1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "PointerTypeAnalysis.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitcodeCommon.h" 18 #include "llvm/Bitcode/BitcodeReader.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/Bitstream/BitCodes.h" 21 #include "llvm/Bitstream/BitstreamWriter.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DebugLoc.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSummaryIndex.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/UseListOrder.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Object/IRSymtab.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/SHA1.h" 52 53 namespace llvm { 54 namespace dxil { 55 56 // Generates an enum to use as an index in the Abbrev array of Metadata record. 57 enum MetadataAbbrev : unsigned { 58 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 59 #include "llvm/IR/Metadata.def" 60 LastPlusOne 61 }; 62 63 class DXILBitcodeWriter { 64 65 /// These are manifest constants used by the bitcode writer. They do not need 66 /// to be kept in sync with the reader, but need to be consistent within this 67 /// file. 68 enum { 69 // VALUE_SYMTAB_BLOCK abbrev id's. 70 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 71 VST_ENTRY_7_ABBREV, 72 VST_ENTRY_6_ABBREV, 73 VST_BBENTRY_6_ABBREV, 74 75 // CONSTANTS_BLOCK abbrev id's. 76 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 77 CONSTANTS_INTEGER_ABBREV, 78 CONSTANTS_CE_CAST_Abbrev, 79 CONSTANTS_NULL_Abbrev, 80 81 // FUNCTION_BLOCK abbrev id's. 82 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 83 FUNCTION_INST_BINOP_ABBREV, 84 FUNCTION_INST_BINOP_FLAGS_ABBREV, 85 FUNCTION_INST_CAST_ABBREV, 86 FUNCTION_INST_RET_VOID_ABBREV, 87 FUNCTION_INST_RET_VAL_ABBREV, 88 FUNCTION_INST_UNREACHABLE_ABBREV, 89 FUNCTION_INST_GEP_ABBREV, 90 }; 91 92 // Cache some types 93 Type *I8Ty; 94 Type *I8PtrTy; 95 96 /// The stream created and owned by the client. 97 BitstreamWriter &Stream; 98 99 StringTableBuilder &StrtabBuilder; 100 101 /// The Module to write to bitcode. 102 const Module &M; 103 104 /// Enumerates ids for all values in the module. 105 ValueEnumerator VE; 106 107 /// Map that holds the correspondence between GUIDs in the summary index, 108 /// that came from indirect call profiles, and a value id generated by this 109 /// class to use in the VST and summary block records. 110 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 111 112 /// Tracks the last value id recorded in the GUIDToValueMap. 113 unsigned GlobalValueId; 114 115 /// Saves the offset of the VSTOffset record that must eventually be 116 /// backpatched with the offset of the actual VST. 117 uint64_t VSTOffsetPlaceholder = 0; 118 119 /// Pointer to the buffer allocated by caller for bitcode writing. 120 const SmallVectorImpl<char> &Buffer; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// This maps values to their typed pointers 126 PointerTypeMap PointerMap; 127 128 public: 129 /// Constructs a ModuleBitcodeWriter object for the given Module, 130 /// writing to the provided \p Buffer. 131 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 132 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 133 : I8Ty(Type::getInt8Ty(M.getContext())), 134 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 135 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 136 BitcodeStartBit(Stream.GetCurrentBitNo()), 137 PointerMap(PointerTypeAnalysis::run(M)) { 138 GlobalValueId = VE.getValues().size(); 139 // Enumerate the typed pointers 140 for (auto El : PointerMap) 141 VE.EnumerateType(El.second); 142 } 143 144 /// Emit the current module to the bitstream. 145 void write(); 146 147 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 148 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 149 StringRef Str, unsigned AbbrevToUse); 150 static void writeIdentificationBlock(BitstreamWriter &Stream); 151 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 152 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 153 154 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 155 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 156 static unsigned getEncodedLinkage(const GlobalValue &GV); 157 static unsigned getEncodedVisibility(const GlobalValue &GV); 158 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 159 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 160 static unsigned getEncodedCastOpcode(unsigned Opcode); 161 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 162 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 163 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 164 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 165 static uint64_t getOptimizationFlags(const Value *V); 166 167 private: 168 void writeModuleVersion(); 169 void writePerModuleGlobalValueSummary(); 170 171 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 172 GlobalValueSummary *Summary, 173 unsigned ValueID, 174 unsigned FSCallsAbbrev, 175 unsigned FSCallsProfileAbbrev, 176 const Function &F); 177 void writeModuleLevelReferences(const GlobalVariable &V, 178 SmallVector<uint64_t, 64> &NameVals, 179 unsigned FSModRefsAbbrev, 180 unsigned FSModVTableRefsAbbrev); 181 182 void assignValueId(GlobalValue::GUID ValGUID) { 183 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 184 } 185 186 unsigned getValueId(GlobalValue::GUID ValGUID) { 187 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 188 // Expect that any GUID value had a value Id assigned by an 189 // earlier call to assignValueId. 190 assert(VMI != GUIDToValueIdMap.end() && 191 "GUID does not have assigned value Id"); 192 return VMI->second; 193 } 194 195 // Helper to get the valueId for the type of value recorded in VI. 196 unsigned getValueId(ValueInfo VI) { 197 if (!VI.haveGVs() || !VI.getValue()) 198 return getValueId(VI.getGUID()); 199 return VE.getValueID(VI.getValue()); 200 } 201 202 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 203 204 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 205 206 size_t addToStrtab(StringRef Str); 207 208 unsigned createDILocationAbbrev(); 209 unsigned createGenericDINodeAbbrev(); 210 211 void writeAttributeGroupTable(); 212 void writeAttributeTable(); 213 void writeTypeTable(); 214 void writeComdats(); 215 void writeValueSymbolTableForwardDecl(); 216 void writeModuleInfo(); 217 void writeValueAsMetadata(const ValueAsMetadata *MD, 218 SmallVectorImpl<uint64_t> &Record); 219 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned &Abbrev); 223 void writeGenericDINode(const GenericDINode *N, 224 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 225 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 226 } 227 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 228 unsigned Abbrev); 229 void writeDIGenericSubrange(const DIGenericSubrange *N, 230 SmallVectorImpl<uint64_t> &Record, 231 unsigned Abbrev) { 232 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 233 } 234 void writeDIEnumerator(const DIEnumerator *N, 235 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 236 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 237 unsigned Abbrev); 238 void writeDIStringType(const DIStringType *N, 239 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 240 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 241 } 242 void writeDIDerivedType(const DIDerivedType *N, 243 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 244 void writeDICompositeType(const DICompositeType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDISubroutineType(const DISubroutineType *N, 247 SmallVectorImpl<uint64_t> &Record, 248 unsigned Abbrev); 249 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDICompileUnit(const DICompileUnit *N, 252 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 253 void writeDISubprogram(const DISubprogram *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDILexicalBlock(const DILexicalBlock *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 258 SmallVectorImpl<uint64_t> &Record, 259 unsigned Abbrev); 260 void writeDICommonBlock(const DICommonBlock *N, 261 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 262 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 263 } 264 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 265 unsigned Abbrev); 266 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev) { 268 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 269 } 270 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 271 unsigned Abbrev) { 272 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 273 } 274 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 275 unsigned Abbrev) { 276 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 277 } 278 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 279 unsigned Abbrev); 280 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 281 SmallVectorImpl<uint64_t> &Record, 282 unsigned Abbrev); 283 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 284 SmallVectorImpl<uint64_t> &Record, 285 unsigned Abbrev); 286 void writeDIGlobalVariable(const DIGlobalVariable *N, 287 SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDILocalVariable(const DILocalVariable *N, 290 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 291 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned Abbrev) { 293 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 294 } 295 void writeDIExpression(const DIExpression *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 297 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 298 SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev) { 300 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 301 } 302 void writeDIObjCProperty(const DIObjCProperty *N, 303 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 304 void writeDIImportedEntity(const DIImportedEntity *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 unsigned createNamedMetadataAbbrev(); 308 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 309 unsigned createMetadataStringsAbbrev(); 310 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 311 SmallVectorImpl<uint64_t> &Record); 312 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 313 SmallVectorImpl<uint64_t> &Record, 314 std::vector<unsigned> *MDAbbrevs = nullptr, 315 std::vector<uint64_t> *IndexPos = nullptr); 316 void writeModuleMetadata(); 317 void writeFunctionMetadata(const Function &F); 318 void writeFunctionMetadataAttachment(const Function &F); 319 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 320 const GlobalObject &GO); 321 void writeModuleMetadataKinds(); 322 void writeOperandBundleTags(); 323 void writeSyncScopeNames(); 324 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 325 void writeModuleConstants(); 326 bool pushValueAndType(const Value *V, unsigned InstID, 327 SmallVectorImpl<unsigned> &Vals); 328 void writeOperandBundles(const CallBase &CB, unsigned InstID); 329 void pushValue(const Value *V, unsigned InstID, 330 SmallVectorImpl<unsigned> &Vals); 331 void pushValueSigned(const Value *V, unsigned InstID, 332 SmallVectorImpl<uint64_t> &Vals); 333 void writeInstruction(const Instruction &I, unsigned InstID, 334 SmallVectorImpl<unsigned> &Vals); 335 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 336 void writeGlobalValueSymbolTable( 337 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 338 void writeUseList(UseListOrder &&Order); 339 void writeUseListBlock(const Function *F); 340 void writeFunction(const Function &F); 341 void writeBlockInfo(); 342 343 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 344 345 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 346 347 unsigned getTypeID(Type *T, const Value *V = nullptr); 348 unsigned getTypeID(Type *T, const Function *F); 349 }; 350 351 } // namespace dxil 352 } // namespace llvm 353 354 using namespace llvm; 355 using namespace llvm::dxil; 356 357 //////////////////////////////////////////////////////////////////////////////// 358 /// Begin dxil::BitcodeWriter Implementation 359 //////////////////////////////////////////////////////////////////////////////// 360 361 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, 362 raw_fd_stream *FS) 363 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { 364 // Emit the file header. 365 Stream->Emit((unsigned)'B', 8); 366 Stream->Emit((unsigned)'C', 8); 367 Stream->Emit(0x0, 4); 368 Stream->Emit(0xC, 4); 369 Stream->Emit(0xE, 4); 370 Stream->Emit(0xD, 4); 371 } 372 373 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 374 375 /// Write the specified module to the specified output stream. 