1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "PointerTypeAnalysis.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitcodeCommon.h" 18 #include "llvm/Bitcode/BitcodeReader.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/Bitstream/BitCodes.h" 21 #include "llvm/Bitstream/BitstreamWriter.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DebugLoc.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSummaryIndex.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/UseListOrder.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Object/IRSymtab.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/SHA1.h" 52 53 namespace llvm { 54 namespace dxil { 55 56 // Generates an enum to use as an index in the Abbrev array of Metadata record. 57 enum MetadataAbbrev : unsigned { 58 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 59 #include "llvm/IR/Metadata.def" 60 LastPlusOne 61 }; 62 63 class DXILBitcodeWriter { 64 65 /// These are manifest constants used by the bitcode writer. They do not need 66 /// to be kept in sync with the reader, but need to be consistent within this 67 /// file. 68 enum { 69 // VALUE_SYMTAB_BLOCK abbrev id's. 70 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 71 VST_ENTRY_7_ABBREV, 72 VST_ENTRY_6_ABBREV, 73 VST_BBENTRY_6_ABBREV, 74 75 // CONSTANTS_BLOCK abbrev id's. 76 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 77 CONSTANTS_INTEGER_ABBREV, 78 CONSTANTS_CE_CAST_Abbrev, 79 CONSTANTS_NULL_Abbrev, 80 81 // FUNCTION_BLOCK abbrev id's. 82 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 83 FUNCTION_INST_BINOP_ABBREV, 84 FUNCTION_INST_BINOP_FLAGS_ABBREV, 85 FUNCTION_INST_CAST_ABBREV, 86 FUNCTION_INST_RET_VOID_ABBREV, 87 FUNCTION_INST_RET_VAL_ABBREV, 88 FUNCTION_INST_UNREACHABLE_ABBREV, 89 FUNCTION_INST_GEP_ABBREV, 90 }; 91 92 // Cache some types 93 Type *I8Ty; 94 Type *I8PtrTy; 95 96 /// The stream created and owned by the client. 97 BitstreamWriter &Stream; 98 99 StringTableBuilder &StrtabBuilder; 100 101 /// The Module to write to bitcode. 102 const Module &M; 103 104 /// Enumerates ids for all values in the module. 105 ValueEnumerator VE; 106 107 /// Map that holds the correspondence between GUIDs in the summary index, 108 /// that came from indirect call profiles, and a value id generated by this 109 /// class to use in the VST and summary block records. 110 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 111 112 /// Tracks the last value id recorded in the GUIDToValueMap. 113 unsigned GlobalValueId; 114 115 /// Saves the offset of the VSTOffset record that must eventually be 116 /// backpatched with the offset of the actual VST. 117 uint64_t VSTOffsetPlaceholder = 0; 118 119 /// Pointer to the buffer allocated by caller for bitcode writing. 120 const SmallVectorImpl<char> &Buffer; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// This maps values to their typed pointers 126 PointerTypeMap PointerMap; 127 128 public: 129 /// Constructs a ModuleBitcodeWriter object for the given Module, 130 /// writing to the provided \p Buffer. 131 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 132 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 133 : I8Ty(Type::getInt8Ty(M.getContext())), 134 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 135 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 136 BitcodeStartBit(Stream.GetCurrentBitNo()), 137 PointerMap(PointerTypeAnalysis::run(M)) { 138 GlobalValueId = VE.getValues().size(); 139 // Enumerate the typed pointers 140 for (auto El : PointerMap) 141 VE.EnumerateType(El.second); 142 } 143 144 /// Emit the current module to the bitstream. 145 void write(); 146 147 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 148 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 149 StringRef Str, unsigned AbbrevToUse); 150 static void writeIdentificationBlock(BitstreamWriter &Stream); 151 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 152 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 153 154 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 155 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 156 static unsigned getEncodedLinkage(const GlobalValue &GV); 157 static unsigned getEncodedVisibility(const GlobalValue &GV); 158 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 159 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 160 static unsigned getEncodedCastOpcode(unsigned Opcode); 161 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 162 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 163 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 164 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 165 static uint64_t getOptimizationFlags(const Value *V); 166 167 private: 168 void writeModuleVersion(); 169 void writePerModuleGlobalValueSummary(); 170 171 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 172 GlobalValueSummary *Summary, 173 unsigned ValueID, 174 unsigned FSCallsAbbrev, 175 unsigned FSCallsProfileAbbrev, 176 const Function &F); 177 void writeModuleLevelReferences(const GlobalVariable &V, 178 SmallVector<uint64_t, 64> &NameVals, 179 unsigned FSModRefsAbbrev, 180 unsigned FSModVTableRefsAbbrev); 181 182 void assignValueId(GlobalValue::GUID ValGUID) { 183 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 184 } 185 186 unsigned getValueId(GlobalValue::GUID ValGUID) { 187 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 188 // Expect that any GUID value had a value Id assigned by an 189 // earlier call to assignValueId. 190 assert(VMI != GUIDToValueIdMap.end() && 191 "GUID does not have assigned value Id"); 192 return VMI->second; 193 } 194 195 // Helper to get the valueId for the type of value recorded in VI. 196 unsigned getValueId(ValueInfo VI) { 197 if (!VI.haveGVs() || !VI.getValue()) 198 return getValueId(VI.getGUID()); 199 return VE.getValueID(VI.getValue()); 200 } 201 202 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 203 204 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 205 206 size_t addToStrtab(StringRef Str); 207 208 unsigned createDILocationAbbrev(); 209 unsigned createGenericDINodeAbbrev(); 210 211 void writeAttributeGroupTable(); 212 void writeAttributeTable(); 213 void writeTypeTable(); 214 void writeComdats(); 215 void writeValueSymbolTableForwardDecl(); 216 void writeModuleInfo(); 217 void writeValueAsMetadata(const ValueAsMetadata *MD, 218 SmallVectorImpl<uint64_t> &Record); 219 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned &Abbrev); 223 void writeGenericDINode(const GenericDINode *N, 224 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 225 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 226 } 227 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 228 unsigned Abbrev); 229 void writeDIGenericSubrange(const DIGenericSubrange *N, 230 SmallVectorImpl<uint64_t> &Record, 231 unsigned Abbrev) { 232 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 233 } 234 void writeDIEnumerator(const DIEnumerator *N, 235 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 236 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 237 unsigned Abbrev); 238 void writeDIStringType(const DIStringType *N, 239 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 240 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 241 } 242 void writeDIDerivedType(const DIDerivedType *N, 243 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 244 void writeDICompositeType(const DICompositeType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDISubroutineType(const DISubroutineType *N, 247 SmallVectorImpl<uint64_t> &Record, 248 unsigned Abbrev); 249 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDICompileUnit(const DICompileUnit *N, 252 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 253 void writeDISubprogram(const DISubprogram *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDILexicalBlock(const DILexicalBlock *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 258 SmallVectorImpl<uint64_t> &Record, 259 unsigned Abbrev); 260 void writeDICommonBlock(const DICommonBlock *N, 261 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 262 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 263 } 264 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 265 unsigned Abbrev); 266 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev) { 268 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 269 } 270 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 271 unsigned Abbrev) { 272 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 273 } 274 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 275 unsigned Abbrev) { 276 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 277 } 278 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 279 unsigned Abbrev); 280 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 281 SmallVectorImpl<uint64_t> &Record, 282 unsigned Abbrev); 283 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 284 SmallVectorImpl<uint64_t> &Record, 285 unsigned Abbrev); 286 void writeDIGlobalVariable(const DIGlobalVariable *N, 287 SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDILocalVariable(const DILocalVariable *N, 290 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 291 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned Abbrev) { 293 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 294 } 295 void writeDIExpression(const DIExpression *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 297 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 298 SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev) { 300 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 301 } 302 void writeDIObjCProperty(const DIObjCProperty *N, 303 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 304 void writeDIImportedEntity(const DIImportedEntity *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 unsigned createNamedMetadataAbbrev(); 308 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 309 unsigned createMetadataStringsAbbrev(); 310 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 311 SmallVectorImpl<uint64_t> &Record); 312 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 313 SmallVectorImpl<uint64_t> &Record, 314 std::vector<unsigned> *MDAbbrevs = nullptr, 315 std::vector<uint64_t> *IndexPos = nullptr); 316 void writeModuleMetadata(); 317 void writeFunctionMetadata(const Function &F); 318 void writeFunctionMetadataAttachment(const Function &F); 319 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 320 const GlobalObject &GO); 321 void writeModuleMetadataKinds(); 322 void writeOperandBundleTags(); 323 void writeSyncScopeNames(); 324 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 325 void writeModuleConstants(); 326 bool pushValueAndType(const Value *V, unsigned InstID, 327 SmallVectorImpl<unsigned> &Vals); 328 void writeOperandBundles(const CallBase &CB, unsigned InstID); 329 void pushValue(const Value *V, unsigned InstID, 330 SmallVectorImpl<unsigned> &Vals); 331 void pushValueSigned(const Value *V, unsigned InstID, 332 SmallVectorImpl<uint64_t> &Vals); 333 void writeInstruction(const Instruction &I, unsigned InstID, 334 SmallVectorImpl<unsigned> &Vals); 335 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 336 void writeGlobalValueSymbolTable( 337 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 338 void writeUseList(UseListOrder &&Order); 339 void writeUseListBlock(const Function *F); 340 void writeFunction(const Function &F); 341 void writeBlockInfo(); 342 343 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 344 345 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 346 347 unsigned getTypeID(Type *T, const Value *V = nullptr); 348 unsigned getTypeID(Type *T, const Function *F); 349 }; 350 351 } // namespace dxil 352 } // namespace llvm 353 354 using namespace llvm; 355 using namespace llvm::dxil; 356 357 //////////////////////////////////////////////////////////////////////////////// 358 /// Begin dxil::BitcodeWriter Implementation 359 //////////////////////////////////////////////////////////////////////////////// 360 361 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, 362 raw_fd_stream *FS) 363 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { 364 // Emit the file header. 365 Stream->Emit((unsigned)'B', 8); 366 Stream->Emit((unsigned)'C', 8); 367 Stream->Emit(0x0, 4); 368 Stream->Emit(0xC, 4); 369 Stream->Emit(0xE, 4); 370 Stream->Emit(0xD, 4); 371 } 372 373 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 374 375 /// Write the specified module to the specified output stream. 