1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/Bitcode/BitcodeCommon.h"
17 #include "llvm/Bitcode/BitcodeReader.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/Bitstream/BitCodes.h"
20 #include "llvm/Bitstream/BitstreamWriter.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Comdat.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/ModuleSummaryIndex.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/UseListOrder.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/IR/ValueSymbolTable.h"
48 #include "llvm/Object/IRSymtab.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/SHA1.h"
51 
52 namespace llvm {
53 namespace dxil {
54 
55 // Generates an enum to use as an index in the Abbrev array of Metadata record.
56 enum MetadataAbbrev : unsigned {
57 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
58 #include "llvm/IR/Metadata.def"
59   LastPlusOne
60 };
61 
62 class DXILBitcodeWriter {
63 
64   /// These are manifest constants used by the bitcode writer. They do not need
65   /// to be kept in sync with the reader, but need to be consistent within this
66   /// file.
67   enum {
68     // VALUE_SYMTAB_BLOCK abbrev id's.
69     VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
70     VST_ENTRY_7_ABBREV,
71     VST_ENTRY_6_ABBREV,
72     VST_BBENTRY_6_ABBREV,
73 
74     // CONSTANTS_BLOCK abbrev id's.
75     CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
76     CONSTANTS_INTEGER_ABBREV,
77     CONSTANTS_CE_CAST_Abbrev,
78     CONSTANTS_NULL_Abbrev,
79 
80     // FUNCTION_BLOCK abbrev id's.
81     FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
82     FUNCTION_INST_BINOP_ABBREV,
83     FUNCTION_INST_BINOP_FLAGS_ABBREV,
84     FUNCTION_INST_CAST_ABBREV,
85     FUNCTION_INST_RET_VOID_ABBREV,
86     FUNCTION_INST_RET_VAL_ABBREV,
87     FUNCTION_INST_UNREACHABLE_ABBREV,
88     FUNCTION_INST_GEP_ABBREV,
89   };
90 
91   /// The stream created and owned by the client.
92   BitstreamWriter &Stream;
93 
94   StringTableBuilder &StrtabBuilder;
95 
96   /// The Module to write to bitcode.
97   const Module &M;
98 
99   /// Enumerates ids for all values in the module.
100   ValueEnumerator VE;
101 
102   /// Map that holds the correspondence between GUIDs in the summary index,
103   /// that came from indirect call profiles, and a value id generated by this
104   /// class to use in the VST and summary block records.
105   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
106 
107   /// Tracks the last value id recorded in the GUIDToValueMap.
108   unsigned GlobalValueId;
109 
110   /// Saves the offset of the VSTOffset record that must eventually be
111   /// backpatched with the offset of the actual VST.
112   uint64_t VSTOffsetPlaceholder = 0;
113 
114   /// Pointer to the buffer allocated by caller for bitcode writing.
115   const SmallVectorImpl<char> &Buffer;
116 
117   /// The start bit of the identification block.
118   uint64_t BitcodeStartBit;
119 
120 public:
121   /// Constructs a ModuleBitcodeWriter object for the given Module,
122   /// writing to the provided \p Buffer.
123   DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
124                     StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
125       : Stream(Stream), StrtabBuilder(StrtabBuilder), M(M),
126         VE(M, true), Buffer(Buffer),
127         BitcodeStartBit(Stream.GetCurrentBitNo()) {
128     GlobalValueId = VE.getValues().size();
129   }
130 
131   /// Emit the current module to the bitstream.
132   void write();
133 
134   static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
135   static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
136                                 StringRef Str, unsigned AbbrevToUse);
137   static void writeIdentificationBlock(BitstreamWriter &Stream);
138   static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
139   static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
140 
141   static unsigned getEncodedComdatSelectionKind(const Comdat &C);
142   static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
143   static unsigned getEncodedLinkage(const GlobalValue &GV);
144   static unsigned getEncodedVisibility(const GlobalValue &GV);
145   static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
146   static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
147   static unsigned getEncodedCastOpcode(unsigned Opcode);
148   static unsigned getEncodedUnaryOpcode(unsigned Opcode);
149   static unsigned getEncodedBinaryOpcode(unsigned Opcode);
150   static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
151   static unsigned getEncodedOrdering(AtomicOrdering Ordering);
152   static uint64_t getOptimizationFlags(const Value *V);
153 
154 private:
155   void writeModuleVersion();
156   void writePerModuleGlobalValueSummary();
157 
158   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
159                                            GlobalValueSummary *Summary,
160                                            unsigned ValueID,
161                                            unsigned FSCallsAbbrev,
162                                            unsigned FSCallsProfileAbbrev,
163                                            const Function &F);
164   void writeModuleLevelReferences(const GlobalVariable &V,
165                                   SmallVector<uint64_t, 64> &NameVals,
166                                   unsigned FSModRefsAbbrev,
167                                   unsigned FSModVTableRefsAbbrev);
168 
169   void assignValueId(GlobalValue::GUID ValGUID) {
170     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
171   }
172 
173   unsigned getValueId(GlobalValue::GUID ValGUID) {
174     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
175     // Expect that any GUID value had a value Id assigned by an
176     // earlier call to assignValueId.
177     assert(VMI != GUIDToValueIdMap.end() &&
178            "GUID does not have assigned value Id");
179     return VMI->second;
180   }
181 
182   // Helper to get the valueId for the type of value recorded in VI.
183   unsigned getValueId(ValueInfo VI) {
184     if (!VI.haveGVs() || !VI.getValue())
185       return getValueId(VI.getGUID());
186     return VE.getValueID(VI.getValue());
187   }
188 
189   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
190 
191   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
192 
193   size_t addToStrtab(StringRef Str);
194 
195   unsigned createDILocationAbbrev();
196   unsigned createGenericDINodeAbbrev();
197 
198   void writeAttributeGroupTable();
199   void writeAttributeTable();
200   void writeTypeTable();
201   void writeComdats();
202   void writeValueSymbolTableForwardDecl();
203   void writeModuleInfo();
204   void writeValueAsMetadata(const ValueAsMetadata *MD,
205                             SmallVectorImpl<uint64_t> &Record);
206   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
207                     unsigned Abbrev);
208   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
209                        unsigned &Abbrev);
210   void writeGenericDINode(const GenericDINode *N,
211                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
212     llvm_unreachable("DXIL cannot contain GenericDI Nodes");
213   }
214   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
215                        unsigned Abbrev);
216   void writeDIGenericSubrange(const DIGenericSubrange *N,
217                               SmallVectorImpl<uint64_t> &Record,
218                               unsigned Abbrev) {
219     llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
220   }
221   void writeDIEnumerator(const DIEnumerator *N,
222                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
223   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
224                         unsigned Abbrev);
225   void writeDIStringType(const DIStringType *N,
226                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
227     llvm_unreachable("DXIL cannot contain DIStringType Nodes");
228   }
229   void writeDIDerivedType(const DIDerivedType *N,
230                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
231   void writeDICompositeType(const DICompositeType *N,
232                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
233   void writeDISubroutineType(const DISubroutineType *N,
234                              SmallVectorImpl<uint64_t> &Record,
235                              unsigned Abbrev);
236   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
237                    unsigned Abbrev);
238   void writeDICompileUnit(const DICompileUnit *N,
239                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
240   void writeDISubprogram(const DISubprogram *N,
241                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
242   void writeDILexicalBlock(const DILexicalBlock *N,
243                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
244   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
245                                SmallVectorImpl<uint64_t> &Record,
246                                unsigned Abbrev);
247   void writeDICommonBlock(const DICommonBlock *N,
248                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
249     llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
250   }
251   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
252                         unsigned Abbrev);
253   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
254                     unsigned Abbrev) {
255     llvm_unreachable("DXIL cannot contain DIMacro Nodes");
256   }
257   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
258                         unsigned Abbrev) {
259     llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
260   }
261   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
262                       unsigned Abbrev) {
263     llvm_unreachable("DXIL cannot contain DIArgList Nodes");
264   }
265   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
266                      unsigned Abbrev);
267   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
268                                     SmallVectorImpl<uint64_t> &Record,
269                                     unsigned Abbrev);
270   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
271                                      SmallVectorImpl<uint64_t> &Record,
272                                      unsigned Abbrev);
273   void writeDIGlobalVariable(const DIGlobalVariable *N,
274                              SmallVectorImpl<uint64_t> &Record,
275                              unsigned Abbrev);
276   void writeDILocalVariable(const DILocalVariable *N,
277                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
278   void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
279                     unsigned Abbrev) {
280     llvm_unreachable("DXIL cannot contain DILabel Nodes");
281   }
282   void writeDIExpression(const DIExpression *N,
283                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
284   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
285                                        SmallVectorImpl<uint64_t> &Record,
286                                        unsigned Abbrev) {
287     llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
288   }
289   void writeDIObjCProperty(const DIObjCProperty *N,
290                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
291   void writeDIImportedEntity(const DIImportedEntity *N,
292                              SmallVectorImpl<uint64_t> &Record,
293                              unsigned Abbrev);
294   unsigned createNamedMetadataAbbrev();
295   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
296   unsigned createMetadataStringsAbbrev();
297   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
298                             SmallVectorImpl<uint64_t> &Record);
299   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
300                             SmallVectorImpl<uint64_t> &Record,
301                             std::vector<unsigned> *MDAbbrevs = nullptr,
302                             std::vector<uint64_t> *IndexPos = nullptr);
303   void writeModuleMetadata();
304   void writeFunctionMetadata(const Function &F);
305   void writeFunctionMetadataAttachment(const Function &F);
306   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
307                                     const GlobalObject &GO);
308   void writeModuleMetadataKinds();
309   void writeOperandBundleTags();
310   void writeSyncScopeNames();
311   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
312   void writeModuleConstants();
313   bool pushValueAndType(const Value *V, unsigned InstID,
314                         SmallVectorImpl<unsigned> &Vals);
315   void writeOperandBundles(const CallBase &CB, unsigned InstID);
316   void pushValue(const Value *V, unsigned InstID,
317                  SmallVectorImpl<unsigned> &Vals);
318   void pushValueSigned(const Value *V, unsigned InstID,
319                        SmallVectorImpl<uint64_t> &Vals);
320   void writeInstruction(const Instruction &I, unsigned InstID,
321                         SmallVectorImpl<unsigned> &Vals);
322   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
323   void writeGlobalValueSymbolTable(
324       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
325   void writeUseList(UseListOrder &&Order);
326   void writeUseListBlock(const Function *F);
327   void writeFunction(const Function &F);
328   void writeBlockInfo();
329 
330   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
331 
332   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
333 };
334 
335 } // namespace dxil
336 } // namespace llvm
337 
338 using namespace llvm;
339 using namespace llvm::dxil;
340 
341 ////////////////////////////////////////////////////////////////////////////////
342 /// Begin dxil::BitcodeWriter Implementation
343 ////////////////////////////////////////////////////////////////////////////////
344 
345 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
346     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
347   // Emit the file header.
348   Stream->Emit((unsigned)'B', 8);
349   Stream->Emit((unsigned)'C', 8);
350   Stream->Emit(0x0, 4);
351   Stream->Emit(0xC, 4);
352   Stream->Emit(0xE, 4);
353   Stream->Emit(0xD, 4);
354 }
355 
356 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
357 
358 /// Write the specified module to the specified output stream.
359 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
360   SmallVector<char, 0> Buffer;
361   Buffer.reserve(256 * 1024);
362 
363   // If this is darwin or another generic macho target, reserve space for the
364   // header.
365   Triple TT(M.getTargetTriple());
366   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
367     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
368 
369   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
370   Writer.writeModule(M);
371   Writer.writeSymtab();
372   Writer.writeStrtab();
373 
374   // Write the generated bitstream to "Out".