376 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 377 SmallVector<char, 0> Buffer; 378 Buffer.reserve(256 * 1024); 379 380 // If this is darwin or another generic macho target, reserve space for the 381 // header. 382 Triple TT(M.getTargetTriple()); 383 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 384 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 385 386 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 387 Writer.writeModule(M); 388 Writer.writeSymtab(); 389 Writer.writeStrtab(); 390 391 // Write the generated bitstream to "Out". 392 if (!Buffer.empty()) 393 Out.write((char *)&Buffer.front(), Buffer.size()); 394 } 395 396 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 397 Stream->EnterSubblock(Block, 3); 398 399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 400 Abbv->Add(BitCodeAbbrevOp(Record)); 401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 402 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 403 404 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 405 406 Stream->ExitBlock(); 407 } 408 409 void BitcodeWriter::writeSymtab() { 410 assert(!WroteStrtab && !WroteSymtab); 411 412 // If any module has module-level inline asm, we will require a registered asm 413 // parser for the target so that we can create an accurate symbol table for 414 // the module. 415 for (Module *M : Mods) { 416 if (M->getModuleInlineAsm().empty()) 417 continue; 418 } 419 420 WroteSymtab = true; 421 SmallVector<char, 0> Symtab; 422 // The irsymtab::build function may be unable to create a symbol table if the 423 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 424 // table is not required for correctness, but we still want to be able to 425 // write malformed modules to bitcode files, so swallow the error. 426 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 427 consumeError(std::move(E)); 428 return; 429 } 430 431 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 432 {Symtab.data(), Symtab.size()}); 433 } 434 435 void BitcodeWriter::writeStrtab() { 436 assert(!WroteStrtab); 437 438 std::vector<char> Strtab; 439 StrtabBuilder.finalizeInOrder(); 440 Strtab.resize(StrtabBuilder.getSize()); 441 StrtabBuilder.write((uint8_t *)Strtab.data()); 442 443 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 444 {Strtab.data(), Strtab.size()}); 445 446 WroteStrtab = true; 447 } 448 449 void BitcodeWriter::copyStrtab(StringRef Strtab) { 450 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 451 WroteStrtab = true; 452 } 453 454 void BitcodeWriter::writeModule(const Module &M) { 455 assert(!WroteStrtab); 456 457 // The Mods vector is used by irsymtab::build, which requires non-const 458 // Modules in case it needs to materialize metadata. But the bitcode writer 459 // requires that the module is materialized, so we can cast to non-const here, 460 // after checking that it is in fact materialized. 461 assert(M.isMaterialized()); 462 Mods.push_back(const_cast<Module *>(&M)); 463 464 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 465 ModuleWriter.write(); 466 } 467 468 //////////////////////////////////////////////////////////////////////////////// 469 /// Begin dxil::BitcodeWriterBase Implementation 470 //////////////////////////////////////////////////////////////////////////////// 471 472 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 473 switch (Opcode) { 474 default: 475 llvm_unreachable("Unknown cast instruction!"); 476 case Instruction::Trunc: 477 return bitc::CAST_TRUNC; 478 case Instruction::ZExt: 479 return bitc::CAST_ZEXT; 480 case Instruction::SExt: 481 return bitc::CAST_SEXT; 482 case Instruction::FPToUI: 483 return bitc::CAST_FPTOUI; 484 case Instruction::FPToSI: 485 return bitc::CAST_FPTOSI; 486 case Instruction::UIToFP: 487 return bitc::CAST_UITOFP; 488 case Instruction::SIToFP: 489 return bitc::CAST_SITOFP; 490 case Instruction::FPTrunc: 491 return bitc::CAST_FPTRUNC; 492 case Instruction::FPExt: 493 return bitc::CAST_FPEXT; 494 case Instruction::PtrToInt: 495 return bitc::CAST_PTRTOINT; 496 case Instruction::IntToPtr: 497 return bitc::CAST_INTTOPTR; 498 case Instruction::BitCast: 499 return bitc::CAST_BITCAST; 500 case Instruction::AddrSpaceCast: 501 return bitc::CAST_ADDRSPACECAST; 502 } 503 } 504 505 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 506 switch (Opcode) { 507 default: 508 llvm_unreachable("Unknown binary instruction!"); 509 case Instruction::FNeg: 510 return bitc::UNOP_FNEG; 511 } 512 } 513 514 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: 517 llvm_unreachable("Unknown binary instruction!"); 518 case Instruction::Add: 519 case Instruction::FAdd: 520 return bitc::BINOP_ADD; 521 case Instruction::Sub: 522 case Instruction::FSub: 523 return bitc::BINOP_SUB; 524 case Instruction::Mul: 525 case Instruction::FMul: 526 return bitc::BINOP_MUL; 527 case Instruction::UDiv: 528 return bitc::BINOP_UDIV; 529 case Instruction::FDiv: 530 case Instruction::SDiv: 531 return bitc::BINOP_SDIV; 532 case Instruction::URem: 533 return bitc::BINOP_UREM; 534 case Instruction::FRem: 535 case Instruction::SRem: 536 return bitc::BINOP_SREM; 537 case Instruction::Shl: 538 return bitc::BINOP_SHL; 539 case Instruction::LShr: 540 return bitc::BINOP_LSHR; 541 case Instruction::AShr: 542 return bitc::BINOP_ASHR; 543 case Instruction::And: 544 return bitc::BINOP_AND; 545 case Instruction::Or: 546 return bitc::BINOP_OR; 547 case Instruction::Xor: 548 return bitc::BINOP_XOR; 549 } 550 } 551 552 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 553 if (!T->isOpaquePointerTy()) 554 return VE.getTypeID(T); 555 auto It = PointerMap.find(V); 556 if (It != PointerMap.end()) 557 return VE.getTypeID(It->second); 558 return VE.getTypeID(I8PtrTy); 559 } 560 561 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) { 562 auto It = PointerMap.find(F); 563 if (It != PointerMap.end()) 564 return VE.getTypeID(It->second); 565 return VE.getTypeID(T); 566 } 567 568 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 569 switch (Op) { 570 default: 571 llvm_unreachable("Unknown RMW operation!"); 572 case AtomicRMWInst::Xchg: 573 return bitc::RMW_XCHG; 574 case AtomicRMWInst::Add: 575 return bitc::RMW_ADD; 576 case AtomicRMWInst::Sub: 577 return bitc::RMW_SUB; 578 case AtomicRMWInst::And: 579 return bitc::RMW_AND; 580 case AtomicRMWInst::Nand: 581 return bitc::RMW_NAND; 582 case AtomicRMWInst::Or: 583 return bitc::RMW_OR; 584 case AtomicRMWInst::Xor: 585 return bitc::RMW_XOR; 586 case AtomicRMWInst::Max: 587 return bitc::RMW_MAX; 588 case AtomicRMWInst::Min: 589 return bitc::RMW_MIN; 590 case AtomicRMWInst::UMax: 591 return bitc::RMW_UMAX; 592 case AtomicRMWInst::UMin: 593 return bitc::RMW_UMIN; 594 case AtomicRMWInst::FAdd: 595 return bitc::RMW_FADD; 596 case AtomicRMWInst::FSub: 597 return bitc::RMW_FSUB; 598 } 599 } 600 601 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 602 switch (Ordering) { 603 case AtomicOrdering::NotAtomic: 604 return bitc::ORDERING_NOTATOMIC; 605 case AtomicOrdering::Unordered: 606 return bitc::ORDERING_UNORDERED; 607 case AtomicOrdering::Monotonic: 608 return bitc::ORDERING_MONOTONIC; 609 case AtomicOrdering::Acquire: 610 return bitc::ORDERING_ACQUIRE; 611 case AtomicOrdering::Release: 612 return bitc::ORDERING_RELEASE; 613 case AtomicOrdering::AcquireRelease: 614 return bitc::ORDERING_ACQREL; 615 case AtomicOrdering::SequentiallyConsistent: 616 return bitc::ORDERING_SEQCST; 617 } 618 llvm_unreachable("Invalid ordering"); 619 } 620 621 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 622 unsigned Code, StringRef Str, 623 unsigned AbbrevToUse) { 624 SmallVector<unsigned, 64> Vals; 625 626 // Code: [strchar x N] 627 for (char C : Str) { 628 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 629 AbbrevToUse = 0; 630 Vals.push_back(C); 631 } 632 633 // Emit the finished record. 634 Stream.EmitRecord(Code, Vals, AbbrevToUse); 635 } 636 637 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 638 switch (Kind) { 639 case Attribute::Alignment: 640 return bitc::ATTR_KIND_ALIGNMENT; 641 case Attribute::AlwaysInline: 642 return bitc::ATTR_KIND_ALWAYS_INLINE; 643 case Attribute::ArgMemOnly: 644 return bitc::ATTR_KIND_ARGMEMONLY; 645 case Attribute::Builtin: 646 return bitc::ATTR_KIND_BUILTIN; 647 case Attribute::ByVal: 648 return bitc::ATTR_KIND_BY_VAL; 649 case Attribute::Convergent: 650 return bitc::ATTR_KIND_CONVERGENT; 651 case Attribute::InAlloca: 652 return bitc::ATTR_KIND_IN_ALLOCA; 653 case Attribute::Cold: 654 return bitc::ATTR_KIND_COLD; 655 case Attribute::InlineHint: 656 return bitc::ATTR_KIND_INLINE_HINT; 657 case Attribute::InReg: 658 return bitc::ATTR_KIND_IN_REG; 659 case Attribute::JumpTable: 660 return bitc::ATTR_KIND_JUMP_TABLE; 661 case Attribute::MinSize: 662 return bitc::ATTR_KIND_MIN_SIZE; 663 case Attribute::Naked: 664 return bitc::ATTR_KIND_NAKED; 665 case Attribute::Nest: 666 return bitc::ATTR_KIND_NEST; 667 case Attribute::NoAlias: 668 return bitc::ATTR_KIND_NO_ALIAS; 669 case Attribute::NoBuiltin: 670 return bitc::ATTR_KIND_NO_BUILTIN; 671 case Attribute::NoCapture: 672 return bitc::ATTR_KIND_NO_CAPTURE; 673 case Attribute::NoDuplicate: 674 return bitc::ATTR_KIND_NO_DUPLICATE; 675 case Attribute::NoImplicitFloat: 676 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 677 case Attribute::NoInline: 678 return bitc::ATTR_KIND_NO_INLINE; 679 case Attribute::NonLazyBind: 680 return bitc::ATTR_KIND_NON_LAZY_BIND; 681 case Attribute::NonNull: 682 return bitc::ATTR_KIND_NON_NULL; 683 case Attribute::Dereferenceable: 684 return bitc::ATTR_KIND_DEREFERENCEABLE; 685 case Attribute::DereferenceableOrNull: 686 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 687 case Attribute::NoRedZone: 688 return bitc::ATTR_KIND_NO_RED_ZONE; 689 case Attribute::NoReturn: 690 return bitc::ATTR_KIND_NO_RETURN; 691 case Attribute::NoUnwind: 692 return bitc::ATTR_KIND_NO_UNWIND; 693 case Attribute::OptimizeForSize: 694 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 695 case Attribute::OptimizeNone: 696 return bitc::ATTR_KIND_OPTIMIZE_NONE; 697 case Attribute::ReadNone: 698 return bitc::ATTR_KIND_READ_NONE; 699 case Attribute::ReadOnly: 700 return bitc::ATTR_KIND_READ_ONLY; 701 case Attribute::Returned: 702 return bitc::ATTR_KIND_RETURNED; 703 case Attribute::ReturnsTwice: 704 return bitc::ATTR_KIND_RETURNS_TWICE; 705 case Attribute::SExt: 706 return bitc::ATTR_KIND_S_EXT; 707 case Attribute::StackAlignment: 708 return bitc::ATTR_KIND_STACK_ALIGNMENT; 709 case Attribute::StackProtect: 710 return bitc::ATTR_KIND_STACK_PROTECT; 711 case Attribute::StackProtectReq: 712 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 713 case Attribute::StackProtectStrong: 714 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 715 case Attribute::SafeStack: 716 return bitc::ATTR_KIND_SAFESTACK; 717 case Attribute::StructRet: 718 return bitc::ATTR_KIND_STRUCT_RET; 719 case Attribute::SanitizeAddress: 720 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 721 case Attribute::SanitizeThread: 722 return bitc::ATTR_KIND_SANITIZE_THREAD; 723 case Attribute::SanitizeMemory: 724 return bitc::ATTR_KIND_SANITIZE_MEMORY; 725 case Attribute::UWTable: 726 return bitc::ATTR_KIND_UW_TABLE; 727 case Attribute::ZExt: 728 return bitc::ATTR_KIND_Z_EXT; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 case Attribute::EmptyKey: 734 case Attribute::TombstoneKey: 735 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 736 default: 737 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 738 "should be stripped in DXILPrepare"); 739 } 740 741 llvm_unreachable("Trying to encode unknown attribute"); 742 } 743 744 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 745 uint64_t V) { 746 if ((int64_t)V >= 0) 747 Vals.push_back(V << 1); 748 else 749 Vals.push_back((-V << 1) | 1); 750 } 751 752 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 753 const APInt &A) { 754 // We have an arbitrary precision integer value to write whose 755 // bit width is > 64. However, in canonical unsigned integer 756 // format it is likely that the high bits are going to be zero. 757 // So, we only write the number of active words. 