376 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 377 SmallVector<char, 0> Buffer; 378 Buffer.reserve(256 * 1024); 379 380 // If this is darwin or another generic macho target, reserve space for the 381 // header. 382 Triple TT(M.getTargetTriple()); 383 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 384 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 385 386 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 387 Writer.writeModule(M); 388 Writer.writeSymtab(); 389 Writer.writeStrtab(); 390 391 // Write the generated bitstream to "Out". 392 if (!Buffer.empty()) 393 Out.write((char *)&Buffer.front(), Buffer.size()); 394 } 395 396 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 397 Stream->EnterSubblock(Block, 3); 398 399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 400 Abbv->Add(BitCodeAbbrevOp(Record)); 401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 402 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 403 404 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 405 406 Stream->ExitBlock(); 407 } 408 409 void BitcodeWriter::writeSymtab() { 410 assert(!WroteStrtab && !WroteSymtab); 411 412 // If any module has module-level inline asm, we will require a registered asm 413 // parser for the target so that we can create an accurate symbol table for 414 // the module. 415 for (Module *M : Mods) { 416 if (M->getModuleInlineAsm().empty()) 417 continue; 418 } 419 420 WroteSymtab = true; 421 SmallVector<char, 0> Symtab; 422 // The irsymtab::build function may be unable to create a symbol table if the 423 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 424 // table is not required for correctness, but we still want to be able to 425 // write malformed modules to bitcode files, so swallow the error. 426 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 427 consumeError(std::move(E)); 428 return; 429 } 430 431 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 432 {Symtab.data(), Symtab.size()}); 433 } 434 435 void BitcodeWriter::writeStrtab() { 436 assert(!WroteStrtab); 437 438 std::vector<char> Strtab; 439 StrtabBuilder.finalizeInOrder(); 440 Strtab.resize(StrtabBuilder.getSize()); 441 StrtabBuilder.write((uint8_t *)Strtab.data()); 442 443 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 444 {Strtab.data(), Strtab.size()}); 445 446 WroteStrtab = true; 447 } 448 449 void BitcodeWriter::copyStrtab(StringRef Strtab) { 450 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 451 WroteStrtab = true; 452 } 453 454 void BitcodeWriter::writeModule(const Module &M) { 455 assert(!WroteStrtab); 456 457 // The Mods vector is used by irsymtab::build, which requires non-const 458 // Modules in case it needs to materialize metadata. But the bitcode writer 459 // requires that the module is materialized, so we can cast to non-const here, 460 // after checking that it is in fact materialized. 461 assert(M.isMaterialized()); 462 Mods.push_back(const_cast<Module *>(&M)); 463 464 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 465 ModuleWriter.write(); 466 } 467 468 //////////////////////////////////////////////////////////////////////////////// 469 /// Begin dxil::BitcodeWriterBase Implementation 470 //////////////////////////////////////////////////////////////////////////////// 471 472 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 473 switch (Opcode) { 474 default: 475 llvm_unreachable("Unknown cast instruction!"); 476 case Instruction::Trunc: 477 return bitc::CAST_TRUNC; 478 case Instruction::ZExt: 479 return bitc::CAST_ZEXT; 480 case Instruction::SExt: 481 return bitc::CAST_SEXT; 482 case Instruction::FPToUI: 483 return bitc::CAST_FPTOUI; 484 case Instruction::FPToSI: 485 return bitc::CAST_FPTOSI; 486 case Instruction::UIToFP: 487 return bitc::CAST_UITOFP; 488 case Instruction::SIToFP: 489 return bitc::CAST_SITOFP; 490 case Instruction::FPTrunc: 491 return bitc::CAST_FPTRUNC; 492 case Instruction::FPExt: 493 return bitc::CAST_FPEXT; 494 case Instruction::PtrToInt: 495 return bitc::CAST_PTRTOINT; 496 case Instruction::IntToPtr: 497 return bitc::CAST_INTTOPTR; 498 case Instruction::BitCast: 499 return bitc::CAST_BITCAST; 500 case Instruction::AddrSpaceCast: 501 return bitc::CAST_ADDRSPACECAST; 502 } 503 } 504 505 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 506 switch (Opcode) { 507 default: 508 llvm_unreachable("Unknown binary instruction!"); 509 case Instruction::FNeg: 510 return bitc::UNOP_FNEG; 511 } 512 } 513 514 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: 517 llvm_unreachable("Unknown binary instruction!"); 518 case Instruction::Add: 519 case Instruction::FAdd: 520 return bitc::BINOP_ADD; 521 case Instruction::Sub: 522 case Instruction::FSub: 523 return bitc::BINOP_SUB; 524 case Instruction::Mul: 525 case Instruction::FMul: 526 return bitc::BINOP_MUL; 527 case Instruction::UDiv: 528 return bitc::BINOP_UDIV; 529 case Instruction::FDiv: 530 case Instruction::SDiv: 531 return bitc::BINOP_SDIV; 532 case Instruction::URem: 533 return bitc::BINOP_UREM; 534 case Instruction::FRem: 535 case Instruction::SRem: 536 return bitc::BINOP_SREM; 537 case Instruction::Shl: 538 return bitc::BINOP_SHL; 539 case Instruction::LShr: 540 return bitc::BINOP_LSHR; 541 case Instruction::AShr: 542 return bitc::BINOP_ASHR; 543 case Instruction::And: 544 return bitc::BINOP_AND; 545 case Instruction::Or: 546 return bitc::BINOP_OR; 547 case Instruction::Xor: 548 return bitc::BINOP_XOR; 549 } 550 } 551 552 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 553 if (!T->isOpaquePointerTy()) 554 return VE.getTypeID(T); 555 auto It = PointerMap.find(V); 556 if (It != PointerMap.end()) 557 return VE.getTypeID(It->second); 558 return VE.getTypeID(I8PtrTy); 559 } 560 561 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) { 562 auto It = PointerMap.find(F); 563 if (It != PointerMap.end()) 564 return VE.getTypeID(It->second); 565 return VE.getTypeID(T); 566 } 567 568 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 569 switch (Op) { 570 default: 571 llvm_unreachable("Unknown RMW operation!"); 572 case AtomicRMWInst::Xchg: 573 return bitc::RMW_XCHG; 574 case AtomicRMWInst::Add: 575 return bitc::RMW_ADD; 576 case AtomicRMWInst::Sub: 577 return bitc::RMW_SUB; 578 case AtomicRMWInst::And: 579 return bitc::RMW_AND; 580 case AtomicRMWInst::Nand: 581 return bitc::RMW_NAND; 582 case AtomicRMWInst::Or: 583 return bitc::RMW_OR; 584 case AtomicRMWInst::Xor: 585 return bitc::RMW_XOR; 586 case AtomicRMWInst::Max: 587 return bitc::RMW_MAX; 588 case AtomicRMWInst::Min: 589 return bitc::RMW_MIN; 590 case AtomicRMWInst::UMax: 591 return bitc::RMW_UMAX; 592 case AtomicRMWInst::UMin: 593 return bitc::RMW_UMIN; 594 case AtomicRMWInst::FAdd: 595 return bitc::RMW_FADD; 596 case AtomicRMWInst::FSub: 597 return bitc::RMW_FSUB; 598 } 599 } 600 601 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 602 switch (Ordering) { 603 case AtomicOrdering::NotAtomic: 604 return bitc::ORDERING_NOTATOMIC; 605 case AtomicOrdering::Unordered: 606 return bitc::ORDERING_UNORDERED; 607 case AtomicOrdering::Monotonic: 608 return bitc::ORDERING_MONOTONIC; 609 case AtomicOrdering::Acquire: 610 return bitc::ORDERING_ACQUIRE; 611 case AtomicOrdering::Release: 612 return bitc::ORDERING_RELEASE; 613 case AtomicOrdering::AcquireRelease: 614 return bitc::ORDERING_ACQREL; 615 case AtomicOrdering::SequentiallyConsistent: 616 return bitc::ORDERING_SEQCST; 617 } 618 llvm_unreachable("Invalid ordering"); 619 } 620 621 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 622 unsigned Code, StringRef Str, 623 unsigned AbbrevToUse) { 624 SmallVector<unsigned, 64> Vals; 625 626 // Code: [strchar x N] 627 for (char C : Str) { 628 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 629 AbbrevToUse = 0; 630 Vals.push_back(C); 631 } 632 633 // Emit the finished record. 634 Stream.EmitRecord(Code, Vals, AbbrevToUse); 635 } 636 637 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 638 switch (Kind) { 639 case Attribute::Alignment: 640 return bitc::ATTR_KIND_ALIGNMENT; 641 case Attribute::AlwaysInline: 642 return bitc::ATTR_KIND_ALWAYS_INLINE; 643 case Attribute::ArgMemOnly: 644 return bitc::ATTR_KIND_ARGMEMONLY; 645 case Attribute::Builtin: 646 return bitc::ATTR_KIND_BUILTIN; 647 case Attribute::ByVal: 648 return bitc::ATTR_KIND_BY_VAL; 649 case Attribute::Convergent: 650 return bitc::ATTR_KIND_CONVERGENT; 651 case Attribute::InAlloca: 652 return bitc::ATTR_KIND_IN_ALLOCA; 653 case Attribute::Cold: 654 return bitc::ATTR_KIND_COLD; 655 case Attribute::InlineHint: 656 return bitc::ATTR_KIND_INLINE_HINT; 657 case Attribute::InReg: 658 return bitc::ATTR_KIND_IN_REG; 659 case Attribute::JumpTable: 660 return bitc::ATTR_KIND_JUMP_TABLE; 661 case Attribute::MinSize: 662 return bitc::ATTR_KIND_MIN_SIZE; 663 case Attribute::Naked: 664 return bitc::ATTR_KIND_NAKED; 665 case Attribute::Nest: 666 return bitc::ATTR_KIND_NEST; 667 case Attribute::NoAlias: 668 return bitc::ATTR_KIND_NO_ALIAS; 669 case Attribute::NoBuiltin: 670 return bitc::ATTR_KIND_NO_BUILTIN; 671 case Attribute::NoCapture: 672 return bitc::ATTR_KIND_NO_CAPTURE; 673 case Attribute::NoDuplicate: 674 return bitc::ATTR_KIND_NO_DUPLICATE; 675 case Attribute::NoImplicitFloat: 676 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 677 case Attribute::NoInline: 678 return bitc::ATTR_KIND_NO_INLINE; 679 case Attribute::NonLazyBind: 680 return bitc::ATTR_KIND_NON_LAZY_BIND; 681 case Attribute::NonNull: 682 return bitc::ATTR_KIND_NON_NULL; 683 case Attribute::Dereferenceable: 684 return bitc::ATTR_KIND_DEREFERENCEABLE; 685 case Attribute::DereferenceableOrNull: 686 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 687 case Attribute::NoRedZone: 688 return bitc::ATTR_KIND_NO_RED_ZONE; 689 case Attribute::NoReturn: 690 return bitc::ATTR_KIND_NO_RETURN; 691 case Attribute::NoUnwind: 692 return bitc::ATTR_KIND_NO_UNWIND; 693 case Attribute::OptimizeForSize: 694 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 695 case Attribute::OptimizeNone: 696 return bitc::ATTR_KIND_OPTIMIZE_NONE; 697 case Attribute::ReadNone: 698 return bitc::ATTR_KIND_READ_NONE; 699 case Attribute::ReadOnly: 700 return bitc::ATTR_KIND_READ_ONLY; 701 case Attribute::Returned: 702 return bitc::ATTR_KIND_RETURNED; 703 case Attribute::ReturnsTwice: 704 return bitc::ATTR_KIND_RETURNS_TWICE; 705 case Attribute::SExt: 706 return bitc::ATTR_KIND_S_EXT; 707 case Attribute::StackAlignment: 708 return bitc::ATTR_KIND_STACK_ALIGNMENT; 709 case Attribute::StackProtect: 710 return bitc::ATTR_KIND_STACK_PROTECT; 711 case Attribute::StackProtectReq: 712 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 713 case Attribute::StackProtectStrong: 714 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 715 case Attribute::SafeStack: 716 return bitc::ATTR_KIND_SAFESTACK; 717 case Attribute::StructRet: 718 return bitc::ATTR_KIND_STRUCT_RET; 719 case Attribute::SanitizeAddress: 720 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 721 case Attribute::SanitizeThread: 722 return bitc::ATTR_KIND_SANITIZE_THREAD; 723 case Attribute::SanitizeMemory: 724 return bitc::ATTR_KIND_SANITIZE_MEMORY; 725 case Attribute::UWTable: 726 return bitc::ATTR_KIND_UW_TABLE; 727 case Attribute::ZExt: 728 return bitc::ATTR_KIND_Z_EXT; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 case Attribute::EmptyKey: 734 case Attribute::TombstoneKey: 735 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 736 default: 737 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 738 "should be stripped in DXILPrepare"); 739 } 740 741 llvm_unreachable("Trying to encode unknown attribute"); 742 } 743 744 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 745 uint64_t V) { 746 if ((int64_t)V >= 0) 747 Vals.push_back(V << 1); 748 else 749 Vals.push_back((-V << 1) | 1); 750 } 751 752 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 753 const APInt &A) { 754 // We have an arbitrary precision integer value to write whose 755 // bit width is > 64. However, in canonical unsigned integer 756 // format it is likely that the high bits are going to be zero. 757 // So, we only write the number of active words. 