375   if (!Buffer.empty())
376     Out.write((char *)&Buffer.front(), Buffer.size());
377 }
378 
379 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
380   Stream->EnterSubblock(Block, 3);
381 
382   auto Abbv = std::make_shared<BitCodeAbbrev>();
383   Abbv->Add(BitCodeAbbrevOp(Record));
384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
385   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
386 
387   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
388 
389   Stream->ExitBlock();
390 }
391 
392 void BitcodeWriter::writeSymtab() {
393   assert(!WroteStrtab && !WroteSymtab);
394 
395   // If any module has module-level inline asm, we will require a registered asm
396   // parser for the target so that we can create an accurate symbol table for
397   // the module.
398   for (Module *M : Mods) {
399     if (M->getModuleInlineAsm().empty())
400       continue;
401   }
402 
403   WroteSymtab = true;
404   SmallVector<char, 0> Symtab;
405   // The irsymtab::build function may be unable to create a symbol table if the
406   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
407   // table is not required for correctness, but we still want to be able to
408   // write malformed modules to bitcode files, so swallow the error.
409   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
410     consumeError(std::move(E));
411     return;
412   }
413 
414   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
415             {Symtab.data(), Symtab.size()});
416 }
417 
418 void BitcodeWriter::writeStrtab() {
419   assert(!WroteStrtab);
420 
421   std::vector<char> Strtab;
422   StrtabBuilder.finalizeInOrder();
423   Strtab.resize(StrtabBuilder.getSize());
424   StrtabBuilder.write((uint8_t *)Strtab.data());
425 
426   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
427             {Strtab.data(), Strtab.size()});
428 
429   WroteStrtab = true;
430 }
431 
432 void BitcodeWriter::copyStrtab(StringRef Strtab) {
433   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
434   WroteStrtab = true;
435 }
436 
437 void BitcodeWriter::writeModule(const Module &M) {
438   assert(!WroteStrtab);
439 
440   // The Mods vector is used by irsymtab::build, which requires non-const
441   // Modules in case it needs to materialize metadata. But the bitcode writer
442   // requires that the module is materialized, so we can cast to non-const here,
443   // after checking that it is in fact materialized.
444   assert(M.isMaterialized());
445   Mods.push_back(const_cast<Module *>(&M));
446 
447   DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
448   ModuleWriter.write();
449 }
450 
451 ////////////////////////////////////////////////////////////////////////////////
452 /// Begin dxil::BitcodeWriterBase Implementation
453 ////////////////////////////////////////////////////////////////////////////////
454 
455 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
456   switch (Opcode) {
457   default:
458     llvm_unreachable("Unknown cast instruction!");
459   case Instruction::Trunc:
460     return bitc::CAST_TRUNC;
461   case Instruction::ZExt:
462     return bitc::CAST_ZEXT;
463   case Instruction::SExt:
464     return bitc::CAST_SEXT;
465   case Instruction::FPToUI:
466     return bitc::CAST_FPTOUI;
467   case Instruction::FPToSI:
468     return bitc::CAST_FPTOSI;
469   case Instruction::UIToFP:
470     return bitc::CAST_UITOFP;
471   case Instruction::SIToFP:
472     return bitc::CAST_SITOFP;
473   case Instruction::FPTrunc:
474     return bitc::CAST_FPTRUNC;
475   case Instruction::FPExt:
476     return bitc::CAST_FPEXT;
477   case Instruction::PtrToInt:
478     return bitc::CAST_PTRTOINT;
479   case Instruction::IntToPtr:
480     return bitc::CAST_INTTOPTR;
481   case Instruction::BitCast:
482     return bitc::CAST_BITCAST;
483   case Instruction::AddrSpaceCast:
484     return bitc::CAST_ADDRSPACECAST;
485   }
486 }
487 
488 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
489   switch (Opcode) {
490   default:
491     llvm_unreachable("Unknown binary instruction!");
492   case Instruction::FNeg:
493     return bitc::UNOP_FNEG;
494   }
495 }
496 
497 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
498   switch (Opcode) {
499   default:
500     llvm_unreachable("Unknown binary instruction!");
501   case Instruction::Add:
502   case Instruction::FAdd:
503     return bitc::BINOP_ADD;
504   case Instruction::Sub:
505   case Instruction::FSub:
506     return bitc::BINOP_SUB;
507   case Instruction::Mul:
508   case Instruction::FMul:
509     return bitc::BINOP_MUL;
510   case Instruction::UDiv:
511     return bitc::BINOP_UDIV;
512   case Instruction::FDiv:
513   case Instruction::SDiv:
514     return bitc::BINOP_SDIV;
515   case Instruction::URem:
516     return bitc::BINOP_UREM;
517   case Instruction::FRem:
518   case Instruction::SRem:
519     return bitc::BINOP_SREM;
520   case Instruction::Shl:
521     return bitc::BINOP_SHL;
522   case Instruction::LShr:
523     return bitc::BINOP_LSHR;
524   case Instruction::AShr:
525     return bitc::BINOP_ASHR;
526   case Instruction::And:
527     return bitc::BINOP_AND;
528   case Instruction::Or:
529     return bitc::BINOP_OR;
530   case Instruction::Xor:
531     return bitc::BINOP_XOR;
532   }
533 }
534 
535 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
536   switch (Op) {
537   default:
538     llvm_unreachable("Unknown RMW operation!");
539   case AtomicRMWInst::Xchg:
540     return bitc::RMW_XCHG;
541   case AtomicRMWInst::Add:
542     return bitc::RMW_ADD;
543   case AtomicRMWInst::Sub:
544     return bitc::RMW_SUB;
545   case AtomicRMWInst::And:
546     return bitc::RMW_AND;
547   case AtomicRMWInst::Nand:
548     return bitc::RMW_NAND;
549   case AtomicRMWInst::Or:
550     return bitc::RMW_OR;
551   case AtomicRMWInst::Xor:
552     return bitc::RMW_XOR;
553   case AtomicRMWInst::Max:
554     return bitc::RMW_MAX;
555   case AtomicRMWInst::Min:
556     return bitc::RMW_MIN;
557   case AtomicRMWInst::UMax:
558     return bitc::RMW_UMAX;
559   case AtomicRMWInst::UMin:
560     return bitc::RMW_UMIN;
561   case AtomicRMWInst::FAdd:
562     return bitc::RMW_FADD;
563   case AtomicRMWInst::FSub:
564     return bitc::RMW_FSUB;
565   }
566 }
567 
568 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
569   switch (Ordering) {
570   case AtomicOrdering::NotAtomic:
571     return bitc::ORDERING_NOTATOMIC;
572   case AtomicOrdering::Unordered:
573     return bitc::ORDERING_UNORDERED;
574   case AtomicOrdering::Monotonic:
575     return bitc::ORDERING_MONOTONIC;
576   case AtomicOrdering::Acquire:
577     return bitc::ORDERING_ACQUIRE;
578   case AtomicOrdering::Release:
579     return bitc::ORDERING_RELEASE;
580   case AtomicOrdering::AcquireRelease:
581     return bitc::ORDERING_ACQREL;
582   case AtomicOrdering::SequentiallyConsistent:
583     return bitc::ORDERING_SEQCST;
584   }
585   llvm_unreachable("Invalid ordering");
586 }
587 
588 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
589                                           unsigned Code, StringRef Str,
590                                           unsigned AbbrevToUse) {
591   SmallVector<unsigned, 64> Vals;
592 
593   // Code: [strchar x N]
594   for (char C : Str) {
595     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
596       AbbrevToUse = 0;
597     Vals.push_back(C);
598   }
599 
600   // Emit the finished record.
601   Stream.EmitRecord(Code, Vals, AbbrevToUse);
602 }
603 
604 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
605   switch (Kind) {
606   case Attribute::Alignment:
607     return bitc::ATTR_KIND_ALIGNMENT;
608   case Attribute::AlwaysInline:
609     return bitc::ATTR_KIND_ALWAYS_INLINE;
610   case Attribute::ArgMemOnly:
611     return bitc::ATTR_KIND_ARGMEMONLY;
612   case Attribute::Builtin:
613     return bitc::ATTR_KIND_BUILTIN;
614   case Attribute::ByVal:
615     return bitc::ATTR_KIND_BY_VAL;
616   case Attribute::Convergent:
617     return bitc::ATTR_KIND_CONVERGENT;
618   case Attribute::InAlloca:
619     return bitc::ATTR_KIND_IN_ALLOCA;
620   case Attribute::Cold:
621     return bitc::ATTR_KIND_COLD;
622   case Attribute::InlineHint:
623     return bitc::ATTR_KIND_INLINE_HINT;
624   case Attribute::InReg:
625     return bitc::ATTR_KIND_IN_REG;
626   case Attribute::JumpTable:
627     return bitc::ATTR_KIND_JUMP_TABLE;
628   case Attribute::MinSize:
629     return bitc::ATTR_KIND_MIN_SIZE;
630   case Attribute::Naked:
631     return bitc::ATTR_KIND_NAKED;
632   case Attribute::Nest:
633     return bitc::ATTR_KIND_NEST;
634   case Attribute::NoAlias:
635     return bitc::ATTR_KIND_NO_ALIAS;
636   case Attribute::NoBuiltin:
637     return bitc::ATTR_KIND_NO_BUILTIN;
638   case Attribute::NoCapture:
639     return bitc::ATTR_KIND_NO_CAPTURE;
640   case Attribute::NoDuplicate:
641     return bitc::ATTR_KIND_NO_DUPLICATE;
642   case Attribute::NoImplicitFloat:
643     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
644   case Attribute::NoInline:
645     return bitc::ATTR_KIND_NO_INLINE;
646   case Attribute::NonLazyBind:
647     return bitc::ATTR_KIND_NON_LAZY_BIND;
648   case Attribute::NonNull:
649     return bitc::ATTR_KIND_NON_NULL;
650   case Attribute::Dereferenceable:
651     return bitc::ATTR_KIND_DEREFERENCEABLE;
652   case Attribute::DereferenceableOrNull:
653     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
654   case Attribute::NoRedZone:
655     return bitc::ATTR_KIND_NO_RED_ZONE;
656   case Attribute::NoReturn:
657     return bitc::ATTR_KIND_NO_RETURN;
658   case Attribute::NoUnwind:
659     return bitc::ATTR_KIND_NO_UNWIND;
660   case Attribute::OptimizeForSize:
661     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
662   case Attribute::OptimizeNone:
663     return bitc::ATTR_KIND_OPTIMIZE_NONE;
664   case Attribute::ReadNone:
665     return bitc::ATTR_KIND_READ_NONE;
666   case Attribute::ReadOnly:
667     return bitc::ATTR_KIND_READ_ONLY;
668   case Attribute::Returned:
669     return bitc::ATTR_KIND_RETURNED;
670   case Attribute::ReturnsTwice:
671     return bitc::ATTR_KIND_RETURNS_TWICE;
672   case Attribute::SExt:
673     return bitc::ATTR_KIND_S_EXT;
674   case Attribute::StackAlignment:
675     return bitc::ATTR_KIND_STACK_ALIGNMENT;
676   case Attribute::StackProtect:
677     return bitc::ATTR_KIND_STACK_PROTECT;
678   case Attribute::StackProtectReq:
679     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
680   case Attribute::StackProtectStrong:
681     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
682   case Attribute::SafeStack:
683     return bitc::ATTR_KIND_SAFESTACK;
684   case Attribute::StructRet:
685     return bitc::ATTR_KIND_STRUCT_RET;
686   case Attribute::SanitizeAddress:
687     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
688   case Attribute::SanitizeThread:
689     return bitc::ATTR_KIND_SANITIZE_THREAD;
690   case Attribute::SanitizeMemory:
691     return bitc::ATTR_KIND_SANITIZE_MEMORY;
692   case Attribute::UWTable:
693     return bitc::ATTR_KIND_UW_TABLE;
694   case Attribute::ZExt:
695     return bitc::ATTR_KIND_Z_EXT;
696   case Attribute::EndAttrKinds:
697     llvm_unreachable("Can not encode end-attribute kinds marker.");
698   case Attribute::None:
699     llvm_unreachable("Can not encode none-attribute.");
700   case Attribute::EmptyKey:
701   case Attribute::TombstoneKey:
702     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
703   default:
704     llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
705                      "should be stripped in DXILPrepare");
706   }
707 
708   llvm_unreachable("Trying to encode unknown attribute");
709 }
710 
711 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
712                                         uint64_t V) {
713   if ((int64_t)V >= 0)
714     Vals.push_back(V << 1);
715   else
716     Vals.push_back((-V << 1) | 1);
717 }
718 
719 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
720                                       const APInt &A) {
721   // We have an arbitrary precision integer value to write whose
722   // bit width is > 64. However, in canonical unsigned integer
723   // format it is likely that the high bits are going to be zero.