758 unsigned NumWords = A.getActiveWords(); 759 const uint64_t *RawData = A.getRawData(); 760 for (unsigned i = 0; i < NumWords; i++) 761 emitSignedInt64(Vals, RawData[i]); 762 } 763 764 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 765 uint64_t Flags = 0; 766 767 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 768 if (OBO->hasNoSignedWrap()) 769 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 770 if (OBO->hasNoUnsignedWrap()) 771 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 772 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 773 if (PEO->isExact()) 774 Flags |= 1 << bitc::PEO_EXACT; 775 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 776 if (FPMO->hasAllowReassoc()) 777 Flags |= bitc::AllowReassoc; 778 if (FPMO->hasNoNaNs()) 779 Flags |= bitc::NoNaNs; 780 if (FPMO->hasNoInfs()) 781 Flags |= bitc::NoInfs; 782 if (FPMO->hasNoSignedZeros()) 783 Flags |= bitc::NoSignedZeros; 784 if (FPMO->hasAllowReciprocal()) 785 Flags |= bitc::AllowReciprocal; 786 if (FPMO->hasAllowContract()) 787 Flags |= bitc::AllowContract; 788 if (FPMO->hasApproxFunc()) 789 Flags |= bitc::ApproxFunc; 790 } 791 792 return Flags; 793 } 794 795 unsigned 796 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 797 switch (Linkage) { 798 case GlobalValue::ExternalLinkage: 799 return 0; 800 case GlobalValue::WeakAnyLinkage: 801 return 16; 802 case GlobalValue::AppendingLinkage: 803 return 2; 804 case GlobalValue::InternalLinkage: 805 return 3; 806 case GlobalValue::LinkOnceAnyLinkage: 807 return 18; 808 case GlobalValue::ExternalWeakLinkage: 809 return 7; 810 case GlobalValue::CommonLinkage: 811 return 8; 812 case GlobalValue::PrivateLinkage: 813 return 9; 814 case GlobalValue::WeakODRLinkage: 815 return 17; 816 case GlobalValue::LinkOnceODRLinkage: 817 return 19; 818 case GlobalValue::AvailableExternallyLinkage: 819 return 12; 820 } 821 llvm_unreachable("Invalid linkage"); 822 } 823 824 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 825 return getEncodedLinkage(GV.getLinkage()); 826 } 827 828 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 829 switch (GV.getVisibility()) { 830 case GlobalValue::DefaultVisibility: 831 return 0; 832 case GlobalValue::HiddenVisibility: 833 return 1; 834 case GlobalValue::ProtectedVisibility: 835 return 2; 836 } 837 llvm_unreachable("Invalid visibility"); 838 } 839 840 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 841 switch (GV.getDLLStorageClass()) { 842 case GlobalValue::DefaultStorageClass: 843 return 0; 844 case GlobalValue::DLLImportStorageClass: 845 return 1; 846 case GlobalValue::DLLExportStorageClass: 847 return 2; 848 } 849 llvm_unreachable("Invalid DLL storage class"); 850 } 851 852 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 853 switch (GV.getThreadLocalMode()) { 854 case GlobalVariable::NotThreadLocal: 855 return 0; 856 case GlobalVariable::GeneralDynamicTLSModel: 857 return 1; 858 case GlobalVariable::LocalDynamicTLSModel: 859 return 2; 860 case GlobalVariable::InitialExecTLSModel: 861 return 3; 862 case GlobalVariable::LocalExecTLSModel: 863 return 4; 864 } 865 llvm_unreachable("Invalid TLS model"); 866 } 867 868 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 869 switch (C.getSelectionKind()) { 870 case Comdat::Any: 871 return bitc::COMDAT_SELECTION_KIND_ANY; 872 case Comdat::ExactMatch: 873 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 874 case Comdat::Largest: 875 return bitc::COMDAT_SELECTION_KIND_LARGEST; 876 case Comdat::NoDeduplicate: 877 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 878 case Comdat::SameSize: 879 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 880 } 881 llvm_unreachable("Invalid selection kind"); 882 } 883 884 //////////////////////////////////////////////////////////////////////////////// 885 /// Begin DXILBitcodeWriter Implementation 886 //////////////////////////////////////////////////////////////////////////////// 887 888 void DXILBitcodeWriter::writeAttributeGroupTable() { 889 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 890 VE.getAttributeGroups(); 891 if (AttrGrps.empty()) 892 return; 893 894 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 895 896 SmallVector<uint64_t, 64> Record; 897 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 898 unsigned AttrListIndex = Pair.first; 899 AttributeSet AS = Pair.second; 900 Record.push_back(VE.getAttributeGroupID(Pair)); 901 Record.push_back(AttrListIndex); 902 903 for (Attribute Attr : AS) { 904 if (Attr.isEnumAttribute()) { 905 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 906 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 907 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 908 Record.push_back(0); 909 Record.push_back(Val); 910 } else if (Attr.isIntAttribute()) { 911 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 912 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 913 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 914 Record.push_back(1); 915 Record.push_back(Val); 916 Record.push_back(Attr.getValueAsInt()); 917 } else { 918 StringRef Kind = Attr.getKindAsString(); 919 StringRef Val = Attr.getValueAsString(); 920 921 Record.push_back(Val.empty() ? 3 : 4); 922 Record.append(Kind.begin(), Kind.end()); 923 Record.push_back(0); 924 if (!Val.empty()) { 925 Record.append(Val.begin(), Val.end()); 926 Record.push_back(0); 927 } 928 } 929 } 930 931 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 932 Record.clear(); 933 } 934 935 Stream.ExitBlock(); 936 } 937 938 void DXILBitcodeWriter::writeAttributeTable() { 939 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 940 if (Attrs.empty()) 941 return; 942 943 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 944 945 SmallVector<uint64_t, 64> Record; 946 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 947 AttributeList AL = Attrs[i]; 948 for (unsigned i : AL.indexes()) { 949 AttributeSet AS = AL.getAttributes(i); 950 if (AS.hasAttributes()) 951 Record.push_back(VE.getAttributeGroupID({i, AS})); 952 } 953 954 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 955 Record.clear(); 956 } 957 958 Stream.ExitBlock(); 959 } 960 961 /// WriteTypeTable - Write out the type table for a module. 962 void DXILBitcodeWriter::writeTypeTable() { 963 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 964 965 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 966 SmallVector<uint64_t, 64> TypeVals; 967 968 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 969 970 // Abbrev for TYPE_CODE_POINTER. 971 auto Abbv = std::make_shared<BitCodeAbbrev>(); 972 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 974 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 975 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 976 977 // Abbrev for TYPE_CODE_FUNCTION. 978 Abbv = std::make_shared<BitCodeAbbrev>(); 979 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 983 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 984 985 // Abbrev for TYPE_CODE_STRUCT_ANON. 986 Abbv = std::make_shared<BitCodeAbbrev>(); 987 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 991 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 992 993 // Abbrev for TYPE_CODE_STRUCT_NAME. 994 Abbv = std::make_shared<BitCodeAbbrev>(); 995 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 998 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 999 1000 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1001 Abbv = std::make_shared<BitCodeAbbrev>(); 1002 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1006 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1007 1008 // Abbrev for TYPE_CODE_ARRAY. 1009 Abbv = std::make_shared<BitCodeAbbrev>(); 1010 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1013 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1014 1015 // Emit an entry count so the reader can reserve space. 1016 TypeVals.push_back(TypeList.size()); 1017 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1018 TypeVals.clear(); 1019 1020 // Loop over all of the types, emitting each in turn. 1021 for (Type *T : TypeList) { 1022 int AbbrevToUse = 0; 1023 unsigned Code = 0; 1024 1025 switch (T->getTypeID()) { 1026 case Type::BFloatTyID: 1027 case Type::X86_AMXTyID: 1028 case Type::TokenTyID: 1029 llvm_unreachable("These should never be used!!!"); 1030 break; 1031 case Type::VoidTyID: 1032 Code = bitc::TYPE_CODE_VOID; 1033 break; 1034 case Type::HalfTyID: 1035 Code = bitc::TYPE_CODE_HALF; 1036 break; 1037 case Type::FloatTyID: 1038 Code = bitc::TYPE_CODE_FLOAT; 1039 break; 1040 case Type::DoubleTyID: 1041 Code = bitc::TYPE_CODE_DOUBLE; 1042 break; 1043 case Type::X86_FP80TyID: 1044 Code = bitc::TYPE_CODE_X86_FP80; 1045 break; 1046 case Type::FP128TyID: 1047 Code = bitc::TYPE_CODE_FP128; 1048 break; 1049 case Type::PPC_FP128TyID: 1050 Code = bitc::TYPE_CODE_PPC_FP128; 1051 break; 1052 case Type::LabelTyID: 1053 Code = bitc::TYPE_CODE_LABEL; 1054 break; 1055 case Type::MetadataTyID: 1056 Code = bitc::TYPE_CODE_METADATA; 1057 break; 1058 case Type::X86_MMXTyID: 1059 Code = bitc::TYPE_CODE_X86_MMX; 1060 break; 1061 case Type::IntegerTyID: 1062 // INTEGER: [width] 1063 Code = bitc::TYPE_CODE_INTEGER; 1064 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1065 break; 1066 case Type::DXILPointerTyID: { 1067 TypedPointerType *PTy = cast<TypedPointerType>(T); 1068 // POINTER: [pointee type, address space] 1069 Code = bitc::TYPE_CODE_POINTER; 1070 TypeVals.push_back(getTypeID(PTy->getElementType())); 1071 unsigned AddressSpace = PTy->getAddressSpace(); 1072 TypeVals.push_back(AddressSpace); 1073 if (AddressSpace == 0) 1074 AbbrevToUse = PtrAbbrev; 1075 break; 1076 } 1077 case Type::PointerTyID: { 1078 PointerType *PTy = cast<PointerType>(T); 1079 // POINTER: [pointee type, address space] 1080 Code = bitc::TYPE_CODE_POINTER; 1081 // Emitting an empty struct type for the opaque pointer's type allows 1082 // this to be order-independent. Non-struct types must be emitted in 1083 // bitcode before they can be referenced. 1084 if (PTy->isOpaquePointerTy()) { 1085 TypeVals.push_back(false); 1086 Code = bitc::TYPE_CODE_OPAQUE; 1087 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1088 "dxilOpaquePtrReservedName", StructNameAbbrev); 1089 } else { 1090 TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType())); 1091 unsigned AddressSpace = PTy->getAddressSpace(); 1092 TypeVals.push_back(AddressSpace); 1093 if (AddressSpace == 0) 1094 AbbrevToUse = PtrAbbrev; 1095 } 1096 break; 1097 } 1098 case Type::FunctionTyID: { 1099 FunctionType *FT = cast<FunctionType>(T); 1100 // FUNCTION: [isvararg, retty, paramty x N] 1101 Code = bitc::TYPE_CODE_FUNCTION; 1102 TypeVals.push_back(FT->isVarArg()); 1103 TypeVals.push_back(getTypeID(FT->getReturnType())); 1104 for (Type *PTy : FT->params()) 1105 TypeVals.push_back(getTypeID(PTy)); 1106 AbbrevToUse = FunctionAbbrev; 1107 break; 1108 } 1109 case Type::StructTyID: { 1110 StructType *ST = cast<StructType>(T); 1111 // STRUCT: [ispacked, eltty x N] 1112 TypeVals.push_back(ST->isPacked()); 1113 // Output all of the element types. 1114 for (Type *ElTy : ST->elements()) 1115 TypeVals.push_back(getTypeID(ElTy)); 1116 1117 if (ST->isLiteral()) { 1118 Code = bitc::TYPE_CODE_STRUCT_ANON; 1119 AbbrevToUse = StructAnonAbbrev; 1120 } else { 1121 if (ST->isOpaque()) { 1122 Code = bitc::TYPE_CODE_OPAQUE; 1123 } else { 1124 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1125 AbbrevToUse = StructNamedAbbrev; 1126 } 1127 1128 // Emit the name if it is present. 1129 if (!ST->getName().empty()) 1130 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1131 StructNameAbbrev); 1132 } 1133 break; 1134 } 1135 case Type::ArrayTyID: { 1136 ArrayType *AT = cast<ArrayType>(T); 1137 // ARRAY: [numelts, eltty] 1138 Code = bitc::TYPE_CODE_ARRAY; 1139 TypeVals.push_back(AT->getNumElements()); 1140 TypeVals.push_back(getTypeID(AT->getElementType())); 1141 AbbrevToUse = ArrayAbbrev; 1142 break; 1143 } 1144 case Type::FixedVectorTyID: 1145 case Type::ScalableVectorTyID: { 1146 VectorType *VT = cast<VectorType>(T); 1147 // VECTOR [numelts, eltty] 1148 Code = bitc::TYPE_CODE_VECTOR; 1149 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1150 TypeVals.push_back(getTypeID(VT->getElementType())); 1151 break; 1152 } 1153 } 1154 1155 // Emit the finished record. 