1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/Bitcode/BitcodeCommon.h"
17 #include "llvm/Bitcode/BitcodeReader.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/Bitstream/BitCodes.h"
20 #include "llvm/Bitstream/BitstreamWriter.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Comdat.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/ModuleSummaryIndex.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/UseListOrder.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/IR/ValueSymbolTable.h"
48 #include "llvm/Object/IRSymtab.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/SHA1.h"
51 
52 namespace llvm {
53 namespace dxil {
54 
55 // Generates an enum to use as an index in the Abbrev array of Metadata record.
56 enum MetadataAbbrev : unsigned {
57 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
58 #include "llvm/IR/Metadata.def"
59   LastPlusOne
60 };
61 
62 class DXILBitcodeWriter {
63 
64   /// These are manifest constants used by the bitcode writer. They do not need
65   /// to be kept in sync with the reader, but need to be consistent within this
66   /// file.
67   enum {
68     // VALUE_SYMTAB_BLOCK abbrev id's.
69     VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
70     VST_ENTRY_7_ABBREV,
71     VST_ENTRY_6_ABBREV,
72     VST_BBENTRY_6_ABBREV,
73 
74     // CONSTANTS_BLOCK abbrev id's.
75     CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
76     CONSTANTS_INTEGER_ABBREV,
77     CONSTANTS_CE_CAST_Abbrev,
78     CONSTANTS_NULL_Abbrev,
79 
80     // FUNCTION_BLOCK abbrev id's.
81     FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
82     FUNCTION_INST_BINOP_ABBREV,
83     FUNCTION_INST_BINOP_FLAGS_ABBREV,
84     FUNCTION_INST_CAST_ABBREV,
85     FUNCTION_INST_RET_VOID_ABBREV,
86     FUNCTION_INST_RET_VAL_ABBREV,
87     FUNCTION_INST_UNREACHABLE_ABBREV,
88     FUNCTION_INST_GEP_ABBREV,
89   };
90 
91   /// The stream created and owned by the client.
92   BitstreamWriter &Stream;
93 
94   StringTableBuilder &StrtabBuilder;
95 
96   /// The Module to write to bitcode.
97   const Module &M;
98 
99   /// Enumerates ids for all values in the module.
100   ValueEnumerator VE;
101 
102   /// Map that holds the correspondence between GUIDs in the summary index,
103   /// that came from indirect call profiles, and a value id generated by this
104   /// class to use in the VST and summary block records.
105   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
106 
107   /// Tracks the last value id recorded in the GUIDToValueMap.
108   unsigned GlobalValueId;
109 
110   /// Saves the offset of the VSTOffset record that must eventually be
111   /// backpatched with the offset of the actual VST.
112   uint64_t VSTOffsetPlaceholder = 0;
113 
114   /// Pointer to the buffer allocated by caller for bitcode writing.
115   const SmallVectorImpl<char> &Buffer;
116 
117   /// The start bit of the identification block.
118   uint64_t BitcodeStartBit;
119 
120 public:
121   /// Constructs a ModuleBitcodeWriter object for the given Module,
122   /// writing to the provided \p Buffer.
123   DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
124                     StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
125       : Stream(Stream), StrtabBuilder(StrtabBuilder), M(M), VE(M, true),
126         Buffer(Buffer), BitcodeStartBit(Stream.GetCurrentBitNo()) {
127     GlobalValueId = VE.getValues().size();
128   }
129 
130   /// Emit the current module to the bitstream.
131   void write();
132 
133   static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
134   static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
135                                 StringRef Str, unsigned AbbrevToUse);
136   static void writeIdentificationBlock(BitstreamWriter &Stream);
137   static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
138   static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
139 
140   static unsigned getEncodedComdatSelectionKind(const Comdat &C);
141   static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
142   static unsigned getEncodedLinkage(const GlobalValue &GV);
143   static unsigned getEncodedVisibility(const GlobalValue &GV);
144   static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
145   static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
146   static unsigned getEncodedCastOpcode(unsigned Opcode);
147   static unsigned getEncodedUnaryOpcode(unsigned Opcode);
148   static unsigned getEncodedBinaryOpcode(unsigned Opcode);
149   static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
150   static unsigned getEncodedOrdering(AtomicOrdering Ordering);
151   static uint64_t getOptimizationFlags(const Value *V);
152 
153 private:
154   void writeModuleVersion();
155   void writePerModuleGlobalValueSummary();
156 
157   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
158                                            GlobalValueSummary *Summary,
159                                            unsigned ValueID,
160                                            unsigned FSCallsAbbrev,
161                                            unsigned FSCallsProfileAbbrev,
162                                            const Function &F);
163   void writeModuleLevelReferences(const GlobalVariable &V,
164                                   SmallVector<uint64_t, 64> &NameVals,
165                                   unsigned FSModRefsAbbrev,
166                                   unsigned FSModVTableRefsAbbrev);
167 
168   void assignValueId(GlobalValue::GUID ValGUID) {
169     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
170   }
171 
172   unsigned getValueId(GlobalValue::GUID ValGUID) {
173     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
174     // Expect that any GUID value had a value Id assigned by an
175     // earlier call to assignValueId.
176     assert(VMI != GUIDToValueIdMap.end() &&
177            "GUID does not have assigned value Id");
178     return VMI->second;
179   }
180 
181   // Helper to get the valueId for the type of value recorded in VI.
182   unsigned getValueId(ValueInfo VI) {
183     if (!VI.haveGVs() || !VI.getValue())
184       return getValueId(VI.getGUID());
185     return VE.getValueID(VI.getValue());
186   }
187 
188   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
189 
190   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
191 
192   size_t addToStrtab(StringRef Str);
193 
194   unsigned createDILocationAbbrev();
195   unsigned createGenericDINodeAbbrev();
196 
197   void writeAttributeGroupTable();
198   void writeAttributeTable();
199   void writeTypeTable();
200   void writeComdats();
201   void writeValueSymbolTableForwardDecl();
202   void writeModuleInfo();
203   void writeValueAsMetadata(const ValueAsMetadata *MD,
204                             SmallVectorImpl<uint64_t> &Record);
205   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
206                     unsigned Abbrev);
207   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
208                        unsigned &Abbrev);
209   void writeGenericDINode(const GenericDINode *N,
210                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
211     llvm_unreachable("DXIL cannot contain GenericDI Nodes");
212   }
213   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
214                        unsigned Abbrev);
215   void writeDIGenericSubrange(const DIGenericSubrange *N,
216                               SmallVectorImpl<uint64_t> &Record,
217                               unsigned Abbrev) {
218     llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
219   }
220   void writeDIEnumerator(const DIEnumerator *N,
221                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
222   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
223                         unsigned Abbrev);
224   void writeDIStringType(const DIStringType *N,
225                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
226     llvm_unreachable("DXIL cannot contain DIStringType Nodes");
227   }
228   void writeDIDerivedType(const DIDerivedType *N,
229                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
230   void writeDICompositeType(const DICompositeType *N,
231                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
232   void writeDISubroutineType(const DISubroutineType *N,
233                              SmallVectorImpl<uint64_t> &Record,
234                              unsigned Abbrev);
235   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
236                    unsigned Abbrev);
237   void writeDICompileUnit(const DICompileUnit *N,
238                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
239   void writeDISubprogram(const DISubprogram *N,
240                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
241   void writeDILexicalBlock(const DILexicalBlock *N,
242                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
243   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
244                                SmallVectorImpl<uint64_t> &Record,
245                                unsigned Abbrev);
246   void writeDICommonBlock(const DICommonBlock *N,
247                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
248     llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
249   }
250   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
251                         unsigned Abbrev);
252   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
253                     unsigned Abbrev) {
254     llvm_unreachable("DXIL cannot contain DIMacro Nodes");
255   }
256   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
257                         unsigned Abbrev) {
258     llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
259   }
260   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
261                       unsigned Abbrev) {
262     llvm_unreachable("DXIL cannot contain DIArgList Nodes");
263   }
264   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
265                      unsigned Abbrev);
266   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
267                                     SmallVectorImpl<uint64_t> &Record,
268                                     unsigned Abbrev);
269   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
270                                      SmallVectorImpl<uint64_t> &Record,
271                                      unsigned Abbrev);
272   void writeDIGlobalVariable(const DIGlobalVariable *N,
273                              SmallVectorImpl<uint64_t> &Record,
274                              unsigned Abbrev);
275   void writeDILocalVariable(const DILocalVariable *N,
276                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
277   void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
278                     unsigned Abbrev) {
279     llvm_unreachable("DXIL cannot contain DILabel Nodes");
280   }
281   void writeDIExpression(const DIExpression *N,
282                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
283   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
284                                        SmallVectorImpl<uint64_t> &Record,
285                                        unsigned Abbrev) {
286     llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
287   }
288   void writeDIObjCProperty(const DIObjCProperty *N,
289                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
290   void writeDIImportedEntity(const DIImportedEntity *N,
291                              SmallVectorImpl<uint64_t> &Record,
292                              unsigned Abbrev);
293   unsigned createNamedMetadataAbbrev();
294   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
295   unsigned createMetadataStringsAbbrev();
296   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
297                             SmallVectorImpl<uint64_t> &Record);
298   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
299                             SmallVectorImpl<uint64_t> &Record,
300                             std::vector<unsigned> *MDAbbrevs = nullptr,
301                             std::vector<uint64_t> *IndexPos = nullptr);
302   void writeModuleMetadata();
303   void writeFunctionMetadata(const Function &F);
304   void writeFunctionMetadataAttachment(const Function &F);
305   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
306                                     const GlobalObject &GO);
307   void writeModuleMetadataKinds();
308   void writeOperandBundleTags();
309   void writeSyncScopeNames();
310   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
311   void writeModuleConstants();
312   bool pushValueAndType(const Value *V, unsigned InstID,
313                         SmallVectorImpl<unsigned> &Vals);
314   void writeOperandBundles(const CallBase &CB, unsigned InstID);
315   void pushValue(const Value *V, unsigned InstID,
316                  SmallVectorImpl<unsigned> &Vals);
317   void pushValueSigned(const Value *V, unsigned InstID,
318                        SmallVectorImpl<uint64_t> &Vals);
319   void writeInstruction(const Instruction &I, unsigned InstID,
320                         SmallVectorImpl<unsigned> &Vals);
321   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
322   void writeGlobalValueSymbolTable(
323       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
324   void writeUseList(UseListOrder &&Order);
325   void writeUseListBlock(const Function *F);
326   void writeFunction(const Function &F);
327   void writeBlockInfo();
328 
329   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
330 
331   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
332 };
333 
334 } // namespace dxil
335 } // namespace llvm
336 
337 using namespace llvm;
338 using namespace llvm::dxil;
339 
340 ////////////////////////////////////////////////////////////////////////////////
341 /// Begin dxil::BitcodeWriter Implementation
342 ////////////////////////////////////////////////////////////////////////////////
343 
344 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
345                                    raw_fd_stream *FS)
346     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
347   // Emit the file header.
348   Stream->Emit((unsigned)'B', 8);
349   Stream->Emit((unsigned)'C', 8);
350   Stream->Emit(0x0, 4);
351   Stream->Emit(0xC, 4);
352   Stream->Emit(0xE, 4);
353   Stream->Emit(0xD, 4);
354 }
355 
356 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
357 
358 /// Write the specified module to the specified output stream.
359 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
360   SmallVector<char, 0> Buffer;
361   Buffer.reserve(256 * 1024);
362 
363   // If this is darwin or another generic macho target, reserve space for the
364   // header.
365   Triple TT(M.getTargetTriple());
366   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
367     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
368 
369   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
370   Writer.writeModule(M);
371   Writer.writeSymtab();
372   Writer.writeStrtab();
373 
374   // Write the generated bitstream to "Out".
