1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead 11 /// branches to help accelerate DSP applications. These two extensions, 12 /// combined with a new form of predication called tail-predication, can be used 13 /// to provide implicit vector predication within a low-overhead loop. 14 /// This is implicit because the predicate of active/inactive lanes is 15 /// calculated by hardware, and thus does not need to be explicitly passed 16 /// to vector instructions. The instructions responsible for this are the 17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the 18 /// the total number of data elements processed by the loop. The loop-end 19 /// LETP instruction is responsible for decrementing and setting the remaining 20 /// elements to be processed and generating the mask of active lanes. 21 /// 22 /// The HardwareLoops pass inserts intrinsics identifying loops that the 23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is 24 /// responsible for generating a vectorized loop in which the lanes are 25 /// predicated upon the iteration counter. This pass looks at these predicated 26 /// vector loops, that are targets for low-overhead loops, and prepares it for 27 /// code generation. Once the vectorizer has produced a masked loop, there's a 28 /// couple of final forms: 29 /// - A tail-predicated loop, with implicit predication. 30 /// - A loop containing multiple VCPT instructions, predicating multiple VPT 31 /// blocks of instructions operating on different vector types. 32 /// 33 /// This pass: 34 /// 1) Checks if the predicates of the masked load/store instructions are 35 /// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes 36 /// the Backedge Taken Count (BTC) of the scalar loop as its second argument, 37 /// which we extract to set up the number of elements processed by the loop. 38 /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target 39 /// specific VCTP intrinsic to represent the effect of tail predication. 40 /// This will be picked up by the ARM Low-overhead loop pass, which performs 41 /// the final transformation to a DLSTP or WLSTP tail-predicated loop. 42 43 #include "ARM.h" 44 #include "ARMSubtarget.h" 45 #include "llvm/Analysis/LoopInfo.h" 46 #include "llvm/Analysis/LoopPass.h" 47 #include "llvm/Analysis/ScalarEvolution.h" 48 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/CodeGen/TargetPassConfig.h" 52 #include "llvm/IR/IRBuilder.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "mve-tail-predication" 65 #define DESC "Transform predicated vector loops to use MVE tail predication" 66 67 static cl::opt<bool> 68 ForceTailPredication("force-mve-tail-predication", cl::Hidden, cl::init(false), 69 cl::desc("Force MVE tail-predication even if it might be " 70 "unsafe (e.g. possible overflow in loop " 71 "counters)")); 72 73 cl::opt<bool> 74 DisableTailPredication("disable-mve-tail-predication", cl::Hidden, 75 cl::init(true), 76 cl::desc("Disable MVE Tail Predication")); 77 namespace { 78 79 class MVETailPredication : public LoopPass { 80 SmallVector<IntrinsicInst*, 4> MaskedInsts; 81 Loop *L = nullptr; 82 LoopInfo *LI = nullptr; 83 const DataLayout *DL; 84 DominatorTree *DT = nullptr; 85 ScalarEvolution *SE = nullptr; 86 TargetTransformInfo *TTI = nullptr; 87 TargetLibraryInfo *TLI = nullptr; 88 bool ClonedVCTPInExitBlock = false; 89 90 public: 91 static char ID; 92 93 MVETailPredication() : LoopPass(ID) { } 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.addRequired<ScalarEvolutionWrapperPass>(); 97 AU.addRequired<LoopInfoWrapperPass>(); 98 AU.addRequired<TargetPassConfig>(); 99 AU.addRequired<TargetTransformInfoWrapperPass>(); 100 AU.addRequired<DominatorTreeWrapperPass>(); 101 AU.addRequired<TargetLibraryInfoWrapperPass>(); 102 AU.addPreserved<LoopInfoWrapperPass>(); 103 AU.setPreservesCFG(); 104 } 105 106 bool runOnLoop(Loop *L, LPPassManager&) override; 107 108 private: 109 /// Perform the relevant checks on the loop and convert if possible. 110 bool TryConvert(Value *TripCount); 111 112 /// Return whether this is a vectorized loop, that contains masked 113 /// load/stores. 114 bool IsPredicatedVectorLoop(); 115 116 /// Perform checks on the arguments of @llvm.get.active.lane.mask 117 /// intrinsic: check if the first is a loop induction variable, and for the 118 /// the second check that no overflow can occur in the expression that use 119 /// this backedge-taken count. 120 bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount, 121 FixedVectorType *VecTy); 122 123 /// Insert the intrinsic to represent the effect of tail predication. 