1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions,
12 /// combined with a new form of predication called tail-predication, can be used
13 /// to provide implicit vector predication within a low-overhead loop.
14 /// This is implicit because the predicate of active/inactive lanes is
15 /// calculated by hardware, and thus does not need to be explicitly passed
16 /// to vector instructions. The instructions responsible for this are the
17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18 /// the total number of data elements processed by the loop. The loop-end
19 /// LETP instruction is responsible for decrementing and setting the remaining
20 /// elements to be processed and generating the mask of active lanes.
21 ///
22 /// The HardwareLoops pass inserts intrinsics identifying loops that the
23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
24 /// responsible for generating a vectorized loop in which the lanes are
25 /// predicated upon the iteration counter. This pass looks at these predicated
26 /// vector loops, that are targets for low-overhead loops, and prepares it for
27 /// code generation. Once the vectorizer has produced a masked loop, there's a
28 /// couple of final forms:
29 /// - A tail-predicated loop, with implicit predication.
30 /// - A loop containing multiple VCPT instructions, predicating multiple VPT
31 ///   blocks of instructions operating on different vector types.
32 ///
33 /// This pass:
34 /// 1) Checks if the predicates of the masked load/store instructions are
35 ///    generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes
36 ///    the Backedge Taken Count (BTC) of the scalar loop as its second argument,
37 ///    which we extract to set up the number of elements processed by the loop.
38 /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target
39 ///    specific VCTP intrinsic to represent the effect of tail predication.
40 ///    This will be picked up by the ARM Low-overhead loop pass, which performs
41 ///    the final transformation to a DLSTP or WLSTP tail-predicated loop.
42 
43 #include "ARM.h"
44 #include "ARMSubtarget.h"
45 #include "ARMTargetTransformInfo.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/ScalarEvolution.h"
49 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "mve-tail-predication"
66 #define DESC "Transform predicated vector loops to use MVE tail predication"
67 
68 cl::opt<TailPredication::Mode> EnableTailPredication(
69    "tail-predication", cl::desc("MVE tail-predication options"),
70    cl::init(TailPredication::Disabled),
71    cl::values(clEnumValN(TailPredication::Disabled, "disabled",
72                          "Don't tail-predicate loops"),
73               clEnumValN(TailPredication::EnabledNoReductions,
74                          "enabled-no-reductions",
75                          "Enable tail-predication, but not for reduction loops"),
76               clEnumValN(TailPredication::Enabled,
77                          "enabled",
78                          "Enable tail-predication, including reduction loops"),
79               clEnumValN(TailPredication::ForceEnabledNoReductions,
80                          "force-enabled-no-reductions",
81                          "Enable tail-predication, but not for reduction loops, "
82                          "and force this which might be unsafe"),
83               clEnumValN(TailPredication::ForceEnabled,
84                          "force-enabled",
85                          "Enable tail-predication, including reduction loops, "
86                          "and force this which might be unsafe")));
87 
88 
89 namespace {
90 
91 class MVETailPredication : public LoopPass {
92   SmallVector<IntrinsicInst*, 4> MaskedInsts;
93   Loop *L = nullptr;
94   ScalarEvolution *SE = nullptr;
95   TargetTransformInfo *TTI = nullptr;
96   const ARMSubtarget *ST = nullptr;
97 
98 public:
99   static char ID;
100 
101   MVETailPredication() : LoopPass(ID) { }
102 
103   void getAnalysisUsage(AnalysisUsage &AU) const override {
104     AU.addRequired<ScalarEvolutionWrapperPass>();
105     AU.addRequired<LoopInfoWrapperPass>();
106     AU.addRequired<TargetPassConfig>();
107     AU.addRequired<TargetTransformInfoWrapperPass>();
108     AU.addPreserved<LoopInfoWrapperPass>();
109     AU.setPreservesCFG();
110   }
111 
112   bool runOnLoop(Loop *L, LPPassManager&) override;
113 
114 private:
115   /// Perform the relevant checks on the loop and convert if possible.
116   bool TryConvert(Value *TripCount);
117 
118   /// Return whether this is a vectorized loop, that contains masked
119   /// load/stores.
120   bool IsPredicatedVectorLoop();
121 
122   /// Perform checks on the arguments of @llvm.get.active.lane.mask
123   /// intrinsic: check if the first is a loop induction variable, and for the
124   /// the second check that no overflow can occur in the expression that use
125   /// this backedge-taken count.
