1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/EndianStream.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/TargetParser.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39 
40 namespace {
41 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
42 public:
43   ARMELFObjectWriter(uint8_t OSABI)
44       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
45                                 /*HasRelocationAddend*/ false) {}
46 };
47 } // end anonymous namespace
48 
49 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
50   if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE")
51     return FK_NONE;
52 
53   return MCAsmBackend::getFixupKind(Name);
54 }
55 
56 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
57   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
58       // This table *must* be in the order that the fixup_* kinds are defined in
59       // ARMFixupKinds.h.
60       //
61       // Name                      Offset (bits) Size (bits)     Flags
62       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
63       {"fixup_t2_ldst_pcrel_12", 0, 32,
64        MCFixupKindInfo::FKF_IsPCRel |
65            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
66       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
67       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
68       {"fixup_t2_pcrel_10", 0, 32,
69        MCFixupKindInfo::FKF_IsPCRel |
70            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
71       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
72       {"fixup_t2_pcrel_9", 0, 32,
73        MCFixupKindInfo::FKF_IsPCRel |
74            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
75       {"fixup_thumb_adr_pcrel_10", 0, 8,
76        MCFixupKindInfo::FKF_IsPCRel |
77            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
78       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_t2_adr_pcrel_12", 0, 32,
80        MCFixupKindInfo::FKF_IsPCRel |
81            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
82       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
87       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
88       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
89       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
90       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
91       {"fixup_arm_thumb_blx", 0, 32,
92        MCFixupKindInfo::FKF_IsPCRel |
93            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
94       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
95       {"fixup_arm_thumb_cp", 0, 8,
96        MCFixupKindInfo::FKF_IsPCRel |
97            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
98       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
99       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
100       // - 19.
101       {"fixup_arm_movt_hi16", 0, 20, 0},
102       {"fixup_arm_movw_lo16", 0, 20, 0},
103       {"fixup_t2_movt_hi16", 0, 20, 0},
104       {"fixup_t2_movw_lo16", 0, 20, 0},
105       {"fixup_arm_mod_imm", 0, 12, 0},
106       {"fixup_t2_so_imm", 0, 26, 0},
107   };
108   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
109       // This table *must* be in the order that the fixup_* kinds are defined in
110       // ARMFixupKinds.h.
111       //
112       // Name                      Offset (bits) Size (bits)     Flags
113       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
114       {"fixup_t2_ldst_pcrel_12", 0, 32,
115        MCFixupKindInfo::FKF_IsPCRel |
116            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
117       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
118       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
119       {"fixup_t2_pcrel_10", 0, 32,
120        MCFixupKindInfo::FKF_IsPCRel |
121            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
122       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
123       {"fixup_t2_pcrel_9", 0, 32,
124        MCFixupKindInfo::FKF_IsPCRel |
125            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
126       {"fixup_thumb_adr_pcrel_10", 8, 8,
127        MCFixupKindInfo::FKF_IsPCRel |
128            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
129       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
130       {"fixup_t2_adr_pcrel_12", 0, 32,
131        MCFixupKindInfo::FKF_IsPCRel |
132            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
133       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
134       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
135       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
136       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
137       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
138       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
139       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
140       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
141       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
142       {"fixup_arm_thumb_blx", 0, 32,
143        MCFixupKindInfo::FKF_IsPCRel |
144            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
145       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
146       {"fixup_arm_thumb_cp", 8, 8,
147        MCFixupKindInfo::FKF_IsPCRel |
148            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
149       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
150       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
151       // - 19.
152       {"fixup_arm_movt_hi16", 12, 20, 0},
153       {"fixup_arm_movw_lo16", 12, 20, 0},
154       {"fixup_t2_movt_hi16", 12, 20, 0},
155       {"fixup_t2_movw_lo16", 12, 20, 0},
156       {"fixup_arm_mod_imm", 20, 12, 0},
157       {"fixup_t2_so_imm", 26, 6, 0},
158   };
159 
160   if (Kind < FirstTargetFixupKind)
161     return MCAsmBackend::getFixupKindInfo(Kind);
162 
163   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
164          "Invalid kind!");
165   return (Endian == support::little ? InfosLE
166                                     : InfosBE)[Kind - FirstTargetFixupKind];
167 }
168 
169 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
170   switch (Flag) {
171   default:
172     break;
173   case MCAF_Code16:
174     setIsThumb(true);
175     break;
176   case MCAF_Code32:
177     setIsThumb(false);
178     break;
179   }
180 }
181 
182 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
183                                          const MCSubtargetInfo &STI) const {
184   bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
185   bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
186 
187   switch (Op) {
188   default:
189     return Op;
190   case ARM::tBcc:
191     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
192   case ARM::tLDRpci:
193     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
194   case ARM::tADR:
195     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
196   case ARM::tB:
197     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
198   case ARM::tCBZ:
199     return ARM::tHINT;
200   case ARM::tCBNZ:
201     return ARM::tHINT;
202   }
203 }
204 
205 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
206                                       const MCSubtargetInfo &STI) const {
207   if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
208     return true;
209   return false;
210 }
211 
212 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
213                                                     uint64_t Value) const {
214   switch ((unsigned)Fixup.getKind()) {
215   case ARM::fixup_arm_thumb_br: {
216     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
217     // low bit being an implied zero. There's an implied +4 offset for the
218     // branch, so we adjust the other way here to determine what's
219     // encodable.
