1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
15 //
16 // For example,
17 //
18 //   struct s {
19 //     int a;
20 //     int b;
21 //   };
22 //   struct t {
23 //     struct s c;
24 //     int d;
25 //   };
26 //   struct t e;
27 //
28 // For the member access e.c.b, the compiler will generate code
29 //   &e + 4
30 //
31 // The compile-once run-everywhere instead generates the following code
32 //   r = 4
33 //   &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
36 //
37 //   struct s {
38 //     int new_field;
39 //     int a;
40 //     int b;
41 //   }
42 //
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
45 //
46 // This feature relies on the following three intrinsic calls:
47 //   addr = preserve_array_access_index(base, dimension, index)
48 //   addr = preserve_union_access_index(base, di_index)
49 //          !llvm.preserve.access.index <union_ditype>
50 //   addr = preserve_struct_access_index(base, gep_index, di_index)
51 //          !llvm.preserve.access.index <struct_ditype>
52 //
53 // Bitfield member access needs special attention. User cannot take the
54 // address of a bitfield acceess. To facilitate kernel verifier
55 // for easy bitfield code optimization, a new clang intrinsic is introduced:
56 //   uint32_t __builtin_preserve_field_info(member_access, info_kind)
57 // In IR, a chain with two (or more) intrinsic calls will be generated:
58 //   ...
59 //   addr = preserve_struct_access_index(base, 1, 1) !struct s
60 //   uint32_t result = bpf_preserve_field_info(addr, info_kind)
61 //
62 // Suppose the info_kind is FIELD_SIGNEDNESS,
63 // The above two IR intrinsics will be replaced with
64 // a relocatable insn:
65 //   signness = /* signness of member_access */
66 // and signness can be changed by bpf loader based on the
67 // types on the host.
68 //
69 // User can also test whether a field exists or not with
70 //   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71 // The field will be always available (result = 1) during initial
72 // compilation, but bpf loader can patch with the correct value
73 // on the target host where the member_access may or may not be available
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "BPF.h"
78 #include "BPFCORE.h"
79 #include "BPFTargetMachine.h"
80 #include "llvm/IR/DebugInfoMetadata.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicsBPF.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include <stack>
92 
93 #define DEBUG_TYPE "bpf-abstract-member-access"
94 
95 namespace llvm {
96 constexpr StringRef BPFCoreSharedInfo::AmaAttr;
97 uint32_t BPFCoreSharedInfo::SeqNum;
98 
99 Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
100                                                   Instruction *Input,
101                                                   Instruction *Before) {
102   Function *Fn = Intrinsic::getDeclaration(
103       M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
104   Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
105                                          BPFCoreSharedInfo::SeqNum++);
106 
107   auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
108   BB->getInstList().insert(Before->getIterator(), NewInst);
109   return NewInst;
110 }
111 } // namespace llvm
112 
113 using namespace llvm;
114 
115 namespace {
116 
117 class BPFAbstractMemberAccess final : public FunctionPass {
118   bool runOnFunction(Function &F) override;
119 
120 public:
121   static char ID;
122   TargetMachine *TM;
123   // Add optional BPFTargetMachine parameter so that BPF backend can add the phase
124   // with target machine to find out the endianness. The default constructor (without
125   // parameters) is used by the pass manager for managing purposes.
126   BPFAbstractMemberAccess(BPFTargetMachine *TM = nullptr)
127       : FunctionPass(ID), TM(TM) {}
128 
129   struct CallInfo {
130     uint32_t Kind;
131     uint32_t AccessIndex;
132     Align RecordAlignment;
133     MDNode *Metadata;
134     Value *Base;
135   };
136   typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
137 
138 private:
139   enum : uint32_t {
140     BPFPreserveArrayAI = 1,
141     BPFPreserveUnionAI = 2,
142     BPFPreserveStructAI = 3,
143     BPFPreserveFieldInfoAI = 4,
144   };
145 
146   const DataLayout *DL = nullptr;
147   Module *M = nullptr;
148 
149   std::map<std::string, GlobalVariable *> GEPGlobals;
150   // A map to link preserve_*_access_index instrinsic calls.
151   std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
152   // A map to hold all the base preserve_*_access_index instrinsic calls.
153   // The base call is not an input of any other preserve_*
154   // intrinsics.
