1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "PointerTypeAnalysis.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitcodeCommon.h"
18 #include "llvm/Bitcode/BitcodeReader.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/Bitstream/BitCodes.h"
21 #include "llvm/Bitstream/BitstreamWriter.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Comdat.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSummaryIndex.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/UseListOrder.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/IR/ValueSymbolTable.h"
49 #include "llvm/Object/IRSymtab.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/SHA1.h"
52 
53 namespace llvm {
54 namespace dxil {
55 
56 // Generates an enum to use as an index in the Abbrev array of Metadata record.
57 enum MetadataAbbrev : unsigned {
58 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
59 #include "llvm/IR/Metadata.def"
60   LastPlusOne
61 };
62 
63 class DXILBitcodeWriter {
64 
65   /// These are manifest constants used by the bitcode writer. They do not need
66   /// to be kept in sync with the reader, but need to be consistent within this
67   /// file.
68   enum {
69     // VALUE_SYMTAB_BLOCK abbrev id's.
70     VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
71     VST_ENTRY_7_ABBREV,
72     VST_ENTRY_6_ABBREV,
73     VST_BBENTRY_6_ABBREV,
74 
75     // CONSTANTS_BLOCK abbrev id's.
76     CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
77     CONSTANTS_INTEGER_ABBREV,
78     CONSTANTS_CE_CAST_Abbrev,
79     CONSTANTS_NULL_Abbrev,
80 
81     // FUNCTION_BLOCK abbrev id's.
82     FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
83     FUNCTION_INST_BINOP_ABBREV,
84     FUNCTION_INST_BINOP_FLAGS_ABBREV,
85     FUNCTION_INST_CAST_ABBREV,
86     FUNCTION_INST_RET_VOID_ABBREV,
87     FUNCTION_INST_RET_VAL_ABBREV,
88     FUNCTION_INST_UNREACHABLE_ABBREV,
89     FUNCTION_INST_GEP_ABBREV,
90   };
91 
92   // Cache some types
93   Type *I8Ty;
94   Type *I8PtrTy;
95 
96   /// The stream created and owned by the client.
97   BitstreamWriter &Stream;
98 
99   StringTableBuilder &StrtabBuilder;
100 
101   /// The Module to write to bitcode.
102   const Module &M;
103 
104   /// Enumerates ids for all values in the module.
105   ValueEnumerator VE;
106 
107   /// Map that holds the correspondence between GUIDs in the summary index,
108   /// that came from indirect call profiles, and a value id generated by this
109   /// class to use in the VST and summary block records.
110   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
111 
112   /// Tracks the last value id recorded in the GUIDToValueMap.
113   unsigned GlobalValueId;
114 
115   /// Saves the offset of the VSTOffset record that must eventually be
116   /// backpatched with the offset of the actual VST.
117   uint64_t VSTOffsetPlaceholder = 0;
118 
119   /// Pointer to the buffer allocated by caller for bitcode writing.
120   const SmallVectorImpl<char> &Buffer;
121 
122   /// The start bit of the identification block.
123   uint64_t BitcodeStartBit;
124 
125   /// This maps values to their typed pointers
126   PointerTypeMap PointerMap;
127 
128 public:
129   /// Constructs a ModuleBitcodeWriter object for the given Module,
130   /// writing to the provided \p Buffer.
131   DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
132                     StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
133       : I8Ty(Type::getInt8Ty(M.getContext())),
134         I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
135         StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
136         BitcodeStartBit(Stream.GetCurrentBitNo()),
137         PointerMap(PointerTypeAnalysis::run(M)) {
138     GlobalValueId = VE.getValues().size();
139     // Enumerate the typed pointers
140     for (auto El : PointerMap)
141       VE.EnumerateType(El.second);
142   }
143 
144   /// Emit the current module to the bitstream.
145   void write();
146 
147   static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
148   static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
149                                 StringRef Str, unsigned AbbrevToUse);
150   static void writeIdentificationBlock(BitstreamWriter &Stream);
151   static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
152   static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
153 
154   static unsigned getEncodedComdatSelectionKind(const Comdat &C);
155   static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
156   static unsigned getEncodedLinkage(const GlobalValue &GV);
157   static unsigned getEncodedVisibility(const GlobalValue &GV);
158   static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
159   static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
160   static unsigned getEncodedCastOpcode(unsigned Opcode);
161   static unsigned getEncodedUnaryOpcode(unsigned Opcode);
162   static unsigned getEncodedBinaryOpcode(unsigned Opcode);
163   static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
164   static unsigned getEncodedOrdering(AtomicOrdering Ordering);
165   static uint64_t getOptimizationFlags(const Value *V);
166 
167 private:
168   void writeModuleVersion();
169   void writePerModuleGlobalValueSummary();
170 
171   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
172                                            GlobalValueSummary *Summary,
173                                            unsigned ValueID,
174                                            unsigned FSCallsAbbrev,
175                                            unsigned FSCallsProfileAbbrev,
176                                            const Function &F);
177   void writeModuleLevelReferences(const GlobalVariable &V,
178                                   SmallVector<uint64_t, 64> &NameVals,
179                                   unsigned FSModRefsAbbrev,
180                                   unsigned FSModVTableRefsAbbrev);
181 
182   void assignValueId(GlobalValue::GUID ValGUID) {
183     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
184   }
185 
186   unsigned getValueId(GlobalValue::GUID ValGUID) {
187     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
188     // Expect that any GUID value had a value Id assigned by an
189     // earlier call to assignValueId.
190     assert(VMI != GUIDToValueIdMap.end() &&
191            "GUID does not have assigned value Id");
192     return VMI->second;
193   }
194 
195   // Helper to get the valueId for the type of value recorded in VI.
196   unsigned getValueId(ValueInfo VI) {
197     if (!VI.haveGVs() || !VI.getValue())
198       return getValueId(VI.getGUID());
199     return VE.getValueID(VI.getValue());
200   }
201 
202   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
203 
204   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
205 
206   size_t addToStrtab(StringRef Str);
207 
208   unsigned createDILocationAbbrev();
209   unsigned createGenericDINodeAbbrev();
210 
211   void writeAttributeGroupTable();
212   void writeAttributeTable();
213   void writeTypeTable();
214   void writeComdats();
215   void writeValueSymbolTableForwardDecl();
216   void writeModuleInfo();
217   void writeValueAsMetadata(const ValueAsMetadata *MD,
218                             SmallVectorImpl<uint64_t> &Record);
219   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
220                     unsigned Abbrev);
221   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
222                        unsigned &Abbrev);
223   void writeGenericDINode(const GenericDINode *N,
224                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
225     llvm_unreachable("DXIL cannot contain GenericDI Nodes");
226   }
227   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
228                        unsigned Abbrev);
229   void writeDIGenericSubrange(const DIGenericSubrange *N,
230                               SmallVectorImpl<uint64_t> &Record,
231                               unsigned Abbrev) {
232     llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
233   }
234   void writeDIEnumerator(const DIEnumerator *N,
235                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
236   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
237                         unsigned Abbrev);
238   void writeDIStringType(const DIStringType *N,
239                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
240     llvm_unreachable("DXIL cannot contain DIStringType Nodes");
241   }
242   void writeDIDerivedType(const DIDerivedType *N,
243                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
244   void writeDICompositeType(const DICompositeType *N,
245                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246   void writeDISubroutineType(const DISubroutineType *N,
247                              SmallVectorImpl<uint64_t> &Record,
248                              unsigned Abbrev);
249   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
250                    unsigned Abbrev);
251   void writeDICompileUnit(const DICompileUnit *N,
252                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
253   void writeDISubprogram(const DISubprogram *N,
254                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255   void writeDILexicalBlock(const DILexicalBlock *N,
256                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
258                                SmallVectorImpl<uint64_t> &Record,
259                                unsigned Abbrev);
260   void writeDICommonBlock(const DICommonBlock *N,
261                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
262     llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
263   }
264   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
265                         unsigned Abbrev);
266   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
267                     unsigned Abbrev) {
268     llvm_unreachable("DXIL cannot contain DIMacro Nodes");
269   }
270   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
271                         unsigned Abbrev) {
272     llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
273   }
274   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
275                       unsigned Abbrev) {
276     llvm_unreachable("DXIL cannot contain DIArgList Nodes");
277   }
278   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
279                      unsigned Abbrev);
280   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
281                                     SmallVectorImpl<uint64_t> &Record,
282                                     unsigned Abbrev);
283   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
284                                      SmallVectorImpl<uint64_t> &Record,
285                                      unsigned Abbrev);
286   void writeDIGlobalVariable(const DIGlobalVariable *N,
287                              SmallVectorImpl<uint64_t> &Record,
288                              unsigned Abbrev);
289   void writeDILocalVariable(const DILocalVariable *N,
290                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
291   void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
292                     unsigned Abbrev) {
293     llvm_unreachable("DXIL cannot contain DILabel Nodes");
294   }
295   void writeDIExpression(const DIExpression *N,
296                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
297   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
298                                        SmallVectorImpl<uint64_t> &Record,
299                                        unsigned Abbrev) {
300     llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
301   }
302   void writeDIObjCProperty(const DIObjCProperty *N,
303                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
304   void writeDIImportedEntity(const DIImportedEntity *N,
305                              SmallVectorImpl<uint64_t> &Record,
306                              unsigned Abbrev);
307   unsigned createNamedMetadataAbbrev();
308   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
309   unsigned createMetadataStringsAbbrev();
310   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
311                             SmallVectorImpl<uint64_t> &Record);
312   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
313                             SmallVectorImpl<uint64_t> &Record,
314                             std::vector<unsigned> *MDAbbrevs = nullptr,
315                             std::vector<uint64_t> *IndexPos = nullptr);
316   void writeModuleMetadata();
317   void writeFunctionMetadata(const Function &F);
318   void writeFunctionMetadataAttachment(const Function &F);
319   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
320                                     const GlobalObject &GO);
321   void writeModuleMetadataKinds();
322   void writeOperandBundleTags();
323   void writeSyncScopeNames();
324   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
325   void writeModuleConstants();
326   bool pushValueAndType(const Value *V, unsigned InstID,
327                         SmallVectorImpl<unsigned> &Vals);
328   void writeOperandBundles(const CallBase &CB, unsigned InstID);
329   void pushValue(const Value *V, unsigned InstID,
330                  SmallVectorImpl<unsigned> &Vals);
331   void pushValueSigned(const Value *V, unsigned InstID,
332                        SmallVectorImpl<uint64_t> &Vals);
333   void writeInstruction(const Instruction &I, unsigned InstID,
334                         SmallVectorImpl<unsigned> &Vals);
335   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
336   void writeGlobalValueSymbolTable(
337       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
338   void writeUseList(UseListOrder &&Order);
339   void writeUseListBlock(const Function *F);
340   void writeFunction(const Function &F);
341   void writeBlockInfo();
342 
343   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
344 
345   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
346 
347   unsigned getTypeID(Type *T, const Value *V = nullptr);
348   unsigned getTypeID(Type *T, const Function *F);
349 };
350 
351 } // namespace dxil
352 } // namespace llvm
353 
354 using namespace llvm;
355 using namespace llvm::dxil;
356 
357 ////////////////////////////////////////////////////////////////////////////////
358 /// Begin dxil::BitcodeWriter Implementation
359 ////////////////////////////////////////////////////////////////////////////////
360 
361 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
362                                    raw_fd_stream *FS)
363     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
364   // Emit the file header.
365   Stream->Emit((unsigned)'B', 8);
366   Stream->Emit((unsigned)'C', 8);
367   Stream->Emit(0x0, 4);
368   Stream->Emit(0xC, 4);
369   Stream->Emit(0xE, 4);
370   Stream->Emit(0xD, 4);
371 }
372 
373 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
374 
375 /// Write the specified module to the specified output stream.
376 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
377   SmallVector<char, 0> Buffer;
378   Buffer.reserve(256 * 1024);
379 
380   // If this is darwin or another generic macho target, reserve space for the
381   // header.