375   if (!Buffer.empty())
376     Out.write((char *)&Buffer.front(), Buffer.size());
377 }
378 
379 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
380   Stream->EnterSubblock(Block, 3);
381 
382   auto Abbv = std::make_shared<BitCodeAbbrev>();
383   Abbv->Add(BitCodeAbbrevOp(Record));
384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
385   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
386 
387   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
388 
389   Stream->ExitBlock();
390 }
391 
392 void BitcodeWriter::writeSymtab() {
393   assert(!WroteStrtab && !WroteSymtab);
394 
395   // If any module has module-level inline asm, we will require a registered asm
396   // parser for the target so that we can create an accurate symbol table for
397   // the module.
398   for (Module *M : Mods) {
399     if (M->getModuleInlineAsm().empty())
400       continue;
401   }
402 
403   WroteSymtab = true;
404   SmallVector<char, 0> Symtab;
405   // The irsymtab::build function may be unable to create a symbol table if the
406   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
407   // table is not required for correctness, but we still want to be able to
408   // write malformed modules to bitcode files, so swallow the error.
409   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
410     consumeError(std::move(E));
411     return;
412   }
413 
414   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
415             {Symtab.data(), Symtab.size()});
416 }
417 
418 void BitcodeWriter::writeStrtab() {
419   assert(!WroteStrtab);
420 
421   std::vector<char> Strtab;
422   StrtabBuilder.finalizeInOrder();
423   Strtab.resize(StrtabBuilder.getSize());
424   StrtabBuilder.write((uint8_t *)Strtab.data());
425 
426   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
427             {Strtab.data(), Strtab.size()});
428 
429   WroteStrtab = true;
430 }
431 
432 void BitcodeWriter::copyStrtab(StringRef Strtab) {
433   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
434   WroteStrtab = true;
435 }
436 
437 void BitcodeWriter::writeModule(const Module &M) {
438   assert(!WroteStrtab);
439 
440   // The Mods vector is used by irsymtab::build, which requires non-const
441   // Modules in case it needs to materialize metadata. But the bitcode writer
442   // requires that the module is materialized, so we can cast to non-const here,
443   // after checking that it is in fact materialized.
444   assert(M.isMaterialized());
445   Mods.push_back(const_cast<Module *>(&M));
446 
447   DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
448   ModuleWriter.write();
449 }
450 
451 ////////////////////////////////////////////////////////////////////////////////
452 /// Begin dxil::BitcodeWriterBase Implementation
453 ////////////////////////////////////////////////////////////////////////////////
454 
455 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
456   switch (Opcode) {
457   default:
458     llvm_unreachable("Unknown cast instruction!");
459   case Instruction::Trunc:
460     return bitc::CAST_TRUNC;
461   case Instruction::ZExt:
462     return bitc::CAST_ZEXT;
463   case Instruction::SExt:
464     return bitc::CAST_SEXT;
465   case Instruction::FPToUI:
466     return bitc::CAST_FPTOUI;
467   case Instruction::FPToSI:
468     return bitc::CAST_FPTOSI;
469   case Instruction::UIToFP:
470     return bitc::CAST_UITOFP;
471   case Instruction::SIToFP:
472     return bitc::CAST_SITOFP;
473   case Instruction::FPTrunc:
474     return bitc::CAST_FPTRUNC;
475   case Instruction::FPExt:
476     return bitc::CAST_FPEXT;
477   case Instruction::PtrToInt:
478     return bitc::CAST_PTRTOINT;
479   case Instruction::IntToPtr:
480     return bitc::CAST_INTTOPTR;
481   case Instruction::BitCast:
482     return bitc::CAST_BITCAST;
483   case Instruction::AddrSpaceCast:
484     return bitc::CAST_ADDRSPACECAST;
485   }
486 }
487 
488 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
489   switch (Opcode) {
490   default:
491     llvm_unreachable("Unknown binary instruction!");
492   case Instruction::FNeg:
493     return bitc::UNOP_FNEG;
494   }
495 }
496 
497 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
498   switch (Opcode) {
499   default:
500     llvm_unreachable("Unknown binary instruction!");
501   case Instruction::Add:
502   case Instruction::FAdd:
503     return bitc::BINOP_ADD;
504   case Instruction::Sub:
505   case Instruction::FSub:
506     return bitc::BINOP_SUB;
507   case Instruction::Mul:
508   case Instruction::FMul:
509     return bitc::BINOP_MUL;
510   case Instruction::UDiv:
511     return bitc::BINOP_UDIV;
512   case Instruction::FDiv:
513   case Instruction::SDiv:
514     return bitc::BINOP_SDIV;
515   case Instruction::URem:
516     return bitc::BINOP_UREM;
517   case Instruction::FRem:
518   case Instruction::SRem:
519     return bitc::BINOP_SREM;
520   case Instruction::Shl:
521     return bitc::BINOP_SHL;
522   case Instruction::LShr:
523     return bitc::BINOP_LSHR;
524   case Instruction::AShr:
525     return bitc::BINOP_ASHR;
526   case Instruction::And:
527     return bitc::BINOP_AND;
528   case Instruction::Or:
529     return bitc::BINOP_OR;
530   case Instruction::Xor:
531     return bitc::BINOP_XOR;
532   }
533 }
534 
535 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
536   switch (Op) {
537   default:
538     llvm_unreachable("Unknown RMW operation!");
539   case AtomicRMWInst::Xchg:
540     return bitc::RMW_XCHG;
541   case AtomicRMWInst::Add:
542     return bitc::RMW_ADD;
543   case AtomicRMWInst::Sub:
544     return bitc::RMW_SUB;
545   case AtomicRMWInst::And:
546     return bitc::RMW_AND;
547   case AtomicRMWInst::Nand:
548     return bitc::RMW_NAND;
549   case AtomicRMWInst::Or:
550     return bitc::RMW_OR;
551   case AtomicRMWInst::Xor:
552     return bitc::RMW_XOR;
553   case AtomicRMWInst::Max:
554     return bitc::RMW_MAX;
555   case AtomicRMWInst::Min:
556     return bitc::RMW_MIN;
557   case AtomicRMWInst::UMax:
558     return bitc::RMW_UMAX;
559   case AtomicRMWInst::UMin:
560     return bitc::RMW_UMIN;
561   case AtomicRMWInst::FAdd:
562     return bitc::RMW_FADD;
563   case AtomicRMWInst::FSub:
564     return bitc::RMW_FSUB;
565   }
566 }
567 
568 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
569   switch (Ordering) {
570   case AtomicOrdering::NotAtomic:
571     return bitc::ORDERING_NOTATOMIC;
572   case AtomicOrdering::Unordered:
573     return bitc::ORDERING_UNORDERED;
574   case AtomicOrdering::Monotonic:
575     return bitc::ORDERING_MONOTONIC;
576   case AtomicOrdering::Acquire:
577     return bitc::ORDERING_ACQUIRE;
578   case AtomicOrdering::Release:
579     return bitc::ORDERING_RELEASE;
580   case AtomicOrdering::AcquireRelease:
581     return bitc::ORDERING_ACQREL;
582   case AtomicOrdering::SequentiallyConsistent:
583     return bitc::ORDERING_SEQCST;
584   }
585   llvm_unreachable("Invalid ordering");
586 }
587 
588 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
589                                           unsigned Code, StringRef Str,
590                                           unsigned AbbrevToUse) {
591   SmallVector<unsigned, 64> Vals;
592 
593   // Code: [strchar x N]
594   for (char C : Str) {
595     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
596       AbbrevToUse = 0;
597     Vals.push_back(C);
598   }
599 
600   // Emit the finished record.
601   Stream.EmitRecord(Code, Vals, AbbrevToUse);
602 }
603 
604 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
605   switch (Kind) {
606   case Attribute::Alignment:
607     return bitc::ATTR_KIND_ALIGNMENT;
608   case Attribute::AlwaysInline:
609     return bitc::ATTR_KIND_ALWAYS_INLINE;
610   case Attribute::ArgMemOnly:
611     return bitc::ATTR_KIND_ARGMEMONLY;
612   case Attribute::Builtin:
613     return bitc::ATTR_KIND_BUILTIN;
614   case Attribute::ByVal:
615     return bitc::ATTR_KIND_BY_VAL;
616   case Attribute::Convergent:
617     return bitc::ATTR_KIND_CONVERGENT;
618   case Attribute::InAlloca:
619     return bitc::ATTR_KIND_IN_ALLOCA;
620   case Attribute::Cold:
621     return bitc::ATTR_KIND_COLD;
622   case Attribute::InlineHint:
623     return bitc::ATTR_KIND_INLINE_HINT;
624   case Attribute::InReg:
625     return bitc::ATTR_KIND_IN_REG;
626   case Attribute::JumpTable:
627     return bitc::ATTR_KIND_JUMP_TABLE;
628   case Attribute::MinSize:
629     return bitc::ATTR_KIND_MIN_SIZE;
630   case Attribute::Naked:
631     return bitc::ATTR_KIND_NAKED;
632   case Attribute::Nest:
633     return bitc::ATTR_KIND_NEST;
634   case Attribute::NoAlias:
635     return bitc::ATTR_KIND_NO_ALIAS;
636   case Attribute::NoBuiltin:
637     return bitc::ATTR_KIND_NO_BUILTIN;
638   case Attribute::NoCapture:
639     return bitc::ATTR_KIND_NO_CAPTURE;
640   case Attribute::NoDuplicate:
641     return bitc::ATTR_KIND_NO_DUPLICATE;
642   case Attribute::NoImplicitFloat:
643     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
644   case Attribute::NoInline:
645     return bitc::ATTR_KIND_NO_INLINE;
646   case Attribute::NonLazyBind:
647     return bitc::ATTR_KIND_NON_LAZY_BIND;
648   case Attribute::NonNull:
649     return bitc::ATTR_KIND_NON_NULL;
650   case Attribute::Dereferenceable:
651     return bitc::ATTR_KIND_DEREFERENCEABLE;
652   case Attribute::DereferenceableOrNull:
653     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
654   case Attribute::NoRedZone:
655     return bitc::ATTR_KIND_NO_RED_ZONE;
656   case Attribute::NoReturn:
657     return bitc::ATTR_KIND_NO_RETURN;
658   case Attribute::NoUnwind:
659     return bitc::ATTR_KIND_NO_UNWIND;
660   case Attribute::OptimizeForSize:
661     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
662   case Attribute::OptimizeNone:
663     return bitc::ATTR_KIND_OPTIMIZE_NONE;
664   case Attribute::ReadNone:
665     return bitc::ATTR_KIND_READ_NONE;
666   case Attribute::ReadOnly:
667     return bitc::ATTR_KIND_READ_ONLY;
668   case Attribute::Returned:
669     return bitc::ATTR_KIND_RETURNED;
670   case Attribute::ReturnsTwice:
671     return bitc::ATTR_KIND_RETURNS_TWICE;
672   case Attribute::SExt:
673     return bitc::ATTR_KIND_S_EXT;
674   case Attribute::StackAlignment:
675     return bitc::ATTR_KIND_STACK_ALIGNMENT;
676   case Attribute::StackProtect:
677     return bitc::ATTR_KIND_STACK_PROTECT;
678   case Attribute::StackProtectReq:
679     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
680   case Attribute::StackProtectStrong:
681     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
682   case Attribute::SafeStack:
683     return bitc::ATTR_KIND_SAFESTACK;
684   case Attribute::StructRet:
685     return bitc::ATTR_KIND_STRUCT_RET;
686   case Attribute::SanitizeAddress:
687     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
688   case Attribute::SanitizeThread:
689     return bitc::ATTR_KIND_SANITIZE_THREAD;
690   case Attribute::SanitizeMemory:
691     return bitc::ATTR_KIND_SANITIZE_MEMORY;
692   case Attribute::UWTable:
693     return bitc::ATTR_KIND_UW_TABLE;
694   case Attribute::ZExt:
695     return bitc::ATTR_KIND_Z_EXT;
696   case Attribute::EndAttrKinds:
697     llvm_unreachable("Can not encode end-attribute kinds marker.");
698   case Attribute::None:
699     llvm_unreachable("Can not encode none-attribute.");
700   case Attribute::EmptyKey:
701   case Attribute::TombstoneKey:
702     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
703   default:
704     llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
705                      "should be stripped in DXILPrepare");
706   }
707 
708   llvm_unreachable("Trying to encode unknown attribute");
709 }
710 
711 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
712                                         uint64_t V) {
713   if ((int64_t)V >= 0)
714     Vals.push_back(V << 1);
715   else
716     Vals.push_back((-V << 1) | 1);
717 }
718 
719 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
720                                       const APInt &A) {
721   // We have an arbitrary precision integer value to write whose
722   // bit width is > 64. However, in canonical unsigned integer
723   // format it is likely that the high bits are going to be zero.