758 unsigned NumWords = A.getActiveWords(); 759 const uint64_t *RawData = A.getRawData(); 760 for (unsigned i = 0; i < NumWords; i++) 761 emitSignedInt64(Vals, RawData[i]); 762 } 763 764 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 765 uint64_t Flags = 0; 766 767 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 768 if (OBO->hasNoSignedWrap()) 769 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 770 if (OBO->hasNoUnsignedWrap()) 771 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 772 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 773 if (PEO->isExact()) 774 Flags |= 1 << bitc::PEO_EXACT; 775 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 776 if (FPMO->hasAllowReassoc()) 777 Flags |= bitc::AllowReassoc; 778 if (FPMO->hasNoNaNs()) 779 Flags |= bitc::NoNaNs; 780 if (FPMO->hasNoInfs()) 781 Flags |= bitc::NoInfs; 782 if (FPMO->hasNoSignedZeros()) 783 Flags |= bitc::NoSignedZeros; 784 if (FPMO->hasAllowReciprocal()) 785 Flags |= bitc::AllowReciprocal; 786 if (FPMO->hasAllowContract()) 787 Flags |= bitc::AllowContract; 788 if (FPMO->hasApproxFunc()) 789 Flags |= bitc::ApproxFunc; 790 } 791 792 return Flags; 793 } 794 795 unsigned 796 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 797 switch (Linkage) { 798 case GlobalValue::ExternalLinkage: 799 return 0; 800 case GlobalValue::WeakAnyLinkage: 801 return 16; 802 case GlobalValue::AppendingLinkage: 803 return 2; 804 case GlobalValue::InternalLinkage: 805 return 3; 806 case GlobalValue::LinkOnceAnyLinkage: 807 return 18; 808 case GlobalValue::ExternalWeakLinkage: 809 return 7; 810 case GlobalValue::CommonLinkage: 811 return 8; 812 case GlobalValue::PrivateLinkage: 813 return 9; 814 case GlobalValue::WeakODRLinkage: 815 return 17; 816 case GlobalValue::LinkOnceODRLinkage: 817 return 19; 818 case GlobalValue::AvailableExternallyLinkage: 819 return 12; 820 } 821 llvm_unreachable("Invalid linkage"); 822 } 823 824 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 825 return getEncodedLinkage(GV.getLinkage()); 826 } 827 828 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 829 switch (GV.getVisibility()) { 830 case GlobalValue::DefaultVisibility: 831 return 0; 832 case GlobalValue::HiddenVisibility: 833 return 1; 834 case GlobalValue::ProtectedVisibility: 835 return 2; 836 } 837 llvm_unreachable("Invalid visibility"); 838 } 839 840 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 841 switch (GV.getDLLStorageClass()) { 842 case GlobalValue::DefaultStorageClass: 843 return 0; 844 case GlobalValue::DLLImportStorageClass: 845 return 1; 846 case GlobalValue::DLLExportStorageClass: 847 return 2; 848 } 849 llvm_unreachable("Invalid DLL storage class"); 850 } 851 852 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 853 switch (GV.getThreadLocalMode()) { 854 case GlobalVariable::NotThreadLocal: 855 return 0; 856 case GlobalVariable::GeneralDynamicTLSModel: 857 return 1; 858 case GlobalVariable::LocalDynamicTLSModel: 859 return 2; 860 case GlobalVariable::InitialExecTLSModel: 861 return 3; 862 case GlobalVariable::LocalExecTLSModel: 863 return 4; 864 } 865 llvm_unreachable("Invalid TLS model"); 866 } 867 868 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 869 switch (C.getSelectionKind()) { 870 case Comdat::Any: 871 return bitc::COMDAT_SELECTION_KIND_ANY; 872 case Comdat::ExactMatch: 873 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 874 case Comdat::Largest: 875 return bitc::COMDAT_SELECTION_KIND_LARGEST; 876 case Comdat::NoDeduplicate: 877 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 878 case Comdat::SameSize: 879 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 880 } 881 llvm_unreachable("Invalid selection kind"); 882 } 883 884 //////////////////////////////////////////////////////////////////////////////// 885 /// Begin DXILBitcodeWriter Implementation 886 //////////////////////////////////////////////////////////////////////////////// 887 888 void DXILBitcodeWriter::writeAttributeGroupTable() { 889 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 890 VE.getAttributeGroups(); 891 if (AttrGrps.empty()) 892 return; 893 894 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 895 896 SmallVector<uint64_t, 64> Record; 897 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 898 unsigned AttrListIndex = Pair.first; 899 AttributeSet AS = Pair.second; 900 Record.push_back(VE.getAttributeGroupID(Pair)); 901 Record.push_back(AttrListIndex); 902 903 for (Attribute Attr : AS) { 904 if (Attr.isEnumAttribute()) { 905 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 906 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 907 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 908 Record.push_back(0); 909 Record.push_back(Val); 910 } else if (Attr.isIntAttribute()) { 911 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 912 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 913 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 914 Record.push_back(1); 915 Record.push_back(Val); 916 Record.push_back(Attr.getValueAsInt()); 917 } else { 918 StringRef Kind = Attr.getKindAsString(); 919 StringRef Val = Attr.getValueAsString(); 920 921 Record.push_back(Val.empty() ? 3 : 4); 922 Record.append(Kind.begin(), Kind.end()); 923 Record.push_back(0); 924 if (!Val.empty()) { 925 Record.append(Val.begin(), Val.end()); 926 Record.push_back(0); 927 } 928 } 929 } 930 931 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 932 Record.clear(); 933 } 934 935 Stream.ExitBlock(); 936 } 937 938 void DXILBitcodeWriter::writeAttributeTable() { 939 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 940 if (Attrs.empty()) 941 return; 942 943 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 944 945 SmallVector<uint64_t, 64> Record; 946 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 947 AttributeList AL = Attrs[i]; 948 for (unsigned i : AL.indexes()) { 949 AttributeSet AS = AL.getAttributes(i); 950 if (AS.hasAttributes()) 951 Record.push_back(VE.getAttributeGroupID({i, AS})); 952 } 953 954 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 955 Record.clear(); 956 } 957 958 Stream.ExitBlock(); 959 } 960 961 /// WriteTypeTable - Write out the type table for a module. 962 void DXILBitcodeWriter::writeTypeTable() { 963 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 964 965 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 966 SmallVector<uint64_t, 64> TypeVals; 967 968 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 969 970 // Abbrev for TYPE_CODE_POINTER. 971 auto Abbv = std::make_shared<BitCodeAbbrev>(); 972 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 974 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 975 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 976 977 // Abbrev for TYPE_CODE_FUNCTION. 978 Abbv = std::make_shared<BitCodeAbbrev>(); 979 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 983 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 984 985 // Abbrev for TYPE_CODE_STRUCT_ANON. 986 Abbv = std::make_shared<BitCodeAbbrev>(); 987 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 991 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 992 993 // Abbrev for TYPE_CODE_STRUCT_NAME. 994 Abbv = std::make_shared<BitCodeAbbrev>(); 995 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 998 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 999 1000 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1001 Abbv = std::make_shared<BitCodeAbbrev>(); 1002 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1006 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1007 1008 // Abbrev for TYPE_CODE_ARRAY. 1009 Abbv = std::make_shared<BitCodeAbbrev>(); 1010 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1013 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1014 1015 // Emit an entry count so the reader can reserve space. 1016 TypeVals.push_back(TypeList.size()); 1017 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1018 TypeVals.clear(); 1019 1020 // Loop over all of the types, emitting each in turn. 1021 for (Type *T : TypeList) { 1022 int AbbrevToUse = 0; 1023 unsigned Code = 0; 1024 1025 switch (T->getTypeID()) { 1026 case Type::BFloatTyID: 1027 case Type::X86_AMXTyID: 1028 case Type::TokenTyID: 1029 llvm_unreachable("These should never be used!!!"); 1030 break; 1031 case Type::VoidTyID: 1032 Code = bitc::TYPE_CODE_VOID; 1033 break; 1034 case Type::HalfTyID: 1035 Code = bitc::TYPE_CODE_HALF; 1036 break; 1037 case Type::FloatTyID: 1038 Code = bitc::TYPE_CODE_FLOAT; 1039 break; 1040 case Type::DoubleTyID: 1041 Code = bitc::TYPE_CODE_DOUBLE; 1042 break; 1043 case Type::X86_FP80TyID: 1044 Code = bitc::TYPE_CODE_X86_FP80; 1045 break; 1046 case Type::FP128TyID: 1047 Code = bitc::TYPE_CODE_FP128; 1048 break; 1049 case Type::PPC_FP128TyID: 1050 Code = bitc::TYPE_CODE_PPC_FP128; 1051 break; 1052 case Type::LabelTyID: 1053 Code = bitc::TYPE_CODE_LABEL; 1054 break; 1055 case Type::MetadataTyID: 1056 Code = bitc::TYPE_CODE_METADATA; 1057 break; 1058 case Type::X86_MMXTyID: 1059 Code = bitc::TYPE_CODE_X86_MMX; 1060 break; 1061 case Type::IntegerTyID: 1062 // INTEGER: [width] 1063 Code = bitc::TYPE_CODE_INTEGER; 1064 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1065 break; 1066 case Type::DXILPointerTyID: { 1067 TypedPointerType *PTy = cast<TypedPointerType>(T); 1068 // POINTER: [pointee type, address space] 1069 Code = bitc::TYPE_CODE_POINTER; 1070 TypeVals.push_back(getTypeID(PTy->getElementType())); 1071 unsigned AddressSpace = PTy->getAddressSpace(); 1072 TypeVals.push_back(AddressSpace); 1073 if (AddressSpace == 0) 1074 AbbrevToUse = PtrAbbrev; 1075 break; 1076 } 1077 case Type::PointerTyID: { 1078 PointerType *PTy = cast<PointerType>(T); 1079 // POINTER: [pointee type, address space] 1080 Code = bitc::TYPE_CODE_POINTER; 1081 // Emitting an empty struct type for the opaque pointer's type allows 1082 // this to be order-independent. Non-struct types must be emitted in 1083 // bitcode before they can be referenced. 1084 if (PTy->isOpaquePointerTy()) { 1085 TypeVals.push_back(false); 1086 Code = bitc::TYPE_CODE_OPAQUE; 1087 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1088 "dxilOpaquePtrReservedName", StructNameAbbrev); 1089 } else { 1090 TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType())); 1091 unsigned AddressSpace = PTy->getAddressSpace(); 1092 TypeVals.push_back(AddressSpace); 1093 if (AddressSpace == 0) 1094 AbbrevToUse = PtrAbbrev; 1095 } 1096 break; 1097 } 1098 case Type::FunctionTyID: { 1099 FunctionType *FT = cast<FunctionType>(T); 1100 // FUNCTION: [isvararg, retty, paramty x N] 1101 Code = bitc::TYPE_CODE_FUNCTION; 1102 TypeVals.push_back(FT->isVarArg()); 1103 TypeVals.push_back(getTypeID(FT->getReturnType())); 1104 for (Type *PTy : FT->params()) 1105 TypeVals.push_back(getTypeID(PTy)); 1106 AbbrevToUse = FunctionAbbrev; 1107 break; 1108 } 1109 case Type::StructTyID: { 1110 StructType *ST = cast<StructType>(T); 1111 // STRUCT: [ispacked, eltty x N] 1112 TypeVals.push_back(ST->isPacked()); 1113 // Output all of the element types. 1114 for (Type *ElTy : ST->elements()) 1115 TypeVals.push_back(getTypeID(ElTy)); 1116 1117 if (ST->isLiteral()) { 1118 Code = bitc::TYPE_CODE_STRUCT_ANON; 1119 AbbrevToUse = StructAnonAbbrev; 1120 } else { 1121 if (ST->isOpaque()) { 1122 Code = bitc::TYPE_CODE_OPAQUE; 1123 } else { 1124 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1125 AbbrevToUse = StructNamedAbbrev; 1126 } 1127 1128 // Emit the name if it is present. 1129 if (!ST->getName().empty()) 1130 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1131 StructNameAbbrev); 1132 } 1133 break; 1134 } 1135 case Type::ArrayTyID: { 1136 ArrayType *AT = cast<ArrayType>(T); 1137 // ARRAY: [numelts, eltty] 1138 Code = bitc::TYPE_CODE_ARRAY; 1139 TypeVals.push_back(AT->getNumElements()); 1140 TypeVals.push_back(getTypeID(AT->getElementType())); 1141 AbbrevToUse = ArrayAbbrev; 1142 break; 1143 } 1144 case Type::FixedVectorTyID: 1145 case Type::ScalableVectorTyID: { 1146 VectorType *VT = cast<VectorType>(T); 1147 // VECTOR [numelts, eltty] 1148 Code = bitc::TYPE_CODE_VECTOR; 1149 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1150 TypeVals.push_back(getTypeID(VT->getElementType())); 1151 break; 1152 } 1153 } 1154 1155 // Emit the finished record. 