1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "PointerTypeAnalysis.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitcodeCommon.h"
18 #include "llvm/Bitcode/BitcodeReader.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/Bitstream/BitCodes.h"
21 #include "llvm/Bitstream/BitstreamWriter.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Comdat.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSummaryIndex.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/UseListOrder.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/IR/ValueSymbolTable.h"
49 #include "llvm/Object/IRSymtab.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/SHA1.h"
52 
53 namespace llvm {
54 namespace dxil {
55 
56 // Generates an enum to use as an index in the Abbrev array of Metadata record.
57 enum MetadataAbbrev : unsigned {
58 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
59 #include "llvm/IR/Metadata.def"
60   LastPlusOne
61 };
62 
63 class DXILBitcodeWriter {
64 
65   /// These are manifest constants used by the bitcode writer. They do not need
66   /// to be kept in sync with the reader, but need to be consistent within this
67   /// file.
68   enum {
69     // VALUE_SYMTAB_BLOCK abbrev id's.
70     VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
71     VST_ENTRY_7_ABBREV,
72     VST_ENTRY_6_ABBREV,
73     VST_BBENTRY_6_ABBREV,
74 
75     // CONSTANTS_BLOCK abbrev id's.
76     CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
77     CONSTANTS_INTEGER_ABBREV,
78     CONSTANTS_CE_CAST_Abbrev,
79     CONSTANTS_NULL_Abbrev,
80 
81     // FUNCTION_BLOCK abbrev id's.
82     FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
83     FUNCTION_INST_BINOP_ABBREV,
84     FUNCTION_INST_BINOP_FLAGS_ABBREV,
85     FUNCTION_INST_CAST_ABBREV,
86     FUNCTION_INST_RET_VOID_ABBREV,
87     FUNCTION_INST_RET_VAL_ABBREV,
88     FUNCTION_INST_UNREACHABLE_ABBREV,
89     FUNCTION_INST_GEP_ABBREV,
90   };
91 
92   // Cache some types
93   Type *I8Ty;
94   Type *I8PtrTy;
95 
96   /// The stream created and owned by the client.
97   BitstreamWriter &Stream;
98 
99   StringTableBuilder &StrtabBuilder;
100 
101   /// The Module to write to bitcode.
102   const Module &M;
103 
104   /// Enumerates ids for all values in the module.
105   ValueEnumerator VE;
106 
107   /// Map that holds the correspondence between GUIDs in the summary index,
108   /// that came from indirect call profiles, and a value id generated by this
109   /// class to use in the VST and summary block records.
110   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
111 
112   /// Tracks the last value id recorded in the GUIDToValueMap.
113   unsigned GlobalValueId;
114 
115   /// Saves the offset of the VSTOffset record that must eventually be
116   /// backpatched with the offset of the actual VST.
117   uint64_t VSTOffsetPlaceholder = 0;
118 
119   /// Pointer to the buffer allocated by caller for bitcode writing.
120   const SmallVectorImpl<char> &Buffer;
121 
122   /// The start bit of the identification block.
123   uint64_t BitcodeStartBit;
124 
125   /// This maps values to their typed pointers
126   PointerTypeMap PointerMap;
127 
128 public:
129   /// Constructs a ModuleBitcodeWriter object for the given Module,
130   /// writing to the provided \p Buffer.
131   DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
132                     StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
133       : I8Ty(Type::getInt8Ty(M.getContext())),
134         I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
135         StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
136         BitcodeStartBit(Stream.GetCurrentBitNo()),
137         PointerMap(PointerTypeAnalysis::run(M)) {
138     GlobalValueId = VE.getValues().size();
139     // Enumerate the typed pointers
140     for (auto El : PointerMap)
141       VE.EnumerateType(El.second);
142   }
143 
144   /// Emit the current module to the bitstream.
145   void write();
146 
147   static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
148   static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
149                                 StringRef Str, unsigned AbbrevToUse);
150   static void writeIdentificationBlock(BitstreamWriter &Stream);
151   static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
152   static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
153 
154   static unsigned getEncodedComdatSelectionKind(const Comdat &C);
155   static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
156   static unsigned getEncodedLinkage(const GlobalValue &GV);
157   static unsigned getEncodedVisibility(const GlobalValue &GV);
158   static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
159   static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
160   static unsigned getEncodedCastOpcode(unsigned Opcode);
161   static unsigned getEncodedUnaryOpcode(unsigned Opcode);
162   static unsigned getEncodedBinaryOpcode(unsigned Opcode);
163   static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
164   static unsigned getEncodedOrdering(AtomicOrdering Ordering);
165   static uint64_t getOptimizationFlags(const Value *V);
166 
167 private:
168   void writeModuleVersion();
169   void writePerModuleGlobalValueSummary();
170 
171   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
172                                            GlobalValueSummary *Summary,
173                                            unsigned ValueID,
174                                            unsigned FSCallsAbbrev,
175                                            unsigned FSCallsProfileAbbrev,
176                                            const Function &F);
177   void writeModuleLevelReferences(const GlobalVariable &V,
178                                   SmallVector<uint64_t, 64> &NameVals,
179                                   unsigned FSModRefsAbbrev,
180                                   unsigned FSModVTableRefsAbbrev);
181 
182   void assignValueId(GlobalValue::GUID ValGUID) {
183     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
184   }
185 
186   unsigned getValueId(GlobalValue::GUID ValGUID) {
187     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
188     // Expect that any GUID value had a value Id assigned by an
189     // earlier call to assignValueId.
190     assert(VMI != GUIDToValueIdMap.end() &&
191            "GUID does not have assigned value Id");
192     return VMI->second;
193   }
194 
195   // Helper to get the valueId for the type of value recorded in VI.
196   unsigned getValueId(ValueInfo VI) {
197     if (!VI.haveGVs() || !VI.getValue())
198       return getValueId(VI.getGUID());
199     return VE.getValueID(VI.getValue());
200   }
201 
202   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
203 
204   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
205 
206   size_t addToStrtab(StringRef Str);
207 
208   unsigned createDILocationAbbrev();
209   unsigned createGenericDINodeAbbrev();
210 
211   void writeAttributeGroupTable();
212   void writeAttributeTable();
213   void writeTypeTable();
214   void writeComdats();
215   void writeValueSymbolTableForwardDecl();
216   void writeModuleInfo();
217   void writeValueAsMetadata(const ValueAsMetadata *MD,
218                             SmallVectorImpl<uint64_t> &Record);
219   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
220                     unsigned Abbrev);
221   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
222                        unsigned &Abbrev);
223   void writeGenericDINode(const GenericDINode *N,
224                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
225     llvm_unreachable("DXIL cannot contain GenericDI Nodes");
226   }
227   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
228                        unsigned Abbrev);
229   void writeDIGenericSubrange(const DIGenericSubrange *N,
230                               SmallVectorImpl<uint64_t> &Record,
231                               unsigned Abbrev) {
232     llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
233   }
234   void writeDIEnumerator(const DIEnumerator *N,
235                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
236   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
237                         unsigned Abbrev);
238   void writeDIStringType(const DIStringType *N,
239                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
240     llvm_unreachable("DXIL cannot contain DIStringType Nodes");
241   }
242   void writeDIDerivedType(const DIDerivedType *N,
243                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
244   void writeDICompositeType(const DICompositeType *N,
245                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246   void writeDISubroutineType(const DISubroutineType *N,
247                              SmallVectorImpl<uint64_t> &Record,
248                              unsigned Abbrev);
249   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
250                    unsigned Abbrev);
251   void writeDICompileUnit(const DICompileUnit *N,
252                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
253   void writeDISubprogram(const DISubprogram *N,
254                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255   void writeDILexicalBlock(const DILexicalBlock *N,
256                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
258                                SmallVectorImpl<uint64_t> &Record,
259                                unsigned Abbrev);
260   void writeDICommonBlock(const DICommonBlock *N,
261                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
262     llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
263   }
264   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
265                         unsigned Abbrev);
266   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
267                     unsigned Abbrev) {
268     llvm_unreachable("DXIL cannot contain DIMacro Nodes");
269   }
270   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
271                         unsigned Abbrev) {
272     llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
273   }
274   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
275                       unsigned Abbrev) {
276     llvm_unreachable("DXIL cannot contain DIArgList Nodes");
277   }
278   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
279                      unsigned Abbrev);
280   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
281                                     SmallVectorImpl<uint64_t> &Record,
282                                     unsigned Abbrev);
283   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
284                                      SmallVectorImpl<uint64_t> &Record,
285                                      unsigned Abbrev);
286   void writeDIGlobalVariable(const DIGlobalVariable *N,
287                              SmallVectorImpl<uint64_t> &Record,
288                              unsigned Abbrev);
289   void writeDILocalVariable(const DILocalVariable *N,
290                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
291   void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
292                     unsigned Abbrev) {
293     llvm_unreachable("DXIL cannot contain DILabel Nodes");
294   }
295   void writeDIExpression(const DIExpression *N,
296                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
297   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
298                                        SmallVectorImpl<uint64_t> &Record,
299                                        unsigned Abbrev) {
300     llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
301   }
302   void writeDIObjCProperty(const DIObjCProperty *N,
303                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
304   void writeDIImportedEntity(const DIImportedEntity *N,
305                              SmallVectorImpl<uint64_t> &Record,
306                              unsigned Abbrev);
307   unsigned createNamedMetadataAbbrev();
308   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
309   unsigned createMetadataStringsAbbrev();
310   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
311                             SmallVectorImpl<uint64_t> &Record);
312   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
313                             SmallVectorImpl<uint64_t> &Record,
314                             std::vector<unsigned> *MDAbbrevs = nullptr,
315                             std::vector<uint64_t> *IndexPos = nullptr);
316   void writeModuleMetadata();
317   void writeFunctionMetadata(const Function &F);
318   void writeFunctionMetadataAttachment(const Function &F);
319   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
320                                     const GlobalObject &GO);
321   void writeModuleMetadataKinds();
322   void writeOperandBundleTags();
323   void writeSyncScopeNames();
324   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
325   void writeModuleConstants();
326   bool pushValueAndType(const Value *V, unsigned InstID,
327                         SmallVectorImpl<unsigned> &Vals);
328   void writeOperandBundles(const CallBase &CB, unsigned InstID);
329   void pushValue(const Value *V, unsigned InstID,
330                  SmallVectorImpl<unsigned> &Vals);
331   void pushValueSigned(const Value *V, unsigned InstID,
332                        SmallVectorImpl<uint64_t> &Vals);
333   void writeInstruction(const Instruction &I, unsigned InstID,
334                         SmallVectorImpl<unsigned> &Vals);
335   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
336   void writeGlobalValueSymbolTable(
337       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
338   void writeUseList(UseListOrder &&Order);
339   void writeUseListBlock(const Function *F);
340   void writeFunction(const Function &F);
341   void writeBlockInfo();
342 
343   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
344 
345   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
346 
347   unsigned getTypeID(Type *T, const Value *V = nullptr);
348   unsigned getTypeID(Type *T, const Function *F);
349 };
350 
351 } // namespace dxil
352 } // namespace llvm
353 
354 using namespace llvm;
355 using namespace llvm::dxil;
356 
357 ////////////////////////////////////////////////////////////////////////////////
358 /// Begin dxil::BitcodeWriter Implementation
359 ////////////////////////////////////////////////////////////////////////////////
360 
361 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
362                                    raw_fd_stream *FS)
363     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
364   // Emit the file header.
365   Stream->Emit((unsigned)'B', 8);
366   Stream->Emit((unsigned)'C', 8);
367   Stream->Emit(0x0, 4);
368   Stream->Emit(0xC, 4);
369   Stream->Emit(0xE, 4);
370   Stream->Emit(0xD, 4);
371 }
372 
373 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
374 
375 /// Write the specified module to the specified output stream.
376 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
377   SmallVector<char, 0> Buffer;
378   Buffer.reserve(256 * 1024);
379 
380   // If this is darwin or another generic macho target, reserve space for the
381   // header.