1156 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1157 TypeVals.clear(); 1158 } 1159 1160 Stream.ExitBlock(); 1161 } 1162 1163 void DXILBitcodeWriter::writeComdats() { 1164 SmallVector<uint16_t, 64> Vals; 1165 for (const Comdat *C : VE.getComdats()) { 1166 // COMDAT: [selection_kind, name] 1167 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1168 size_t Size = C->getName().size(); 1169 assert(isUInt<16>(Size)); 1170 Vals.push_back(Size); 1171 for (char Chr : C->getName()) 1172 Vals.push_back((unsigned char)Chr); 1173 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1174 Vals.clear(); 1175 } 1176 } 1177 1178 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1179 1180 /// Emit top-level description of module, including target triple, inline asm, 1181 /// descriptors for global variables, and function prototype info. 1182 /// Returns the bit offset to backpatch with the location of the real VST. 1183 void DXILBitcodeWriter::writeModuleInfo() { 1184 // Emit various pieces of data attached to a module. 1185 if (!M.getTargetTriple().empty()) 1186 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1187 0 /*TODO*/); 1188 const std::string &DL = M.getDataLayoutStr(); 1189 if (!DL.empty()) 1190 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1191 if (!M.getModuleInlineAsm().empty()) 1192 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1193 0 /*TODO*/); 1194 1195 // Emit information about sections and GC, computing how many there are. Also 1196 // compute the maximum alignment value. 1197 std::map<std::string, unsigned> SectionMap; 1198 std::map<std::string, unsigned> GCMap; 1199 MaybeAlign MaxAlignment; 1200 unsigned MaxGlobalType = 0; 1201 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1202 if (A) 1203 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1204 }; 1205 for (const GlobalVariable &GV : M.globals()) { 1206 UpdateMaxAlignment(GV.getAlign()); 1207 MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV)); 1208 if (GV.hasSection()) { 1209 // Give section names unique ID's. 1210 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1211 if (!Entry) { 1212 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1213 GV.getSection(), 0 /*TODO*/); 1214 Entry = SectionMap.size(); 1215 } 1216 } 1217 } 1218 for (const Function &F : M) { 1219 UpdateMaxAlignment(F.getAlign()); 1220 if (F.hasSection()) { 1221 // Give section names unique ID's. 1222 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1223 if (!Entry) { 1224 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1225 0 /*TODO*/); 1226 Entry = SectionMap.size(); 1227 } 1228 } 1229 if (F.hasGC()) { 1230 // Same for GC names. 1231 unsigned &Entry = GCMap[F.getGC()]; 1232 if (!Entry) { 1233 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1234 0 /*TODO*/); 1235 Entry = GCMap.size(); 1236 } 1237 } 1238 } 1239 1240 // Emit abbrev for globals, now that we know # sections and max alignment. 1241 unsigned SimpleGVarAbbrev = 0; 1242 if (!M.global_empty()) { 1243 // Add an abbrev for common globals with no visibility or thread 1244 // localness. 1245 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1246 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1248 Log2_32_Ceil(MaxGlobalType + 1))); 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1250 //| explicitType << 1 1251 //| constant 1252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1254 if (MaxAlignment == 0) // Alignment. 1255 Abbv->Add(BitCodeAbbrevOp(0)); 1256 else { 1257 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1259 Log2_32_Ceil(MaxEncAlignment + 1))); 1260 } 1261 if (SectionMap.empty()) // Section. 1262 Abbv->Add(BitCodeAbbrevOp(0)); 1263 else 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1265 Log2_32_Ceil(SectionMap.size() + 1))); 1266 // Don't bother emitting vis + thread local. 1267 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1268 } 1269 1270 // Emit the global variable information. 1271 SmallVector<unsigned, 64> Vals; 1272 for (const GlobalVariable &GV : M.globals()) { 1273 unsigned AbbrevToUse = 0; 1274 1275 // GLOBALVAR: [type, isconst, initid, 1276 // linkage, alignment, section, visibility, threadlocal, 1277 // unnamed_addr, externally_initialized, dllstorageclass, 1278 // comdat] 1279 Vals.push_back(getTypeID(GV.getValueType(), &GV)); 1280 Vals.push_back( 1281 GV.getType()->getAddressSpace() << 2 | 2 | 1282 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1283 // unsigned int and bool 1284 Vals.push_back( 1285 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1286 Vals.push_back(getEncodedLinkage(GV)); 1287 Vals.push_back(getEncodedAlign(GV.getAlign())); 1288 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1289 : 0); 1290 if (GV.isThreadLocal() || 1291 GV.getVisibility() != GlobalValue::DefaultVisibility || 1292 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1293 GV.isExternallyInitialized() || 1294 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1295 GV.hasComdat()) { 1296 Vals.push_back(getEncodedVisibility(GV)); 1297 Vals.push_back(getEncodedThreadLocalMode(GV)); 1298 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1299 Vals.push_back(GV.isExternallyInitialized()); 1300 Vals.push_back(getEncodedDLLStorageClass(GV)); 1301 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1302 } else { 1303 AbbrevToUse = SimpleGVarAbbrev; 1304 } 1305 1306 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1307 Vals.clear(); 1308 } 1309 1310 // Emit the function proto information. 1311 for (const Function &F : M) { 1312 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1313 // section, visibility, gc, unnamed_addr, prologuedata, 1314 // dllstorageclass, comdat, prefixdata, personalityfn] 1315 Vals.push_back(getTypeID(F.getFunctionType(), &F)); 1316 Vals.push_back(F.getCallingConv()); 1317 Vals.push_back(F.isDeclaration()); 1318 Vals.push_back(getEncodedLinkage(F)); 1319 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1320 Vals.push_back(getEncodedAlign(F.getAlign())); 1321 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1322 : 0); 1323 Vals.push_back(getEncodedVisibility(F)); 1324 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1325 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1326 Vals.push_back( 1327 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1328 Vals.push_back(getEncodedDLLStorageClass(F)); 1329 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1330 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1331 : 0); 1332 Vals.push_back( 1333 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1334 1335 unsigned AbbrevToUse = 0; 1336 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1337 Vals.clear(); 1338 } 1339 1340 // Emit the alias information. 1341 for (const GlobalAlias &A : M.aliases()) { 1342 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1343 Vals.push_back(getTypeID(A.getValueType(), &A)); 1344 Vals.push_back(VE.getValueID(A.getAliasee())); 1345 Vals.push_back(getEncodedLinkage(A)); 1346 Vals.push_back(getEncodedVisibility(A)); 1347 Vals.push_back(getEncodedDLLStorageClass(A)); 1348 Vals.push_back(getEncodedThreadLocalMode(A)); 1349 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1350 unsigned AbbrevToUse = 0; 1351 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1352 Vals.clear(); 1353 } 1354 } 1355 1356 void DXILBitcodeWriter::writeValueAsMetadata( 1357 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1358 // Mimic an MDNode with a value as one operand. 1359 Value *V = MD->getValue(); 1360 Record.push_back(getTypeID(V->getType())); 1361 Record.push_back(VE.getValueID(V)); 1362 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1363 Record.clear(); 1364 } 1365 1366 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1367 SmallVectorImpl<uint64_t> &Record, 1368 unsigned Abbrev) { 1369 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1370 Metadata *MD = N->getOperand(i); 1371 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1372 "Unexpected function-local metadata"); 1373 Record.push_back(VE.getMetadataOrNullID(MD)); 1374 } 1375 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1376 : bitc::METADATA_NODE, 1377 Record, Abbrev); 1378 Record.clear(); 1379 } 1380 1381 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1382 SmallVectorImpl<uint64_t> &Record, 1383 unsigned &Abbrev) { 1384 if (!Abbrev) 1385 Abbrev = createDILocationAbbrev(); 1386 Record.push_back(N->isDistinct()); 1387 Record.push_back(N->getLine()); 1388 Record.push_back(N->getColumn()); 1389 Record.push_back(VE.getMetadataID(N->getScope())); 1390 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1391 1392 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1393 Record.clear(); 1394 } 1395 1396 static uint64_t rotateSign(APInt Val) { 1397 int64_t I = Val.getSExtValue(); 1398 uint64_t U = I; 1399 return I < 0 ? ~(U << 1) : U << 1; 1400 } 1401 1402 static uint64_t rotateSign(DISubrange::BoundType Val) { 1403 return rotateSign(Val.get<ConstantInt *>()->getValue()); 1404 } 1405 1406 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1407 SmallVectorImpl<uint64_t> &Record, 1408 unsigned Abbrev) { 1409 Record.push_back(N->isDistinct()); 1410 Record.push_back( 1411 N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); 1412 Record.push_back(rotateSign(N->getLowerBound())); 1413 1414 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1415 Record.clear(); 1416 } 1417 1418 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1419 SmallVectorImpl<uint64_t> &Record, 1420 unsigned Abbrev) { 1421 Record.push_back(N->isDistinct()); 1422 Record.push_back(rotateSign(N->getValue())); 1423 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1424 1425 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1426 Record.clear(); 1427 } 1428 1429 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1430 SmallVectorImpl<uint64_t> &Record, 1431 unsigned Abbrev) { 1432 Record.push_back(N->isDistinct()); 1433 Record.push_back(N->getTag()); 1434 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1435 Record.push_back(N->getSizeInBits()); 1436 Record.push_back(N->getAlignInBits()); 1437 Record.push_back(N->getEncoding()); 1438 1439 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1440 Record.clear(); 1441 } 1442 1443 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1444 SmallVectorImpl<uint64_t> &Record, 1445 unsigned Abbrev) { 1446 Record.push_back(N->isDistinct()); 1447 Record.push_back(N->getTag()); 1448 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1449 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1450 Record.push_back(N->getLine()); 1451 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1452 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1453 Record.push_back(N->getSizeInBits()); 1454 Record.push_back(N->getAlignInBits()); 1455 Record.push_back(N->getOffsetInBits()); 1456 Record.push_back(N->getFlags()); 1457 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1458 1459 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1460 Record.clear(); 1461 } 1462 1463 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1464 SmallVectorImpl<uint64_t> &Record, 1465 unsigned Abbrev) { 1466 Record.push_back(N->isDistinct()); 1467 Record.push_back(N->getTag()); 1468 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1470 Record.push_back(N->getLine()); 1471 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1472 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1473 Record.push_back(N->getSizeInBits()); 1474 Record.push_back(N->getAlignInBits()); 1475 Record.push_back(N->getOffsetInBits()); 1476 Record.push_back(N->getFlags()); 1477 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1478 Record.push_back(N->getRuntimeLang()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1480 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1481 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1482 1483 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1484 Record.clear(); 1485 } 1486 1487 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1488 SmallVectorImpl<uint64_t> &Record, 1489 unsigned Abbrev) { 1490 Record.push_back(N->isDistinct()); 1491 Record.push_back(N->getFlags()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1493 1494 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1495 Record.clear(); 1496 } 1497 1498 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1499 SmallVectorImpl<uint64_t> &Record, 1500 unsigned Abbrev) { 1501 Record.push_back(N->isDistinct()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1503 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1504 1505 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1510 SmallVectorImpl<uint64_t> &Record, 1511 unsigned Abbrev) { 1512 Record.push_back(N->isDistinct()); 1513 Record.push_back(N->getSourceLanguage()); 1514 