124 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount, 125 FixedVectorType *VecTy, 126 DenseMap<Instruction *, Instruction *> &NewPredicates); 127 128 /// Rematerialize the iteration count in exit blocks, which enables 129 /// ARMLowOverheadLoops to better optimise away loop update statements inside 130 /// hardware-loops. 131 void RematerializeIterCount(); 132 }; 133 134 } // end namespace 135 136 static bool IsDecrement(Instruction &I) { 137 auto *Call = dyn_cast<IntrinsicInst>(&I); 138 if (!Call) 139 return false; 140 141 Intrinsic::ID ID = Call->getIntrinsicID(); 142 return ID == Intrinsic::loop_decrement_reg; 143 } 144 145 static bool IsMasked(Instruction *I) { 146 auto *Call = dyn_cast<IntrinsicInst>(I); 147 if (!Call) 148 return false; 149 150 Intrinsic::ID ID = Call->getIntrinsicID(); 151 // TODO: Support gather/scatter expand/compress operations. 152 return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load; 153 } 154 155 void MVETailPredication::RematerializeIterCount() { 156 SmallVector<WeakTrackingVH, 16> DeadInsts; 157 SCEVExpander Rewriter(*SE, *DL, "mvetp"); 158 ReplaceExitVal ReplaceExitValue = AlwaysRepl; 159 160 formLCSSARecursively(*L, *DT, LI, SE); 161 rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, ReplaceExitValue, 162 DeadInsts); 163 } 164 165 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { 166 if (skipLoop(L) || DisableTailPredication) 167 return false; 168 169 MaskedInsts.clear(); 170 Function &F = *L->getHeader()->getParent(); 171 auto &TPC = getAnalysis<TargetPassConfig>(); 172 auto &TM = TPC.getTM<TargetMachine>(); 173 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 174 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 175 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 176 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 177 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 178 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 179 TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 180 DL = &L->getHeader()->getModule()->getDataLayout(); 181 this->L = L; 182 183 // The MVE and LOB extensions are combined to enable tail-predication, but 184 // there's nothing preventing us from generating VCTP instructions for v8.1m. 185 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { 186 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); 187 return false; 188 } 189 190 BasicBlock *Preheader = L->getLoopPreheader(); 191 if (!Preheader) 192 return false; 193 194 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { 195 for (auto &I : *BB) { 196 auto *Call = dyn_cast<IntrinsicInst>(&I); 197 if (!Call) 198 continue; 199 200 Intrinsic::ID ID = Call->getIntrinsicID(); 201 if (ID == Intrinsic::set_loop_iterations || 202 ID == Intrinsic::test_set_loop_iterations) 203 return cast<IntrinsicInst>(&I); 204 } 205 return nullptr; 206 }; 207 208 // Look for the hardware loop intrinsic that sets the iteration count. 209 IntrinsicInst *Setup = FindLoopIterations(Preheader); 210 211 // The test.set iteration could live in the pre-preheader. 212 if (!Setup) { 213 if (!Preheader->getSinglePredecessor()) 214 return false; 215 Setup = FindLoopIterations(Preheader->getSinglePredecessor()); 216 if (!Setup) 217 return false; 218 } 219 220 // Search for the hardware loop intrinic that decrements the loop counter. 221 IntrinsicInst *Decrement = nullptr; 222 for (auto *BB : L->getBlocks()) { 223 for (auto &I : *BB) { 224 if (IsDecrement(I)) { 225 Decrement = cast<IntrinsicInst>(&I); 226 break; 227 } 228 } 229 } 230 231 if (!Decrement) 232 return false; 233 234 ClonedVCTPInExitBlock = false; 235 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" 236 << *Decrement << "\n"); 237 238 if (!TryConvert(Setup->getArgOperand(0))) { 239 LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n"); 240 return false; 241 } 242 243 if (ClonedVCTPInExitBlock) 244 RematerializeIterCount(); 245 return true; 246 } 247 248 static FixedVectorType *getVectorType(IntrinsicInst *I) { 249 unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1; 250 auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType()); 251 auto *VecTy = cast<FixedVectorType>(PtrTy->getElementType()); 252 assert(VecTy && "No scalable vectors expected here"); 253 return VecTy; 254 } 255 256 bool MVETailPredication::IsPredicatedVectorLoop() { 257 // Check that the loop contains at least one masked load/store intrinsic. 258 // We only support 'normal' vector instructions - other than masked 259 // load/stores. 260 bool ActiveLaneMask = false; 261 for (auto *BB : L->getBlocks()) { 262 for (auto &I : *BB) { 263 auto *Int = dyn_cast<IntrinsicInst>(&I); 264 if (!Int) 265 continue; 266 267 switch (Int->getIntrinsicID()) { 268 case Intrinsic::get_active_lane_mask: 269 ActiveLaneMask = true; 270 LLVM_FALLTHROUGH; 271 case Intrinsic::fma: 272 case Intrinsic::sadd_sat: 273 case Intrinsic::uadd_sat: 274 continue; 275 default: 276 break; 277 } 278 279 if (IsMasked(&I)) { 280 auto *VecTy = getVectorType(Int); 281 unsigned Lanes = VecTy->getNumElements(); 282 unsigned ElementWidth = VecTy->getScalarSizeInBits(); 283 // MVE vectors are 128-bit, but don't support 128 x i1. 