382   Triple TT(M.getTargetTriple());
383   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
384     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
385 
386   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
387   Writer.writeModule(M);
388   Writer.writeSymtab();
389   Writer.writeStrtab();
390 
391   // Write the generated bitstream to "Out".
392   if (!Buffer.empty())
393     Out.write((char *)&Buffer.front(), Buffer.size());
394 }
395 
396 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
397   Stream->EnterSubblock(Block, 3);
398 
399   auto Abbv = std::make_shared<BitCodeAbbrev>();
400   Abbv->Add(BitCodeAbbrevOp(Record));
401   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
402   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
403 
404   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
405 
406   Stream->ExitBlock();
407 }
408 
409 void BitcodeWriter::writeSymtab() {
410   assert(!WroteStrtab && !WroteSymtab);
411 
412   // If any module has module-level inline asm, we will require a registered asm
413   // parser for the target so that we can create an accurate symbol table for
414   // the module.
415   for (Module *M : Mods) {
416     if (M->getModuleInlineAsm().empty())
417       continue;
418   }
419 
420   WroteSymtab = true;
421   SmallVector<char, 0> Symtab;
422   // The irsymtab::build function may be unable to create a symbol table if the
423   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
424   // table is not required for correctness, but we still want to be able to
425   // write malformed modules to bitcode files, so swallow the error.
426   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
427     consumeError(std::move(E));
428     return;
429   }
430 
431   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
432             {Symtab.data(), Symtab.size()});
433 }
434 
435 void BitcodeWriter::writeStrtab() {
436   assert(!WroteStrtab);
437 
438   std::vector<char> Strtab;
439   StrtabBuilder.finalizeInOrder();
440   Strtab.resize(StrtabBuilder.getSize());
441   StrtabBuilder.write((uint8_t *)Strtab.data());
442 
443   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
444             {Strtab.data(), Strtab.size()});
445 
446   WroteStrtab = true;
447 }
448 
449 void BitcodeWriter::copyStrtab(StringRef Strtab) {
450   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
451   WroteStrtab = true;
452 }
453 
454 void BitcodeWriter::writeModule(const Module &M) {
455   assert(!WroteStrtab);
456 
457   // The Mods vector is used by irsymtab::build, which requires non-const
458   // Modules in case it needs to materialize metadata. But the bitcode writer
459   // requires that the module is materialized, so we can cast to non-const here,
460   // after checking that it is in fact materialized.
461   assert(M.isMaterialized());
462   Mods.push_back(const_cast<Module *>(&M));
463 
464   DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
465   ModuleWriter.write();
466 }
467 
468 ////////////////////////////////////////////////////////////////////////////////
469 /// Begin dxil::BitcodeWriterBase Implementation
470 ////////////////////////////////////////////////////////////////////////////////
471 
472 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
473   switch (Opcode) {
474   default:
475     llvm_unreachable("Unknown cast instruction!");
476   case Instruction::Trunc:
477     return bitc::CAST_TRUNC;
478   case Instruction::ZExt:
479     return bitc::CAST_ZEXT;
480   case Instruction::SExt:
481     return bitc::CAST_SEXT;
482   case Instruction::FPToUI:
483     return bitc::CAST_FPTOUI;
484   case Instruction::FPToSI:
485     return bitc::CAST_FPTOSI;
486   case Instruction::UIToFP:
487     return bitc::CAST_UITOFP;
488   case Instruction::SIToFP:
489     return bitc::CAST_SITOFP;
490   case Instruction::FPTrunc:
491     return bitc::CAST_FPTRUNC;
492   case Instruction::FPExt:
493     return bitc::CAST_FPEXT;
494   case Instruction::PtrToInt:
495     return bitc::CAST_PTRTOINT;
496   case Instruction::IntToPtr:
497     return bitc::CAST_INTTOPTR;
498   case Instruction::BitCast:
499     return bitc::CAST_BITCAST;
500   case Instruction::AddrSpaceCast:
501     return bitc::CAST_ADDRSPACECAST;
502   }
503 }
504 
505 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
506   switch (Opcode) {
507   default:
508     llvm_unreachable("Unknown binary instruction!");
509   case Instruction::FNeg:
510     return bitc::UNOP_FNEG;
511   }
512 }
513 
514 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
515   switch (Opcode) {
516   default:
517     llvm_unreachable("Unknown binary instruction!");
518   case Instruction::Add:
519   case Instruction::FAdd:
520     return bitc::BINOP_ADD;
521   case Instruction::Sub:
522   case Instruction::FSub:
523     return bitc::BINOP_SUB;
524   case Instruction::Mul:
525   case Instruction::FMul:
526     return bitc::BINOP_MUL;
527   case Instruction::UDiv:
528     return bitc::BINOP_UDIV;
529   case Instruction::FDiv:
530   case Instruction::SDiv:
531     return bitc::BINOP_SDIV;
532   case Instruction::URem:
533     return bitc::BINOP_UREM;
534   case Instruction::FRem:
535   case Instruction::SRem:
536     return bitc::BINOP_SREM;
537   case Instruction::Shl:
538     return bitc::BINOP_SHL;
539   case Instruction::LShr:
540     return bitc::BINOP_LSHR;
541   case Instruction::AShr:
542     return bitc::BINOP_ASHR;
543   case Instruction::And:
544     return bitc::BINOP_AND;
545   case Instruction::Or:
546     return bitc::BINOP_OR;
547   case Instruction::Xor:
548     return bitc::BINOP_XOR;
549   }
550 }
551 
552 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
553   if (!T->isOpaquePointerTy())
554     return VE.getTypeID(T);
555   auto It = PointerMap.find(V);
556   if (It != PointerMap.end())
557     return VE.getTypeID(It->second);
558   return VE.getTypeID(I8PtrTy);
559 }
560 
561 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) {
562   auto It = PointerMap.find(F);
563   if (It != PointerMap.end())
564     return VE.getTypeID(It->second);
565   return VE.getTypeID(T);
566 }
567 
568 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
569   switch (Op) {
570   default:
571     llvm_unreachable("Unknown RMW operation!");
572   case AtomicRMWInst::Xchg:
573     return bitc::RMW_XCHG;
574   case AtomicRMWInst::Add:
575     return bitc::RMW_ADD;
576   case AtomicRMWInst::Sub:
577     return bitc::RMW_SUB;
578   case AtomicRMWInst::And:
579     return bitc::RMW_AND;
580   case AtomicRMWInst::Nand:
581     return bitc::RMW_NAND;
582   case AtomicRMWInst::Or:
583     return bitc::RMW_OR;
584   case AtomicRMWInst::Xor:
585     return bitc::RMW_XOR;
586   case AtomicRMWInst::Max:
587     return bitc::RMW_MAX;
588   case AtomicRMWInst::Min:
589     return bitc::RMW_MIN;
590   case AtomicRMWInst::UMax:
591     return bitc::RMW_UMAX;
592   case AtomicRMWInst::UMin:
593     return bitc::RMW_UMIN;
594   case AtomicRMWInst::FAdd:
595     return bitc::RMW_FADD;
596   case AtomicRMWInst::FSub:
597     return bitc::RMW_FSUB;
598   }
599 }
600 
601 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
602   switch (Ordering) {
603   case AtomicOrdering::NotAtomic:
604     return bitc::ORDERING_NOTATOMIC;
605   case AtomicOrdering::Unordered:
606     return bitc::ORDERING_UNORDERED;
607   case AtomicOrdering::Monotonic:
608     return bitc::ORDERING_MONOTONIC;
609   case AtomicOrdering::Acquire:
610     return bitc::ORDERING_ACQUIRE;
611   case AtomicOrdering::Release:
612     return bitc::ORDERING_RELEASE;
613   case AtomicOrdering::AcquireRelease:
614     return bitc::ORDERING_ACQREL;
615   case AtomicOrdering::SequentiallyConsistent:
616     return bitc::ORDERING_SEQCST;
617   }
618   llvm_unreachable("Invalid ordering");
619 }
620 
621 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
622                                           unsigned Code, StringRef Str,
623                                           unsigned AbbrevToUse) {
624   SmallVector<unsigned, 64> Vals;
625 
626   // Code: [strchar x N]
627   for (char C : Str) {
628     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
629       AbbrevToUse = 0;
630     Vals.push_back(C);
631   }
632 
633   // Emit the finished record.
634   Stream.EmitRecord(Code, Vals, AbbrevToUse);
635 }
636 
637 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
638   switch (Kind) {
639   case Attribute::Alignment:
640     return bitc::ATTR_KIND_ALIGNMENT;
641   case Attribute::AlwaysInline:
642     return bitc::ATTR_KIND_ALWAYS_INLINE;
643   case Attribute::ArgMemOnly:
644     return bitc::ATTR_KIND_ARGMEMONLY;
645   case Attribute::Builtin:
646     return bitc::ATTR_KIND_BUILTIN;
647   case Attribute::ByVal:
648     return bitc::ATTR_KIND_BY_VAL;
649   case Attribute::Convergent:
650     return bitc::ATTR_KIND_CONVERGENT;
651   case Attribute::InAlloca:
652     return bitc::ATTR_KIND_IN_ALLOCA;
653   case Attribute::Cold:
654     return bitc::ATTR_KIND_COLD;
655   case Attribute::InlineHint:
656     return bitc::ATTR_KIND_INLINE_HINT;
657   case Attribute::InReg:
658     return bitc::ATTR_KIND_IN_REG;
659   case Attribute::JumpTable:
660     return bitc::ATTR_KIND_JUMP_TABLE;
661   case Attribute::MinSize:
662     return bitc::ATTR_KIND_MIN_SIZE;
663   case Attribute::Naked:
664     return bitc::ATTR_KIND_NAKED;
665   case Attribute::Nest:
666     return bitc::ATTR_KIND_NEST;
667   case Attribute::NoAlias:
668     return bitc::ATTR_KIND_NO_ALIAS;
669   case Attribute::NoBuiltin:
670     return bitc::ATTR_KIND_NO_BUILTIN;
671   case Attribute::NoCapture:
672     return bitc::ATTR_KIND_NO_CAPTURE;
673   case Attribute::NoDuplicate:
674     return bitc::ATTR_KIND_NO_DUPLICATE;
675   case Attribute::NoImplicitFloat:
676     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
677   case Attribute::NoInline:
678     return bitc::ATTR_KIND_NO_INLINE;
679   case Attribute::NonLazyBind:
680     return bitc::ATTR_KIND_NON_LAZY_BIND;
681   case Attribute::NonNull:
682     return bitc::ATTR_KIND_NON_NULL;
683   case Attribute::Dereferenceable:
684     return bitc::ATTR_KIND_DEREFERENCEABLE;
685   case Attribute::DereferenceableOrNull:
686     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
687   case Attribute::NoRedZone:
688     return bitc::ATTR_KIND_NO_RED_ZONE;
689   case Attribute::NoReturn:
690     return bitc::ATTR_KIND_NO_RETURN;
691   case Attribute::NoUnwind:
692     return bitc::ATTR_KIND_NO_UNWIND;
693   case Attribute::OptimizeForSize:
694     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
695   case Attribute::OptimizeNone:
696     return bitc::ATTR_KIND_OPTIMIZE_NONE;
697   case Attribute::ReadNone:
698     return bitc::ATTR_KIND_READ_NONE;
699   case Attribute::ReadOnly:
700     return bitc::ATTR_KIND_READ_ONLY;
701   case Attribute::Returned:
702     return bitc::ATTR_KIND_RETURNED;
703   case Attribute::ReturnsTwice:
704     return bitc::ATTR_KIND_RETURNS_TWICE;
705   case Attribute::SExt:
706     return bitc::ATTR_KIND_S_EXT;
707   case Attribute::StackAlignment:
708     return bitc::ATTR_KIND_STACK_ALIGNMENT;
709   case Attribute::StackProtect:
710     return bitc::ATTR_KIND_STACK_PROTECT;
711   case Attribute::StackProtectReq:
712     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
713   case Attribute::StackProtectStrong:
714     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
715   case Attribute::SafeStack:
716     return bitc::ATTR_KIND_SAFESTACK;
717   case Attribute::StructRet:
718     return bitc::ATTR_KIND_STRUCT_RET;
719   case Attribute::SanitizeAddress:
720     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
721   case Attribute::SanitizeThread:
722     return bitc::ATTR_KIND_SANITIZE_THREAD;
723   case Attribute::SanitizeMemory:
724     return bitc::ATTR_KIND_SANITIZE_MEMORY;
725   case Attribute::UWTable:
726     return bitc::ATTR_KIND_UW_TABLE;
727   case Attribute::ZExt:
728     return bitc::ATTR_KIND_Z_EXT;
729   case Attribute::EndAttrKinds:
730     llvm_unreachable("Can not encode end-attribute kinds marker.");
731   case Attribute::None:
732     llvm_unreachable("Can not encode none-attribute.");
733   case Attribute::EmptyKey:
734   case Attribute::TombstoneKey:
735     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
736   default:
737     llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
738                      "should be stripped in DXILPrepare");
739   }
740 
741   llvm_unreachable("Trying to encode unknown attribute");
742 }
743 
744 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
745                                         uint64_t V) {
746   if ((int64_t)V >= 0)
747     Vals.push_back(V << 1);
748   else
749     Vals.push_back((-V << 1) | 1);
750 }
751 
752 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
753                                       const APInt &A) {
754   // We have an arbitrary precision integer value to write whose
755   // bit width is > 64. However, in canonical unsigned integer
756   // format it is likely that the high bits are going to be zero.