126   bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount,
127                         FixedVectorType *VecTy);
128 
129   /// Insert the intrinsic to represent the effect of tail predication.
130   void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount,
131                            FixedVectorType *VecTy);
132 
133   /// Rematerialize the iteration count in exit blocks, which enables
134   /// ARMLowOverheadLoops to better optimise away loop update statements inside
135   /// hardware-loops.
136   void RematerializeIterCount();
137 };
138 
139 } // end namespace
140 
141 static bool IsDecrement(Instruction &I) {
142   auto *Call = dyn_cast<IntrinsicInst>(&I);
143   if (!Call)
144     return false;
145 
146   Intrinsic::ID ID = Call->getIntrinsicID();
147   return ID == Intrinsic::loop_decrement_reg;
148 }
149 
150 static bool IsMasked(Instruction *I) {
151   auto *Call = dyn_cast<IntrinsicInst>(I);
152   if (!Call)
153     return false;
154 
155   Intrinsic::ID ID = Call->getIntrinsicID();
156   // TODO: Support gather/scatter expand/compress operations.
157   return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
158 }
159 
160 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
161   if (skipLoop(L) || !EnableTailPredication)
162     return false;
163 
164   MaskedInsts.clear();
165   Function &F = *L->getHeader()->getParent();
166   auto &TPC = getAnalysis<TargetPassConfig>();
167   auto &TM = TPC.getTM<TargetMachine>();
168   ST = &TM.getSubtarget<ARMSubtarget>(F);
169   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
170   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
171   this->L = L;
172 
173   // The MVE and LOB extensions are combined to enable tail-predication, but
174   // there's nothing preventing us from generating VCTP instructions for v8.1m.
175   if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
176     LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
177     return false;
178   }
179 
180   BasicBlock *Preheader = L->getLoopPreheader();
181   if (!Preheader)
182     return false;
183 
184   auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
185     for (auto &I : *BB) {
186       auto *Call = dyn_cast<IntrinsicInst>(&I);
187       if (!Call)
188         continue;
189 
190       Intrinsic::ID ID = Call->getIntrinsicID();
191       if (ID == Intrinsic::set_loop_iterations ||
192           ID == Intrinsic::test_set_loop_iterations)
193         return cast<IntrinsicInst>(&I);
194     }
195     return nullptr;
196   };
197 
198   // Look for the hardware loop intrinsic that sets the iteration count.
199   IntrinsicInst *Setup = FindLoopIterations(Preheader);
200 
201   // The test.set iteration could live in the pre-preheader.
202   if (!Setup) {
203     if (!Preheader->getSinglePredecessor())
204       return false;
205     Setup = FindLoopIterations(Preheader->getSinglePredecessor());
206     if (!Setup)
207       return false;
208   }
209 
210   // Search for the hardware loop intrinic that decrements the loop counter.
211   IntrinsicInst *Decrement = nullptr;
212   for (auto *BB : L->getBlocks()) {
213     for (auto &I : *BB) {
214       if (IsDecrement(I)) {
215         Decrement = cast<IntrinsicInst>(&I);
216         break;
217       }
218     }
219   }
220 
221   if (!Decrement)
222     return false;
223 
224   LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
225              << *Decrement << "\n");
226 
227   if (!TryConvert(Setup->getArgOperand(0))) {
228     LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
229     return false;
230   }
231 
232   return true;
233 }
234 
235 static FixedVectorType *getVectorType(IntrinsicInst *I) {
236   unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
237   auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
238   auto *VecTy = cast<FixedVectorType>(PtrTy->getElementType());
239   assert(VecTy && "No scalable vectors expected here");
240   return VecTy;
241 }
242 
243 bool MVETailPredication::IsPredicatedVectorLoop() {
244   // Check that the loop contains at least one masked load/store intrinsic.
245   // We only support 'normal' vector instructions - other than masked
246   // load/stores.