284 // TODO: Can we support vectors larger than 128-bits? 285 unsigned MaxWidth = TTI->getRegisterBitWidth(true); 286 if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) 287 return false; 288 MaskedInsts.push_back(cast<IntrinsicInst>(&I)); 289 continue; 290 } 291 292 for (const Use &U : Int->args()) { 293 if (isa<VectorType>(U->getType())) 294 return false; 295 } 296 } 297 } 298 299 if (!ActiveLaneMask) { 300 LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n"); 301 return false; 302 } 303 return !MaskedInsts.empty(); 304 } 305 306 // Look through the exit block to see whether there's a duplicate predicate 307 // instruction. This can happen when we need to perform a select on values 308 // from the last and previous iteration. Instead of doing a straight 309 // replacement of that predicate with the vctp, clone the vctp and place it 310 // in the block. This means that the VPR doesn't have to be live into the 311 // exit block which should make it easier to convert this loop into a proper 312 // tail predicated loop. 313 static bool Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates, 314 SetVector<Instruction*> &MaybeDead, Loop *L) { 315 BasicBlock *Exit = L->getUniqueExitBlock(); 316 if (!Exit) { 317 LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n"); 318 return false; 319 } 320 321 bool ClonedVCTPInExitBlock = false; 322 323 for (auto &Pair : NewPredicates) { 324 Instruction *OldPred = Pair.first; 325 Instruction *NewPred = Pair.second; 326 327 for (auto &I : *Exit) { 328 if (I.isSameOperationAs(OldPred)) { 329 Instruction *PredClone = NewPred->clone(); 330 PredClone->insertBefore(&I); 331 I.replaceAllUsesWith(PredClone); 332 MaybeDead.insert(&I); 333 ClonedVCTPInExitBlock = true; 334 LLVM_DEBUG(dbgs() << "ARM TP: replacing: "; I.dump(); 335 dbgs() << "ARM TP: with: "; PredClone->dump()); 336 break; 337 } 338 } 339 } 340 341 // Drop references and add operands to check for dead. 342 SmallPtrSet<Instruction*, 4> Dead; 343 while (!MaybeDead.empty()) { 344 auto *I = MaybeDead.front(); 345 MaybeDead.remove(I); 346 if (I->hasNUsesOrMore(1)) 347 continue; 348 349 for (auto &U : I->operands()) 350 if (auto *OpI = dyn_cast<Instruction>(U)) 351 MaybeDead.insert(OpI); 352 353 Dead.insert(I); 354 } 355 356 for (auto *I : Dead) { 357 LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump()); 358 I->eraseFromParent(); 359 } 360 361 for (auto I : L->blocks()) 362 DeleteDeadPHIs(I); 363 364 return ClonedVCTPInExitBlock; 365 } 366 367 // The active lane intrinsic has this form: 368 // 369 // @llvm.get.active.lane.mask(IV, BTC) 370 // 371 // Here we perform checks that this intrinsic behaves as expected, 372 // which means: 373 // 374 // 1) The element count, which is calculated with BTC + 1, cannot overflow. 375 // 2) The element count needs to be sufficiently large that the decrement of 376 // element counter doesn't overflow, which means that we need to prove: 377 // ceil(ElementCount / VectorWidth) >= TripCount 378 // by rounding up ElementCount up: 379 // ((ElementCount + (VectorWidth - 1)) / VectorWidth 380 // and evaluate if expression isKnownNonNegative: 381 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 382 // 3) The IV must be an induction phi with an increment equal to the 383 // vector width. 384 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, 385 Value *TripCount, FixedVectorType *VecTy) { 386 // 1) Test whether entry to the loop is protected by a conditional 387 // BTC + 1 < 0. In other words, if the scalar trip count overflows, 388 // becomes negative, we shouldn't enter the loop and creating 389 // tripcount expression BTC + 1 is not safe. So, check that BTC 390 // isn't max. This is evaluated in unsigned, because the semantics 391 // of @get.active.lane.mask is a ULE comparison. 