155   std::map<CallInst *, CallInfo> BaseAICalls;
156 
157   bool doTransformation(Function &F);
158 
159   void traceAICall(CallInst *Call, CallInfo &ParentInfo);
160   void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
161                     CallInfo &ParentInfo);
162   void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
163                 CallInfo &ParentInfo);
164   void collectAICallChains(Function &F);
165 
166   bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
167   bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
168                       const MDNode *ChildMeta);
169   bool removePreserveAccessIndexIntrinsic(Function &F);
170   void replaceWithGEP(std::vector<CallInst *> &CallList,
171                       uint32_t NumOfZerosIndex, uint32_t DIIndex);
172   bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
173   void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
174                           uint32_t &StartBitOffset, uint32_t &EndBitOffset);
175   uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
176                         uint32_t AccessIndex, uint32_t PatchImm,
177                         Align RecordAlignment);
178 
179   Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
180                                  std::string &AccessKey, MDNode *&BaseMeta);
181   MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
182                            std::string &AccessKey, bool &IsInt32Ret);
183   uint64_t getConstant(const Value *IndexValue);
184   bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
185 };
186 } // End anonymous namespace
187 
188 char BPFAbstractMemberAccess::ID = 0;
189 INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
190                 "BPF Abstract Member Access", false, false)
191 
192 FunctionPass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
193   return new BPFAbstractMemberAccess(TM);
194 }
195 
196 bool BPFAbstractMemberAccess::runOnFunction(Function &F) {
197   LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
198 
199   M = F.getParent();
200   if (!M)
201     return false;
202 
203   // Bail out if no debug info.
204   if (M->debug_compile_units().empty())
205     return false;
206 
207   DL = &M->getDataLayout();
208   return doTransformation(F);
209 }
210 
211 static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
212   if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
213       Tag != dwarf::DW_TAG_volatile_type &&
214       Tag != dwarf::DW_TAG_restrict_type &&
215       Tag != dwarf::DW_TAG_member)
216     return false;
217   if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
218     return false;
219   return true;
220 }
221 
222 static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
223   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
224     if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
225       break;
226     Ty = DTy->getBaseType();
227   }
228   return Ty;
229 }
230 
231 static const DIType * stripQualifiers(const DIType *Ty) {
232   while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
233     if (!SkipDIDerivedTag(DTy->getTag(), true))
234       break;
235     Ty = DTy->getBaseType();
236   }
237   return Ty;
238 }
239 
240 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
241   DINodeArray Elements = CTy->getElements();
242   uint32_t DimSize = 1;
243   for (uint32_t I = StartDim; I < Elements.size(); ++I) {
244     if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
245       if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
246         const DISubrange *SR = cast<DISubrange>(Element);
247         auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
248         DimSize *= CI->getSExtValue();
249       }
250   }
251 
252   return DimSize;
253 }
254 
255 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
256 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
257                                                           CallInfo &CInfo) {
258   if (!Call)
259     return false;
260 
261   const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
262   if (!GV)
263     return false;
264   if (GV->getName().startswith("llvm.preserve.array.access.index")) {
265     CInfo.Kind = BPFPreserveArrayAI;
266     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
267     if (!CInfo.Metadata)
268       report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
269     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
270     CInfo.Base = Call->getArgOperand(0);
271     CInfo.RecordAlignment =
272         DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
273     return true;
274   }
275   if (GV->getName().startswith("llvm.preserve.union.access.index")) {
276     CInfo.Kind = BPFPreserveUnionAI;
277     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
278     if (!CInfo.Metadata)
279       report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
280     CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
281     CInfo.Base = Call->getArgOperand(0);
282     CInfo.RecordAlignment =
283         DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
284     return true;
285   }
286   if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
287     CInfo.Kind = BPFPreserveStructAI;
288     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
289     if (!CInfo.Metadata)
290       report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
291     CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
292     CInfo.Base = Call->getArgOperand(0);
293     CInfo.RecordAlignment =
294         DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
295     return true;
296   }
297   if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
298     CInfo.Kind = BPFPreserveFieldInfoAI;
299     CInfo.Metadata = nullptr;
300     // Check validity of info_kind as clang did not check this.