724   // So, we only write the number of active words.
725   unsigned NumWords = A.getActiveWords();
726   const uint64_t *RawData = A.getRawData();
727   for (unsigned i = 0; i < NumWords; i++)
728     emitSignedInt64(Vals, RawData[i]);
729 }
730 
731 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
732   uint64_t Flags = 0;
733 
734   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
735     if (OBO->hasNoSignedWrap())
736       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
737     if (OBO->hasNoUnsignedWrap())
738       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
739   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
740     if (PEO->isExact())
741       Flags |= 1 << bitc::PEO_EXACT;
742   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
743     if (FPMO->hasAllowReassoc())
744       Flags |= bitc::AllowReassoc;
745     if (FPMO->hasNoNaNs())
746       Flags |= bitc::NoNaNs;
747     if (FPMO->hasNoInfs())
748       Flags |= bitc::NoInfs;
749     if (FPMO->hasNoSignedZeros())
750       Flags |= bitc::NoSignedZeros;
751     if (FPMO->hasAllowReciprocal())
752       Flags |= bitc::AllowReciprocal;
753     if (FPMO->hasAllowContract())
754       Flags |= bitc::AllowContract;
755     if (FPMO->hasApproxFunc())
756       Flags |= bitc::ApproxFunc;
757   }
758 
759   return Flags;
760 }
761 
762 unsigned
763 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
764   switch (Linkage) {
765   case GlobalValue::ExternalLinkage:
766     return 0;
767   case GlobalValue::WeakAnyLinkage:
768     return 16;
769   case GlobalValue::AppendingLinkage:
770     return 2;
771   case GlobalValue::InternalLinkage:
772     return 3;
773   case GlobalValue::LinkOnceAnyLinkage:
774     return 18;
775   case GlobalValue::ExternalWeakLinkage:
776     return 7;
777   case GlobalValue::CommonLinkage:
778     return 8;
779   case GlobalValue::PrivateLinkage:
780     return 9;
781   case GlobalValue::WeakODRLinkage:
782     return 17;
783   case GlobalValue::LinkOnceODRLinkage:
784     return 19;
785   case GlobalValue::AvailableExternallyLinkage:
786     return 12;
787   }
788   llvm_unreachable("Invalid linkage");
789 }
790 
791 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
792   return getEncodedLinkage(GV.getLinkage());
793 }
794 
795 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
796   switch (GV.getVisibility()) {
797   case GlobalValue::DefaultVisibility:   return 0;
798   case GlobalValue::HiddenVisibility:    return 1;
799   case GlobalValue::ProtectedVisibility: return 2;
800   }
801   llvm_unreachable("Invalid visibility");
802 }
803 
804 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
805   switch (GV.getDLLStorageClass()) {
806   case GlobalValue::DefaultStorageClass:   return 0;
807   case GlobalValue::DLLImportStorageClass: return 1;
808   case GlobalValue::DLLExportStorageClass: return 2;
809   }
810   llvm_unreachable("Invalid DLL storage class");
811 }
812 
813 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
814   switch (GV.getThreadLocalMode()) {
815     case GlobalVariable::NotThreadLocal:         return 0;
816     case GlobalVariable::GeneralDynamicTLSModel: return 1;
817     case GlobalVariable::LocalDynamicTLSModel:   return 2;
818     case GlobalVariable::InitialExecTLSModel:    return 3;
819     case GlobalVariable::LocalExecTLSModel:      return 4;
820   }
821   llvm_unreachable("Invalid TLS model");
822 }
823 
824 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
825   switch (C.getSelectionKind()) {
826   case Comdat::Any:
827     return bitc::COMDAT_SELECTION_KIND_ANY;
828   case Comdat::ExactMatch:
829     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
830   case Comdat::Largest:
831     return bitc::COMDAT_SELECTION_KIND_LARGEST;
832   case Comdat::NoDeduplicate:
833     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
834   case Comdat::SameSize:
835     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
836   }
837   llvm_unreachable("Invalid selection kind");
838 }
839 
840 ////////////////////////////////////////////////////////////////////////////////
841 /// Begin DXILBitcodeWriter Implementation
842 ////////////////////////////////////////////////////////////////////////////////
843 
844 void DXILBitcodeWriter::writeAttributeGroupTable() {
845   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
846       VE.getAttributeGroups();
847   if (AttrGrps.empty())
848     return;
849 
850   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
851 
852   SmallVector<uint64_t, 64> Record;
853   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
854     unsigned AttrListIndex = Pair.first;
855     AttributeSet AS = Pair.second;
856     Record.push_back(VE.getAttributeGroupID(Pair));
857     Record.push_back(AttrListIndex);
858 
859     for (Attribute Attr : AS) {
860       if (Attr.isEnumAttribute()) {
861         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
862         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
863                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
864         Record.push_back(0);
865         Record.push_back(Val);
866       } else if (Attr.isIntAttribute()) {
867         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
868         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
869                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
870         Record.push_back(1);
871         Record.push_back(Val);
872         Record.push_back(Attr.getValueAsInt());
873       } else {
874         StringRef Kind = Attr.getKindAsString();
875         StringRef Val = Attr.getValueAsString();
876 
877         Record.push_back(Val.empty() ? 3 : 4);
878         Record.append(Kind.begin(), Kind.end());
879         Record.push_back(0);
880         if (!Val.empty()) {
881           Record.append(Val.begin(), Val.end());
882           Record.push_back(0);
883         }
884       }
885     }
886 
887     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
888     Record.clear();
889   }
890 
891   Stream.ExitBlock();
892 }
893 
894 void DXILBitcodeWriter::writeAttributeTable() {
895   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
896   if (Attrs.empty())
897     return;
898 
899   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
900 
901   SmallVector<uint64_t, 64> Record;
902   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
903     AttributeList AL = Attrs[i];
904     for (unsigned i : AL.indexes()) {
905       AttributeSet AS = AL.getAttributes(i);
906       if (AS.hasAttributes())
907         Record.push_back(VE.getAttributeGroupID({i, AS}));
908     }
909 
910     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
911     Record.clear();
912   }
913 
914   Stream.ExitBlock();
915 }
916 
917 /// WriteTypeTable - Write out the type table for a module.
918 void DXILBitcodeWriter::writeTypeTable() {
919   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
920 
921   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
922   SmallVector<uint64_t, 64> TypeVals;
923 
924   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
925 
926   // Abbrev for TYPE_CODE_POINTER.
927   auto Abbv = std::make_shared<BitCodeAbbrev>();
928   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
929   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
930   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
931   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
932 
933   // Abbrev for TYPE_CODE_FUNCTION.
934   Abbv = std::make_shared<BitCodeAbbrev>();
935   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
937   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
938   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
939   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
940 
941   // Abbrev for TYPE_CODE_STRUCT_ANON.
942   Abbv = std::make_shared<BitCodeAbbrev>();
943   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
944   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
947   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
948 
949   // Abbrev for TYPE_CODE_STRUCT_NAME.
950   Abbv = std::make_shared<BitCodeAbbrev>();
951   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
952   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
953   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
954   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
955 
956   // Abbrev for TYPE_CODE_STRUCT_NAMED.
957   Abbv = std::make_shared<BitCodeAbbrev>();
958   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
959   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
960   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
961   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
962   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
963 
964   // Abbrev for TYPE_CODE_ARRAY.
965   Abbv = std::make_shared<BitCodeAbbrev>();
966   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
967   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
968   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
969   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
970 
971   // Emit an entry count so the reader can reserve space.
972   TypeVals.push_back(TypeList.size());
973   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
974   TypeVals.clear();
975 
976   // Loop over all of the types, emitting each in turn.
977   for (Type *T : TypeList) {
978     int AbbrevToUse = 0;
979     unsigned Code = 0;
980 
981     switch (T->getTypeID()) {
982     case Type::BFloatTyID:
983     case Type::X86_AMXTyID:
984     case Type::TokenTyID:
985     case Type::DXILPointerTyID:
986       llvm_unreachable("These should never be used!!!");
987       break;
988     case Type::VoidTyID:
989       Code = bitc::TYPE_CODE_VOID;
990       break;
991     case Type::HalfTyID:
992       Code = bitc::TYPE_CODE_HALF;
993       break;
994     case Type::FloatTyID:
995       Code = bitc::TYPE_CODE_FLOAT;
996       break;
997     case Type::DoubleTyID:
998       Code = bitc::TYPE_CODE_DOUBLE;
999       break;
1000     case Type::X86_FP80TyID:
1001       Code = bitc::TYPE_CODE_X86_FP80;
1002       break;
1003     case Type::FP128TyID:
1004       Code = bitc::TYPE_CODE_FP128;
1005       break;
1006     case Type::PPC_FP128TyID:
1007       Code = bitc::TYPE_CODE_PPC_FP128;
1008       break;
1009     case Type::LabelTyID:
1010       Code = bitc::TYPE_CODE_LABEL;
1011       break;
1012     case Type::MetadataTyID:
1013       Code = bitc::TYPE_CODE_METADATA;
1014       break;
1015     case Type::X86_MMXTyID:
1016       Code = bitc::TYPE_CODE_X86_MMX;
1017       break;
1018     case Type::IntegerTyID:
1019       // INTEGER: [width]
1020       Code = bitc::TYPE_CODE_INTEGER;
1021       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1022       break;
1023     case Type::PointerTyID: {
1024       PointerType *PTy = cast<PointerType>(T);
1025       // POINTER: [pointee type, address space]
1026       Code = bitc::TYPE_CODE_POINTER;
1027       TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType()));
1028       unsigned AddressSpace = PTy->getAddressSpace();
1029       TypeVals.push_back(AddressSpace);
1030       if (AddressSpace == 0)
1031         AbbrevToUse = PtrAbbrev;
1032       break;
1033     }
1034     case Type::FunctionTyID: {
1035       FunctionType *FT = cast<FunctionType>(T);
1036       // FUNCTION: [isvararg, retty, paramty x N]
1037       Code = bitc::TYPE_CODE_FUNCTION;
1038       TypeVals.push_back(FT->isVarArg());
1039       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1040       for (Type *PTy : FT->params())
1041         TypeVals.push_back(VE.getTypeID(PTy));
1042       AbbrevToUse = FunctionAbbrev;
1043       break;
1044     }
1045     case Type::StructTyID: {
1046       StructType *ST = cast<StructType>(T);
1047       // STRUCT: [ispacked, eltty x N]
1048       TypeVals.push_back(ST->isPacked());
1049       // Output all of the element types.
