1 //===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 // Loading constants inline is expensive on CSKY and it's in general better 11 // to place the constant nearby in code space and then it can be loaded with a 12 // simple 16/32 bit load instruction like lrw. 13 // 14 // The constants can be not just numbers but addresses of functions and labels. 15 // This can be particularly helpful in static relocation mode for embedded 16 // non-linux targets. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CSKY.h" 21 #include "CSKYConstantPoolValue.h" 22 #include "CSKYMachineFunctionInfo.h" 23 #include "CSKYSubtarget.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "CSKY-constant-islands" 60 61 STATISTIC(NumCPEs, "Number of constpool entries"); 62 STATISTIC(NumSplit, "Number of uncond branches inserted"); 63 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 64 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 65 66 namespace { 67 68 using Iter = MachineBasicBlock::iterator; 69 using ReverseIter = MachineBasicBlock::reverse_iterator; 70 71 /// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY 72 /// requires constant pool entries to be scattered among the instructions 73 /// inside a function. To do this, it completely ignores the normal LLVM 74 /// constant pool; instead, it places constants wherever it feels like with 75 /// special instructions. 76 /// 77 /// The terminology used in this pass includes: 78 /// Islands - Clumps of constants placed in the function. 79 /// Water - Potential places where an island could be formed. 80 /// CPE - A constant pool entry that has been placed somewhere, which 81 /// tracks a list of users. 82 83 class CSKYConstantIslands : public MachineFunctionPass { 84 /// BasicBlockInfo - Information about the offset and size of a single 85 /// basic block. 86 struct BasicBlockInfo { 87 /// Offset - Distance from the beginning of the function to the beginning 88 /// of this basic block. 89 /// 90 /// Offsets are computed assuming worst case padding before an aligned 91 /// block. This means that subtracting basic block offsets always gives a 92 /// conservative estimate of the real distance which may be smaller. 93 /// 94 /// Because worst case padding is used, the computed offset of an aligned 95 /// block may not actually be aligned. 96 unsigned Offset = 0; 97 98 /// Size - Size of the basic block in bytes. If the block contains 99 /// inline assembly, this is a worst case estimate. 100 /// 101 /// The size does not include any alignment padding whether from the 102 /// beginning of the block, or from an aligned jump table at the end. 103 unsigned Size = 0; 104 105 BasicBlockInfo() = default; 106 107 unsigned postOffset() const { return Offset + Size; } 108 }; 109 110 std::vector<BasicBlockInfo> BBInfo; 111 112 /// WaterList - A sorted list of basic blocks where islands could be placed 113 /// (i.e. blocks that don't fall through to the following block, due 114 /// to a return, unreachable, or unconditional branch). 115 std::vector<MachineBasicBlock *> WaterList; 116 117 /// NewWaterList - The subset of WaterList that was created since the 118 /// previous iteration by inserting unconditional branches. 119 SmallSet<MachineBasicBlock *, 4> NewWaterList; 120 121 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 122 123 /// CPUser - One user of a constant pool, keeping the machine instruction 124 /// pointer, the constant pool being referenced, and the max displacement 125 /// allowed from the instruction to the CP. The HighWaterMark records the 126 /// highest basic block where a new CPEntry can be placed. To ensure this 127 /// pass terminates, the CP entries are initially placed at the end of the 128 /// function and then move monotonically to lower addresses. The 129 /// exception to this rule is when the current CP entry for a particular 130 /// CPUser is out of range, but there is another CP entry for the same 131 /// constant value in range. We want to use the existing in-range CP 132 /// entry, but if it later moves out of range, the search for new water 133 /// should resume where it left off. The HighWaterMark is used to record 134 /// that point. 135 struct CPUser { 136 MachineInstr *MI; 137 MachineInstr *CPEMI; 138 MachineBasicBlock *HighWaterMark; 139 140 private: 141 unsigned MaxDisp; 142 143 public: 144 bool NegOk; 145 146 CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg) 147 : MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) { 148 HighWaterMark = CPEMI->getParent(); 149 } 150 151 /// getMaxDisp - Returns the maximum displacement supported by MI. 152 unsigned getMaxDisp() const { return MaxDisp - 16; } 153 154 void setMaxDisp(unsigned Val) { MaxDisp = Val; } 155 }; 156 157 /// CPUsers - Keep track of all of the machine instructions that use various 158 /// constant pools and their max displacement. 159 std::vector<CPUser> CPUsers; 160 161 /// CPEntry - One per constant pool entry, keeping the machine instruction 162 /// pointer, the constpool index, and the number of CPUser's which 163 /// reference this entry. 164 struct CPEntry { 165 MachineInstr *CPEMI; 166 unsigned CPI; 167 unsigned RefCount; 168 169 CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0) 170 : CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {} 171 }; 172 173 /// CPEntries - Keep track of all of the constant pool entry machine 174 /// instructions. For each original constpool index (i.e. those that 175 /// existed upon entry to this pass), it keeps a vector of entries. 176 /// Original elements are cloned as we go along; the clones are 177 /// put in the vector of the original element, but have distinct CPIs. 178 std::vector<std::vector<CPEntry>> CPEntries; 179 180 /// ImmBranch - One per immediate branch, keeping the machine instruction 181 /// pointer, conditional or unconditional, the max displacement, 182 /// and (if isCond is true) the corresponding unconditional branch 183 /// opcode. 184 struct ImmBranch { 185 MachineInstr *MI; 186 unsigned MaxDisp : 31; 187 bool IsCond : 1; 188 int UncondBr; 189 190 ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr) 191 : MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {} 192 }; 193 194 /// ImmBranches - Keep track of all the immediate branch instructions. 