382   Triple TT(M.getTargetTriple());
383   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
384     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
385 
386   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
387   Writer.writeModule(M);
388   Writer.writeSymtab();
389   Writer.writeStrtab();
390 
391   // Write the generated bitstream to "Out".
392   if (!Buffer.empty())
393     Out.write((char *)&Buffer.front(), Buffer.size());
394 }
395 
396 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
397   Stream->EnterSubblock(Block, 3);
398 
399   auto Abbv = std::make_shared<BitCodeAbbrev>();
400   Abbv->Add(BitCodeAbbrevOp(Record));
401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
402   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
403 
404   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
405 
406   Stream->ExitBlock();
407 }
408 
409 void BitcodeWriter::writeSymtab() {
410   assert(!WroteStrtab && !WroteSymtab);
411 
412   // If any module has module-level inline asm, we will require a registered asm
413   // parser for the target so that we can create an accurate symbol table for
414   // the module.
415   for (Module *M : Mods) {
416     if (M->getModuleInlineAsm().empty())
417       continue;
418   }
419 
420   WroteSymtab = true;
421   SmallVector<char, 0> Symtab;
422   // The irsymtab::build function may be unable to create a symbol table if the
423   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
424   // table is not required for correctness, but we still want to be able to
425   // write malformed modules to bitcode files, so swallow the error.
426   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
427     consumeError(std::move(E));
428     return;
429   }
430 
431   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
432             {Symtab.data(), Symtab.size()});
433 }
434 
435 void BitcodeWriter::writeStrtab() {
436   assert(!WroteStrtab);
437 
438   std::vector<char> Strtab;
439   StrtabBuilder.finalizeInOrder();
440   Strtab.resize(StrtabBuilder.getSize());
441   StrtabBuilder.write((uint8_t *)Strtab.data());
442 
443   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
444             {Strtab.data(), Strtab.size()});
445 
446   WroteStrtab = true;
447 }
448 
449 void BitcodeWriter::copyStrtab(StringRef Strtab) {
450   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
451   WroteStrtab = true;
452 }
453 
454 void BitcodeWriter::writeModule(const Module &M) {
455   assert(!WroteStrtab);
456 
457   // The Mods vector is used by irsymtab::build, which requires non-const
458   // Modules in case it needs to materialize metadata. But the bitcode writer
459   // requires that the module is materialized, so we can cast to non-const here,
460   // after checking that it is in fact materialized.
461   assert(M.isMaterialized());
462   Mods.push_back(const_cast<Module *>(&M));
463 
464   DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
465   ModuleWriter.write();
466 }
467 
468 ////////////////////////////////////////////////////////////////////////////////
469 /// Begin dxil::BitcodeWriterBase Implementation
470 ////////////////////////////////////////////////////////////////////////////////
471 
472 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
473   switch (Opcode) {
474   default:
475     llvm_unreachable("Unknown cast instruction!");
476   case Instruction::Trunc:
477     return bitc::CAST_TRUNC;
478   case Instruction::ZExt:
479     return bitc::CAST_ZEXT;
480   case Instruction::SExt:
481     return bitc::CAST_SEXT;
482   case Instruction::FPToUI:
483     return bitc::CAST_FPTOUI;
484   case Instruction::FPToSI:
485     return bitc::CAST_FPTOSI;
486   case Instruction::UIToFP:
487     return bitc::CAST_UITOFP;
488   case Instruction::SIToFP:
489     return bitc::CAST_SITOFP;
490   case Instruction::FPTrunc:
491     return bitc::CAST_FPTRUNC;
492   case Instruction::FPExt:
493     return bitc::CAST_FPEXT;
494   case Instruction::PtrToInt:
495     return bitc::CAST_PTRTOINT;
496   case Instruction::IntToPtr:
497     return bitc::CAST_INTTOPTR;
498   case Instruction::BitCast:
499     return bitc::CAST_BITCAST;
500   case Instruction::AddrSpaceCast:
501     return bitc::CAST_ADDRSPACECAST;
502   }
503 }
504 
505 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
506   switch (Opcode) {
507   default:
508     llvm_unreachable("Unknown binary instruction!");
509   case Instruction::FNeg:
510     return bitc::UNOP_FNEG;
511   }
512 }
513 
514 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
515   switch (Opcode) {
516   default:
517     llvm_unreachable("Unknown binary instruction!");
518   case Instruction::Add:
519   case Instruction::FAdd:
520     return bitc::BINOP_ADD;
521   case Instruction::Sub:
522   case Instruction::FSub:
523     return bitc::BINOP_SUB;
524   case Instruction::Mul:
525   case Instruction::FMul:
526     return bitc::BINOP_MUL;
527   case Instruction::UDiv:
528     return bitc::BINOP_UDIV;
529   case Instruction::FDiv:
530   case Instruction::SDiv:
531     return bitc::BINOP_SDIV;
532   case Instruction::URem:
533     return bitc::BINOP_UREM;
534   case Instruction::FRem:
535   case Instruction::SRem:
536     return bitc::BINOP_SREM;
537   case Instruction::Shl:
538     return bitc::BINOP_SHL;
539   case Instruction::LShr:
540     return bitc::BINOP_LSHR;
541   case Instruction::AShr:
542     return bitc::BINOP_ASHR;
543   case Instruction::And:
544     return bitc::BINOP_AND;
545   case Instruction::Or:
546     return bitc::BINOP_OR;
547   case Instruction::Xor:
548     return bitc::BINOP_XOR;
549   }
550 }
551 
552 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
553   if (!T->isOpaquePointerTy())
554     return VE.getTypeID(T);
555   auto It = PointerMap.find(V);
556   if (It != PointerMap.end())
557     return VE.getTypeID(It->second);
558   return VE.getTypeID(I8PtrTy);
559 }
560 
561 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) {
562   auto It = PointerMap.find(F);
563   if (It != PointerMap.end())
564     return VE.getTypeID(It->second);
565   return VE.getTypeID(T);
566 }
567 
568 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
569   switch (Op) {
570   default:
571     llvm_unreachable("Unknown RMW operation!");
572   case AtomicRMWInst::Xchg:
573     return bitc::RMW_XCHG;
574   case AtomicRMWInst::Add:
575     return bitc::RMW_ADD;
576   case AtomicRMWInst::Sub:
577     return bitc::RMW_SUB;
578   case AtomicRMWInst::And:
579     return bitc::RMW_AND;
580   case AtomicRMWInst::Nand:
581     return bitc::RMW_NAND;
582   case AtomicRMWInst::Or:
583     return bitc::RMW_OR;
584   case AtomicRMWInst::Xor:
585     return bitc::RMW_XOR;
586   case AtomicRMWInst::Max:
587     return bitc::RMW_MAX;
588   case AtomicRMWInst::Min:
589     return bitc::RMW_MIN;
590   case AtomicRMWInst::UMax:
591     return bitc::RMW_UMAX;
592   case AtomicRMWInst::UMin:
593     return bitc::RMW_UMIN;
594   case AtomicRMWInst::FAdd:
595     return bitc::RMW_FADD;
596   case AtomicRMWInst::FSub:
597     return bitc::RMW_FSUB;
598   case AtomicRMWInst::FMax:
599     return bitc::RMW_FMAX;
600   case AtomicRMWInst::FMin:
601     return bitc::RMW_FMIN;
602   }
603 }
604 
605 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
606   switch (Ordering) {
607   case AtomicOrdering::NotAtomic:
608     return bitc::ORDERING_NOTATOMIC;
609   case AtomicOrdering::Unordered:
610     return bitc::ORDERING_UNORDERED;
611   case AtomicOrdering::Monotonic:
612     return bitc::ORDERING_MONOTONIC;
613   case AtomicOrdering::Acquire:
614     return bitc::ORDERING_ACQUIRE;
615   case AtomicOrdering::Release:
616     return bitc::ORDERING_RELEASE;
617   case AtomicOrdering::AcquireRelease:
618     return bitc::ORDERING_ACQREL;
619   case AtomicOrdering::SequentiallyConsistent:
620     return bitc::ORDERING_SEQCST;
621   }
622   llvm_unreachable("Invalid ordering");
623 }
624 
625 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
626                                           unsigned Code, StringRef Str,
627                                           unsigned AbbrevToUse) {
628   SmallVector<unsigned, 64> Vals;
629 
630   // Code: [strchar x N]
631   for (char C : Str) {
632     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
633       AbbrevToUse = 0;
634     Vals.push_back(C);
635   }
636 
637   // Emit the finished record.
638   Stream.EmitRecord(Code, Vals, AbbrevToUse);
639 }
640 
641 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
642   switch (Kind) {
643   case Attribute::Alignment:
644     return bitc::ATTR_KIND_ALIGNMENT;
645   case Attribute::AlwaysInline:
646     return bitc::ATTR_KIND_ALWAYS_INLINE;
647   case Attribute::ArgMemOnly:
648     return bitc::ATTR_KIND_ARGMEMONLY;
649   case Attribute::Builtin:
650     return bitc::ATTR_KIND_BUILTIN;
651   case Attribute::ByVal:
652     return bitc::ATTR_KIND_BY_VAL;
653   case Attribute::Convergent:
654     return bitc::ATTR_KIND_CONVERGENT;
655   case Attribute::InAlloca:
656     return bitc::ATTR_KIND_IN_ALLOCA;
657   case Attribute::Cold:
658     return bitc::ATTR_KIND_COLD;
659   case Attribute::InlineHint:
660     return bitc::ATTR_KIND_INLINE_HINT;
661   case Attribute::InReg:
662     return bitc::ATTR_KIND_IN_REG;
663   case Attribute::JumpTable:
664     return bitc::ATTR_KIND_JUMP_TABLE;
665   case Attribute::MinSize:
666     return bitc::ATTR_KIND_MIN_SIZE;
667   case Attribute::Naked:
668     return bitc::ATTR_KIND_NAKED;
669   case Attribute::Nest:
670     return bitc::ATTR_KIND_NEST;
671   case Attribute::NoAlias:
672     return bitc::ATTR_KIND_NO_ALIAS;
673   case Attribute::NoBuiltin:
674     return bitc::ATTR_KIND_NO_BUILTIN;
675   case Attribute::NoCapture:
676     return bitc::ATTR_KIND_NO_CAPTURE;
677   case Attribute::NoDuplicate:
678     return bitc::ATTR_KIND_NO_DUPLICATE;
679   case Attribute::NoImplicitFloat:
680     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
681   case Attribute::NoInline:
682     return bitc::ATTR_KIND_NO_INLINE;
683   case Attribute::NonLazyBind:
684     return bitc::ATTR_KIND_NON_LAZY_BIND;
685   case Attribute::NonNull:
686     return bitc::ATTR_KIND_NON_NULL;
687   case Attribute::Dereferenceable:
688     return bitc::ATTR_KIND_DEREFERENCEABLE;
689   case Attribute::DereferenceableOrNull:
690     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
691   case Attribute::NoRedZone:
692     return bitc::ATTR_KIND_NO_RED_ZONE;
693   case Attribute::NoReturn:
694     return bitc::ATTR_KIND_NO_RETURN;
695   case Attribute::NoUnwind:
696     return bitc::ATTR_KIND_NO_UNWIND;
697   case Attribute::OptimizeForSize:
698     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
699   case Attribute::OptimizeNone:
700     return bitc::ATTR_KIND_OPTIMIZE_NONE;
701   case Attribute::ReadNone:
702     return bitc::ATTR_KIND_READ_NONE;
703   case Attribute::ReadOnly:
704     return bitc::ATTR_KIND_READ_ONLY;
705   case Attribute::Returned:
706     return bitc::ATTR_KIND_RETURNED;
707   case Attribute::ReturnsTwice:
708     return bitc::ATTR_KIND_RETURNS_TWICE;
709   case Attribute::SExt:
710     return bitc::ATTR_KIND_S_EXT;
711   case Attribute::StackAlignment:
712     return bitc::ATTR_KIND_STACK_ALIGNMENT;
713   case Attribute::StackProtect:
714     return bitc::ATTR_KIND_STACK_PROTECT;
715   case Attribute::StackProtectReq:
716     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
717   case Attribute::StackProtectStrong:
718     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
719   case Attribute::SafeStack:
720     return bitc::ATTR_KIND_SAFESTACK;
721   case Attribute::StructRet:
722     return bitc::ATTR_KIND_STRUCT_RET;
723   case Attribute::SanitizeAddress:
724     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
725   case Attribute::SanitizeThread:
726     return bitc::ATTR_KIND_SANITIZE_THREAD;
727   case Attribute::SanitizeMemory:
728     return bitc::ATTR_KIND_SANITIZE_MEMORY;
729   case Attribute::UWTable:
730     return bitc::ATTR_KIND_UW_TABLE;
731   case Attribute::ZExt:
732     return bitc::ATTR_KIND_Z_EXT;
733   case Attribute::EndAttrKinds:
734     llvm_unreachable("Can not encode end-attribute kinds marker.");
735   case Attribute::None:
736     llvm_unreachable("Can not encode none-attribute.");
737   case Attribute::EmptyKey:
738   case Attribute::TombstoneKey:
739     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
740   default:
741     llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
742                      "should be stripped in DXILPrepare");
743   }
744 
745   llvm_unreachable("Trying to encode unknown attribute");
746 }
747 
748 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
749                                         uint64_t V) {
750   if ((int64_t)V >= 0)
751     Vals.push_back(V << 1);
752   else
753     Vals.push_back((-V << 1) | 1);
754 }
755 
756 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
757                                       const APInt &A) {
758   // We have an arbitrary precision integer value to write whose
759   // bit width is > 64. However, in canonical unsigned integer
760   // format it is likely that the high bits are going to be zero.
