1 //===- MVETailPredication.cpp - MVE Tail Predication ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead 11 /// branches to help accelerate DSP applications. These two extensions can be 12 /// combined to provide implicit vector predication within a low-overhead loop. 13 /// The HardwareLoops pass inserts intrinsics identifying loops that the 14 /// backend will attempt to convert into a low-overhead loop. The vectorizer is 15 /// responsible for generating a vectorized loop in which the lanes are 16 /// predicated upon the iteration counter. This pass looks at these predicated 17 /// vector loops, that are targets for low-overhead loops, and prepares it for 18 /// code generation. Once the vectorizer has produced a masked loop, there's a 19 /// couple of final forms: 20 /// - A tail-predicated loop, with implicit predication. 21 /// - A loop containing multiple VCPT instructions, predicating multiple VPT 22 /// blocks of instructions operating on different vector types. 23 24 #include "ARM.h" 25 #include "ARMSubtarget.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpander.h" 30 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/CodeGen/TargetPassConfig.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicsARM.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "mve-tail-predication" 43 #define DESC "Transform predicated vector loops to use MVE tail predication" 44 45 cl::opt<bool> 46 DisableTailPredication("disable-mve-tail-predication", cl::Hidden, 47 cl::init(true), 48 cl::desc("Disable MVE Tail Predication")); 49 namespace { 50 51 class MVETailPredication : public LoopPass { 52 SmallVector<IntrinsicInst*, 4> MaskedInsts; 53 Loop *L = nullptr; 54 ScalarEvolution *SE = nullptr; 55 TargetTransformInfo *TTI = nullptr; 56 57 public: 58 static char ID; 59 60 MVETailPredication() : LoopPass(ID) { } 61 62 void getAnalysisUsage(AnalysisUsage &AU) const override { 63 AU.addRequired<ScalarEvolutionWrapperPass>(); 64 AU.addRequired<LoopInfoWrapperPass>(); 65 AU.addRequired<TargetPassConfig>(); 66 AU.addRequired<TargetTransformInfoWrapperPass>(); 67 AU.addPreserved<LoopInfoWrapperPass>(); 68 AU.setPreservesCFG(); 69 } 70 71 bool runOnLoop(Loop *L, LPPassManager&) override; 72 73 private: 74 75 /// Perform the relevant checks on the loop and convert if possible. 76 bool TryConvert(Value *TripCount); 77 78 /// Return whether this is a vectorized loop, that contains masked 79 /// load/stores. 80 bool IsPredicatedVectorLoop(); 81 82 /// Compute a value for the total number of elements that the predicated 83 /// loop will process. 84 Value *ComputeElements(Value *TripCount, VectorType *VecTy); 85 86 /// Is the icmp that generates an i1 vector, based upon a loop counter 87 /// and a limit that is defined outside the loop. 88 bool isTailPredicate(Instruction *Predicate, Value *NumElements); 89 }; 90 91 } // end namespace 92 93 static bool IsDecrement(Instruction &I) { 94 auto *Call = dyn_cast<IntrinsicInst>(&I); 95 if (!Call) 96 return false; 97 98 Intrinsic::ID ID = Call->getIntrinsicID(); 99 return ID == Intrinsic::loop_decrement_reg; 100 } 101 102 static bool IsMasked(Instruction *I) { 103 auto *Call = dyn_cast<IntrinsicInst>(I); 104 if (!Call) 105 return false; 106 107 Intrinsic::ID ID = Call->getIntrinsicID(); 108 // TODO: Support gather/scatter expand/compress operations. 109 return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load; 110 } 111 112 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { 113 if (skipLoop(L) || DisableTailPredication) 114 return false; 115 116 Function &F = *L->getHeader()->getParent(); 117 auto &TPC = getAnalysis<TargetPassConfig>(); 118 auto &TM = TPC.getTM<TargetMachine>(); 119 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 120 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 121 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 122 this->L = L; 123 124 // The MVE and LOB extensions are combined to enable tail-predication, but 125 // there's nothing preventing us from generating VCTP instructions for v8.1m. 126 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { 127 LLVM_DEBUG(dbgs() << "TP: Not a v8.1m.main+mve target.