220     //
221     // Relax if the value is too big for a (signed) i8.
222     int64_t Offset = int64_t(Value) - 4;
223     if (Offset > 2046 || Offset < -2048)
224       return "out of range pc-relative fixup value";
225     break;
226   }
227   case ARM::fixup_arm_thumb_bcc: {
228     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
229     // low bit being an implied zero. There's an implied +4 offset for the
230     // branch, so we adjust the other way here to determine what's
231     // encodable.
232     //
233     // Relax if the value is too big for a (signed) i8.
234     int64_t Offset = int64_t(Value) - 4;
235     if (Offset > 254 || Offset < -256)
236       return "out of range pc-relative fixup value";
237     break;
238   }
239   case ARM::fixup_thumb_adr_pcrel_10:
240   case ARM::fixup_arm_thumb_cp: {
241     // If the immediate is negative, greater than 1020, or not a multiple
242     // of four, the wide version of the instruction must be used.
243     int64_t Offset = int64_t(Value) - 4;
244     if (Offset & 3)
245       return "misaligned pc-relative fixup value";
246     else if (Offset > 1020 || Offset < 0)
247       return "out of range pc-relative fixup value";
248     break;
249   }
250   case ARM::fixup_arm_thumb_cb: {
251     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
252     // instruction it is actually out of range for the instruction.
253     // It will be changed to a NOP.
254     int64_t Offset = (Value & ~1);
255     if (Offset == 2)
256       return "will be converted to nop";
257     break;
258   }
259   default:
260     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
261   }
262   return nullptr;
263 }
264 
265 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
266                                          const MCRelaxableFragment *DF,
267                                          const MCAsmLayout &Layout) const {
268   return reasonForFixupRelaxation(Fixup, Value);
269 }
270 
271 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
272                                      const MCSubtargetInfo &STI,
273                                      MCInst &Res) const {
274   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
275 
276   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
277   if (RelaxedOp == Inst.getOpcode()) {
278     SmallString<256> Tmp;
279     raw_svector_ostream OS(Tmp);
280     Inst.dump_pretty(OS);
281     OS << "\n";
282     report_fatal_error("unexpected instruction to relax: " + OS.str());
283   }
284 
285   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
286   // have to change the operands too.
287   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
288       RelaxedOp == ARM::tHINT) {
289     Res.setOpcode(RelaxedOp);
290     Res.addOperand(MCOperand::createImm(0));
291     Res.addOperand(MCOperand::createImm(14));
292     Res.addOperand(MCOperand::createReg(0));
293     return;
294   }
295 
296   // The rest of instructions we're relaxing have the same operands.
297   // We just need to update to the proper opcode.
298   Res = Inst;
299   Res.setOpcode(RelaxedOp);
300 }
301 
302 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
303   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
304   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
305   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
306   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
307   if (isThumb()) {
308     const uint16_t nopEncoding =
309         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
310     uint64_t NumNops = Count / 2;
311     for (uint64_t i = 0; i != NumNops; ++i)
312       support::endian::write(OS, nopEncoding, Endian);
313     if (Count & 1)
314       OS << '\0';
315     return true;
316   }
317   // ARM mode
318   const uint32_t nopEncoding =
319       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
320   uint64_t NumNops = Count / 4;
321   for (uint64_t i = 0; i != NumNops; ++i)
322     support::endian::write(OS, nopEncoding, Endian);
323   // FIXME: should this function return false when unable to write exactly
324   // 'Count' bytes with NOP encodings?
325   switch (Count % 4) {
326   default:
327     break; // No leftover bytes to write
328   case 1:
329     OS << '\0';
330     break;
331   case 2:
332     OS.write("\0\0", 2);
333     break;
334   case 3:
335     OS.write("\0\0\xa0", 3);
336     break;
337   }
338 
339   return true;
340 }
341 
342 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
343   if (IsLittleEndian) {
344     // Note that the halfwords are stored high first and low second in thumb;
345     // so we need to swap the fixup value here to map properly.
346     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
347     Swapped |= (Value & 0x0000FFFF) << 16;
348     return Swapped;
349   } else
350     return Value;
351 }
352 
353 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
354                               bool IsLittleEndian) {
355   uint32_t Value;
356 
357   if (IsLittleEndian) {
358     Value = (SecondHalf & 0xFFFF) << 16;
359     Value |= (FirstHalf & 0xFFFF);
360   } else {
361     Value = (SecondHalf & 0xFFFF);
362     Value |= (FirstHalf & 0xFFFF) << 16;
363   }
364 
365   return Value;
366 }
367 
368 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
369                                          const MCFixup &Fixup,
370                                          const MCValue &Target, uint64_t Value,
371                                          bool IsResolved, MCContext &Ctx,
372                                          const MCSubtargetInfo* STI) const {
373   unsigned Kind = Fixup.getKind();
374 
375   // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
376   // and .word relocations they put the Thumb bit into the addend if possible.