761   // So, we only write the number of active words.
762   unsigned NumWords = A.getActiveWords();
763   const uint64_t *RawData = A.getRawData();
764   for (unsigned i = 0; i < NumWords; i++)
765     emitSignedInt64(Vals, RawData[i]);
766 }
767 
768 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
769   uint64_t Flags = 0;
770 
771   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
772     if (OBO->hasNoSignedWrap())
773       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
774     if (OBO->hasNoUnsignedWrap())
775       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
776   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
777     if (PEO->isExact())
778       Flags |= 1 << bitc::PEO_EXACT;
779   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
780     if (FPMO->hasAllowReassoc())
781       Flags |= bitc::AllowReassoc;
782     if (FPMO->hasNoNaNs())
783       Flags |= bitc::NoNaNs;
784     if (FPMO->hasNoInfs())
785       Flags |= bitc::NoInfs;
786     if (FPMO->hasNoSignedZeros())
787       Flags |= bitc::NoSignedZeros;
788     if (FPMO->hasAllowReciprocal())
789       Flags |= bitc::AllowReciprocal;
790     if (FPMO->hasAllowContract())
791       Flags |= bitc::AllowContract;
792     if (FPMO->hasApproxFunc())
793       Flags |= bitc::ApproxFunc;
794   }
795 
796   return Flags;
797 }
798 
799 unsigned
800 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
801   switch (Linkage) {
802   case GlobalValue::ExternalLinkage:
803     return 0;
804   case GlobalValue::WeakAnyLinkage:
805     return 16;
806   case GlobalValue::AppendingLinkage:
807     return 2;
808   case GlobalValue::InternalLinkage:
809     return 3;
810   case GlobalValue::LinkOnceAnyLinkage:
811     return 18;
812   case GlobalValue::ExternalWeakLinkage:
813     return 7;
814   case GlobalValue::CommonLinkage:
815     return 8;
816   case GlobalValue::PrivateLinkage:
817     return 9;
818   case GlobalValue::WeakODRLinkage:
819     return 17;
820   case GlobalValue::LinkOnceODRLinkage:
821     return 19;
822   case GlobalValue::AvailableExternallyLinkage:
823     return 12;
824   }
825   llvm_unreachable("Invalid linkage");
826 }
827 
828 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
829   return getEncodedLinkage(GV.getLinkage());
830 }
831 
832 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
833   switch (GV.getVisibility()) {
834   case GlobalValue::DefaultVisibility:
835     return 0;
836   case GlobalValue::HiddenVisibility:
837     return 1;
838   case GlobalValue::ProtectedVisibility:
839     return 2;
840   }
841   llvm_unreachable("Invalid visibility");
842 }
843 
844 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
845   switch (GV.getDLLStorageClass()) {
846   case GlobalValue::DefaultStorageClass:
847     return 0;
848   case GlobalValue::DLLImportStorageClass:
849     return 1;
850   case GlobalValue::DLLExportStorageClass:
851     return 2;
852   }
853   llvm_unreachable("Invalid DLL storage class");
854 }
855 
856 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
857   switch (GV.getThreadLocalMode()) {
858   case GlobalVariable::NotThreadLocal:
859     return 0;
860   case GlobalVariable::GeneralDynamicTLSModel:
861     return 1;
862   case GlobalVariable::LocalDynamicTLSModel:
863     return 2;
864   case GlobalVariable::InitialExecTLSModel:
865     return 3;
866   case GlobalVariable::LocalExecTLSModel:
867     return 4;
868   }
869   llvm_unreachable("Invalid TLS model");
870 }
871 
872 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
873   switch (C.getSelectionKind()) {
874   case Comdat::Any:
875     return bitc::COMDAT_SELECTION_KIND_ANY;
876   case Comdat::ExactMatch:
877     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
878   case Comdat::Largest:
879     return bitc::COMDAT_SELECTION_KIND_LARGEST;
880   case Comdat::NoDeduplicate:
881     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
882   case Comdat::SameSize:
883     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
884   }
885   llvm_unreachable("Invalid selection kind");
886 }
887 
888 ////////////////////////////////////////////////////////////////////////////////
889 /// Begin DXILBitcodeWriter Implementation
890 ////////////////////////////////////////////////////////////////////////////////
891 
892 void DXILBitcodeWriter::writeAttributeGroupTable() {
893   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
894       VE.getAttributeGroups();
895   if (AttrGrps.empty())
896     return;
897 
898   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
899 
900   SmallVector<uint64_t, 64> Record;
901   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
902     unsigned AttrListIndex = Pair.first;
903     AttributeSet AS = Pair.second;
904     Record.push_back(VE.getAttributeGroupID(Pair));
905     Record.push_back(AttrListIndex);
906 
907     for (Attribute Attr : AS) {
908       if (Attr.isEnumAttribute()) {
909         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
910         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
911                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
912         Record.push_back(0);
913         Record.push_back(Val);
914       } else if (Attr.isIntAttribute()) {
915         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
916         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
917                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
918         Record.push_back(1);
919         Record.push_back(Val);
920         Record.push_back(Attr.getValueAsInt());
921       } else {
922         StringRef Kind = Attr.getKindAsString();
923         StringRef Val = Attr.getValueAsString();
924 
925         Record.push_back(Val.empty() ? 3 : 4);
926         Record.append(Kind.begin(), Kind.end());
927         Record.push_back(0);
928         if (!Val.empty()) {
929           Record.append(Val.begin(), Val.end());
930           Record.push_back(0);
931         }
932       }
933     }
934 
935     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
936     Record.clear();
937   }
938 
939   Stream.ExitBlock();
940 }
941 
942 void DXILBitcodeWriter::writeAttributeTable() {
943   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
944   if (Attrs.empty())
945     return;
946 
947   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
948 
949   SmallVector<uint64_t, 64> Record;
950   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
951     AttributeList AL = Attrs[i];
952     for (unsigned i : AL.indexes()) {
953       AttributeSet AS = AL.getAttributes(i);
954       if (AS.hasAttributes())
955         Record.push_back(VE.getAttributeGroupID({i, AS}));
956     }
957 
958     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
959     Record.clear();
960   }
961 
962   Stream.ExitBlock();
963 }
964 
965 /// WriteTypeTable - Write out the type table for a module.
966 void DXILBitcodeWriter::writeTypeTable() {
967   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
968 
969   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
970   SmallVector<uint64_t, 64> TypeVals;
971 
972   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
973 
974   // Abbrev for TYPE_CODE_POINTER.
975   auto Abbv = std::make_shared<BitCodeAbbrev>();
976   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
977   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
978   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
979   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
980 
981   // Abbrev for TYPE_CODE_FUNCTION.
982   Abbv = std::make_shared<BitCodeAbbrev>();
983   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
984   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
985   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
986   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
987   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
988 
989   // Abbrev for TYPE_CODE_STRUCT_ANON.
990   Abbv = std::make_shared<BitCodeAbbrev>();
991   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
992   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
993   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
994   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
995   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
996 
997   // Abbrev for TYPE_CODE_STRUCT_NAME.
998   Abbv = std::make_shared<BitCodeAbbrev>();
999   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1000   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1002   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1003 
1004   // Abbrev for TYPE_CODE_STRUCT_NAMED.
1005   Abbv = std::make_shared<BitCodeAbbrev>();
1006   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1007   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1008   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1009   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1010   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1011 
1012   // Abbrev for TYPE_CODE_ARRAY.
1013   Abbv = std::make_shared<BitCodeAbbrev>();
1014   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1015   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1016   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1017   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1018 
1019   // Emit an entry count so the reader can reserve space.
1020   TypeVals.push_back(TypeList.size());
1021   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1022   TypeVals.clear();
1023 
1024   // Loop over all of the types, emitting each in turn.
1025   for (Type *T : TypeList) {
1026     int AbbrevToUse = 0;
1027     unsigned Code = 0;
1028 
1029     switch (T->getTypeID()) {
1030     case Type::BFloatTyID:
1031     case Type::X86_AMXTyID:
1032     case Type::TokenTyID:
1033       llvm_unreachable("These should never be used!!!");
1034       break;
1035     case Type::VoidTyID:
1036       Code = bitc::TYPE_CODE_VOID;
1037       break;
1038     case Type::HalfTyID:
1039       Code = bitc::TYPE_CODE_HALF;
1040       break;
1041     case Type::FloatTyID:
1042       Code = bitc::TYPE_CODE_FLOAT;
1043       break;
1044     case Type::DoubleTyID:
1045       Code = bitc::TYPE_CODE_DOUBLE;
1046       break;
1047     case Type::X86_FP80TyID:
1048       Code = bitc::TYPE_CODE_X86_FP80;
1049       break;
1050     case Type::FP128TyID:
1051       Code = bitc::TYPE_CODE_FP128;
1052       break;
1053     case Type::PPC_FP128TyID:
1054       Code = bitc::TYPE_CODE_PPC_FP128;
1055       break;
1056     case Type::LabelTyID:
1057       Code = bitc::TYPE_CODE_LABEL;
1058       break;
1059     case Type::MetadataTyID:
1060       Code = bitc::TYPE_CODE_METADATA;
1061       break;
1062     case Type::X86_MMXTyID:
1063       Code = bitc::TYPE_CODE_X86_MMX;
1064       break;
1065     case Type::IntegerTyID:
1066       // INTEGER: [width]
1067       Code = bitc::TYPE_CODE_INTEGER;
1068       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1069       break;
1070     case Type::DXILPointerTyID: {
1071       TypedPointerType *PTy = cast<TypedPointerType>(T);
1072       // POINTER: [pointee type, address space]
1073       Code = bitc::TYPE_CODE_POINTER;
1074       TypeVals.push_back(getTypeID(PTy->getElementType()));
1075       unsigned AddressSpace = PTy->getAddressSpace();
1076       TypeVals.push_back(AddressSpace);
1077       if (AddressSpace == 0)
1078         AbbrevToUse = PtrAbbrev;
1079       break;
1080     }
1081     case Type::PointerTyID: {
1082       PointerType *PTy = cast<PointerType>(T);
1083       // POINTER: [pointee type, address space]
1084       Code = bitc::TYPE_CODE_POINTER;
1085       // Emitting an empty struct type for the opaque pointer's type allows
1086       // this to be order-independent. Non-struct types must be emitted in
1087       // bitcode before they can be referenced.