\n"); 128 return false; 129 } 130 131 BasicBlock *Preheader = L->getLoopPreheader(); 132 if (!Preheader) 133 return false; 134 135 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { 136 for (auto &I : *BB) { 137 auto *Call = dyn_cast<IntrinsicInst>(&I); 138 if (!Call) 139 continue; 140 141 Intrinsic::ID ID = Call->getIntrinsicID(); 142 if (ID == Intrinsic::set_loop_iterations || 143 ID == Intrinsic::test_set_loop_iterations) 144 return cast<IntrinsicInst>(&I); 145 } 146 return nullptr; 147 }; 148 149 // Look for the hardware loop intrinsic that sets the iteration count. 150 IntrinsicInst *Setup = FindLoopIterations(Preheader); 151 152 // The test.set iteration could live in the pre- preheader. 153 if (!Setup) { 154 if (!Preheader->getSinglePredecessor()) 155 return false; 156 Setup = FindLoopIterations(Preheader->getSinglePredecessor()); 157 if (!Setup) 158 return false; 159 } 160 161 // Search for the hardware loop intrinic that decrements the loop counter. 162 IntrinsicInst *Decrement = nullptr; 163 for (auto *BB : L->getBlocks()) { 164 for (auto &I : *BB) { 165 if (IsDecrement(I)) { 166 Decrement = cast<IntrinsicInst>(&I); 167 break; 168 } 169 } 170 } 171 172 if (!Decrement) 173 return false; 174 175 LLVM_DEBUG(dbgs() << "TP: Running on Loop: " << *L 176 << *Setup << "\n" 177 << *Decrement << "\n"); 178 bool Changed = TryConvert(Setup->getArgOperand(0)); 179 return Changed; 180 } 181 182 bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) { 183 // Look for the following: 184 185 // %trip.count.minus.1 = add i32 %N, -1 186 // %broadcast.splatinsert10 = insertelement <4 x i32> undef, 187 // i32 %trip.count.minus.1, i32 0 188 // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10, 189 // <4 x i32> undef, 190 // <4 x i32> zeroinitializer 191 // ... 192 // ... 193 // %index = phi i32 194 // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0 195 // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, 196 // <4 x i32> undef, 197 // <4 x i32> zeroinitializer 198 // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3> 199 // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11 200 201 // And return whether V == %pred. 202 203 using namespace PatternMatch; 204 205 CmpInst::Predicate Pred; 206 Instruction *Shuffle = nullptr; 207 Instruction *Induction = nullptr; 208 209 // The vector icmp 210 if (!match(I, m_ICmp(Pred, m_Instruction(Induction), 211 m_Instruction(Shuffle))) || 212 Pred != ICmpInst::ICMP_ULE || !L->isLoopInvariant(Shuffle)) 213 return false; 214 215 // First find the stuff outside the loop which is setting up the limit 216 // vector.... 217 // The invariant shuffle that broadcast the limit into a vector. 218 Instruction *Insert = nullptr; 219 if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(), 220 m_Zero()))) 221 return false; 222 223 // Insert the limit into a vector. 224 Instruction *BECount = nullptr; 225 if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount), 226 m_Zero()))) 227 return false; 228 229 // The limit calculation, backedge count. 230 Value *TripCount = nullptr; 231 if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes()))) 232 return false; 233 234 if (TripCount != NumElements) 235 return false; 236 237 // Now back to searching inside the loop body... 238 // Find the add with takes the index iv and adds a constant vector to it. 239 Instruction *BroadcastSplat = nullptr; 240 Constant *Const = nullptr; 241 if (!match(Induction, m_Add(m_Instruction(BroadcastSplat), 242 m_Constant(Const)))) 243 return false; 244 245 // Check that we're adding <0, 1, 2, 3... 246 if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) { 247 for (unsigned i = 0; i < CDS->getNumElements(); ++i) { 248 if (CDS->getElementAsInteger(i) != i) 249 return false; 250 } 251 } else 252 return false; 253 254 // The shuffle which broadcasts the index iv into a vector. 255 if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(), 256 m_Zero()))) 257 return false; 258 259 // The insert element which initialises a vector with the index iv. 260 Instruction *IV = nullptr; 261 if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero()))) 262 return false; 263 264 // The index iv. 265 auto *Phi = dyn_cast<PHINode>(IV); 266 if (!Phi) 267 return false; 268 269 // TODO: Don't think we need to check the entry value. 