247   bool ActiveLaneMask = false;
248   for (auto *BB : L->getBlocks()) {
249     for (auto &I : *BB) {
250       auto *Int = dyn_cast<IntrinsicInst>(&I);
251       if (!Int)
252         continue;
253 
254       switch (Int->getIntrinsicID()) {
255       case Intrinsic::get_active_lane_mask:
256         ActiveLaneMask = true;
257         continue;
258       case Intrinsic::sadd_sat:
259       case Intrinsic::uadd_sat:
260       case Intrinsic::ssub_sat:
261       case Intrinsic::usub_sat:
262       case Intrinsic::experimental_vector_reduce_add:
263         continue;
264       case Intrinsic::fma:
265       case Intrinsic::trunc:
266       case Intrinsic::rint:
267       case Intrinsic::round:
268       case Intrinsic::floor:
269       case Intrinsic::ceil:
270       case Intrinsic::fabs:
271         if (ST->hasMVEFloatOps())
272           continue;
273         break;
274       default:
275         break;
276       }
277 
278       if (IsMasked(&I)) {
279         auto *VecTy = getVectorType(Int);
280         unsigned Lanes = VecTy->getNumElements();
281         unsigned ElementWidth = VecTy->getScalarSizeInBits();
282         // MVE vectors are 128-bit, but don't support 128 x i1.
283         // TODO: Can we support vectors larger than 128-bits?
284         unsigned MaxWidth = TTI->getRegisterBitWidth(true);
285         if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
286           return false;
287         MaskedInsts.push_back(cast<IntrinsicInst>(&I));
288         continue;
289       }
290 
291       for (const Use &U : Int->args()) {
292         if (isa<VectorType>(U->getType()))
293           return false;
294       }
295     }
296   }
297 
298   if (!ActiveLaneMask) {
299     LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n");
300     return false;
301   }
302   return !MaskedInsts.empty();
303 }
304 
305 // Look through the exit block to see whether there's a duplicate predicate
306 // instruction. This can happen when we need to perform a select on values
307 // from the last and previous iteration. Instead of doing a straight
308 // replacement of that predicate with the vctp, clone the vctp and place it
309 // in the block. This means that the VPR doesn't have to be live into the
310 // exit block which should make it easier to convert this loop into a proper
311 // tail predicated loop.
312 static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) {
313   BasicBlock *Exit = L->getUniqueExitBlock();
314   if (!Exit) {
315     LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
316     return;
317   }
318 
319   // Drop references and add operands to check for dead.
320   SmallPtrSet<Instruction*, 4> Dead;
321   while (!MaybeDead.empty()) {
322     auto *I = MaybeDead.front();
323     MaybeDead.remove(I);
324     if (I->hasNUsesOrMore(1))
325       continue;
326 
327     for (auto &U : I->operands())
328       if (auto *OpI = dyn_cast<Instruction>(U))
329         MaybeDead.insert(OpI);
330 
331     Dead.insert(I);
332   }
333 
334   for (auto *I : Dead) {
335     LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
336     I->eraseFromParent();
337   }
338 
339   for (auto I : L->blocks())
340     DeleteDeadPHIs(I);
341 }
342 
343 // The active lane intrinsic has this form:
344 //
345 //    @llvm.get.active.lane.mask(IV, BTC)
346 //
347 // Here we perform checks that this intrinsic behaves as expected,
348 // which means:
349 //
350 // 1) The element count, which is calculated with BTC + 1, cannot overflow.
351 // 2) The element count needs to be sufficiently large that the decrement of
352 //    element counter doesn't overflow, which means that we need to prove:
353 //        ceil(ElementCount / VectorWidth) >= TripCount
354 //    by rounding up ElementCount up:
355 //        ((ElementCount + (VectorWidth - 1)) / VectorWidth
356 //    and evaluate if expression isKnownNonNegative:
357 //        (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
358 // 3) The IV must be an induction phi with an increment equal to the
359 //    vector width.
360 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
361     Value *TripCount, FixedVectorType *VecTy) {
362   bool ForceTailPredication =
363     EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
364     EnableTailPredication == TailPredication::ForceEnabled;
365 
366   // 1) Test whether entry to the loop is protected by a conditional
367   // BTC + 1 < 0. In other words, if the scalar trip count overflows,
368   // becomes negative, we shouldn't enter the loop and creating
369   // tripcount expression BTC + 1 is not safe. So, check that BTC
370   // isn't max. This is evaluated in unsigned, because the semantics
371   // of @get.active.lane.mask is a ULE comparison.