377   // Other relocation types don't want this bit though (branches couldn't encode
378   // it if it *was* present, and no other relocations exist) and it can
379   // interfere with checking valid expressions.
380   if (const MCSymbolRefExpr *A = Target.getSymA()) {
381     if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
382         A->getSymbol().isExternal() &&
383         (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
384          Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
385          Kind == ARM::fixup_t2_movt_hi16))
386       Value |= 1;
387   }
388 
389   switch (Kind) {
390   default:
391     Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
392     return 0;
393   case FK_NONE:
394   case FK_Data_1:
395   case FK_Data_2:
396   case FK_Data_4:
397     return Value;
398   case FK_SecRel_2:
399     return Value;
400   case FK_SecRel_4:
401     return Value;
402   case ARM::fixup_arm_movt_hi16:
403     assert(STI != nullptr);
404     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
405       Value >>= 16;
406     LLVM_FALLTHROUGH;
407   case ARM::fixup_arm_movw_lo16: {
408     unsigned Hi4 = (Value & 0xF000) >> 12;
409     unsigned Lo12 = Value & 0x0FFF;
410     // inst{19-16} = Hi4;
411     // inst{11-0} = Lo12;
412     Value = (Hi4 << 16) | (Lo12);
413     return Value;
414   }
415   case ARM::fixup_t2_movt_hi16:
416     assert(STI != nullptr);
417     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
418       Value >>= 16;
419     LLVM_FALLTHROUGH;
420   case ARM::fixup_t2_movw_lo16: {
421     unsigned Hi4 = (Value & 0xF000) >> 12;
422     unsigned i = (Value & 0x800) >> 11;
423     unsigned Mid3 = (Value & 0x700) >> 8;
424     unsigned Lo8 = Value & 0x0FF;
425     // inst{19-16} = Hi4;
426     // inst{26} = i;
427     // inst{14-12} = Mid3;
428     // inst{7-0} = Lo8;
429     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
430     return swapHalfWords(Value, Endian == support::little);
431   }
432   case ARM::fixup_arm_ldst_pcrel_12:
433     // ARM PC-relative values are offset by 8.
434     Value -= 4;
435     LLVM_FALLTHROUGH;
436   case ARM::fixup_t2_ldst_pcrel_12: {
437     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
438     Value -= 4;
439     bool isAdd = true;
440     if ((int64_t)Value < 0) {
441       Value = -Value;
442       isAdd = false;
443     }
444     if (Value >= 4096) {
445       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
446       return 0;
447     }
448     Value |= isAdd << 23;
449 
450     // Same addressing mode as fixup_arm_pcrel_10,
451     // but with 16-bit halfwords swapped.
452     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
453       return swapHalfWords(Value, Endian == support::little);
454 
455     return Value;
456   }
457   case ARM::fixup_arm_adr_pcrel_12: {
458     // ARM PC-relative values are offset by 8.
459     Value -= 8;
460     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
461     if ((int64_t)Value < 0) {
462       Value = -Value;
463       opc = 2; // 0b0010
464     }
465     if (ARM_AM::getSOImmVal(Value) == -1) {
466       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
467       return 0;
468     }
469     // Encode the immediate and shift the opcode into place.
470     return ARM_AM::getSOImmVal(Value) | (opc << 21);
471   }
472 
473   case ARM::fixup_t2_adr_pcrel_12: {
474     Value -= 4;
475     unsigned opc = 0;
476     if ((int64_t)Value < 0) {
477       Value = -Value;
478       opc = 5;
479     }
480 
481     uint32_t out = (opc << 21);
482     out |= (Value & 0x800) << 15;
483     out |= (Value & 0x700) << 4;
484     out |= (Value & 0x0FF);
485 
486     return swapHalfWords(out, Endian == support::little);
487   }
488 
489   case ARM::fixup_arm_condbranch:
490   case ARM::fixup_arm_uncondbranch:
491   case ARM::fixup_arm_uncondbl:
492   case ARM::fixup_arm_condbl:
493   case ARM::fixup_arm_blx:
494     // These values don't encode the low two bits since they're always zero.
495     // Offset by 8 just as above.