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1516 Record.push_back(N->isOptimized()); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1518 Record.push_back(N->getRuntimeVersion()); 1519 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1520 Record.push_back(N->getEmissionKind()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1522 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1523 Record.push_back(/* subprograms */ 0); 1524 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1525 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1526 Record.push_back(N->getDWOId()); 1527 1528 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1529 Record.clear(); 1530 } 1531 1532 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1533 SmallVectorImpl<uint64_t> &Record, 1534 unsigned Abbrev) { 1535 Record.push_back(N->isDistinct()); 1536 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1538 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1539 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1540 Record.push_back(N->getLine()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1542 Record.push_back(N->isLocalToUnit()); 1543 Record.push_back(N->isDefinition()); 1544 Record.push_back(N->getScopeLine()); 1545 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1546 Record.push_back(N->getVirtuality()); 1547 Record.push_back(N->getVirtualIndex()); 1548 Record.push_back(N->getFlags()); 1549 Record.push_back(N->isOptimized()); 1550 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1551 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1553 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1554 1555 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1556 Record.clear(); 1557 } 1558 1559 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1560 SmallVectorImpl<uint64_t> &Record, 1561 unsigned Abbrev) { 1562 Record.push_back(N->isDistinct()); 1563 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1565 Record.push_back(N->getLine()); 1566 Record.push_back(N->getColumn()); 1567 1568 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1569 Record.clear(); 1570 } 1571 1572 void DXILBitcodeWriter::writeDILexicalBlockFile( 1573 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1574 unsigned Abbrev) { 1575 Record.push_back(N->isDistinct()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1578 Record.push_back(N->getDiscriminator()); 1579 1580 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 Record.push_back(N->isDistinct()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1591 Record.push_back(/* line number */ 0); 1592 1593 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1594 Record.clear(); 1595 } 1596 1597 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1598 SmallVectorImpl<uint64_t> &Record, 1599 unsigned Abbrev) { 1600 Record.push_back(N->isDistinct()); 1601 for (auto &I : N->operands()) 1602 Record.push_back(VE.getMetadataOrNullID(I)); 1603 1604 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1609 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1610 unsigned Abbrev) { 1611 Record.push_back(N->isDistinct()); 1612 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1613 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1614 1615 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void DXILBitcodeWriter::writeDITemplateValueParameter( 1620 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 Record.push_back(N->isDistinct()); 1623 Record.push_back(N->getTag()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1627 1628 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1633 SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 Record.push_back(N->isDistinct()); 1636 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1638 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1640 Record.push_back(N->getLine()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1642 Record.push_back(N->isLocalToUnit()); 1643 Record.push_back(N->isDefinition()); 1644 Record.push_back(/* N->getRawVariable() */ 0); 1645 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1646 1647 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 Record.push_back(N->isDistinct()); 1655 Record.push_back(N->getTag()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1659 Record.push_back(N->getLine()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1661 Record.push_back(N->getArg()); 1662 Record.push_back(N->getFlags()); 1663 1664 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1669 SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 Record.reserve(N->getElements().size() + 1); 1672 1673 Record.push_back(N->isDistinct()); 1674 Record.append(N->elements_begin(), N->elements_end()); 1675 1676 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1681 SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 llvm_unreachable("DXIL does not support objc!!!"); 1684 } 1685 1686 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1687 SmallVectorImpl<uint64_t> &Record, 1688 unsigned Abbrev) { 1689 Record.push_back(N->isDistinct()); 1690 Record.push_back(N->getTag()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1693 Record.push_back(N->getLine()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1695 1696 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1701 // Abbrev for METADATA_LOCATION. 1702 // 1703 // Assume the column is usually under 128, and always output the inlined-at 1704 // location (it's never more expensive than building an array size 1). 1705 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1706 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1712 return Stream.EmitAbbrev(std::move(Abbv)); 1713 } 1714 1715 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1716 // Abbrev for METADATA_GENERIC_DEBUG. 1717 // 1718 // Assume the column is usually under 128, and always output the inlined-at 1719 // location (it's never more expensive than building an array size 1). 1720 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1721 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1728 return Stream.EmitAbbrev(std::move(Abbv)); 1729 } 1730 1731 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1732 SmallVectorImpl<uint64_t> &Record, 1733 std::vector<unsigned> *MDAbbrevs, 1734 std::vector<uint64_t> *IndexPos) { 1735 if (MDs.empty()) 1736 return; 1737 1738 // Initialize MDNode abbreviations. 1739 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1740 #include "llvm/IR/Metadata.def" 1741 1742 for (const Metadata *MD : MDs) { 1743 if (IndexPos) 1744 IndexPos->push_back(Stream.GetCurrentBitNo()); 1745 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1746 assert(N->isResolved() && "Expected forward references to be resolved"); 1747 1748 switch (N->getMetadataID()) { 1749 default: 1750 llvm_unreachable("Invalid MDNode subclass"); 1751 #define HANDLE_MDNODE_LEAF(CLASS) \ 1752 case Metadata::CLASS##Kind: \ 1753 if (MDAbbrevs) \ 1754 write##CLASS(cast<CLASS>(N), Record, \ 1755 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1756 else \ 1757 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1758 continue; 1759 #include "llvm/IR/Metadata.def" 1760 } 1761 } 1762 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1763 } 1764 } 1765 1766 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1767 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1768 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1771 return Stream.EmitAbbrev(std::move(Abbv)); 1772 } 1773 1774 void DXILBitcodeWriter::writeMetadataStrings( 1775 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1776 for (const Metadata *MD : Strings) { 1777 const MDString *MDS = cast<MDString>(MD); 1778 // Code: [strchar x N] 1779 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1780 1781 // Emit the finished record. 1782 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, 1783 createMetadataStringsAbbrev()); 1784 Record.clear(); 1785 } 1786 } 1787 1788 void DXILBitcodeWriter::writeModuleMetadata() { 1789 if (!VE.hasMDs() && M.named_metadata_empty()) 1790 return; 1791 1792 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1793 1794 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1795 // block and load any metadata. 1796 std::vector<unsigned> MDAbbrevs; 1797 1798 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1799 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1800 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1801 createGenericDINodeAbbrev(); 1802 1803 unsigned NameAbbrev = 0; 1804 if (!M.named_metadata_empty()) { 1805 // Abbrev for METADATA_NAME. 1806 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1807 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1810 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1811 } 1812 1813 SmallVector<uint64_t, 64> Record; 1814 writeMetadataStrings(VE.getMDStrings(), Record); 1815 1816 std::vector<uint64_t> IndexPos; 1817 IndexPos.reserve(VE.getNonMDStrings().size()); 1818 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1819 1820 // Write named metadata. 1821 for (const NamedMDNode &NMD : M.named_metadata()) { 1822 // Write name. 1823 StringRef Str = NMD.getName(); 1824 Record.append(Str.bytes_begin(), Str.bytes_end()); 1825 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1826 Record.clear(); 1827 1828 // Write named metadata operands. 1829 for (const MDNode *N : NMD.operands()) 1830 Record.push_back(VE.getMetadataID(N)); 1831 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1832 Record.clear(); 1833 } 1834 1835 Stream.ExitBlock(); 1836 } 1837 1838 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1839 if (!VE.hasMDs()) 1840 return; 1841 1842 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1843 SmallVector<uint64_t, 64> Record; 1844 writeMetadataStrings(VE.getMDStrings(), Record); 1845 writeMetadataRecords(VE.getNonMDStrings(), Record); 1846 Stream.ExitBlock(); 1847 } 1848 1849 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1850 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1851 1852 SmallVector<uint64_t, 64> Record; 1853 1854 // Write metadata attachments 1855 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1856 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1857 F.getAllMetadata(MDs); 1858 if (!MDs.empty()) { 1859 for (const auto &I : MDs) { 1860 Record.push_back(I.first); 1861 Record.push_back(VE.getMetadataID(I.second)); 1862 } 1863 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1864 Record.clear(); 1865 } 1866 1867 for (const BasicBlock &BB : F) 1868 for (const Instruction &I : BB) { 1869 MDs.clear(); 1870 I.getAllMetadataOtherThanDebugLoc(MDs); 1871 1872 // If no metadata, ignore instruction. 1873 if (MDs.empty()) 1874 continue; 1875 1876 Record.push_back(VE.getInstructionID(&I)); 1877 1878 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1879 Record.push_back(MDs[i].first); 1880 Record.push_back(VE.getMetadataID(MDs[i].second)); 1881 } 1882 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1883 Record.clear(); 1884 } 1885 1886 Stream.ExitBlock(); 1887 } 1888 1889 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1890 SmallVector<uint64_t, 64> Record; 1891 1892 // Write metadata kinds 1893 // METADATA_KIND - [n x [id, name]] 1894 SmallVector<StringRef, 8> Names; 1895 M.getMDKindNames(Names); 1896 1897 if (Names.empty()) 1898 return; 1899 1900 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1901 1902 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1903 Record.push_back(MDKindID); 1904 StringRef KName = Names[MDKindID]; 1905 Record.append(KName.begin(), KName.end()); 1906 1907 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1908 Record.clear(); 1909 } 1910 1911 Stream.ExitBlock(); 1912 } 1913 1914 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1915 bool isGlobal) { 1916 if (FirstVal == LastVal) 1917 return; 1918 1919 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1920 1921 unsigned AggregateAbbrev = 0; 1922 unsigned String8Abbrev = 0; 1923 unsigned CString7Abbrev = 0; 1924 unsigned CString6Abbrev = 0; 1925 // If this is a constant pool for the module, emit module-specific abbrevs. 1926 if (isGlobal) { 1927 // Abbrev for CST_CODE_AGGREGATE. 1928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1929 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1931 Abbv->Add( 1932 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1933 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1934 1935 // Abbrev for CST_CODE_STRING. 