757   // So, we only write the number of active words.
758   unsigned NumWords = A.getActiveWords();
759   const uint64_t *RawData = A.getRawData();
760   for (unsigned i = 0; i < NumWords; i++)
761     emitSignedInt64(Vals, RawData[i]);
762 }
763 
764 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
765   uint64_t Flags = 0;
766 
767   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
768     if (OBO->hasNoSignedWrap())
769       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
770     if (OBO->hasNoUnsignedWrap())
771       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
772   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
773     if (PEO->isExact())
774       Flags |= 1 << bitc::PEO_EXACT;
775   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
776     if (FPMO->hasAllowReassoc())
777       Flags |= bitc::AllowReassoc;
778     if (FPMO->hasNoNaNs())
779       Flags |= bitc::NoNaNs;
780     if (FPMO->hasNoInfs())
781       Flags |= bitc::NoInfs;
782     if (FPMO->hasNoSignedZeros())
783       Flags |= bitc::NoSignedZeros;
784     if (FPMO->hasAllowReciprocal())
785       Flags |= bitc::AllowReciprocal;
786     if (FPMO->hasAllowContract())
787       Flags |= bitc::AllowContract;
788     if (FPMO->hasApproxFunc())
789       Flags |= bitc::ApproxFunc;
790   }
791 
792   return Flags;
793 }
794 
795 unsigned
796 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
797   switch (Linkage) {
798   case GlobalValue::ExternalLinkage:
799     return 0;
800   case GlobalValue::WeakAnyLinkage:
801     return 16;
802   case GlobalValue::AppendingLinkage:
803     return 2;
804   case GlobalValue::InternalLinkage:
805     return 3;
806   case GlobalValue::LinkOnceAnyLinkage:
807     return 18;
808   case GlobalValue::ExternalWeakLinkage:
809     return 7;
810   case GlobalValue::CommonLinkage:
811     return 8;
812   case GlobalValue::PrivateLinkage:
813     return 9;
814   case GlobalValue::WeakODRLinkage:
815     return 17;
816   case GlobalValue::LinkOnceODRLinkage:
817     return 19;
818   case GlobalValue::AvailableExternallyLinkage:
819     return 12;
820   }
821   llvm_unreachable("Invalid linkage");
822 }
823 
824 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
825   return getEncodedLinkage(GV.getLinkage());
826 }
827 
828 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
829   switch (GV.getVisibility()) {
830   case GlobalValue::DefaultVisibility:
831     return 0;
832   case GlobalValue::HiddenVisibility:
833     return 1;
834   case GlobalValue::ProtectedVisibility:
835     return 2;
836   }
837   llvm_unreachable("Invalid visibility");
838 }
839 
840 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
841   switch (GV.getDLLStorageClass()) {
842   case GlobalValue::DefaultStorageClass:
843     return 0;
844   case GlobalValue::DLLImportStorageClass:
845     return 1;
846   case GlobalValue::DLLExportStorageClass:
847     return 2;
848   }
849   llvm_unreachable("Invalid DLL storage class");
850 }
851 
852 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
853   switch (GV.getThreadLocalMode()) {
854   case GlobalVariable::NotThreadLocal:
855     return 0;
856   case GlobalVariable::GeneralDynamicTLSModel:
857     return 1;
858   case GlobalVariable::LocalDynamicTLSModel:
859     return 2;
860   case GlobalVariable::InitialExecTLSModel:
861     return 3;
862   case GlobalVariable::LocalExecTLSModel:
863     return 4;
864   }
865   llvm_unreachable("Invalid TLS model");
866 }
867 
868 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
869   switch (C.getSelectionKind()) {
870   case Comdat::Any:
871     return bitc::COMDAT_SELECTION_KIND_ANY;
872   case Comdat::ExactMatch:
873     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
874   case Comdat::Largest:
875     return bitc::COMDAT_SELECTION_KIND_LARGEST;
876   case Comdat::NoDeduplicate:
877     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
878   case Comdat::SameSize:
879     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
880   }
881   llvm_unreachable("Invalid selection kind");
882 }
883 
884 ////////////////////////////////////////////////////////////////////////////////
885 /// Begin DXILBitcodeWriter Implementation
886 ////////////////////////////////////////////////////////////////////////////////
887 
888 void DXILBitcodeWriter::writeAttributeGroupTable() {
889   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
890       VE.getAttributeGroups();
891   if (AttrGrps.empty())
892     return;
893 
894   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
895 
896   SmallVector<uint64_t, 64> Record;
897   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
898     unsigned AttrListIndex = Pair.first;
899     AttributeSet AS = Pair.second;
900     Record.push_back(VE.getAttributeGroupID(Pair));
901     Record.push_back(AttrListIndex);
902 
903     for (Attribute Attr : AS) {
904       if (Attr.isEnumAttribute()) {
905         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
906         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
907                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
908         Record.push_back(0);
909         Record.push_back(Val);
910       } else if (Attr.isIntAttribute()) {
911         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
912         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
913                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
914         Record.push_back(1);
915         Record.push_back(Val);
916         Record.push_back(Attr.getValueAsInt());
917       } else {
918         StringRef Kind = Attr.getKindAsString();
919         StringRef Val = Attr.getValueAsString();
920 
921         Record.push_back(Val.empty() ? 3 : 4);
922         Record.append(Kind.begin(), Kind.end());
923         Record.push_back(0);
924         if (!Val.empty()) {
925           Record.append(Val.begin(), Val.end());
926           Record.push_back(0);
927         }
928       }
929     }
930 
931     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
932     Record.clear();
933   }
934 
935   Stream.ExitBlock();
936 }
937 
938 void DXILBitcodeWriter::writeAttributeTable() {
939   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
940   if (Attrs.empty())
941     return;
942 
943   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
944 
945   SmallVector<uint64_t, 64> Record;
946   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
947     AttributeList AL = Attrs[i];
948     for (unsigned i : AL.indexes()) {
949       AttributeSet AS = AL.getAttributes(i);
950       if (AS.hasAttributes())
951         Record.push_back(VE.getAttributeGroupID({i, AS}));
952     }
953 
954     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
955     Record.clear();
956   }
957 
958   Stream.ExitBlock();
959 }
960 
961 /// WriteTypeTable - Write out the type table for a module.
962 void DXILBitcodeWriter::writeTypeTable() {
963   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
964 
965   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
966   SmallVector<uint64_t, 64> TypeVals;
967 
968   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
969 
970   // Abbrev for TYPE_CODE_POINTER.
971   auto Abbv = std::make_shared<BitCodeAbbrev>();
972   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
974   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
975   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
976 
977   // Abbrev for TYPE_CODE_FUNCTION.
978   Abbv = std::make_shared<BitCodeAbbrev>();
979   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
980   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
981   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
982   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
983   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
984 
985   // Abbrev for TYPE_CODE_STRUCT_ANON.
986   Abbv = std::make_shared<BitCodeAbbrev>();
987   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
988   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
989   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
990   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
991   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
992 
993   // Abbrev for TYPE_CODE_STRUCT_NAME.
994   Abbv = std::make_shared<BitCodeAbbrev>();
995   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
996   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
997   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
998   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
999 
1000   // Abbrev for TYPE_CODE_STRUCT_NAMED.
1001   Abbv = std::make_shared<BitCodeAbbrev>();
1002   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1003   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1004   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1005   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1006   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1007 
1008   // Abbrev for TYPE_CODE_ARRAY.
1009   Abbv = std::make_shared<BitCodeAbbrev>();
1010   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1011   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1012   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1013   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1014 
1015   // Emit an entry count so the reader can reserve space.
1016   TypeVals.push_back(TypeList.size());
1017   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1018   TypeVals.clear();
1019 
1020   // Loop over all of the types, emitting each in turn.
1021   for (Type *T : TypeList) {
1022     int AbbrevToUse = 0;
1023     unsigned Code = 0;
1024 
1025     switch (T->getTypeID()) {
1026     case Type::BFloatTyID:
1027     case Type::X86_AMXTyID:
1028     case Type::TokenTyID:
1029       llvm_unreachable("These should never be used!!!");
1030       break;
1031     case Type::VoidTyID:
1032       Code = bitc::TYPE_CODE_VOID;
1033       break;
1034     case Type::HalfTyID:
1035       Code = bitc::TYPE_CODE_HALF;
1036       break;
1037     case Type::FloatTyID:
1038       Code = bitc::TYPE_CODE_FLOAT;
1039       break;
1040     case Type::DoubleTyID:
1041       Code = bitc::TYPE_CODE_DOUBLE;
1042       break;
1043     case Type::X86_FP80TyID:
1044       Code = bitc::TYPE_CODE_X86_FP80;
1045       break;
1046     case Type::FP128TyID:
1047       Code = bitc::TYPE_CODE_FP128;
1048       break;
1049     case Type::PPC_FP128TyID:
1050       Code = bitc::TYPE_CODE_PPC_FP128;
1051       break;
1052     case Type::LabelTyID:
1053       Code = bitc::TYPE_CODE_LABEL;
1054       break;
1055     case Type::MetadataTyID:
1056       Code = bitc::TYPE_CODE_METADATA;
1057       break;
1058     case Type::X86_MMXTyID:
1059       Code = bitc::TYPE_CODE_X86_MMX;
1060       break;
1061     case Type::IntegerTyID:
1062       // INTEGER: [width]
1063       Code = bitc::TYPE_CODE_INTEGER;
1064       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1065       break;
1066     case Type::DXILPointerTyID: {
1067       TypedPointerType *PTy = cast<TypedPointerType>(T);
1068       // POINTER: [pointee type, address space]
1069       Code = bitc::TYPE_CODE_POINTER;
1070       TypeVals.push_back(getTypeID(PTy->getElementType()));
1071       unsigned AddressSpace = PTy->getAddressSpace();
1072       TypeVals.push_back(AddressSpace);
1073       if (AddressSpace == 0)
1074         AbbrevToUse = PtrAbbrev;
1075       break;
1076     }
1077     case Type::PointerTyID: {
1078       PointerType *PTy = cast<PointerType>(T);
1079       // POINTER: [pointee type, address space]
1080       Code = bitc::TYPE_CODE_POINTER;
1081       // Emitting an empty struct type for the opaque pointer's type allows
1082       // this to be order-independent. Non-struct types must be emitted in
1083       // bitcode before they can be referenced.