301     uint64_t InfoKind = getConstant(Call->getArgOperand(1));
302     if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
303       report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
304     CInfo.AccessIndex = InfoKind;
305     return true;
306   }
307   if (GV->getName().startswith("llvm.bpf.preserve.type.info")) {
308     CInfo.Kind = BPFPreserveFieldInfoAI;
309     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
310     if (!CInfo.Metadata)
311       report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
312     uint64_t Flag = getConstant(Call->getArgOperand(1));
313     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
314       report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
315     if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
316       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_EXISTENCE;
317     else
318       CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_SIZE;
319     return true;
320   }
321   if (GV->getName().startswith("llvm.bpf.preserve.enum.value")) {
322     CInfo.Kind = BPFPreserveFieldInfoAI;
323     CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
324     if (!CInfo.Metadata)
325       report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
326     uint64_t Flag = getConstant(Call->getArgOperand(2));
327     if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
328       report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
329     if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
330       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE;
331     else
332       CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE;
333     return true;
334   }
335 
336   return false;
337 }
338 
339 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
340                                              uint32_t DimensionIndex,
341                                              uint32_t GEPIndex) {
342   for (auto Call : CallList) {
343     uint32_t Dimension = 1;
344     if (DimensionIndex > 0)
345       Dimension = getConstant(Call->getArgOperand(DimensionIndex));
346 
347     Constant *Zero =
348         ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
349     SmallVector<Value *, 4> IdxList;
350     for (unsigned I = 0; I < Dimension; ++I)
351       IdxList.push_back(Zero);
352     IdxList.push_back(Call->getArgOperand(GEPIndex));
353 
354     auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
355                                                   IdxList, "", Call);
356     Call->replaceAllUsesWith(GEP);
357     Call->eraseFromParent();
358   }
359 }
360 
361 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
362   std::vector<CallInst *> PreserveArrayIndexCalls;
363   std::vector<CallInst *> PreserveUnionIndexCalls;
364   std::vector<CallInst *> PreserveStructIndexCalls;
365   bool Found = false;
366 
367   for (auto &BB : F)
368     for (auto &I : BB) {
369       auto *Call = dyn_cast<CallInst>(&I);
370       CallInfo CInfo;
371       if (!IsPreserveDIAccessIndexCall(Call, CInfo))
372         continue;
373 
374       Found = true;
375       if (CInfo.Kind == BPFPreserveArrayAI)
376         PreserveArrayIndexCalls.push_back(Call);
377       else if (CInfo.Kind == BPFPreserveUnionAI)
378         PreserveUnionIndexCalls.push_back(Call);
379       else
380         PreserveStructIndexCalls.push_back(Call);
381     }
382 
383   // do the following transformation:
384   // . addr = preserve_array_access_index(base, dimension, index)
385   //   is transformed to
386   //     addr = GEP(base, dimenion's zero's, index)
387   // . addr = preserve_union_access_index(base, di_index)
388   //   is transformed to
389   //     addr = base, i.e., all usages of "addr" are replaced by "base".
390   // . addr = preserve_struct_access_index(base, gep_index, di_index)
391   //   is transformed to
392   //     addr = GEP(base, 0, gep_index)
393   replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
394   replaceWithGEP(PreserveStructIndexCalls, 0, 1);
395   for (auto Call : PreserveUnionIndexCalls) {
396     Call->replaceAllUsesWith(Call->getArgOperand(0));
397     Call->eraseFromParent();
398   }
399 
400   return Found;
401 }
402 
403 /// Check whether the access index chain is valid. We check
404 /// here because there may be type casts between two
405 /// access indexes. We want to ensure memory access still valid.
406 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
407                                              uint32_t ParentAI,
408                                              const MDNode *ChildType) {
409   if (!ChildType)
410     return true; // preserve_field_info, no type comparison needed.
411 
412   const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
413   const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
414 
415   // Child is a derived/pointer type, which is due to type casting.
416   // Pointer type cannot be in the middle of chain.
417   if (isa<DIDerivedType>(CType))
418     return false;
419 
420   // Parent is a pointer type.