392 393 int VectorWidth = VecTy->getNumElements(); 394 auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1); 395 auto *BTC = SE->getSCEV(BackedgeTakenCount); 396 397 if (!llvm::cannotBeMaxInLoop(BTC, L, *SE, false /*Signed*/) && 398 !ForceTailPredication) { 399 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be max: "; 400 BTC->dump()); 401 return false; 402 } 403 404 // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow: 405 // 406 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 407 // 408 // 2.1) First prove overflow can't happen in: 409 // 410 // ElementCount + (VectorWidth - 1) 411 // 412 // Because of a lack of context, it is difficult to get a useful bounds on 413 // this expression. But since ElementCount uses the same variables as the 414 // TripCount (TC), for which we can find meaningful value ranges, we use that 415 // instead and assert that: 416 // 417 // upperbound(TC) <= UINT_MAX - VectorWidth 418 // 419 auto *TC = SE->getSCEV(TripCount); 420 unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits(); 421 auto Diff = APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth); 422 uint64_t MaxMinusVW = Diff.getZExtValue(); 423 uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue(); 424 425 if (UpperboundTC > MaxMinusVW && !ForceTailPredication) { 426 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n"; 427 dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n"; 428 dbgs() << UpperboundTC << " <= " << MaxMinusVW << "== false\n";); 429 return false; 430 } 431 432 // 2.2) Make sure overflow doesn't happen in final expression: 433 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount, 434 // To do this, compare the full ranges of these subexpressions: 435 // 436 // Range(Ceil) <= Range(TC) 437 // 438 // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime 439 // values (and not constants), we have to compensate for the lowerbound value 440 // range to be off by 1. The reason is that BTC lives in the preheader in 441 // this form: 442 // 443 // %trip.count.minus = add nsw nuw i32 %N, -1 444 // 445 // For the loop to be executed, %N has to be >= 1 and as a result the value 446 // range of %trip.count.minus has a lower bound of 0. Value %TC has this form: 447 // 448 // %5 = add nuw nsw i32 %4, 1 449 // call void @llvm.set.loop.iterations.i32(i32 %5) 450 // 451 // where %5 is some expression using %N, which needs to have a lower bound of 452 // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set, 453 // we first add 0 to TC such that we can do the <= comparison on both sets. 454 // 455 auto *One = SE->getOne(TripCount->getType()); 456 // ElementCount = BTC + 1 457 auto *ElementCount = SE->getAddExpr(BTC, One); 458 // Tmp = ElementCount + (VW-1) 459 auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount, 460 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); 461 // Ceil = ElementCount + (VW-1) / VW 462 auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, 463 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth))); 464 465 ConstantRange RangeCeil = SE->getSignedRange(Ceil) ; 466 ConstantRange RangeTC = SE->getSignedRange(TC) ; 467 if (!RangeTC.isSingleElement()) { 468 auto ZeroRange = 469 ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0)); 470 RangeTC = RangeTC.unionWith(ZeroRange); 471 } 472 if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) { 473 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n"); 474 return false; 475 } 476 477 // 3) Find out if IV is an induction phi. Note that We can't use Loop 478 // helpers here to get the induction variable, because the hardware loop is 479 // no longer in loopsimplify form, and also the hwloop intrinsic use a 480 // different counter. Using SCEV, we check that the induction is of the 481 // form i = i + 4, where the increment must be equal to the VectorWidth. 482 auto *IV = ActiveLaneMask->getOperand(0); 483 auto *IVExpr = SE->getSCEV(IV); 484 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); 485 if (!AddExpr) { 486 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); 487 return false; 488 } 489 // Check that this AddRec is associated with this loop. 490 if (AddExpr->getLoop() != L) { 491 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); 492 return false; 493 } 494 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); 495 if (!Step) { 496 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; 497 AddExpr->getOperand(1)->dump()); 498 return false; 499 } 500 auto StepValue = Step->getValue()->getSExtValue(); 501 if (VectorWidth == StepValue) 502 return true; 503 504 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match " 505 "vector width " << VectorWidth << "\n"); 506 507 return false; 508 } 509 510 // Materialize NumElements in the preheader block. 511 static Value *getNumElements(BasicBlock *Preheader, Value *BTC) { 512 // First, check the preheader if it not already exist: 513 // 514 // preheader: 515 // %BTC = add i32 %N, -1 516 // .. 517 // vector.body: 518 // 519 // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1, 520 // but instead can just return %N. 521 for (auto &I : *Preheader) { 522 if (I.getOpcode() != Instruction::Add || &I != BTC) 523 continue; 524 ConstantInt *MinusOne = nullptr; 525 if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1)))) 526 continue; 527 if (MinusOne->getSExtValue() == -1) { 528 LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n"); 529 return I.getOperand(0); 530 } 531 } 532 533 // But we do need to materialise BTC if it is not already there, 534 // e.g. if it is a constant. 