 if (ValueID) { 918 // Increment use count. 919 Values[ValueID - 1].second++; 920 return; 921 } 922 923 if (auto *GO = dyn_cast<GlobalObject>(V)) 924 if (const Comdat *C = GO->getComdat()) 925 Comdats.insert(C); 926 927 // Enumerate the type of this value. 928 EnumerateType(V->getType()); 929 930 if (const Constant *C = dyn_cast<Constant>(V)) { 931 if (isa<GlobalValue>(C)) { 932 // Initializers for globals are handled explicitly elsewhere. 933 } else if (C->getNumOperands()) { 934 // If a constant has operands, enumerate them. This makes sure that if a 935 // constant has uses (for example an array of const ints), that they are 936 // inserted also. 937 938 // We prefer to enumerate them with values before we enumerate the user 939 // itself. This makes it more likely that we can avoid forward references 940 // in the reader. We know that there can be no cycles in the constants 941 // graph that don't go through a global variable. 942 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; 943 ++I) 944 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 945 EnumerateValue(*I); 946 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 947 if (CE->getOpcode() == Instruction::ShuffleVector) 948 EnumerateValue(CE->getShuffleMaskForBitcode()); 949 if (auto *GEP = dyn_cast<GEPOperator>(CE)) 950 EnumerateType(GEP->getSourceElementType()); 951 } 952 953 // Finally, add the value. Doing this could make the ValueID reference be 954 // dangling, don't reuse it. 955 Values.push_back(std::make_pair(V, 1U)); 956 ValueMap[V] = Values.size(); 957 return; 958 } 959 } 960 961 // Add the value. 962 Values.push_back(std::make_pair(V, 1U)); 963 ValueID = Values.size(); 964 } 965 966 void ValueEnumerator::EnumerateType(Type *Ty) { 967 unsigned *TypeID = &TypeMap[Ty]; 968 969 // We've already seen this type. 970 if (*TypeID) 971 return; 972 973 // If it is a non-anonymous struct, mark the type as being visited so that we 974 // don't recursively visit it. This is safe because we allow forward 975 // references of these in the bitcode reader. 976 if (StructType *STy = dyn_cast<StructType>(Ty)) 977 if (!STy->isLiteral()) 978 *TypeID = ~0U; 979 980 // Enumerate all of the subtypes before we enumerate this type. This ensures 981 // that the type will be enumerated in an order that can be directly built. 982 for (Type *SubTy : Ty->subtypes()) 983 EnumerateType(SubTy); 984 985 // Refresh the TypeID pointer in case the table rehashed. 986 TypeID = &TypeMap[Ty]; 987 988 // Check to see if we got the pointer another way. This can happen when 989 // enumerating recursive types that hit the base case deeper than they start. 990 // 991 // If this is actually a struct that we are treating as forward ref'able, 992 // then emit the definition now that all of its contents are available. 993 if (*TypeID && *TypeID != ~0U) 994 return; 995 996 // Add this type now that its contents are all happily enumerated. 997 Types.push_back(Ty); 998 999 *TypeID = Types.size(); 1000 } 1001 1002 // Enumerate the types for the specified value. If the value is a constant, 1003 // walk through it, enumerating the types of the constant. 1004 void ValueEnumerator::EnumerateOperandType(const Value *V) { 1005 EnumerateType(V->getType()); 1006 1007 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 1008 1009 const Constant *C = dyn_cast<Constant>(V); 1010 if (!C) 1011 return; 1012 1013 // If this constant is already enumerated, ignore it, we know its type must 1014 // be enumerated. 1015 if (ValueMap.count(C)) 1016 return; 1017 1018 // This constant may have operands, make sure to enumerate the types in 1019 // them. 1020 for (const Value *Op : C->operands()) { 1021 // Don't enumerate basic blocks here, this happens as operands to 1022 // blockaddress. 1023 if (isa<BasicBlock>(Op)) 1024 continue; 1025 1026 EnumerateOperandType(Op); 1027 } 1028 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1029 if (CE->getOpcode() == Instruction::ShuffleVector) 1030 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 1031 if (CE->getOpcode() == Instruction::GetElementPtr) 1032 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType()); 1033 } 1034 } 1035 1036 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 1037 if (PAL.isEmpty()) 1038 return; // null is always 0. 1039 1040 // Do a lookup. 1041 unsigned &Entry = AttributeListMap[PAL]; 1042 if (Entry == 0) { 1043 // Never saw this before, add it. 1044 AttributeLists.push_back(PAL); 1045 Entry = AttributeLists.size(); 1046 } 1047 1048 // Do lookups for all attribute groups. 