1084       if (PTy->isOpaquePointerTy()) {
1085         TypeVals.push_back(false);
1086         Code = bitc::TYPE_CODE_OPAQUE;
1087         writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1088                           "dxilOpaquePtrReservedName", StructNameAbbrev);
1089       } else {
1090         TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType()));
1091         unsigned AddressSpace = PTy->getAddressSpace();
1092         TypeVals.push_back(AddressSpace);
1093         if (AddressSpace == 0)
1094           AbbrevToUse = PtrAbbrev;
1095       }
1096       break;
1097     }
1098     case Type::FunctionTyID: {
1099       FunctionType *FT = cast<FunctionType>(T);
1100       // FUNCTION: [isvararg, retty, paramty x N]
1101       Code = bitc::TYPE_CODE_FUNCTION;
1102       TypeVals.push_back(FT->isVarArg());
1103       TypeVals.push_back(getTypeID(FT->getReturnType()));
1104       for (Type *PTy : FT->params())
1105         TypeVals.push_back(getTypeID(PTy));
1106       AbbrevToUse = FunctionAbbrev;
1107       break;
1108     }
1109     case Type::StructTyID: {
1110       StructType *ST = cast<StructType>(T);
1111       // STRUCT: [ispacked, eltty x N]
1112       TypeVals.push_back(ST->isPacked());
1113       // Output all of the element types.
1114       for (Type *ElTy : ST->elements())
1115         TypeVals.push_back(getTypeID(ElTy));
1116 
1117       if (ST->isLiteral()) {
1118         Code = bitc::TYPE_CODE_STRUCT_ANON;
1119         AbbrevToUse = StructAnonAbbrev;
1120       } else {
1121         if (ST->isOpaque()) {
1122           Code = bitc::TYPE_CODE_OPAQUE;
1123         } else {
1124           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1125           AbbrevToUse = StructNamedAbbrev;
1126         }
1127 
1128         // Emit the name if it is present.
1129         if (!ST->getName().empty())
1130           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1131                             StructNameAbbrev);
1132       }
1133       break;
1134     }
1135     case Type::ArrayTyID: {
1136       ArrayType *AT = cast<ArrayType>(T);
1137       // ARRAY: [numelts, eltty]
1138       Code = bitc::TYPE_CODE_ARRAY;
1139       TypeVals.push_back(AT->getNumElements());
1140       TypeVals.push_back(getTypeID(AT->getElementType()));
1141       AbbrevToUse = ArrayAbbrev;
1142       break;
1143     }
1144     case Type::FixedVectorTyID:
1145     case Type::ScalableVectorTyID: {
1146       VectorType *VT = cast<VectorType>(T);
1147       // VECTOR [numelts, eltty]
1148       Code = bitc::TYPE_CODE_VECTOR;
1149       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1150       TypeVals.push_back(getTypeID(VT->getElementType()));
1151       break;
1152     }
1153     }
1154 
1155     // Emit the finished record.
1156     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1157     TypeVals.clear();
1158   }
1159 
1160   Stream.ExitBlock();
1161 }
1162 
1163 void DXILBitcodeWriter::writeComdats() {
1164   SmallVector<uint16_t, 64> Vals;
1165   for (const Comdat *C : VE.getComdats()) {
1166     // COMDAT: [selection_kind, name]
1167     Vals.push_back(getEncodedComdatSelectionKind(*C));
1168     size_t Size = C->getName().size();
1169     assert(isUInt<16>(Size));
1170     Vals.push_back(Size);
1171     for (char Chr : C->getName())
1172       Vals.push_back((unsigned char)Chr);
1173     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1174     Vals.clear();
1175   }
1176 }
1177 
1178 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1179 
1180 /// Emit top-level description of module, including target triple, inline asm,
1181 /// descriptors for global variables, and function prototype info.
1182 /// Returns the bit offset to backpatch with the location of the real VST.
1183 void DXILBitcodeWriter::writeModuleInfo() {
1184   // Emit various pieces of data attached to a module.
1185   if (!M.getTargetTriple().empty())
1186     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1187                       0 /*TODO*/);
1188   const std::string &DL = M.getDataLayoutStr();
1189   if (!DL.empty())
1190     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1191   if (!M.getModuleInlineAsm().empty())
1192     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1193                       0 /*TODO*/);
1194 
1195   // Emit information about sections and GC, computing how many there are. Also
1196   // compute the maximum alignment value.
1197   std::map<std::string, unsigned> SectionMap;
1198   std::map<std::string, unsigned> GCMap;
1199   MaybeAlign MaxAlignment;
1200   unsigned MaxGlobalType = 0;
1201   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1202     if (A)
1203       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1204   };
1205   for (const GlobalVariable &GV : M.globals()) {
1206     UpdateMaxAlignment(GV.getAlign());
1207     MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV));
1208     if (GV.hasSection()) {
1209       // Give section names unique ID's.
1210       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1211       if (!Entry) {
1212         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1213                           GV.getSection(), 0 /*TODO*/);
1214         Entry = SectionMap.size();
1215       }
1216     }
1217   }
1218   for (const Function &F : M) {
1219     UpdateMaxAlignment(F.getAlign());
1220     if (F.hasSection()) {
1221       // Give section names unique ID's.
1222       unsigned &Entry = SectionMap[std::string(F.getSection())];
1223       if (!Entry) {
1224         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1225                           0 /*TODO*/);
1226         Entry = SectionMap.size();
1227       }
1228     }
1229     if (F.hasGC()) {
1230       // Same for GC names.
1231       unsigned &Entry = GCMap[F.getGC()];
1232       if (!Entry) {
1233         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1234                           0 /*TODO*/);
1235         Entry = GCMap.size();
1236       }
1237     }
1238   }
1239 
1240   // Emit abbrev for globals, now that we know # sections and max alignment.
1241   unsigned SimpleGVarAbbrev = 0;
1242   if (!M.global_empty()) {
1243     // Add an abbrev for common globals with no visibility or thread
1244     // localness.
1245     auto Abbv = std::make_shared<BitCodeAbbrev>();
1246     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1248                               Log2_32_Ceil(MaxGlobalType + 1)));
1249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1250                                                            //| explicitType << 1
1251                                                            //| constant
1252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1253     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1254     if (MaxAlignment == 0)                                 // Alignment.
1255       Abbv->Add(BitCodeAbbrevOp(0));
1256     else {
1257       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1258       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1259                                 Log2_32_Ceil(MaxEncAlignment + 1)));
1260     }
1261     if (SectionMap.empty()) // Section.
1262       Abbv->Add(BitCodeAbbrevOp(0));
1263     else
1264       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1265                                 Log2_32_Ceil(SectionMap.size() + 1)));
1266     // Don't bother emitting vis + thread local.
1267     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1268   }
1269 
1270   // Emit the global variable information.
1271   SmallVector<unsigned, 64> Vals;
1272   for (const GlobalVariable &GV : M.globals()) {
1273     unsigned AbbrevToUse = 0;
1274 
1275     // GLOBALVAR: [type, isconst, initid,
1276     //             linkage, alignment, section, visibility, threadlocal,
1277     //             unnamed_addr, externally_initialized, dllstorageclass,
1278     //             comdat]
1279     Vals.push_back(getTypeID(GV.getValueType(), &GV));
1280     Vals.push_back(
1281         GV.getType()->getAddressSpace() << 2 | 2 |
1282         (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1283                                     // unsigned int and bool
1284     Vals.push_back(
1285         GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1286     Vals.push_back(getEncodedLinkage(GV));
1287     Vals.push_back(getEncodedAlign(GV.getAlign()));
1288     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1289                                    : 0);
1290     if (GV.isThreadLocal() ||
1291         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1292         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1293         GV.isExternallyInitialized() ||
1294         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1295         GV.hasComdat()) {
1296       Vals.push_back(getEncodedVisibility(GV));
1297       Vals.push_back(getEncodedThreadLocalMode(GV));
1298       Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1299       Vals.push_back(GV.isExternallyInitialized());
1300       Vals.push_back(getEncodedDLLStorageClass(GV));
1301       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1302     } else {
1303       AbbrevToUse = SimpleGVarAbbrev;
1304     }
1305 
1306     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1307     Vals.clear();
1308   }
1309 
1310   // Emit the function proto information.
1311   for (const Function &F : M) {
1312     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1313     //             section, visibility, gc, unnamed_addr, prologuedata,
1314     //             dllstorageclass, comdat, prefixdata, personalityfn]
1315     Vals.push_back(getTypeID(F.getFunctionType(), &F));
1316     Vals.push_back(F.getCallingConv());
1317     Vals.push_back(F.isDeclaration());
1318     Vals.push_back(getEncodedLinkage(F));
1319     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1320     Vals.push_back(getEncodedAlign(F.getAlign()));
1321     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1322                                   : 0);
1323     Vals.push_back(getEncodedVisibility(F));
1324     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1325     Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1326     Vals.push_back(
1327         F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1328     Vals.push_back(getEncodedDLLStorageClass(F));
1329     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1330     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1331                                      : 0);
1332     Vals.push_back(
1333         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1334 
1335     unsigned AbbrevToUse = 0;
1336     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1337     Vals.clear();
1338   }
1339 
1340   // Emit the alias information.
1341   for (const GlobalAlias &A : M.aliases()) {
1342     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1343     Vals.push_back(getTypeID(A.getValueType(), &A));
1344     Vals.push_back(VE.getValueID(A.getAliasee()));
1345     Vals.push_back(getEncodedLinkage(A));
1346     Vals.push_back(getEncodedVisibility(A));
1347     Vals.push_back(getEncodedDLLStorageClass(A));
1348     Vals.push_back(getEncodedThreadLocalMode(A));
1349     Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1350     unsigned AbbrevToUse = 0;
1351     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1352     Vals.clear();
1353   }
1354 }
1355 
1356 void DXILBitcodeWriter::writeValueAsMetadata(
1357     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1358   // Mimic an MDNode with a value as one operand.