1156 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1157 TypeVals.clear(); 1158 } 1159 1160 Stream.ExitBlock(); 1161 } 1162 1163 void DXILBitcodeWriter::writeComdats() { 1164 SmallVector<uint16_t, 64> Vals; 1165 for (const Comdat *C : VE.getComdats()) { 1166 // COMDAT: [selection_kind, name] 1167 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1168 size_t Size = C->getName().size(); 1169 assert(isUInt<16>(Size)); 1170 Vals.push_back(Size); 1171 for (char Chr : C->getName()) 1172 Vals.push_back((unsigned char)Chr); 1173 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1174 Vals.clear(); 1175 } 1176 } 1177 1178 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1179 1180 /// Emit top-level description of module, including target triple, inline asm, 1181 /// descriptors for global variables, and function prototype info. 1182 /// Returns the bit offset to backpatch with the location of the real VST. 1183 void DXILBitcodeWriter::writeModuleInfo() { 1184 // Emit various pieces of data attached to a module. 1185 if (!M.getTargetTriple().empty()) 1186 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1187 0 /*TODO*/); 1188 const std::string &DL = M.getDataLayoutStr(); 1189 if (!DL.empty()) 1190 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1191 if (!M.getModuleInlineAsm().empty()) 1192 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1193 0 /*TODO*/); 1194 1195 // Emit information about sections and GC, computing how many there are. Also 1196 // compute the maximum alignment value. 1197 std::map<std::string, unsigned> SectionMap; 1198 std::map<std::string, unsigned> GCMap; 1199 MaybeAlign MaxAlignment; 1200 unsigned MaxGlobalType = 0; 1201 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1202 if (A) 1203 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1204 }; 1205 for (const GlobalVariable &GV : M.globals()) { 1206 UpdateMaxAlignment(GV.getAlign()); 1207 MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV)); 1208 if (GV.hasSection()) { 1209 // Give section names unique ID's. 1210 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1211 if (!Entry) { 1212 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1213 GV.getSection(), 0 /*TODO*/); 1214 Entry = SectionMap.size(); 1215 } 1216 } 1217 } 1218 for (const Function &F : M) { 1219 UpdateMaxAlignment(F.getAlign()); 1220 if (F.hasSection()) { 1221 // Give section names unique ID's. 1222 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1223 if (!Entry) { 1224 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1225 0 /*TODO*/); 1226 Entry = SectionMap.size(); 1227 } 1228 } 1229 if (F.hasGC()) { 1230 // Same for GC names. 1231 unsigned &Entry = GCMap[F.getGC()]; 1232 if (!Entry) { 1233 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1234 0 /*TODO*/); 1235 Entry = GCMap.size(); 1236 } 1237 } 1238 } 1239 1240 // Emit abbrev for globals, now that we know # sections and max alignment. 1241 unsigned SimpleGVarAbbrev = 0; 1242 if (!M.global_empty()) { 1243 // Add an abbrev for common globals with no visibility or thread 1244 // localness. 1245 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1246 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1248 Log2_32_Ceil(MaxGlobalType + 1))); 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1250 //| explicitType << 1 1251 //| constant 1252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1254 if (MaxAlignment == 0) // Alignment. 1255 Abbv->Add(BitCodeAbbrevOp(0)); 1256 else { 1257 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1259 Log2_32_Ceil(MaxEncAlignment + 1))); 1260 } 1261 if (SectionMap.empty()) // Section. 1262 Abbv->Add(BitCodeAbbrevOp(0)); 1263 else 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1265 Log2_32_Ceil(SectionMap.size() + 1))); 1266 // Don't bother emitting vis + thread local. 1267 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1268 } 1269 1270 // Emit the global variable information. 1271 SmallVector<unsigned, 64> Vals; 1272 for (const GlobalVariable &GV : M.globals()) { 1273 unsigned AbbrevToUse = 0; 1274 1275 // GLOBALVAR: [type, isconst, initid, 1276 // linkage, alignment, section, visibility, threadlocal, 1277 // unnamed_addr, externally_initialized, dllstorageclass, 1278 // comdat] 1279 Vals.push_back(getTypeID(GV.getValueType(), &GV)); 1280 Vals.push_back( 1281 GV.getType()->getAddressSpace() << 2 | 2 | 1282 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1283 // unsigned int and bool 1284 Vals.push_back( 1285 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1286 Vals.push_back(getEncodedLinkage(GV)); 1287 Vals.push_back(getEncodedAlign(GV.getAlign())); 1288 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1289 : 0); 1290 if (GV.isThreadLocal() || 1291 GV.getVisibility() != GlobalValue::DefaultVisibility || 1292 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1293 GV.isExternallyInitialized() || 1294 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1295 GV.hasComdat()) { 1296 Vals.push_back(getEncodedVisibility(GV)); 1297 Vals.push_back(getEncodedThreadLocalMode(GV)); 1298 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1299 Vals.push_back(GV.isExternallyInitialized()); 1300 Vals.push_back(getEncodedDLLStorageClass(GV)); 1301 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1302 } else { 1303 AbbrevToUse = SimpleGVarAbbrev; 1304 } 1305 1306 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1307 Vals.clear(); 1308 } 1309 1310 // Emit the function proto information. 1311 for (const Function &F : M) { 1312 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1313 // section, visibility, gc, unnamed_addr, prologuedata, 1314 // dllstorageclass, comdat, prefixdata, personalityfn] 1315 Vals.push_back(getTypeID(F.getFunctionType(), &F)); 1316 Vals.push_back(F.getCallingConv()); 1317 Vals.push_back(F.isDeclaration()); 1318 Vals.push_back(getEncodedLinkage(F)); 1319 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1320 Vals.push_back(getEncodedAlign(F.getAlign())); 1321 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1322 : 0); 1323 Vals.push_back(getEncodedVisibility(F)); 1324 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1325 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1326 Vals.push_back( 1327 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1328 Vals.push_back(getEncodedDLLStorageClass(F)); 1329 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1330 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1331 : 0); 1332 Vals.push_back( 1333 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1334 1335 unsigned AbbrevToUse = 0; 1336 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1337 Vals.clear(); 1338 } 1339 1340 // Emit the alias information. 1341 for (const GlobalAlias &A : M.aliases()) { 1342 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1343 Vals.push_back(getTypeID(A.getValueType(), &A)); 1344 Vals.push_back(VE.getValueID(A.getAliasee())); 1345 Vals.push_back(getEncodedLinkage(A)); 1346 Vals.push_back(getEncodedVisibility(A)); 1347 Vals.push_back(getEncodedDLLStorageClass(A)); 1348 Vals.push_back(getEncodedThreadLocalMode(A)); 1349 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1350 unsigned AbbrevToUse = 0; 1351 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1352 Vals.clear(); 1353 } 1354 } 1355 1356 void DXILBitcodeWriter::writeValueAsMetadata( 1357 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1358 // Mimic an MDNode with a value as one operand. 1359 Value *V = MD->getValue(); 1360 Type *Ty = V->getType(); 1361 if (Function *F = dyn_cast<Function>(V)) 1362 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1363 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1364 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1365 Record.push_back(getTypeID(Ty)); 1366 Record.push_back(VE.getValueID(V)); 1367 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1368 Record.clear(); 1369 } 1370 1371 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1372 SmallVectorImpl<uint64_t> &Record, 1373 unsigned Abbrev) { 1374 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1375 Metadata *MD = N->getOperand(i); 1376 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1377 "Unexpected function-local metadata"); 1378 Record.push_back(VE.getMetadataOrNullID(MD)); 1379 } 1380 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1381 : bitc::METADATA_NODE, 1382 Record, Abbrev); 1383 Record.clear(); 1384 } 1385 1386 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1387 SmallVectorImpl<uint64_t> &Record, 1388 unsigned &Abbrev) { 1389 if (!Abbrev) 1390 Abbrev = createDILocationAbbrev(); 1391 Record.push_back(N->isDistinct()); 1392 Record.push_back(N->getLine()); 1393 Record.push_back(N->getColumn()); 1394 Record.push_back(VE.getMetadataID(N->getScope())); 1395 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1396 1397 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1398 Record.clear(); 1399 } 1400 1401 static uint64_t rotateSign(APInt Val) { 1402 int64_t I = Val.getSExtValue(); 1403 uint64_t U = I; 1404 return I < 0 ? ~(U << 1) : U << 1; 1405 } 1406 1407 static uint64_t rotateSign(DISubrange::BoundType Val) { 1408 return rotateSign(Val.get<ConstantInt *>()->getValue()); 1409 } 1410 1411 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1412 SmallVectorImpl<uint64_t> &Record, 1413 unsigned Abbrev) { 1414 Record.push_back(N->isDistinct()); 1415 Record.push_back( 1416 N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); 1417 Record.push_back(rotateSign(N->getLowerBound())); 1418 1419 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1420 Record.clear(); 1421 } 1422 1423 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1424 SmallVectorImpl<uint64_t> &Record, 1425 unsigned Abbrev) { 1426 Record.push_back(N->isDistinct()); 1427 Record.push_back(rotateSign(N->getValue())); 1428 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1429 1430 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1431 Record.clear(); 1432 } 1433 1434 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1435 SmallVectorImpl<uint64_t> &Record, 1436 unsigned Abbrev) { 1437 Record.push_back(N->isDistinct()); 1438 Record.push_back(N->getTag()); 1439 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1440 Record.push_back(N->getSizeInBits()); 1441 Record.push_back(N->getAlignInBits()); 1442 Record.push_back(N->getEncoding()); 1443 1444 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1445 Record.clear(); 1446 } 1447 1448 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1449 SmallVectorImpl<uint64_t> &Record, 1450 unsigned Abbrev) { 1451 Record.push_back(N->isDistinct()); 1452 Record.push_back(N->getTag()); 1453 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1454 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1455 Record.push_back(N->getLine()); 1456 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1457 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1458 Record.push_back(N->getSizeInBits()); 1459 Record.push_back(N->getAlignInBits()); 1460 Record.push_back(N->getOffsetInBits()); 1461 Record.push_back(N->getFlags()); 1462 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1463 1464 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1465 Record.clear(); 1466 } 1467 1468 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1469 SmallVectorImpl<uint64_t> &Record, 1470 unsigned Abbrev) { 1471 Record.push_back(N->isDistinct()); 1472 Record.push_back(N->getTag()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1474 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1475 Record.push_back(N->getLine()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1478 Record.push_back(N->getSizeInBits()); 1479 Record.push_back(N->getAlignInBits()); 1480 Record.push_back(N->getOffsetInBits()); 1481 Record.push_back(N->getFlags()); 1482 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1483 Record.push_back(N->getRuntimeLang()); 1484 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1485 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1486 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1487 1488 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1489 Record.clear(); 1490 } 1491 1492 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1493 SmallVectorImpl<uint64_t> &Record, 1494 unsigned Abbrev) { 1495 Record.push_back(N->isDistinct()); 1496 Record.push_back(N->getFlags()); 1497 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1498 1499 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1500 Record.clear(); 1501 } 1502 1503 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1504 SmallVectorImpl<uint64_t> &Record, 1505 unsigned Abbrev) { 