372   auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1);
373   auto *BTC = SE->getSCEV(BackedgeTakenCount);
374   auto *MaxBTC = SE->getConstantMaxBackedgeTakenCount(L);
375 
376   if (isa<SCEVCouldNotCompute>(MaxBTC)) {
377     LLVM_DEBUG(dbgs() << "ARM TP: Can't compute SCEV BTC expression: ";
378                BTC->dump());
379     return false;
380   }
381 
382   APInt MaxInt = APInt(BTC->getType()->getScalarSizeInBits(), ~0);
383   if (cast<SCEVConstant>(MaxBTC)->getAPInt().eq(MaxInt) &&
384       !ForceTailPredication) {
385     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be int max: ";
386                BTC->dump());
387     return false;
388   }
389 
390   // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow:
391   //
392   //      (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
393   //
394   // 2.1) First prove overflow can't happen in:
395   //
396   //      ElementCount + (VectorWidth - 1)
397   //
398   // Because of a lack of context, it is difficult to get a useful bounds on
399   // this expression. But since ElementCount uses the same variables as the
400   // TripCount (TC), for which we can find meaningful value ranges, we use that
401   // instead and assert that:
402   //
403   //     upperbound(TC) <= UINT_MAX - VectorWidth
404   //
405   auto *TC = SE->getSCEV(TripCount);
406   unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits();
407   int VectorWidth = VecTy->getNumElements();
408   auto Diff =  APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth);
409   uint64_t MaxMinusVW = Diff.getZExtValue();
410   uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue();
411 
412   if (UpperboundTC > MaxMinusVW && !ForceTailPredication) {
413     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n";
414                dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n";
415                dbgs() << UpperboundTC << " <= " << MaxMinusVW << " == false\n";);
416     return false;
417   }
418 
419   // 2.2) Make sure overflow doesn't happen in final expression:
420   //  (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount,
421   // To do this, compare the full ranges of these subexpressions:
422   //
423   //     Range(Ceil) <= Range(TC)
424   //
425   // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime
426   // values (and not constants), we have to compensate for the lowerbound value
427   // range to be off by 1. The reason is that BTC lives in the preheader in
428   // this form:
429   //
430   //     %trip.count.minus = add nsw nuw i32 %N, -1
431   //
432   // For the loop to be executed, %N has to be >= 1 and as a result the value
433   // range of %trip.count.minus has a lower bound of 0. Value %TC has this form:
434   //
435   //     %5 = add nuw nsw i32 %4, 1
436   //     call void @llvm.set.loop.iterations.i32(i32 %5)
437   //
438   // where %5 is some expression using %N, which needs to have a lower bound of
439   // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set,
440   // we first add 0 to TC such that we can do the <= comparison on both sets.
441   //
442   auto *One = SE->getOne(TripCount->getType());
443   // ElementCount = BTC + 1
444   auto *ElementCount = SE->getAddExpr(BTC, One);
445   // Tmp = ElementCount + (VW-1)
446   auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount,
447       SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
448   // Ceil = ElementCount + (VW-1) / VW
449   auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1,
450       SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)));
451 
452   ConstantRange RangeCeil = SE->getSignedRange(Ceil) ;
453   ConstantRange RangeTC = SE->getSignedRange(TC) ;
454   if (!RangeTC.isSingleElement()) {
455     auto ZeroRange =
456         ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0));
457     RangeTC = RangeTC.unionWith(ZeroRange);
458   }
459   if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) {
460     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n");
461     return false;
462   }
463 
464   // 3) Find out if IV is an induction phi. Note that we can't use Loop
465   // helpers here to get the induction variable, because the hardware loop is
466   // no longer in loopsimplify form, and also the hwloop intrinsic uses a
467   // different counter. Using SCEV, we check that the induction is of the
468   // form i = i + 4, where the increment must be equal to the VectorWidth.
469   auto *IV = ActiveLaneMask->getOperand(0);
470   auto *IVExpr = SE->getSCEV(IV);
471   auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
472   if (!AddExpr) {
473     LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
474     return false;
475   }
476   // Check that this AddRec is associated with this loop.
477   if (AddExpr->getLoop() != L) {
478     LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
479     return false;
480   }
481   auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
482   if (!Step) {
483     LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
484                AddExpr->getOperand(1)->dump());
485     return false;
486   }
487   auto StepValue = Step->getValue()->getSExtValue();
488   if (VectorWidth == StepValue)
489     return true;
490 
491   LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match "
492              "vector width " << VectorWidth << "\n");
493 
494   return false;
495 }
496 
497 // Materialize NumElements in the preheader block.