1050       for (Type *ElTy : ST->elements())
1051         TypeVals.push_back(VE.getTypeID(ElTy));
1052 
1053       if (ST->isLiteral()) {
1054         Code = bitc::TYPE_CODE_STRUCT_ANON;
1055         AbbrevToUse = StructAnonAbbrev;
1056       } else {
1057         if (ST->isOpaque()) {
1058           Code = bitc::TYPE_CODE_OPAQUE;
1059         } else {
1060           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1061           AbbrevToUse = StructNamedAbbrev;
1062         }
1063 
1064         // Emit the name if it is present.
1065         if (!ST->getName().empty())
1066           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1067                             StructNameAbbrev);
1068       }
1069       break;
1070     }
1071     case Type::ArrayTyID: {
1072       ArrayType *AT = cast<ArrayType>(T);
1073       // ARRAY: [numelts, eltty]
1074       Code = bitc::TYPE_CODE_ARRAY;
1075       TypeVals.push_back(AT->getNumElements());
1076       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1077       AbbrevToUse = ArrayAbbrev;
1078       break;
1079     }
1080     case Type::FixedVectorTyID:
1081     case Type::ScalableVectorTyID: {
1082       VectorType *VT = cast<VectorType>(T);
1083       // VECTOR [numelts, eltty]
1084       Code = bitc::TYPE_CODE_VECTOR;
1085       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1086       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1087       break;
1088     }
1089     }
1090 
1091     // Emit the finished record.
1092     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1093     TypeVals.clear();
1094   }
1095 
1096   Stream.ExitBlock();
1097 }
1098 
1099 void DXILBitcodeWriter::writeComdats() {
1100   SmallVector<uint16_t, 64> Vals;
1101   for (const Comdat *C : VE.getComdats()) {
1102     // COMDAT: [selection_kind, name]
1103     Vals.push_back(getEncodedComdatSelectionKind(*C));
1104     size_t Size = C->getName().size();
1105     assert(isUInt<16>(Size));
1106     Vals.push_back(Size);
1107     for (char Chr : C->getName())
1108       Vals.push_back((unsigned char)Chr);
1109     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1110     Vals.clear();
1111   }
1112 }
1113 
1114 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1115 
1116 /// Emit top-level description of module, including target triple, inline asm,
1117 /// descriptors for global variables, and function prototype info.
1118 /// Returns the bit offset to backpatch with the location of the real VST.
1119 void DXILBitcodeWriter::writeModuleInfo() {
1120   // Emit various pieces of data attached to a module.
1121   if (!M.getTargetTriple().empty())
1122     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1123                       0 /*TODO*/);
1124   const std::string &DL = M.getDataLayoutStr();
1125   if (!DL.empty())
1126     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1127   if (!M.getModuleInlineAsm().empty())
1128     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1129                       0 /*TODO*/);
1130 
1131   // Emit information about sections and GC, computing how many there are. Also
1132   // compute the maximum alignment value.
1133   std::map<std::string, unsigned> SectionMap;
1134   std::map<std::string, unsigned> GCMap;
1135   MaybeAlign MaxAlignment;
1136   unsigned MaxGlobalType = 0;
1137   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1138     if (A)
1139       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1140   };
1141   for (const GlobalVariable &GV : M.globals()) {
1142     UpdateMaxAlignment(GV.getAlign());
1143     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1144     if (GV.hasSection()) {
1145       // Give section names unique ID's.
1146       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1147       if (!Entry) {
1148         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1149                           GV.getSection(), 0 /*TODO*/);
1150         Entry = SectionMap.size();
1151       }
1152     }
1153   }
1154   for (const Function &F : M) {
1155     UpdateMaxAlignment(F.getAlign());
1156     if (F.hasSection()) {
1157       // Give section names unique ID's.
1158       unsigned &Entry = SectionMap[std::string(F.getSection())];
1159       if (!Entry) {
1160         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1161                           0 /*TODO*/);
1162         Entry = SectionMap.size();
1163       }
1164     }
1165     if (F.hasGC()) {
1166       // Same for GC names.
1167       unsigned &Entry = GCMap[F.getGC()];
1168       if (!Entry) {
1169         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1170                           0 /*TODO*/);
1171         Entry = GCMap.size();
1172       }
1173     }
1174   }
1175 
1176   // Emit abbrev for globals, now that we know # sections and max alignment.
1177   unsigned SimpleGVarAbbrev = 0;
1178   if (!M.global_empty()) {
1179     // Add an abbrev for common globals with no visibility or thread localness.
1180     auto Abbv = std::make_shared<BitCodeAbbrev>();
1181     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1182     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1183                               Log2_32_Ceil(MaxGlobalType + 1)));
1184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1185                                                            //| explicitType << 1
1186                                                            //| constant
1187     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1188     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1189     if (MaxAlignment == 0)                                 // Alignment.
1190       Abbv->Add(BitCodeAbbrevOp(0));
1191     else {
1192       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1193       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1194                                 Log2_32_Ceil(MaxEncAlignment + 1)));
1195     }
1196     if (SectionMap.empty()) // Section.
1197       Abbv->Add(BitCodeAbbrevOp(0));
1198     else
1199       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1200                                 Log2_32_Ceil(SectionMap.size() + 1)));
1201     // Don't bother emitting vis + thread local.
1202     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1203   }
1204 
1205   // Emit the global variable information.
1206   SmallVector<unsigned, 64> Vals;
1207   for (const GlobalVariable &GV : M.globals()) {
1208     unsigned AbbrevToUse = 0;
1209 
1210     // GLOBALVAR: [type, isconst, initid,
1211     //             linkage, alignment, section, visibility, threadlocal,
1212     //             unnamed_addr, externally_initialized, dllstorageclass,
1213     //             comdat]
1214     Vals.push_back(VE.getTypeID(GV.getValueType()));
1215     Vals.push_back(
1216         GV.getType()->getAddressSpace() << 2 | 2 |
1217         (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1218                                     // unsigned int and bool
1219     Vals.push_back(
1220         GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1221     Vals.push_back(getEncodedLinkage(GV));
1222     Vals.push_back(getEncodedAlign(GV.getAlign()));
1223     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1224                                    : 0);
1225     if (GV.isThreadLocal() ||
1226         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1227         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1228         GV.isExternallyInitialized() ||
1229         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1230         GV.hasComdat()) {
1231       Vals.push_back(getEncodedVisibility(GV));
1232       Vals.push_back(getEncodedThreadLocalMode(GV));
1233       Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1234       Vals.push_back(GV.isExternallyInitialized());
1235       Vals.push_back(getEncodedDLLStorageClass(GV));
1236       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1237     } else {
1238       AbbrevToUse = SimpleGVarAbbrev;
1239     }
1240 
1241     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1242     Vals.clear();
1243   }
1244 
1245   // Emit the function proto information.
1246   for (const Function &F : M) {
1247     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1248     //             section, visibility, gc, unnamed_addr, prologuedata,
1249     //             dllstorageclass, comdat, prefixdata, personalityfn]
1250     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1251     Vals.push_back(F.getCallingConv());
1252     Vals.push_back(F.isDeclaration());
1253     Vals.push_back(getEncodedLinkage(F));
1254     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1255     Vals.push_back(getEncodedAlign(F.getAlign()));
1256     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1257                                   : 0);
1258     Vals.push_back(getEncodedVisibility(F));
1259     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1260     Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1261     Vals.push_back(
1262         F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1263     Vals.push_back(getEncodedDLLStorageClass(F));
1264     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1265     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1266                                      : 0);
1267     Vals.push_back(
1268         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1269 
1270     unsigned AbbrevToUse = 0;
1271     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1272     Vals.clear();
1273   }
1274 
1275   // Emit the alias information.
1276   for (const GlobalAlias &A : M.aliases()) {
1277     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1278     Vals.push_back(VE.getTypeID(A.getValueType()));
1279     Vals.push_back(VE.getValueID(A.getAliasee()));
1280     Vals.push_back(getEncodedLinkage(A));
1281     Vals.push_back(getEncodedVisibility(A));
1282     Vals.push_back(getEncodedDLLStorageClass(A));
1283     Vals.push_back(getEncodedThreadLocalMode(A));
1284     Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1285     unsigned AbbrevToUse = 0;
1286     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1287     Vals.clear();
1288   }
1289 }
1290 
1291 void DXILBitcodeWriter::writeValueAsMetadata(
1292     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1293   // Mimic an MDNode with a value as one operand.