724   // So, we only write the number of active words.
725   unsigned NumWords = A.getActiveWords();
726   const uint64_t *RawData = A.getRawData();
727   for (unsigned i = 0; i < NumWords; i++)
728     emitSignedInt64(Vals, RawData[i]);
729 }
730 
731 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
732   uint64_t Flags = 0;
733 
734   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
735     if (OBO->hasNoSignedWrap())
736       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
737     if (OBO->hasNoUnsignedWrap())
738       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
739   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
740     if (PEO->isExact())
741       Flags |= 1 << bitc::PEO_EXACT;
742   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
743     if (FPMO->hasAllowReassoc())
744       Flags |= bitc::AllowReassoc;
745     if (FPMO->hasNoNaNs())
746       Flags |= bitc::NoNaNs;
747     if (FPMO->hasNoInfs())
748       Flags |= bitc::NoInfs;
749     if (FPMO->hasNoSignedZeros())
750       Flags |= bitc::NoSignedZeros;
751     if (FPMO->hasAllowReciprocal())
752       Flags |= bitc::AllowReciprocal;
753     if (FPMO->hasAllowContract())
754       Flags |= bitc::AllowContract;
755     if (FPMO->hasApproxFunc())
756       Flags |= bitc::ApproxFunc;
757   }
758 
759   return Flags;
760 }
761 
762 unsigned
763 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
764   switch (Linkage) {
765   case GlobalValue::ExternalLinkage:
766     return 0;
767   case GlobalValue::WeakAnyLinkage:
768     return 16;
769   case GlobalValue::AppendingLinkage:
770     return 2;
771   case GlobalValue::InternalLinkage:
772     return 3;
773   case GlobalValue::LinkOnceAnyLinkage:
774     return 18;
775   case GlobalValue::ExternalWeakLinkage:
776     return 7;
777   case GlobalValue::CommonLinkage:
778     return 8;
779   case GlobalValue::PrivateLinkage:
780     return 9;
781   case GlobalValue::WeakODRLinkage:
782     return 17;
783   case GlobalValue::LinkOnceODRLinkage:
784     return 19;
785   case GlobalValue::AvailableExternallyLinkage:
786     return 12;
787   }
788   llvm_unreachable("Invalid linkage");
789 }
790 
791 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
792   return getEncodedLinkage(GV.getLinkage());
793 }
794 
795 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
796   switch (GV.getVisibility()) {
797   case GlobalValue::DefaultVisibility:
798     return 0;
799   case GlobalValue::HiddenVisibility:
800     return 1;
801   case GlobalValue::ProtectedVisibility:
802     return 2;
803   }
804   llvm_unreachable("Invalid visibility");
805 }
806 
807 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
808   switch (GV.getDLLStorageClass()) {
809   case GlobalValue::DefaultStorageClass:
810     return 0;
811   case GlobalValue::DLLImportStorageClass:
812     return 1;
813   case GlobalValue::DLLExportStorageClass:
814     return 2;
815   }
816   llvm_unreachable("Invalid DLL storage class");
817 }
818 
819 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
820   switch (GV.getThreadLocalMode()) {
821   case GlobalVariable::NotThreadLocal:
822     return 0;
823   case GlobalVariable::GeneralDynamicTLSModel:
824     return 1;
825   case GlobalVariable::LocalDynamicTLSModel:
826     return 2;
827   case GlobalVariable::InitialExecTLSModel:
828     return 3;
829   case GlobalVariable::LocalExecTLSModel:
830     return 4;
831   }
832   llvm_unreachable("Invalid TLS model");
833 }
834 
835 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
836   switch (C.getSelectionKind()) {
837   case Comdat::Any:
838     return bitc::COMDAT_SELECTION_KIND_ANY;
839   case Comdat::ExactMatch:
840     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
841   case Comdat::Largest:
842     return bitc::COMDAT_SELECTION_KIND_LARGEST;
843   case Comdat::NoDeduplicate:
844     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
845   case Comdat::SameSize:
846     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
847   }
848   llvm_unreachable("Invalid selection kind");
849 }
850 
851 ////////////////////////////////////////////////////////////////////////////////
852 /// Begin DXILBitcodeWriter Implementation
853 ////////////////////////////////////////////////////////////////////////////////
854 
855 void DXILBitcodeWriter::writeAttributeGroupTable() {
856   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
857       VE.getAttributeGroups();
858   if (AttrGrps.empty())
859     return;
860 
861   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
862 
863   SmallVector<uint64_t, 64> Record;
864   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
865     unsigned AttrListIndex = Pair.first;
866     AttributeSet AS = Pair.second;
867     Record.push_back(VE.getAttributeGroupID(Pair));
868     Record.push_back(AttrListIndex);
869 
870     for (Attribute Attr : AS) {
871       if (Attr.isEnumAttribute()) {
872         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
873         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
874                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
875         Record.push_back(0);
876         Record.push_back(Val);
877       } else if (Attr.isIntAttribute()) {
878         uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
879         assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
880                "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
881         Record.push_back(1);
882         Record.push_back(Val);
883         Record.push_back(Attr.getValueAsInt());
884       } else {
885         StringRef Kind = Attr.getKindAsString();
886         StringRef Val = Attr.getValueAsString();
887 
888         Record.push_back(Val.empty() ? 3 : 4);
889         Record.append(Kind.begin(), Kind.end());
890         Record.push_back(0);
891         if (!Val.empty()) {
892           Record.append(Val.begin(), Val.end());
893           Record.push_back(0);
894         }
895       }
896     }
897 
898     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
899     Record.clear();
900   }
901 
902   Stream.ExitBlock();
903 }
904 
905 void DXILBitcodeWriter::writeAttributeTable() {
906   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
907   if (Attrs.empty())
908     return;
909 
910   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
911 
912   SmallVector<uint64_t, 64> Record;
913   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
914     AttributeList AL = Attrs[i];
915     for (unsigned i : AL.indexes()) {
916       AttributeSet AS = AL.getAttributes(i);
917       if (AS.hasAttributes())
918         Record.push_back(VE.getAttributeGroupID({i, AS}));
919     }
920 
921     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
922     Record.clear();
923   }
924 
925   Stream.ExitBlock();
926 }
927 
928 /// WriteTypeTable - Write out the type table for a module.
929 void DXILBitcodeWriter::writeTypeTable() {
930   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
931 
932   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
933   SmallVector<uint64_t, 64> TypeVals;
934 
935   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
936 
937   // Abbrev for TYPE_CODE_POINTER.
938   auto Abbv = std::make_shared<BitCodeAbbrev>();
939   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
941   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
942   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
943 
944   // Abbrev for TYPE_CODE_FUNCTION.
945   Abbv = std::make_shared<BitCodeAbbrev>();
946   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
947   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
948   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
949   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
950   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
951 
952   // Abbrev for TYPE_CODE_STRUCT_ANON.
953   Abbv = std::make_shared<BitCodeAbbrev>();
954   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
955   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
956   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
957   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
958   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
959 
960   // Abbrev for TYPE_CODE_STRUCT_NAME.
961   Abbv = std::make_shared<BitCodeAbbrev>();
962   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
963   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
964   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
965   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
966 
967   // Abbrev for TYPE_CODE_STRUCT_NAMED.
968   Abbv = std::make_shared<BitCodeAbbrev>();
969   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
971   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
973   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
974 
975   // Abbrev for TYPE_CODE_ARRAY.
976   Abbv = std::make_shared<BitCodeAbbrev>();
977   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
978   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
979   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
980   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
981 
982   // Emit an entry count so the reader can reserve space.
983   TypeVals.push_back(TypeList.size());
984   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
985   TypeVals.clear();
986 
987   // Loop over all of the types, emitting each in turn.
988   for (Type *T : TypeList) {
989     int AbbrevToUse = 0;
990     unsigned Code = 0;
991 
992     switch (T->getTypeID()) {
993     case Type::BFloatTyID:
994     case Type::X86_AMXTyID:
995     case Type::TokenTyID:
996     case Type::DXILPointerTyID:
997       llvm_unreachable("These should never be used!!!");
998       break;
999     case Type::VoidTyID:
1000       Code = bitc::TYPE_CODE_VOID;
1001       break;
1002     case Type::HalfTyID:
1003       Code = bitc::TYPE_CODE_HALF;
1004       break;
1005     case Type::FloatTyID:
1006       Code = bitc::TYPE_CODE_FLOAT;
1007       break;
1008     case Type::DoubleTyID:
1009       Code = bitc::TYPE_CODE_DOUBLE;
1010       break;
1011     case Type::X86_FP80TyID:
1012       Code = bitc::TYPE_CODE_X86_FP80;
1013       break;
1014     case Type::FP128TyID:
1015       Code = bitc::TYPE_CODE_FP128;
1016       break;
1017     case Type::PPC_FP128TyID:
1018       Code = bitc::TYPE_CODE_PPC_FP128;
1019       break;
1020     case Type::LabelTyID:
1021       Code = bitc::TYPE_CODE_LABEL;
1022       break;
1023     case Type::MetadataTyID:
1024       Code = bitc::TYPE_CODE_METADATA;
1025       break;
1026     case Type::X86_MMXTyID:
1027       Code = bitc::TYPE_CODE_X86_MMX;
1028       break;
1029     case Type::IntegerTyID:
1030       // INTEGER: [width]
1031       Code = bitc::TYPE_CODE_INTEGER;
1032       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1033       break;
1034     case Type::PointerTyID: {
1035       PointerType *PTy = cast<PointerType>(T);
1036       // POINTER: [pointee type, address space]
1037       Code = bitc::TYPE_CODE_POINTER;
1038       TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType()));
1039       unsigned AddressSpace = PTy->getAddressSpace();
1040       TypeVals.push_back(AddressSpace);
1041       if (AddressSpace == 0)
1042         AbbrevToUse = PtrAbbrev;
1043       break;
1044     }
1045     case Type::FunctionTyID: {
1046       FunctionType *FT = cast<FunctionType>(T);
1047       // FUNCTION: [isvararg, retty, paramty x N]
1048       Code = bitc::TYPE_CODE_FUNCTION;
1049       TypeVals.push_back(FT->isVarArg());
1050       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1051       for (Type *PTy : FT->params())
1052         TypeVals.push_back(VE.getTypeID(PTy));
1053       AbbrevToUse = FunctionAbbrev;
1054       break;
1055     }
1056     case Type::StructTyID: {
1057       StructType *ST = cast<StructType>(T);
1058       // STRUCT: [ispacked, eltty x N]
1059       TypeVals.push_back(ST->isPacked());
1060       // Output all of the element types.