1506 Record.push_back(N->isDistinct()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1509 1510 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1511 Record.clear(); 1512 } 1513 1514 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1515 SmallVectorImpl<uint64_t> &Record, 1516 unsigned Abbrev) { 1517 Record.push_back(N->isDistinct()); 1518 Record.push_back(N->getSourceLanguage()); 1519 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1520 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1521 Record.push_back(N->isOptimized()); 1522 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1523 Record.push_back(N->getRuntimeVersion()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1525 Record.push_back(N->getEmissionKind()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1528 Record.push_back(/* subprograms */ 0); 1529 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1531 Record.push_back(N->getDWOId()); 1532 1533 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1538 SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1545 Record.push_back(N->getLine()); 1546 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1547 Record.push_back(N->isLocalToUnit()); 1548 Record.push_back(N->isDefinition()); 1549 Record.push_back(N->getScopeLine()); 1550 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1551 Record.push_back(N->getVirtuality()); 1552 Record.push_back(N->getVirtualIndex()); 1553 Record.push_back(N->getFlags()); 1554 Record.push_back(N->isOptimized()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1559 1560 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1561 Record.clear(); 1562 } 1563 1564 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1565 SmallVectorImpl<uint64_t> &Record, 1566 unsigned Abbrev) { 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1569 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1570 Record.push_back(N->getLine()); 1571 Record.push_back(N->getColumn()); 1572 1573 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 void DXILBitcodeWriter::writeDILexicalBlockFile( 1578 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 Record.push_back(N->isDistinct()); 1581 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1583 Record.push_back(N->getDiscriminator()); 1584 1585 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1586 Record.clear(); 1587 } 1588 1589 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1590 SmallVectorImpl<uint64_t> &Record, 1591 unsigned Abbrev) { 1592 Record.push_back(N->isDistinct()); 1593 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1596 Record.push_back(/* line number */ 0); 1597 1598 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1599 Record.clear(); 1600 } 1601 1602 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1603 SmallVectorImpl<uint64_t> &Record, 1604 unsigned Abbrev) { 1605 Record.push_back(N->isDistinct()); 1606 for (auto &I : N->operands()) 1607 Record.push_back(VE.getMetadataOrNullID(I)); 1608 1609 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1614 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1615 unsigned Abbrev) { 1616 Record.push_back(N->isDistinct()); 1617 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1619 1620 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1621 Record.clear(); 1622 } 1623 1624 void DXILBitcodeWriter::writeDITemplateValueParameter( 1625 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1626 unsigned Abbrev) { 1627 Record.push_back(N->isDistinct()); 1628 Record.push_back(N->getTag()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1632 1633 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1638 SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1645 Record.push_back(N->getLine()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1647 Record.push_back(N->isLocalToUnit()); 1648 Record.push_back(N->isDefinition()); 1649 Record.push_back(/* N->getRawVariable() */ 0); 1650 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1651 1652 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.push_back(N->isDistinct()); 1660 Record.push_back(N->getTag()); 1661 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1664 Record.push_back(N->getLine()); 1665 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1666 Record.push_back(N->getArg()); 1667 Record.push_back(N->getFlags()); 1668 1669 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1674 SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.reserve(N->getElements().size() + 1); 1677 1678 Record.push_back(N->isDistinct()); 1679 Record.append(N->elements_begin(), N->elements_end()); 1680 1681 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1686 SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 llvm_unreachable("DXIL does not support objc!!!"); 1689 } 1690 1691 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1692 SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back(N->isDistinct()); 1695 Record.push_back(N->getTag()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1698 Record.push_back(N->getLine()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1700 1701 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1706 // Abbrev for METADATA_LOCATION. 1707 // 1708 // Assume the column is usually under 128, and always output the inlined-at 1709 // location (it's never more expensive than building an array size 1). 1710 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1711 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1717 return Stream.EmitAbbrev(std::move(Abbv)); 1718 } 1719 1720 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1721 // Abbrev for METADATA_GENERIC_DEBUG. 1722 // 1723 // Assume the column is usually under 128, and always output the inlined-at 1724 // location (it's never more expensive than building an array size 1). 1725 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1726 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1733 return Stream.EmitAbbrev(std::move(Abbv)); 1734 } 1735 1736 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1737 SmallVectorImpl<uint64_t> &Record, 1738 std::vector<unsigned> *MDAbbrevs, 1739 std::vector<uint64_t> *IndexPos) { 1740 if (MDs.empty()) 1741 return; 1742 1743 // Initialize MDNode abbreviations. 1744 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1745 #include "llvm/IR/Metadata.def" 1746 1747 for (const Metadata *MD : MDs) { 1748 if (IndexPos) 1749 IndexPos->push_back(Stream.GetCurrentBitNo()); 1750 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1751 assert(N->isResolved() && "Expected forward references to be resolved"); 1752 1753 switch (N->getMetadataID()) { 1754 default: 1755 llvm_unreachable("Invalid MDNode subclass"); 1756 #define HANDLE_MDNODE_LEAF(CLASS) \ 1757 case Metadata::CLASS##Kind: \ 1758 if (MDAbbrevs) \ 1759 write##CLASS(cast<CLASS>(N), Record, \ 1760 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1761 else \ 1762 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1763 continue; 1764 #include "llvm/IR/Metadata.def" 1765 } 1766 } 1767 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1768 } 1769 } 1770 1771 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1773 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1776 return Stream.EmitAbbrev(std::move(Abbv)); 1777 } 1778 1779 void DXILBitcodeWriter::writeMetadataStrings( 1780 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1781 for (const Metadata *MD : Strings) { 1782 const MDString *MDS = cast<MDString>(MD); 1783 // Code: [strchar x N] 1784 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1785 1786 // Emit the finished record. 1787 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, 1788 createMetadataStringsAbbrev()); 1789 Record.clear(); 1790 } 1791 } 1792 1793 void DXILBitcodeWriter::writeModuleMetadata() { 1794 if (!VE.hasMDs() && M.named_metadata_empty()) 1795 return; 1796 1797 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1798 1799 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1800 // block and load any metadata. 1801 std::vector<unsigned> MDAbbrevs; 1802 1803 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1804 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1805 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1806 createGenericDINodeAbbrev(); 1807 1808 unsigned NameAbbrev = 0; 1809 if (!M.named_metadata_empty()) { 1810 // Abbrev for METADATA_NAME. 1811 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1812 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1815 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1816 } 1817 1818 SmallVector<uint64_t, 64> Record; 1819 writeMetadataStrings(VE.getMDStrings(), Record); 1820 1821 std::vector<uint64_t> IndexPos; 1822 IndexPos.reserve(VE.getNonMDStrings().size()); 1823 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1824 1825 // Write named metadata. 1826 for (const NamedMDNode &NMD : M.named_metadata()) { 1827 // Write name. 1828 StringRef Str = NMD.getName(); 1829 Record.append(Str.bytes_begin(), Str.bytes_end()); 1830 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1831 Record.clear(); 1832 1833 // Write named metadata operands. 1834 for (const MDNode *N : NMD.operands()) 1835 Record.push_back(VE.getMetadataID(N)); 1836 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1837 Record.clear(); 1838 } 1839 1840 Stream.ExitBlock(); 1841 } 1842 1843 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1844 if (!VE.hasMDs()) 1845 return; 1846 1847 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1848 SmallVector<uint64_t, 64> Record; 1849 writeMetadataStrings(VE.getMDStrings(), Record); 1850 writeMetadataRecords(VE.getNonMDStrings(), Record); 1851 Stream.ExitBlock(); 1852 } 1853 1854 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1855 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1856 1857 SmallVector<uint64_t, 64> Record; 1858 1859 // Write metadata attachments 1860 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1861 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1862 F.getAllMetadata(MDs); 1863 if (!MDs.empty()) { 1864 for (const auto &I : MDs) { 1865 Record.push_back(I.first); 1866 Record.push_back(VE.getMetadataID(I.second)); 1867 } 1868 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1869 Record.clear(); 1870 } 1871 1872 for (const BasicBlock &BB : F) 1873 for (const Instruction &I : BB) { 1874 MDs.clear(); 1875 I.getAllMetadataOtherThanDebugLoc(MDs); 1876 1877 // If no metadata, ignore instruction. 1878 if (MDs.empty()) 1879 continue; 1880 1881 Record.push_back(VE.getInstructionID(&I)); 1882 1883 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1884 Record.push_back(MDs[i].first); 1885 Record.push_back(VE.getMetadataID(MDs[i].second)); 1886 } 1887 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1888 Record.clear(); 1889 } 1890 1891 Stream.ExitBlock(); 1892 } 1893 1894 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1895 SmallVector<uint64_t, 64> Record; 1896 1897 // Write metadata kinds 1898 // METADATA_KIND - [n x [id, name]] 1899 SmallVector<StringRef, 8> Names; 1900 M.getMDKindNames(Names); 1901 1902 if (Names.empty()) 1903 return; 1904 1905 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1906 1907 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1908 Record.push_back(MDKindID); 1909 StringRef KName = Names[MDKindID]; 1910 Record.append(KName.begin(), KName.end()); 1911 1912 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1913 Record.clear(); 1914 } 1915 1916 Stream.ExitBlock(); 1917 } 1918 1919 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1920 bool isGlobal) { 1921 if (FirstVal == LastVal) 1922 return; 1923 1924 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1925 1926 unsigned AggregateAbbrev = 0; 1927 unsigned String8Abbrev = 0; 1928 unsigned CString7Abbrev = 0; 1929 unsigned CString6Abbrev = 0; 1930 // If this is a constant pool for the module, emit module-specific abbrevs. 1931 if (isGlobal) { 1932 // Abbrev for CST_CODE_AGGREGATE. 1933 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1934 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1936 Abbv->Add( 1937 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1938 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1939 1940 // Abbrev for CST_CODE_STRING. 1941 Abbv = std::make_shared<BitCodeAbbrev>(); 1942 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1945 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1946 // Abbrev for CST_CODE_CSTRING. 