1294   Value *V = MD->getValue();
1295   Record.push_back(VE.getTypeID(V->getType()));
1296   Record.push_back(VE.getValueID(V));
1297   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1298   Record.clear();
1299 }
1300 
1301 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1302                                      SmallVectorImpl<uint64_t> &Record,
1303                                      unsigned Abbrev) {
1304   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1305     Metadata *MD = N->getOperand(i);
1306     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1307            "Unexpected function-local metadata");
1308     Record.push_back(VE.getMetadataOrNullID(MD));
1309   }
1310   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1311                                     : bitc::METADATA_NODE,
1312                     Record, Abbrev);
1313   Record.clear();
1314 }
1315 
1316 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1317                                         SmallVectorImpl<uint64_t> &Record,
1318                                         unsigned &Abbrev) {
1319   if (!Abbrev)
1320     Abbrev = createDILocationAbbrev();
1321   Record.push_back(N->isDistinct());
1322   Record.push_back(N->getLine());
1323   Record.push_back(N->getColumn());
1324   Record.push_back(VE.getMetadataID(N->getScope()));
1325   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1326 
1327   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1328   Record.clear();
1329 }
1330 
1331 static uint64_t rotateSign(APInt Val) {
1332   int64_t I = Val.getSExtValue();
1333   uint64_t U = I;
1334   return I < 0 ? ~(U << 1) : U << 1;
1335 }
1336 
1337 static uint64_t rotateSign(DISubrange::BoundType Val) {
1338   return rotateSign(Val.get<ConstantInt *>()->getValue());
1339 }
1340 
1341 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1342                                         SmallVectorImpl<uint64_t> &Record,
1343                                         unsigned Abbrev) {
1344   Record.push_back(N->isDistinct());
1345   Record.push_back(
1346       N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
1347   Record.push_back(rotateSign(N->getLowerBound()));
1348 
1349   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1350   Record.clear();
1351 }
1352 
1353 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1354                                           SmallVectorImpl<uint64_t> &Record,
1355                                           unsigned Abbrev) {
1356   Record.push_back(N->isDistinct());
1357   Record.push_back(rotateSign(N->getValue()));
1358   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1359 
1360   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1361   Record.clear();
1362 }
1363 
1364 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1365                                          SmallVectorImpl<uint64_t> &Record,
1366                                          unsigned Abbrev) {
1367   Record.push_back(N->isDistinct());
1368   Record.push_back(N->getTag());
1369   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1370   Record.push_back(N->getSizeInBits());
1371   Record.push_back(N->getAlignInBits());
1372   Record.push_back(N->getEncoding());
1373 
1374   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1375   Record.clear();
1376 }
1377 
1378 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1379                                            SmallVectorImpl<uint64_t> &Record,
1380                                            unsigned Abbrev) {
1381   Record.push_back(N->isDistinct());
1382   Record.push_back(N->getTag());
1383   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1384   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1385   Record.push_back(N->getLine());
1386   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1387   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1388   Record.push_back(N->getSizeInBits());
1389   Record.push_back(N->getAlignInBits());
1390   Record.push_back(N->getOffsetInBits());
1391   Record.push_back(N->getFlags());
1392   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1393 
1394   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1395   Record.clear();
1396 }
1397 
1398 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1399                                              SmallVectorImpl<uint64_t> &Record,
1400                                              unsigned Abbrev) {
1401   Record.push_back(N->isDistinct());
1402   Record.push_back(N->getTag());
1403   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1404   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1405   Record.push_back(N->getLine());
1406   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1407   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1408   Record.push_back(N->getSizeInBits());
1409   Record.push_back(N->getAlignInBits());
1410   Record.push_back(N->getOffsetInBits());
1411   Record.push_back(N->getFlags());
1412   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1413   Record.push_back(N->getRuntimeLang());
1414   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1415   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1416   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1417 
1418   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1419   Record.clear();
1420 }
1421 
1422 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1423                                               SmallVectorImpl<uint64_t> &Record,
1424                                               unsigned Abbrev) {
1425   Record.push_back(N->isDistinct());
1426   Record.push_back(N->getFlags());
1427   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1428 
1429   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1430   Record.clear();
1431 }
1432 
1433 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1434                                     SmallVectorImpl<uint64_t> &Record,
1435                                     unsigned Abbrev) {
1436   Record.push_back(N->isDistinct());
1437   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1438   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1439 
1440   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1441   Record.clear();
1442 }
1443 
1444 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1445                                            SmallVectorImpl<uint64_t> &Record,
1446                                            unsigned Abbrev) {
1447   Record.push_back(N->isDistinct());
1448   Record.push_back(N->getSourceLanguage());
1449   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1450   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1451   Record.push_back(N->isOptimized());
1452   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1453   Record.push_back(N->getRuntimeVersion());
1454   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1455   Record.push_back(N->getEmissionKind());
1456   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1457   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1458   Record.push_back(/* subprograms */ 0);
1459   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1460   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1461   Record.push_back(N->getDWOId());
1462 
1463   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1464   Record.clear();
1465 }
1466 
1467 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1468                                           SmallVectorImpl<uint64_t> &Record,
1469                                           unsigned Abbrev) {
1470   Record.push_back(N->isDistinct());
1471   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1472   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1473   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1474   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1475   Record.push_back(N->getLine());
1476   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1477   Record.push_back(N->isLocalToUnit());
1478   Record.push_back(N->isDefinition());
1479   Record.push_back(N->getScopeLine());
1480   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1481   Record.push_back(N->getVirtuality());
1482   Record.push_back(N->getVirtualIndex());
1483   Record.push_back(N->getFlags());
1484   Record.push_back(N->isOptimized());
1485   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1486   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1487   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1488   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1489 
1490   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1491   Record.clear();
1492 }
1493 
1494 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1495                                             SmallVectorImpl<uint64_t> &Record,
1496                                             unsigned Abbrev) {
1497   Record.push_back(N->isDistinct());
1498   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1499   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1500   Record.push_back(N->getLine());
1501   Record.push_back(N->getColumn());
1502 
1503   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1504   Record.clear();
1505 }
1506 
1507 void DXILBitcodeWriter::writeDILexicalBlockFile(
1508     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1509     unsigned Abbrev) {
1510   Record.push_back(N->isDistinct());
1511   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1512   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1513   Record.push_back(N->getDiscriminator());
1514 
1515   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1516   Record.clear();
1517 }
1518 
1519 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1520                                          SmallVectorImpl<uint64_t> &Record,
1521                                          unsigned Abbrev) {
1522   Record.push_back(N->isDistinct());
1523   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1524   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1525   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1526   Record.push_back(/* line number */ 0);
1527 
1528   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1529   Record.clear();
1530 }
1531 
1532 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1533                                       SmallVectorImpl<uint64_t> &Record,
1534                                       unsigned Abbrev) {
1535   Record.push_back(N->isDistinct());
1536   for (auto &I : N->operands())
1537     Record.push_back(VE.getMetadataOrNullID(I));
1538 
1539   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1540   Record.clear();
1541 }
1542 
1543 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1544     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1545     unsigned Abbrev) {
1546   Record.push_back(N->isDistinct());
1547   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1548   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1549 
1550   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1551   Record.clear();
1552 }
1553 
1554 void DXILBitcodeWriter::writeDITemplateValueParameter(
1555     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1556     unsigned Abbrev) {
1557   Record.push_back(N->isDistinct());
1558   Record.push_back(N->getTag());
1559   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1560   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1561   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1562 
1563   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1564   Record.clear();
1565 }
1566 
1567 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1568                                               SmallVectorImpl<uint64_t> &Record,
1569                                               unsigned Abbrev) {
1570   Record.push_back(N->isDistinct());
1571   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1572   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1573   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1574   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1575   Record.push_back(N->getLine());
1576   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1577   Record.push_back(N->isLocalToUnit());
1578   Record.push_back(N->isDefinition());
1579   Record.push_back(/* N->getRawVariable() */ 0);
1580   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1581 
1582   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1583   Record.clear();
1584 }
1585 
1586 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1587                                              SmallVectorImpl<uint64_t> &Record,
1588                                              unsigned Abbrev) {
1589   Record.push_back(N->isDistinct());
1590   Record.push_back(N->getTag());
1591   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1592   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1593   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1594   Record.push_back(N->getLine());
1595   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1596   Record.push_back(N->getArg());
1597   Record.push_back(N->getFlags());
1598 
1599   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1600   Record.clear();
1601 }
1602 
1603 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1604                                           SmallVectorImpl<uint64_t> &Record,
1605                                           unsigned Abbrev) {
1606   Record.reserve(N->getElements().size() + 1);
1607 
1608   Record.push_back(N->isDistinct());
1609   Record.append(N->elements_begin(), N->elements_end());
1610 
1611   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1612   Record.clear();
1613 }
1614 
1615 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1616                                             SmallVectorImpl<uint64_t> &Record,
1617                                             unsigned Abbrev) {
1618   llvm_unreachable("DXIL does not support objc!!!");
1619 }
1620 
1621 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1622                                               SmallVectorImpl<uint64_t> &Record,
1623                                               unsigned Abbrev) {
1624   Record.push_back(N->isDistinct());
1625   Record.push_back(N->getTag());
1626   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1627   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1628   Record.push_back(N->getLine());
1629   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1630 
1631   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1632   Record.clear();
1633 }
1634 
1635 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1636   // Abbrev for METADATA_LOCATION.
1637   //
1638   // Assume the column is usually under 128, and always output the inlined-at
1639   // location (it's never more expensive than building an array size 1).
1640   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1641   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1642   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1643   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1644   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1645   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1646   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1647   return Stream.EmitAbbrev(std::move(Abbv));
1648 }
1649 
1650 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1651   // Abbrev for METADATA_GENERIC_DEBUG.
1652   //
1653   // Assume the column is usually under 128, and always output the inlined-at
1654   // location (it's never more expensive than building an array size 1).
1655   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1656   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1657   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1658   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1659   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1660   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1661   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1662   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1663   return Stream.EmitAbbrev(std::move(Abbv));
1664 }
1665 
1666 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1667                                              SmallVectorImpl<uint64_t> &Record,
1668                                              std::vector<unsigned> *MDAbbrevs,
1669                                              std::vector<uint64_t> *IndexPos) {
1670   if (MDs.empty())
1671     return;
1672 
1673     // Initialize MDNode abbreviations.
1674 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1675 #include "llvm/IR/Metadata.def"
1676 
1677   for (const Metadata *MD : MDs) {
1678     if (IndexPos)
1679       IndexPos->push_back(Stream.GetCurrentBitNo());
1680     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1681       assert(N->isResolved() && "Expected forward references to be resolved");
1682 
1683       switch (N->getMetadataID()) {
1684       default:
1685         llvm_unreachable("Invalid MDNode subclass");
1686 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1687   case Metadata::CLASS##Kind:                                                  \
1688     if (MDAbbrevs)                                                             \
1689       write##CLASS(cast<CLASS>(N), Record,                                     \
1690                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1691     else                                                                       \
1692       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1693     continue;
1694 #include "llvm/IR/Metadata.def"
1695       }
1696     }
1697     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1698   }
1699 }
1700 
1701 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1702   auto Abbv = std::make_shared<BitCodeAbbrev>();
1703   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1704   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1705   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1706   return Stream.EmitAbbrev(std::move(Abbv));
1707 }
1708 
1709 void DXILBitcodeWriter::writeMetadataStrings(
1710     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1711   for (const Metadata *MD : Strings) {
1712     const MDString *MDS = cast<MDString>(MD);
1713     // Code: [strchar x N]
1714     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1715 
1716     // Emit the finished record.
1717     Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
1718                       createMetadataStringsAbbrev());
1719     Record.clear();
1720   }
1721 }
1722 
1723 void DXILBitcodeWriter::writeModuleMetadata() {
1724   if (!VE.hasMDs() && M.named_metadata_empty())
1725     return;
1726 
1727   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1728 
1729   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1730   // block and load any metadata.
1731   std::vector<unsigned> MDAbbrevs;
1732 
1733   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1734   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1735   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1736       createGenericDINodeAbbrev();
1737 
1738   unsigned NameAbbrev = 0;
1739   if (!M.named_metadata_empty()) {
1740     // Abbrev for METADATA_NAME.
1741     std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1742     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1743     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1745     NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1746   }
1747 
1748   SmallVector<uint64_t, 64> Record;
1749   writeMetadataStrings(VE.getMDStrings(), Record);
1750 
1751   std::vector<uint64_t> IndexPos;
1752   IndexPos.reserve(VE.getNonMDStrings().size());
1753   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1754 
1755   // Write named metadata.
1756   for (const NamedMDNode &NMD : M.named_metadata()) {
1757     // Write name.
1758     StringRef Str = NMD.getName();
1759     Record.append(Str.bytes_begin(), Str.bytes_end());
1760     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1761     Record.clear();
1762 
1763     // Write named metadata operands.
1764     for (const MDNode *N : NMD.operands())
1765       Record.push_back(VE.getMetadataID(N));
1766     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1767     Record.clear();
1768   }
1769 
1770   Stream.ExitBlock();
1771 }
1772 
1773 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1774   if (!VE.hasMDs())
1775     return;
1776 
1777   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1778   SmallVector<uint64_t, 64> Record;
1779   writeMetadataStrings(VE.getMDStrings(), Record);
1780   writeMetadataRecords(VE.getNonMDStrings(), Record);
1781   Stream.ExitBlock();
1782 }
1783 
1784 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1785   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1786 
1787   SmallVector<uint64_t, 64> Record;
1788 
1789   // Write metadata attachments
1790   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1791   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1792   F.getAllMetadata(MDs);
1793   if (!MDs.empty()) {
1794     for (const auto &I : MDs) {
1795       Record.push_back(I.first);
1796       Record.push_back(VE.getMetadataID(I.second));
1797     }
1798     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1799     Record.clear();
1800   }
1801 
1802   for (const BasicBlock &BB : F)
1803     for (const Instruction &I : BB) {
1804       MDs.clear();
1805       I.getAllMetadataOtherThanDebugLoc(MDs);
1806 
1807       // If no metadata, ignore instruction.
1808       if (MDs.empty())
1809         continue;
1810 
1811       Record.push_back(VE.getInstructionID(&I));
1812 
1813       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1814         Record.push_back(MDs[i].first);
1815         Record.push_back(VE.getMetadataID(MDs[i].second));
1816       }
1817       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1818       Record.clear();
1819     }
1820 
1821   Stream.ExitBlock();
1822 }
1823 
1824 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1825   SmallVector<uint64_t, 64> Record;
1826 
1827   // Write metadata kinds
1828   // METADATA_KIND - [n x [id, name]]
1829   SmallVector<StringRef, 8> Names;
1830   M.getMDKindNames(Names);
1831 
1832   if (Names.empty())
1833     return;
1834 
1835   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1836 
1837   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1838     Record.push_back(MDKindID);
1839     StringRef KName = Names[MDKindID];
1840     Record.append(KName.begin(), KName.end());
1841 
1842     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1843     Record.clear();
1844   }
1845 
1846   Stream.ExitBlock();
1847 }
1848 
1849 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1850                                        bool isGlobal) {
1851   if (FirstVal == LastVal)
1852     return;
1853 
1854   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1855 
1856   unsigned AggregateAbbrev = 0;
1857   unsigned String8Abbrev = 0;
1858   unsigned CString7Abbrev = 0;
1859   unsigned CString6Abbrev = 0;
1860   // If this is a constant pool for the module, emit module-specific abbrevs.