1061       for (Type *ElTy : ST->elements())
1062         TypeVals.push_back(VE.getTypeID(ElTy));
1063 
1064       if (ST->isLiteral()) {
1065         Code = bitc::TYPE_CODE_STRUCT_ANON;
1066         AbbrevToUse = StructAnonAbbrev;
1067       } else {
1068         if (ST->isOpaque()) {
1069           Code = bitc::TYPE_CODE_OPAQUE;
1070         } else {
1071           Code = bitc::TYPE_CODE_STRUCT_NAMED;
1072           AbbrevToUse = StructNamedAbbrev;
1073         }
1074 
1075         // Emit the name if it is present.
1076         if (!ST->getName().empty())
1077           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1078                             StructNameAbbrev);
1079       }
1080       break;
1081     }
1082     case Type::ArrayTyID: {
1083       ArrayType *AT = cast<ArrayType>(T);
1084       // ARRAY: [numelts, eltty]
1085       Code = bitc::TYPE_CODE_ARRAY;
1086       TypeVals.push_back(AT->getNumElements());
1087       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1088       AbbrevToUse = ArrayAbbrev;
1089       break;
1090     }
1091     case Type::FixedVectorTyID:
1092     case Type::ScalableVectorTyID: {
1093       VectorType *VT = cast<VectorType>(T);
1094       // VECTOR [numelts, eltty]
1095       Code = bitc::TYPE_CODE_VECTOR;
1096       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1097       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1098       break;
1099     }
1100     }
1101 
1102     // Emit the finished record.
1103     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1104     TypeVals.clear();
1105   }
1106 
1107   Stream.ExitBlock();
1108 }
1109 
1110 void DXILBitcodeWriter::writeComdats() {
1111   SmallVector<uint16_t, 64> Vals;
1112   for (const Comdat *C : VE.getComdats()) {
1113     // COMDAT: [selection_kind, name]
1114     Vals.push_back(getEncodedComdatSelectionKind(*C));
1115     size_t Size = C->getName().size();
1116     assert(isUInt<16>(Size));
1117     Vals.push_back(Size);
1118     for (char Chr : C->getName())
1119       Vals.push_back((unsigned char)Chr);
1120     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1121     Vals.clear();
1122   }
1123 }
1124 
1125 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1126 
1127 /// Emit top-level description of module, including target triple, inline asm,
1128 /// descriptors for global variables, and function prototype info.
1129 /// Returns the bit offset to backpatch with the location of the real VST.
1130 void DXILBitcodeWriter::writeModuleInfo() {
1131   // Emit various pieces of data attached to a module.
1132   if (!M.getTargetTriple().empty())
1133     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1134                       0 /*TODO*/);
1135   const std::string &DL = M.getDataLayoutStr();
1136   if (!DL.empty())
1137     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1138   if (!M.getModuleInlineAsm().empty())
1139     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1140                       0 /*TODO*/);
1141 
1142   // Emit information about sections and GC, computing how many there are. Also
1143   // compute the maximum alignment value.
1144   std::map<std::string, unsigned> SectionMap;
1145   std::map<std::string, unsigned> GCMap;
1146   MaybeAlign MaxAlignment;
1147   unsigned MaxGlobalType = 0;
1148   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1149     if (A)
1150       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1151   };
1152   for (const GlobalVariable &GV : M.globals()) {
1153     UpdateMaxAlignment(GV.getAlign());
1154     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1155     if (GV.hasSection()) {
1156       // Give section names unique ID's.
1157       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1158       if (!Entry) {
1159         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1160                           GV.getSection(), 0 /*TODO*/);
1161         Entry = SectionMap.size();
1162       }
1163     }
1164   }
1165   for (const Function &F : M) {
1166     UpdateMaxAlignment(F.getAlign());
1167     if (F.hasSection()) {
1168       // Give section names unique ID's.
1169       unsigned &Entry = SectionMap[std::string(F.getSection())];
1170       if (!Entry) {
1171         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1172                           0 /*TODO*/);
1173         Entry = SectionMap.size();
1174       }
1175     }
1176     if (F.hasGC()) {
1177       // Same for GC names.
1178       unsigned &Entry = GCMap[F.getGC()];
1179       if (!Entry) {
1180         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1181                           0 /*TODO*/);
1182         Entry = GCMap.size();
1183       }
1184     }
1185   }
1186 
1187   // Emit abbrev for globals, now that we know # sections and max alignment.
1188   unsigned SimpleGVarAbbrev = 0;
1189   if (!M.global_empty()) {
1190     // Add an abbrev for common globals with no visibility or thread localness.
1191     auto Abbv = std::make_shared<BitCodeAbbrev>();
1192     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1193     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1194                               Log2_32_Ceil(MaxGlobalType + 1)));
1195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1196                                                            //| explicitType << 1
1197                                                            //| constant
1198     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1199     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1200     if (MaxAlignment == 0)                                 // Alignment.
1201       Abbv->Add(BitCodeAbbrevOp(0));
1202     else {
1203       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1204       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1205                                 Log2_32_Ceil(MaxEncAlignment + 1)));
1206     }
1207     if (SectionMap.empty()) // Section.
1208       Abbv->Add(BitCodeAbbrevOp(0));
1209     else
1210       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1211                                 Log2_32_Ceil(SectionMap.size() + 1)));
1212     // Don't bother emitting vis + thread local.
1213     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1214   }
1215 
1216   // Emit the global variable information.
1217   SmallVector<unsigned, 64> Vals;
1218   for (const GlobalVariable &GV : M.globals()) {
1219     unsigned AbbrevToUse = 0;
1220 
1221     // GLOBALVAR: [type, isconst, initid,
1222     //             linkage, alignment, section, visibility, threadlocal,
1223     //             unnamed_addr, externally_initialized, dllstorageclass,
1224     //             comdat]
1225     Vals.push_back(VE.getTypeID(GV.getValueType()));
1226     Vals.push_back(
1227         GV.getType()->getAddressSpace() << 2 | 2 |
1228         (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1229                                     // unsigned int and bool
1230     Vals.push_back(
1231         GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1232     Vals.push_back(getEncodedLinkage(GV));
1233     Vals.push_back(getEncodedAlign(GV.getAlign()));
1234     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1235                                    : 0);
1236     if (GV.isThreadLocal() ||
1237         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1238         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1239         GV.isExternallyInitialized() ||
1240         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1241         GV.hasComdat()) {
1242       Vals.push_back(getEncodedVisibility(GV));
1243       Vals.push_back(getEncodedThreadLocalMode(GV));
1244       Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1245       Vals.push_back(GV.isExternallyInitialized());
1246       Vals.push_back(getEncodedDLLStorageClass(GV));
1247       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1248     } else {
1249       AbbrevToUse = SimpleGVarAbbrev;
1250     }
1251 
1252     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1253     Vals.clear();
1254   }
1255 
1256   // Emit the function proto information.
1257   for (const Function &F : M) {
1258     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1259     //             section, visibility, gc, unnamed_addr, prologuedata,
1260     //             dllstorageclass, comdat, prefixdata, personalityfn]
1261     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1262     Vals.push_back(F.getCallingConv());
1263     Vals.push_back(F.isDeclaration());
1264     Vals.push_back(getEncodedLinkage(F));
1265     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1266     Vals.push_back(getEncodedAlign(F.getAlign()));
1267     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1268                                   : 0);
1269     Vals.push_back(getEncodedVisibility(F));
1270     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1271     Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1272     Vals.push_back(
1273         F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1274     Vals.push_back(getEncodedDLLStorageClass(F));
1275     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1276     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1277                                      : 0);
1278     Vals.push_back(
1279         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1280 
1281     unsigned AbbrevToUse = 0;
1282     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1283     Vals.clear();
1284   }
1285 
1286   // Emit the alias information.
1287   for (const GlobalAlias &A : M.aliases()) {
1288     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1289     Vals.push_back(VE.getTypeID(A.getValueType()));
1290     Vals.push_back(VE.getValueID(A.getAliasee()));
1291     Vals.push_back(getEncodedLinkage(A));
1292     Vals.push_back(getEncodedVisibility(A));
1293     Vals.push_back(getEncodedDLLStorageClass(A));
1294     Vals.push_back(getEncodedThreadLocalMode(A));
1295     Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1296     unsigned AbbrevToUse = 0;
1297     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1298     Vals.clear();
1299   }
1300 }
1301 
1302 void DXILBitcodeWriter::writeValueAsMetadata(
1303     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1304   // Mimic an MDNode with a value as one operand.