1936 Abbv = std::make_shared<BitCodeAbbrev>(); 1937 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1940 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1941 // Abbrev for CST_CODE_CSTRING. 1942 Abbv = std::make_shared<BitCodeAbbrev>(); 1943 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1946 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1947 // Abbrev for CST_CODE_CSTRING. 1948 Abbv = std::make_shared<BitCodeAbbrev>(); 1949 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1952 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1953 } 1954 1955 SmallVector<uint64_t, 64> Record; 1956 1957 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1958 Type *LastTy = nullptr; 1959 for (unsigned i = FirstVal; i != LastVal; ++i) { 1960 const Value *V = Vals[i].first; 1961 // If we need to switch types, do so now. 1962 if (V->getType() != LastTy) { 1963 LastTy = V->getType(); 1964 Record.push_back(getTypeID(LastTy)); 1965 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1966 CONSTANTS_SETTYPE_ABBREV); 1967 Record.clear(); 1968 } 1969 1970 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1971 Record.push_back(unsigned(IA->hasSideEffects()) | 1972 unsigned(IA->isAlignStack()) << 1 | 1973 unsigned(IA->getDialect() & 1) << 2); 1974 1975 // Add the asm string. 1976 const std::string &AsmStr = IA->getAsmString(); 1977 Record.push_back(AsmStr.size()); 1978 Record.append(AsmStr.begin(), AsmStr.end()); 1979 1980 // Add the constraint string. 1981 const std::string &ConstraintStr = IA->getConstraintString(); 1982 Record.push_back(ConstraintStr.size()); 1983 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1984 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1985 Record.clear(); 1986 continue; 1987 } 1988 const Constant *C = cast<Constant>(V); 1989 unsigned Code = -1U; 1990 unsigned AbbrevToUse = 0; 1991 if (C->isNullValue()) { 1992 Code = bitc::CST_CODE_NULL; 1993 } else if (isa<UndefValue>(C)) { 1994 Code = bitc::CST_CODE_UNDEF; 1995 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1996 if (IV->getBitWidth() <= 64) { 1997 uint64_t V = IV->getSExtValue(); 1998 emitSignedInt64(Record, V); 1999 Code = bitc::CST_CODE_INTEGER; 2000 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2001 } else { // Wide integers, > 64 bits in size. 2002 // We have an arbitrary precision integer value to write whose 2003 // bit width is > 64. However, in canonical unsigned integer 2004 // format it is likely that the high bits are going to be zero. 2005 // So, we only write the number of active words. 2006 unsigned NWords = IV->getValue().getActiveWords(); 2007 const uint64_t *RawWords = IV->getValue().getRawData(); 2008 for (unsigned i = 0; i != NWords; ++i) { 2009 emitSignedInt64(Record, RawWords[i]); 2010 } 2011 Code = bitc::CST_CODE_WIDE_INTEGER; 2012 } 2013 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2014 Code = bitc::CST_CODE_FLOAT; 2015 Type *Ty = CFP->getType(); 2016 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2017 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2018 } else if (Ty->isX86_FP80Ty()) { 2019 // api needed to prevent premature destruction 2020 // bits are not in the same order as a normal i80 APInt, compensate. 2021 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2022 const uint64_t *p = api.getRawData(); 2023 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2024 Record.push_back(p[0] & 0xffffLL); 2025 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2026 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2027 const uint64_t *p = api.getRawData(); 2028 Record.push_back(p[0]); 2029 Record.push_back(p[1]); 2030 } else { 2031 assert(0 && "Unknown FP type!"); 2032 } 2033 } else if (isa<ConstantDataSequential>(C) && 2034 cast<ConstantDataSequential>(C)->isString()) { 2035 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2036 // Emit constant strings specially. 2037 unsigned NumElts = Str->getNumElements(); 2038 // If this is a null-terminated string, use the denser CSTRING encoding. 2039 if (Str->isCString()) { 2040 Code = bitc::CST_CODE_CSTRING; 2041 --NumElts; // Don't encode the null, which isn't allowed by char6. 2042 } else { 2043 Code = bitc::CST_CODE_STRING; 2044 AbbrevToUse = String8Abbrev; 2045 } 2046 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2047 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2048 for (unsigned i = 0; i != NumElts; ++i) { 2049 unsigned char V = Str->getElementAsInteger(i); 2050 Record.push_back(V); 2051 isCStr7 &= (V & 128) == 0; 2052 if (isCStrChar6) 2053 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2054 } 2055 2056 if (isCStrChar6) 2057 AbbrevToUse = CString6Abbrev; 2058 else if (isCStr7) 2059 AbbrevToUse = CString7Abbrev; 2060 } else if (const ConstantDataSequential *CDS = 2061 dyn_cast<ConstantDataSequential>(C)) { 2062 Code = bitc::CST_CODE_DATA; 2063 Type *EltTy = CDS->getType()->getArrayElementType(); 2064 if (isa<IntegerType>(EltTy)) { 2065 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2066 Record.push_back(CDS->getElementAsInteger(i)); 2067 } else if (EltTy->isFloatTy()) { 2068 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2069 union { 2070 float F; 2071 uint32_t I; 2072 }; 2073 F = CDS->getElementAsFloat(i); 2074 Record.push_back(I); 2075 } 2076 } else { 2077 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2078 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2079 union { 2080 double F; 2081 uint64_t I; 2082 }; 2083 F = CDS->getElementAsDouble(i); 2084 Record.push_back(I); 2085 } 2086 } 2087 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2088 isa<ConstantVector>(C)) { 2089 Code = bitc::CST_CODE_AGGREGATE; 2090 for (const Value *Op : C->operands()) 2091 Record.push_back(VE.getValueID(Op)); 2092 AbbrevToUse = AggregateAbbrev; 2093 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2094 switch (CE->getOpcode()) { 2095 default: 2096 if (Instruction::isCast(CE->getOpcode())) { 2097 Code = bitc::CST_CODE_CE_CAST; 2098 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2099 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2100 Record.push_back(VE.getValueID(C->getOperand(0))); 2101 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2102 } else { 2103 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2104 Code = bitc::CST_CODE_CE_BINOP; 2105 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2106 Record.push_back(VE.getValueID(C->getOperand(0))); 2107 Record.push_back(VE.getValueID(C->getOperand(1))); 2108 uint64_t Flags = getOptimizationFlags(CE); 2109 if (Flags != 0) 2110 Record.push_back(Flags); 2111 } 2112 break; 2113 case Instruction::GetElementPtr: { 2114 Code = bitc::CST_CODE_CE_GEP; 2115 const auto *GO = cast<GEPOperator>(C); 2116 if (GO->isInBounds()) 2117 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2118 Record.push_back(getTypeID(GO->getSourceElementType())); 2119 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2120 Record.push_back(getTypeID(C->getOperand(i)->getType())); 2121 Record.push_back(VE.getValueID(C->getOperand(i))); 2122 } 2123 break; 2124 } 2125 case Instruction::Select: 2126 Code = bitc::CST_CODE_CE_SELECT; 2127 Record.push_back(VE.getValueID(C->getOperand(0))); 2128 Record.push_back(VE.getValueID(C->getOperand(1))); 2129 Record.push_back(VE.getValueID(C->getOperand(2))); 2130 break; 2131 case Instruction::ExtractElement: 2132 Code = bitc::CST_CODE_CE_EXTRACTELT; 2133 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2134 Record.push_back(VE.getValueID(C->getOperand(0))); 2135 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2136 Record.push_back(VE.getValueID(C->getOperand(1))); 2137 break; 2138 case Instruction::InsertElement: 2139 Code = bitc::CST_CODE_CE_INSERTELT; 2140 Record.push_back(VE.getValueID(C->getOperand(0))); 2141 Record.push_back(VE.getValueID(C->getOperand(1))); 2142 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2143 Record.push_back(VE.getValueID(C->getOperand(2))); 2144 break; 2145 case Instruction::ShuffleVector: 2146 // If the return type and argument types are the same, this is a 2147 // standard shufflevector instruction. If the types are different, 2148 // then the shuffle is widening or truncating the input vectors, and 2149 // the argument type must also be encoded. 2150 if (C->getType() == C->getOperand(0)->getType()) { 2151 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2152 } else { 2153 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2154 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2155 } 2156 Record.push_back(VE.getValueID(C->getOperand(0))); 2157 Record.push_back(VE.getValueID(C->getOperand(1))); 2158 Record.push_back(VE.getValueID(C->getOperand(2))); 2159 break; 2160 case Instruction::ICmp: 2161 case Instruction::FCmp: 2162 Code = bitc::CST_CODE_CE_CMP; 2163 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2164 Record.push_back(VE.getValueID(C->getOperand(0))); 2165 Record.push_back(VE.getValueID(C->getOperand(1))); 2166 Record.push_back(CE->getPredicate()); 2167 break; 2168 } 2169 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2170 Code = bitc::CST_CODE_BLOCKADDRESS; 2171 Record.push_back(getTypeID(BA->getFunction()->getType())); 2172 Record.push_back(VE.getValueID(BA->getFunction())); 2173 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2174 } else { 2175 #ifndef NDEBUG 2176 C->dump(); 2177 #endif 2178 llvm_unreachable("Unknown constant!"); 2179 } 2180 Stream.EmitRecord(Code, Record, AbbrevToUse); 2181 Record.clear(); 2182 } 2183 2184 Stream.ExitBlock(); 2185 } 2186 2187 void DXILBitcodeWriter::writeModuleConstants() { 2188 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2189 2190 // Find the first constant to emit, which is the first non-globalvalue value. 2191 // We know globalvalues have been emitted by WriteModuleInfo. 2192 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2193 if (!isa<GlobalValue>(Vals[i].first)) { 2194 writeConstants(i, Vals.size(), true); 2195 return; 2196 } 2197 } 2198 } 2199 2200 /// pushValueAndType - The file has to encode both the value and type id for 2201 /// many values, because we need to know what type to create for forward 2202 /// references. However, most operands are not forward references, so this type 2203 /// field is not needed. 2204 /// 2205 /// This function adds V's value ID to Vals. If the value ID is higher than the 2206 /// instruction ID, then it is a forward reference, and it also includes the 2207 /// type ID. The value ID that is written is encoded relative to the InstID. 2208 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2209 SmallVectorImpl<unsigned> &Vals) { 2210 unsigned ValID = VE.getValueID(V); 2211 // Make encoding relative to the InstID. 2212 Vals.push_back(InstID - ValID); 2213 if (ValID >= InstID) { 2214 Vals.push_back(getTypeID(V->getType(), V)); 2215 return true; 2216 } 2217 return false; 2218 } 2219 2220 /// pushValue - Like pushValueAndType, but where the type of the value is 2221 /// omitted (perhaps it was already encoded in an earlier operand). 