195 /// 196 std::vector<ImmBranch> ImmBranches; 197 198 const CSKYSubtarget *STI = nullptr; 199 const CSKYInstrInfo *TII; 200 CSKYMachineFunctionInfo *MFI; 201 MachineFunction *MF = nullptr; 202 MachineConstantPool *MCP = nullptr; 203 204 unsigned PICLabelUId; 205 206 void initPICLabelUId(unsigned UId) { PICLabelUId = UId; } 207 208 unsigned createPICLabelUId() { return PICLabelUId++; } 209 210 public: 211 static char ID; 212 213 CSKYConstantIslands() : MachineFunctionPass(ID) {} 214 215 StringRef getPassName() const override { return "CSKY Constant Islands"; } 216 217 bool runOnMachineFunction(MachineFunction &F) override; 218 219 void getAnalysisUsage(AnalysisUsage &AU) const override { 220 AU.addRequired<MachineDominatorTree>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 MachineFunctionProperties getRequiredProperties() const override { 225 return MachineFunctionProperties().set( 226 MachineFunctionProperties::Property::NoVRegs); 227 } 228 229 void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs); 230 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 231 Align getCPEAlign(const MachineInstr &CPEMI); 232 void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs); 233 unsigned getOffsetOf(MachineInstr *MI) const; 234 unsigned getUserOffset(CPUser &) const; 235 void dumpBBs(); 236 237 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp, 238 bool NegativeOK); 239 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 240 const CPUser &U); 241 242 void computeBlockSize(MachineBasicBlock *MBB); 243 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); 244 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 245 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 246 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI); 247 int findInRangeCPEntry(CPUser &U, unsigned UserOffset); 248 bool findAvailableWater(CPUser &U, unsigned UserOffset, 249 water_iterator &WaterIter); 250 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 251 MachineBasicBlock *&NewMBB); 252 bool handleConstantPoolUser(unsigned CPUserIndex); 253 void removeDeadCPEMI(MachineInstr *CPEMI); 254 bool removeUnusedCPEntries(); 255 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 256 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 257 bool DoDump = false); 258 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U, 259 unsigned &Growth); 260 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 261 bool fixupImmediateBr(ImmBranch &Br); 262 bool fixupConditionalBr(ImmBranch &Br); 263 bool fixupUnconditionalBr(ImmBranch &Br); 264 }; 265 } // end anonymous namespace 266 267 char CSKYConstantIslands::ID = 0; 268 269 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 270 unsigned TrialOffset, 271 const CPUser &U) { 272 return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk); 273 } 274 275 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 276 /// print block size and offset information - debugging 277 LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() { 278 for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) { 279 const BasicBlockInfo &BBI = BBInfo[J]; 280 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 281 << format(" size=%#x\n", BBInfo[J].Size); 282 } 283 } 284 #endif 285 286 bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) { 287 MF = &Mf; 288 MCP = Mf.getConstantPool(); 289 STI = &static_cast<const CSKYSubtarget &>(Mf.getSubtarget()); 290 291 LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: " 292 << MCP->getConstants().size() << " CP entries, aligned to " 293 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 294 295 TII = STI->getInstrInfo(); 296 MFI = MF->getInfo<CSKYMachineFunctionInfo>(); 297 298 // This pass invalidates liveness information when it splits basic blocks. 299 MF->getRegInfo().invalidateLiveness(); 300 301 // Renumber all of the machine basic blocks in the function, guaranteeing that 302 // the numbers agree with the position of the block in the function. 303 MF->RenumberBlocks(); 304 305 bool MadeChange = false; 306 307 // Perform the initial placement of the constant pool entries. To start with, 308 // we put them all at the end of the function. 309 std::vector<MachineInstr *> CPEMIs; 310 if (!MCP->isEmpty()) 311 doInitialPlacement(CPEMIs); 312 313 /// The next UID to take is the first unused one. 314 initPICLabelUId(CPEMIs.size()); 315 316 // Do the initial scan of the function, building up information about the 317 // sizes of each block, the location of all the water, and finding all of the 318 // constant pool users. 319 initializeFunctionInfo(CPEMIs); 320 CPEMIs.clear(); 321 LLVM_DEBUG(dumpBBs()); 322 323 /// Remove dead constant pool entries. 324 MadeChange |= removeUnusedCPEntries(); 325 326 // Iteratively place constant pool entries and fix up branches until there 327 // is no change. 328 unsigned NoCPIters = 0, NoBRIters = 0; 329 (void)NoBRIters; 330 while (true) { 331 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 332 bool CPChange = false; 333 for (unsigned I = 0, E = CPUsers.size(); I != E; ++I) 334 CPChange |= handleConstantPoolUser(I); 335 if (CPChange && ++NoCPIters > 30) 336 report_fatal_error("Constant Island pass failed to converge!"); 337 LLVM_DEBUG(dumpBBs()); 338 339 // Clear NewWaterList now. If we split a block for branches, it should 340 // appear as "new water" for the next iteration of constant pool placement. 341 NewWaterList.clear(); 342 343 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 344 bool BRChange = false; 345 for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I) 346 BRChange |= fixupImmediateBr(ImmBranches[I]); 347 if (BRChange && ++NoBRIters > 30) 348 report_fatal_error("Branch Fix Up pass failed to converge!"); 349 LLVM_DEBUG(dumpBBs()); 350 if (!CPChange && !BRChange) 351 break; 352 MadeChange = true; 353 } 354 355 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 356 357 BBInfo.clear(); 358 WaterList.clear(); 359 CPUsers.clear(); 360 CPEntries.clear(); 361 ImmBranches.clear(); 362 return MadeChange; 363 } 364 365 /// doInitialPlacement - Perform the initial placement of the constant pool 366 /// entries. To start with, we put them all at the end of the function. 