1305   Value *V = MD->getValue();
1306   Record.push_back(VE.getTypeID(V->getType()));
1307   Record.push_back(VE.getValueID(V));
1308   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1309   Record.clear();
1310 }
1311 
1312 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1313                                      SmallVectorImpl<uint64_t> &Record,
1314                                      unsigned Abbrev) {
1315   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1316     Metadata *MD = N->getOperand(i);
1317     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1318            "Unexpected function-local metadata");
1319     Record.push_back(VE.getMetadataOrNullID(MD));
1320   }
1321   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1322                                     : bitc::METADATA_NODE,
1323                     Record, Abbrev);
1324   Record.clear();
1325 }
1326 
1327 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1328                                         SmallVectorImpl<uint64_t> &Record,
1329                                         unsigned &Abbrev) {
1330   if (!Abbrev)
1331     Abbrev = createDILocationAbbrev();
1332   Record.push_back(N->isDistinct());
1333   Record.push_back(N->getLine());
1334   Record.push_back(N->getColumn());
1335   Record.push_back(VE.getMetadataID(N->getScope()));
1336   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1337 
1338   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1339   Record.clear();
1340 }
1341 
1342 static uint64_t rotateSign(APInt Val) {
1343   int64_t I = Val.getSExtValue();
1344   uint64_t U = I;
1345   return I < 0 ? ~(U << 1) : U << 1;
1346 }
1347 
1348 static uint64_t rotateSign(DISubrange::BoundType Val) {
1349   return rotateSign(Val.get<ConstantInt *>()->getValue());
1350 }
1351 
1352 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1353                                         SmallVectorImpl<uint64_t> &Record,
1354                                         unsigned Abbrev) {
1355   Record.push_back(N->isDistinct());
1356   Record.push_back(
1357       N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
1358   Record.push_back(rotateSign(N->getLowerBound()));
1359 
1360   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1361   Record.clear();
1362 }
1363 
1364 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1365                                           SmallVectorImpl<uint64_t> &Record,
1366                                           unsigned Abbrev) {
1367   Record.push_back(N->isDistinct());
1368   Record.push_back(rotateSign(N->getValue()));
1369   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1370 
1371   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1372   Record.clear();
1373 }
1374 
1375 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1376                                          SmallVectorImpl<uint64_t> &Record,
1377                                          unsigned Abbrev) {
1378   Record.push_back(N->isDistinct());
1379   Record.push_back(N->getTag());
1380   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1381   Record.push_back(N->getSizeInBits());
1382   Record.push_back(N->getAlignInBits());
1383   Record.push_back(N->getEncoding());
1384 
1385   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1386   Record.clear();
1387 }
1388 
1389 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1390                                            SmallVectorImpl<uint64_t> &Record,
1391                                            unsigned Abbrev) {
1392   Record.push_back(N->isDistinct());
1393   Record.push_back(N->getTag());
1394   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1395   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1396   Record.push_back(N->getLine());
1397   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1398   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1399   Record.push_back(N->getSizeInBits());
1400   Record.push_back(N->getAlignInBits());
1401   Record.push_back(N->getOffsetInBits());
1402   Record.push_back(N->getFlags());
1403   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1404 
1405   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1406   Record.clear();
1407 }
1408 
1409 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1410                                              SmallVectorImpl<uint64_t> &Record,
1411                                              unsigned Abbrev) {
1412   Record.push_back(N->isDistinct());
1413   Record.push_back(N->getTag());
1414   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1415   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1416   Record.push_back(N->getLine());
1417   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1418   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1419   Record.push_back(N->getSizeInBits());
1420   Record.push_back(N->getAlignInBits());
1421   Record.push_back(N->getOffsetInBits());
1422   Record.push_back(N->getFlags());
1423   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1424   Record.push_back(N->getRuntimeLang());
1425   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1426   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1427   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1428 
1429   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1430   Record.clear();
1431 }
1432 
1433 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1434                                               SmallVectorImpl<uint64_t> &Record,
1435                                               unsigned Abbrev) {
1436   Record.push_back(N->isDistinct());
1437   Record.push_back(N->getFlags());
1438   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1439 
1440   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1441   Record.clear();
1442 }
1443 
1444 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1445                                     SmallVectorImpl<uint64_t> &Record,
1446                                     unsigned Abbrev) {
1447   Record.push_back(N->isDistinct());
1448   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1449   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1450 
1451   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1452   Record.clear();
1453 }
1454 
1455 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1456                                            SmallVectorImpl<uint64_t> &Record,
1457                                            unsigned Abbrev) {
1458   Record.push_back(N->isDistinct());
1459   Record.push_back(N->getSourceLanguage());
1460   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1461   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1462   Record.push_back(N->isOptimized());
1463   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1464   Record.push_back(N->getRuntimeVersion());
1465   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1466   Record.push_back(N->getEmissionKind());
1467   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1468   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1469   Record.push_back(/* subprograms */ 0);
1470   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1471   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1472   Record.push_back(N->getDWOId());
1473 
1474   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1475   Record.clear();
1476 }
1477 
1478 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1479                                           SmallVectorImpl<uint64_t> &Record,
1480                                           unsigned Abbrev) {
1481   Record.push_back(N->isDistinct());
1482   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1483   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1484   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1485   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1486   Record.push_back(N->getLine());
1487   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1488   Record.push_back(N->isLocalToUnit());
1489   Record.push_back(N->isDefinition());
1490   Record.push_back(N->getScopeLine());
1491   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1492   Record.push_back(N->getVirtuality());
1493   Record.push_back(N->getVirtualIndex());
1494   Record.push_back(N->getFlags());
1495   Record.push_back(N->isOptimized());
1496   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1497   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1498   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1499   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1500 
1501   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1502   Record.clear();
1503 }
1504 
1505 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1506                                             SmallVectorImpl<uint64_t> &Record,
1507                                             unsigned Abbrev) {
1508   Record.push_back(N->isDistinct());
1509   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1510   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1511   Record.push_back(N->getLine());
1512   Record.push_back(N->getColumn());
1513 
1514   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1515   Record.clear();
1516 }
1517 
1518 void DXILBitcodeWriter::writeDILexicalBlockFile(
1519     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1520     unsigned Abbrev) {
1521   Record.push_back(N->isDistinct());
1522   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1523   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1524   Record.push_back(N->getDiscriminator());
1525 
1526   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1527   Record.clear();
1528 }
1529 
1530 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1531                                          SmallVectorImpl<uint64_t> &Record,
1532                                          unsigned Abbrev) {
1533   Record.push_back(N->isDistinct());
1534   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1535   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1536   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1537   Record.push_back(/* line number */ 0);
1538 
1539   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1540   Record.clear();
1541 }
1542 
1543 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1544                                       SmallVectorImpl<uint64_t> &Record,
1545                                       unsigned Abbrev) {
1546   Record.push_back(N->isDistinct());
1547   for (auto &I : N->operands())
1548     Record.push_back(VE.getMetadataOrNullID(I));
1549 
1550   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1551   Record.clear();
1552 }
1553 
1554 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1555     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1556     unsigned Abbrev) {
1557   Record.push_back(N->isDistinct());
1558   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1559   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1560 
1561   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1562   Record.clear();
1563 }
1564 
1565 void DXILBitcodeWriter::writeDITemplateValueParameter(
1566     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1567     unsigned Abbrev) {
1568   Record.push_back(N->isDistinct());
1569   Record.push_back(N->getTag());
1570   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1571   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1572   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1573 
1574   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1575   Record.clear();
1576 }
1577 
1578 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1579                                               SmallVectorImpl<uint64_t> &Record,
1580                                               unsigned Abbrev) {
1581   Record.push_back(N->isDistinct());
1582   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1583   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1584   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1585   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1586   Record.push_back(N->getLine());
1587   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1588   Record.push_back(N->isLocalToUnit());
1589   Record.push_back(N->isDefinition());
1590   Record.push_back(/* N->getRawVariable() */ 0);
1591   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1592 
1593   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1594   Record.clear();
1595 }
1596 
1597 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1598                                              SmallVectorImpl<uint64_t> &Record,
1599                                              unsigned Abbrev) {
1600   Record.push_back(N->isDistinct());
1601   Record.push_back(N->getTag());
1602   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1603   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1604   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1605   Record.push_back(N->getLine());
1606   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1607   Record.push_back(N->getArg());
1608   Record.push_back(N->getFlags());
1609 
1610   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1611   Record.clear();
1612 }
1613 
1614 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1615                                           SmallVectorImpl<uint64_t> &Record,
1616                                           unsigned Abbrev) {
1617   Record.reserve(N->getElements().size() + 1);
1618 
1619   Record.push_back(N->isDistinct());
1620   Record.append(N->elements_begin(), N->elements_end());
1621 
1622   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1623   Record.clear();
1624 }
1625 
1626 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1627                                             SmallVectorImpl<uint64_t> &Record,
1628                                             unsigned Abbrev) {
1629   llvm_unreachable("DXIL does not support objc!!!");
1630 }
1631 
1632 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1633                                               SmallVectorImpl<uint64_t> &Record,
1634                                               unsigned Abbrev) {
1635   Record.push_back(N->isDistinct());
1636   Record.push_back(N->getTag());
1637   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1638   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1639   Record.push_back(N->getLine());
1640   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1641 
1642   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1643   Record.clear();
1644 }
1645 
1646 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1647   // Abbrev for METADATA_LOCATION.
1648   //
1649   // Assume the column is usually under 128, and always output the inlined-at
1650   // location (it's never more expensive than building an array size 1).
1651   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1652   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1653   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1654   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1655   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1656   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1657   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1658   return Stream.EmitAbbrev(std::move(Abbv));
1659 }
1660 
1661 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1662   // Abbrev for METADATA_GENERIC_DEBUG.
1663   //
1664   // Assume the column is usually under 128, and always output the inlined-at
1665   // location (it's never more expensive than building an array size 1).
1666   std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1667   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1668   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1669   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1670   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1671   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1672   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1673   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1674   return Stream.EmitAbbrev(std::move(Abbv));
1675 }
1676 
1677 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1678                                              SmallVectorImpl<uint64_t> &Record,
1679                                              std::vector<unsigned> *MDAbbrevs,
1680                                              std::vector<uint64_t> *IndexPos) {
1681   if (MDs.empty())
1682     return;
1683 
1684     // Initialize MDNode abbreviations.
1685 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1686 #include "llvm/IR/Metadata.def"
1687 
1688   for (const Metadata *MD : MDs) {
1689     if (IndexPos)
1690       IndexPos->push_back(Stream.GetCurrentBitNo());
1691     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1692       assert(N->isResolved() && "Expected forward references to be resolved");
1693 
1694       switch (N->getMetadataID()) {
1695       default:
1696         llvm_unreachable("Invalid MDNode subclass");
1697 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1698   case Metadata::CLASS##Kind:                                                  \
1699     if (MDAbbrevs)                                                             \
1700       write##CLASS(cast<CLASS>(N), Record,                                     \
1701                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1702     else                                                                       \
1703       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1704     continue;
1705 #include "llvm/IR/Metadata.def"
1706       }
1707     }
1708     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1709   }
1710 }
1711 
1712 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1713   auto Abbv = std::make_shared<BitCodeAbbrev>();
1714   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1715   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1717   return Stream.EmitAbbrev(std::move(Abbv));
1718 }
1719 
1720 void DXILBitcodeWriter::writeMetadataStrings(
1721     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1722   for (const Metadata *MD : Strings) {
1723     const MDString *MDS = cast<MDString>(MD);
1724     // Code: [strchar x N]
1725     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1726 
1727     // Emit the finished record.
1728     Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
1729                       createMetadataStringsAbbrev());
1730     Record.clear();
1731   }
1732 }
1733 
1734 void DXILBitcodeWriter::writeModuleMetadata() {
1735   if (!VE.hasMDs() && M.named_metadata_empty())
1736     return;
1737 
1738   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1739 
1740   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1741   // block and load any metadata.
1742   std::vector<unsigned> MDAbbrevs;
1743 
1744   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1745   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1746   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1747       createGenericDINodeAbbrev();
1748 
1749   unsigned NameAbbrev = 0;
1750   if (!M.named_metadata_empty()) {
1751     // Abbrev for METADATA_NAME.
1752     std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1753     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1755     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1756     NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1757   }
1758 
1759   SmallVector<uint64_t, 64> Record;
1760   writeMetadataStrings(VE.getMDStrings(), Record);
1761 
1762   std::vector<uint64_t> IndexPos;
1763   IndexPos.reserve(VE.getNonMDStrings().size());
1764   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1765 
1766   // Write named metadata.
1767   for (const NamedMDNode &NMD : M.named_metadata()) {
1768     // Write name.
1769     StringRef Str = NMD.getName();
1770     Record.append(Str.bytes_begin(), Str.bytes_end());
1771     Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1772     Record.clear();
1773 
1774     // Write named metadata operands.
1775     for (const MDNode *N : NMD.operands())
1776       Record.push_back(VE.getMetadataID(N));
1777     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1778     Record.clear();
1779   }
1780 
1781   Stream.ExitBlock();
1782 }
1783 
1784 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1785   if (!VE.hasMDs())
1786     return;
1787 
1788   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1789   SmallVector<uint64_t, 64> Record;
1790   writeMetadataStrings(VE.getMDStrings(), Record);
1791   writeMetadataRecords(VE.getNonMDStrings(), Record);
1792   Stream.ExitBlock();
1793 }
1794 
1795 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1796   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1797 
1798   SmallVector<uint64_t, 64> Record;
1799 
1800   // Write metadata attachments
1801   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1802   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1803   F.getAllMetadata(MDs);
1804   if (!MDs.empty()) {
1805     for (const auto &I : MDs) {
1806       Record.push_back(I.first);
1807       Record.push_back(VE.getMetadataID(I.second));
1808     }
1809     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1810     Record.clear();
1811   }
1812 
1813   for (const BasicBlock &BB : F)
1814     for (const Instruction &I : BB) {
1815       MDs.clear();
1816       I.getAllMetadataOtherThanDebugLoc(MDs);
1817 
1818       // If no metadata, ignore instruction.
1819       if (MDs.empty())
1820         continue;
1821 
1822       Record.push_back(VE.getInstructionID(&I));
1823 
1824       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1825         Record.push_back(MDs[i].first);
1826         Record.push_back(VE.getMetadataID(MDs[i].second));
1827       }
1828       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1829       Record.clear();
1830     }
1831 
1832   Stream.ExitBlock();
1833 }
1834 
1835 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1836   SmallVector<uint64_t, 64> Record;
1837 
1838   // Write metadata kinds
1839   // METADATA_KIND - [n x [id, name]]
1840   SmallVector<StringRef, 8> Names;
1841   M.getMDKindNames(Names);
1842 
1843   if (Names.empty())
1844     return;
1845 
1846   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1847 
1848   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1849     Record.push_back(MDKindID);
1850     StringRef KName = Names[MDKindID];
1851     Record.append(KName.begin(), KName.end());
1852 
1853     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1854     Record.clear();
1855   }
1856 
1857   Stream.ExitBlock();
1858 }
1859 
1860 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1861                                        bool isGlobal) {
1862   if (FirstVal == LastVal)
1863     return;
1864 
1865   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1866 
1867   unsigned AggregateAbbrev = 0;
1868   unsigned String8Abbrev = 0;
1869   unsigned CString7Abbrev = 0;
1870   unsigned CString6Abbrev = 0;
1871   // If this is a constant pool for the module, emit module-specific abbrevs.