421   if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
422     if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
423       return false;
424     return stripQualifiers(PtrTy->getBaseType()) == CType;
425   }
426 
427   // Otherwise, struct/union/array types
428   const auto *PTy = dyn_cast<DICompositeType>(PType);
429   const auto *CTy = dyn_cast<DICompositeType>(CType);
430   assert(PTy && CTy && "ParentType or ChildType is null or not composite");
431 
432   uint32_t PTyTag = PTy->getTag();
433   assert(PTyTag == dwarf::DW_TAG_array_type ||
434          PTyTag == dwarf::DW_TAG_structure_type ||
435          PTyTag == dwarf::DW_TAG_union_type);
436 
437   uint32_t CTyTag = CTy->getTag();
438   assert(CTyTag == dwarf::DW_TAG_array_type ||
439          CTyTag == dwarf::DW_TAG_structure_type ||
440          CTyTag == dwarf::DW_TAG_union_type);
441 
442   // Multi dimensional arrays, base element should be the same
443   if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
444     return PTy->getBaseType() == CTy->getBaseType();
445 
446   DIType *Ty;
447   if (PTyTag == dwarf::DW_TAG_array_type)
448     Ty = PTy->getBaseType();
449   else
450     Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
451 
452   return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
453 }
454 
455 void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
456                                           CallInfo &ParentInfo) {
457   for (User *U : Call->users()) {
458     Instruction *Inst = dyn_cast<Instruction>(U);
459     if (!Inst)
460       continue;
461 
462     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
463       traceBitCast(BI, Call, ParentInfo);
464     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
465       CallInfo ChildInfo;
466 
467       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
468           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
469                          ChildInfo.Metadata)) {
470         AIChain[CI] = std::make_pair(Call, ParentInfo);
471         traceAICall(CI, ChildInfo);
472       } else {
473         BaseAICalls[Call] = ParentInfo;
474       }
475     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
476       if (GI->hasAllZeroIndices())
477         traceGEP(GI, Call, ParentInfo);
478       else
479         BaseAICalls[Call] = ParentInfo;
480     } else {
481       BaseAICalls[Call] = ParentInfo;
482     }
483   }
484 }
485 
486 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
487                                            CallInst *Parent,
488                                            CallInfo &ParentInfo) {
489   for (User *U : BitCast->users()) {
490     Instruction *Inst = dyn_cast<Instruction>(U);
491     if (!Inst)
492       continue;
493 
494     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
495       traceBitCast(BI, Parent, ParentInfo);
496     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
497       CallInfo ChildInfo;
498       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
499           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
500                          ChildInfo.Metadata)) {
501         AIChain[CI] = std::make_pair(Parent, ParentInfo);
502         traceAICall(CI, ChildInfo);
503       } else {
504         BaseAICalls[Parent] = ParentInfo;
505       }
506     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
507       if (GI->hasAllZeroIndices())
508         traceGEP(GI, Parent, ParentInfo);
509       else
510         BaseAICalls[Parent] = ParentInfo;
511     } else {
512       BaseAICalls[Parent] = ParentInfo;
513     }
514   }
515 }
516 
517 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
518                                        CallInfo &ParentInfo) {
519   for (User *U : GEP->users()) {
520     Instruction *Inst = dyn_cast<Instruction>(U);
521     if (!Inst)
522       continue;
523 
524     if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
525       traceBitCast(BI, Parent, ParentInfo);
526     } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
527       CallInfo ChildInfo;
528       if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
529           IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
530                          ChildInfo.Metadata)) {
531         AIChain[CI] = std::make_pair(Parent, ParentInfo);
532         traceAICall(CI, ChildInfo);
533       } else {
534         BaseAICalls[Parent] = ParentInfo;
535       }
536     } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
537       if (GI->hasAllZeroIndices())
538         traceGEP(GI, Parent, ParentInfo);
539       else
540         BaseAICalls[Parent] = ParentInfo;
541     } else {
542       BaseAICalls[Parent] = ParentInfo;
543     }
544   }
545 }
546 
547 void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
548   AIChain.clear();
549   BaseAICalls.clear();
550 
551   for (auto &BB : F)
552     for (auto &I : BB) {
553       CallInfo CInfo;
554       auto *Call = dyn_cast<CallInst>(&I);
555       if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
556           AIChain.find(Call) != AIChain.end())
557         continue;
558 
559       traceAICall(Call, CInfo);
560     }
561 }
562 
563 uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
564   const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
565   assert(CV);
566   return CV->getValue().getZExtValue();
567 }
568 
569 /// Get the start and the end of storage offset for \p MemberTy.