367 void CSKYConstantIslands::doInitialPlacement( 368 std::vector<MachineInstr *> &CPEMIs) { 369 // Create the basic block to hold the CPE's. 370 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 371 MF->push_back(BB); 372 373 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 374 const Align MaxAlign = MCP->getConstantPoolAlign(); 375 376 // Mark the basic block as required by the const-pool. 377 BB->setAlignment(Align(2)); 378 379 // The function needs to be as aligned as the basic blocks. The linker may 380 // move functions around based on their alignment. 381 MF->ensureAlignment(BB->getAlignment()); 382 383 // Order the entries in BB by descending alignment. That ensures correct 384 // alignment of all entries as long as BB is sufficiently aligned. Keep 385 // track of the insertion point for each alignment. We are going to bucket 386 // sort the entries as they are created. 387 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1, 388 BB->end()); 389 390 // Add all of the constants from the constant pool to the end block, use an 391 // identity mapping of CPI's to CPE's. 392 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 393 394 const DataLayout &TD = MF->getDataLayout(); 395 for (unsigned I = 0, E = CPs.size(); I != E; ++I) { 396 unsigned Size = CPs[I].getSizeInBytes(TD); 397 assert(Size >= 4 && "Too small constant pool entry"); 398 Align Alignment = CPs[I].getAlign(); 399 // Verify that all constant pool entries are a multiple of their alignment. 400 // If not, we would have to pad them out so that instructions stay aligned. 401 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 402 403 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 404 unsigned LogAlign = Log2(Alignment); 405 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 406 407 MachineInstr *CPEMI = 408 BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 409 .addImm(I) 410 .addConstantPoolIndex(I) 411 .addImm(Size); 412 413 CPEMIs.push_back(CPEMI); 414 415 // Ensure that future entries with higher alignment get inserted before 416 // CPEMI. This is bucket sort with iterators. 417 for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A) 418 if (InsPoint[A] == InsAt) 419 InsPoint[A] = CPEMI; 420 // Add a new CPEntry, but no corresponding CPUser yet. 421 CPEntries.emplace_back(1, CPEntry(CPEMI, I)); 422 ++NumCPEs; 423 LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = " 424 << Size << ", align = " << Alignment.value() << '\n'); 425 } 426 LLVM_DEBUG(BB->dump()); 427 } 428 429 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 430 /// into the block immediately after it. 431 static bool bbHasFallthrough(MachineBasicBlock *MBB) { 432 // Get the next machine basic block in the function. 433 MachineFunction::iterator MBBI = MBB->getIterator(); 434 // Can't fall off end of function. 435 if (std::next(MBBI) == MBB->getParent()->end()) 436 return false; 437 438 MachineBasicBlock *NextBB = &*std::next(MBBI); 439 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 440 E = MBB->succ_end(); 441 I != E; ++I) 442 if (*I == NextBB) 443 return true; 444 445 return false; 446 } 447 448 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 449 /// look up the corresponding CPEntry. 450 CSKYConstantIslands::CPEntry * 451 CSKYConstantIslands::findConstPoolEntry(unsigned CPI, 452 const MachineInstr *CPEMI) { 453 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 454 // Number of entries per constpool index should be small, just do a 455 // linear search. 456 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 457 if (CPEs[I].CPEMI == CPEMI) 458 return &CPEs[I]; 459 } 460 return nullptr; 461 } 462 463 /// getCPEAlign - Returns the required alignment of the constant pool entry 464 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 465 Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { 466 assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY); 467 468 unsigned CPI = CPEMI.getOperand(1).getIndex(); 469 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 470 return MCP->getConstants()[CPI].getAlign(); 471 } 472 473 /// initializeFunctionInfo - Do the initial scan of the function, building up 474 /// information about the sizes of each block, the location of all the water, 475 /// and finding all of the constant pool users. 476 void CSKYConstantIslands::initializeFunctionInfo( 477 const std::vector<MachineInstr *> &CPEMIs) { 478 BBInfo.clear(); 479 BBInfo.resize(MF->getNumBlockIDs()); 480 481 // First thing, compute the size of all basic blocks, and see if the function 482 // has any inline assembly in it. If so, we have to be conservative about 483 // alignment assumptions, as we don't know for sure the size of any 484 // instructions in the inline assembly. 485 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 486 computeBlockSize(&*I); 487 488 // Compute block offsets. 489 adjustBBOffsetsAfter(&MF->front()); 490 491 // Now go back through the instructions and build up our data structures. 492 for (MachineBasicBlock &MBB : *MF) { 493 // If this block doesn't fall through into the next MBB, then this is 494 // 'water' that a constant pool island could be placed. 495 if (!bbHasFallthrough(&MBB)) 496 WaterList.push_back(&MBB); 497 for (MachineInstr &MI : MBB) { 498 if (MI.isDebugInstr()) 499 continue; 500 501 int Opc = MI.getOpcode(); 502 if (MI.isBranch() && !MI.isIndirectBranch()) { 503 bool IsCond = MI.isConditionalBranch(); 504 unsigned Bits = 0; 505 unsigned Scale = 1; 506 int UOpc = CSKY::BR32; 507 508 switch (MI.getOpcode()) { 509 case CSKY::BR16: 510 case CSKY::BF16: 511 case CSKY::BT16: 512 Bits = 10; 513 Scale = 2; 514 break; 515 default: 516 Bits = 16; 517 Scale = 2; 518 break; 519 } 520 521 // Record this immediate branch. 522 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 523 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc)); 524 } 525 526 if (Opc == CSKY::CONSTPOOL_ENTRY) 527 continue; 528 529 // Scan the instructions for constant pool operands. 530 for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op) 531 if (MI.getOperand(Op).isCPI()) { 532 // We found one. The addressing mode tells us the max displacement 533 // from the PC that this instruction permits. 534 535 // Basic size info comes from the TSFlags field. 536 unsigned Bits = 0; 537 unsigned Scale = 1; 538 bool NegOk = false; 539 540 switch (Opc) { 541 default: 542 llvm_unreachable("Unknown addressing mode for CP reference!"); 543 case CSKY::MOVIH32: 544 case CSKY::ORI32: 545 continue; 546 case CSKY::PseudoTLSLA32: 547 case CSKY::JSRI32: 548 case CSKY::JMPI32: 549 case CSKY::LRW32: 550 case CSKY::LRW32_Gen: 551 Bits = 16; 552 Scale = 4; 553 break; 554 case CSKY::GRS32: 555 Bits = 17; 556 Scale = 2; 557 NegOk = true; 558 break; 559 } 560 // Remember that this is a user of a CP entry. 