1872   if (isGlobal) {
1873     // Abbrev for CST_CODE_AGGREGATE.
1874     auto Abbv = std::make_shared<BitCodeAbbrev>();
1875     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1876     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1877     Abbv->Add(
1878         BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1879     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1880 
1881     // Abbrev for CST_CODE_STRING.
1882     Abbv = std::make_shared<BitCodeAbbrev>();
1883     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1884     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1885     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1886     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1887     // Abbrev for CST_CODE_CSTRING.
1888     Abbv = std::make_shared<BitCodeAbbrev>();
1889     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1890     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1891     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1892     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1893     // Abbrev for CST_CODE_CSTRING.
1894     Abbv = std::make_shared<BitCodeAbbrev>();
1895     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1896     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1897     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1898     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1899   }
1900 
1901   SmallVector<uint64_t, 64> Record;
1902 
1903   const ValueEnumerator::ValueList &Vals = VE.getValues();
1904   Type *LastTy = nullptr;
1905   for (unsigned i = FirstVal; i != LastVal; ++i) {
1906     const Value *V = Vals[i].first;
1907     // If we need to switch types, do so now.
1908     if (V->getType() != LastTy) {
1909       LastTy = V->getType();
1910       Record.push_back(VE.getTypeID(LastTy));
1911       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1912                         CONSTANTS_SETTYPE_ABBREV);
1913       Record.clear();
1914     }
1915 
1916     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1917       Record.push_back(unsigned(IA->hasSideEffects()) |
1918                        unsigned(IA->isAlignStack()) << 1 |
1919                        unsigned(IA->getDialect() & 1) << 2);
1920 
1921       // Add the asm string.
1922       const std::string &AsmStr = IA->getAsmString();
1923       Record.push_back(AsmStr.size());
1924       Record.append(AsmStr.begin(), AsmStr.end());
1925 
1926       // Add the constraint string.
1927       const std::string &ConstraintStr = IA->getConstraintString();
1928       Record.push_back(ConstraintStr.size());
1929       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1930       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1931       Record.clear();
1932       continue;
1933     }
1934     const Constant *C = cast<Constant>(V);
1935     unsigned Code = -1U;
1936     unsigned AbbrevToUse = 0;
1937     if (C->isNullValue()) {
1938       Code = bitc::CST_CODE_NULL;
1939     } else if (isa<UndefValue>(C)) {
1940       Code = bitc::CST_CODE_UNDEF;
1941     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1942       if (IV->getBitWidth() <= 64) {
1943         uint64_t V = IV->getSExtValue();
1944         emitSignedInt64(Record, V);
1945         Code = bitc::CST_CODE_INTEGER;
1946         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1947       } else { // Wide integers, > 64 bits in size.
1948         // We have an arbitrary precision integer value to write whose
1949         // bit width is > 64. However, in canonical unsigned integer
1950         // format it is likely that the high bits are going to be zero.
1951         // So, we only write the number of active words.
1952         unsigned NWords = IV->getValue().getActiveWords();
1953         const uint64_t *RawWords = IV->getValue().getRawData();
1954         for (unsigned i = 0; i != NWords; ++i) {
1955           emitSignedInt64(Record, RawWords[i]);
1956         }
1957         Code = bitc::CST_CODE_WIDE_INTEGER;
1958       }
1959     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1960       Code = bitc::CST_CODE_FLOAT;
1961       Type *Ty = CFP->getType();
1962       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1963         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1964       } else if (Ty->isX86_FP80Ty()) {
1965         // api needed to prevent premature destruction
1966         // bits are not in the same order as a normal i80 APInt, compensate.
1967         APInt api = CFP->getValueAPF().bitcastToAPInt();
1968         const uint64_t *p = api.getRawData();
1969         Record.push_back((p[1] << 48) | (p[0] >> 16));
1970         Record.push_back(p[0] & 0xffffLL);
1971       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1972         APInt api = CFP->getValueAPF().bitcastToAPInt();
1973         const uint64_t *p = api.getRawData();
1974         Record.push_back(p[0]);
1975         Record.push_back(p[1]);
1976       } else {
1977         assert(0 && "Unknown FP type!");
1978       }
1979     } else if (isa<ConstantDataSequential>(C) &&
1980                cast<ConstantDataSequential>(C)->isString()) {
1981       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1982       // Emit constant strings specially.
1983       unsigned NumElts = Str->getNumElements();
1984       // If this is a null-terminated string, use the denser CSTRING encoding.
1985       if (Str->isCString()) {
1986         Code = bitc::CST_CODE_CSTRING;
1987         --NumElts; // Don't encode the null, which isn't allowed by char6.
1988       } else {
1989         Code = bitc::CST_CODE_STRING;
1990         AbbrevToUse = String8Abbrev;
1991       }
1992       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1993       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1994       for (unsigned i = 0; i != NumElts; ++i) {
1995         unsigned char V = Str->getElementAsInteger(i);
1996         Record.push_back(V);
1997         isCStr7 &= (V & 128) == 0;
1998         if (isCStrChar6)
1999           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2000       }
2001 
2002       if (isCStrChar6)
2003         AbbrevToUse = CString6Abbrev;
2004       else if (isCStr7)
2005         AbbrevToUse = CString7Abbrev;
2006     } else if (const ConstantDataSequential *CDS =
2007                    dyn_cast<ConstantDataSequential>(C)) {
2008       Code = bitc::CST_CODE_DATA;
2009       Type *EltTy = CDS->getType()->getArrayElementType();
2010       if (isa<IntegerType>(EltTy)) {
2011         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2012           Record.push_back(CDS->getElementAsInteger(i));
2013       } else if (EltTy->isFloatTy()) {
2014         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2015           union {
2016             float F;
2017             uint32_t I;
2018           };
2019           F = CDS->getElementAsFloat(i);
2020           Record.push_back(I);
2021         }
2022       } else {
2023         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2024         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2025           union {
2026             double F;
2027             uint64_t I;
2028           };
2029           F = CDS->getElementAsDouble(i);
2030           Record.push_back(I);
2031         }
2032       }
2033     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2034                isa<ConstantVector>(C)) {
2035       Code = bitc::CST_CODE_AGGREGATE;
2036       for (const Value *Op : C->operands())
2037         Record.push_back(VE.getValueID(Op));
2038       AbbrevToUse = AggregateAbbrev;
2039     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2040       switch (CE->getOpcode()) {
2041       default:
2042         if (Instruction::isCast(CE->getOpcode())) {
2043           Code = bitc::CST_CODE_CE_CAST;
2044           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2045           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2046           Record.push_back(VE.getValueID(C->getOperand(0)));
2047           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2048         } else {
2049           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2050           Code = bitc::CST_CODE_CE_BINOP;
2051           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2052           Record.push_back(VE.getValueID(C->getOperand(0)));
2053           Record.push_back(VE.getValueID(C->getOperand(1)));
2054           uint64_t Flags = getOptimizationFlags(CE);
2055           if (Flags != 0)
2056             Record.push_back(Flags);
2057         }
2058         break;
2059       case Instruction::GetElementPtr: {
2060         Code = bitc::CST_CODE_CE_GEP;
2061         const auto *GO = cast<GEPOperator>(C);
2062         if (GO->isInBounds())
2063           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2064         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2065         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2066           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2067           Record.push_back(VE.getValueID(C->getOperand(i)));
2068         }
2069         break;
2070       }
2071       case Instruction::Select:
2072         Code = bitc::CST_CODE_CE_SELECT;
2073         Record.push_back(VE.getValueID(C->getOperand(0)));
2074         Record.push_back(VE.getValueID(C->getOperand(1)));
2075         Record.push_back(VE.getValueID(C->getOperand(2)));
2076         break;
2077       case Instruction::ExtractElement:
2078         Code = bitc::CST_CODE_CE_EXTRACTELT;
2079         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2080         Record.push_back(VE.getValueID(C->getOperand(0)));
2081         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2082         Record.push_back(VE.getValueID(C->getOperand(1)));
2083         break;
2084       case Instruction::InsertElement:
2085         Code = bitc::CST_CODE_CE_INSERTELT;
2086         Record.push_back(VE.getValueID(C->getOperand(0)));
2087         Record.push_back(VE.getValueID(C->getOperand(1)));
2088         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2089         Record.push_back(VE.getValueID(C->getOperand(2)));
2090         break;
2091       case Instruction::ShuffleVector:
2092         // If the return type and argument types are the same, this is a
2093         // standard shufflevector instruction.  If the types are different,
2094         // then the shuffle is widening or truncating the input vectors, and
2095         // the argument type must also be encoded.
2096         if (C->getType() == C->getOperand(0)->getType()) {
2097           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2098         } else {
2099           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2100           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2101         }
2102         Record.push_back(VE.getValueID(C->getOperand(0)));
2103         Record.push_back(VE.getValueID(C->getOperand(1)));
2104         Record.push_back(VE.getValueID(C->getOperand(2)));
2105         break;
2106       case Instruction::ICmp:
2107       case Instruction::FCmp:
2108         Code = bitc::CST_CODE_CE_CMP;
2109         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2110         Record.push_back(VE.getValueID(C->getOperand(0)));
2111         Record.push_back(VE.getValueID(C->getOperand(1)));
2112         Record.push_back(CE->getPredicate());
2113         break;
2114       }
2115     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2116       Code = bitc::CST_CODE_BLOCKADDRESS;
2117       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2118       Record.push_back(VE.getValueID(BA->getFunction()));
2119       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2120     } else {
2121 #ifndef NDEBUG
2122       C->dump();
2123 #endif
2124       llvm_unreachable("Unknown constant!");
2125     }
2126     Stream.EmitRecord(Code, Record, AbbrevToUse);
2127     Record.clear();
2128   }
2129 
2130   Stream.ExitBlock();
2131 }
2132 
2133 void DXILBitcodeWriter::writeModuleConstants() {
2134   const ValueEnumerator::ValueList &Vals = VE.getValues();
2135 
2136   // Find the first constant to emit, which is the first non-globalvalue value.
2137   // We know globalvalues have been emitted by WriteModuleInfo.
2138   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2139     if (!isa<GlobalValue>(Vals[i].first)) {
2140       writeConstants(i, Vals.size(), true);
2141       return;
2142     }
2143   }
2144 }
2145 
2146 /// pushValueAndType - The file has to encode both the value and type id for
2147 /// many values, because we need to know what type to create for forward
2148 /// references.  However, most operands are not forward references, so this type
2149 /// field is not needed.
2150 ///
2151 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2152 /// instruction ID, then it is a forward reference, and it also includes the
2153 /// type ID.  The value ID that is written is encoded relative to the InstID.
2154 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2155                                          SmallVectorImpl<unsigned> &Vals) {
2156   unsigned ValID = VE.getValueID(V);
2157   // Make encoding relative to the InstID.
2158   Vals.push_back(InstID - ValID);
2159   if (ValID >= InstID) {
2160     Vals.push_back(VE.getTypeID(V->getType()));
2161     return true;
2162   }
2163   return false;
2164 }
2165 
2166 /// pushValue - Like pushValueAndType, but where the type of the value is
2167 /// omitted (perhaps it was already encoded in an earlier operand).