1359   Value *V = MD->getValue();
1360   Type *Ty = V->getType();
1361   if (Function *F = dyn_cast<Function>(V))
1362     Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1363   else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1364     Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1365   Record.push_back(getTypeID(Ty));
1366   Record.push_back(VE.getValueID(V));
1367   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1368   Record.clear();
1369 }
1370 
1371 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1372                                      SmallVectorImpl<uint64_t> &Record,
1373                                      unsigned Abbrev) {
1374   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1375     Metadata *MD = N->getOperand(i);
1376     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1377            "Unexpected function-local metadata");
1378     Record.push_back(VE.getMetadataOrNullID(MD));
1379   }
1380   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1381                                     : bitc::METADATA_NODE,
1382                     Record, Abbrev);
1383   Record.clear();
1384 }
1385 
1386 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1387                                         SmallVectorImpl<uint64_t> &Record,
1388                                         unsigned &Abbrev) {
1389   if (!Abbrev)
1390     Abbrev = createDILocationAbbrev();
1391   Record.push_back(N->isDistinct());
1392   Record.push_back(N->getLine());
1393   Record.push_back(N->getColumn());
1394   Record.push_back(VE.getMetadataID(N->getScope()));
1395   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1396 
1397   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1398   Record.clear();
1399 }
1400 
1401 static uint64_t rotateSign(APInt Val) {
1402   int64_t I = Val.getSExtValue();
1403   uint64_t U = I;
1404   return I < 0 ? ~(U << 1) : U << 1;
1405 }
1406 
1407 static uint64_t rotateSign(DISubrange::BoundType Val) {
1408   return rotateSign(Val.get<ConstantInt *>()->getValue());
1409 }
1410 
1411 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1412                                         SmallVectorImpl<uint64_t> &Record,
1413                                         unsigned Abbrev) {
1414   Record.push_back(N->isDistinct());
1415   Record.push_back(
1416       N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
1417   Record.push_back(rotateSign(N->getLowerBound()));
1418 
1419   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1420   Record.clear();
1421 }
1422 
1423 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1424                                           SmallVectorImpl<uint64_t> &Record,
1425                                           unsigned Abbrev) {
1426   Record.push_back(N->isDistinct());
1427   Record.push_back(rotateSign(N->getValue()));
1428   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1429 
1430   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1431   Record.clear();
1432 }
1433 
1434 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1435                                          SmallVectorImpl<uint64_t> &Record,
1436                                          unsigned Abbrev) {
1437   Record.push_back(N->isDistinct());
1438   Record.push_back(N->getTag());
1439   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1440   Record.push_back(N->getSizeInBits());
1441   Record.push_back(N->getAlignInBits());
1442   Record.push_back(N->getEncoding());
1443 
1444   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1445   Record.clear();
1446 }
1447 
1448 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1449                                            SmallVectorImpl<uint64_t> &Record,
1450                                            unsigned Abbrev) {
1451   Record.push_back(N->isDistinct());
1452   Record.push_back(N->getTag());
1453   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1454   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1455   Record.push_back(N->getLine());
1456   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1457   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1458   Record.push_back(N->getSizeInBits());
1459   Record.push_back(N->getAlignInBits());
1460   Record.push_back(N->getOffsetInBits());
1461   Record.push_back(N->getFlags());
1462   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1463 
1464   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1465   Record.clear();
1466 }
1467 
1468 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1469                                              SmallVectorImpl<uint64_t> &Record,
1470                                              unsigned Abbrev) {
1471   Record.push_back(N->isDistinct());
1472   Record.push_back(N->getTag());
1473   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1474   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1475   Record.push_back(N->getLine());
1476   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1477   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1478   Record.push_back(N->getSizeInBits());
1479   Record.push_back(N->getAlignInBits());
1480   Record.push_back(N->getOffsetInBits());
1481   Record.push_back(N->getFlags());
1482   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1483   Record.push_back(N->getRuntimeLang());
1484   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1485   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1486   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1487 
1488   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1489   Record.clear();
1490 }
1491 
1492 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1493                                               SmallVectorImpl<uint64_t> &Record,
1494                                               unsigned Abbrev) {
1495   Record.push_back(N->isDistinct());
1496   Record.push_back(N->getFlags());
1497   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1498 
1499   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1500   Record.clear();
1501 }
1502 
1503 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1504                                     SmallVectorImpl<uint64_t> &Record,
1505                                     unsigned Abbrev) {
1506   Record.push_back(N->isDistinct());
1507   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1508   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1509 
1510   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1511   Record.clear();
1512 }
1513 
1514 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1515                                            SmallVectorImpl<uint64_t> &Record,
1516                                            unsigned Abbrev) {
1517   Record.push_back(N->isDistinct());
1518   Record.push_back(N->getSourceLanguage());
1519   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1520   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1521   Record.push_back(N->isOptimized());
1522   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1523   Record.push_back(N->getRuntimeVersion());
1524   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1525   Record.push_back(N->getEmissionKind());
1526   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1527   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1528   Record.push_back(/* subprograms */ 0);
1529   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1530   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1531   Record.push_back(N->getDWOId());
1532 
1533   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1534   Record.clear();
1535 }
1536 
1537 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1538                                           SmallVectorImpl<uint64_t> &Record,
1539                                           unsigned Abbrev) {
1540   Record.push_back(N->isDistinct());
1541   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1542   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1543   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1544   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1545   Record.push_back(N->getLine());
1546   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1547   Record.push_back(N->isLocalToUnit());
1548   Record.push_back(N->isDefinition());
1549   Record.push_back(N->getScopeLine());
1550   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1551   Record.push_back(N->getVirtuality());
1552   Record.push_back(N->getVirtualIndex());
1553   Record.push_back(N->getFlags());
1554   Record.push_back(N->isOptimized());
1555   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1556   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1557   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1558   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1559 
1560   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1561   Record.clear();
1562 }
1563 
1564 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1565                                             SmallVectorImpl<uint64_t> &Record,
1566                                             unsigned Abbrev) {
1567   Record.push_back(N->isDistinct());
1568   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1569   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1570   Record.push_back(N->getLine());
1571   Record.push_back(N->getColumn());
1572 
1573   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1574   Record.clear();
1575 }
1576 
1577 void DXILBitcodeWriter::writeDILexicalBlockFile(
1578     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1579     unsigned Abbrev) {
1580   Record.push_back(N->isDistinct());
1581   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1582   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1583   Record.push_back(N->getDiscriminator());
1584 
1585   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1586   Record.clear();
1587 }
1588 
1589 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1590                                          SmallVectorImpl<uint64_t> &Record,
1591                                          unsigned Abbrev) {
1592   Record.push_back(N->isDistinct());
1593   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1594   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1595   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1596   Record.push_back(/* line number */ 0);
1597 
1598   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1599   Record.clear();
1600 }
1601 
1602 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1603                                       SmallVectorImpl<uint64_t> &Record,
1604                                       unsigned Abbrev) {
1605   Record.push_back(N->isDistinct());
1606   for (auto &I : N->operands())
1607     Record.push_back(VE.getMetadataOrNullID(I));
1608 
1609   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1610   Record.clear();
1611 }
1612 
1613 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1614     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1615     unsigned Abbrev) {
1616   Record.push_back(N->isDistinct());
1617   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1618   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1619 
1620   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1621   Record.clear();
1622 }
1623 
1624 void DXILBitcodeWriter::writeDITemplateValueParameter(
1625     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1626     unsigned Abbrev) {
1627   Record.push_back(N->isDistinct());
1628   Record.push_back(N->getTag());
1629   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1630   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1631   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1632 
1633   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1634   Record.clear();
1635 }
1636 
1637 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1638                                               SmallVectorImpl<uint64_t> &Record,
1639                                               unsigned Abbrev) {
1640   Record.push_back(N->isDistinct());
1641   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1642   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1643   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1644   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1645   Record.push_back(N->getLine());
1646   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1647   Record.push_back(N->isLocalToUnit());
1648   Record.push_back(N->isDefinition());
1649   Record.push_back(/* N->getRawVariable() */ 0);
1650   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1651 
1652   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1653   Record.clear();
1654 }
1655 
1656 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1657                                              SmallVectorImpl<uint64_t> &Record,
1658                                              unsigned Abbrev) {
1659   Record.push_back(N->isDistinct());
1660   Record.push_back(N->getTag());
1661   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1662   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1663   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1664   Record.push_back(N->getLine());
1665   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1666   Record.push_back(N->getArg());
1667   Record.push_back(N->getFlags());
1668 
1669   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1670   Record.clear();
1671 }
1672 
1673 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1674                                           SmallVectorImpl<uint64_t> &Record,
1675                                           unsigned Abbrev) {
1676   Record.reserve(N->getElements().size() + 1);
1677 
1678   Record.push_back(N->isDistinct());
1679   Record.append(N->elements_begin(), N->elements_end());
1680 
1681   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1682   Record.clear();
1683 }
1684 
1685 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1686                                             SmallVectorImpl<uint64_t> &Record,
1687                                             unsigned Abbrev) {
1688   llvm_unreachable("DXIL does not support objc!!!");
1689 }
1690 
1691 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1692                                               SmallVectorImpl<uint64_t> &Record,
1693                                               unsigned Abbrev) {
1694   Record.push_back(N->isDistinct());
1695   Record.push_back(N->getTag());
1696   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1697   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1698   Record.push_back(N->getLine());
1699   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1700 
1701   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1702   Record.clear();
1703 }
1704 
1705 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1706   // Abbrev for METADATA_LOCATION.
1707   //
1708   // Assume the column is usually under 128, and always output the inlined-at
1709   // location (it's never more expensive than building an array size 1).
1710   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1711   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1712   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1713   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1714   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1715   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1717   return Stream.EmitAbbrev(std::move(Abbv));
1718 }
1719 
1720 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1721   // Abbrev for METADATA_GENERIC_DEBUG.
1722   //
1723   // Assume the column is usually under 128, and always output the inlined-at
1724   // location (it's never more expensive than building an array size 1).
1725   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1726   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1727   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1728   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1729   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1730   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1731   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1732   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1733   return Stream.EmitAbbrev(std::move(Abbv));
1734 }
1735 
1736 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1737                                              SmallVectorImpl<uint64_t> &Record,
1738                                              std::vector<unsigned> *MDAbbrevs,
1739                                              std::vector<uint64_t> *IndexPos) {
1740   if (MDs.empty())
1741     return;
1742 
1743     // Initialize MDNode abbreviations.
1744 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1745 #include "llvm/IR/Metadata.def"
1746 
1747   for (const Metadata *MD : MDs) {
1748     if (IndexPos)
1749       IndexPos->push_back(Stream.GetCurrentBitNo());
1750     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1751       assert(N->isResolved() && "Expected forward references to be resolved");
1752 
1753       switch (N->getMetadataID()) {
1754       default:
1755         llvm_unreachable("Invalid MDNode subclass");
1756 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1757   case Metadata::CLASS##Kind:                                                  \
1758     if (MDAbbrevs)                                                             \
1759       write##CLASS(cast<CLASS>(N), Record,                                     \
1760                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1761     else                                                                       \
1762       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1763     continue;
1764 #include "llvm/IR/Metadata.def"
1765       }
1766     }
1767     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1768   }
1769 }
1770 
1771 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1772   auto Abbv = std::make_shared<BitCodeAbbrev>();
1773   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1774   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1776   return Stream.EmitAbbrev(std::move(Abbv));
1777 }
1778 
1779 void DXILBitcodeWriter::writeMetadataStrings(
1780     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1781   for (const Metadata *MD : Strings) {
1782     const MDString *MDS = cast<MDString>(MD);
1783     // Code: [strchar x N]
1784     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1785 
1786     // Emit the finished record.
1787     Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
1788                       createMetadataStringsAbbrev());
1789     Record.clear();
1790   }
1791 }
1792 
1793 void DXILBitcodeWriter::writeModuleMetadata() {
1794   if (!VE.hasMDs() && M.named_metadata_empty())
1795     return;
1796 
1797   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1798 
1799   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1800   // block and load any metadata.
1801   std::vector<unsigned> MDAbbrevs;
1802 
1803   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1804   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1805   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1806       createGenericDINodeAbbrev();
1807 
1808   unsigned NameAbbrev = 0;
1809   if (!M.named_metadata_empty()) {
1810     // Abbrev for METADATA_NAME.
1811     std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1812     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1813     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1814     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1815     NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1816   }
1817 
1818   SmallVector<uint64_t, 64> Record;
1819   writeMetadataStrings(VE.getMDStrings(), Record);
1820 
1821   std::vector<uint64_t> IndexPos;
1822   IndexPos.reserve(VE.getNonMDStrings().size());
1823   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1824 
1825   // Write named metadata.
1826   for (const NamedMDNode &NMD : M.named_metadata()) {
1827     // Write name.
1828     StringRef Str = NMD.getName();
1829     Record.append(Str.bytes_begin(), Str.bytes_end());
1830     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1831     Record.clear();
1832 
1833     // Write named metadata operands.
1834     for (const MDNode *N : NMD.operands())
1835       Record.push_back(VE.getMetadataID(N));
1836     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1837     Record.clear();
1838   }
1839 
1840   Stream.ExitBlock();
1841 }
1842 
1843 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1844   if (!VE.hasMDs())
1845     return;
1846 
1847   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1848   SmallVector<uint64_t, 64> Record;
1849   writeMetadataStrings(VE.getMDStrings(), Record);
1850   writeMetadataRecords(VE.getNonMDStrings(), Record);
1851   Stream.ExitBlock();
1852 }
1853 
1854 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1855   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1856 
1857   SmallVector<uint64_t, 64> Record;
1858 
1859   // Write metadata attachments
1860   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1861   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1862   F.getAllMetadata(MDs);
1863   if (!MDs.empty()) {
1864     for (const auto &I : MDs) {
1865       Record.push_back(I.first);
1866       Record.push_back(VE.getMetadataID(I.second));
1867     }
1868     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1869     Record.clear();
1870   }
1871 
1872   for (const BasicBlock &BB : F)
1873     for (const Instruction &I : BB) {
1874       MDs.clear();
1875       I.getAllMetadataOtherThanDebugLoc(MDs);
1876 
1877       // If no metadata, ignore instruction.