561 unsigned CPI = MI.getOperand(Op).getIndex(); 562 MachineInstr *CPEMI = CPEMIs[CPI]; 563 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 564 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk)); 565 566 // Increment corresponding CPEntry reference count. 567 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 568 assert(CPE && "Cannot find a corresponding CPEntry!"); 569 CPE->RefCount++; 570 571 // Instructions can only use one CP entry, don't bother scanning the 572 // rest of the operands. 573 break; 574 } 575 } 576 } 577 } 578 579 /// computeBlockSize - Compute the size and some alignment information for MBB. 580 /// This function updates BBInfo directly. 581 void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 582 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 583 BBI.Size = 0; 584 585 for (const MachineInstr &MI : *MBB) 586 BBI.Size += TII->getInstSizeInBytes(MI); 587 } 588 589 /// getOffsetOf - Return the current offset of the specified machine instruction 590 /// from the start of the function. This offset changes as stuff is moved 591 /// around inside the function. 592 unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const { 593 MachineBasicBlock *MBB = MI->getParent(); 594 595 // The offset is composed of two things: the sum of the sizes of all MBB's 596 // before this instruction's block, and the offset from the start of the block 597 // it is in. 598 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 599 600 // Sum instructions before MI in MBB. 601 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 602 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 603 Offset += TII->getInstSizeInBytes(*I); 604 } 605 return Offset; 606 } 607 608 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 609 /// ID. 610 static bool compareMbbNumbers(const MachineBasicBlock *LHS, 611 const MachineBasicBlock *RHS) { 612 return LHS->getNumber() < RHS->getNumber(); 613 } 614 615 /// updateForInsertedWaterBlock - When a block is newly inserted into the 616 /// machine function, it upsets all of the block numbers. Renumber the blocks 617 /// and update the arrays that parallel this numbering. 618 void CSKYConstantIslands::updateForInsertedWaterBlock( 619 MachineBasicBlock *NewBB) { 620 // Renumber the MBB's to keep them consecutive. 621 NewBB->getParent()->RenumberBlocks(NewBB); 622 623 // Insert an entry into BBInfo to align it properly with the (newly 624 // renumbered) block numbers. 625 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 626 627 // Next, update WaterList. Specifically, we need to add NewMBB as having 628 // available water after it. 629 water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers); 630 WaterList.insert(IP, NewBB); 631 } 632 633 unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const { 634 unsigned UserOffset = getOffsetOf(U.MI); 635 636 UserOffset &= ~3u; 637 638 return UserOffset; 639 } 640 641 /// Split the basic block containing MI into two blocks, which are joined by 642 /// an unconditional branch. Update data structures and renumber blocks to 643 /// account for this change and returns the newly created block. 644 MachineBasicBlock * 645 CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { 646 MachineBasicBlock *OrigBB = MI.getParent(); 647 648 // Create a new MBB for the code after the OrigBB. 649 MachineBasicBlock *NewBB = 650 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 651 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 652 MF->insert(MBBI, NewBB); 653 654 // Splice the instructions starting with MI over to NewBB. 655 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 656 657 // Add an unconditional branch from OrigBB to NewBB. 658 // Note the new unconditional branch is not being recorded. 659 // There doesn't seem to be meaningful DebugInfo available; this doesn't 660 // correspond to anything in the source. 661 662 // TODO: Add support for 16bit instr. 663 BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB); 664 ++NumSplit; 665 666 // Update the CFG. All succs of OrigBB are now succs of NewBB. 667 NewBB->transferSuccessors(OrigBB); 668 669 // OrigBB branches to NewBB. 670 OrigBB->addSuccessor(NewBB); 671 672 // Update internal data structures to account for the newly inserted MBB. 673 // This is almost the same as updateForInsertedWaterBlock, except that 674 // the Water goes after OrigBB, not NewBB. 675 MF->RenumberBlocks(NewBB); 676 677 // Insert an entry into BBInfo to align it properly with the (newly 678 // renumbered) block numbers. 679 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 680 681 // Next, update WaterList. Specifically, we need to add OrigMBB as having 682 // available water after it (but not if it's already there, which happens 683 // when splitting before a conditional branch that is followed by an 684 // unconditional branch - in that case we want to insert NewBB). 685 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers); 686 MachineBasicBlock *WaterBB = *IP; 687 if (WaterBB == OrigBB) 688 WaterList.insert(std::next(IP), NewBB); 689 else 690 WaterList.insert(IP, OrigBB); 691 NewWaterList.insert(OrigBB); 692 693 // Figure out how large the OrigBB is. As the first half of the original 694 // block, it cannot contain a tablejump. The size includes 695 // the new jump we added. (It should be possible to do this without 696 // recounting everything, but it's very confusing, and this is rarely 697 // executed.) 698 computeBlockSize(OrigBB); 699 700 // Figure out how large the NewMBB is. As the second half of the original 701 // block, it may contain a tablejump. 702 computeBlockSize(NewBB); 703 704 // All BBOffsets following these blocks must be modified. 705 adjustBBOffsetsAfter(OrigBB); 706 707 return NewBB; 708 } 709 710 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 711 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 712 /// constant pool entry). 713 bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset, 714 unsigned TrialOffset, 715 unsigned MaxDisp, bool NegativeOK) { 716 if (UserOffset <= TrialOffset) { 717 // User before the Trial. 