1947 Abbv = std::make_shared<BitCodeAbbrev>(); 1948 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1951 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1952 // Abbrev for CST_CODE_CSTRING. 1953 Abbv = std::make_shared<BitCodeAbbrev>(); 1954 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1957 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1958 } 1959 1960 SmallVector<uint64_t, 64> Record; 1961 1962 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1963 Type *LastTy = nullptr; 1964 for (unsigned i = FirstVal; i != LastVal; ++i) { 1965 const Value *V = Vals[i].first; 1966 // If we need to switch types, do so now. 1967 if (V->getType() != LastTy) { 1968 LastTy = V->getType(); 1969 Record.push_back(getTypeID(LastTy)); 1970 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1971 CONSTANTS_SETTYPE_ABBREV); 1972 Record.clear(); 1973 } 1974 1975 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1976 Record.push_back(unsigned(IA->hasSideEffects()) | 1977 unsigned(IA->isAlignStack()) << 1 | 1978 unsigned(IA->getDialect() & 1) << 2); 1979 1980 // Add the asm string. 1981 const std::string &AsmStr = IA->getAsmString(); 1982 Record.push_back(AsmStr.size()); 1983 Record.append(AsmStr.begin(), AsmStr.end()); 1984 1985 // Add the constraint string. 1986 const std::string &ConstraintStr = IA->getConstraintString(); 1987 Record.push_back(ConstraintStr.size()); 1988 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1989 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1990 Record.clear(); 1991 continue; 1992 } 1993 const Constant *C = cast<Constant>(V); 1994 unsigned Code = -1U; 1995 unsigned AbbrevToUse = 0; 1996 if (C->isNullValue()) { 1997 Code = bitc::CST_CODE_NULL; 1998 } else if (isa<UndefValue>(C)) { 1999 Code = bitc::CST_CODE_UNDEF; 2000 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2001 if (IV->getBitWidth() <= 64) { 2002 uint64_t V = IV->getSExtValue(); 2003 emitSignedInt64(Record, V); 2004 Code = bitc::CST_CODE_INTEGER; 2005 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2006 } else { // Wide integers, > 64 bits in size. 2007 // We have an arbitrary precision integer value to write whose 2008 // bit width is > 64. However, in canonical unsigned integer 2009 // format it is likely that the high bits are going to be zero. 2010 // So, we only write the number of active words. 2011 unsigned NWords = IV->getValue().getActiveWords(); 2012 const uint64_t *RawWords = IV->getValue().getRawData(); 2013 for (unsigned i = 0; i != NWords; ++i) { 2014 emitSignedInt64(Record, RawWords[i]); 2015 } 2016 Code = bitc::CST_CODE_WIDE_INTEGER; 2017 } 2018 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2019 Code = bitc::CST_CODE_FLOAT; 2020 Type *Ty = CFP->getType(); 2021 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2022 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2023 } else if (Ty->isX86_FP80Ty()) { 2024 // api needed to prevent premature destruction 2025 // bits are not in the same order as a normal i80 APInt, compensate. 2026 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2027 const uint64_t *p = api.getRawData(); 2028 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2029 Record.push_back(p[0] & 0xffffLL); 2030 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2031 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2032 const uint64_t *p = api.getRawData(); 2033 Record.push_back(p[0]); 2034 Record.push_back(p[1]); 2035 } else { 2036 assert(0 && "Unknown FP type!"); 2037 } 2038 } else if (isa<ConstantDataSequential>(C) && 2039 cast<ConstantDataSequential>(C)->isString()) { 2040 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2041 // Emit constant strings specially. 2042 unsigned NumElts = Str->getNumElements(); 2043 // If this is a null-terminated string, use the denser CSTRING encoding. 2044 if (Str->isCString()) { 2045 Code = bitc::CST_CODE_CSTRING; 2046 --NumElts; // Don't encode the null, which isn't allowed by char6. 2047 } else { 2048 Code = bitc::CST_CODE_STRING; 2049 AbbrevToUse = String8Abbrev; 2050 } 2051 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2052 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2053 for (unsigned i = 0; i != NumElts; ++i) { 2054 unsigned char V = Str->getElementAsInteger(i); 2055 Record.push_back(V); 2056 isCStr7 &= (V & 128) == 0; 2057 if (isCStrChar6) 2058 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2059 } 2060 2061 if (isCStrChar6) 2062 AbbrevToUse = CString6Abbrev; 2063 else if (isCStr7) 2064 AbbrevToUse = CString7Abbrev; 2065 } else if (const ConstantDataSequential *CDS = 2066 dyn_cast<ConstantDataSequential>(C)) { 2067 Code = bitc::CST_CODE_DATA; 2068 Type *EltTy = CDS->getType()->getArrayElementType(); 2069 if (isa<IntegerType>(EltTy)) { 2070 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2071 Record.push_back(CDS->getElementAsInteger(i)); 2072 } else if (EltTy->isFloatTy()) { 2073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2074 union { 2075 float F; 2076 uint32_t I; 2077 }; 2078 F = CDS->getElementAsFloat(i); 2079 Record.push_back(I); 2080 } 2081 } else { 2082 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2083 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2084 union { 2085 double F; 2086 uint64_t I; 2087 }; 2088 F = CDS->getElementAsDouble(i); 2089 Record.push_back(I); 2090 } 2091 } 2092 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2093 isa<ConstantVector>(C)) { 2094 Code = bitc::CST_CODE_AGGREGATE; 2095 for (const Value *Op : C->operands()) 2096 Record.push_back(VE.getValueID(Op)); 2097 AbbrevToUse = AggregateAbbrev; 2098 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2099 switch (CE->getOpcode()) { 2100 default: 2101 if (Instruction::isCast(CE->getOpcode())) { 2102 Code = bitc::CST_CODE_CE_CAST; 2103 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2104 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2105 Record.push_back(VE.getValueID(C->getOperand(0))); 2106 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2107 } else { 2108 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2109 Code = bitc::CST_CODE_CE_BINOP; 2110 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2111 Record.push_back(VE.getValueID(C->getOperand(0))); 2112 Record.push_back(VE.getValueID(C->getOperand(1))); 2113 uint64_t Flags = getOptimizationFlags(CE); 2114 if (Flags != 0) 2115 Record.push_back(Flags); 2116 } 2117 break; 2118 case Instruction::GetElementPtr: { 2119 Code = bitc::CST_CODE_CE_GEP; 2120 const auto *GO = cast<GEPOperator>(C); 2121 if (GO->isInBounds()) 2122 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2123 Record.push_back(getTypeID(GO->getSourceElementType())); 2124 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2125 Record.push_back(getTypeID(C->getOperand(i)->getType())); 2126 Record.push_back(VE.getValueID(C->getOperand(i))); 2127 } 2128 break; 2129 } 2130 case Instruction::Select: 2131 Code = bitc::CST_CODE_CE_SELECT; 2132 Record.push_back(VE.getValueID(C->getOperand(0))); 2133 Record.push_back(VE.getValueID(C->getOperand(1))); 2134 Record.push_back(VE.getValueID(C->getOperand(2))); 2135 break; 2136 case Instruction::ExtractElement: 2137 Code = bitc::CST_CODE_CE_EXTRACTELT; 2138 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2139 Record.push_back(VE.getValueID(C->getOperand(0))); 2140 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2141 Record.push_back(VE.getValueID(C->getOperand(1))); 2142 break; 2143 case Instruction::InsertElement: 2144 Code = bitc::CST_CODE_CE_INSERTELT; 2145 Record.push_back(VE.getValueID(C->getOperand(0))); 2146 Record.push_back(VE.getValueID(C->getOperand(1))); 2147 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2148 Record.push_back(VE.getValueID(C->getOperand(2))); 2149 break; 2150 case Instruction::ShuffleVector: 2151 // If the return type and argument types are the same, this is a 2152 // standard shufflevector instruction. If the types are different, 2153 // then the shuffle is widening or truncating the input vectors, and 2154 // the argument type must also be encoded. 2155 if (C->getType() == C->getOperand(0)->getType()) { 2156 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2157 } else { 2158 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2159 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2160 } 2161 Record.push_back(VE.getValueID(C->getOperand(0))); 2162 Record.push_back(VE.getValueID(C->getOperand(1))); 2163 Record.push_back(VE.getValueID(C->getOperand(2))); 2164 break; 2165 case Instruction::ICmp: 2166 case Instruction::FCmp: 2167 Code = bitc::CST_CODE_CE_CMP; 2168 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2169 Record.push_back(VE.getValueID(C->getOperand(0))); 2170 Record.push_back(VE.getValueID(C->getOperand(1))); 2171 Record.push_back(CE->getPredicate()); 2172 break; 2173 } 2174 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2175 Code = bitc::CST_CODE_BLOCKADDRESS; 2176 Record.push_back(getTypeID(BA->getFunction()->getType())); 2177 Record.push_back(VE.getValueID(BA->getFunction())); 2178 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2179 } else { 2180 #ifndef NDEBUG 2181 C->dump(); 2182 #endif 2183 llvm_unreachable("Unknown constant!"); 2184 } 2185 Stream.EmitRecord(Code, Record, AbbrevToUse); 2186 Record.clear(); 2187 } 2188 2189 Stream.ExitBlock(); 2190 } 2191 2192 void DXILBitcodeWriter::writeModuleConstants() { 2193 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2194 2195 // Find the first constant to emit, which is the first non-globalvalue value. 2196 // We know globalvalues have been emitted by WriteModuleInfo. 2197 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2198 if (!isa<GlobalValue>(Vals[i].first)) { 2199 writeConstants(i, Vals.size(), true); 2200 return; 2201 } 2202 } 2203 } 2204 2205 /// pushValueAndType - The file has to encode both the value and type id for 2206 /// many values, because we need to know what type to create for forward 2207 /// references. However, most operands are not forward references, so this type 2208 /// field is not needed. 2209 /// 2210 /// This function adds V's value ID to Vals. If the value ID is higher than the 2211 /// instruction ID, then it is a forward reference, and it also includes the 2212 /// type ID. The value ID that is written is encoded relative to the InstID. 2213 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2214 SmallVectorImpl<unsigned> &Vals) { 2215 unsigned ValID = VE.getValueID(V); 2216 // Make encoding relative to the InstID. 2217 Vals.push_back(InstID - ValID); 2218 if (ValID >= InstID) { 2219 Vals.push_back(getTypeID(V->getType(), V)); 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 /// pushValue - Like pushValueAndType, but where the type of the value is 2226 /// omitted (perhaps it was already encoded in an earlier operand). 