1878       if (MDs.empty())
1879         continue;
1880 
1881       Record.push_back(VE.getInstructionID(&I));
1882 
1883       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1884         Record.push_back(MDs[i].first);
1885         Record.push_back(VE.getMetadataID(MDs[i].second));
1886       }
1887       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1888       Record.clear();
1889     }
1890 
1891   Stream.ExitBlock();
1892 }
1893 
1894 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1895   SmallVector<uint64_t, 64> Record;
1896 
1897   // Write metadata kinds
1898   // METADATA_KIND - [n x [id, name]]
1899   SmallVector<StringRef, 8> Names;
1900   M.getMDKindNames(Names);
1901 
1902   if (Names.empty())
1903     return;
1904 
1905   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1906 
1907   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1908     Record.push_back(MDKindID);
1909     StringRef KName = Names[MDKindID];
1910     Record.append(KName.begin(), KName.end());
1911 
1912     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1913     Record.clear();
1914   }
1915 
1916   Stream.ExitBlock();
1917 }
1918 
1919 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1920                                        bool isGlobal) {
1921   if (FirstVal == LastVal)
1922     return;
1923 
1924   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1925 
1926   unsigned AggregateAbbrev = 0;
1927   unsigned String8Abbrev = 0;
1928   unsigned CString7Abbrev = 0;
1929   unsigned CString6Abbrev = 0;
1930   // If this is a constant pool for the module, emit module-specific abbrevs.
1931   if (isGlobal) {
1932     // Abbrev for CST_CODE_AGGREGATE.
1933     auto Abbv = std::make_shared<BitCodeAbbrev>();
1934     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1935     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1936     Abbv->Add(
1937         BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1938     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1939 
1940     // Abbrev for CST_CODE_STRING.
1941     Abbv = std::make_shared<BitCodeAbbrev>();
1942     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1943     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1944     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1945     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1946     // Abbrev for CST_CODE_CSTRING.
1947     Abbv = std::make_shared<BitCodeAbbrev>();
1948     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1949     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1950     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1951     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1952     // Abbrev for CST_CODE_CSTRING.
1953     Abbv = std::make_shared<BitCodeAbbrev>();
1954     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1955     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1956     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1957     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1958   }
1959 
1960   SmallVector<uint64_t, 64> Record;
1961 
1962   const ValueEnumerator::ValueList &Vals = VE.getValues();
1963   Type *LastTy = nullptr;
1964   for (unsigned i = FirstVal; i != LastVal; ++i) {
1965     const Value *V = Vals[i].first;
1966     // If we need to switch types, do so now.
1967     if (V->getType() != LastTy) {
1968       LastTy = V->getType();
1969       Record.push_back(getTypeID(LastTy));
1970       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1971                         CONSTANTS_SETTYPE_ABBREV);
1972       Record.clear();
1973     }
1974 
1975     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1976       Record.push_back(unsigned(IA->hasSideEffects()) |
1977                        unsigned(IA->isAlignStack()) << 1 |
1978                        unsigned(IA->getDialect() & 1) << 2);
1979 
1980       // Add the asm string.
1981       const std::string &AsmStr = IA->getAsmString();
1982       Record.push_back(AsmStr.size());
1983       Record.append(AsmStr.begin(), AsmStr.end());
1984 
1985       // Add the constraint string.
1986       const std::string &ConstraintStr = IA->getConstraintString();
1987       Record.push_back(ConstraintStr.size());
1988       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1989       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1990       Record.clear();
1991       continue;
1992     }
1993     const Constant *C = cast<Constant>(V);
1994     unsigned Code = -1U;
1995     unsigned AbbrevToUse = 0;
1996     if (C->isNullValue()) {
1997       Code = bitc::CST_CODE_NULL;
1998     } else if (isa<UndefValue>(C)) {
1999       Code = bitc::CST_CODE_UNDEF;
2000     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2001       if (IV->getBitWidth() <= 64) {
2002         uint64_t V = IV->getSExtValue();
2003         emitSignedInt64(Record, V);
2004         Code = bitc::CST_CODE_INTEGER;
2005         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2006       } else { // Wide integers, > 64 bits in size.
2007         // We have an arbitrary precision integer value to write whose
2008         // bit width is > 64. However, in canonical unsigned integer
2009         // format it is likely that the high bits are going to be zero.
2010         // So, we only write the number of active words.
2011         unsigned NWords = IV->getValue().getActiveWords();
2012         const uint64_t *RawWords = IV->getValue().getRawData();
2013         for (unsigned i = 0; i != NWords; ++i) {
2014           emitSignedInt64(Record, RawWords[i]);
2015         }
2016         Code = bitc::CST_CODE_WIDE_INTEGER;
2017       }
2018     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2019       Code = bitc::CST_CODE_FLOAT;
2020       Type *Ty = CFP->getType();
2021       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2022         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2023       } else if (Ty->isX86_FP80Ty()) {
2024         // api needed to prevent premature destruction
2025         // bits are not in the same order as a normal i80 APInt, compensate.
2026         APInt api = CFP->getValueAPF().bitcastToAPInt();
2027         const uint64_t *p = api.getRawData();
2028         Record.push_back((p[1] << 48) | (p[0] >> 16));
2029         Record.push_back(p[0] & 0xffffLL);
2030       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2031         APInt api = CFP->getValueAPF().bitcastToAPInt();
2032         const uint64_t *p = api.getRawData();
2033         Record.push_back(p[0]);
2034         Record.push_back(p[1]);
2035       } else {
2036         assert(0 && "Unknown FP type!");
2037       }
2038     } else if (isa<ConstantDataSequential>(C) &&
2039                cast<ConstantDataSequential>(C)->isString()) {
2040       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2041       // Emit constant strings specially.
2042       unsigned NumElts = Str->getNumElements();
2043       // If this is a null-terminated string, use the denser CSTRING encoding.
2044       if (Str->isCString()) {
2045         Code = bitc::CST_CODE_CSTRING;
2046         --NumElts; // Don't encode the null, which isn't allowed by char6.
2047       } else {
2048         Code = bitc::CST_CODE_STRING;
2049         AbbrevToUse = String8Abbrev;
2050       }
2051       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2052       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2053       for (unsigned i = 0; i != NumElts; ++i) {
2054         unsigned char V = Str->getElementAsInteger(i);
2055         Record.push_back(V);
2056         isCStr7 &= (V & 128) == 0;
2057         if (isCStrChar6)
2058           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2059       }
2060 
2061       if (isCStrChar6)
2062         AbbrevToUse = CString6Abbrev;
2063       else if (isCStr7)
2064         AbbrevToUse = CString7Abbrev;
2065     } else if (const ConstantDataSequential *CDS =
2066                    dyn_cast<ConstantDataSequential>(C)) {
2067       Code = bitc::CST_CODE_DATA;
2068       Type *EltTy = CDS->getType()->getArrayElementType();
2069       if (isa<IntegerType>(EltTy)) {
2070         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2071           Record.push_back(CDS->getElementAsInteger(i));
2072       } else if (EltTy->isFloatTy()) {
2073         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2074           union {
2075             float F;
2076             uint32_t I;
2077           };
2078           F = CDS->getElementAsFloat(i);
2079           Record.push_back(I);
2080         }
2081       } else {
2082         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2083         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2084           union {
2085             double F;
2086             uint64_t I;
2087           };
2088           F = CDS->getElementAsDouble(i);
2089           Record.push_back(I);
2090         }
2091       }
2092     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2093                isa<ConstantVector>(C)) {
2094       Code = bitc::CST_CODE_AGGREGATE;
2095       for (const Value *Op : C->operands())
2096         Record.push_back(VE.getValueID(Op));
2097       AbbrevToUse = AggregateAbbrev;
2098     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2099       switch (CE->getOpcode()) {
2100       default:
2101         if (Instruction::isCast(CE->getOpcode())) {
2102           Code = bitc::CST_CODE_CE_CAST;
2103           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2104           Record.push_back(getTypeID(C->getOperand(0)->getType()));
2105           Record.push_back(VE.getValueID(C->getOperand(0)));
2106           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2107         } else {
2108           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2109           Code = bitc::CST_CODE_CE_BINOP;
2110           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2111           Record.push_back(VE.getValueID(C->getOperand(0)));
2112           Record.push_back(VE.getValueID(C->getOperand(1)));
2113           uint64_t Flags = getOptimizationFlags(CE);
2114           if (Flags != 0)
2115             Record.push_back(Flags);
2116         }
2117         break;
2118       case Instruction::GetElementPtr: {
2119         Code = bitc::CST_CODE_CE_GEP;
2120         const auto *GO = cast<GEPOperator>(C);
2121         if (GO->isInBounds())
2122           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2123         Record.push_back(getTypeID(GO->getSourceElementType()));
2124         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2125           Record.push_back(getTypeID(C->getOperand(i)->getType()));
2126           Record.push_back(VE.getValueID(C->getOperand(i)));
2127         }
2128         break;
2129       }
2130       case Instruction::Select:
2131         Code = bitc::CST_CODE_CE_SELECT;
2132         Record.push_back(VE.getValueID(C->getOperand(0)));
2133         Record.push_back(VE.getValueID(C->getOperand(1)));
2134         Record.push_back(VE.getValueID(C->getOperand(2)));
2135         break;
2136       case Instruction::ExtractElement:
2137         Code = bitc::CST_CODE_CE_EXTRACTELT;
2138         Record.push_back(getTypeID(C->getOperand(0)->getType()));
2139         Record.push_back(VE.getValueID(C->getOperand(0)));
2140         Record.push_back(getTypeID(C->getOperand(1)->getType()));
2141         Record.push_back(VE.getValueID(C->getOperand(1)));
2142         break;
2143       case Instruction::InsertElement:
2144         Code = bitc::CST_CODE_CE_INSERTELT;
2145         Record.push_back(VE.getValueID(C->getOperand(0)));
2146         Record.push_back(VE.getValueID(C->getOperand(1)));
2147         Record.push_back(getTypeID(C->getOperand(2)->getType()));
2148         Record.push_back(VE.getValueID(C->getOperand(2)));
2149         break;
2150       case Instruction::ShuffleVector:
2151         // If the return type and argument types are the same, this is a
2152         // standard shufflevector instruction.  If the types are different,
2153         // then the shuffle is widening or truncating the input vectors, and
2154         // the argument type must also be encoded.
2155         if (C->getType() == C->getOperand(0)->getType()) {
2156           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2157         } else {
2158           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2159           Record.push_back(getTypeID(C->getOperand(0)->getType()));
2160         }
2161         Record.push_back(VE.getValueID(C->getOperand(0)));
2162         Record.push_back(VE.getValueID(C->getOperand(1)));
2163         Record.push_back(VE.getValueID(C->getOperand(2)));
2164         break;
2165       case Instruction::ICmp:
2166       case Instruction::FCmp:
2167         Code = bitc::CST_CODE_CE_CMP;
2168         Record.push_back(getTypeID(C->getOperand(0)->getType()));
2169         Record.push_back(VE.getValueID(C->getOperand(0)));
2170         Record.push_back(VE.getValueID(C->getOperand(1)));
2171         Record.push_back(CE->getPredicate());
2172         break;
2173       }
2174     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2175       Code = bitc::CST_CODE_BLOCKADDRESS;
2176       Record.push_back(getTypeID(BA->getFunction()->getType()));
2177       Record.push_back(VE.getValueID(BA->getFunction()));
2178       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2179     } else {
2180 #ifndef NDEBUG
2181       C->dump();
2182 #endif
2183       llvm_unreachable("Unknown constant!");
2184     }
2185     Stream.EmitRecord(Code, Record, AbbrevToUse);
2186     Record.clear();
2187   }
2188 
2189   Stream.ExitBlock();
2190 }
2191 
2192 void DXILBitcodeWriter::writeModuleConstants() {
2193   const ValueEnumerator::ValueList &Vals = VE.getValues();
2194 
2195   // Find the first constant to emit, which is the first non-globalvalue value.
2196   // We know globalvalues have been emitted by WriteModuleInfo.
2197   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2198     if (!isa<GlobalValue>(Vals[i].first)) {
2199       writeConstants(i, Vals.size(), true);
2200       return;
2201     }
2202   }
2203 }
2204 
2205 /// pushValueAndType - The file has to encode both the value and type id for
2206 /// many values, because we need to know what type to create for forward
2207 /// references.  However, most operands are not forward references, so this type
2208 /// field is not needed.