496     if (const MCSymbolRefExpr *SRE =
497             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
498       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
499         return 0;
500     return 0xffffff & ((Value - 8) >> 2);
501   case ARM::fixup_t2_uncondbranch: {
502     Value = Value - 4;
503     if (!isInt<25>(Value)) {
504       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
505       return 0;
506     }
507 
508     Value >>= 1; // Low bit is not encoded.
509 
510     uint32_t out = 0;
511     bool I = Value & 0x800000;
512     bool J1 = Value & 0x400000;
513     bool J2 = Value & 0x200000;
514     J1 ^= I;
515     J2 ^= I;
516 
517     out |= I << 26;                 // S bit
518     out |= !J1 << 13;               // J1 bit
519     out |= !J2 << 11;               // J2 bit
520     out |= (Value & 0x1FF800) << 5; // imm6 field
521     out |= (Value & 0x0007FF);      // imm11 field
522 
523     return swapHalfWords(out, Endian == support::little);
524   }
525   case ARM::fixup_t2_condbranch: {
526     Value = Value - 4;
527     if (!isInt<21>(Value)) {
528       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
529       return 0;
530     }
531 
532     Value >>= 1; // Low bit is not encoded.
533 
534     uint64_t out = 0;
535     out |= (Value & 0x80000) << 7; // S bit
536     out |= (Value & 0x40000) >> 7; // J2 bit
537     out |= (Value & 0x20000) >> 4; // J1 bit
538     out |= (Value & 0x1F800) << 5; // imm6 field
539     out |= (Value & 0x007FF);      // imm11 field
540 
541     return swapHalfWords(out, Endian == support::little);
542   }
543   case ARM::fixup_arm_thumb_bl: {
544     if (!isInt<25>(Value - 4) ||
545         (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
546          !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
547          !STI->getFeatureBits()[ARM::HasV6MOps] &&
548          !isInt<23>(Value - 4))) {
549       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
550       return 0;
551     }
552 
553     // The value doesn't encode the low bit (always zero) and is offset by
554     // four. The 32-bit immediate value is encoded as
555     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
556     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
557     // The value is encoded into disjoint bit positions in the destination
558     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
559     // J = either J1 or J2 bit
560     //
561     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
562     //
563     // Note that the halfwords are stored high first, low second; so we need
564     // to transpose the fixup value here to map properly.
565     uint32_t offset = (Value - 4) >> 1;
566     uint32_t signBit = (offset & 0x800000) >> 23;
567     uint32_t I1Bit = (offset & 0x400000) >> 22;
568     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
569     uint32_t I2Bit = (offset & 0x200000) >> 21;
570     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
571     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
572     uint32_t imm11Bits = (offset & 0x000007FF);
573 
574     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
575     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
576                            (uint16_t)imm11Bits);
577     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
578   }
579   case ARM::fixup_arm_thumb_blx: {
580     // The value doesn't encode the low two bits (always zero) and is offset by
581     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
582     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
583     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
584     // The value is encoded into disjoint bit positions in the destination
585     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
586     // J = either J1 or J2 bit, 0 = zero.
587     //
588     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
589     //
590     // Note that the halfwords are stored high first, low second; so we need
591     // to transpose the fixup value here to map properly.
592     if (Value % 4 != 0) {
593       Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
594       return 0;
595     }
596 
597     uint32_t offset = (Value - 4) >> 2;
598     if (const MCSymbolRefExpr *SRE =
599             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
600       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
601         offset = 0;
602     uint32_t signBit = (offset & 0x400000) >> 22;
603     uint32_t I1Bit = (offset & 0x200000) >> 21;
604     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
605     uint32_t I2Bit = (offset & 0x100000) >> 20;
606     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
607     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
608     uint32_t imm10LBits = (offset & 0x3FF);
609 
610     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
611     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
612                            ((uint16_t)imm10LBits) << 1);
613     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
614   }
615   case ARM::fixup_thumb_adr_pcrel_10:
616   case ARM::fixup_arm_thumb_cp:
617     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
618     // could have an error on our hands.
619     assert(STI != nullptr);
620     if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
621       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
622       if (FixupDiagnostic) {
623         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
624         return 0;
625       }
626     }
627     // Offset by 4, and don't encode the low two bits.
628     return ((Value - 4) >> 2) & 0xff;
629   case ARM::fixup_arm_thumb_cb: {
630     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
631     // so ensure that the raw value LSB is zero and it lies in [2, 130].
632     // An offset of 2 will be relaxed to a NOP.
633     if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
634       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
635       return 0;
636     }
637     // Offset by 4 and don't encode the lower bit, which is always 0.
638     // FIXME: diagnose if no Thumb2
639     uint32_t Binary = (Value - 4) >> 1;
640     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
641   }
642   case ARM::fixup_arm_thumb_br:
643     // Offset by 4 and don't encode the lower bit, which is always 0.
644     assert(STI != nullptr);
645     if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
646         !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
647       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
648       if (FixupDiagnostic) {
649         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
650         return 0;
651       }
652     }
653     return ((Value - 4) >> 1) & 0x7ff;
654   case ARM::fixup_arm_thumb_bcc:
655     // Offset by 4 and don't encode the lower bit, which is always 0.