2227 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2228 SmallVectorImpl<unsigned> &Vals) { 2229 unsigned ValID = VE.getValueID(V); 2230 Vals.push_back(InstID - ValID); 2231 } 2232 2233 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2234 SmallVectorImpl<uint64_t> &Vals) { 2235 unsigned ValID = VE.getValueID(V); 2236 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2237 emitSignedInt64(Vals, diff); 2238 } 2239 2240 /// WriteInstruction - Emit an instruction 2241 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2242 SmallVectorImpl<unsigned> &Vals) { 2243 unsigned Code = 0; 2244 unsigned AbbrevToUse = 0; 2245 VE.setInstructionID(&I); 2246 switch (I.getOpcode()) { 2247 default: 2248 if (Instruction::isCast(I.getOpcode())) { 2249 Code = bitc::FUNC_CODE_INST_CAST; 2250 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2251 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2252 Vals.push_back(getTypeID(I.getType(), &I)); 2253 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2254 } else { 2255 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2256 Code = bitc::FUNC_CODE_INST_BINOP; 2257 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2258 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2259 pushValue(I.getOperand(1), InstID, Vals); 2260 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2261 uint64_t Flags = getOptimizationFlags(&I); 2262 if (Flags != 0) { 2263 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2264 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2265 Vals.push_back(Flags); 2266 } 2267 } 2268 break; 2269 2270 case Instruction::GetElementPtr: { 2271 Code = bitc::FUNC_CODE_INST_GEP; 2272 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2273 auto &GEPInst = cast<GetElementPtrInst>(I); 2274 Vals.push_back(GEPInst.isInBounds()); 2275 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2276 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2277 pushValueAndType(I.getOperand(i), InstID, Vals); 2278 break; 2279 } 2280 case Instruction::ExtractValue: { 2281 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2282 pushValueAndType(I.getOperand(0), InstID, Vals); 2283 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2284 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2285 break; 2286 } 2287 case Instruction::InsertValue: { 2288 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2289 pushValueAndType(I.getOperand(0), InstID, Vals); 2290 pushValueAndType(I.getOperand(1), InstID, Vals); 2291 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2292 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2293 break; 2294 } 2295 case Instruction::Select: 2296 Code = bitc::FUNC_CODE_INST_VSELECT; 2297 pushValueAndType(I.getOperand(1), InstID, Vals); 2298 pushValue(I.getOperand(2), InstID, Vals); 2299 pushValueAndType(I.getOperand(0), InstID, Vals); 2300 break; 2301 case Instruction::ExtractElement: 2302 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2303 pushValueAndType(I.getOperand(0), InstID, Vals); 2304 pushValueAndType(I.getOperand(1), InstID, Vals); 2305 break; 2306 case Instruction::InsertElement: 2307 Code = bitc::FUNC_CODE_INST_INSERTELT; 2308 pushValueAndType(I.getOperand(0), InstID, Vals); 2309 pushValue(I.getOperand(1), InstID, Vals); 2310 pushValueAndType(I.getOperand(2), InstID, Vals); 2311 break; 2312 case Instruction::ShuffleVector: 2313 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2314 pushValueAndType(I.getOperand(0), InstID, Vals); 2315 pushValue(I.getOperand(1), InstID, Vals); 2316 pushValue(I.getOperand(2), InstID, Vals); 2317 break; 2318 case Instruction::ICmp: 2319 case Instruction::FCmp: { 2320 // compare returning Int1Ty or vector of Int1Ty 2321 Code = bitc::FUNC_CODE_INST_CMP2; 2322 pushValueAndType(I.getOperand(0), InstID, Vals); 2323 pushValue(I.getOperand(1), InstID, Vals); 2324 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2325 uint64_t Flags = getOptimizationFlags(&I); 2326 if (Flags != 0) 2327 Vals.push_back(Flags); 2328 break; 2329 } 2330 2331 case Instruction::Ret: { 2332 Code = bitc::FUNC_CODE_INST_RET; 2333 unsigned NumOperands = I.getNumOperands(); 2334 if (NumOperands == 0) 2335 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2336 else if (NumOperands == 1) { 2337 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2338 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2339 } else { 2340 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2341 pushValueAndType(I.getOperand(i), InstID, Vals); 2342 } 2343 } break; 2344 case Instruction::Br: { 2345 Code = bitc::FUNC_CODE_INST_BR; 2346 const BranchInst &II = cast<BranchInst>(I); 2347 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2348 if (II.isConditional()) { 2349 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2350 pushValue(II.getCondition(), InstID, Vals); 2351 } 2352 } break; 2353 case Instruction::Switch: { 2354 Code = bitc::FUNC_CODE_INST_SWITCH; 2355 const SwitchInst &SI = cast<SwitchInst>(I); 2356 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2357 pushValue(SI.getCondition(), InstID, Vals); 2358 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2359 for (auto Case : SI.cases()) { 2360 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2361 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2362 } 2363 } break; 2364 case Instruction::IndirectBr: 2365 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2366 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2367 // Encode the address operand as relative, but not the basic blocks. 2368 pushValue(I.getOperand(0), InstID, Vals); 2369 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2370 Vals.push_back(VE.getValueID(I.getOperand(i))); 2371 break; 2372 2373 case Instruction::Invoke: { 2374 const InvokeInst *II = cast<InvokeInst>(&I); 2375 const Value *Callee = II->getCalledOperand(); 2376 FunctionType *FTy = II->getFunctionType(); 2377 Code = bitc::FUNC_CODE_INST_INVOKE; 2378 2379 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2380 Vals.push_back(II->getCallingConv() | 1 << 13); 2381 Vals.push_back(VE.getValueID(II->getNormalDest())); 2382 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2383 Vals.push_back(getTypeID(FTy)); 2384 pushValueAndType(Callee, InstID, Vals); 2385 2386 // Emit value #'s for the fixed parameters. 2387 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2388 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2389 2390 // Emit type/value pairs for varargs params. 2391 if (FTy->isVarArg()) { 2392 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2393 ++i) 2394 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2395 } 2396 break; 2397 } 2398 case Instruction::Resume: 2399 Code = bitc::FUNC_CODE_INST_RESUME; 2400 pushValueAndType(I.getOperand(0), InstID, Vals); 2401 break; 2402 case Instruction::Unreachable: 2403 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2404 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2405 break; 2406 2407 case Instruction::PHI: { 2408 const PHINode &PN = cast<PHINode>(I); 2409 Code = bitc::FUNC_CODE_INST_PHI; 2410 // With the newer instruction encoding, forward references could give 2411 // negative valued IDs. This is most common for PHIs, so we use 2412 // signed VBRs. 2413 SmallVector<uint64_t, 128> Vals64; 2414 Vals64.push_back(getTypeID(PN.getType())); 2415 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2416 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2417 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2418 } 2419 // Emit a Vals64 vector and exit. 2420 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2421 Vals64.clear(); 2422 return; 2423 } 2424 2425 case Instruction::LandingPad: { 2426 const LandingPadInst &LP = cast<LandingPadInst>(I); 2427 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2428 Vals.push_back(getTypeID(LP.getType())); 2429 Vals.push_back(LP.isCleanup()); 2430 Vals.push_back(LP.getNumClauses()); 2431 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2432 if (LP.isCatch(I)) 2433 Vals.push_back(LandingPadInst::Catch); 2434 else 2435 Vals.push_back(LandingPadInst::Filter); 2436 pushValueAndType(LP.getClause(I), InstID, Vals); 2437 } 2438 break; 2439 } 2440 2441 case Instruction::Alloca: { 2442 Code = bitc::FUNC_CODE_INST_ALLOCA; 2443 const AllocaInst &AI = cast<AllocaInst>(I); 2444 Vals.push_back(getTypeID(AI.getAllocatedType())); 2445 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2446 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2447 using APV = AllocaPackedValues; 2448 unsigned Record = 0; 2449 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 2450 Bitfield::set<APV::AlignLower>( 2451 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 2452 Bitfield::set<APV::AlignUpper>(Record, 2453 EncodedAlign >> APV::AlignLower::Bits); 2454 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 2455 Vals.push_back(Record); 2456 break; 2457 } 2458 2459 case Instruction::Load: 2460 if (cast<LoadInst>(I).isAtomic()) { 2461 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2462 pushValueAndType(I.getOperand(0), InstID, Vals); 2463 } else { 2464 Code = bitc::FUNC_CODE_INST_LOAD; 2465 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2466 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2467 } 2468 Vals.push_back(getTypeID(I.getType())); 2469 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2470 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2471 if (cast<LoadInst>(I).isAtomic()) { 2472 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2473 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2474 } 2475 break; 2476 case Instruction::Store: 2477 if (cast<StoreInst>(I).isAtomic()) 2478 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2479 else 2480 Code = bitc::FUNC_CODE_INST_STORE; 2481 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2482 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2483 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2484 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2485 if (cast<StoreInst>(I).isAtomic()) { 2486 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2487 Vals.push_back( 2488 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2489 } 2490 break; 2491 case Instruction::AtomicCmpXchg: 2492 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2493 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2494 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2495 pushValue(I.getOperand(2), InstID, Vals); // newval. 2496 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2497 Vals.push_back( 2498 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2499 Vals.push_back( 2500 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2501 Vals.push_back( 2502 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2503 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2504 break; 2505 case Instruction::AtomicRMW: 2506 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2507 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2508 pushValue(I.getOperand(1), InstID, Vals); // val. 2509 Vals.push_back( 2510 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2511 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2512 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2513 Vals.push_back( 2514 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2515 break; 2516 case Instruction::Fence: 2517 Code = bitc::FUNC_CODE_INST_FENCE; 2518 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2519 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2520 break; 2521 case Instruction::Call: { 2522 const CallInst &CI = cast<CallInst>(I); 2523 FunctionType *FTy = CI.getFunctionType(); 2524 2525 Code = bitc::FUNC_CODE_INST_CALL; 2526 2527 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2528 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2529 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2530 Vals.push_back(getTypeID(FTy, CI.getCalledFunction())); 2531 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2532 2533 // Emit value #'s for the fixed parameters. 2534 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2535 // Check for labels (can happen with asm labels). 2536 if (FTy->getParamType(i)->isLabelTy()) 2537 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2538 else 2539 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2540 } 2541 2542 // Emit type/value pairs for varargs params. 2543 if (FTy->isVarArg()) { 2544 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2545 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2546 } 2547 break; 2548 } 2549 case Instruction::VAArg: 2550 Code = bitc::FUNC_CODE_INST_VAARG; 2551 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2552 pushValue(I.getOperand(0), InstID, Vals); // valist. 2553 Vals.push_back(getTypeID(I.getType())); // restype. 2554 break; 2555 } 2556 2557 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2558 Vals.clear(); 2559 } 2560 2561 // Emit names for globals/functions etc. 2562 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2563 const ValueSymbolTable &VST) { 2564 if (VST.empty()) 2565 return; 2566 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2567 2568 SmallVector<unsigned, 64> NameVals; 2569 2570 // HLSL Change 2571 // Read the named values from a sorted list instead of the original list 2572 // to ensure the binary is the same no matter what values ever existed. 2573 SmallVector<const ValueName *, 16> SortedTable; 2574 2575 for (auto &VI : VST) { 2576 SortedTable.push_back(VI.second->getValueName()); 2577 } 2578 // The keys are unique, so there shouldn't be stability issues. 