2222 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2223 SmallVectorImpl<unsigned> &Vals) { 2224 unsigned ValID = VE.getValueID(V); 2225 Vals.push_back(InstID - ValID); 2226 } 2227 2228 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2229 SmallVectorImpl<uint64_t> &Vals) { 2230 unsigned ValID = VE.getValueID(V); 2231 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2232 emitSignedInt64(Vals, diff); 2233 } 2234 2235 /// WriteInstruction - Emit an instruction 2236 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2237 SmallVectorImpl<unsigned> &Vals) { 2238 unsigned Code = 0; 2239 unsigned AbbrevToUse = 0; 2240 VE.setInstructionID(&I); 2241 switch (I.getOpcode()) { 2242 default: 2243 if (Instruction::isCast(I.getOpcode())) { 2244 Code = bitc::FUNC_CODE_INST_CAST; 2245 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2246 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2247 Vals.push_back(getTypeID(I.getType(), &I)); 2248 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2249 } else { 2250 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2251 Code = bitc::FUNC_CODE_INST_BINOP; 2252 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2253 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2254 pushValue(I.getOperand(1), InstID, Vals); 2255 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2256 uint64_t Flags = getOptimizationFlags(&I); 2257 if (Flags != 0) { 2258 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2259 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2260 Vals.push_back(Flags); 2261 } 2262 } 2263 break; 2264 2265 case Instruction::GetElementPtr: { 2266 Code = bitc::FUNC_CODE_INST_GEP; 2267 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2268 auto &GEPInst = cast<GetElementPtrInst>(I); 2269 Vals.push_back(GEPInst.isInBounds()); 2270 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2271 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2272 pushValueAndType(I.getOperand(i), InstID, Vals); 2273 break; 2274 } 2275 case Instruction::ExtractValue: { 2276 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2277 pushValueAndType(I.getOperand(0), InstID, Vals); 2278 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2279 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2280 break; 2281 } 2282 case Instruction::InsertValue: { 2283 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2284 pushValueAndType(I.getOperand(0), InstID, Vals); 2285 pushValueAndType(I.getOperand(1), InstID, Vals); 2286 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2287 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2288 break; 2289 } 2290 case Instruction::Select: 2291 Code = bitc::FUNC_CODE_INST_VSELECT; 2292 pushValueAndType(I.getOperand(1), InstID, Vals); 2293 pushValue(I.getOperand(2), InstID, Vals); 2294 pushValueAndType(I.getOperand(0), InstID, Vals); 2295 break; 2296 case Instruction::ExtractElement: 2297 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2298 pushValueAndType(I.getOperand(0), InstID, Vals); 2299 pushValueAndType(I.getOperand(1), InstID, Vals); 2300 break; 2301 case Instruction::InsertElement: 2302 Code = bitc::FUNC_CODE_INST_INSERTELT; 2303 pushValueAndType(I.getOperand(0), InstID, Vals); 2304 pushValue(I.getOperand(1), InstID, Vals); 2305 pushValueAndType(I.getOperand(2), InstID, Vals); 2306 break; 2307 case Instruction::ShuffleVector: 2308 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2309 pushValueAndType(I.getOperand(0), InstID, Vals); 2310 pushValue(I.getOperand(1), InstID, Vals); 2311 pushValue(I.getOperand(2), InstID, Vals); 2312 break; 2313 case Instruction::ICmp: 2314 case Instruction::FCmp: { 2315 // compare returning Int1Ty or vector of Int1Ty 2316 Code = bitc::FUNC_CODE_INST_CMP2; 2317 pushValueAndType(I.getOperand(0), InstID, Vals); 2318 pushValue(I.getOperand(1), InstID, Vals); 2319 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2320 uint64_t Flags = getOptimizationFlags(&I); 2321 if (Flags != 0) 2322 Vals.push_back(Flags); 2323 break; 2324 } 2325 2326 case Instruction::Ret: { 2327 Code = bitc::FUNC_CODE_INST_RET; 2328 unsigned NumOperands = I.getNumOperands(); 2329 if (NumOperands == 0) 2330 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2331 else if (NumOperands == 1) { 2332 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2333 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2334 } else { 2335 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2336 pushValueAndType(I.getOperand(i), InstID, Vals); 2337 } 2338 } break; 2339 case Instruction::Br: { 2340 Code = bitc::FUNC_CODE_INST_BR; 2341 const BranchInst &II = cast<BranchInst>(I); 2342 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2343 if (II.isConditional()) { 2344 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2345 pushValue(II.getCondition(), InstID, Vals); 2346 } 2347 } break; 2348 case Instruction::Switch: { 2349 Code = bitc::FUNC_CODE_INST_SWITCH; 2350 const SwitchInst &SI = cast<SwitchInst>(I); 2351 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2352 pushValue(SI.getCondition(), InstID, Vals); 2353 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2354 for (auto Case : SI.cases()) { 2355 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2356 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2357 } 2358 } break; 2359 case Instruction::IndirectBr: 2360 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2361 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2362 // Encode the address operand as relative, but not the basic blocks. 2363 pushValue(I.getOperand(0), InstID, Vals); 2364 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2365 Vals.push_back(VE.getValueID(I.getOperand(i))); 2366 break; 2367 2368 case Instruction::Invoke: { 2369 const InvokeInst *II = cast<InvokeInst>(&I); 2370 const Value *Callee = II->getCalledOperand(); 2371 FunctionType *FTy = II->getFunctionType(); 2372 Code = bitc::FUNC_CODE_INST_INVOKE; 2373 2374 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2375 Vals.push_back(II->getCallingConv() | 1 << 13); 2376 Vals.push_back(VE.getValueID(II->getNormalDest())); 2377 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2378 Vals.push_back(getTypeID(FTy)); 2379 pushValueAndType(Callee, InstID, Vals); 2380 2381 // Emit value #'s for the fixed parameters. 2382 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2383 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2384 2385 // Emit type/value pairs for varargs params. 2386 if (FTy->isVarArg()) { 2387 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2388 ++i) 2389 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2390 } 2391 break; 2392 } 2393 case Instruction::Resume: 2394 Code = bitc::FUNC_CODE_INST_RESUME; 2395 pushValueAndType(I.getOperand(0), InstID, Vals); 2396 break; 2397 case Instruction::Unreachable: 2398 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2399 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2400 break; 2401 2402 case Instruction::PHI: { 2403 const PHINode &PN = cast<PHINode>(I); 2404 Code = bitc::FUNC_CODE_INST_PHI; 2405 // With the newer instruction encoding, forward references could give 2406 // negative valued IDs. This is most common for PHIs, so we use 2407 // signed VBRs. 2408 SmallVector<uint64_t, 128> Vals64; 2409 Vals64.push_back(getTypeID(PN.getType())); 2410 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2411 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2412 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2413 } 2414 // Emit a Vals64 vector and exit. 2415 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2416 Vals64.clear(); 2417 return; 2418 } 2419 2420 case Instruction::LandingPad: { 2421 const LandingPadInst &LP = cast<LandingPadInst>(I); 2422 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2423 Vals.push_back(getTypeID(LP.getType())); 2424 Vals.push_back(LP.isCleanup()); 2425 Vals.push_back(LP.getNumClauses()); 2426 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2427 if (LP.isCatch(I)) 2428 Vals.push_back(LandingPadInst::Catch); 2429 else 2430 Vals.push_back(LandingPadInst::Filter); 2431 pushValueAndType(LP.getClause(I), InstID, Vals); 2432 } 2433 break; 2434 } 2435 2436 case Instruction::Alloca: { 2437 Code = bitc::FUNC_CODE_INST_ALLOCA; 2438 const AllocaInst &AI = cast<AllocaInst>(I); 2439 Vals.push_back(getTypeID(AI.getAllocatedType())); 2440 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2441 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2442 using APV = AllocaPackedValues; 2443 unsigned Record = 0; 2444 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 2445 Bitfield::set<APV::AlignLower>( 2446 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 2447 Bitfield::set<APV::AlignUpper>(Record, 2448 EncodedAlign >> APV::AlignLower::Bits); 2449 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 2450 Vals.push_back(Record); 2451 break; 2452 } 2453 2454 case Instruction::Load: 2455 if (cast<LoadInst>(I).isAtomic()) { 2456 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2457 pushValueAndType(I.getOperand(0), InstID, Vals); 2458 } else { 2459 Code = bitc::FUNC_CODE_INST_LOAD; 2460 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2461 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2462 } 2463 Vals.push_back(getTypeID(I.getType())); 2464 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2465 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2466 if (cast<LoadInst>(I).isAtomic()) { 2467 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2468 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2469 } 2470 break; 2471 case Instruction::Store: 2472 if (cast<StoreInst>(I).isAtomic()) 2473 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2474 else 2475 Code = bitc::FUNC_CODE_INST_STORE; 2476 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2477 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2478 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2479 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2480 if (cast<StoreInst>(I).isAtomic()) { 2481 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2482 Vals.push_back( 2483 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2484 } 2485 break; 2486 case Instruction::AtomicCmpXchg: 2487 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2488 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2489 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2490 pushValue(I.getOperand(2), InstID, Vals); // newval. 2491 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2492 Vals.push_back( 2493 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2494 Vals.push_back( 2495 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2496 Vals.push_back( 2497 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2498 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2499 break; 2500 case Instruction::AtomicRMW: 2501 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2502 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2503 pushValue(I.getOperand(1), InstID, Vals); // val. 2504 Vals.push_back( 2505 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2506 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2507 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2508 Vals.push_back( 2509 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2510 break; 2511 case Instruction::Fence: 2512 Code = bitc::FUNC_CODE_INST_FENCE; 2513 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2514 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2515 break; 2516 case Instruction::Call: { 2517 const CallInst &CI = cast<CallInst>(I); 2518 FunctionType *FTy = CI.getFunctionType(); 2519 2520 Code = bitc::FUNC_CODE_INST_CALL; 2521 2522 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2523 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2524 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2525 Vals.push_back(getTypeID(FTy, CI.getCalledFunction())); 2526 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2527 2528 // Emit value #'s for the fixed parameters. 2529 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2530 // Check for labels (can happen with asm labels). 2531 if (FTy->getParamType(i)->isLabelTy()) 2532 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2533 else 2534 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2535 } 2536 2537 // Emit type/value pairs for varargs params. 2538 if (FTy->isVarArg()) { 2539 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2540 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2541 } 2542 break; 2543 } 2544 case Instruction::VAArg: 2545 Code = bitc::FUNC_CODE_INST_VAARG; 2546 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2547 pushValue(I.getOperand(0), InstID, Vals); // valist. 2548 Vals.push_back(getTypeID(I.getType())); // restype. 2549 break; 2550 } 2551 2552 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2553 Vals.clear(); 2554 } 2555 2556 // Emit names for globals/functions etc. 2557 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2558 const ValueSymbolTable &VST) { 2559 if (VST.empty()) 2560 return; 2561 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2562 2563 SmallVector<unsigned, 64> NameVals; 2564 2565 // HLSL Change 2566 // Read the named values from a sorted list instead of the original list 2567 // to ensure the binary is the same no matter what values ever existed. 2568 SmallVector<const ValueName *, 16> SortedTable; 2569 2570 for (auto &VI : VST) { 2571 SortedTable.push_back(VI.second->getValueName()); 2572 } 2573 // The keys are unique, so there shouldn't be stability issues. 