1049 for (unsigned i : PAL.indexes()) { 1050 AttributeSet AS = PAL.getAttributes(i); 1051 if (!AS.hasAttributes()) 1052 continue; 1053 IndexAndAttrSet Pair = {i, AS}; 1054 unsigned &Entry = AttributeGroupMap[Pair]; 1055 if (Entry == 0) { 1056 AttributeGroups.push_back(Pair); 1057 Entry = AttributeGroups.size(); 1058 1059 for (Attribute Attr : AS) { 1060 if (Attr.isTypeAttribute()) 1061 EnumerateType(Attr.getValueAsType()); 1062 } 1063 } 1064 } 1065 } 1066 1067 void ValueEnumerator::incorporateFunction(const Function &F) { 1068 InstructionCount = 0; 1069 NumModuleValues = Values.size(); 1070 1071 // Add global metadata to the function block. This doesn't include 1072 // LocalAsMetadata. 1073 incorporateFunctionMetadata(F); 1074 1075 // Adding function arguments to the value table. 1076 for (const auto &I : F.args()) { 1077 EnumerateValue(&I); 1078 if (I.hasAttribute(Attribute::ByVal)) 1079 EnumerateType(I.getParamByValType()); 1080 else if (I.hasAttribute(Attribute::StructRet)) 1081 EnumerateType(I.getParamStructRetType()); 1082 else if (I.hasAttribute(Attribute::ByRef)) 1083 EnumerateType(I.getParamByRefType()); 1084 } 1085 FirstFuncConstantID = Values.size(); 1086 1087 // Add all function-level constants to the value table. 1088 for (const BasicBlock &BB : F) { 1089 for (const Instruction &I : BB) { 1090 for (const Use &OI : I.operands()) { 1091 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1092 EnumerateValue(OI); 1093 } 1094 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1095 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1096 } 1097 BasicBlocks.push_back(&BB); 1098 ValueMap[&BB] = BasicBlocks.size(); 1099 } 1100 1101 // Optimize the constant layout. 1102 OptimizeConstants(FirstFuncConstantID, Values.size()); 1103 1104 // Add the function's parameter attributes so they are available for use in 1105 // the function's instruction. 1106 EnumerateAttributes(F.getAttributes()); 1107 1108 FirstInstID = Values.size(); 1109 1110 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1111 SmallVector<DIArgList *, 8> ArgListMDVector; 1112 // Add all of the instructions. 1113 for (const BasicBlock &BB : F) { 1114 for (const Instruction &I : BB) { 1115 for (const Use &OI : I.operands()) { 1116 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) { 1117 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) { 1118 // Enumerate metadata after the instructions they might refer to. 1119 FnLocalMDVector.push_back(Local); 1120 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) { 1121 ArgListMDVector.push_back(ArgList); 1122 for (ValueAsMetadata *VMD : ArgList->getArgs()) { 1123 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) { 1124 // Enumerate metadata after the instructions they might refer 1125 // to. 1126 FnLocalMDVector.push_back(Local); 1127 } 1128 } 1129 } 1130 } 1131 } 1132 1133 if (!I.getType()->isVoidTy()) 1134 EnumerateValue(&I); 1135 } 1136 } 1137 1138 // Add all of the function-local metadata. 1139 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1140 // At this point, every local values have been incorporated, we shouldn't 1141 // have a metadata operand that references a value that hasn't been seen. 1142 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1143 "Missing value for metadata operand"); 1144 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1145 } 1146 // DIArgList entries must come after function-local metadata, as it is not 1147 // possible to forward-reference them. 1148 for (const DIArgList *ArgList : ArgListMDVector) 1149 EnumerateFunctionLocalListMetadata(F, ArgList); 1150 } 1151 1152 void ValueEnumerator::purgeFunction() { 1153 /// Remove purged values from the ValueMap. 1154 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1155 ValueMap.erase(Values[i].first); 1156 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1157 MetadataMap.erase(MDs[i]); 1158 for (const BasicBlock *BB : BasicBlocks) 1159 ValueMap.erase(BB); 1160 1161 Values.resize(NumModuleValues); 1162 MDs.resize(NumModuleMDs); 1163 BasicBlocks.clear(); 1164 NumMDStrings = 0; 1165 } 1166 1167 static void IncorporateFunctionInfoGlobalBBIDs( 1168 const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) { 1169 unsigned Counter = 0; 1170 for (const BasicBlock &BB : *F) 1171 IDMap[&BB] = ++Counter; 1172 } 1173 1174 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1175 /// specified basic block. This is relatively expensive information, so it 1176 /// should only be used by rare constructs such as address-of-label. 1177 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1178 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1179 if (Idx != 0) 1180 return Idx - 1; 1181 1182 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1183 return getGlobalBasicBlockID(BB); 1184 } 1185 1186 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1187 return Log2_32_Ceil(getTypes().size() + 1); 1188 } 1189