1088       if (PTy->isOpaquePointerTy()) {
1089         TypeVals.push_back(false);
1090         Code = bitc::TYPE_CODE_OPAQUE;
1091         writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1092                           "dxilOpaquePtrReservedName", StructNameAbbrev);
1093       } else {
1094         TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType()));
1095         unsigned AddressSpace = PTy->getAddressSpace();
1096         TypeVals.push_back(AddressSpace);
1097         if (AddressSpace == 0)
1098           AbbrevToUse = PtrAbbrev;
1099       }
1100       break;
1101     }
1102     case Type::FunctionTyID: {
1103       FunctionType *FT = cast<FunctionType>(T);
1104       // FUNCTION: [isvararg, retty, paramty x N]
1105       Code = bitc::TYPE_CODE_FUNCTION;
1106       TypeVals.push_back(FT->isVarArg());
1107       TypeVals.push_back(getTypeID(FT->getReturnType()));
1108       for (Type *PTy : FT->params())
1109         TypeVals.push_back(getTypeID(PTy));
1110       AbbrevToUse = FunctionAbbrev;
1111       break;
1112     }
1113     case Type::StructTyID: {
1114       StructType *ST = cast<StructType>(T);
1115       // STRUCT: [ispacked, eltty x N]
1116       TypeVals.push_back(ST->isPacked());
1117       // Output all of the element types.
1118       for (Type *ElTy : ST->elements())
1119         TypeVals.push_back(getTypeID(ElTy));
1120 
1121       if (ST->isLiteral()) {
1122         Code = bitc::TYPE_CODE_STRUCT_ANON;
1123         AbbrevToUse = StructAnonAbbrev;
1124       } else {
1125         if (ST->isOpaque()) {
1126           Code = bitc::TYPE_CODE_OPAQUE;
1127         } else {
1128           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1129           AbbrevToUse = StructNamedAbbrev;
1130         }
1131 
1132         // Emit the name if it is present.
1133         if (!ST->getName().empty())
1134           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1135                             StructNameAbbrev);
1136       }
1137       break;
1138     }
1139     case Type::ArrayTyID: {
1140       ArrayType *AT = cast<ArrayType>(T);
1141       // ARRAY: [numelts, eltty]
1142       Code = bitc::TYPE_CODE_ARRAY;
1143       TypeVals.push_back(AT->getNumElements());
1144       TypeVals.push_back(getTypeID(AT->getElementType()));
1145       AbbrevToUse = ArrayAbbrev;
1146       break;
1147     }
1148     case Type::FixedVectorTyID:
1149     case Type::ScalableVectorTyID: {
1150       VectorType *VT = cast<VectorType>(T);
1151       // VECTOR [numelts, eltty]
1152       Code = bitc::TYPE_CODE_VECTOR;
1153       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1154       TypeVals.push_back(getTypeID(VT->getElementType()));
1155       break;
1156     }
1157     }
1158 
1159     // Emit the finished record.
1160     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1161     TypeVals.clear();
1162   }
1163 
1164   Stream.ExitBlock();
1165 }
1166 
1167 void DXILBitcodeWriter::writeComdats() {
1168   SmallVector<uint16_t, 64> Vals;
1169   for (const Comdat *C : VE.getComdats()) {
1170     // COMDAT: [selection_kind, name]
1171     Vals.push_back(getEncodedComdatSelectionKind(*C));
1172     size_t Size = C->getName().size();
1173     assert(isUInt<16>(Size));
1174     Vals.push_back(Size);
1175     for (char Chr : C->getName())
1176       Vals.push_back((unsigned char)Chr);
1177     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1178     Vals.clear();
1179   }
1180 }
1181 
1182 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1183 
1184 /// Emit top-level description of module, including target triple, inline asm,
1185 /// descriptors for global variables, and function prototype info.
1186 /// Returns the bit offset to backpatch with the location of the real VST.
1187 void DXILBitcodeWriter::writeModuleInfo() {
1188   // Emit various pieces of data attached to a module.
1189   if (!M.getTargetTriple().empty())
1190     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1191                       0 /*TODO*/);
1192   const std::string &DL = M.getDataLayoutStr();
1193   if (!DL.empty())
1194     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1195   if (!M.getModuleInlineAsm().empty())
1196     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1197                       0 /*TODO*/);
1198 
1199   // Emit information about sections and GC, computing how many there are. Also
1200   // compute the maximum alignment value.
1201   std::map<std::string, unsigned> SectionMap;
1202   std::map<std::string, unsigned> GCMap;
1203   MaybeAlign MaxAlignment;
1204   unsigned MaxGlobalType = 0;
1205   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1206     if (A)
1207       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1208   };
1209   for (const GlobalVariable &GV : M.globals()) {
1210     UpdateMaxAlignment(GV.getAlign());
1211     MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV));
1212     if (GV.hasSection()) {
1213       // Give section names unique ID's.
1214       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1215       if (!Entry) {
1216         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1217                           GV.getSection(), 0 /*TODO*/);
1218         Entry = SectionMap.size();
1219       }
1220     }
1221   }
1222   for (const Function &F : M) {
1223     UpdateMaxAlignment(F.getAlign());
1224     if (F.hasSection()) {
1225       // Give section names unique ID's.
1226       unsigned &Entry = SectionMap[std::string(F.getSection())];
1227       if (!Entry) {
1228         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1229                           0 /*TODO*/);
1230         Entry = SectionMap.size();
1231       }
1232     }
1233     if (F.hasGC()) {
1234       // Same for GC names.
1235       unsigned &Entry = GCMap[F.getGC()];
1236       if (!Entry) {
1237         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1238                           0 /*TODO*/);
1239         Entry = GCMap.size();
1240       }
1241     }
1242   }
1243 
1244   // Emit abbrev for globals, now that we know # sections and max alignment.
1245   unsigned SimpleGVarAbbrev = 0;
1246   if (!M.global_empty()) {
1247     // Add an abbrev for common globals with no visibility or thread
1248     // localness.
1249     auto Abbv = std::make_shared<BitCodeAbbrev>();
1250     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1251     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1252                               Log2_32_Ceil(MaxGlobalType + 1)));
1253     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1254                                                            //| explicitType << 1
1255                                                            //| constant
1256     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1257     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1258     if (!MaxAlignment)                                     // Alignment.
1259       Abbv->Add(BitCodeAbbrevOp(0));
1260     else {
1261       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1262       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1263                                 Log2_32_Ceil(MaxEncAlignment + 1)));
1264     }
1265     if (SectionMap.empty()) // Section.
1266       Abbv->Add(BitCodeAbbrevOp(0));
1267     else
1268       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1269                                 Log2_32_Ceil(SectionMap.size() + 1)));
1270     // Don't bother emitting vis + thread local.
1271     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1272   }
1273 
1274   // Emit the global variable information.
1275   SmallVector<unsigned, 64> Vals;
1276   for (const GlobalVariable &GV : M.globals()) {
1277     unsigned AbbrevToUse = 0;
1278 
1279     // GLOBALVAR: [type, isconst, initid,
1280     //             linkage, alignment, section, visibility, threadlocal,
1281     //             unnamed_addr, externally_initialized, dllstorageclass,
1282     //             comdat]
1283     Vals.push_back(getTypeID(GV.getValueType(), &GV));
1284     Vals.push_back(
1285         GV.getType()->getAddressSpace() << 2 | 2 |
1286         (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1287                                     // unsigned int and bool
1288     Vals.push_back(
1289         GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1290     Vals.push_back(getEncodedLinkage(GV));
1291     Vals.push_back(getEncodedAlign(GV.getAlign()));
1292     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1293                                    : 0);
1294     if (GV.isThreadLocal() ||
1295         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1296         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1297         GV.isExternallyInitialized() ||
1298         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1299         GV.hasComdat()) {
1300       Vals.push_back(getEncodedVisibility(GV));
1301       Vals.push_back(getEncodedThreadLocalMode(GV));
1302       Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1303       Vals.push_back(GV.isExternallyInitialized());
1304       Vals.push_back(getEncodedDLLStorageClass(GV));
1305       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1306     } else {
1307       AbbrevToUse = SimpleGVarAbbrev;
1308     }
1309 
1310     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1311     Vals.clear();
1312   }
1313 
1314   // Emit the function proto information.
1315   for (const Function &F : M) {
1316     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1317     //             section, visibility, gc, unnamed_addr, prologuedata,
1318     //             dllstorageclass, comdat, prefixdata, personalityfn]
1319     Vals.push_back(getTypeID(F.getFunctionType(), &F));
1320     Vals.push_back(F.getCallingConv());
1321     Vals.push_back(F.isDeclaration());
1322     Vals.push_back(getEncodedLinkage(F));
1323     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1324     Vals.push_back(getEncodedAlign(F.getAlign()));
1325     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1326                                   : 0);
1327     Vals.push_back(getEncodedVisibility(F));
1328     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1329     Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1330     Vals.push_back(
1331         F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1332     Vals.push_back(getEncodedDLLStorageClass(F));
1333     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1334     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1335                                      : 0);
1336     Vals.push_back(
1337         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1338 
1339     unsigned AbbrevToUse = 0;
1340     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1341     Vals.clear();
1342   }
1343 
1344   // Emit the alias information.
1345   for (const GlobalAlias &A : M.aliases()) {
1346     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1347     Vals.push_back(getTypeID(A.getValueType(), &A));
1348     Vals.push_back(VE.getValueID(A.getAliasee()));
1349     Vals.push_back(getEncodedLinkage(A));
1350     Vals.push_back(getEncodedVisibility(A));
1351     Vals.push_back(getEncodedDLLStorageClass(A));
1352     Vals.push_back(getEncodedThreadLocalMode(A));
1353     Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1354     unsigned AbbrevToUse = 0;
1355     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1356     Vals.clear();
1357   }
1358 }
1359 
1360 void DXILBitcodeWriter::writeValueAsMetadata(
1361     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1362   // Mimic an MDNode with a value as one operand.