1861   if (isGlobal) {
1862     // Abbrev for CST_CODE_AGGREGATE.
1863     auto Abbv = std::make_shared<BitCodeAbbrev>();
1864     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1865     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1866     Abbv->Add(
1867         BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1868     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1869 
1870     // Abbrev for CST_CODE_STRING.
1871     Abbv = std::make_shared<BitCodeAbbrev>();
1872     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1873     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1874     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1875     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1876     // Abbrev for CST_CODE_CSTRING.
1877     Abbv = std::make_shared<BitCodeAbbrev>();
1878     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1879     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1880     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1881     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1882     // Abbrev for CST_CODE_CSTRING.
1883     Abbv = std::make_shared<BitCodeAbbrev>();
1884     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1885     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1886     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1887     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1888   }
1889 
1890   SmallVector<uint64_t, 64> Record;
1891 
1892   const ValueEnumerator::ValueList &Vals = VE.getValues();
1893   Type *LastTy = nullptr;
1894   for (unsigned i = FirstVal; i != LastVal; ++i) {
1895     const Value *V = Vals[i].first;
1896     // If we need to switch types, do so now.
1897     if (V->getType() != LastTy) {
1898       LastTy = V->getType();
1899       Record.push_back(VE.getTypeID(LastTy));
1900       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1901                         CONSTANTS_SETTYPE_ABBREV);
1902       Record.clear();
1903     }
1904 
1905     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1906       Record.push_back(unsigned(IA->hasSideEffects()) |
1907                        unsigned(IA->isAlignStack()) << 1 |
1908                        unsigned(IA->getDialect() & 1) << 2);
1909 
1910       // Add the asm string.
1911       const std::string &AsmStr = IA->getAsmString();
1912       Record.push_back(AsmStr.size());
1913       Record.append(AsmStr.begin(), AsmStr.end());
1914 
1915       // Add the constraint string.
1916       const std::string &ConstraintStr = IA->getConstraintString();
1917       Record.push_back(ConstraintStr.size());
1918       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1919       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1920       Record.clear();
1921       continue;
1922     }
1923     const Constant *C = cast<Constant>(V);
1924     unsigned Code = -1U;
1925     unsigned AbbrevToUse = 0;
1926     if (C->isNullValue()) {
1927       Code = bitc::CST_CODE_NULL;
1928     } else if (isa<UndefValue>(C)) {
1929       Code = bitc::CST_CODE_UNDEF;
1930     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1931       if (IV->getBitWidth() <= 64) {
1932         uint64_t V = IV->getSExtValue();
1933         emitSignedInt64(Record, V);
1934         Code = bitc::CST_CODE_INTEGER;
1935         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1936       } else { // Wide integers, > 64 bits in size.
1937         // We have an arbitrary precision integer value to write whose
1938         // bit width is > 64. However, in canonical unsigned integer
1939         // format it is likely that the high bits are going to be zero.
1940         // So, we only write the number of active words.
1941         unsigned NWords = IV->getValue().getActiveWords();
1942         const uint64_t *RawWords = IV->getValue().getRawData();
1943         for (unsigned i = 0; i != NWords; ++i) {
1944           emitSignedInt64(Record, RawWords[i]);
1945         }
1946         Code = bitc::CST_CODE_WIDE_INTEGER;
1947       }
1948     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1949       Code = bitc::CST_CODE_FLOAT;
1950       Type *Ty = CFP->getType();
1951       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1952         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1953       } else if (Ty->isX86_FP80Ty()) {
1954         // api needed to prevent premature destruction
1955         // bits are not in the same order as a normal i80 APInt, compensate.
1956         APInt api = CFP->getValueAPF().bitcastToAPInt();
1957         const uint64_t *p = api.getRawData();
1958         Record.push_back((p[1] << 48) | (p[0] >> 16));
1959         Record.push_back(p[0] & 0xffffLL);
1960       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1961         APInt api = CFP->getValueAPF().bitcastToAPInt();
1962         const uint64_t *p = api.getRawData();
1963         Record.push_back(p[0]);
1964         Record.push_back(p[1]);
1965       } else {
1966         assert(0 && "Unknown FP type!");
1967       }
1968     } else if (isa<ConstantDataSequential>(C) &&
1969                cast<ConstantDataSequential>(C)->isString()) {
1970       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1971       // Emit constant strings specially.
1972       unsigned NumElts = Str->getNumElements();
1973       // If this is a null-terminated string, use the denser CSTRING encoding.
1974       if (Str->isCString()) {
1975         Code = bitc::CST_CODE_CSTRING;
1976         --NumElts; // Don't encode the null, which isn't allowed by char6.
1977       } else {
1978         Code = bitc::CST_CODE_STRING;
1979         AbbrevToUse = String8Abbrev;
1980       }
1981       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1982       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1983       for (unsigned i = 0; i != NumElts; ++i) {
1984         unsigned char V = Str->getElementAsInteger(i);
1985         Record.push_back(V);
1986         isCStr7 &= (V & 128) == 0;
1987         if (isCStrChar6)
1988           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1989       }
1990 
1991       if (isCStrChar6)
1992         AbbrevToUse = CString6Abbrev;
1993       else if (isCStr7)
1994         AbbrevToUse = CString7Abbrev;
1995     } else if (const ConstantDataSequential *CDS =
1996                    dyn_cast<ConstantDataSequential>(C)) {
1997       Code = bitc::CST_CODE_DATA;
1998       Type *EltTy = CDS->getType()->getArrayElementType();
1999       if (isa<IntegerType>(EltTy)) {
2000         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2001           Record.push_back(CDS->getElementAsInteger(i));
2002       } else if (EltTy->isFloatTy()) {
2003         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2004           union {
2005             float F;
2006             uint32_t I;
2007           };
2008           F = CDS->getElementAsFloat(i);
2009           Record.push_back(I);
2010         }
2011       } else {
2012         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2013         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2014           union {
2015             double F;
2016             uint64_t I;
2017           };
2018           F = CDS->getElementAsDouble(i);
2019           Record.push_back(I);
2020         }
2021       }
2022     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2023                isa<ConstantVector>(C)) {
2024       Code = bitc::CST_CODE_AGGREGATE;
2025       for (const Value *Op : C->operands())
2026         Record.push_back(VE.getValueID(Op));
2027       AbbrevToUse = AggregateAbbrev;
2028     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2029       switch (CE->getOpcode()) {
2030       default:
2031         if (Instruction::isCast(CE->getOpcode())) {
2032           Code = bitc::CST_CODE_CE_CAST;
2033           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2034           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2035           Record.push_back(VE.getValueID(C->getOperand(0)));
2036           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2037         } else {
2038           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2039           Code = bitc::CST_CODE_CE_BINOP;
2040           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2041           Record.push_back(VE.getValueID(C->getOperand(0)));
2042           Record.push_back(VE.getValueID(C->getOperand(1)));
2043           uint64_t Flags = getOptimizationFlags(CE);
2044           if (Flags != 0)
2045             Record.push_back(Flags);
2046         }
2047         break;
2048       case Instruction::GetElementPtr: {
2049         Code = bitc::CST_CODE_CE_GEP;
2050         const auto *GO = cast<GEPOperator>(C);
2051         if (GO->isInBounds())
2052           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2053         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2054         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2055           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2056           Record.push_back(VE.getValueID(C->getOperand(i)));
2057         }
2058         break;
2059       }
2060       case Instruction::Select:
2061         Code = bitc::CST_CODE_CE_SELECT;
2062         Record.push_back(VE.getValueID(C->getOperand(0)));
2063         Record.push_back(VE.getValueID(C->getOperand(1)));
2064         Record.push_back(VE.getValueID(C->getOperand(2)));
2065         break;
2066       case Instruction::ExtractElement:
2067         Code = bitc::CST_CODE_CE_EXTRACTELT;
2068         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2069         Record.push_back(VE.getValueID(C->getOperand(0)));
2070         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2071         Record.push_back(VE.getValueID(C->getOperand(1)));
2072         break;
2073       case Instruction::InsertElement:
2074         Code = bitc::CST_CODE_CE_INSERTELT;
2075         Record.push_back(VE.getValueID(C->getOperand(0)));
2076         Record.push_back(VE.getValueID(C->getOperand(1)));
2077         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2078         Record.push_back(VE.getValueID(C->getOperand(2)));
2079         break;
2080       case Instruction::ShuffleVector:
2081         // If the return type and argument types are the same, this is a
2082         // standard shufflevector instruction.  If the types are different,
2083         // then the shuffle is widening or truncating the input vectors, and
2084         // the argument type must also be encoded.
2085         if (C->getType() == C->getOperand(0)->getType()) {
2086           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2087         } else {
2088           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2089           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2090         }
2091         Record.push_back(VE.getValueID(C->getOperand(0)));
2092         Record.push_back(VE.getValueID(C->getOperand(1)));
2093         Record.push_back(VE.getValueID(C->getOperand(2)));
2094         break;
2095       case Instruction::ICmp:
2096       case Instruction::FCmp:
2097         Code = bitc::CST_CODE_CE_CMP;
2098         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2099         Record.push_back(VE.getValueID(C->getOperand(0)));
2100         Record.push_back(VE.getValueID(C->getOperand(1)));
2101         Record.push_back(CE->getPredicate());
2102         break;
2103       }
2104     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2105       Code = bitc::CST_CODE_BLOCKADDRESS;
2106       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2107       Record.push_back(VE.getValueID(BA->getFunction()));
2108       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2109     } else {
2110 #ifndef NDEBUG
2111       C->dump();
2112 #endif
2113       llvm_unreachable("Unknown constant!");
2114     }
2115     Stream.EmitRecord(Code, Record, AbbrevToUse);
2116     Record.clear();
2117   }
2118 
2119   Stream.ExitBlock();
2120 }
2121 
2122 void DXILBitcodeWriter::writeModuleConstants() {
2123   const ValueEnumerator::ValueList &Vals = VE.getValues();
2124 
2125   // Find the first constant to emit, which is the first non-globalvalue value.
2126   // We know globalvalues have been emitted by WriteModuleInfo.
2127   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2128     if (!isa<GlobalValue>(Vals[i].first)) {
2129       writeConstants(i, Vals.size(), true);
2130       return;
2131     }
2132   }
2133 }
2134 
2135 /// pushValueAndType - The file has to encode both the value and type id for
2136 /// many values, because we need to know what type to create for forward
2137 /// references.  However, most operands are not forward references, so this type
2138 /// field is not needed.
2139 ///
2140 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2141 /// instruction ID, then it is a forward reference, and it also includes the
2142 /// type ID.  The value ID that is written is encoded relative to the InstID.
2143 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2144                                          SmallVectorImpl<unsigned> &Vals) {
2145   unsigned ValID = VE.getValueID(V);
2146   // Make encoding relative to the InstID.
2147   Vals.push_back(InstID - ValID);
2148   if (ValID >= InstID) {
2149     Vals.push_back(VE.getTypeID(V->getType()));
2150     return true;
2151   }
2152   return false;
2153 }
2154 
2155 /// pushValue - Like pushValueAndType, but where the type of the value is
2156 /// omitted (perhaps it was already encoded in an earlier operand).