2579 std::sort(SortedTable.begin(), SortedTable.end(), 2580 [](const ValueName *A, const ValueName *B) { 2581 return A->first() < B->first(); 2582 }); 2583 2584 for (const ValueName *SI : SortedTable) { 2585 auto &Name = *SI; 2586 2587 // Figure out the encoding to use for the name. 2588 bool is7Bit = true; 2589 bool isChar6 = true; 2590 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2591 C != E; ++C) { 2592 if (isChar6) 2593 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2594 if ((unsigned char)*C & 128) { 2595 is7Bit = false; 2596 break; // don't bother scanning the rest. 2597 } 2598 } 2599 2600 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2601 2602 // VST_ENTRY: [valueid, namechar x N] 2603 // VST_BBENTRY: [bbid, namechar x N] 2604 unsigned Code; 2605 if (isa<BasicBlock>(SI->getValue())) { 2606 Code = bitc::VST_CODE_BBENTRY; 2607 if (isChar6) 2608 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2609 } else { 2610 Code = bitc::VST_CODE_ENTRY; 2611 if (isChar6) 2612 AbbrevToUse = VST_ENTRY_6_ABBREV; 2613 else if (is7Bit) 2614 AbbrevToUse = VST_ENTRY_7_ABBREV; 2615 } 2616 2617 NameVals.push_back(VE.getValueID(SI->getValue())); 2618 for (const char *P = Name.getKeyData(), 2619 *E = Name.getKeyData() + Name.getKeyLength(); 2620 P != E; ++P) 2621 NameVals.push_back((unsigned char)*P); 2622 2623 // Emit the finished record. 2624 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2625 NameVals.clear(); 2626 } 2627 Stream.ExitBlock(); 2628 } 2629 2630 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) { 2631 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2632 unsigned Code; 2633 if (isa<BasicBlock>(Order.V)) 2634 Code = bitc::USELIST_CODE_BB; 2635 else 2636 Code = bitc::USELIST_CODE_DEFAULT; 2637 2638 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2639 Record.push_back(VE.getValueID(Order.V)); 2640 Stream.EmitRecord(Code, Record); 2641 } 2642 2643 void DXILBitcodeWriter::writeUseListBlock(const Function *F) { 2644 auto hasMore = [&]() { 2645 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2646 }; 2647 if (!hasMore()) 2648 // Nothing to do. 2649 return; 2650 2651 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2652 while (hasMore()) { 2653 writeUseList(std::move(VE.UseListOrders.back())); 2654 VE.UseListOrders.pop_back(); 2655 } 2656 Stream.ExitBlock(); 2657 } 2658 2659 /// Emit a function body to the module stream. 2660 void DXILBitcodeWriter::writeFunction(const Function &F) { 2661 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2662 VE.incorporateFunction(F); 2663 2664 SmallVector<unsigned, 64> Vals; 2665 2666 // Emit the number of basic blocks, so the reader can create them ahead of 2667 // time. 2668 Vals.push_back(VE.getBasicBlocks().size()); 2669 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2670 Vals.clear(); 2671 2672 // If there are function-local constants, emit them now. 2673 unsigned CstStart, CstEnd; 2674 VE.getFunctionConstantRange(CstStart, CstEnd); 2675 writeConstants(CstStart, CstEnd, false); 2676 2677 // If there is function-local metadata, emit it now. 2678 writeFunctionMetadata(F); 2679 2680 // Keep a running idea of what the instruction ID is. 2681 unsigned InstID = CstEnd; 2682 2683 bool NeedsMetadataAttachment = F.hasMetadata(); 2684 2685 DILocation *LastDL = nullptr; 2686 2687 // Finally, emit all the instructions, in order. 2688 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2689 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2690 ++I) { 2691 writeInstruction(*I, InstID, Vals); 2692 2693 if (!I->getType()->isVoidTy()) 2694 ++InstID; 2695 2696 // If the instruction has metadata, write a metadata attachment later. 2697 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2698 2699 // If the instruction has a debug location, emit it. 2700 DILocation *DL = I->getDebugLoc(); 2701 if (!DL) 2702 continue; 2703 2704 if (DL == LastDL) { 2705 // Just repeat the same debug loc as last time. 2706 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2707 continue; 2708 } 2709 2710 Vals.push_back(DL->getLine()); 2711 Vals.push_back(DL->getColumn()); 2712 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2713 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2714 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2715 Vals.clear(); 2716 2717 LastDL = DL; 2718 } 2719 2720 // Emit names for all the instructions etc. 2721 if (auto *Symtab = F.getValueSymbolTable()) 2722 writeFunctionLevelValueSymbolTable(*Symtab); 2723 2724 if (NeedsMetadataAttachment) 2725 writeFunctionMetadataAttachment(F); 2726 2727 writeUseListBlock(&F); 2728 VE.purgeFunction(); 2729 Stream.ExitBlock(); 2730 } 2731 2732 // Emit blockinfo, which defines the standard abbreviations etc. 2733 void DXILBitcodeWriter::writeBlockInfo() { 2734 // We only want to emit block info records for blocks that have multiple 2735 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2736 // Other blocks can define their abbrevs inline. 2737 Stream.EnterBlockInfoBlock(); 2738 2739 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2740 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2745 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2746 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2747 assert(false && "Unexpected abbrev ordering!"); 2748 } 2749 2750 { // 7-bit fixed width VST_ENTRY strings. 2751 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2752 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2756 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2757 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2758 assert(false && "Unexpected abbrev ordering!"); 2759 } 2760 { // 6-bit char6 VST_ENTRY strings. 2761 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2762 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2766 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2767 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2768 assert(false && "Unexpected abbrev ordering!"); 2769 } 2770 { // 6-bit char6 VST_BBENTRY strings. 2771 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2772 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2776 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2777 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2778 assert(false && "Unexpected abbrev ordering!"); 2779 } 2780 2781 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2782 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2783 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2785 VE.computeBitsRequiredForTypeIndicies())); 2786 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2787 CONSTANTS_SETTYPE_ABBREV) 2788 assert(false && "Unexpected abbrev ordering!"); 2789 } 2790 2791 { // INTEGER abbrev for CONSTANTS_BLOCK. 2792 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2793 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2795 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2796 CONSTANTS_INTEGER_ABBREV) 2797 assert(false && "Unexpected abbrev ordering!"); 2798 } 2799 2800 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2801 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2802 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2805 VE.computeBitsRequiredForTypeIndicies())); 2806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2807 2808 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2809 CONSTANTS_CE_CAST_Abbrev) 2810 assert(false && "Unexpected abbrev ordering!"); 2811 } 2812 { // NULL abbrev for CONSTANTS_BLOCK. 2813 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2814 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2815 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2816 CONSTANTS_NULL_Abbrev) 2817 assert(false && "Unexpected abbrev ordering!"); 2818 } 2819 2820 // FIXME: This should only use space for first class types! 2821 2822 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2823 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2824 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2827 VE.computeBitsRequiredForTypeIndicies())); 2828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2830 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2831 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2832 assert(false && "Unexpected abbrev ordering!"); 2833 } 2834 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2835 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2836 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2840 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2841 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2842 assert(false && "Unexpected abbrev ordering!"); 2843 } 2844 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2845 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2846 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2851 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2852 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2853 assert(false && "Unexpected abbrev ordering!"); 2854 } 2855 { // INST_CAST abbrev for FUNCTION_BLOCK. 2856 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2857 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2860 VE.computeBitsRequiredForTypeIndicies())); 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2862 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2863 (unsigned)FUNCTION_INST_CAST_ABBREV) 2864 assert(false && "Unexpected abbrev ordering!"); 2865 } 2866 2867 { // INST_RET abbrev for FUNCTION_BLOCK. 2868 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2869 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2870 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2871 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2872 assert(false && "Unexpected abbrev ordering!"); 2873 } 2874 { // INST_RET abbrev for FUNCTION_BLOCK. 2875 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2876 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2878 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2879 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2880 assert(false && "Unexpected abbrev ordering!"); 2881 } 2882 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2883 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2884 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2885 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2886 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2887 assert(false && "Unexpected abbrev ordering!"); 2888 } 2889 { 2890 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2891 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2894 Log2_32_Ceil(VE.getTypes().size() + 1))); 2895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2897 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2898 (unsigned)FUNCTION_INST_GEP_ABBREV) 2899 assert(false && "Unexpected abbrev ordering!"); 2900 } 2901 2902 Stream.ExitBlock(); 2903 } 2904 2905 void DXILBitcodeWriter::writeModuleVersion() { 2906 // VERSION: [version#] 2907 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2908 } 2909 2910 /// WriteModule - Emit the specified module to the bitstream. 2911 void DXILBitcodeWriter::write() { 2912 // The identification block is new since llvm-3.7, but the old bitcode reader 2913 // will skip it. 2914 // writeIdentificationBlock(Stream); 2915 2916 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2917 2918 // It is redundant to fully-specify this here, but nice to make it explicit 2919 // so that it is clear the DXIL module version is different. 2920 DXILBitcodeWriter::writeModuleVersion(); 2921 2922 // Emit blockinfo, which defines the standard abbreviations etc. 2923 writeBlockInfo(); 2924 2925 // Emit information about attribute groups. 2926 writeAttributeGroupTable(); 2927 2928 // Emit information about parameter attributes. 2929 writeAttributeTable(); 2930 2931 // Emit information describing all of the types in the module. 2932 writeTypeTable(); 2933 2934 writeComdats(); 2935 2936 // Emit top-level description of module, including target triple, inline asm, 2937 // descriptors for global variables, and function prototype info. 2938 writeModuleInfo(); 2939 2940 // Emit constants. 2941 writeModuleConstants(); 2942 2943 // Emit metadata. 2944 writeModuleMetadataKinds(); 2945 2946 // Emit metadata. 2947 writeModuleMetadata(); 2948 2949 // Emit names for globals/functions etc. 2950 // DXIL uses the same format for module-level value symbol table as for the 2951 // function level table. 2952 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2953 2954 // Emit module-level use-lists. 2955 writeUseListBlock(nullptr); 2956 2957 // Emit function bodies. 2958 for (const Function &F : M) 2959 if (!F.isDeclaration()) 2960 writeFunction(F); 2961 2962 Stream.ExitBlock(); 2963 } 2964