1363   Value *V = MD->getValue();
1364   Type *Ty = V->getType();
1365   if (Function *F = dyn_cast<Function>(V))
1366     Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1367   else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1368     Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1369   Record.push_back(getTypeID(Ty));
1370   Record.push_back(VE.getValueID(V));
1371   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1372   Record.clear();
1373 }
1374 
1375 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1376                                      SmallVectorImpl<uint64_t> &Record,
1377                                      unsigned Abbrev) {
1378   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1379     Metadata *MD = N->getOperand(i);
1380     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1381            "Unexpected function-local metadata");
1382     Record.push_back(VE.getMetadataOrNullID(MD));
1383   }
1384   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1385                                     : bitc::METADATA_NODE,
1386                     Record, Abbrev);
1387   Record.clear();
1388 }
1389 
1390 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1391                                         SmallVectorImpl<uint64_t> &Record,
1392                                         unsigned &Abbrev) {
1393   if (!Abbrev)
1394     Abbrev = createDILocationAbbrev();
1395   Record.push_back(N->isDistinct());
1396   Record.push_back(N->getLine());
1397   Record.push_back(N->getColumn());
1398   Record.push_back(VE.getMetadataID(N->getScope()));
1399   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1400 
1401   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1402   Record.clear();
1403 }
1404 
1405 static uint64_t rotateSign(APInt Val) {
1406   int64_t I = Val.getSExtValue();
1407   uint64_t U = I;
1408   return I < 0 ? ~(U << 1) : U << 1;
1409 }
1410 
1411 static uint64_t rotateSign(DISubrange::BoundType Val) {
1412   return rotateSign(Val.get<ConstantInt *>()->getValue());
1413 }
1414 
1415 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1416                                         SmallVectorImpl<uint64_t> &Record,
1417                                         unsigned Abbrev) {
1418   Record.push_back(N->isDistinct());
1419   Record.push_back(
1420       N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
1421   Record.push_back(rotateSign(N->getLowerBound()));
1422 
1423   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1424   Record.clear();
1425 }
1426 
1427 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1428                                           SmallVectorImpl<uint64_t> &Record,
1429                                           unsigned Abbrev) {
1430   Record.push_back(N->isDistinct());
1431   Record.push_back(rotateSign(N->getValue()));
1432   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1433 
1434   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1435   Record.clear();
1436 }
1437 
1438 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1439                                          SmallVectorImpl<uint64_t> &Record,
1440                                          unsigned Abbrev) {
1441   Record.push_back(N->isDistinct());
1442   Record.push_back(N->getTag());
1443   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1444   Record.push_back(N->getSizeInBits());
1445   Record.push_back(N->getAlignInBits());
1446   Record.push_back(N->getEncoding());
1447 
1448   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1449   Record.clear();
1450 }
1451 
1452 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1453                                            SmallVectorImpl<uint64_t> &Record,
1454                                            unsigned Abbrev) {
1455   Record.push_back(N->isDistinct());
1456   Record.push_back(N->getTag());
1457   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1458   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1459   Record.push_back(N->getLine());
1460   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1461   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1462   Record.push_back(N->getSizeInBits());
1463   Record.push_back(N->getAlignInBits());
1464   Record.push_back(N->getOffsetInBits());
1465   Record.push_back(N->getFlags());
1466   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1467 
1468   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1469   Record.clear();
1470 }
1471 
1472 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1473                                              SmallVectorImpl<uint64_t> &Record,
1474                                              unsigned Abbrev) {
1475   Record.push_back(N->isDistinct());
1476   Record.push_back(N->getTag());
1477   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1478   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1479   Record.push_back(N->getLine());
1480   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1481   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1482   Record.push_back(N->getSizeInBits());
1483   Record.push_back(N->getAlignInBits());
1484   Record.push_back(N->getOffsetInBits());
1485   Record.push_back(N->getFlags());
1486   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1487   Record.push_back(N->getRuntimeLang());
1488   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1489   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1490   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1491 
1492   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1493   Record.clear();
1494 }
1495 
1496 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1497                                               SmallVectorImpl<uint64_t> &Record,
1498                                               unsigned Abbrev) {
1499   Record.push_back(N->isDistinct());
1500   Record.push_back(N->getFlags());
1501   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1502 
1503   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1504   Record.clear();
1505 }
1506 
1507 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1508                                     SmallVectorImpl<uint64_t> &Record,
1509                                     unsigned Abbrev) {
1510   Record.push_back(N->isDistinct());
1511   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1512   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1513 
1514   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1515   Record.clear();
1516 }
1517 
1518 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1519                                            SmallVectorImpl<uint64_t> &Record,
1520                                            unsigned Abbrev) {
1521   Record.push_back(N->isDistinct());
1522   Record.push_back(N->getSourceLanguage());
1523   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1524   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1525   Record.push_back(N->isOptimized());
1526   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1527   Record.push_back(N->getRuntimeVersion());
1528   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1529   Record.push_back(N->getEmissionKind());
1530   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1531   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1532   Record.push_back(/* subprograms */ 0);
1533   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1534   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1535   Record.push_back(N->getDWOId());
1536 
1537   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1538   Record.clear();
1539 }
1540 
1541 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1542                                           SmallVectorImpl<uint64_t> &Record,
1543                                           unsigned Abbrev) {
1544   Record.push_back(N->isDistinct());
1545   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1546   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1547   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1548   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1549   Record.push_back(N->getLine());
1550   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1551   Record.push_back(N->isLocalToUnit());
1552   Record.push_back(N->isDefinition());
1553   Record.push_back(N->getScopeLine());
1554   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1555   Record.push_back(N->getVirtuality());
1556   Record.push_back(N->getVirtualIndex());
1557   Record.push_back(N->getFlags());
1558   Record.push_back(N->isOptimized());
1559   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1560   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1561   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1562   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1563 
1564   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1565   Record.clear();
1566 }
1567 
1568 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1569                                             SmallVectorImpl<uint64_t> &Record,
1570                                             unsigned Abbrev) {
1571   Record.push_back(N->isDistinct());
1572   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1573   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1574   Record.push_back(N->getLine());
1575   Record.push_back(N->getColumn());
1576 
1577   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1578   Record.clear();
1579 }
1580 
1581 void DXILBitcodeWriter::writeDILexicalBlockFile(
1582     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1583     unsigned Abbrev) {
1584   Record.push_back(N->isDistinct());
1585   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1586   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1587   Record.push_back(N->getDiscriminator());
1588 
1589   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1590   Record.clear();
1591 }
1592 
1593 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1594                                          SmallVectorImpl<uint64_t> &Record,
1595                                          unsigned Abbrev) {
1596   Record.push_back(N->isDistinct());
1597   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1598   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1599   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1600   Record.push_back(/* line number */ 0);
1601 
1602   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1603   Record.clear();
1604 }
1605 
1606 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1607                                       SmallVectorImpl<uint64_t> &Record,
1608                                       unsigned Abbrev) {
1609   Record.push_back(N->isDistinct());
1610   for (auto &I : N->operands())
1611     Record.push_back(VE.getMetadataOrNullID(I));
1612 
1613   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1614   Record.clear();
1615 }
1616 
1617 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1618     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1619     unsigned Abbrev) {
1620   Record.push_back(N->isDistinct());
1621   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1622   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1623 
1624   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1625   Record.clear();
1626 }
1627 
1628 void DXILBitcodeWriter::writeDITemplateValueParameter(
1629     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1630     unsigned Abbrev) {
1631   Record.push_back(N->isDistinct());
1632   Record.push_back(N->getTag());
1633   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1634   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1635   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1636 
1637   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1638   Record.clear();
1639 }
1640 
1641 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1642                                               SmallVectorImpl<uint64_t> &Record,
1643                                               unsigned Abbrev) {
1644   Record.push_back(N->isDistinct());
1645   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1646   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1647   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1648   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1649   Record.push_back(N->getLine());
1650   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1651   Record.push_back(N->isLocalToUnit());
1652   Record.push_back(N->isDefinition());
1653   Record.push_back(/* N->getRawVariable() */ 0);
1654   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1655 
1656   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1657   Record.clear();
1658 }
1659 
1660 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1661                                              SmallVectorImpl<uint64_t> &Record,
1662                                              unsigned Abbrev) {
1663   Record.push_back(N->isDistinct());
1664   Record.push_back(N->getTag());
1665   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1666   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1667   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1668   Record.push_back(N->getLine());
1669   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1670   Record.push_back(N->getArg());
1671   Record.push_back(N->getFlags());
1672 
1673   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1674   Record.clear();
1675 }
1676 
1677 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1678                                           SmallVectorImpl<uint64_t> &Record,
1679                                           unsigned Abbrev) {
1680   Record.reserve(N->getElements().size() + 1);
1681 
1682   Record.push_back(N->isDistinct());
1683   Record.append(N->elements_begin(), N->elements_end());
1684 
1685   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1686   Record.clear();
1687 }
1688 
1689 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1690                                             SmallVectorImpl<uint64_t> &Record,
1691                                             unsigned Abbrev) {
1692   llvm_unreachable("DXIL does not support objc!!!");
1693 }
1694 
1695 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1696                                               SmallVectorImpl<uint64_t> &Record,
1697                                               unsigned Abbrev) {
1698   Record.push_back(N->isDistinct());
1699   Record.push_back(N->getTag());
1700   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1701   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1702   Record.push_back(N->getLine());
1703   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1704 
1705   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1706   Record.clear();
1707 }
1708 
1709 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1710   // Abbrev for METADATA_LOCATION.
1711   //
1712   // Assume the column is usually under 128, and always output the inlined-at
1713   // location (it's never more expensive than building an array size 1).
1714   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1715   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1717   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1718   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1719   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1720   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1721   return Stream.EmitAbbrev(std::move(Abbv));
1722 }
1723 
1724 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1725   // Abbrev for METADATA_GENERIC_DEBUG.
1726   //
1727   // Assume the column is usually under 128, and always output the inlined-at
1728   // location (it's never more expensive than building an array size 1).
1729   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1730   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1731   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1732   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1733   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1734   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1735   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1736   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1737   return Stream.EmitAbbrev(std::move(Abbv));
1738 }
1739 
1740 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1741                                              SmallVectorImpl<uint64_t> &Record,
1742                                              std::vector<unsigned> *MDAbbrevs,
1743                                              std::vector<uint64_t> *IndexPos) {
1744   if (MDs.empty())
1745     return;
1746 
1747     // Initialize MDNode abbreviations.
1748 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1749 #include "llvm/IR/Metadata.def"
1750 
1751   for (const Metadata *MD : MDs) {
1752     if (IndexPos)
1753       IndexPos->push_back(Stream.GetCurrentBitNo());
1754     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1755       assert(N->isResolved() && "Expected forward references to be resolved");
1756 
1757       switch (N->getMetadataID()) {
1758       default:
1759         llvm_unreachable("Invalid MDNode subclass");
1760 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1761   case Metadata::CLASS##Kind:                                                  \
1762     if (MDAbbrevs)                                                             \
1763       write##CLASS(cast<CLASS>(N), Record,                                     \
1764                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1765     else                                                                       \
1766       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1767     continue;
1768 #include "llvm/IR/Metadata.def"
1769       }
1770     }
1771     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1772   }
1773 }
1774 
1775 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1776   auto Abbv = std::make_shared<BitCodeAbbrev>();
1777   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1780   return Stream.EmitAbbrev(std::move(Abbv));
1781 }
1782 
1783 void DXILBitcodeWriter::writeMetadataStrings(
1784     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1785   for (const Metadata *MD : Strings) {
1786     const MDString *MDS = cast<MDString>(MD);
1787     // Code: [strchar x N]
1788     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1789 
1790     // Emit the finished record.
1791     Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
1792                       createMetadataStringsAbbrev());
1793     Record.clear();
1794   }
1795 }
1796 
1797 void DXILBitcodeWriter::writeModuleMetadata() {
1798   if (!VE.hasMDs() && M.named_metadata_empty())
1799     return;
1800 
1801   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1802 
1803   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1804   // block and load any metadata.
1805   std::vector<unsigned> MDAbbrevs;
1806 
1807   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1808   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1809   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1810       createGenericDINodeAbbrev();
1811 
1812   unsigned NameAbbrev = 0;
1813   if (!M.named_metadata_empty()) {
1814     // Abbrev for METADATA_NAME.
1815     std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1816     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1817     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1818     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1819     NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1820   }
1821 
1822   SmallVector<uint64_t, 64> Record;
1823   writeMetadataStrings(VE.getMDStrings(), Record);
1824 
1825   std::vector<uint64_t> IndexPos;
1826   IndexPos.reserve(VE.getNonMDStrings().size());
1827   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1828 
1829   // Write named metadata.
1830   for (const NamedMDNode &NMD : M.named_metadata()) {
1831     // Write name.
1832     StringRef Str = NMD.getName();
1833     Record.append(Str.bytes_begin(), Str.bytes_end());
1834     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1835     Record.clear();
1836 
1837     // Write named metadata operands.
1838     for (const MDNode *N : NMD.operands())
1839       Record.push_back(VE.getMetadataID(N));
1840     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1841     Record.clear();
1842   }
1843 
1844   Stream.ExitBlock();
1845 }
1846 
1847 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1848   if (!VE.hasMDs())
1849     return;
1850 
1851   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1852   SmallVector<uint64_t, 64> Record;
1853   writeMetadataStrings(VE.getMDStrings(), Record);
1854   writeMetadataRecords(VE.getNonMDStrings(), Record);
1855   Stream.ExitBlock();
1856 }
1857 
1858 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1859   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1860 
1861   SmallVector<uint64_t, 64> Record;
1862 
1863   // Write metadata attachments
1864   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1865   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1866   F.getAllMetadata(MDs);
1867   if (!MDs.empty()) {
1868     for (const auto &I : MDs) {
1869       Record.push_back(I.first);
1870       Record.push_back(VE.getMetadataID(I.second));
1871     }
1872     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1873     Record.clear();
1874   }
1875 
1876   for (const BasicBlock &BB : F)
1877     for (const Instruction &I : BB) {
1878       MDs.clear();
1879       I.getAllMetadataOtherThanDebugLoc(MDs);
1880 
1881       // If no metadata, ignore instruction.