718 if (TrialOffset - UserOffset <= MaxDisp) 719 return true; 720 } else if (NegativeOK) { 721 if (UserOffset - TrialOffset <= MaxDisp) 722 return true; 723 } 724 return false; 725 } 726 727 /// isWaterInRange - Returns true if a CPE placed after the specified 728 /// Water (a basic block) will be in range for the specific MI. 729 /// 730 /// Compute how much the function will grow by inserting a CPE after Water. 731 bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset, 732 MachineBasicBlock *Water, CPUser &U, 733 unsigned &Growth) { 734 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); 735 unsigned NextBlockOffset; 736 Align NextBlockAlignment; 737 MachineFunction::const_iterator NextBlock = ++Water->getIterator(); 738 if (NextBlock == MF->end()) { 739 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 740 NextBlockAlignment = Align(4); 741 } else { 742 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 743 NextBlockAlignment = NextBlock->getAlignment(); 744 } 745 unsigned Size = U.CPEMI->getOperand(2).getImm(); 746 unsigned CPEEnd = CPEOffset + Size; 747 748 // The CPE may be able to hide in the alignment padding before the next 749 // block. It may also cause more padding to be required if it is more aligned 750 // that the next block. 751 if (CPEEnd > NextBlockOffset) { 752 Growth = CPEEnd - NextBlockOffset; 753 // Compute the padding that would go at the end of the CPE to align the next 754 // block. 755 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 756 757 // If the CPE is to be inserted before the instruction, that will raise 758 // the offset of the instruction. Also account for unknown alignment padding 759 // in blocks between CPE and the user. 760 if (CPEOffset < UserOffset) 761 UserOffset += Growth; 762 } else 763 // CPE fits in existing padding. 764 Growth = 0; 765 766 return isOffsetInRange(UserOffset, CPEOffset, U); 767 } 768 769 /// isCPEntryInRange - Returns true if the distance between specific MI and 770 /// specific ConstPool entry instruction can fit in MI's displacement field. 771 bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI, 772 unsigned UserOffset, 773 MachineInstr *CPEMI, 774 unsigned MaxDisp, bool NegOk, 775 bool DoDump) { 776 unsigned CPEOffset = getOffsetOf(CPEMI); 777 778 if (DoDump) { 779 LLVM_DEBUG({ 780 unsigned Block = MI->getParent()->getNumber(); 781 const BasicBlockInfo &BBI = BBInfo[Block]; 782 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 783 << " max delta=" << MaxDisp 784 << format(" insn address=%#x", UserOffset) << " in " 785 << printMBBReference(*MI->getParent()) << ": " 786 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 787 << format("CPE address=%#x offset=%+d: ", CPEOffset, 788 int(CPEOffset - UserOffset)); 789 }); 790 } 791 792 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 793 } 794 795 #ifndef NDEBUG 796 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 797 /// unconditionally branches to its only successor. 798 static bool bbIsJumpedOver(MachineBasicBlock *MBB) { 799 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 800 return false; 801 MachineBasicBlock *Succ = *MBB->succ_begin(); 802 MachineBasicBlock *Pred = *MBB->pred_begin(); 803 MachineInstr *PredMI = &Pred->back(); 804 if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */) 805 return PredMI->getOperand(0).getMBB() == Succ; 806 return false; 807 } 808 #endif 809 810 void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 811 unsigned BBNum = BB->getNumber(); 812 for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) { 813 // Get the offset and known bits at the end of the layout predecessor. 814 // Include the alignment of the current block. 815 unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size; 816 BBInfo[I].Offset = Offset; 817 } 818 } 819 820 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 821 /// and instruction CPEMI, and decrement its refcount. If the refcount 822 /// becomes 0 remove the entry and instruction. Returns true if we removed 823 /// the entry, false if we didn't. 824 bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI, 825 MachineInstr *CPEMI) { 826 // Find the old entry. Eliminate it if it is no longer used. 827 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 828 assert(CPE && "Unexpected!"); 829 if (--CPE->RefCount == 0) { 830 removeDeadCPEMI(CPEMI); 831 CPE->CPEMI = nullptr; 832 --NumCPEs; 833 return true; 834 } 835 return false; 836 } 837 838 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 839 /// if not, see if an in-range clone of the CPE is in range, and if so, 840 /// change the data structures so the user references the clone. Returns: 841 /// 0 = no existing entry found 842 /// 1 = entry found, and there were no code insertions or deletions 843 /// 2 = entry found, and there were code insertions or deletions 844 int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) { 845 MachineInstr *UserMI = U.MI; 846 MachineInstr *CPEMI = U.CPEMI; 847 848 // Check to see if the CPE is already in-range. 849 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 850 true)) { 851 LLVM_DEBUG(dbgs() << "In range\n"); 852 return 1; 853 } 854 855 // No. Look for previously created clones of the CPE that are in range. 856 unsigned CPI = CPEMI->getOperand(1).getIndex(); 857 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 858 for (unsigned I = 0, E = CPEs.size(); I != E; ++I) { 859 // We already tried this one 860 if (CPEs[I].CPEMI == CPEMI) 861 continue; 862 // Removing CPEs can leave empty entries, skip 863 if (CPEs[I].CPEMI == nullptr) 864 continue; 865 if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(), 866 U.NegOk)) { 867 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 868 << CPEs[I].CPI << "\n"); 869 // Point the CPUser node to the replacement 870 U.CPEMI = CPEs[I].CPEMI; 871 // Change the CPI in the instruction operand to refer to the clone. 872 for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J) 873 if (UserMI->getOperand(J).isCPI()) { 874 UserMI->getOperand(J).setIndex(CPEs[I].CPI); 875 break; 876 } 877 // Adjust the refcount of the clone... 878 CPEs[I].RefCount++; 879 // ...and the original. If we didn't remove the old entry, none of the 880 // addresses changed, so we don't need another pass. 881 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 882 } 883 } 884 return 0; 885 } 886 887 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 888 /// the specific unconditional branch instruction. 