270 Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader()); 271 if (!match(OnEntry, m_Zero())) 272 return false; 273 274 Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch()); 275 unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements(); 276 277 Instruction *LHS = nullptr; 278 if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes)))) 279 return false; 280 281 return LHS == Phi; 282 } 283 284 static VectorType* getVectorType(IntrinsicInst *I) { 285 unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1; 286 auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType()); 287 return cast<VectorType>(PtrTy->getElementType()); 288 } 289 290 bool MVETailPredication::IsPredicatedVectorLoop() { 291 // Check that the loop contains at least one masked load/store intrinsic. 292 // We only support 'normal' vector instructions - other than masked 293 // load/stores. 294 for (auto *BB : L->getBlocks()) { 295 for (auto &I : *BB) { 296 if (IsMasked(&I)) { 297 VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I)); 298 unsigned Lanes = VecTy->getNumElements(); 299 unsigned ElementWidth = VecTy->getScalarSizeInBits(); 300 // MVE vectors are 128-bit, but don't support 128 x i1. 301 // TODO: Can we support vectors larger than 128-bits? 302 unsigned MaxWidth = TTI->getRegisterBitWidth(true); 303 if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) 304 return false; 305 MaskedInsts.push_back(cast<IntrinsicInst>(&I)); 306 } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) { 307 for (auto &U : Int->args()) { 308 if (isa<VectorType>(U->getType())) 309 return false; 310 } 311 } 312 } 313 } 314 315 return !MaskedInsts.empty(); 316 } 317 318 Value* MVETailPredication::ComputeElements(Value *TripCount, 319 VectorType *VecTy) { 320 const SCEV *TripCountSE = SE->getSCEV(TripCount); 321 ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()), 322 VecTy->getNumElements()); 323 324 if (VF->equalsInt(1)) 325 return nullptr; 326 327 // TODO: Support constant trip counts. 328 auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* { 329 if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { 330 if (Const->getAPInt() != -VF->getValue()) 331 return nullptr; 332 } else 333 return nullptr; 334 return dyn_cast<SCEVMulExpr>(S->getOperand(1)); 335 }; 336 337 auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* { 338 if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { 339 if (Const->getValue() != VF) 340 return nullptr; 341 } else 342 return nullptr; 343 return dyn_cast<SCEVUDivExpr>(S->getOperand(1)); 344 }; 345 346 auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* { 347 if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) { 348 if (Const->getValue() != VF) 349 return nullptr; 350 } else 351 return nullptr; 352 353 if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) { 354 if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) { 355 if (Const->getAPInt() != (VF->getValue() - 1)) 356 return nullptr; 357 } else 358 return nullptr; 359 360 return RoundUp->getOperand(1); 361 } 362 return nullptr; 363 }; 364 365 // TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to 366 // determine the numbers of elements instead? Looks like this is what is used 367 // for delinearization, but I'm not sure if it can be applied to the 368 // vectorized form - at least not without a bit more work than I feel 369 // comfortable with. 370 371 // Search for Elems in the following SCEV: 372 // (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw> 373 const SCEV *Elems = nullptr; 374 if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE)) 375 if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1))) 376 if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS())) 377 if (auto *Mul = VisitAdd(Add)) 378 if (auto *Div = VisitMul(Mul)) 379 if (auto *Res = VisitDiv(Div)) 380 Elems = Res; 381 382 if (!Elems) 383 return nullptr; 384 385 Instruction *InsertPt = L->getLoopPreheader()->getTerminator(); 386 if (!isSafeToExpandAt(Elems, InsertPt, *SE)) 387 return nullptr; 388 389 auto DL = L->getHeader()->getModule()->getDataLayout(); 390 SCEVExpander Expander(*SE, DL, "elements"); 391 return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt); 392 } 393 394 // Look through the exit block to see whether there's a duplicate predicate 395 // instruction. This can happen when we need to perform a select on values 396 // from the last and previous iteration. Instead of doing a straight 397 // replacement of that predicate with the vctp, clone the vctp and place it 398 // in the block. This means that the VPR doesn't have to be live into the 399 // exit block which should make it easier to convert