1882       if (MDs.empty())
1883         continue;
1884 
1885       Record.push_back(VE.getInstructionID(&I));
1886 
1887       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1888         Record.push_back(MDs[i].first);
1889         Record.push_back(VE.getMetadataID(MDs[i].second));
1890       }
1891       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1892       Record.clear();
1893     }
1894 
1895   Stream.ExitBlock();
1896 }
1897 
1898 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1899   SmallVector<uint64_t, 64> Record;
1900 
1901   // Write metadata kinds
1902   // METADATA_KIND - [n x [id, name]]
1903   SmallVector<StringRef, 8> Names;
1904   M.getMDKindNames(Names);
1905 
1906   if (Names.empty())
1907     return;
1908 
1909   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1910 
1911   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1912     Record.push_back(MDKindID);
1913     StringRef KName = Names[MDKindID];
1914     Record.append(KName.begin(), KName.end());
1915 
1916     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1917     Record.clear();
1918   }
1919 
1920   Stream.ExitBlock();
1921 }
1922 
1923 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1924                                        bool isGlobal) {
1925   if (FirstVal == LastVal)
1926     return;
1927 
1928   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1929 
1930   unsigned AggregateAbbrev = 0;
1931   unsigned String8Abbrev = 0;
1932   unsigned CString7Abbrev = 0;
1933   unsigned CString6Abbrev = 0;
1934   // If this is a constant pool for the module, emit module-specific abbrevs.
1935   if (isGlobal) {
1936     // Abbrev for CST_CODE_AGGREGATE.
1937     auto Abbv = std::make_shared<BitCodeAbbrev>();
1938     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1939     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1940     Abbv->Add(
1941         BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1942     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1943 
1944     // Abbrev for CST_CODE_STRING.
1945     Abbv = std::make_shared<BitCodeAbbrev>();
1946     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1947     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1948     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1949     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1950     // Abbrev for CST_CODE_CSTRING.
1951     Abbv = std::make_shared<BitCodeAbbrev>();
1952     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1953     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1954     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1955     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1956     // Abbrev for CST_CODE_CSTRING.
1957     Abbv = std::make_shared<BitCodeAbbrev>();
1958     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1959     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1960     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1961     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1962   }
1963 
1964   SmallVector<uint64_t, 64> Record;
1965 
1966   const ValueEnumerator::ValueList &Vals = VE.getValues();
1967   Type *LastTy = nullptr;
1968   for (unsigned i = FirstVal; i != LastVal; ++i) {
1969     const Value *V = Vals[i].first;
1970     // If we need to switch types, do so now.
1971     if (V->getType() != LastTy) {
1972       LastTy = V->getType();
1973       Record.push_back(getTypeID(LastTy));
1974       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1975                         CONSTANTS_SETTYPE_ABBREV);
1976       Record.clear();
1977     }
1978 
1979     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1980       Record.push_back(unsigned(IA->hasSideEffects()) |
1981                        unsigned(IA->isAlignStack()) << 1 |
1982                        unsigned(IA->getDialect() & 1) << 2);
1983 
1984       // Add the asm string.
1985       const std::string &AsmStr = IA->getAsmString();
1986       Record.push_back(AsmStr.size());
1987       Record.append(AsmStr.begin(), AsmStr.end());
1988 
1989       // Add the constraint string.
1990       const std::string &ConstraintStr = IA->getConstraintString();
1991       Record.push_back(ConstraintStr.size());
1992       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1993       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1994       Record.clear();
1995       continue;
1996     }
1997     const Constant *C = cast<Constant>(V);
1998     unsigned Code = -1U;
1999     unsigned AbbrevToUse = 0;
2000     if (C->isNullValue()) {
2001       Code = bitc::CST_CODE_NULL;
2002     } else if (isa<UndefValue>(C)) {
2003       Code = bitc::CST_CODE_UNDEF;
2004     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2005       if (IV->getBitWidth() <= 64) {
2006         uint64_t V = IV->getSExtValue();
2007         emitSignedInt64(Record, V);
2008         Code = bitc::CST_CODE_INTEGER;
2009         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2010       } else { // Wide integers, > 64 bits in size.
2011         // We have an arbitrary precision integer value to write whose
2012         // bit width is > 64. However, in canonical unsigned integer
2013         // format it is likely that the high bits are going to be zero.
2014         // So, we only write the number of active words.
2015         unsigned NWords = IV->getValue().getActiveWords();
2016         const uint64_t *RawWords = IV->getValue().getRawData();
2017         for (unsigned i = 0; i != NWords; ++i) {
2018           emitSignedInt64(Record, RawWords[i]);
2019         }
2020         Code = bitc::CST_CODE_WIDE_INTEGER;
2021       }
2022     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2023       Code = bitc::CST_CODE_FLOAT;
2024       Type *Ty = CFP->getType();
2025       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2026         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2027       } else if (Ty->isX86_FP80Ty()) {
2028         // api needed to prevent premature destruction
2029         // bits are not in the same order as a normal i80 APInt, compensate.
2030         APInt api = CFP->getValueAPF().bitcastToAPInt();
2031         const uint64_t *p = api.getRawData();
2032         Record.push_back((p[1] << 48) | (p[0] >> 16));
2033         Record.push_back(p[0] & 0xffffLL);
2034       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2035         APInt api = CFP->getValueAPF().bitcastToAPInt();
2036         const uint64_t *p = api.getRawData();
2037         Record.push_back(p[0]);
2038         Record.push_back(p[1]);
2039       } else {
2040         assert(0 && "Unknown FP type!");
2041       }
2042     } else if (isa<ConstantDataSequential>(C) &&
2043                cast<ConstantDataSequential>(C)->isString()) {
2044       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2045       // Emit constant strings specially.
2046       unsigned NumElts = Str->getNumElements();
2047       // If this is a null-terminated string, use the denser CSTRING encoding.
2048       if (Str->isCString()) {
2049         Code = bitc::CST_CODE_CSTRING;
2050         --NumElts; // Don't encode the null, which isn't allowed by char6.
2051       } else {
2052         Code = bitc::CST_CODE_STRING;
2053         AbbrevToUse = String8Abbrev;
2054       }
2055       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2056       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2057       for (unsigned i = 0; i != NumElts; ++i) {
2058         unsigned char V = Str->getElementAsInteger(i);
2059         Record.push_back(V);
2060         isCStr7 &= (V & 128) == 0;
2061         if (isCStrChar6)
2062           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2063       }
2064 
2065       if (isCStrChar6)
2066         AbbrevToUse = CString6Abbrev;
2067       else if (isCStr7)
2068         AbbrevToUse = CString7Abbrev;
2069     } else if (const ConstantDataSequential *CDS =
2070                    dyn_cast<ConstantDataSequential>(C)) {
2071       Code = bitc::CST_CODE_DATA;
2072       Type *EltTy = CDS->getType()->getArrayElementType();
2073       if (isa<IntegerType>(EltTy)) {
2074         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2075           Record.push_back(CDS->getElementAsInteger(i));
2076       } else if (EltTy->isFloatTy()) {
2077         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2078           union {
2079             float F;
2080             uint32_t I;
2081           };
2082           F = CDS->getElementAsFloat(i);
2083           Record.push_back(I);
2084         }
2085       } else {
2086         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2087         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2088           union {
2089             double F;
2090             uint64_t I;
2091           };
2092           F = CDS->getElementAsDouble(i);
2093           Record.push_back(I);
2094         }
2095       }
2096     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2097                isa<ConstantVector>(C)) {
2098       Code = bitc::CST_CODE_AGGREGATE;
2099       for (const Value *Op : C->operands())
2100         Record.push_back(VE.getValueID(Op));
2101       AbbrevToUse = AggregateAbbrev;
2102     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2103       switch (CE->getOpcode()) {
2104       default:
2105         if (Instruction::isCast(CE->getOpcode())) {
2106           Code = bitc::CST_CODE_CE_CAST;
2107           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2108           Record.push_back(getTypeID(C->getOperand(0)->getType()));
2109           Record.push_back(VE.getValueID(C->getOperand(0)));
2110           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2111         } else {
2112           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2113           Code = bitc::CST_CODE_CE_BINOP;
2114           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2115           Record.push_back(VE.getValueID(C->getOperand(0)));
2116           Record.push_back(VE.getValueID(C->getOperand(1)));
2117           uint64_t Flags = getOptimizationFlags(CE);
2118           if (Flags != 0)
2119             Record.push_back(Flags);
2120         }
2121         break;
2122       case Instruction::GetElementPtr: {
2123         Code = bitc::CST_CODE_CE_GEP;
2124         const auto *GO = cast<GEPOperator>(C);
2125         if (GO->isInBounds())
2126           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2127         Record.push_back(getTypeID(GO->getSourceElementType()));
2128         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2129           Record.push_back(getTypeID(C->getOperand(i)->getType()));
2130           Record.push_back(VE.getValueID(C->getOperand(i)));
2131         }
2132         break;
2133       }
2134       case Instruction::Select:
2135         Code = bitc::CST_CODE_CE_SELECT;
2136         Record.push_back(VE.getValueID(C->getOperand(0)));
2137         Record.push_back(VE.getValueID(C->getOperand(1)));
2138         Record.push_back(VE.getValueID(C->getOperand(2)));
2139         break;
2140       case Instruction::ExtractElement:
2141         Code = bitc::CST_CODE_CE_EXTRACTELT;
2142         Record.push_back(getTypeID(C->getOperand(0)->getType()));
2143         Record.push_back(VE.getValueID(C->getOperand(0)));
2144         Record.push_back(getTypeID(C->getOperand(1)->getType()));
2145         Record.push_back(VE.getValueID(C->getOperand(1)));
2146         break;
2147       case Instruction::InsertElement:
2148         Code = bitc::CST_CODE_CE_INSERTELT;
2149         Record.push_back(VE.getValueID(C->getOperand(0)));
2150         Record.push_back(VE.getValueID(C->getOperand(1)));
2151         Record.push_back(getTypeID(C->getOperand(2)->getType()));
2152         Record.push_back(VE.getValueID(C->getOperand(2)));
2153         break;
2154       case Instruction::ShuffleVector:
2155         // If the return type and argument types are the same, this is a
2156         // standard shufflevector instruction.  If the types are different,
2157         // then the shuffle is widening or truncating the input vectors, and
2158         // the argument type must also be encoded.
2159         if (C->getType() == C->getOperand(0)->getType()) {
2160           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2161         } else {
2162           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2163           Record.push_back(getTypeID(C->getOperand(0)->getType()));
2164         }
2165         Record.push_back(VE.getValueID(C->getOperand(0)));
2166         Record.push_back(VE.getValueID(C->getOperand(1)));
2167         Record.push_back(VE.getValueID(C->getOperand(2)));
2168         break;
2169       case Instruction::ICmp:
2170       case Instruction::FCmp:
2171         Code = bitc::CST_CODE_CE_CMP;
2172         Record.push_back(getTypeID(C->getOperand(0)->getType()));
2173         Record.push_back(VE.getValueID(C->getOperand(0)));
2174         Record.push_back(VE.getValueID(C->getOperand(1)));
2175         Record.push_back(CE->getPredicate());
2176         break;
2177       }
2178     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2179       Code = bitc::CST_CODE_BLOCKADDRESS;
2180       Record.push_back(getTypeID(BA->getFunction()->getType()));
2181       Record.push_back(VE.getValueID(BA->getFunction()));
2182       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2183     } else {
2184 #ifndef NDEBUG
2185       C->dump();
2186 #endif
2187       llvm_unreachable("Unknown constant!");
2188     }
2189     Stream.EmitRecord(Code, Record, AbbrevToUse);
2190     Record.clear();
2191   }
2192 
2193   Stream.ExitBlock();
2194 }
2195 
2196 void DXILBitcodeWriter::writeModuleConstants() {
2197   const ValueEnumerator::ValueList &Vals = VE.getValues();
2198 
2199   // Find the first constant to emit, which is the first non-globalvalue value.
2200   // We know globalvalues have been emitted by WriteModuleInfo.
2201   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2202     if (!isa<GlobalValue>(Vals[i].first)) {
2203       writeConstants(i, Vals.size(), true);
2204       return;
2205     }
2206   }
2207 }
2208 
2209 /// pushValueAndType - The file has to encode both the value and type id for
2210 /// many values, because we need to know what type to create for forward
2211 /// references.  However, most operands are not forward references, so this type
2212 /// field is not needed.