2209 ///
2210 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2211 /// instruction ID, then it is a forward reference, and it also includes the
2212 /// type ID.  The value ID that is written is encoded relative to the InstID.
2213 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2214                                          SmallVectorImpl<unsigned> &Vals) {
2215   unsigned ValID = VE.getValueID(V);
2216   // Make encoding relative to the InstID.
2217   Vals.push_back(InstID - ValID);
2218   if (ValID >= InstID) {
2219     Vals.push_back(getTypeID(V->getType(), V));
2220     return true;
2221   }
2222   return false;
2223 }
2224 
2225 /// pushValue - Like pushValueAndType, but where the type of the value is
2226 /// omitted (perhaps it was already encoded in an earlier operand).
2227 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2228                                   SmallVectorImpl<unsigned> &Vals) {
2229   unsigned ValID = VE.getValueID(V);
2230   Vals.push_back(InstID - ValID);
2231 }
2232 
2233 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2234                                         SmallVectorImpl<uint64_t> &Vals) {
2235   unsigned ValID = VE.getValueID(V);
2236   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2237   emitSignedInt64(Vals, diff);
2238 }
2239 
2240 /// WriteInstruction - Emit an instruction
2241 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2242                                          SmallVectorImpl<unsigned> &Vals) {
2243   unsigned Code = 0;
2244   unsigned AbbrevToUse = 0;
2245   VE.setInstructionID(&I);
2246   switch (I.getOpcode()) {
2247   default:
2248     if (Instruction::isCast(I.getOpcode())) {
2249       Code = bitc::FUNC_CODE_INST_CAST;
2250       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2251         AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2252       Vals.push_back(getTypeID(I.getType(), &I));
2253       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2254     } else {
2255       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2256       Code = bitc::FUNC_CODE_INST_BINOP;
2257       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2258         AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2259       pushValue(I.getOperand(1), InstID, Vals);
2260       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2261       uint64_t Flags = getOptimizationFlags(&I);
2262       if (Flags != 0) {
2263         if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2264           AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2265         Vals.push_back(Flags);
2266       }
2267     }
2268     break;
2269 
2270   case Instruction::GetElementPtr: {
2271     Code = bitc::FUNC_CODE_INST_GEP;
2272     AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2273     auto &GEPInst = cast<GetElementPtrInst>(I);
2274     Vals.push_back(GEPInst.isInBounds());
2275     Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2276     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2277       pushValueAndType(I.getOperand(i), InstID, Vals);
2278     break;
2279   }
2280   case Instruction::ExtractValue: {
2281     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2282     pushValueAndType(I.getOperand(0), InstID, Vals);
2283     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2284     Vals.append(EVI->idx_begin(), EVI->idx_end());
2285     break;
2286   }
2287   case Instruction::InsertValue: {
2288     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2289     pushValueAndType(I.getOperand(0), InstID, Vals);
2290     pushValueAndType(I.getOperand(1), InstID, Vals);
2291     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2292     Vals.append(IVI->idx_begin(), IVI->idx_end());
2293     break;
2294   }
2295   case Instruction::Select:
2296     Code = bitc::FUNC_CODE_INST_VSELECT;
2297     pushValueAndType(I.getOperand(1), InstID, Vals);
2298     pushValue(I.getOperand(2), InstID, Vals);
2299     pushValueAndType(I.getOperand(0), InstID, Vals);
2300     break;
2301   case Instruction::ExtractElement:
2302     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2303     pushValueAndType(I.getOperand(0), InstID, Vals);
2304     pushValueAndType(I.getOperand(1), InstID, Vals);
2305     break;
2306   case Instruction::InsertElement:
2307     Code = bitc::FUNC_CODE_INST_INSERTELT;
2308     pushValueAndType(I.getOperand(0), InstID, Vals);
2309     pushValue(I.getOperand(1), InstID, Vals);
2310     pushValueAndType(I.getOperand(2), InstID, Vals);
2311     break;
2312   case Instruction::ShuffleVector:
2313     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2314     pushValueAndType(I.getOperand(0), InstID, Vals);
2315     pushValue(I.getOperand(1), InstID, Vals);
2316     pushValue(I.getOperand(2), InstID, Vals);
2317     break;
2318   case Instruction::ICmp:
2319   case Instruction::FCmp: {
2320     // compare returning Int1Ty or vector of Int1Ty
2321     Code = bitc::FUNC_CODE_INST_CMP2;
2322     pushValueAndType(I.getOperand(0), InstID, Vals);
2323     pushValue(I.getOperand(1), InstID, Vals);
2324     Vals.push_back(cast<CmpInst>(I).getPredicate());
2325     uint64_t Flags = getOptimizationFlags(&I);
2326     if (Flags != 0)
2327       Vals.push_back(Flags);
2328     break;
2329   }
2330 
2331   case Instruction::Ret: {
2332     Code = bitc::FUNC_CODE_INST_RET;
2333     unsigned NumOperands = I.getNumOperands();
2334     if (NumOperands == 0)
2335       AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2336     else if (NumOperands == 1) {
2337       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2338         AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2339     } else {
2340       for (unsigned i = 0, e = NumOperands; i != e; ++i)
2341         pushValueAndType(I.getOperand(i), InstID, Vals);
2342     }
2343   } break;
2344   case Instruction::Br: {
2345     Code = bitc::FUNC_CODE_INST_BR;
2346     const BranchInst &II = cast<BranchInst>(I);
2347     Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2348     if (II.isConditional()) {
2349       Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2350       pushValue(II.getCondition(), InstID, Vals);
2351     }
2352   } break;
2353   case Instruction::Switch: {
2354     Code = bitc::FUNC_CODE_INST_SWITCH;
2355     const SwitchInst &SI = cast<SwitchInst>(I);
2356     Vals.push_back(getTypeID(SI.getCondition()->getType()));
2357     pushValue(SI.getCondition(), InstID, Vals);
2358     Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2359     for (auto Case : SI.cases()) {
2360       Vals.push_back(VE.getValueID(Case.getCaseValue()));
2361       Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2362     }
2363   } break;
2364   case Instruction::IndirectBr:
2365     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2366     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2367     // Encode the address operand as relative, but not the basic blocks.
2368     pushValue(I.getOperand(0), InstID, Vals);
2369     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2370       Vals.push_back(VE.getValueID(I.getOperand(i)));
2371     break;
2372 
2373   case Instruction::Invoke: {
2374     const InvokeInst *II = cast<InvokeInst>(&I);
2375     const Value *Callee = II->getCalledOperand();
2376     FunctionType *FTy = II->getFunctionType();
2377     Code = bitc::FUNC_CODE_INST_INVOKE;
2378 
2379     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2380     Vals.push_back(II->getCallingConv() | 1 << 13);
2381     Vals.push_back(VE.getValueID(II->getNormalDest()));
2382     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2383     Vals.push_back(getTypeID(FTy));
2384     pushValueAndType(Callee, InstID, Vals);
2385 
2386     // Emit value #'s for the fixed parameters.
2387     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2388       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2389 
2390     // Emit type/value pairs for varargs params.
2391     if (FTy->isVarArg()) {
2392       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2393            ++i)
2394         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2395     }
2396     break;
2397   }
2398   case Instruction::Resume:
2399     Code = bitc::FUNC_CODE_INST_RESUME;
2400     pushValueAndType(I.getOperand(0), InstID, Vals);
2401     break;
2402   case Instruction::Unreachable:
2403     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2404     AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2405     break;
2406 
2407   case Instruction::PHI: {
2408     const PHINode &PN = cast<PHINode>(I);
2409     Code = bitc::FUNC_CODE_INST_PHI;
2410     // With the newer instruction encoding, forward references could give
2411     // negative valued IDs.  This is most common for PHIs, so we use
2412     // signed VBRs.
2413     SmallVector<uint64_t, 128> Vals64;
2414     Vals64.push_back(getTypeID(PN.getType()));
2415     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2416       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2417       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2418     }
2419     // Emit a Vals64 vector and exit.
2420     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2421     Vals64.clear();
2422     return;
2423   }
2424 
2425   case Instruction::LandingPad: {
2426     const LandingPadInst &LP = cast<LandingPadInst>(I);
2427     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2428     Vals.push_back(getTypeID(LP.getType()));
2429     Vals.push_back(LP.isCleanup());
2430     Vals.push_back(LP.getNumClauses());
2431     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2432       if (LP.isCatch(I))
2433         Vals.push_back(LandingPadInst::Catch);
2434       else
2435         Vals.push_back(LandingPadInst::Filter);
2436       pushValueAndType(LP.getClause(I), InstID, Vals);
2437     }
2438     break;
2439   }
2440 
2441   case Instruction::Alloca: {
2442     Code = bitc::FUNC_CODE_INST_ALLOCA;
2443     const AllocaInst &AI = cast<AllocaInst>(I);
2444     Vals.push_back(getTypeID(AI.getAllocatedType()));
2445     Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2446     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2447     using APV = AllocaPackedValues;
2448     unsigned Record = 0;
2449     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
2450     Bitfield::set<APV::AlignLower>(
2451         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
2452     Bitfield::set<APV::AlignUpper>(Record,
2453                                    EncodedAlign >> APV::AlignLower::Bits);
2454     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
2455     Vals.push_back(Record);
2456     break;
2457   }
2458 
2459   case Instruction::Load:
2460     if (cast<LoadInst>(I).isAtomic()) {
2461       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2462       pushValueAndType(I.getOperand(0), InstID, Vals);
2463     } else {
2464       Code = bitc::FUNC_CODE_INST_LOAD;
2465       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2466         AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2467     }
2468     Vals.push_back(getTypeID(I.getType()));
2469     Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2470     Vals.push_back(cast<LoadInst>(I).isVolatile());
2471     if (cast<LoadInst>(I).isAtomic()) {
2472       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2473       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2474     }
2475     break;
2476   case Instruction::Store:
2477     if (cast<StoreInst>(I).isAtomic())
2478       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2479     else
2480       Code = bitc::FUNC_CODE_INST_STORE;
2481     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2482     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2483     Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2484     Vals.push_back(cast<StoreInst>(I).isVolatile());
2485     if (cast<StoreInst>(I).isAtomic()) {
2486       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2487       Vals.push_back(
2488           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2489     }
2490     break;
2491   case Instruction::AtomicCmpXchg:
2492     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2493     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2494     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2495     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2496     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2497     Vals.push_back(
2498         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2499     Vals.push_back(
2500         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2501     Vals.push_back(
2502         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2503     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2504     break;
2505   case Instruction::AtomicRMW:
2506     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2507     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2508     pushValue(I.getOperand(1), InstID, Vals);        // val.
2509     Vals.push_back(
2510         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2511     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2512     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2513     Vals.push_back(
2514         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2515     break;
2516   case Instruction::Fence:
2517     Code = bitc::FUNC_CODE_INST_FENCE;
2518     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2519     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2520     break;
2521   case Instruction::Call: {
2522     const CallInst &CI = cast<CallInst>(I);
2523     FunctionType *FTy = CI.getFunctionType();
2524 
2525     Code = bitc::FUNC_CODE_INST_CALL;
2526 
2527     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2528     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2529                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2530     Vals.push_back(getTypeID(FTy, CI.getCalledFunction()));
2531     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2532 
2533     // Emit value #'s for the fixed parameters.
2534     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2535       // Check for labels (can happen with asm labels).
2536       if (FTy->getParamType(i)->isLabelTy())
2537         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2538       else
2539         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2540     }
2541 
2542     // Emit type/value pairs for varargs params.
2543     if (FTy->isVarArg()) {
2544       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2545         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2546     }
2547     break;
2548   }
2549   case Instruction::VAArg:
2550     Code = bitc::FUNC_CODE_INST_VAARG;
2551     Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2552     pushValue(I.getOperand(0), InstID, Vals);              // valist.
2553     Vals.push_back(getTypeID(I.getType()));                // restype.
2554     break;
2555   }
2556 
2557   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2558   Vals.clear();
2559 }
2560 
2561 // Emit names for globals/functions etc.