2168 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2169                                   SmallVectorImpl<unsigned> &Vals) {
2170   unsigned ValID = VE.getValueID(V);
2171   Vals.push_back(InstID - ValID);
2172 }
2173 
2174 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2175                                         SmallVectorImpl<uint64_t> &Vals) {
2176   unsigned ValID = VE.getValueID(V);
2177   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2178   emitSignedInt64(Vals, diff);
2179 }
2180 
2181 /// WriteInstruction - Emit an instruction
2182 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2183                                          SmallVectorImpl<unsigned> &Vals) {
2184   unsigned Code = 0;
2185   unsigned AbbrevToUse = 0;
2186   VE.setInstructionID(&I);
2187   switch (I.getOpcode()) {
2188   default:
2189     if (Instruction::isCast(I.getOpcode())) {
2190       Code = bitc::FUNC_CODE_INST_CAST;
2191       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2192         AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2193       Vals.push_back(VE.getTypeID(I.getType()));
2194       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2195     } else {
2196       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2197       Code = bitc::FUNC_CODE_INST_BINOP;
2198       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2199         AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2200       pushValue(I.getOperand(1), InstID, Vals);
2201       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2202       uint64_t Flags = getOptimizationFlags(&I);
2203       if (Flags != 0) {
2204         if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2205           AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2206         Vals.push_back(Flags);
2207       }
2208     }
2209     break;
2210 
2211   case Instruction::GetElementPtr: {
2212     Code = bitc::FUNC_CODE_INST_GEP;
2213     AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2214     auto &GEPInst = cast<GetElementPtrInst>(I);
2215     Vals.push_back(GEPInst.isInBounds());
2216     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2217     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2218       pushValueAndType(I.getOperand(i), InstID, Vals);
2219     break;
2220   }
2221   case Instruction::ExtractValue: {
2222     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2223     pushValueAndType(I.getOperand(0), InstID, Vals);
2224     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2225     Vals.append(EVI->idx_begin(), EVI->idx_end());
2226     break;
2227   }
2228   case Instruction::InsertValue: {
2229     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2230     pushValueAndType(I.getOperand(0), InstID, Vals);
2231     pushValueAndType(I.getOperand(1), InstID, Vals);
2232     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2233     Vals.append(IVI->idx_begin(), IVI->idx_end());
2234     break;
2235   }
2236   case Instruction::Select:
2237     Code = bitc::FUNC_CODE_INST_VSELECT;
2238     pushValueAndType(I.getOperand(1), InstID, Vals);
2239     pushValue(I.getOperand(2), InstID, Vals);
2240     pushValueAndType(I.getOperand(0), InstID, Vals);
2241     break;
2242   case Instruction::ExtractElement:
2243     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2244     pushValueAndType(I.getOperand(0), InstID, Vals);
2245     pushValueAndType(I.getOperand(1), InstID, Vals);
2246     break;
2247   case Instruction::InsertElement:
2248     Code = bitc::FUNC_CODE_INST_INSERTELT;
2249     pushValueAndType(I.getOperand(0), InstID, Vals);
2250     pushValue(I.getOperand(1), InstID, Vals);
2251     pushValueAndType(I.getOperand(2), InstID, Vals);
2252     break;
2253   case Instruction::ShuffleVector:
2254     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2255     pushValueAndType(I.getOperand(0), InstID, Vals);
2256     pushValue(I.getOperand(1), InstID, Vals);
2257     pushValue(I.getOperand(2), InstID, Vals);
2258     break;
2259   case Instruction::ICmp:
2260   case Instruction::FCmp: {
2261     // compare returning Int1Ty or vector of Int1Ty
2262     Code = bitc::FUNC_CODE_INST_CMP2;
2263     pushValueAndType(I.getOperand(0), InstID, Vals);
2264     pushValue(I.getOperand(1), InstID, Vals);
2265     Vals.push_back(cast<CmpInst>(I).getPredicate());
2266     uint64_t Flags = getOptimizationFlags(&I);
2267     if (Flags != 0)
2268       Vals.push_back(Flags);
2269     break;
2270   }
2271 
2272   case Instruction::Ret: {
2273     Code = bitc::FUNC_CODE_INST_RET;
2274     unsigned NumOperands = I.getNumOperands();
2275     if (NumOperands == 0)
2276       AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2277     else if (NumOperands == 1) {
2278       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2279         AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2280     } else {
2281       for (unsigned i = 0, e = NumOperands; i != e; ++i)
2282         pushValueAndType(I.getOperand(i), InstID, Vals);
2283     }
2284   } break;
2285   case Instruction::Br: {
2286     Code = bitc::FUNC_CODE_INST_BR;
2287     const BranchInst &II = cast<BranchInst>(I);
2288     Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2289     if (II.isConditional()) {
2290       Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2291       pushValue(II.getCondition(), InstID, Vals);
2292     }
2293   } break;
2294   case Instruction::Switch: {
2295     Code = bitc::FUNC_CODE_INST_SWITCH;
2296     const SwitchInst &SI = cast<SwitchInst>(I);
2297     Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2298     pushValue(SI.getCondition(), InstID, Vals);
2299     Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2300     for (auto Case : SI.cases()) {
2301       Vals.push_back(VE.getValueID(Case.getCaseValue()));
2302       Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2303     }
2304   } break;
2305   case Instruction::IndirectBr:
2306     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2307     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2308     // Encode the address operand as relative, but not the basic blocks.
2309     pushValue(I.getOperand(0), InstID, Vals);
2310     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2311       Vals.push_back(VE.getValueID(I.getOperand(i)));
2312     break;
2313 
2314   case Instruction::Invoke: {
2315     const InvokeInst *II = cast<InvokeInst>(&I);
2316     const Value *Callee = II->getCalledOperand();
2317     FunctionType *FTy = II->getFunctionType();
2318     Code = bitc::FUNC_CODE_INST_INVOKE;
2319 
2320     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2321     Vals.push_back(II->getCallingConv() | 1 << 13);
2322     Vals.push_back(VE.getValueID(II->getNormalDest()));
2323     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2324     Vals.push_back(VE.getTypeID(FTy));
2325     pushValueAndType(Callee, InstID, Vals);
2326 
2327     // Emit value #'s for the fixed parameters.
2328     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2329       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2330 
2331     // Emit type/value pairs for varargs params.
2332     if (FTy->isVarArg()) {
2333       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2334            ++i)
2335         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2336     }
2337     break;
2338   }
2339   case Instruction::Resume:
2340     Code = bitc::FUNC_CODE_INST_RESUME;
2341     pushValueAndType(I.getOperand(0), InstID, Vals);
2342     break;
2343   case Instruction::Unreachable:
2344     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2345     AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2346     break;
2347 
2348   case Instruction::PHI: {
2349     const PHINode &PN = cast<PHINode>(I);
2350     Code = bitc::FUNC_CODE_INST_PHI;
2351     // With the newer instruction encoding, forward references could give
2352     // negative valued IDs.  This is most common for PHIs, so we use
2353     // signed VBRs.
2354     SmallVector<uint64_t, 128> Vals64;
2355     Vals64.push_back(VE.getTypeID(PN.getType()));
2356     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2357       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2358       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2359     }
2360     // Emit a Vals64 vector and exit.
2361     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2362     Vals64.clear();
2363     return;
2364   }
2365 
2366   case Instruction::LandingPad: {
2367     const LandingPadInst &LP = cast<LandingPadInst>(I);
2368     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2369     Vals.push_back(VE.getTypeID(LP.getType()));
2370     Vals.push_back(LP.isCleanup());
2371     Vals.push_back(LP.getNumClauses());
2372     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2373       if (LP.isCatch(I))
2374         Vals.push_back(LandingPadInst::Catch);
2375       else
2376         Vals.push_back(LandingPadInst::Filter);
2377       pushValueAndType(LP.getClause(I), InstID, Vals);
2378     }
2379     break;
2380   }
2381 
2382   case Instruction::Alloca: {
2383     Code = bitc::FUNC_CODE_INST_ALLOCA;
2384     const AllocaInst &AI = cast<AllocaInst>(I);
2385     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2386     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2387     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2388     using APV = AllocaPackedValues;
2389     unsigned Record = 0;
2390     unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
2391     Bitfield::set<APV::AlignLower>(
2392         Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
2393     Bitfield::set<APV::AlignUpper>(Record,
2394                                    EncodedAlign >> APV::AlignLower::Bits);
2395     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
2396     Vals.push_back(Record);
2397     break;
2398   }
2399 
2400   case Instruction::Load:
2401     if (cast<LoadInst>(I).isAtomic()) {
2402       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2403       pushValueAndType(I.getOperand(0), InstID, Vals);
2404     } else {
2405       Code = bitc::FUNC_CODE_INST_LOAD;
2406       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2407         AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2408     }
2409     Vals.push_back(VE.getTypeID(I.getType()));
2410     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment()) + 1);
2411     Vals.push_back(cast<LoadInst>(I).isVolatile());
2412     if (cast<LoadInst>(I).isAtomic()) {
2413       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2414       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2415     }
2416     break;
2417   case Instruction::Store:
2418     if (cast<StoreInst>(I).isAtomic())
2419       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2420     else
2421       Code = bitc::FUNC_CODE_INST_STORE;
2422     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2423     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2424     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment()) + 1);
2425     Vals.push_back(cast<StoreInst>(I).isVolatile());
2426     if (cast<StoreInst>(I).isAtomic()) {
2427       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2428       Vals.push_back(
2429           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2430     }
2431     break;
2432   case Instruction::AtomicCmpXchg:
2433     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2434     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2435     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2436     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2437     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2438     Vals.push_back(
2439         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2440     Vals.push_back(
2441         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2442     Vals.push_back(
2443         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2444     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2445     break;
2446   case Instruction::AtomicRMW:
2447     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2448     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2449     pushValue(I.getOperand(1), InstID, Vals);        // val.
2450     Vals.push_back(
2451         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2452     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2453     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2454     Vals.push_back(
2455         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2456     break;
2457   case Instruction::Fence:
2458     Code = bitc::FUNC_CODE_INST_FENCE;
2459     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2460     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2461     break;
2462   case Instruction::Call: {
2463     const CallInst &CI = cast<CallInst>(I);
2464     FunctionType *FTy = CI.getFunctionType();
2465 
2466     Code = bitc::FUNC_CODE_INST_CALL;
2467 
2468     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2469     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2470                    unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2471     Vals.push_back(VE.getTypeID(FTy));
2472     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2473 
2474     // Emit value #'s for the fixed parameters.
2475     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2476       // Check for labels (can happen with asm labels).
2477       if (FTy->getParamType(i)->isLabelTy())
2478         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2479       else
2480         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2481     }
2482 
2483     // Emit type/value pairs for varargs params.
2484     if (FTy->isVarArg()) {
2485       for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2486         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2487     }
2488     break;
2489   }
2490   case Instruction::VAArg:
2491     Code = bitc::FUNC_CODE_INST_VAARG;
2492     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
2493     pushValue(I.getOperand(0), InstID, Vals);                 // valist.
2494     Vals.push_back(VE.getTypeID(I.getType()));                // restype.
2495     break;
2496   }
2497 
2498   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2499   Vals.clear();
2500 }
2501 
2502 // Emit names for globals/functions etc.
2503 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2504     const ValueSymbolTable &VST) {
2505   if (VST.empty())
2506     return;
2507   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2508 
2509   SmallVector<unsigned, 64> NameVals;
2510 
2511   // HLSL Change
2512   // Read the named values from a sorted list instead of the original list
2513   // to ensure the binary is the same no matter what values ever existed.
2514   SmallVector<const ValueName *, 16> SortedTable;
2515 
2516   for (auto &VI : VST) {
2517     SortedTable.push_back(VI.second->getValueName());
2518   }
2519   // The keys are unique, so there shouldn't be stability issues.
2520   std::sort(SortedTable.begin(), SortedTable.end(),
2521             [](const ValueName *A, const ValueName *B) {
2522               return A->first() < B->first();
2523             });
2524 
2525   for (const ValueName *SI : SortedTable) {
2526     auto &Name = *SI;
2527 
2528     // Figure out the encoding to use for the name.