656     assert(STI != nullptr);
657     if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
658       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
659       if (FixupDiagnostic) {
660         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
661         return 0;
662       }
663     }
664     return ((Value - 4) >> 1) & 0xff;
665   case ARM::fixup_arm_pcrel_10_unscaled: {
666     Value = Value - 8; // ARM fixups offset by an additional word and don't
667                        // need to adjust for the half-word ordering.
668     bool isAdd = true;
669     if ((int64_t)Value < 0) {
670       Value = -Value;
671       isAdd = false;
672     }
673     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
674     if (Value >= 256) {
675       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
676       return 0;
677     }
678     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
679     return Value | (isAdd << 23);
680   }
681   case ARM::fixup_arm_pcrel_10:
682     Value = Value - 4; // ARM fixups offset by an additional word and don't
683                        // need to adjust for the half-word ordering.
684     LLVM_FALLTHROUGH;
685   case ARM::fixup_t2_pcrel_10: {
686     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
687     Value = Value - 4;
688     bool isAdd = true;
689     if ((int64_t)Value < 0) {
690       Value = -Value;
691       isAdd = false;
692     }
693     // These values don't encode the low two bits since they're always zero.
694     Value >>= 2;
695     if (Value >= 256) {
696       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
697       return 0;
698     }
699     Value |= isAdd << 23;
700 
701     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
702     // swapped.
703     if (Kind == ARM::fixup_t2_pcrel_10)
704       return swapHalfWords(Value, Endian == support::little);
705 
706     return Value;
707   }
708   case ARM::fixup_arm_pcrel_9:
709     Value = Value - 4; // ARM fixups offset by an additional word and don't
710                        // need to adjust for the half-word ordering.
711     LLVM_FALLTHROUGH;
712   case ARM::fixup_t2_pcrel_9: {
713     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
714     Value = Value - 4;
715     bool isAdd = true;
716     if ((int64_t)Value < 0) {
717       Value = -Value;
718       isAdd = false;
719     }
720     // These values don't encode the low bit since it's always zero.
721     if (Value & 1) {
722       Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
723       return 0;
724     }
725     Value >>= 1;
726     if (Value >= 256) {
727       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
728       return 0;
729     }
730     Value |= isAdd << 23;
731 
732     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
733     // swapped.
734     if (Kind == ARM::fixup_t2_pcrel_9)
735       return swapHalfWords(Value, Endian == support::little);
736 
737     return Value;
738   }
739   case ARM::fixup_arm_mod_imm:
740     Value = ARM_AM::getSOImmVal(Value);
741     if (Value >> 12) {
742       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
743       return 0;
744     }
745     return Value;
746   case ARM::fixup_t2_so_imm: {
747     Value = ARM_AM::getT2SOImmVal(Value);
748     if ((int64_t)Value < 0) {
749       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
750       return 0;
751     }
752     // Value will contain a 12-bit value broken up into a 4-bit shift in bits
753     // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
754     // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
755     // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
756     // half-word.
757     uint64_t EncValue = 0;
758     EncValue |= (Value & 0x800) << 15;
759     EncValue |= (Value & 0x700) << 4;
760     EncValue |= (Value & 0xff);
761     return swapHalfWords(EncValue, Endian == support::little);
762   }
763   }
764 }
765 
766 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
767                                           const MCFixup &Fixup,
768                                           const MCValue &Target) {
769   const MCSymbolRefExpr *A = Target.getSymA();
770   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
771   const unsigned FixupKind = Fixup.getKind() ;
772   if (FixupKind == FK_NONE)
773     return true;
774   if (FixupKind == ARM::fixup_arm_thumb_bl) {
775     assert(Sym && "How did we resolve this?");
776 
777     // If the symbol is external the linker will handle it.
778     // FIXME: Should we handle it as an optimization?
779 
780     // If the symbol is out of range, produce a relocation and hope the
781     // linker can handle it. GNU AS produces an error in this case.
782     if (Sym->isExternal())
783       return true;
784   }
785   // Create relocations for unconditional branches to function symbols with
786   // different execution mode in ELF binaries.
787   if (Sym && Sym->isELF()) {
788     unsigned Type = cast<MCSymbolELF>(Sym)->getType();
789     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
790       if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
791         return true;
792       if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
793                                     FixupKind == ARM::fixup_arm_thumb_bl ||
794                                     FixupKind == ARM::fixup_t2_condbranch ||
795                                     FixupKind == ARM::fixup_t2_uncondbranch))
796         return true;
797     }
798   }
799   // We must always generate a relocation for BL/BLX instructions if we have
800   // a symbol to reference, as the linker relies on knowing the destination
801   // symbol's thumb-ness to get interworking right.
802   if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
803             FixupKind == ARM::fixup_arm_blx ||
804             FixupKind == ARM::fixup_arm_uncondbl ||
805             FixupKind == ARM::fixup_arm_condbl))
806     return true;
807   return false;
808 }
809 
810 /// getFixupKindNumBytes - The number of bytes the fixup may change.