this loop into a proper 400 // tail predicated loop. 401 static void Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates, 402 SetVector<Instruction*> &MaybeDead, Loop *L) { 403 if (BasicBlock *Exit = L->getUniqueExitBlock()) { 404 for (auto &Pair : NewPredicates) { 405 Instruction *OldPred = Pair.first; 406 Instruction *NewPred = Pair.second; 407 408 for (auto &I : *Exit) { 409 if (I.isSameOperationAs(OldPred)) { 410 Instruction *PredClone = NewPred->clone(); 411 PredClone->insertBefore(&I); 412 I.replaceAllUsesWith(PredClone); 413 MaybeDead.insert(&I); 414 break; 415 } 416 } 417 } 418 } 419 420 // Drop references and add operands to check for dead. 421 SmallPtrSet<Instruction*, 4> Dead; 422 while (!MaybeDead.empty()) { 423 auto *I = MaybeDead.front(); 424 MaybeDead.remove(I); 425 if (I->hasNUsesOrMore(1)) 426 continue; 427 428 for (auto &U : I->operands()) { 429 if (auto *OpI = dyn_cast<Instruction>(U)) 430 MaybeDead.insert(OpI); 431 } 432 I->dropAllReferences(); 433 Dead.insert(I); 434 } 435 436 for (auto *I : Dead) 437 I->eraseFromParent(); 438 439 for (auto I : L->blocks()) 440 DeleteDeadPHIs(I); 441 } 442 443 bool MVETailPredication::TryConvert(Value *TripCount) { 444 if (!IsPredicatedVectorLoop()) 445 return false; 446 447 LLVM_DEBUG(dbgs() << "TP: Found predicated vector loop.\n"); 448 449 // Walk through the masked intrinsics and try to find whether the predicate 450 // operand is generated from an induction variable. 451 Module *M = L->getHeader()->getModule(); 452 Type *Ty = IntegerType::get(M->getContext(), 32); 453 SetVector<Instruction*> Predicates; 454 DenseMap<Instruction*, Instruction*> NewPredicates; 455 456 for (auto *I : MaskedInsts) { 457 Intrinsic::ID ID = I->getIntrinsicID(); 458 unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3; 459 auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); 460 if (!Predicate || Predicates.count(Predicate)) 461 continue; 462 463 VectorType *VecTy = getVectorType(I); 464 Value *NumElements = ComputeElements(TripCount, VecTy); 465 if (!NumElements) 466 continue; 467 468 if (!isTailPredicate(Predicate, NumElements)) { 469 LLVM_DEBUG(dbgs() << "TP: Not tail predicate: " << *Predicate << "\n"); 470 continue; 471 } 472 473 LLVM_DEBUG(dbgs() << "TP: Found tail predicate: " << *Predicate << "\n"); 474 Predicates.insert(Predicate); 475 476 // Insert a phi to count the number of elements processed by the loop. 477 IRBuilder<> Builder(L->getHeader()->getFirstNonPHI()); 478 PHINode *Processed = Builder.CreatePHI(Ty, 2); 479 Processed->addIncoming(NumElements, L->getLoopPreheader()); 480 481 // Insert the intrinsic to represent the effect of tail predication. 482 Builder.SetInsertPoint(cast<Instruction>(Predicate)); 483 ConstantInt *Factor = 484 ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements()); 485 Intrinsic::ID VCTPID; 486 switch (VecTy->getNumElements()) { 487 default: 488 llvm_unreachable("unexpected number of lanes"); 489 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; 490 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; 491 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; 492 493 // FIXME: vctp64 currently not supported because the predicate 494 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE 495 // type, so problems happen at isel time. 496 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics 497 // purposes, but takes a v4i1 instead of a v2i1. 498 } 499 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); 500 Value *TailPredicate = Builder.CreateCall(VCTP, Processed); 501 Predicate->replaceAllUsesWith(TailPredicate); 502 NewPredicates[Predicate] = cast<Instruction>(TailPredicate); 503 504 // Add the incoming value to the new phi. 505 // TODO: This add likely already exists in the loop. 506 Value *Remaining = Builder.CreateSub(Processed, Factor); 507 Processed->addIncoming(Remaining, L->getLoopLatch()); 508 LLVM_DEBUG(dbgs() << "TP: Insert processed elements phi: " 509 << *Processed << "\n" 510 << "TP: Inserted VCTP: " << *TailPredicate << "\n"); 511 } 512 513 // Now clean up. 514 Cleanup(NewPredicates, Predicates, L); 515 return true; 516 } 517 518 Pass *llvm::createMVETailPredicationPass() { 519 return new MVETailPredication(); 520 } 521 522 char MVETailPredication::ID = 0; 523 524 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) 525 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) 526