2213 ///
2214 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2215 /// instruction ID, then it is a forward reference, and it also includes the
2216 /// type ID.  The value ID that is written is encoded relative to the InstID.
2217 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2218                                          SmallVectorImpl<unsigned> &Vals) {
2219   unsigned ValID = VE.getValueID(V);
2220   // Make encoding relative to the InstID.
2221   Vals.push_back(InstID - ValID);
2222   if (ValID >= InstID) {
2223     Vals.push_back(getTypeID(V->getType(), V));
2224     return true;
2225   }
2226   return false;
2227 }
2228 
2229 /// pushValue - Like pushValueAndType, but where the type of the value is
2230 /// omitted (perhaps it was already encoded in an earlier operand).
2231 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2232                                   SmallVectorImpl<unsigned> &Vals) {
2233   unsigned ValID = VE.getValueID(V);
2234   Vals.push_back(InstID - ValID);
2235 }
2236 
2237 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2238                                         SmallVectorImpl<uint64_t> &Vals) {
2239   unsigned ValID = VE.getValueID(V);
2240   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2241   emitSignedInt64(Vals, diff);
2242 }
2243 
2244 /// WriteInstruction - Emit an instruction
2245 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2246                                          SmallVectorImpl<unsigned> &Vals) {
2247   unsigned Code = 0;
2248   unsigned AbbrevToUse = 0;
2249   VE.setInstructionID(&I);
2250   switch (I.getOpcode()) {
2251   default:
2252     if (Instruction::isCast(I.getOpcode())) {
2253       Code = bitc::FUNC_CODE_INST_CAST;
2254       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2255         AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2256       Vals.push_back(getTypeID(I.getType(), &I));
2257       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2258     } else {
2259       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2260       Code = bitc::FUNC_CODE_INST_BINOP;
2261       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2262         AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2263       pushValue(I.getOperand(1), InstID, Vals);
2264       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2265       uint64_t Flags = getOptimizationFlags(&I);
2266       if (Flags != 0) {
2267         if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2268           AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2269         Vals.push_back(Flags);
2270       }
2271     }
2272     break;
2273 
2274   case Instruction::GetElementPtr: {
2275     Code = bitc::FUNC_CODE_INST_GEP;
2276     AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2277     auto &GEPInst = cast<GetElementPtrInst>(I);
2278     Vals.push_back(GEPInst.isInBounds());
2279     Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2280     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2281       pushValueAndType(I.getOperand(i), InstID, Vals);
2282     break;
2283   }
2284   case Instruction::ExtractValue: {
2285     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2286     pushValueAndType(I.getOperand(0), InstID, Vals);
2287     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2288     Vals.append(EVI->idx_begin(), EVI->idx_end());
2289     break;
2290   }
2291   case Instruction::InsertValue: {
2292     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2293     pushValueAndType(I.getOperand(0), InstID, Vals);
2294     pushValueAndType(I.getOperand(1), InstID, Vals);
2295     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2296     Vals.append(IVI->idx_begin(), IVI->idx_end());
2297     break;
2298   }
2299   case Instruction::Select:
2300     Code = bitc::FUNC_CODE_INST_VSELECT;
2301     pushValueAndType(I.getOperand(1), InstID, Vals);
2302     pushValue(I.getOperand(2), InstID, Vals);
2303     pushValueAndType(I.getOperand(0), InstID, Vals);
2304     break;
2305   case Instruction::ExtractElement:
2306     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2307     pushValueAndType(I.getOperand(0), InstID, Vals);
2308     pushValueAndType(I.getOperand(1), InstID, Vals);
2309     break;
2310   case Instruction::InsertElement:
2311     Code = bitc::FUNC_CODE_INST_INSERTELT;
2312     pushValueAndType(I.getOperand(0), InstID, Vals);
2313     pushValue(I.getOperand(1), InstID, Vals);
2314     pushValueAndType(I.getOperand(2), InstID, Vals);
2315     break;
2316   case Instruction::ShuffleVector:
2317     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2318     pushValueAndType(I.getOperand(0), InstID, Vals);
2319     pushValue(I.getOperand(1), InstID, Vals);
2320     pushValue(I.getOperand(2), InstID, Vals);
2321     break;
2322   case Instruction::ICmp:
2323   case Instruction::FCmp: {
2324     // compare returning Int1Ty or vector of Int1Ty
2325     Code = bitc::FUNC_CODE_INST_CMP2;
2326     pushValueAndType(I.getOperand(0), InstID, Vals);
2327     pushValue(I.getOperand(1), InstID, Vals);
2328     Vals.push_back(cast<CmpInst>(I).getPredicate());
2329     uint64_t Flags = getOptimizationFlags(&I);
2330     if (Flags != 0)
2331       Vals.push_back(Flags);
2332     break;
2333   }
2334 
2335   case Instruction::Ret: {
2336     Code = bitc::FUNC_CODE_INST_RET;
2337     unsigned NumOperands = I.getNumOperands();
2338     if (NumOperands == 0)
2339       AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2340     else if (NumOperands == 1) {
2341       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2342         AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2343     } else {
2344       for (unsigned i = 0, e = NumOperands; i != e; ++i)
2345         pushValueAndType(I.getOperand(i), InstID, Vals);
2346     }
2347   } break;
2348   case Instruction::Br: {
2349     Code = bitc::FUNC_CODE_INST_BR;
2350     const BranchInst &II = cast<BranchInst>(I);
2351     Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2352     if (II.isConditional()) {
2353       Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2354       pushValue(II.getCondition(), InstID, Vals);
2355     }
2356   } break;
2357   case Instruction::Switch: {
2358     Code = bitc::FUNC_CODE_INST_SWITCH;
2359     const SwitchInst &SI = cast<SwitchInst>(I);
2360     Vals.push_back(getTypeID(SI.getCondition()->getType()));
2361     pushValue(SI.getCondition(), InstID, Vals);
2362     Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2363     for (auto Case : SI.cases()) {
2364       Vals.push_back(VE.getValueID(Case.getCaseValue()));
2365       Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2366     }
2367   } break;
2368   case Instruction::IndirectBr:
2369     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2370     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2371     // Encode the address operand as relative, but not the basic blocks.
2372     pushValue(I.getOperand(0), InstID, Vals);
2373     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2374       Vals.push_back(VE.getValueID(I.getOperand(i)));
2375     break;
2376 
2377   case Instruction::Invoke: {
2378     const InvokeInst *II = cast<InvokeInst>(&I);
2379     const Value *Callee = II->getCalledOperand();
2380     FunctionType *FTy = II->getFunctionType();
2381     Code = bitc::FUNC_CODE_INST_INVOKE;
2382 
2383     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2384     Vals.push_back(II->getCallingConv() | 1 << 13);
2385     Vals.push_back(VE.getValueID(II->getNormalDest()));
2386     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2387     Vals.push_back(getTypeID(FTy));
2388     pushValueAndType(Callee, InstID, Vals);
2389 
2390     // Emit value #'s for the fixed parameters.
2391     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2392       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2393 
2394     // Emit type/value pairs for varargs params.
2395     if (FTy->isVarArg()) {
2396       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2397            ++i)
2398         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2399     }
2400     break;
2401   }
2402   case Instruction::Resume:
2403     Code = bitc::FUNC_CODE_INST_RESUME;
2404     pushValueAndType(I.getOperand(0), InstID, Vals);
2405     break;
2406   case Instruction::Unreachable:
2407     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2408     AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2409     break;
2410 
2411   case Instruction::PHI: {
2412     const PHINode &PN = cast<PHINode>(I);
2413     Code = bitc::FUNC_CODE_INST_PHI;
2414     // With the newer instruction encoding, forward references could give
2415     // negative valued IDs.  This is most common for PHIs, so we use
2416     // signed VBRs.
2417     SmallVector<uint64_t, 128> Vals64;
2418     Vals64.push_back(getTypeID(PN.getType()));
2419     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2420       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2421       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2422     }
2423     // Emit a Vals64 vector and exit.
2424     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2425     Vals64.clear();
2426     return;
2427   }
2428 
2429   case Instruction::LandingPad: {
2430     const LandingPadInst &LP = cast<LandingPadInst>(I);
2431     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2432     Vals.push_back(getTypeID(LP.getType()));
2433     Vals.push_back(LP.isCleanup());
2434     Vals.push_back(LP.getNumClauses());
2435     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2436       if (LP.isCatch(I))
2437         Vals.push_back(LandingPadInst::Catch);
2438       else
2439         Vals.push_back(LandingPadInst::Filter);
2440       pushValueAndType(LP.getClause(I), InstID, Vals);
2441     }
2442     break;
2443   }
2444 
2445   case Instruction::Alloca: {
2446     Code = bitc::FUNC_CODE_INST_ALLOCA;
2447     const AllocaInst &AI = cast<AllocaInst>(I);
2448     Vals.push_back(getTypeID(AI.getAllocatedType()));
2449     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2450     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2451     using APV = AllocaPackedValues;
2452     unsigned Record = 0;
2453     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
2454     Bitfield::set<APV::AlignLower>(
2455         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
2456     Bitfield::set<APV::AlignUpper>(Record,
2457                                    EncodedAlign >> APV::AlignLower::Bits);
2458     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
2459     Vals.push_back(Record);
2460     break;
2461   }
2462 
2463   case Instruction::Load:
2464     if (cast<LoadInst>(I).isAtomic()) {
2465       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2466       pushValueAndType(I.getOperand(0), InstID, Vals);
2467     } else {
2468       Code = bitc::FUNC_CODE_INST_LOAD;
2469       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2470         AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2471     }
2472     Vals.push_back(getTypeID(I.getType()));
2473     Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2474     Vals.push_back(cast<LoadInst>(I).isVolatile());
2475     if (cast<LoadInst>(I).isAtomic()) {
2476       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2477       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2478     }
2479     break;
2480   case Instruction::Store:
2481     if (cast<StoreInst>(I).isAtomic())
2482       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2483     else
2484       Code = bitc::FUNC_CODE_INST_STORE;
2485     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2486     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2487     Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2488     Vals.push_back(cast<StoreInst>(I).isVolatile());
2489     if (cast<StoreInst>(I).isAtomic()) {
2490       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2491       Vals.push_back(
2492           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2493     }
2494     break;
2495   case Instruction::AtomicCmpXchg:
2496     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2497     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2498     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2499     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2500     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2501     Vals.push_back(
2502         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2503     Vals.push_back(
2504         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2505     Vals.push_back(
2506         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2507     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2508     break;
2509   case Instruction::AtomicRMW:
2510     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2511     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2512     pushValue(I.getOperand(1), InstID, Vals);        // val.
2513     Vals.push_back(
2514         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2515     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2516     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2517     Vals.push_back(
2518         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2519     break;
2520   case Instruction::Fence:
2521     Code = bitc::FUNC_CODE_INST_FENCE;
2522     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2523     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2524     break;
2525   case Instruction::Call: {
2526     const CallInst &CI = cast<CallInst>(I);
2527     FunctionType *FTy = CI.getFunctionType();
2528 
2529     Code = bitc::FUNC_CODE_INST_CALL;
2530 
2531     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2532     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2533                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2534     Vals.push_back(getTypeID(FTy, CI.getCalledFunction()));
2535     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2536 
2537     // Emit value #'s for the fixed parameters.
2538     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2539       // Check for labels (can happen with asm labels).
2540       if (FTy->getParamType(i)->isLabelTy())
2541         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2542       else
2543         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2544     }
2545 
2546     // Emit type/value pairs for varargs params.
2547     if (FTy->isVarArg()) {
2548       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2549         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2550     }
2551     break;
2552   }
2553   case Instruction::VAArg:
2554     Code = bitc::FUNC_CODE_INST_VAARG;
2555     Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2556     pushValue(I.getOperand(0), InstID, Vals);              // valist.
2557     Vals.push_back(getTypeID(I.getType()));                // restype.
2558     break;
2559   }
2560 
2561   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2562   Vals.clear();
2563 }
2564 
2565 // Emit names for globals/functions etc.