811 static unsigned getFixupKindNumBytes(unsigned Kind) {
812   switch (Kind) {
813   default:
814     llvm_unreachable("Unknown fixup kind!");
815 
816   case FK_NONE:
817     return 0;
818 
819   case FK_Data_1:
820   case ARM::fixup_arm_thumb_bcc:
821   case ARM::fixup_arm_thumb_cp:
822   case ARM::fixup_thumb_adr_pcrel_10:
823     return 1;
824 
825   case FK_Data_2:
826   case ARM::fixup_arm_thumb_br:
827   case ARM::fixup_arm_thumb_cb:
828   case ARM::fixup_arm_mod_imm:
829     return 2;
830 
831   case ARM::fixup_arm_pcrel_10_unscaled:
832   case ARM::fixup_arm_ldst_pcrel_12:
833   case ARM::fixup_arm_pcrel_10:
834   case ARM::fixup_arm_pcrel_9:
835   case ARM::fixup_arm_adr_pcrel_12:
836   case ARM::fixup_arm_uncondbl:
837   case ARM::fixup_arm_condbl:
838   case ARM::fixup_arm_blx:
839   case ARM::fixup_arm_condbranch:
840   case ARM::fixup_arm_uncondbranch:
841     return 3;
842 
843   case FK_Data_4:
844   case ARM::fixup_t2_ldst_pcrel_12:
845   case ARM::fixup_t2_condbranch:
846   case ARM::fixup_t2_uncondbranch:
847   case ARM::fixup_t2_pcrel_10:
848   case ARM::fixup_t2_pcrel_9:
849   case ARM::fixup_t2_adr_pcrel_12:
850   case ARM::fixup_arm_thumb_bl:
851   case ARM::fixup_arm_thumb_blx:
852   case ARM::fixup_arm_movt_hi16:
853   case ARM::fixup_arm_movw_lo16:
854   case ARM::fixup_t2_movt_hi16:
855   case ARM::fixup_t2_movw_lo16:
856   case ARM::fixup_t2_so_imm:
857     return 4;
858 
859   case FK_SecRel_2:
860     return 2;
861   case FK_SecRel_4:
862     return 4;
863   }
864 }
865 
866 /// getFixupKindContainerSizeBytes - The number of bytes of the
867 /// container involved in big endian.
868 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
869   switch (Kind) {
870   default:
871     llvm_unreachable("Unknown fixup kind!");
872 
873   case FK_NONE:
874     return 0;
875 
876   case FK_Data_1:
877     return 1;
878   case FK_Data_2:
879     return 2;
880   case FK_Data_4:
881     return 4;
882 
883   case ARM::fixup_arm_thumb_bcc:
884   case ARM::fixup_arm_thumb_cp:
885   case ARM::fixup_thumb_adr_pcrel_10:
886   case ARM::fixup_arm_thumb_br:
887   case ARM::fixup_arm_thumb_cb:
888     // Instruction size is 2 bytes.
889     return 2;
890 
891   case ARM::fixup_arm_pcrel_10_unscaled:
892   case ARM::fixup_arm_ldst_pcrel_12:
893   case ARM::fixup_arm_pcrel_10:
894   case ARM::fixup_arm_adr_pcrel_12:
895   case ARM::fixup_arm_uncondbl:
896   case ARM::fixup_arm_condbl:
897   case ARM::fixup_arm_blx:
898   case ARM::fixup_arm_condbranch:
899   case ARM::fixup_arm_uncondbranch:
900   case ARM::fixup_t2_ldst_pcrel_12:
901   case ARM::fixup_t2_condbranch:
902   case ARM::fixup_t2_uncondbranch:
903   case ARM::fixup_t2_pcrel_10:
904   case ARM::fixup_t2_adr_pcrel_12:
905   case ARM::fixup_arm_thumb_bl:
906   case ARM::fixup_arm_thumb_blx:
907   case ARM::fixup_arm_movt_hi16:
908   case ARM::fixup_arm_movw_lo16:
909   case ARM::fixup_t2_movt_hi16:
910   case ARM::fixup_t2_movw_lo16:
911   case ARM::fixup_arm_mod_imm:
912   case ARM::fixup_t2_so_imm:
913     // Instruction size is 4 bytes.
914     return 4;
915   }
916 }
917 
918 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
919                                const MCValue &Target,
920                                MutableArrayRef<char> Data, uint64_t Value,
921                                bool IsResolved,
922                                const MCSubtargetInfo* STI) const {
923   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
924   MCContext &Ctx = Asm.getContext();
925   Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
926   if (!Value)
927     return; // Doesn't change encoding.
928 
929   unsigned Offset = Fixup.getOffset();
930   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
931 
932   // Used to point to big endian bytes.
933   unsigned FullSizeBytes;
934   if (Endian == support::big) {
935     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
936     assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
937     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
938   }
939 
940   // For each byte of the fragment that the fixup touches, mask in the bits from
941   // the fixup value. The Value has been "split up" into the appropriate
942   // bitfields above.