570 void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
571                                                  Align RecordAlignment,
572                                                  uint32_t &StartBitOffset,
573                                                  uint32_t &EndBitOffset) {
574   uint32_t MemberBitSize = MemberTy->getSizeInBits();
575   uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
576   uint32_t AlignBits = RecordAlignment.value() * 8;
577   if (RecordAlignment > 8 || MemberBitSize > AlignBits)
578     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
579                        "requiring too big alignment");
580 
581   StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
582   if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
583     report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
584                        "cross alignment boundary");
585   EndBitOffset = StartBitOffset + AlignBits;
586 }
587 
588 uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
589                                                DICompositeType *CTy,
590                                                uint32_t AccessIndex,
591                                                uint32_t PatchImm,
592                                                Align RecordAlignment) {
593   if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
594       return 1;
595 
596   uint32_t Tag = CTy->getTag();
597   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
598     if (Tag == dwarf::DW_TAG_array_type) {
599       auto *EltTy = stripQualifiers(CTy->getBaseType());
600       PatchImm += AccessIndex * calcArraySize(CTy, 1) *
601                   (EltTy->getSizeInBits() >> 3);
602     } else if (Tag == dwarf::DW_TAG_structure_type) {
603       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
604       if (!MemberTy->isBitField()) {
605         PatchImm += MemberTy->getOffsetInBits() >> 3;
606       } else {
607         unsigned SBitOffset, NextSBitOffset;
608         GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset,
609                            NextSBitOffset);
610         PatchImm += SBitOffset >> 3;
611       }
612     }
613     return PatchImm;
614   }
615 
616   if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
617     if (Tag == dwarf::DW_TAG_array_type) {
618       auto *EltTy = stripQualifiers(CTy->getBaseType());
619       return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
620     } else {
621       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
622       uint32_t SizeInBits = MemberTy->getSizeInBits();
623       if (!MemberTy->isBitField())
624         return SizeInBits >> 3;
625 
626       unsigned SBitOffset, NextSBitOffset;
627       GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
628       SizeInBits = NextSBitOffset - SBitOffset;
629       if (SizeInBits & (SizeInBits - 1))
630         report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
631       return SizeInBits >> 3;
632     }
633   }
634 
635   if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
636     const DIType *BaseTy;
637     if (Tag == dwarf::DW_TAG_array_type) {
638       // Signedness only checked when final array elements are accessed.
639       if (CTy->getElements().size() != 1)
640         report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
641       BaseTy = stripQualifiers(CTy->getBaseType());
642     } else {
643       auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
644       BaseTy = stripQualifiers(MemberTy->getBaseType());
645     }
646 
647     // Only basic types and enum types have signedness.
648     const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
649     while (!BTy) {
650       const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
651       // Report an error if the field expression does not have signedness.
652       if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
653         report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
654       BaseTy = stripQualifiers(CompTy->getBaseType());
655       BTy = dyn_cast<DIBasicType>(BaseTy);
656     }
657     uint32_t Encoding = BTy->getEncoding();
658     return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
659   }
660 
661   if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
662     // The value is loaded into a value with FIELD_BYTE_SIZE size,
663     // and then zero or sign extended to U64.
664     // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
665     // to extract the original value.
666     const Triple &Triple = TM->getTargetTriple();
667     DIDerivedType *MemberTy = nullptr;
668     bool IsBitField = false;
669     uint32_t SizeInBits;
670 
671     if (Tag == dwarf::DW_TAG_array_type) {
672       auto *EltTy = stripQualifiers(CTy->getBaseType());
673       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
674     } else {
675       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
676       SizeInBits = MemberTy->getSizeInBits();
677       IsBitField = MemberTy->isBitField();
678     }
679 
680     if (!IsBitField) {
681       if (SizeInBits > 64)
682         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
683       return 64 - SizeInBits;
684     }
685 
686     unsigned SBitOffset, NextSBitOffset;
687     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
688     if (NextSBitOffset - SBitOffset > 64)
689       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
690 
691     unsigned OffsetInBits = MemberTy->getOffsetInBits();
692     if (Triple.getArch() == Triple::bpfel)
693       return SBitOffset + 64 - OffsetInBits - SizeInBits;
694     else
695       return OffsetInBits + 64 - NextSBitOffset;
696   }
697 
698   if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
699     DIDerivedType *MemberTy = nullptr;
700     bool IsBitField = false;
701     uint32_t SizeInBits;
702     if (Tag == dwarf::DW_TAG_array_type) {
703       auto *EltTy = stripQualifiers(CTy->getBaseType());
704       SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
705     } else {
706       MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
707       SizeInBits = MemberTy->getSizeInBits();
708       IsBitField = MemberTy->isBitField();
709     }
710 
711     if (!IsBitField) {
712       if (SizeInBits > 64)
713         report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
714       return 64 - SizeInBits;
715     }
716 
717     unsigned SBitOffset, NextSBitOffset;
718     GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
719     if (NextSBitOffset - SBitOffset > 64)
720       report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
721 
722     return 64 - SizeInBits;
723   }
724 
725   llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
726 }
727 
728 bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
729   // This is called in error return path, no need to maintain CallStack.