889 static inline unsigned getUnconditionalBrDisp(int Opc) { 890 unsigned Bits, Scale; 891 892 switch (Opc) { 893 case CSKY::BR16: 894 Bits = 10; 895 Scale = 2; 896 break; 897 case CSKY::BR32: 898 Bits = 16; 899 Scale = 2; 900 break; 901 default: 902 assert(0); 903 break; 904 } 905 906 unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale; 907 return MaxOffs; 908 } 909 910 /// findAvailableWater - Look for an existing entry in the WaterList in which 911 /// we can place the CPE referenced from U so it's within range of U's MI. 912 /// Returns true if found, false if not. If it returns true, WaterIter 913 /// is set to the WaterList entry. 914 /// To ensure that this pass 915 /// terminates, the CPE location for a particular CPUser is only allowed to 916 /// move to a lower address, so search backward from the end of the list and 917 /// prefer the first water that is in range. 918 bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 919 water_iterator &WaterIter) { 920 if (WaterList.empty()) 921 return false; 922 923 unsigned BestGrowth = ~0u; 924 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 925 --IP) { 926 MachineBasicBlock *WaterBB = *IP; 927 // Check if water is in range and is either at a lower address than the 928 // current "high water mark" or a new water block that was created since 929 // the previous iteration by inserting an unconditional branch. In the 930 // latter case, we want to allow resetting the high water mark back to 931 // this new water since we haven't seen it before. Inserting branches 932 // should be relatively uncommon and when it does happen, we want to be 933 // sure to take advantage of it for all the CPEs near that block, so that 934 // we don't insert more branches than necessary. 935 unsigned Growth; 936 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 937 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 938 NewWaterList.count(WaterBB)) && 939 Growth < BestGrowth) { 940 // This is the least amount of required padding seen so far. 941 BestGrowth = Growth; 942 WaterIter = IP; 943 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 944 << " Growth=" << Growth << '\n'); 945 946 // Keep looking unless it is perfect. 947 if (BestGrowth == 0) 948 return true; 949 } 950 if (IP == B) 951 break; 952 } 953 return BestGrowth != ~0u; 954 } 955 956 /// createNewWater - No existing WaterList entry will work for 957 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 958 /// block is used if in range, and the conditional branch munged so control 959 /// flow is correct. Otherwise the block is split to create a hole with an 960 /// unconditional branch around it. In either case NewMBB is set to a 961 /// block following which the new island can be inserted (the WaterList 962 /// is not adjusted). 963 void CSKYConstantIslands::createNewWater(unsigned CPUserIndex, 964 unsigned UserOffset, 965 MachineBasicBlock *&NewMBB) { 966 CPUser &U = CPUsers[CPUserIndex]; 967 MachineInstr *UserMI = U.MI; 968 MachineInstr *CPEMI = U.CPEMI; 969 MachineBasicBlock *UserMBB = UserMI->getParent(); 970 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 971 972 // If the block does not end in an unconditional branch already, and if the 973 // end of the block is within range, make new water there. 974 if (bbHasFallthrough(UserMBB)) { 975 // Size of branch to insert. 976 unsigned Delta = 4; 977 // Compute the offset where the CPE will begin. 978 unsigned CPEOffset = UserBBI.postOffset() + Delta; 979 980 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 981 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 982 << format(", expected CPE offset %#x\n", CPEOffset)); 983 NewMBB = &*++UserMBB->getIterator(); 984 // Add an unconditional branch from UserMBB to fallthrough block. Record 985 // it for branch lengthening; this new branch will not get out of range, 986 // but if the preceding conditional branch is out of range, the targets 987 // will be exchanged, and the altered branch may be out of range, so the 988 // machinery has to know about it. 989 990 // TODO: Add support for 16bit instr. 991 int UncondBr = CSKY::BR32; 992 auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 993 .addMBB(NewMBB) 994 .getInstr(); 995 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 996 ImmBranches.push_back( 997 ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr)); 998 BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI); 999 adjustBBOffsetsAfter(UserMBB); 1000 return; 1001 } 1002 } 1003 1004 // What a big block. Find a place within the block to split it. 1005 1006 // Try to split the block so it's fully aligned. Compute the latest split 1007 // point where we can add a 4-byte branch instruction, and then align to 1008 // Align which is the largest possible alignment in the function. 1009 const Align Align = MF->getAlignment(); 1010 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1011 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1012 BaseInsertOffset)); 1013 1014 // The 4 in the following is for the unconditional branch we'll be inserting 1015 // Alignment of the island is handled 1016 // inside isOffsetInRange. 1017 BaseInsertOffset -= 4; 1018 1019 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1020 << " la=" << Log2(Align) << '\n'); 1021 1022 // This could point off the end of the block if we've already got constant 1023 // pool entries following this block; only the last one is in the water list. 1024 // Back past any possible branches (allow for a conditional and a maximally 1025 // long unconditional). 1026 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1027 BaseInsertOffset = UserBBI.postOffset() - 8; 1028 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1029 } 1030 unsigned EndInsertOffset = 1031 BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm(); 1032 MachineBasicBlock::iterator MI = UserMI; 1033 ++MI; 1034 unsigned CPUIndex = CPUserIndex + 1; 1035 unsigned NumCPUsers = CPUsers.size(); 1036 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1037 Offset < BaseInsertOffset; 1038 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1039 assert(MI != UserMBB->end() && "Fell off end of block"); 1040 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1041 CPUser &U = CPUsers[CPUIndex]; 1042 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1043 // Shift intertion point by one unit of alignment so it is within reach. 