2157 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2158                                   SmallVectorImpl<unsigned> &Vals) {
2159   unsigned ValID = VE.getValueID(V);
2160   Vals.push_back(InstID - ValID);
2161 }
2162 
2163 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2164                                         SmallVectorImpl<uint64_t> &Vals) {
2165   unsigned ValID = VE.getValueID(V);
2166   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2167   emitSignedInt64(Vals, diff);
2168 }
2169 
2170 /// WriteInstruction - Emit an instruction
2171 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2172                                          SmallVectorImpl<unsigned> &Vals) {
2173   unsigned Code = 0;
2174   unsigned AbbrevToUse = 0;
2175   VE.setInstructionID(&I);
2176   switch (I.getOpcode()) {
2177   default:
2178     if (Instruction::isCast(I.getOpcode())) {
2179       Code = bitc::FUNC_CODE_INST_CAST;
2180       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2181         AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2182       Vals.push_back(VE.getTypeID(I.getType()));
2183       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2184     } else {
2185       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2186       Code = bitc::FUNC_CODE_INST_BINOP;
2187       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2188         AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2189       pushValue(I.getOperand(1), InstID, Vals);
2190       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2191       uint64_t Flags = getOptimizationFlags(&I);
2192       if (Flags != 0) {
2193         if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2194           AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2195         Vals.push_back(Flags);
2196       }
2197     }
2198     break;
2199 
2200   case Instruction::GetElementPtr: {
2201     Code = bitc::FUNC_CODE_INST_GEP;
2202     AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2203     auto &GEPInst = cast<GetElementPtrInst>(I);
2204     Vals.push_back(GEPInst.isInBounds());
2205     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2206     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2207       pushValueAndType(I.getOperand(i), InstID, Vals);
2208     break;
2209   }
2210   case Instruction::ExtractValue: {
2211     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2212     pushValueAndType(I.getOperand(0), InstID, Vals);
2213     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2214     Vals.append(EVI->idx_begin(), EVI->idx_end());
2215     break;
2216   }
2217   case Instruction::InsertValue: {
2218     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2219     pushValueAndType(I.getOperand(0), InstID, Vals);
2220     pushValueAndType(I.getOperand(1), InstID, Vals);
2221     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2222     Vals.append(IVI->idx_begin(), IVI->idx_end());
2223     break;
2224   }
2225   case Instruction::Select:
2226     Code = bitc::FUNC_CODE_INST_VSELECT;
2227     pushValueAndType(I.getOperand(1), InstID, Vals);
2228     pushValue(I.getOperand(2), InstID, Vals);
2229     pushValueAndType(I.getOperand(0), InstID, Vals);
2230     break;
2231   case Instruction::ExtractElement:
2232     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2233     pushValueAndType(I.getOperand(0), InstID, Vals);
2234     pushValueAndType(I.getOperand(1), InstID, Vals);
2235     break;
2236   case Instruction::InsertElement:
2237     Code = bitc::FUNC_CODE_INST_INSERTELT;
2238     pushValueAndType(I.getOperand(0), InstID, Vals);
2239     pushValue(I.getOperand(1), InstID, Vals);
2240     pushValueAndType(I.getOperand(2), InstID, Vals);
2241     break;
2242   case Instruction::ShuffleVector:
2243     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2244     pushValueAndType(I.getOperand(0), InstID, Vals);
2245     pushValue(I.getOperand(1), InstID, Vals);
2246     pushValue(I.getOperand(2), InstID, Vals);
2247     break;
2248   case Instruction::ICmp:
2249   case Instruction::FCmp: {
2250     // compare returning Int1Ty or vector of Int1Ty
2251     Code = bitc::FUNC_CODE_INST_CMP2;
2252     pushValueAndType(I.getOperand(0), InstID, Vals);
2253     pushValue(I.getOperand(1), InstID, Vals);
2254     Vals.push_back(cast<CmpInst>(I).getPredicate());
2255     uint64_t Flags = getOptimizationFlags(&I);
2256     if (Flags != 0)
2257       Vals.push_back(Flags);
2258     break;
2259   }
2260 
2261   case Instruction::Ret: {
2262     Code = bitc::FUNC_CODE_INST_RET;
2263     unsigned NumOperands = I.getNumOperands();
2264     if (NumOperands == 0)
2265       AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2266     else if (NumOperands == 1) {
2267       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2268         AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2269     } else {
2270       for (unsigned i = 0, e = NumOperands; i != e; ++i)
2271         pushValueAndType(I.getOperand(i), InstID, Vals);
2272     }
2273   } break;
2274   case Instruction::Br: {
2275     Code = bitc::FUNC_CODE_INST_BR;
2276     const BranchInst &II = cast<BranchInst>(I);
2277     Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2278     if (II.isConditional()) {
2279       Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2280       pushValue(II.getCondition(), InstID, Vals);
2281     }
2282   } break;
2283   case Instruction::Switch: {
2284     Code = bitc::FUNC_CODE_INST_SWITCH;
2285     const SwitchInst &SI = cast<SwitchInst>(I);
2286     Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2287     pushValue(SI.getCondition(), InstID, Vals);
2288     Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2289     for (auto Case : SI.cases()) {
2290       Vals.push_back(VE.getValueID(Case.getCaseValue()));
2291       Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2292     }
2293   } break;
2294   case Instruction::IndirectBr:
2295     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2296     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2297     // Encode the address operand as relative, but not the basic blocks.
2298     pushValue(I.getOperand(0), InstID, Vals);
2299     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2300       Vals.push_back(VE.getValueID(I.getOperand(i)));
2301     break;
2302 
2303   case Instruction::Invoke: {
2304     const InvokeInst *II = cast<InvokeInst>(&I);
2305     const Value *Callee = II->getCalledOperand();
2306     FunctionType *FTy = II->getFunctionType();
2307     Code = bitc::FUNC_CODE_INST_INVOKE;
2308 
2309     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2310     Vals.push_back(II->getCallingConv() | 1 << 13);
2311     Vals.push_back(VE.getValueID(II->getNormalDest()));
2312     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2313     Vals.push_back(VE.getTypeID(FTy));
2314     pushValueAndType(Callee, InstID, Vals);
2315 
2316     // Emit value #'s for the fixed parameters.
2317     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2318       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2319 
2320     // Emit type/value pairs for varargs params.
2321     if (FTy->isVarArg()) {
2322       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2323            ++i)
2324         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2325     }
2326     break;
2327   }
2328   case Instruction::Resume:
2329     Code = bitc::FUNC_CODE_INST_RESUME;
2330     pushValueAndType(I.getOperand(0), InstID, Vals);
2331     break;
2332   case Instruction::Unreachable:
2333     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2334     AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2335     break;
2336 
2337   case Instruction::PHI: {
2338     const PHINode &PN = cast<PHINode>(I);
2339     Code = bitc::FUNC_CODE_INST_PHI;
2340     // With the newer instruction encoding, forward references could give
2341     // negative valued IDs.  This is most common for PHIs, so we use
2342     // signed VBRs.
2343     SmallVector<uint64_t, 128> Vals64;
2344     Vals64.push_back(VE.getTypeID(PN.getType()));
2345     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2346       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2347       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2348     }
2349     // Emit a Vals64 vector and exit.
2350     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2351     Vals64.clear();
2352     return;
2353   }
2354 
2355   case Instruction::LandingPad: {
2356     const LandingPadInst &LP = cast<LandingPadInst>(I);
2357     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2358     Vals.push_back(VE.getTypeID(LP.getType()));
2359     Vals.push_back(LP.isCleanup());
2360     Vals.push_back(LP.getNumClauses());
2361     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2362       if (LP.isCatch(I))
2363         Vals.push_back(LandingPadInst::Catch);
2364       else
2365         Vals.push_back(LandingPadInst::Filter);
2366       pushValueAndType(LP.getClause(I), InstID, Vals);
2367     }
2368     break;
2369   }
2370 
2371   case Instruction::Alloca: {
2372     Code = bitc::FUNC_CODE_INST_ALLOCA;
2373     const AllocaInst &AI = cast<AllocaInst>(I);
2374     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2375     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2376     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2377     using APV = AllocaPackedValues;
2378     unsigned Record = 0;
2379     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
2380     Bitfield::set<APV::AlignLower>(
2381         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
2382     Bitfield::set<APV::AlignUpper>(Record,
2383                                    EncodedAlign >> APV::AlignLower::Bits);
2384     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
2385     Vals.push_back(Record);
2386     break;
2387   }
2388 
2389   case Instruction::Load:
2390     if (cast<LoadInst>(I).isAtomic()) {
2391       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2392       pushValueAndType(I.getOperand(0), InstID, Vals);
2393     } else {
2394       Code = bitc::FUNC_CODE_INST_LOAD;
2395       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2396         AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2397     }
2398     Vals.push_back(VE.getTypeID(I.getType()));
2399     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment()) + 1);
2400     Vals.push_back(cast<LoadInst>(I).isVolatile());
2401     if (cast<LoadInst>(I).isAtomic()) {
2402       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2403       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2404     }
2405     break;
2406   case Instruction::Store:
2407     if (cast<StoreInst>(I).isAtomic())
2408       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2409     else
2410       Code = bitc::FUNC_CODE_INST_STORE;
2411     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2412     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2413     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment()) + 1);
2414     Vals.push_back(cast<StoreInst>(I).isVolatile());
2415     if (cast<StoreInst>(I).isAtomic()) {
2416       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2417       Vals.push_back(
2418           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2419     }
2420     break;
2421   case Instruction::AtomicCmpXchg:
2422     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2423     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2424     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2425     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2426     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2427     Vals.push_back(
2428         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2429     Vals.push_back(
2430         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2431     Vals.push_back(
2432         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2433     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2434     break;
2435   case Instruction::AtomicRMW:
2436     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2437     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2438     pushValue(I.getOperand(1), InstID, Vals);        // val.
2439     Vals.push_back(
2440         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2441     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2442     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2443     Vals.push_back(
2444         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2445     break;
2446   case Instruction::Fence:
2447     Code = bitc::FUNC_CODE_INST_FENCE;
2448     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2449     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2450     break;
2451   case Instruction::Call: {
2452     const CallInst &CI = cast<CallInst>(I);
2453     FunctionType *FTy = CI.getFunctionType();
2454 
2455     Code = bitc::FUNC_CODE_INST_CALL;
2456 
2457     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2458     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2459                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2460     Vals.push_back(VE.getTypeID(FTy));
2461     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2462 
2463     // Emit value #'s for the fixed parameters.
2464     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2465       // Check for labels (can happen with asm labels).
2466       if (FTy->getParamType(i)->isLabelTy())
2467         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2468       else
2469         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2470     }
2471 
2472     // Emit type/value pairs for varargs params.
2473     if (FTy->isVarArg()) {
2474       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2475         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2476     }
2477     break;
2478   }
2479   case Instruction::VAArg:
2480     Code = bitc::FUNC_CODE_INST_VAARG;
2481     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
2482     pushValue(I.getOperand(0), InstID, Vals);                 // valist.
2483     Vals.push_back(VE.getTypeID(I.getType()));                // restype.
2484     break;
2485   }
2486 
2487   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2488   Vals.clear();
2489 }
2490 
2491 // Emit names for globals/functions etc.
2492 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2493     const ValueSymbolTable &VST) {
2494   if (VST.empty())
2495     return;
2496   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2497 
2498   SmallVector<unsigned, 64> NameVals;
2499 
2500   // HLSL Change
2501   // Read the named values from a sorted list instead of the original list
2502   // to ensure the binary is the same no matter what values ever existed.
2503   SmallVector<const ValueName *, 16> SortedTable;
2504 
2505   for (auto &VI : VST) {
2506     SortedTable.push_back(VI.second->getValueName());
2507   }
2508   // The keys are unique, so there shouldn't be stability issues.