730   while (CallStack.size()) {
731     auto StackElem = CallStack.top();
732     if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
733       return true;
734     CallStack.pop();
735   }
736   return false;
737 }
738 
739 /// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
740 /// pointer of the first preserve_*_access_index call, and construct the access
741 /// string, which will be the name of a global variable.
742 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
743                                                         CallInfo &CInfo,
744                                                         std::string &AccessKey,
745                                                         MDNode *&TypeMeta) {
746   Value *Base = nullptr;
747   std::string TypeName;
748   CallInfoStack CallStack;
749 
750   // Put the access chain into a stack with the top as the head of the chain.
751   while (Call) {
752     CallStack.push(std::make_pair(Call, CInfo));
753     CInfo = AIChain[Call].second;
754     Call = AIChain[Call].first;
755   }
756 
757   // The access offset from the base of the head of chain is also
758   // calculated here as all debuginfo types are available.
759 
760   // Get type name and calculate the first index.
761   // We only want to get type name from typedef, structure or union.
762   // If user wants a relocation like
763   //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
764   // or
765   //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
766   // we will skip them.
767   uint32_t FirstIndex = 0;
768   uint32_t PatchImm = 0; // AccessOffset or the requested field info
769   uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
770   while (CallStack.size()) {
771     auto StackElem = CallStack.top();
772     Call = StackElem.first;
773     CInfo = StackElem.second;
774 
775     if (!Base)
776       Base = CInfo.Base;
777 
778     DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
779                                               false);
780     DIType *Ty = stripQualifiers(PossibleTypeDef);
781     if (CInfo.Kind == BPFPreserveUnionAI ||
782         CInfo.Kind == BPFPreserveStructAI) {
783       // struct or union type. If the typedef is in the metadata, always
784       // use the typedef.
785       TypeName = std::string(PossibleTypeDef->getName());
786       TypeMeta = PossibleTypeDef;
787       PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
788       break;
789     }
790 
791     assert(CInfo.Kind == BPFPreserveArrayAI);
792 
793     // Array entries will always be consumed for accumulative initial index.
794     CallStack.pop();
795 
796     // BPFPreserveArrayAI
797     uint64_t AccessIndex = CInfo.AccessIndex;
798 
799     DIType *BaseTy = nullptr;
800     bool CheckElemType = false;
801     if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
802       // array type
803       assert(CTy->getTag() == dwarf::DW_TAG_array_type);
804 
805 
806       FirstIndex += AccessIndex * calcArraySize(CTy, 1);
807       BaseTy = stripQualifiers(CTy->getBaseType());
808       CheckElemType = CTy->getElements().size() == 1;
809     } else {
810       // pointer type
811       auto *DTy = cast<DIDerivedType>(Ty);
812       assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
813 
814       BaseTy = stripQualifiers(DTy->getBaseType());
815       CTy = dyn_cast<DICompositeType>(BaseTy);
816       if (!CTy) {
817         CheckElemType = true;
818       } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
819         FirstIndex += AccessIndex;
820         CheckElemType = true;
821       } else {
822         FirstIndex += AccessIndex * calcArraySize(CTy, 0);
823       }
824     }
825 
826     if (CheckElemType) {
827       auto *CTy = dyn_cast<DICompositeType>(BaseTy);
828       if (!CTy) {
829         if (HasPreserveFieldInfoCall(CallStack))
830           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
831         return nullptr;
832       }
833 
834       unsigned CTag = CTy->getTag();
835       if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
836         TypeName = std::string(CTy->getName());
837       } else {
838         if (HasPreserveFieldInfoCall(CallStack))
839           report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
840         return nullptr;
841       }
842       TypeMeta = CTy;
843       PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
844       break;
845     }
846   }
847   assert(TypeName.size());
848   AccessKey += std::to_string(FirstIndex);
849 
850   // Traverse the rest of access chain to complete offset calculation
851   // and access key construction.