1044 BaseInsertOffset -= Align.value(); 1045 EndInsertOffset -= Align.value(); 1046 } 1047 // This is overly conservative, as we don't account for CPEMIs being 1048 // reused within the block, but it doesn't matter much. Also assume CPEs 1049 // are added in order with alignment padding. We may eventually be able 1050 // to pack the aligned CPEs better. 1051 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1052 CPUIndex++; 1053 } 1054 } 1055 1056 NewMBB = splitBlockBeforeInstr(*--MI); 1057 } 1058 1059 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1060 /// is out-of-range. If so, pick up the constant pool value and move it some 1061 /// place in-range. Return true if we changed any addresses (thus must run 1062 /// another pass of branch lengthening), false otherwise. 1063 bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1064 CPUser &U = CPUsers[CPUserIndex]; 1065 MachineInstr *UserMI = U.MI; 1066 MachineInstr *CPEMI = U.CPEMI; 1067 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1068 unsigned Size = CPEMI->getOperand(2).getImm(); 1069 // Compute this only once, it's expensive. 1070 unsigned UserOffset = getUserOffset(U); 1071 1072 // See if the current entry is within range, or there is a clone of it 1073 // in range. 1074 int result = findInRangeCPEntry(U, UserOffset); 1075 if (result == 1) 1076 return false; 1077 if (result == 2) 1078 return true; 1079 1080 // Look for water where we can place this CPE. 1081 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1082 MachineBasicBlock *NewMBB; 1083 water_iterator IP; 1084 if (findAvailableWater(U, UserOffset, IP)) { 1085 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1086 MachineBasicBlock *WaterBB = *IP; 1087 1088 // If the original WaterList entry was "new water" on this iteration, 1089 // propagate that to the new island. This is just keeping NewWaterList 1090 // updated to match the WaterList, which will be updated below. 1091 if (NewWaterList.erase(WaterBB)) 1092 NewWaterList.insert(NewIsland); 1093 1094 // The new CPE goes before the following block (NewMBB). 1095 NewMBB = &*++WaterBB->getIterator(); 1096 } else { 1097 LLVM_DEBUG(dbgs() << "No water found\n"); 1098 createNewWater(CPUserIndex, UserOffset, NewMBB); 1099 1100 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1101 // called while handling branches so that the water will be seen on the 1102 // next iteration for constant pools, but in this context, we don't want 1103 // it. Check for this so it will be removed from the WaterList. 1104 // Also remove any entry from NewWaterList. 1105 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1106 IP = llvm::find(WaterList, WaterBB); 1107 if (IP != WaterList.end()) 1108 NewWaterList.erase(WaterBB); 1109 1110 // We are adding new water. Update NewWaterList. 1111 NewWaterList.insert(NewIsland); 1112 } 1113 1114 // Remove the original WaterList entry; we want subsequent insertions in 1115 // this vicinity to go after the one we're about to insert. This 1116 // considerably reduces the number of times we have to move the same CPE 1117 // more than once and is also important to ensure the algorithm terminates. 1118 if (IP != WaterList.end()) 1119 WaterList.erase(IP); 1120 1121 // Okay, we know we can put an island before NewMBB now, do it! 1122 MF->insert(NewMBB->getIterator(), NewIsland); 1123 1124 // Update internal data structures to account for the newly inserted MBB. 1125 updateForInsertedWaterBlock(NewIsland); 1126 1127 // Decrement the old entry, and remove it if refcount becomes 0. 1128 decrementCPEReferenceCount(CPI, CPEMI); 1129 1130 // No existing clone of this CPE is within range. 1131 // We will be generating a new clone. Get a UID for it. 1132 unsigned ID = createPICLabelUId(); 1133 1134 // Now that we have an island to add the CPE to, clone the original CPE and 1135 // add it to the island. 1136 U.HighWaterMark = NewIsland; 1137 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY)) 1138 .addImm(ID) 1139 .addConstantPoolIndex(CPI) 1140 .addImm(Size); 1141 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1142 ++NumCPEs; 1143 1144 // Mark the basic block as aligned as required by the const-pool entry. 1145 NewIsland->setAlignment(getCPEAlign(*U.CPEMI)); 1146 1147 // Increase the size of the island block to account for the new entry. 1148 BBInfo[NewIsland->getNumber()].Size += Size; 1149 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1150 1151 // Finally, change the CPI in the instruction operand to be ID. 1152 for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I) 1153 if (UserMI->getOperand(I).isCPI()) { 1154 UserMI->getOperand(I).setIndex(ID); 1155 break; 1156 } 1157 1158 LLVM_DEBUG( 1159 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1160 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1161 1162 return true; 1163 } 1164 1165 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1166 /// sizes and offsets of impacted basic blocks. 1167 void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1168 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1169 unsigned Size = CPEMI->getOperand(2).getImm(); 1170 CPEMI->eraseFromParent(); 1171 BBInfo[CPEBB->getNumber()].Size -= Size; 1172 // All succeeding offsets have the current size value added in, fix this. 1173 if (CPEBB->empty()) { 1174 BBInfo[CPEBB->getNumber()].Size = 0; 1175 1176 // This block no longer needs to be aligned. 1177 CPEBB->setAlignment(Align(4)); 1178 } else { 1179 // Entries are sorted by descending alignment, so realign from the front. 1180 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin())); 1181 } 1182 1183 adjustBBOffsetsAfter(CPEBB); 1184 // An island has only one predecessor BB and one successor BB. Check if 1185 // this BB's predecessor jumps directly to this BB's successor. This 1186 // shouldn't happen currently. 1187 assert(!bbIsJumpedOver(CPEBB) && "How did this happen?"); 1188 // FIXME: remove the empty blocks after all the work is done? 1189 } 1190 1191 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1192 /// are zero. 1193 bool CSKYConstantIslands::removeUnusedCPEntries() { 1194 unsigned MadeChange = false; 1195 for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) { 1196 std::vector<CPEntry> &CPEs = CPEntries[I]; 1197 for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) { 1198 if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) { 1199 removeDeadCPEMI(CPEs[J].CPEMI); 1200 CPEs[J].CPEMI = nullptr; 1201 MadeChange = true; 1202 } 1203 } 1204 } 1205 return MadeChange; 1206 } 1207 1208 /// isBBInRange - Returns true if the distance between specific MI and 1209 /// specific BB can fit in MI's displacement field. 