2529     bool is7Bit = true;
2530     bool isChar6 = true;
2531     for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2532          C != E; ++C) {
2533       if (isChar6)
2534         isChar6 = BitCodeAbbrevOp::isChar6(*C);
2535       if ((unsigned char)*C & 128) {
2536         is7Bit = false;
2537         break; // don't bother scanning the rest.
2538       }
2539     }
2540 
2541     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2542 
2543     // VST_ENTRY:   [valueid, namechar x N]
2544     // VST_BBENTRY: [bbid, namechar x N]
2545     unsigned Code;
2546     if (isa<BasicBlock>(SI->getValue())) {
2547       Code = bitc::VST_CODE_BBENTRY;
2548       if (isChar6)
2549         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2550     } else {
2551       Code = bitc::VST_CODE_ENTRY;
2552       if (isChar6)
2553         AbbrevToUse = VST_ENTRY_6_ABBREV;
2554       else if (is7Bit)
2555         AbbrevToUse = VST_ENTRY_7_ABBREV;
2556     }
2557 
2558     NameVals.push_back(VE.getValueID(SI->getValue()));
2559     for (const char *P = Name.getKeyData(),
2560                     *E = Name.getKeyData() + Name.getKeyLength();
2561          P != E; ++P)
2562       NameVals.push_back((unsigned char)*P);
2563 
2564     // Emit the finished record.
2565     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2566     NameVals.clear();
2567   }
2568   Stream.ExitBlock();
2569 }
2570 
2571 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
2572   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2573   unsigned Code;
2574   if (isa<BasicBlock>(Order.V))
2575     Code = bitc::USELIST_CODE_BB;
2576   else
2577     Code = bitc::USELIST_CODE_DEFAULT;
2578 
2579   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2580   Record.push_back(VE.getValueID(Order.V));
2581   Stream.EmitRecord(Code, Record);
2582 }
2583 
2584 void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
2585   assert(VE.shouldPreserveUseListOrder() &&
2586          "Expected to be preserving use-list order");
2587 
2588   auto hasMore = [&]() {
2589     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2590   };
2591   if (!hasMore())
2592     // Nothing to do.
2593     return;
2594 
2595   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2596   while (hasMore()) {
2597     writeUseList(std::move(VE.UseListOrders.back()));
2598     VE.UseListOrders.pop_back();
2599   }
2600   Stream.ExitBlock();
2601 }
2602 
2603 /// Emit a function body to the module stream.
2604 void DXILBitcodeWriter::writeFunction(const Function &F) {
2605   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2606   VE.incorporateFunction(F);
2607 
2608   SmallVector<unsigned, 64> Vals;
2609 
2610   // Emit the number of basic blocks, so the reader can create them ahead of
2611   // time.
2612   Vals.push_back(VE.getBasicBlocks().size());
2613   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2614   Vals.clear();
2615 
2616   // If there are function-local constants, emit them now.
2617   unsigned CstStart, CstEnd;
2618   VE.getFunctionConstantRange(CstStart, CstEnd);
2619   writeConstants(CstStart, CstEnd, false);
2620 
2621   // If there is function-local metadata, emit it now.
2622   writeFunctionMetadata(F);
2623 
2624   // Keep a running idea of what the instruction ID is.
2625   unsigned InstID = CstEnd;
2626 
2627   bool NeedsMetadataAttachment = F.hasMetadata();
2628 
2629   DILocation *LastDL = nullptr;
2630 
2631   // Finally, emit all the instructions, in order.
2632   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2633     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2634          ++I) {
2635       writeInstruction(*I, InstID, Vals);
2636 
2637       if (!I->getType()->isVoidTy())
2638         ++InstID;
2639 
2640       // If the instruction has metadata, write a metadata attachment later.
2641       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2642 
2643       // If the instruction has a debug location, emit it.
2644       DILocation *DL = I->getDebugLoc();
2645       if (!DL)
2646         continue;
2647 
2648       if (DL == LastDL) {
2649         // Just repeat the same debug loc as last time.
2650         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2651         continue;
2652       }
2653 
2654       Vals.push_back(DL->getLine());
2655       Vals.push_back(DL->getColumn());
2656       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2657       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2658       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2659       Vals.clear();
2660 
2661       LastDL = DL;
2662     }
2663 
2664   // Emit names for all the instructions etc.
2665   if (auto *Symtab = F.getValueSymbolTable())
2666     writeFunctionLevelValueSymbolTable(*Symtab);
2667 
2668   if (NeedsMetadataAttachment)
2669     writeFunctionMetadataAttachment(F);
2670   if (VE.shouldPreserveUseListOrder())
2671     writeUseListBlock(&F);
2672   VE.purgeFunction();
2673   Stream.ExitBlock();
2674 }
2675 
2676 // Emit blockinfo, which defines the standard abbreviations etc.
2677 void DXILBitcodeWriter::writeBlockInfo() {
2678   // We only want to emit block info records for blocks that have multiple
2679   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2680   // Other blocks can define their abbrevs inline.
2681   Stream.EnterBlockInfoBlock();
2682 
2683   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2684     auto Abbv = std::make_shared<BitCodeAbbrev>();
2685     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2686     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2687     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2688     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2689     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2690                                    std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2691       assert(false && "Unexpected abbrev ordering!");
2692   }
2693 
2694   { // 7-bit fixed width VST_ENTRY strings.
2695     auto Abbv = std::make_shared<BitCodeAbbrev>();
2696     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2697     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2698     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2699     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2700     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2701                                    std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2702       assert(false && "Unexpected abbrev ordering!");
2703   }
2704   { // 6-bit char6 VST_ENTRY strings.
2705     auto Abbv = std::make_shared<BitCodeAbbrev>();
2706     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2707     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2708     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2709     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2710     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2711                                    std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2712       assert(false && "Unexpected abbrev ordering!");
2713   }
2714   { // 6-bit char6 VST_BBENTRY strings.
2715     auto Abbv = std::make_shared<BitCodeAbbrev>();
2716     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2717     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2718     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2719     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2720     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2721                                    std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2722       assert(false && "Unexpected abbrev ordering!");
2723   }
2724 
2725   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2726     auto Abbv = std::make_shared<BitCodeAbbrev>();
2727     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2728     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2729                               VE.computeBitsRequiredForTypeIndicies()));
2730     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2731         CONSTANTS_SETTYPE_ABBREV)
2732       assert(false && "Unexpected abbrev ordering!");
2733   }
2734 
2735   { // INTEGER abbrev for CONSTANTS_BLOCK.
2736     auto Abbv = std::make_shared<BitCodeAbbrev>();
2737     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2738     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2739     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2740         CONSTANTS_INTEGER_ABBREV)
2741       assert(false && "Unexpected abbrev ordering!");
2742   }
2743 
2744   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2745     auto Abbv = std::make_shared<BitCodeAbbrev>();
2746     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2747     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2748     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid
2749                               VE.computeBitsRequiredForTypeIndicies()));
2750     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2751 
2752     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2753         CONSTANTS_CE_CAST_Abbrev)
2754       assert(false && "Unexpected abbrev ordering!");
2755   }
2756   { // NULL abbrev for CONSTANTS_BLOCK.
2757     auto Abbv = std::make_shared<BitCodeAbbrev>();
2758     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2759     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2760         CONSTANTS_NULL_Abbrev)
2761       assert(false && "Unexpected abbrev ordering!");
2762   }
2763 
2764   // FIXME: This should only use space for first class types!
2765 
2766   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2767     auto Abbv = std::make_shared<BitCodeAbbrev>();
2768     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2769     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2770     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2771                               VE.computeBitsRequiredForTypeIndicies()));
2772     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align
2773     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2774     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2775         (unsigned)FUNCTION_INST_LOAD_ABBREV)
2776       assert(false && "Unexpected abbrev ordering!");
2777   }
2778   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2779     auto Abbv = std::make_shared<BitCodeAbbrev>();
2780     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2781     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2784     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2785         (unsigned)FUNCTION_INST_BINOP_ABBREV)
2786       assert(false && "Unexpected abbrev ordering!");
2787   }
2788   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2789     auto Abbv = std::make_shared<BitCodeAbbrev>();
2790     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2791     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS
2792     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS
2793     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2795     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2796         (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2797       assert(false && "Unexpected abbrev ordering!");
2798   }
2799   { // INST_CAST abbrev for FUNCTION_BLOCK.
2800     auto Abbv = std::make_shared<BitCodeAbbrev>();
2801     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2804                               VE.computeBitsRequiredForTypeIndicies()));
2805     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2806     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2807         (unsigned)FUNCTION_INST_CAST_ABBREV)
2808       assert(false && "Unexpected abbrev ordering!");
2809   }
2810 
2811   { // INST_RET abbrev for FUNCTION_BLOCK.
2812     auto Abbv = std::make_shared<BitCodeAbbrev>();
2813     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2814     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2815         (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2816       assert(false && "Unexpected abbrev ordering!");
2817   }
2818   { // INST_RET abbrev for FUNCTION_BLOCK.
2819     auto Abbv = std::make_shared<BitCodeAbbrev>();
2820     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2821     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2822     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2823         (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2824       assert(false && "Unexpected abbrev ordering!");
2825   }
2826   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2827     auto Abbv = std::make_shared<BitCodeAbbrev>();
2828     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2829     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2830         (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2831       assert(false && "Unexpected abbrev ordering!");
2832   }
2833   {
2834     auto Abbv = std::make_shared<BitCodeAbbrev>();
2835     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2836     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2837     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2838                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2840     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2841     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2842         (unsigned)FUNCTION_INST_GEP_ABBREV)
2843       assert(false && "Unexpected abbrev ordering!");
2844   }
2845 
2846   Stream.ExitBlock();
2847 }
2848 
2849 void DXILBitcodeWriter::writeModuleVersion() {
2850   // VERSION: [version#]
2851   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2852 }
2853 
2854 /// WriteModule - Emit the specified module to the bitstream.
2855 void DXILBitcodeWriter::write() {
2856   // The identification block is new since llvm-3.7, but the old bitcode reader
2857   // will skip it.
2858   // writeIdentificationBlock(Stream);
2859 
2860   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2861 
2862   // It is redundant to fully-specify this here, but nice to make it explicit
2863   // so that it is clear the DXIL module version is different.
2864   DXILBitcodeWriter::writeModuleVersion();
2865 
2866   // Emit blockinfo, which defines the standard abbreviations etc.
2867   writeBlockInfo();
2868 
2869   // Emit information about attribute groups.
2870   writeAttributeGroupTable();
2871 
2872   // Emit information about parameter attributes.
2873   writeAttributeTable();
2874 
2875   // Emit information describing all of the types in the module.
2876   writeTypeTable();
2877 
2878   writeComdats();
2879 
2880   // Emit top-level description of module, including target triple, inline asm,
2881   // descriptors for global variables, and function prototype info.
2882   writeModuleInfo();
2883 
2884   // Emit constants.
2885   writeModuleConstants();
2886 
2887   // Emit metadata.
2888   writeModuleMetadataKinds();
2889 
2890   // Emit metadata.
2891   writeModuleMetadata();
2892 
2893   // Emit names for globals/functions etc.
2894   // DXIL uses the same format for module-level value symbol table as for the
2895   // function level table.
2896   writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2897 
2898   // Emit module-level use-lists.
2899   if (VE.shouldPreserveUseListOrder())
2900     writeUseListBlock(nullptr);
2901 
2902   // Emit function bodies.
2903   for (const Function &F : M)
2904     if (!F.isDeclaration())
2905       writeFunction(F);
2906 
2907   Stream.ExitBlock();
2908 }
2909