2509   std::sort(SortedTable.begin(), SortedTable.end(),
2510             [](const ValueName *A, const ValueName *B) {
2511               return A->first() < B->first();
2512             });
2513 
2514   for (const ValueName *SI : SortedTable) {
2515     auto &Name = *SI;
2516 
2517     // Figure out the encoding to use for the name.
2518     bool is7Bit = true;
2519     bool isChar6 = true;
2520     for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2521          C != E; ++C) {
2522       if (isChar6)
2523         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2524       if ((unsigned char)*C & 128) {
2525         is7Bit = false;
2526         break; // don't bother scanning the rest.
2527       }
2528     }
2529 
2530     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2531 
2532     // VST_ENTRY:   [valueid, namechar x N]
2533     // VST_BBENTRY: [bbid, namechar x N]
2534     unsigned Code;
2535     if (isa<BasicBlock>(SI->getValue())) {
2536       Code = bitc::VST_CODE_BBENTRY;
2537       if (isChar6)
2538         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2539     } else {
2540       Code = bitc::VST_CODE_ENTRY;
2541       if (isChar6)
2542         AbbrevToUse = VST_ENTRY_6_ABBREV;
2543       else if (is7Bit)
2544         AbbrevToUse = VST_ENTRY_7_ABBREV;
2545     }
2546 
2547     NameVals.push_back(VE.getValueID(SI->getValue()));
2548     for (const char *P = Name.getKeyData(),
2549                     *E = Name.getKeyData() + Name.getKeyLength();
2550          P != E; ++P)
2551       NameVals.push_back((unsigned char)*P);
2552 
2553     // Emit the finished record.
2554     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2555     NameVals.clear();
2556   }
2557   Stream.ExitBlock();
2558 }
2559 
2560 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
2561   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2562   unsigned Code;
2563   if (isa<BasicBlock>(Order.V))
2564     Code = bitc::USELIST_CODE_BB;
2565   else
2566     Code = bitc::USELIST_CODE_DEFAULT;
2567 
2568   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2569   Record.push_back(VE.getValueID(Order.V));
2570   Stream.EmitRecord(Code, Record);
2571 }
2572 
2573 void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
2574   assert(VE.shouldPreserveUseListOrder() &&
2575          "Expected to be preserving use-list order");
2576 
2577   auto hasMore = [&]() {
2578     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2579   };
2580   if (!hasMore())
2581     // Nothing to do.
2582     return;
2583 
2584   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2585   while (hasMore()) {
2586     writeUseList(std::move(VE.UseListOrders.back()));
2587     VE.UseListOrders.pop_back();
2588   }
2589   Stream.ExitBlock();
2590 }
2591 
2592 /// Emit a function body to the module stream.
2593 void DXILBitcodeWriter::writeFunction(const Function &F) {
2594   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2595   VE.incorporateFunction(F);
2596 
2597   SmallVector<unsigned, 64> Vals;
2598 
2599   // Emit the number of basic blocks, so the reader can create them ahead of
2600   // time.
2601   Vals.push_back(VE.getBasicBlocks().size());
2602   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2603   Vals.clear();
2604 
2605   // If there are function-local constants, emit them now.
2606   unsigned CstStart, CstEnd;
2607   VE.getFunctionConstantRange(CstStart, CstEnd);
2608   writeConstants(CstStart, CstEnd, false);
2609 
2610   // If there is function-local metadata, emit it now.
2611   writeFunctionMetadata(F);
2612 
2613   // Keep a running idea of what the instruction ID is.
2614   unsigned InstID = CstEnd;
2615 
2616   bool NeedsMetadataAttachment = F.hasMetadata();
2617 
2618   DILocation *LastDL = nullptr;
2619 
2620   // Finally, emit all the instructions, in order.
2621   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2622     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2623          ++I) {
2624       writeInstruction(*I, InstID, Vals);
2625 
2626       if (!I->getType()->isVoidTy())
2627         ++InstID;
2628 
2629       // If the instruction has metadata, write a metadata attachment later.
2630       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2631 
2632       // If the instruction has a debug location, emit it.
2633       DILocation *DL = I->getDebugLoc();
2634       if (!DL)
2635         continue;
2636 
2637       if (DL == LastDL) {
2638         // Just repeat the same debug loc as last time.
2639         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2640         continue;
2641       }
2642 
2643       Vals.push_back(DL->getLine());
2644       Vals.push_back(DL->getColumn());
2645       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2646       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2647       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2648       Vals.clear();
2649 
2650       LastDL = DL;
2651     }
2652 
2653   // Emit names for all the instructions etc.
2654   if (auto *Symtab = F.getValueSymbolTable())
2655     writeFunctionLevelValueSymbolTable(*Symtab);
2656 
2657   if (NeedsMetadataAttachment)
2658     writeFunctionMetadataAttachment(F);
2659   if (VE.shouldPreserveUseListOrder())
2660     writeUseListBlock(&F);
2661   VE.purgeFunction();
2662   Stream.ExitBlock();
2663 }
2664 
2665 // Emit blockinfo, which defines the standard abbreviations etc.
2666 void DXILBitcodeWriter::writeBlockInfo() {
2667   // We only want to emit block info records for blocks that have multiple
2668   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2669   // Other blocks can define their abbrevs inline.
2670   Stream.EnterBlockInfoBlock();
2671 
2672   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2673     auto Abbv = std::make_shared<BitCodeAbbrev>();
2674     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2675     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2676     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2677     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2678     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2679                                    std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2680       assert(false && "Unexpected abbrev ordering!");
2681   }
2682 
2683   { // 7-bit fixed width VST_ENTRY strings.
2684     auto Abbv = std::make_shared<BitCodeAbbrev>();
2685     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2686     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2687     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2688     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2689     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2690                                    std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2691       assert(false && "Unexpected abbrev ordering!");
2692   }
2693   { // 6-bit char6 VST_ENTRY strings.
2694     auto Abbv = std::make_shared<BitCodeAbbrev>();
2695     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2696     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2697     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2698     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2699     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2700                                    std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2701       assert(false && "Unexpected abbrev ordering!");
2702   }
2703   { // 6-bit char6 VST_BBENTRY strings.
2704     auto Abbv = std::make_shared<BitCodeAbbrev>();
2705     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2706     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2707     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2708     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2709     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2710                                    std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2711       assert(false && "Unexpected abbrev ordering!");
2712   }
2713 
2714   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2715     auto Abbv = std::make_shared<BitCodeAbbrev>();
2716     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2717     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2718                               VE.computeBitsRequiredForTypeIndicies()));
2719     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2720         CONSTANTS_SETTYPE_ABBREV)
2721       assert(false && "Unexpected abbrev ordering!");
2722   }
2723 
2724   { // INTEGER abbrev for CONSTANTS_BLOCK.
2725     auto Abbv = std::make_shared<BitCodeAbbrev>();
2726     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2727     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2728     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2729         CONSTANTS_INTEGER_ABBREV)
2730       assert(false && "Unexpected abbrev ordering!");
2731   }
2732 
2733   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2734     auto Abbv = std::make_shared<BitCodeAbbrev>();
2735     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2736     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2737     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
2738                               VE.computeBitsRequiredForTypeIndicies()));
2739     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2740 
2741     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2742         CONSTANTS_CE_CAST_Abbrev)
2743       assert(false && "Unexpected abbrev ordering!");
2744   }
2745   { // NULL abbrev for CONSTANTS_BLOCK.
2746     auto Abbv = std::make_shared<BitCodeAbbrev>();
2747     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2748     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2749         CONSTANTS_NULL_Abbrev)
2750       assert(false && "Unexpected abbrev ordering!");
2751   }
2752 
2753   // FIXME: This should only use space for first class types!
2754 
2755   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2756     auto Abbv = std::make_shared<BitCodeAbbrev>();
2757     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2758     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2759     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2760                               VE.computeBitsRequiredForTypeIndicies()));
2761     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
2762     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2763     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2764         (unsigned)FUNCTION_INST_LOAD_ABBREV)
2765       assert(false && "Unexpected abbrev ordering!");
2766   }
2767   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2768     auto Abbv = std::make_shared<BitCodeAbbrev>();
2769     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2770     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2771     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2772     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2773     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2774         (unsigned)FUNCTION_INST_BINOP_ABBREV)
2775       assert(false && "Unexpected abbrev ordering!");
2776   }
2777   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2778     auto Abbv = std::make_shared<BitCodeAbbrev>();
2779     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2780     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2781     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2784     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2785         (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2786       assert(false && "Unexpected abbrev ordering!");
2787   }
2788   { // INST_CAST abbrev for FUNCTION_BLOCK.
2789     auto Abbv = std::make_shared<BitCodeAbbrev>();
2790     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2792     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2793                               VE.computeBitsRequiredForTypeIndicies()));
2794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2795     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2796         (unsigned)FUNCTION_INST_CAST_ABBREV)
2797       assert(false && "Unexpected abbrev ordering!");
2798   }
2799 
2800   { // INST_RET abbrev for FUNCTION_BLOCK.
2801     auto Abbv = std::make_shared<BitCodeAbbrev>();
2802     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2803     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2804         (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2805       assert(false && "Unexpected abbrev ordering!");
2806   }
2807   { // INST_RET abbrev for FUNCTION_BLOCK.
2808     auto Abbv = std::make_shared<BitCodeAbbrev>();
2809     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2810     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2811     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2812         (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2813       assert(false && "Unexpected abbrev ordering!");
2814   }
2815   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2816     auto Abbv = std::make_shared<BitCodeAbbrev>();
2817     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2818     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2819         (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2820       assert(false && "Unexpected abbrev ordering!");
2821   }
2822   {
2823     auto Abbv = std::make_shared<BitCodeAbbrev>();
2824     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2825     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2826     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2827                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2828     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2830     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2831         (unsigned)FUNCTION_INST_GEP_ABBREV)
2832       assert(false && "Unexpected abbrev ordering!");
2833   }
2834 
2835   Stream.ExitBlock();
2836 }
2837 
2838 void DXILBitcodeWriter::writeModuleVersion() {
2839   // VERSION: [version#]
2840   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2841 }
2842 
2843 /// WriteModule - Emit the specified module to the bitstream.
2844 void DXILBitcodeWriter::write() {
2845   // The identification block is new since llvm-3.7, but the old bitcode reader
2846   // will skip it.
2847   // writeIdentificationBlock(Stream);
2848 
2849   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2850 
2851   // It is redundant to fully-specify this here, but nice to make it explicit
2852   // so that it is clear the DXIL module version is different.
2853   DXILBitcodeWriter::writeModuleVersion();
2854 
2855   // Emit blockinfo, which defines the standard abbreviations etc.
2856   writeBlockInfo();
2857 
2858   // Emit information about attribute groups.
2859   writeAttributeGroupTable();
2860 
2861   // Emit information about parameter attributes.
2862   writeAttributeTable();
2863 
2864   // Emit information describing all of the types in the module.
2865   writeTypeTable();
2866 
2867   writeComdats();
2868 
2869   // Emit top-level description of module, including target triple, inline asm,
2870   // descriptors for global variables, and function prototype info.
2871   writeModuleInfo();
2872 
2873   // Emit constants.
2874   writeModuleConstants();
2875 
2876   // Emit metadata.
2877   writeModuleMetadataKinds();
2878 
2879   // Emit metadata.
2880   writeModuleMetadata();
2881 
2882   // Emit names for globals/functions etc.
2883   // DXIL uses the same format for module-level value symbol table as for the
2884   // function level table.
2885   writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2886 
2887   // Emit module-level use-lists.
2888   if (VE.shouldPreserveUseListOrder())
2889     writeUseListBlock(nullptr);
2890 
2891   // Emit function bodies.
2892   for (const Function &F : M)
2893     if (!F.isDeclaration())
2894       writeFunction(F);
2895 
2896   Stream.ExitBlock();
2897 }
2898