535 IRBuilder<> Builder(Preheader->getTerminator()); 536 Value *NumElements = Builder.CreateAdd(BTC, 537 ConstantInt::get(BTC->getType(), 1), "num.elements"); 538 LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n"); 539 return NumElements; 540 } 541 542 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, 543 Value *TripCount, FixedVectorType *VecTy, 544 DenseMap<Instruction*, Instruction*> &NewPredicates) { 545 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 546 Module *M = L->getHeader()->getModule(); 547 Type *Ty = IntegerType::get(M->getContext(), 32); 548 unsigned VectorWidth = VecTy->getNumElements(); 549 550 // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand, 551 // is one less than the trip count. So we need to find or create 552 // %num.elements = %BTC + 1 in the preheader. 553 Value *BTC = ActiveLaneMask->getOperand(1); 554 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 555 Value *NumElements = getNumElements(L->getLoopPreheader(), BTC); 556 557 // Insert a phi to count the number of elements processed by the loop. 558 Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() ); 559 PHINode *Processed = Builder.CreatePHI(Ty, 2); 560 Processed->addIncoming(NumElements, L->getLoopPreheader()); 561 562 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus 563 // represent the effect of tail predication. 564 Builder.SetInsertPoint(ActiveLaneMask); 565 ConstantInt *Factor = 566 ConstantInt::get(cast<IntegerType>(Ty), VectorWidth); 567 568 Intrinsic::ID VCTPID; 569 switch (VectorWidth) { 570 default: 571 llvm_unreachable("unexpected number of lanes"); 572 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; 573 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; 574 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; 575 576 // FIXME: vctp64 currently not supported because the predicate 577 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE 578 // type, so problems happen at isel time. 579 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics 580 // purposes, but takes a v4i1 instead of a v2i1. 581 } 582 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); 583 Value *VCTPCall = Builder.CreateCall(VCTP, Processed); 584 ActiveLaneMask->replaceAllUsesWith(VCTPCall); 585 NewPredicates[ActiveLaneMask] = cast<Instruction>(VCTPCall); 586 587 // Add the incoming value to the new phi. 588 // TODO: This add likely already exists in the loop. 589 Value *Remaining = Builder.CreateSub(Processed, Factor); 590 Processed->addIncoming(Remaining, L->getLoopLatch()); 591 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " 592 << *Processed << "\n" 593 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); 594 } 595 596 bool MVETailPredication::TryConvert(Value *TripCount) { 597 if (!IsPredicatedVectorLoop()) { 598 LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n"); 599 return false; 600 } 601 602 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); 603 604 SetVector<Instruction*> Predicates; 605 DenseMap<Instruction*, Instruction*> NewPredicates; 606 607 // Walk through the masked intrinsics and try to find whether the predicate 608 // operand is generated by intrinsic @llvm.get.active.lane.mask(). 609 for (auto *I : MaskedInsts) { 610 unsigned PredOp = I->getIntrinsicID() == Intrinsic::masked_load ? 2 : 3; 611 auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); 612 if (!Predicate || Predicates.count(Predicate)) 613 continue; 614 615 auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate); 616 if (!ActiveLaneMask || 617 ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask) 618 continue; 619 620 Predicates.insert(Predicate); 621 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " 622 << *ActiveLaneMask << "\n"); 623 624 auto *VecTy = getVectorType(I); 625 if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) { 626 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); 627 return false; 628 } 629 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n"); 630 InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy, NewPredicates); 631 } 632 633 // Now clean up. 634 ClonedVCTPInExitBlock = Cleanup(NewPredicates, Predicates, L); 635 return true; 636 } 637 638 Pass *llvm::createMVETailPredicationPass() { 639 return new MVETailPredication(); 640 } 641 642 char MVETailPredication::ID = 0; 643 644 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) 645 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) 646