1210 bool CSKYConstantIslands::isBBInRange(MachineInstr *MI, 1211 MachineBasicBlock *DestBB, 1212 unsigned MaxDisp) { 1213 unsigned BrOffset = getOffsetOf(MI); 1214 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1215 1216 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1217 << " from " << printMBBReference(*MI->getParent()) 1218 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1219 << " to " << DestOffset << " offset " 1220 << int(DestOffset - BrOffset) << "\t" << *MI); 1221 1222 if (BrOffset <= DestOffset) { 1223 // Branch before the Dest. 1224 if (DestOffset - BrOffset <= MaxDisp) 1225 return true; 1226 } else { 1227 if (BrOffset - DestOffset <= MaxDisp) 1228 return true; 1229 } 1230 return false; 1231 } 1232 1233 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1234 /// away to fit in its displacement field. 1235 bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1236 MachineInstr *MI = Br.MI; 1237 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1238 1239 // Check to see if the DestBB is already in-range. 1240 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1241 return false; 1242 1243 if (!Br.IsCond) 1244 return fixupUnconditionalBr(Br); 1245 return fixupConditionalBr(Br); 1246 } 1247 1248 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1249 /// too far away to fit in its displacement field. If the LR register has been 1250 /// spilled in the epilogue, then we can use BSR to implement a far jump. 1251 /// Otherwise, add an intermediate branch instruction to a branch. 1252 bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1253 MachineInstr *MI = Br.MI; 1254 MachineBasicBlock *MBB = MI->getParent(); 1255 1256 if (!MFI->isLRSpilled()) 1257 report_fatal_error("underestimated function size"); 1258 1259 // Use BSR to implement far jump. 1260 Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2; 1261 MI->setDesc(TII->get(CSKY::BSR32_BR)); 1262 BBInfo[MBB->getNumber()].Size += 4; 1263 adjustBBOffsetsAfter(MBB); 1264 ++NumUBrFixed; 1265 1266 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1267 1268 return true; 1269 } 1270 1271 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1272 /// far away to fit in its displacement field. It is converted to an inverse 1273 /// conditional branch + an unconditional branch to the destination. 1274 bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1275 MachineInstr *MI = Br.MI; 1276 MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI); 1277 1278 SmallVector<MachineOperand, 4> Cond; 1279 Cond.push_back(MachineOperand::CreateImm(MI->getOpcode())); 1280 Cond.push_back(MI->getOperand(0)); 1281 TII->reverseBranchCondition(Cond); 1282 1283 // Add an unconditional branch to the destination and invert the branch 1284 // condition to jump over it: 1285 // bteqz L1 1286 // => 1287 // bnez L2 1288 // b L1 1289 // L2: 1290 1291 // If the branch is at the end of its MBB and that has a fall-through block, 1292 // direct the updated conditional branch to the fall-through block. Otherwise, 1293 // split the MBB before the next instruction. 1294 MachineBasicBlock *MBB = MI->getParent(); 1295 MachineInstr *BMI = &MBB->back(); 1296 bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB); 1297 1298 ++NumCBrFixed; 1299 if (BMI != MI) { 1300 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1301 BMI->isUnconditionalBranch()) { 1302 // Last MI in the BB is an unconditional branch. Can we simply invert the 1303 // condition and swap destinations: 1304 // beqz L1 1305 // b L2 1306 // => 1307 // bnez L2 1308 // b L1 1309 MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI); 1310 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1311 LLVM_DEBUG( 1312 dbgs() << " Invert Bcc condition and swap its destination with " 1313 << *BMI); 1314 BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB); 1315 MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest); 1316 1317 MI->setDesc(TII->get(Cond[0].getImm())); 1318 return true; 1319 } 1320 } 1321 } 1322 1323 if (NeedSplit) { 1324 splitBlockBeforeInstr(*MI); 1325 // No need for the branch to the next block. We're adding an unconditional 1326 // branch to the destination. 1327 int Delta = TII->getInstSizeInBytes(MBB->back()); 1328 BBInfo[MBB->getNumber()].Size -= Delta; 1329 MBB->back().eraseFromParent(); 1330 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1331 1332 // The conditional successor will be swapped between the BBs after this, so 1333 // update CFG. 1334 MBB->addSuccessor(DestBB); 1335 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1336 } 1337 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1338 1339 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1340 << " also invert condition and change dest. to " 1341 << printMBBReference(*NextBB) << "\n"); 1342 1343 // Insert a new conditional branch and a new unconditional branch. 1344 // Also update the ImmBranch as well as adding a new entry for the new branch. 1345 1346 BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm())) 1347 .addReg(MI->getOperand(0).getReg()) 1348 .addMBB(NextBB); 1349 1350 Br.MI = &MBB->back(); 1351 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1352 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1353 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1354 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1355 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1356 1357 // Remove the old conditional branch. It may or may not still be in MBB. 1358 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1359 MI->eraseFromParent(); 1360 adjustBBOffsetsAfter(MBB); 1361 return true; 1362 } 1363 1364 /// Returns a pass that converts branches to long branches. 1365 FunctionPass *llvm::createCSKYConstantIslandPass() { 1366 return new CSKYConstantIslands(); 1367 } 1368 1369 INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE, 1370 "CSKY constant island placement and branch shortening pass", 1371 false, false) 1372