2562 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2563     const ValueSymbolTable &VST) {
2564   if (VST.empty())
2565     return;
2566   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2567 
2568   SmallVector<unsigned, 64> NameVals;
2569 
2570   // HLSL Change
2571   // Read the named values from a sorted list instead of the original list
2572   // to ensure the binary is the same no matter what values ever existed.
2573   SmallVector<const ValueName *, 16> SortedTable;
2574 
2575   for (auto &VI : VST) {
2576     SortedTable.push_back(VI.second->getValueName());
2577   }
2578   // The keys are unique, so there shouldn't be stability issues.
2579   std::sort(SortedTable.begin(), SortedTable.end(),
2580             [](const ValueName *A, const ValueName *B) {
2581               return A->first() < B->first();
2582             });
2583 
2584   for (const ValueName *SI : SortedTable) {
2585     auto &Name = *SI;
2586 
2587     // Figure out the encoding to use for the name.
2588     bool is7Bit = true;
2589     bool isChar6 = true;
2590     for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2591          C != E; ++C) {
2592       if (isChar6)
2593         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2594       if ((unsigned char)*C & 128) {
2595         is7Bit = false;
2596         break; // don't bother scanning the rest.
2597       }
2598     }
2599 
2600     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2601 
2602     // VST_ENTRY:   [valueid, namechar x N]
2603     // VST_BBENTRY: [bbid, namechar x N]
2604     unsigned Code;
2605     if (isa<BasicBlock>(SI->getValue())) {
2606       Code = bitc::VST_CODE_BBENTRY;
2607       if (isChar6)
2608         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2609     } else {
2610       Code = bitc::VST_CODE_ENTRY;
2611       if (isChar6)
2612         AbbrevToUse = VST_ENTRY_6_ABBREV;
2613       else if (is7Bit)
2614         AbbrevToUse = VST_ENTRY_7_ABBREV;
2615     }
2616 
2617     NameVals.push_back(VE.getValueID(SI->getValue()));
2618     for (const char *P = Name.getKeyData(),
2619                     *E = Name.getKeyData() + Name.getKeyLength();
2620          P != E; ++P)
2621       NameVals.push_back((unsigned char)*P);
2622 
2623     // Emit the finished record.
2624     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2625     NameVals.clear();
2626   }
2627   Stream.ExitBlock();
2628 }
2629 
2630 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
2631   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2632   unsigned Code;
2633   if (isa<BasicBlock>(Order.V))
2634     Code = bitc::USELIST_CODE_BB;
2635   else
2636     Code = bitc::USELIST_CODE_DEFAULT;
2637 
2638   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2639   Record.push_back(VE.getValueID(Order.V));
2640   Stream.EmitRecord(Code, Record);
2641 }
2642 
2643 void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
2644   auto hasMore = [&]() {
2645     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2646   };
2647   if (!hasMore())
2648     // Nothing to do.
2649     return;
2650 
2651   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2652   while (hasMore()) {
2653     writeUseList(std::move(VE.UseListOrders.back()));
2654     VE.UseListOrders.pop_back();
2655   }
2656   Stream.ExitBlock();
2657 }
2658 
2659 /// Emit a function body to the module stream.
2660 void DXILBitcodeWriter::writeFunction(const Function &F) {
2661   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2662   VE.incorporateFunction(F);
2663 
2664   SmallVector<unsigned, 64> Vals;
2665 
2666   // Emit the number of basic blocks, so the reader can create them ahead of
2667   // time.
2668   Vals.push_back(VE.getBasicBlocks().size());
2669   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2670   Vals.clear();
2671 
2672   // If there are function-local constants, emit them now.
2673   unsigned CstStart, CstEnd;
2674   VE.getFunctionConstantRange(CstStart, CstEnd);
2675   writeConstants(CstStart, CstEnd, false);
2676 
2677   // If there is function-local metadata, emit it now.
2678   writeFunctionMetadata(F);
2679 
2680   // Keep a running idea of what the instruction ID is.
2681   unsigned InstID = CstEnd;
2682 
2683   bool NeedsMetadataAttachment = F.hasMetadata();
2684 
2685   DILocation *LastDL = nullptr;
2686 
2687   // Finally, emit all the instructions, in order.
2688   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2689     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2690          ++I) {
2691       writeInstruction(*I, InstID, Vals);
2692 
2693       if (!I->getType()->isVoidTy())
2694         ++InstID;
2695 
2696       // If the instruction has metadata, write a metadata attachment later.
2697       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2698 
2699       // If the instruction has a debug location, emit it.
2700       DILocation *DL = I->getDebugLoc();
2701       if (!DL)
2702         continue;
2703 
2704       if (DL == LastDL) {
2705         // Just repeat the same debug loc as last time.
2706         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2707         continue;
2708       }
2709 
2710       Vals.push_back(DL->getLine());
2711       Vals.push_back(DL->getColumn());
2712       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2713       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2714       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2715       Vals.clear();
2716 
2717       LastDL = DL;
2718     }
2719 
2720   // Emit names for all the instructions etc.
2721   if (auto *Symtab = F.getValueSymbolTable())
2722     writeFunctionLevelValueSymbolTable(*Symtab);
2723 
2724   if (NeedsMetadataAttachment)
2725     writeFunctionMetadataAttachment(F);
2726 
2727   writeUseListBlock(&F);
2728   VE.purgeFunction();
2729   Stream.ExitBlock();
2730 }
2731 
2732 // Emit blockinfo, which defines the standard abbreviations etc.
2733 void DXILBitcodeWriter::writeBlockInfo() {
2734   // We only want to emit block info records for blocks that have multiple
2735   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2736   // Other blocks can define their abbrevs inline.
2737   Stream.EnterBlockInfoBlock();
2738 
2739   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2740     auto Abbv = std::make_shared<BitCodeAbbrev>();
2741     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2742     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2743     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2745     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2746                                    std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2747       assert(false && "Unexpected abbrev ordering!");
2748   }
2749 
2750   { // 7-bit fixed width VST_ENTRY strings.
2751     auto Abbv = std::make_shared<BitCodeAbbrev>();
2752     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2753     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2755     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2756     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2757                                    std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2758       assert(false && "Unexpected abbrev ordering!");
2759   }
2760   { // 6-bit char6 VST_ENTRY strings.
2761     auto Abbv = std::make_shared<BitCodeAbbrev>();
2762     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2763     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2764     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2765     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2766     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2767                                    std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2768       assert(false && "Unexpected abbrev ordering!");
2769   }
2770   { // 6-bit char6 VST_BBENTRY strings.
2771     auto Abbv = std::make_shared<BitCodeAbbrev>();
2772     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2773     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2774     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2775     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2776     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2777                                    std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2778       assert(false && "Unexpected abbrev ordering!");
2779   }
2780 
2781   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2782     auto Abbv = std::make_shared<BitCodeAbbrev>();
2783     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2785                               VE.computeBitsRequiredForTypeIndicies()));
2786     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2787         CONSTANTS_SETTYPE_ABBREV)
2788       assert(false && "Unexpected abbrev ordering!");
2789   }
2790 
2791   { // INTEGER abbrev for CONSTANTS_BLOCK.
2792     auto Abbv = std::make_shared<BitCodeAbbrev>();
2793     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2795     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2796         CONSTANTS_INTEGER_ABBREV)
2797       assert(false && "Unexpected abbrev ordering!");
2798   }
2799 
2800   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2801     auto Abbv = std::make_shared<BitCodeAbbrev>();
2802     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2804     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
2805                               VE.computeBitsRequiredForTypeIndicies()));
2806     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2807 
2808     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2809         CONSTANTS_CE_CAST_Abbrev)
2810       assert(false && "Unexpected abbrev ordering!");
2811   }
2812   { // NULL abbrev for CONSTANTS_BLOCK.
2813     auto Abbv = std::make_shared<BitCodeAbbrev>();
2814     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2815     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2816         CONSTANTS_NULL_Abbrev)
2817       assert(false && "Unexpected abbrev ordering!");
2818   }
2819 
2820   // FIXME: This should only use space for first class types!
2821 
2822   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2823     auto Abbv = std::make_shared<BitCodeAbbrev>();
2824     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2825     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2826     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2827                               VE.computeBitsRequiredForTypeIndicies()));
2828     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
2829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2830     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2831         (unsigned)FUNCTION_INST_LOAD_ABBREV)
2832       assert(false && "Unexpected abbrev ordering!");
2833   }
2834   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2835     auto Abbv = std::make_shared<BitCodeAbbrev>();
2836     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2837     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2838     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2840     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2841         (unsigned)FUNCTION_INST_BINOP_ABBREV)
2842       assert(false && "Unexpected abbrev ordering!");
2843   }
2844   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2845     auto Abbv = std::make_shared<BitCodeAbbrev>();
2846     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2847     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2848     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2849     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2850     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2851     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2852         (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2853       assert(false && "Unexpected abbrev ordering!");
2854   }
2855   { // INST_CAST abbrev for FUNCTION_BLOCK.
2856     auto Abbv = std::make_shared<BitCodeAbbrev>();
2857     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2858     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2859     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2860                               VE.computeBitsRequiredForTypeIndicies()));
2861     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2862     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2863         (unsigned)FUNCTION_INST_CAST_ABBREV)
2864       assert(false && "Unexpected abbrev ordering!");
2865   }
2866 
2867   { // INST_RET abbrev for FUNCTION_BLOCK.
2868     auto Abbv = std::make_shared<BitCodeAbbrev>();
2869     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2870     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2871         (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2872       assert(false && "Unexpected abbrev ordering!");
2873   }
2874   { // INST_RET abbrev for FUNCTION_BLOCK.
2875     auto Abbv = std::make_shared<BitCodeAbbrev>();
2876     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2877     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2878     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2879         (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2880       assert(false && "Unexpected abbrev ordering!");
2881   }
2882   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2883     auto Abbv = std::make_shared<BitCodeAbbrev>();
2884     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2885     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2886         (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2887       assert(false && "Unexpected abbrev ordering!");
2888   }
2889   {
2890     auto Abbv = std::make_shared<BitCodeAbbrev>();
2891     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2892     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2893     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2894                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2895     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2896     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2897     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2898         (unsigned)FUNCTION_INST_GEP_ABBREV)
2899       assert(false && "Unexpected abbrev ordering!");
2900   }
2901 
2902   Stream.ExitBlock();
2903 }
2904 
2905 void DXILBitcodeWriter::writeModuleVersion() {
2906   // VERSION: [version#]
2907   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2908 }
2909 
2910 /// WriteModule - Emit the specified module to the bitstream.
2911 void DXILBitcodeWriter::write() {
2912   // The identification block is new since llvm-3.7, but the old bitcode reader
2913   // will skip it.
2914   // writeIdentificationBlock(Stream);
2915 
2916   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2917 
2918   // It is redundant to fully-specify this here, but nice to make it explicit
2919   // so that it is clear the DXIL module version is different.
2920   DXILBitcodeWriter::writeModuleVersion();
2921 
2922   // Emit blockinfo, which defines the standard abbreviations etc.
2923   writeBlockInfo();
2924 
2925   // Emit information about attribute groups.
2926   writeAttributeGroupTable();
2927 
2928   // Emit information about parameter attributes.
2929   writeAttributeTable();
2930 
2931   // Emit information describing all of the types in the module.
2932   writeTypeTable();
2933 
2934   writeComdats();
2935 
2936   // Emit top-level description of module, including target triple, inline asm,
2937   // descriptors for global variables, and function prototype info.
2938   writeModuleInfo();
2939 
2940   // Emit constants.
2941   writeModuleConstants();
2942 
2943   // Emit metadata.
2944   writeModuleMetadataKinds();
2945 
2946   // Emit metadata.
2947   writeModuleMetadata();
2948 
2949   // Emit names for globals/functions etc.
2950   // DXIL uses the same format for module-level value symbol table as for the
2951   // function level table.
2952   writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2953 
2954   // Emit module-level use-lists.
2955   writeUseListBlock(nullptr);
2956 
2957   // Emit function bodies.
2958   for (const Function &F : M)
2959     if (!F.isDeclaration())
2960       writeFunction(F);
2961 
2962   Stream.ExitBlock();
2963 }
2964