852   while (CallStack.size()) {
853     auto StackElem = CallStack.top();
854     CInfo = StackElem.second;
855     CallStack.pop();
856 
857     if (CInfo.Kind == BPFPreserveFieldInfoAI) {
858       InfoKind = CInfo.AccessIndex;
859       break;
860     }
861 
862     // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
863     // the action will be extracting field info.
864     if (CallStack.size()) {
865       auto StackElem2 = CallStack.top();
866       CallInfo CInfo2 = StackElem2.second;
867       if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
868         InfoKind = CInfo2.AccessIndex;
869         assert(CallStack.size() == 1);
870       }
871     }
872 
873     // Access Index
874     uint64_t AccessIndex = CInfo.AccessIndex;
875     AccessKey += ":" + std::to_string(AccessIndex);
876 
877     MDNode *MDN = CInfo.Metadata;
878     // At this stage, it cannot be pointer type.
879     auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
880     PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
881                             CInfo.RecordAlignment);
882   }
883 
884   // Access key is the
885   //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
886   //   access string,
887   // uniquely identifying one relocation.
888   // The prefix "llvm." indicates this is a temporary global, which should
889   // not be emitted to ELF file.
890   AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
891               std::to_string(PatchImm) + "$" + AccessKey;
892 
893   return Base;
894 }
895 
896 MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
897                                                   CallInfo &CInfo,
898                                                   std::string &AccessKey,
899                                                   bool &IsInt32Ret) {
900   DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
901   assert(!Ty->getName().empty());
902 
903   int64_t PatchImm;
904   std::string AccessStr("0");
905   if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_EXISTENCE) {
906     PatchImm = 1;
907   } else if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_SIZE) {
908     // typedef debuginfo type has size 0, get the eventual base type.
909     DIType *BaseTy = stripQualifiers(Ty, true);
910     PatchImm = BaseTy->getSizeInBits() / 8;
911   } else {
912     // ENUM_VALUE_EXISTENCE and ENUM_VALUE
913     IsInt32Ret = false;
914 
915     const auto *CE = cast<ConstantExpr>(Call->getArgOperand(1));
916     const GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
917     assert(GV->hasInitializer());
918     const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
919     assert(DA->isString());
920     StringRef ValueStr = DA->getAsString();
921 
922     // ValueStr format: <EnumeratorStr>:<Value>
923     size_t Separator = ValueStr.find_first_of(':');
924     StringRef EnumeratorStr = ValueStr.substr(0, Separator);
925 
926     // Find enumerator index in the debuginfo
927     DIType *BaseTy = stripQualifiers(Ty, true);
928     const auto *CTy = cast<DICompositeType>(BaseTy);
929     assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type);
930     int EnumIndex = 0;
931     for (const auto Element : CTy->getElements()) {
932       const auto *Enum = cast<DIEnumerator>(Element);
933       if (Enum->getName() == EnumeratorStr) {
934         AccessStr = std::to_string(EnumIndex);
935         break;
936       }
937       EnumIndex++;
938     }
939 
940     if (CInfo.AccessIndex == BPFCoreSharedInfo::ENUM_VALUE) {
941       StringRef EValueStr = ValueStr.substr(Separator + 1);
942       PatchImm = std::stoll(std::string(EValueStr));
943     } else {
944       PatchImm = 1;
945     }
946   }
947 
948   AccessKey = "llvm." + Ty->getName().str() + ":" +
949               std::to_string(CInfo.AccessIndex) + std::string(":") +
950               std::to_string(PatchImm) + std::string("$") + AccessStr;
951 
952   return Ty;
953 }
954 
955 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
956 /// transformation to a chain of relocable GEPs.