2574 std::sort(SortedTable.begin(), SortedTable.end(), 2575 [](const ValueName *A, const ValueName *B) { 2576 return A->first() < B->first(); 2577 }); 2578 2579 for (const ValueName *SI : SortedTable) { 2580 auto &Name = *SI; 2581 2582 // Figure out the encoding to use for the name. 2583 bool is7Bit = true; 2584 bool isChar6 = true; 2585 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2586 C != E; ++C) { 2587 if (isChar6) 2588 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2589 if ((unsigned char)*C & 128) { 2590 is7Bit = false; 2591 break; // don't bother scanning the rest. 2592 } 2593 } 2594 2595 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2596 2597 // VST_ENTRY: [valueid, namechar x N] 2598 // VST_BBENTRY: [bbid, namechar x N] 2599 unsigned Code; 2600 if (isa<BasicBlock>(SI->getValue())) { 2601 Code = bitc::VST_CODE_BBENTRY; 2602 if (isChar6) 2603 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2604 } else { 2605 Code = bitc::VST_CODE_ENTRY; 2606 if (isChar6) 2607 AbbrevToUse = VST_ENTRY_6_ABBREV; 2608 else if (is7Bit) 2609 AbbrevToUse = VST_ENTRY_7_ABBREV; 2610 } 2611 2612 NameVals.push_back(VE.getValueID(SI->getValue())); 2613 for (const char *P = Name.getKeyData(), 2614 *E = Name.getKeyData() + Name.getKeyLength(); 2615 P != E; ++P) 2616 NameVals.push_back((unsigned char)*P); 2617 2618 // Emit the finished record. 2619 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2620 NameVals.clear(); 2621 } 2622 Stream.ExitBlock(); 2623 } 2624 2625 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) { 2626 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2627 unsigned Code; 2628 if (isa<BasicBlock>(Order.V)) 2629 Code = bitc::USELIST_CODE_BB; 2630 else 2631 Code = bitc::USELIST_CODE_DEFAULT; 2632 2633 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2634 Record.push_back(VE.getValueID(Order.V)); 2635 Stream.EmitRecord(Code, Record); 2636 } 2637 2638 void DXILBitcodeWriter::writeUseListBlock(const Function *F) { 2639 auto hasMore = [&]() { 2640 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2641 }; 2642 if (!hasMore()) 2643 // Nothing to do. 2644 return; 2645 2646 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2647 while (hasMore()) { 2648 writeUseList(std::move(VE.UseListOrders.back())); 2649 VE.UseListOrders.pop_back(); 2650 } 2651 Stream.ExitBlock(); 2652 } 2653 2654 /// Emit a function body to the module stream. 2655 void DXILBitcodeWriter::writeFunction(const Function &F) { 2656 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2657 VE.incorporateFunction(F); 2658 2659 SmallVector<unsigned, 64> Vals; 2660 2661 // Emit the number of basic blocks, so the reader can create them ahead of 2662 // time. 2663 Vals.push_back(VE.getBasicBlocks().size()); 2664 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2665 Vals.clear(); 2666 2667 // If there are function-local constants, emit them now. 2668 unsigned CstStart, CstEnd; 2669 VE.getFunctionConstantRange(CstStart, CstEnd); 2670 writeConstants(CstStart, CstEnd, false); 2671 2672 // If there is function-local metadata, emit it now. 2673 writeFunctionMetadata(F); 2674 2675 // Keep a running idea of what the instruction ID is. 2676 unsigned InstID = CstEnd; 2677 2678 bool NeedsMetadataAttachment = F.hasMetadata(); 2679 2680 DILocation *LastDL = nullptr; 2681 2682 // Finally, emit all the instructions, in order. 2683 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2684 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2685 ++I) { 2686 writeInstruction(*I, InstID, Vals); 2687 2688 if (!I->getType()->isVoidTy()) 2689 ++InstID; 2690 2691 // If the instruction has metadata, write a metadata attachment later. 2692 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2693 2694 // If the instruction has a debug location, emit it. 2695 DILocation *DL = I->getDebugLoc(); 2696 if (!DL) 2697 continue; 2698 2699 if (DL == LastDL) { 2700 // Just repeat the same debug loc as last time. 2701 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2702 continue; 2703 } 2704 2705 Vals.push_back(DL->getLine()); 2706 Vals.push_back(DL->getColumn()); 2707 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2708 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2709 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2710 Vals.clear(); 2711 2712 LastDL = DL; 2713 } 2714 2715 // Emit names for all the instructions etc. 2716 if (auto *Symtab = F.getValueSymbolTable()) 2717 writeFunctionLevelValueSymbolTable(*Symtab); 2718 2719 if (NeedsMetadataAttachment) 2720 writeFunctionMetadataAttachment(F); 2721 2722 writeUseListBlock(&F); 2723 VE.purgeFunction(); 2724 Stream.ExitBlock(); 2725 } 2726 2727 // Emit blockinfo, which defines the standard abbreviations etc. 2728 void DXILBitcodeWriter::writeBlockInfo() { 2729 // We only want to emit block info records for blocks that have multiple 2730 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2731 // Other blocks can define their abbrevs inline. 2732 Stream.EnterBlockInfoBlock(); 2733 2734 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2735 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2740 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2741 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2742 assert(false && "Unexpected abbrev ordering!"); 2743 } 2744 2745 { // 7-bit fixed width VST_ENTRY strings. 2746 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2747 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2751 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2752 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2753 assert(false && "Unexpected abbrev ordering!"); 2754 } 2755 { // 6-bit char6 VST_ENTRY strings. 2756 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2757 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2761 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2762 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2763 assert(false && "Unexpected abbrev ordering!"); 2764 } 2765 { // 6-bit char6 VST_BBENTRY strings. 2766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2767 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2771 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2772 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2773 assert(false && "Unexpected abbrev ordering!"); 2774 } 2775 2776 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2777 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2778 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2780 VE.computeBitsRequiredForTypeIndicies())); 2781 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2782 CONSTANTS_SETTYPE_ABBREV) 2783 assert(false && "Unexpected abbrev ordering!"); 2784 } 2785 2786 { // INTEGER abbrev for CONSTANTS_BLOCK. 2787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2788 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2790 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2791 CONSTANTS_INTEGER_ABBREV) 2792 assert(false && "Unexpected abbrev ordering!"); 2793 } 2794 2795 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2797 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2800 VE.computeBitsRequiredForTypeIndicies())); 2801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2802 2803 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2804 CONSTANTS_CE_CAST_Abbrev) 2805 assert(false && "Unexpected abbrev ordering!"); 2806 } 2807 { // NULL abbrev for CONSTANTS_BLOCK. 2808 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2809 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2810 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2811 CONSTANTS_NULL_Abbrev) 2812 assert(false && "Unexpected abbrev ordering!"); 2813 } 2814 2815 // FIXME: This should only use space for first class types! 2816 2817 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2818 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2819 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2822 VE.computeBitsRequiredForTypeIndicies())); 2823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2825 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2826 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2827 assert(false && "Unexpected abbrev ordering!"); 2828 } 2829 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2830 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2831 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2835 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2836 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2837 assert(false && "Unexpected abbrev ordering!"); 2838 } 2839 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2840 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2841 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2846 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2847 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2848 assert(false && "Unexpected abbrev ordering!"); 2849 } 2850 { // INST_CAST abbrev for FUNCTION_BLOCK. 2851 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2852 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2855 VE.computeBitsRequiredForTypeIndicies())); 2856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2857 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2858 (unsigned)FUNCTION_INST_CAST_ABBREV) 2859 assert(false && "Unexpected abbrev ordering!"); 2860 } 2861 2862 { // INST_RET abbrev for FUNCTION_BLOCK. 2863 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2864 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2865 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2866 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2867 assert(false && "Unexpected abbrev ordering!"); 2868 } 2869 { // INST_RET abbrev for FUNCTION_BLOCK. 2870 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2871 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2873 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2874 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2875 assert(false && "Unexpected abbrev ordering!"); 2876 } 2877 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2878 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2879 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2880 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2881 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2882 assert(false && "Unexpected abbrev ordering!"); 2883 } 2884 { 2885 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2886 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2889 Log2_32_Ceil(VE.getTypes().size() + 1))); 2890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2892 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2893 (unsigned)FUNCTION_INST_GEP_ABBREV) 2894 assert(false && "Unexpected abbrev ordering!"); 2895 } 2896 2897 Stream.ExitBlock(); 2898 } 2899 2900 void DXILBitcodeWriter::writeModuleVersion() { 2901 // VERSION: [version#] 2902 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2903 } 2904 2905 /// WriteModule - Emit the specified module to the bitstream. 2906 void DXILBitcodeWriter::write() { 2907 // The identification block is new since llvm-3.7, but the old bitcode reader 2908 // will skip it. 2909 // writeIdentificationBlock(Stream); 2910 2911 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2912 2913 // It is redundant to fully-specify this here, but nice to make it explicit 2914 // so that it is clear the DXIL module version is different. 2915 DXILBitcodeWriter::writeModuleVersion(); 2916 2917 // Emit blockinfo, which defines the standard abbreviations etc. 2918 writeBlockInfo(); 2919 2920 // Emit information about attribute groups. 2921 writeAttributeGroupTable(); 2922 2923 // Emit information about parameter attributes. 2924 writeAttributeTable(); 2925 2926 // Emit information describing all of the types in the module. 2927 writeTypeTable(); 2928 2929 writeComdats(); 2930 2931 // Emit top-level description of module, including target triple, inline asm, 2932 // descriptors for global variables, and function prototype info. 2933 writeModuleInfo(); 2934 2935 // Emit constants. 2936 writeModuleConstants(); 2937 2938 // Emit metadata. 2939 writeModuleMetadataKinds(); 2940 2941 // Emit metadata. 2942 writeModuleMetadata(); 2943 2944 // Emit names for globals/functions etc. 2945 // DXIL uses the same format for module-level value symbol table as for the 2946 // function level table. 2947 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2948 2949 // Emit module-level use-lists. 2950 writeUseListBlock(nullptr); 2951 2952 // Emit function bodies. 2953 for (const Function &F : M) 2954 if (!F.isDeclaration()) 2955 writeFunction(F); 2956 2957 Stream.ExitBlock(); 2958 } 2959