498 static Value *getNumElements(BasicBlock *Preheader, Value *BTC) {
499   // First, check the preheader if it not already exist:
500   //
501   // preheader:
502   //    %BTC = add i32 %N, -1
503   //    ..
504   // vector.body:
505   //
506   // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1,
507   // but instead can just return %N.
508   for (auto &I : *Preheader) {
509     if (I.getOpcode() != Instruction::Add || &I != BTC)
510       continue;
511     ConstantInt *MinusOne = nullptr;
512     if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1))))
513       continue;
514     if (MinusOne->getSExtValue() == -1) {
515       LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n");
516       return I.getOperand(0);
517     }
518   }
519 
520   // But we do need to materialise BTC if it is not already there,
521   // e.g. if it is a constant.
522   IRBuilder<> Builder(Preheader->getTerminator());
523   Value *NumElements = Builder.CreateAdd(BTC,
524         ConstantInt::get(BTC->getType(), 1), "num.elements");
525   LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n");
526   return NumElements;
527 }
528 
529 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
530     Value *TripCount, FixedVectorType *VecTy) {
531   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
532   Module *M = L->getHeader()->getModule();
533   Type *Ty = IntegerType::get(M->getContext(), 32);
534   unsigned VectorWidth = VecTy->getNumElements();
535 
536   // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand,
537   // is one less than the trip count. So we need to find or create
538   // %num.elements = %BTC + 1 in the preheader.
539   Value *BTC = ActiveLaneMask->getOperand(1);
540   Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
541   Value *NumElements = getNumElements(L->getLoopPreheader(), BTC);
542 
543   // Insert a phi to count the number of elements processed by the loop.
544   Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI()  );
545   PHINode *Processed = Builder.CreatePHI(Ty, 2);
546   Processed->addIncoming(NumElements, L->getLoopPreheader());
547 
548   // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus
549   // represent the effect of tail predication.
550   Builder.SetInsertPoint(ActiveLaneMask);
551   ConstantInt *Factor =
552     ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
553 
554   Intrinsic::ID VCTPID;
555   switch (VectorWidth) {
556   default:
557     llvm_unreachable("unexpected number of lanes");
558   case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
559   case 8:  VCTPID = Intrinsic::arm_mve_vctp16; break;
560   case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
561 
562     // FIXME: vctp64 currently not supported because the predicate
563     // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
564     // type, so problems happen at isel time.
565     // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
566     // purposes, but takes a v4i1 instead of a v2i1.
567   }
568   Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
569   Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
570   ActiveLaneMask->replaceAllUsesWith(VCTPCall);
571 
572   // Add the incoming value to the new phi.
573   // TODO: This add likely already exists in the loop.
574   Value *Remaining = Builder.CreateSub(Processed, Factor);
575   Processed->addIncoming(Remaining, L->getLoopLatch());
576   LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
577              << *Processed << "\n"
578              << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
579 }
580 
581 bool MVETailPredication::TryConvert(Value *TripCount) {
582   if (!IsPredicatedVectorLoop()) {
583     LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
584     return false;
585   }
586 
587   LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
588   SetVector<Instruction*> Predicates;
589 
590   // Walk through the masked intrinsics and try to find whether the predicate
591   // operand is generated by intrinsic @llvm.get.active.lane.mask().
592   for (auto *I : MaskedInsts) {
593     unsigned PredOp = I->getIntrinsicID() == Intrinsic::masked_load ? 2 : 3;
594     auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
595     if (!Predicate || Predicates.count(Predicate))
596       continue;
597 
598     auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate);
599     if (!ActiveLaneMask ||
600         ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask)
601       continue;
602 
603     Predicates.insert(Predicate);
604     LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
605                       << *ActiveLaneMask << "\n");
606 
607     auto *VecTy = getVectorType(I);
608     if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) {
609       LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
610       return false;
611     }
612     LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
613     InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy);
614   }
615 
616   Cleanup(Predicates, L);
617   return true;
618 }
619 
620 Pass *llvm::createMVETailPredicationPass() {
621   return new MVETailPredication();
622 }
623 
624 char MVETailPredication::ID = 0;
625 
626 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
627 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
628