957 bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
958                                                 CallInfo &CInfo) {
959   std::string AccessKey;
960   MDNode *TypeMeta;
961   Value *Base = nullptr;
962   bool IsInt32Ret;
963 
964   IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
965   if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
966     TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
967   } else {
968     Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
969     if (!Base)
970       return false;
971   }
972 
973   BasicBlock *BB = Call->getParent();
974   GlobalVariable *GV;
975 
976   if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
977     IntegerType *VarType;
978     if (IsInt32Ret)
979       VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
980     else
981       VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
982 
983     GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
984                             NULL, AccessKey);
985     GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
986     GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
987     GEPGlobals[AccessKey] = GV;
988   } else {
989     GV = GEPGlobals[AccessKey];
990   }
991 
992   if (CInfo.Kind == BPFPreserveFieldInfoAI) {
993     // Load the global variable which represents the returned field info.
994     LoadInst *LDInst;
995     if (IsInt32Ret)
996       LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call);
997     else
998       LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
999 
1000     Instruction *PassThroughInst =
1001         BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1002     Call->replaceAllUsesWith(PassThroughInst);
1003     Call->eraseFromParent();
1004     return true;
1005   }
1006 
1007   // For any original GEP Call and Base %2 like
1008   //   %4 = bitcast %struct.net_device** %dev1 to i64*
1009   // it is transformed to:
1010   //   %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1011   //   %7 = bitcast %struct.sk_buff* %2 to i8*
1012   //   %8 = getelementptr i8, i8* %7, %6
1013   //   %9 = bitcast i8* %8 to i64*
1014   //   using %9 instead of %4
1015   // The original Call inst is removed.
1016 
1017   // Load the global variable.
1018   auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1019 
1020   // Generate a BitCast
1021   auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
1022   BB->getInstList().insert(Call->getIterator(), BCInst);
1023 
1024   // Generate a GetElementPtr
1025   auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1026                                         BCInst, LDInst);
1027   BB->getInstList().insert(Call->getIterator(), GEP);
1028 
1029   // Generate a BitCast
1030   auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1031   BB->getInstList().insert(Call->getIterator(), BCInst2);
1032 
1033   // For the following code,
1034   //    Block0:
1035   //      ...
1036   //      if (...) goto Block1 else ...
1037   //    Block1:
1038   //      %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1039   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1040   //      %8 = getelementptr i8, i8* %7, %6
1041   //      ...
1042   //      goto CommonExit
1043   //    Block2:
1044   //      ...
1045   //      if (...) goto Block3 else ...
1046   //    Block3:
1047   //      %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1048   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1049   //      %8 = getelementptr i8, i8* %7, %6
1050   //      ...
1051   //      goto CommonExit
1052   //    CommonExit
1053   // SimplifyCFG may generate:
1054   //    Block0:
1055   //      ...
1056   //      if (...) goto Block_Common else ...
1057   //     Block2:
1058   //       ...
1059   //      if (...) goto Block_Common else ...
1060   //    Block_Common:
1061   //      PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1062   //      %6 = load PHI
1063   //      %7 = bitcast %struct.sk_buff* %2 to i8*
1064   //      %8 = getelementptr i8, i8* %7, %6
1065   //      ...
1066   //      goto CommonExit
1067   //  For the above code, we cannot perform proper relocation since
1068   //  "load PHI" has two possible relocations.
1069   //
1070   // To prevent above tail merging, we use __builtin_bpf_passthrough()
1071   // where one of its parameters is a seq_num. Since two
1072   // __builtin_bpf_passthrough() funcs will always have different seq_num,
1073   // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1074   // removed in the beginning of Target IR passes.
1075   //
1076   // This approach is also used in other places when global var
1077   // representing a relocation is used.
1078   Instruction *PassThroughInst =
1079       BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1080   Call->replaceAllUsesWith(PassThroughInst);
1081   Call->eraseFromParent();
1082 
1083   return true;
1084 }
1085 
1086 bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1087   bool Transformed = false;
1088 
1089   // Collect PreserveDIAccessIndex Intrinsic call chains.
1090   // The call chains will be used to generate the access
1091   // patterns similar to GEP.
1092   collectAICallChains(F);
1093 
1094   for (auto &C : BaseAICalls)
1095     Transformed = transformGEPChain(C.first, C.second) || Transformed;
1096 
1097   return removePreserveAccessIndexIntrinsic(F) || Transformed;
1098 }
1099