943   for (unsigned i = 0; i != NumBytes; ++i) {
944     unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
945     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
946   }
947 }
948 
949 namespace CU {
950 
951 /// Compact unwind encoding values.
952 enum CompactUnwindEncodings {
953   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
954   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
955   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
956   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
957 
958   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
959 
960   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
961   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
962   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
963 
964   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
965   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
966   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
967   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
968   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
969 
970   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
971 
972   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
973 };
974 
975 } // end CU namespace
976 
977 /// Generate compact unwind encoding for the function based on the CFI
978 /// instructions. If the CFI instructions describe a frame that cannot be
979 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
980 /// tells the runtime to fallback and unwind using dwarf.
981 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
982     ArrayRef<MCCFIInstruction> Instrs) const {
983   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
984   // Only armv7k uses CFI based unwinding.
985   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
986     return 0;
987   // No .cfi directives means no frame.
988   if (Instrs.empty())
989     return 0;
990   // Start off assuming CFA is at SP+0.
991   int CFARegister = ARM::SP;
992   int CFARegisterOffset = 0;
993   // Mark savable registers as initially unsaved
994   DenseMap<unsigned, int> RegOffsets;
995   int FloatRegCount = 0;
996   // Process each .cfi directive and build up compact unwind info.
997   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
998     int Reg;
999     const MCCFIInstruction &Inst = Instrs[i];
1000     switch (Inst.getOperation()) {
1001     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1002       CFARegisterOffset = -Inst.getOffset();
1003       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
1004       break;
1005     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1006       CFARegisterOffset = -Inst.getOffset();
1007       break;
1008     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1009       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
1010       break;
1011     case MCCFIInstruction::OpOffset: // DW_CFA_offset
1012       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
1013       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1014         RegOffsets[Reg] = Inst.getOffset();
1015       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1016         RegOffsets[Reg] = Inst.getOffset();
1017         ++FloatRegCount;
1018       } else {
1019         DEBUG_WITH_TYPE("compact-unwind",
1020                         llvm::dbgs() << ".cfi_offset on unknown register="
1021                                      << Inst.getRegister() << "\n");
1022         return CU::UNWIND_ARM_MODE_DWARF;
1023       }
1024       break;
1025     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1026       // Ignore
1027       break;
1028     default:
1029       // Directive not convertable to compact unwind, bail out.
1030       DEBUG_WITH_TYPE("compact-unwind",
1031                       llvm::dbgs()
1032                           << "CFI directive not compatiable with comact "
1033                              "unwind encoding, opcode=" << Inst.getOperation()
1034                           << "\n");
1035       return CU::UNWIND_ARM_MODE_DWARF;
1036       break;
1037     }
1038   }
1039 
1040   // If no frame set up, return no unwind info.
1041   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1042     return 0;
1043 
1044   // Verify standard frame (lr/r7) was used.
1045   if (CFARegister != ARM::R7) {
1046     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1047                                                    << CFARegister
1048                                                    << " instead of r7\n");
1049     return CU::UNWIND_ARM_MODE_DWARF;
1050   }
1051   int StackAdjust = CFARegisterOffset - 8;
1052   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1053     DEBUG_WITH_TYPE("compact-unwind",
1054                     llvm::dbgs()
1055                         << "LR not saved as standard frame, StackAdjust="
1056                         << StackAdjust
1057                         << ", CFARegisterOffset=" << CFARegisterOffset
1058                         << ", lr save at offset=" << RegOffsets[14] << "\n");
1059     return CU::UNWIND_ARM_MODE_DWARF;
1060   }
1061   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1062     DEBUG_WITH_TYPE("compact-unwind",
1063                     llvm::dbgs() << "r7 not saved as standard frame\n");
1064     return CU::UNWIND_ARM_MODE_DWARF;
1065   }
1066   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1067 
1068   // If var-args are used, there may be a stack adjust required.
1069   switch (StackAdjust) {
1070   case 0:
1071     break;
1072   case 4:
1073     CompactUnwindEncoding |= 0x00400000;
1074     break;
1075   case 8:
1076     CompactUnwindEncoding |= 0x00800000;
1077     break;
1078   case 12:
1079     CompactUnwindEncoding |= 0x00C00000;
1080     break;
1081   default:
1082     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1083                                           << ".cfi_def_cfa stack adjust ("
1084                                           << StackAdjust << ") out of range\n");
1085     return CU::UNWIND_ARM_MODE_DWARF;
1086   }
1087 
1088   // If r6 is saved, it must be right below r7.