2566 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2567     const ValueSymbolTable &VST) {
2568   if (VST.empty())
2569     return;
2570   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2571 
2572   SmallVector<unsigned, 64> NameVals;
2573 
2574   // HLSL Change
2575   // Read the named values from a sorted list instead of the original list
2576   // to ensure the binary is the same no matter what values ever existed.
2577   SmallVector<const ValueName *, 16> SortedTable;
2578 
2579   for (auto &VI : VST) {
2580     SortedTable.push_back(VI.second->getValueName());
2581   }
2582   // The keys are unique, so there shouldn't be stability issues.
2583   std::sort(SortedTable.begin(), SortedTable.end(),
2584             [](const ValueName *A, const ValueName *B) {
2585               return A->first() < B->first();
2586             });
2587 
2588   for (const ValueName *SI : SortedTable) {
2589     auto &Name = *SI;
2590 
2591     // Figure out the encoding to use for the name.
2592     bool is7Bit = true;
2593     bool isChar6 = true;
2594     for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2595          C != E; ++C) {
2596       if (isChar6)
2597         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2598       if ((unsigned char)*C & 128) {
2599         is7Bit = false;
2600         break; // don't bother scanning the rest.
2601       }
2602     }
2603 
2604     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2605 
2606     // VST_ENTRY:   [valueid, namechar x N]
2607     // VST_BBENTRY: [bbid, namechar x N]
2608     unsigned Code;
2609     if (isa<BasicBlock>(SI->getValue())) {
2610       Code = bitc::VST_CODE_BBENTRY;
2611       if (isChar6)
2612         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2613     } else {
2614       Code = bitc::VST_CODE_ENTRY;
2615       if (isChar6)
2616         AbbrevToUse = VST_ENTRY_6_ABBREV;
2617       else if (is7Bit)
2618         AbbrevToUse = VST_ENTRY_7_ABBREV;
2619     }
2620 
2621     NameVals.push_back(VE.getValueID(SI->getValue()));
2622     for (const char *P = Name.getKeyData(),
2623                     *E = Name.getKeyData() + Name.getKeyLength();
2624          P != E; ++P)
2625       NameVals.push_back((unsigned char)*P);
2626 
2627     // Emit the finished record.
2628     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2629     NameVals.clear();
2630   }
2631   Stream.ExitBlock();
2632 }
2633 
2634 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
2635   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2636   unsigned Code;
2637   if (isa<BasicBlock>(Order.V))
2638     Code = bitc::USELIST_CODE_BB;
2639   else
2640     Code = bitc::USELIST_CODE_DEFAULT;
2641 
2642   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2643   Record.push_back(VE.getValueID(Order.V));
2644   Stream.EmitRecord(Code, Record);
2645 }
2646 
2647 void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
2648   auto hasMore = [&]() {
2649     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2650   };
2651   if (!hasMore())
2652     // Nothing to do.
2653     return;
2654 
2655   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2656   while (hasMore()) {
2657     writeUseList(std::move(VE.UseListOrders.back()));
2658     VE.UseListOrders.pop_back();
2659   }
2660   Stream.ExitBlock();
2661 }
2662 
2663 /// Emit a function body to the module stream.
2664 void DXILBitcodeWriter::writeFunction(const Function &F) {
2665   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2666   VE.incorporateFunction(F);
2667 
2668   SmallVector<unsigned, 64> Vals;
2669 
2670   // Emit the number of basic blocks, so the reader can create them ahead of
2671   // time.
2672   Vals.push_back(VE.getBasicBlocks().size());
2673   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2674   Vals.clear();
2675 
2676   // If there are function-local constants, emit them now.
2677   unsigned CstStart, CstEnd;
2678   VE.getFunctionConstantRange(CstStart, CstEnd);
2679   writeConstants(CstStart, CstEnd, false);
2680 
2681   // If there is function-local metadata, emit it now.
2682   writeFunctionMetadata(F);
2683 
2684   // Keep a running idea of what the instruction ID is.
2685   unsigned InstID = CstEnd;
2686 
2687   bool NeedsMetadataAttachment = F.hasMetadata();
2688 
2689   DILocation *LastDL = nullptr;
2690 
2691   // Finally, emit all the instructions, in order.
2692   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2693     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2694          ++I) {
2695       writeInstruction(*I, InstID, Vals);
2696 
2697       if (!I->getType()->isVoidTy())
2698         ++InstID;
2699 
2700       // If the instruction has metadata, write a metadata attachment later.
2701       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2702 
2703       // If the instruction has a debug location, emit it.
2704       DILocation *DL = I->getDebugLoc();
2705       if (!DL)
2706         continue;
2707 
2708       if (DL == LastDL) {
2709         // Just repeat the same debug loc as last time.
2710         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2711         continue;
2712       }
2713 
2714       Vals.push_back(DL->getLine());
2715       Vals.push_back(DL->getColumn());
2716       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2717       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2718       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2719       Vals.clear();
2720 
2721       LastDL = DL;
2722     }
2723 
2724   // Emit names for all the instructions etc.
2725   if (auto *Symtab = F.getValueSymbolTable())
2726     writeFunctionLevelValueSymbolTable(*Symtab);
2727 
2728   if (NeedsMetadataAttachment)
2729     writeFunctionMetadataAttachment(F);
2730 
2731   writeUseListBlock(&F);
2732   VE.purgeFunction();
2733   Stream.ExitBlock();
2734 }
2735 
2736 // Emit blockinfo, which defines the standard abbreviations etc.
2737 void DXILBitcodeWriter::writeBlockInfo() {
2738   // We only want to emit block info records for blocks that have multiple
2739   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2740   // Other blocks can define their abbrevs inline.
2741   Stream.EnterBlockInfoBlock();
2742 
2743   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2744     auto Abbv = std::make_shared<BitCodeAbbrev>();
2745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2746     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2747     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2748     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2749     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2750                                    std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2751       assert(false && "Unexpected abbrev ordering!");
2752   }
2753 
2754   { // 7-bit fixed width VST_ENTRY strings.
2755     auto Abbv = std::make_shared<BitCodeAbbrev>();
2756     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2757     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2758     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2759     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2760     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2761                                    std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2762       assert(false && "Unexpected abbrev ordering!");
2763   }
2764   { // 6-bit char6 VST_ENTRY strings.
2765     auto Abbv = std::make_shared<BitCodeAbbrev>();
2766     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2767     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2768     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2769     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2770     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2771                                    std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2772       assert(false && "Unexpected abbrev ordering!");
2773   }
2774   { // 6-bit char6 VST_BBENTRY strings.
2775     auto Abbv = std::make_shared<BitCodeAbbrev>();
2776     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2777     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2778     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2779     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2780     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2781                                    std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2782       assert(false && "Unexpected abbrev ordering!");
2783   }
2784 
2785   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2786     auto Abbv = std::make_shared<BitCodeAbbrev>();
2787     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2788     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2789                               VE.computeBitsRequiredForTypeIndicies()));
2790     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2791         CONSTANTS_SETTYPE_ABBREV)
2792       assert(false && "Unexpected abbrev ordering!");
2793   }
2794 
2795   { // INTEGER abbrev for CONSTANTS_BLOCK.
2796     auto Abbv = std::make_shared<BitCodeAbbrev>();
2797     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2798     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2799     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2800         CONSTANTS_INTEGER_ABBREV)
2801       assert(false && "Unexpected abbrev ordering!");
2802   }
2803 
2804   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2805     auto Abbv = std::make_shared<BitCodeAbbrev>();
2806     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2807     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2808     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
2809                               VE.computeBitsRequiredForTypeIndicies()));
2810     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2811 
2812     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2813         CONSTANTS_CE_CAST_Abbrev)
2814       assert(false && "Unexpected abbrev ordering!");
2815   }
2816   { // NULL abbrev for CONSTANTS_BLOCK.
2817     auto Abbv = std::make_shared<BitCodeAbbrev>();
2818     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2819     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2820         CONSTANTS_NULL_Abbrev)
2821       assert(false && "Unexpected abbrev ordering!");
2822   }
2823 
2824   // FIXME: This should only use space for first class types!
2825 
2826   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2827     auto Abbv = std::make_shared<BitCodeAbbrev>();
2828     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2830     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2831                               VE.computeBitsRequiredForTypeIndicies()));
2832     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
2833     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2834     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2835         (unsigned)FUNCTION_INST_LOAD_ABBREV)
2836       assert(false && "Unexpected abbrev ordering!");
2837   }
2838   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2839     auto Abbv = std::make_shared<BitCodeAbbrev>();
2840     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2842     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2843     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2844     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2845         (unsigned)FUNCTION_INST_BINOP_ABBREV)
2846       assert(false && "Unexpected abbrev ordering!");
2847   }
2848   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2849     auto Abbv = std::make_shared<BitCodeAbbrev>();
2850     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2851     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2852     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2853     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2854     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2855     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2856         (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2857       assert(false && "Unexpected abbrev ordering!");
2858   }
2859   { // INST_CAST abbrev for FUNCTION_BLOCK.
2860     auto Abbv = std::make_shared<BitCodeAbbrev>();
2861     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2862     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2863     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2864                               VE.computeBitsRequiredForTypeIndicies()));
2865     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2866     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2867         (unsigned)FUNCTION_INST_CAST_ABBREV)
2868       assert(false && "Unexpected abbrev ordering!");
2869   }
2870 
2871   { // INST_RET abbrev for FUNCTION_BLOCK.
2872     auto Abbv = std::make_shared<BitCodeAbbrev>();
2873     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2874     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2875         (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2876       assert(false && "Unexpected abbrev ordering!");
2877   }
2878   { // INST_RET abbrev for FUNCTION_BLOCK.
2879     auto Abbv = std::make_shared<BitCodeAbbrev>();
2880     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2881     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2882     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2883         (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2884       assert(false && "Unexpected abbrev ordering!");
2885   }
2886   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2887     auto Abbv = std::make_shared<BitCodeAbbrev>();
2888     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2889     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2890         (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2891       assert(false && "Unexpected abbrev ordering!");
2892   }
2893   {
2894     auto Abbv = std::make_shared<BitCodeAbbrev>();
2895     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2896     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2897     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2898                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2899     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2900     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2901     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2902         (unsigned)FUNCTION_INST_GEP_ABBREV)
2903       assert(false && "Unexpected abbrev ordering!");
2904   }
2905 
2906   Stream.ExitBlock();
2907 }
2908 
2909 void DXILBitcodeWriter::writeModuleVersion() {
2910   // VERSION: [version#]
2911   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2912 }
2913 
2914 /// WriteModule - Emit the specified module to the bitstream.
2915 void DXILBitcodeWriter::write() {
2916   // The identification block is new since llvm-3.7, but the old bitcode reader
2917   // will skip it.
2918   // writeIdentificationBlock(Stream);
2919 
2920   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2921 
2922   // It is redundant to fully-specify this here, but nice to make it explicit
2923   // so that it is clear the DXIL module version is different.
2924   DXILBitcodeWriter::writeModuleVersion();
2925 
2926   // Emit blockinfo, which defines the standard abbreviations etc.
2927   writeBlockInfo();
2928 
2929   // Emit information about attribute groups.
2930   writeAttributeGroupTable();
2931 
2932   // Emit information about parameter attributes.
2933   writeAttributeTable();
2934 
2935   // Emit information describing all of the types in the module.
2936   writeTypeTable();
2937 
2938   writeComdats();
2939 
2940   // Emit top-level description of module, including target triple, inline asm,
2941   // descriptors for global variables, and function prototype info.
2942   writeModuleInfo();
2943 
2944   // Emit constants.
2945   writeModuleConstants();
2946 
2947   // Emit metadata.
2948   writeModuleMetadataKinds();
2949 
2950   // Emit metadata.
2951   writeModuleMetadata();
2952 
2953   // Emit names for globals/functions etc.
2954   // DXIL uses the same format for module-level value symbol table as for the
2955   // function level table.
2956   writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2957 
2958   // Emit module-level use-lists.
2959   writeUseListBlock(nullptr);
2960 
2961   // Emit function bodies.
2962   for (const Function &F : M)
2963     if (!F.isDeclaration())
2964       writeFunction(F);
2965 
2966   Stream.ExitBlock();
2967 }
2968