1089   static struct {
1090     unsigned Reg;
1091     unsigned Encoding;
1092   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1093                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1094                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1095                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1096                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1097                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1098                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1099                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1100 
1101   int CurOffset = -8 - StackAdjust;
1102   for (auto CSReg : GPRCSRegs) {
1103     auto Offset = RegOffsets.find(CSReg.Reg);
1104     if (Offset == RegOffsets.end())
1105       continue;
1106 
1107     int RegOffset = Offset->second;
1108     if (RegOffset != CurOffset - 4) {
1109       DEBUG_WITH_TYPE("compact-unwind",
1110                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1111                                    << RegOffset << " but only supported at "
1112                                    << CurOffset << "\n");
1113       return CU::UNWIND_ARM_MODE_DWARF;
1114     }
1115     CompactUnwindEncoding |= CSReg.Encoding;
1116     CurOffset -= 4;
1117   }
1118 
1119   // If no floats saved, we are done.
1120   if (FloatRegCount == 0)
1121     return CompactUnwindEncoding;
1122 
1123   // Switch mode to include D register saving.
1124   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1125   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1126 
1127   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1128   // but needs coordination with the linker and libunwind.
1129   if (FloatRegCount > 4) {
1130     DEBUG_WITH_TYPE("compact-unwind",
1131                     llvm::dbgs() << "unsupported number of D registers saved ("
1132                                  << FloatRegCount << ")\n");
1133       return CU::UNWIND_ARM_MODE_DWARF;
1134   }
1135 
1136   // Floating point registers must either be saved sequentially, or we defer to
1137   // DWARF. No gaps allowed here so check that each saved d-register is
1138   // precisely where it should be.
1139   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1140   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1141     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1142     if (Offset == RegOffsets.end()) {
1143       DEBUG_WITH_TYPE("compact-unwind",
1144                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1145                                    << MRI.getName(FPRCSRegs[Idx])
1146                                    << " not saved\n");
1147       return CU::UNWIND_ARM_MODE_DWARF;
1148     } else if (Offset->second != CurOffset - 8) {
1149       DEBUG_WITH_TYPE("compact-unwind",
1150                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1151                                    << MRI.getName(FPRCSRegs[Idx])
1152                                    << " saved at " << Offset->second
1153                                    << ", expected at " << CurOffset - 8
1154                                    << "\n");
1155       return CU::UNWIND_ARM_MODE_DWARF;
1156     }
1157     CurOffset -= 8;
1158   }
1159 
1160   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1161 }
1162 
1163 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1164   ARM::ArchKind AK = ARM::parseArch(Arch);
1165   switch (AK) {
1166   default:
1167     return MachO::CPU_SUBTYPE_ARM_V7;
1168   case ARM::ArchKind::ARMV4T:
1169     return MachO::CPU_SUBTYPE_ARM_V4T;
1170   case ARM::ArchKind::ARMV5T:
1171   case ARM::ArchKind::ARMV5TE:
1172   case ARM::ArchKind::ARMV5TEJ:
1173     return MachO::CPU_SUBTYPE_ARM_V5;
1174   case ARM::ArchKind::ARMV6:
1175   case ARM::ArchKind::ARMV6K:
1176     return MachO::CPU_SUBTYPE_ARM_V6;
1177   case ARM::ArchKind::ARMV7A:
1178     return MachO::CPU_SUBTYPE_ARM_V7;
1179   case ARM::ArchKind::ARMV7S:
1180     return MachO::CPU_SUBTYPE_ARM_V7S;
1181   case ARM::ArchKind::ARMV7K:
1182     return MachO::CPU_SUBTYPE_ARM_V7K;
1183   case ARM::ArchKind::ARMV6M:
1184     return MachO::CPU_SUBTYPE_ARM_V6M;
1185   case ARM::ArchKind::ARMV7M:
1186     return MachO::CPU_SUBTYPE_ARM_V7M;
1187   case ARM::ArchKind::ARMV7EM:
1188     return MachO::CPU_SUBTYPE_ARM_V7EM;
1189   }
1190 }
1191 
1192 static MCAsmBackend *createARMAsmBackend(const Target &T,
1193                                          const MCSubtargetInfo &STI,
1194                                          const MCRegisterInfo &MRI,
1195                                          const MCTargetOptions &Options,
1196                                          support::endianness Endian) {
1197   const Triple &TheTriple = STI.getTargetTriple();
1198   switch (TheTriple.getObjectFormat()) {
1199   default:
1200     llvm_unreachable("unsupported object format");
1201   case Triple::MachO: {
1202     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1203     return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1204   }
1205   case Triple::COFF:
1206     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1207     return new ARMAsmBackendWinCOFF(T, STI);
1208   case Triple::ELF:
1209     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1210     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1211     return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1212   }
1213 }
1214 
1215 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1216                                           const MCSubtargetInfo &STI,
1217                                           const MCRegisterInfo &MRI,
1218                                           const MCTargetOptions &Options) {
1219   return createARMAsmBackend(T, STI, MRI, Options, support::little);
1220 }
1221 
1222 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1223                                           const MCSubtargetInfo &STI,
1224                                           const MCRegisterInfo &MRI,
1225                                           const MCTargetOptions &Options) {
1226   return createARMAsmBackend(T, STI, MRI, Options, support::big);
1227 }
1228