1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/ARMMCTargetDesc.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMAsmBackend.h" 13 #include "MCTargetDesc/ARMAsmBackendDarwin.h" 14 #include "MCTargetDesc/ARMAsmBackendELF.h" 15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" 16 #include "MCTargetDesc/ARMBaseInfo.h" 17 #include "MCTargetDesc/ARMFixupKinds.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDirectives.h" 23 #include "llvm/MC/MCELFObjectWriter.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCMachObjectWriter.h" 27 #include "llvm/MC/MCObjectWriter.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSectionMachO.h" 31 #include "llvm/MC/MCSubtargetInfo.h" 32 #include "llvm/MC/MCValue.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ELF.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/MachO.h" 38 #include "llvm/Support/TargetParser.h" 39 #include "llvm/Support/raw_ostream.h" 40 using namespace llvm; 41 42 namespace { 43 class ARMELFObjectWriter : public MCELFObjectTargetWriter { 44 public: 45 ARMELFObjectWriter(uint8_t OSABI) 46 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, 47 /*HasRelocationAddend*/ false) {} 48 }; 49 } // end anonymous namespace 50 51 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 52 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { 53 // This table *must* be in the order that the fixup_* kinds are defined in 54 // ARMFixupKinds.h. 55 // 56 // Name Offset (bits) Size (bits) Flags 57 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 58 {"fixup_t2_ldst_pcrel_12", 0, 32, 59 MCFixupKindInfo::FKF_IsPCRel | 60 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 61 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 62 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 63 {"fixup_t2_pcrel_10", 0, 32, 64 MCFixupKindInfo::FKF_IsPCRel | 65 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 66 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 67 {"fixup_t2_pcrel_9", 0, 32, 68 MCFixupKindInfo::FKF_IsPCRel | 69 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 70 {"fixup_thumb_adr_pcrel_10", 0, 8, 71 MCFixupKindInfo::FKF_IsPCRel | 72 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 73 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 74 {"fixup_t2_adr_pcrel_12", 0, 32, 75 MCFixupKindInfo::FKF_IsPCRel | 76 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 77 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 78 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 79 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 80 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 81 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 82 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 83 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 84 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 85 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 86 {"fixup_arm_thumb_blx", 0, 32, 87 MCFixupKindInfo::FKF_IsPCRel | 88 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 89 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 90 {"fixup_arm_thumb_cp", 0, 8, 91 MCFixupKindInfo::FKF_IsPCRel | 92 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 93 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, 94 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 95 // - 19. 96 {"fixup_arm_movt_hi16", 0, 20, 0}, 97 {"fixup_arm_movw_lo16", 0, 20, 0}, 98 {"fixup_t2_movt_hi16", 0, 20, 0}, 99 {"fixup_t2_movw_lo16", 0, 20, 0}, 100 {"fixup_arm_mod_imm", 0, 12, 0}, 101 }; 102 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { 103 // This table *must* be in the order that the fixup_* kinds are defined in 104 // ARMFixupKinds.h. 105 // 106 // Name Offset (bits) Size (bits) Flags 107 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 108 {"fixup_t2_ldst_pcrel_12", 0, 32, 109 MCFixupKindInfo::FKF_IsPCRel | 110 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 111 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 112 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 113 {"fixup_t2_pcrel_10", 0, 32, 114 MCFixupKindInfo::FKF_IsPCRel | 115 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 116 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 117 {"fixup_t2_pcrel_9", 0, 32, 118 MCFixupKindInfo::FKF_IsPCRel | 119 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 120 {"fixup_thumb_adr_pcrel_10", 8, 8, 121 MCFixupKindInfo::FKF_IsPCRel | 122 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 123 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 124 {"fixup_t2_adr_pcrel_12", 0, 32, 125 MCFixupKindInfo::FKF_IsPCRel | 126 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 127 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 128 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 129 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 130 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 131 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 132 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 133 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 134 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 135 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 136 {"fixup_arm_thumb_blx", 0, 32, 137 MCFixupKindInfo::FKF_IsPCRel | 138 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 139 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 140 {"fixup_arm_thumb_cp", 8, 8, 141 MCFixupKindInfo::FKF_IsPCRel | 142 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 143 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, 144 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 145 // - 19. 146 {"fixup_arm_movt_hi16", 12, 20, 0}, 147 {"fixup_arm_movw_lo16", 12, 20, 0}, 148 {"fixup_t2_movt_hi16", 12, 20, 0}, 149 {"fixup_t2_movw_lo16", 12, 20, 0}, 150 {"fixup_arm_mod_imm", 20, 12, 0}, 151 }; 152 153 if (Kind < FirstTargetFixupKind) 154 return MCAsmBackend::getFixupKindInfo(Kind); 155 156 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 157 "Invalid kind!"); 158 return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind]; 159 } 160 161 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { 162 switch (Flag) { 163 default: 164 break; 165 case MCAF_Code16: 166 setIsThumb(true); 167 break; 168 case MCAF_Code32: 169 setIsThumb(false); 170 break; 171 } 172 } 173 174 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const { 175 bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2]; 176 bool HasV8MBaselineOps = STI->getFeatureBits()[ARM::HasV8MBaselineOps]; 177 178 switch (Op) { 179 default: 180 return Op; 181 case ARM::tBcc: 182 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; 183 case ARM::tLDRpci: 184 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; 185 case ARM::tADR: 186 return HasThumb2 ? (unsigned)ARM::t2ADR : Op; 187 case ARM::tB: 188 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op; 189 case ARM::tCBZ: 190 return ARM::tHINT; 191 case ARM::tCBNZ: 192 return ARM::tHINT; 193 } 194 } 195 196 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const { 197 if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode()) 198 return true; 199 return false; 200 } 201 202 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, 203 uint64_t Value) const { 204 switch ((unsigned)Fixup.getKind()) { 205 case ARM::fixup_arm_thumb_br: { 206 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the 207 // low bit being an implied zero. There's an implied +4 offset for the 208 // branch, so we adjust the other way here to determine what's 209 // encodable. 210 // 211 // Relax if the value is too big for a (signed) i8. 212 int64_t Offset = int64_t(Value) - 4; 213 if (Offset > 2046 || Offset < -2048) 214 return "out of range pc-relative fixup value"; 215 break; 216 } 217 case ARM::fixup_arm_thumb_bcc: { 218 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the 219 // low bit being an implied zero. There's an implied +4 offset for the 220 // branch, so we adjust the other way here to determine what's 221 // encodable. 222 // 223 // Relax if the value is too big for a (signed) i8. 224 int64_t Offset = int64_t(Value) - 4; 225 if (Offset > 254 || Offset < -256) 226 return "out of range pc-relative fixup value"; 227 break; 228 } 229 case ARM::fixup_thumb_adr_pcrel_10: 230 case ARM::fixup_arm_thumb_cp: { 231 // If the immediate is negative, greater than 1020, or not a multiple 232 // of four, the wide version of the instruction must be used. 233 int64_t Offset = int64_t(Value) - 4; 234 if (Offset & 3) 235 return "misaligned pc-relative fixup value"; 236 else if (Offset > 1020 || Offset < 0) 237 return "out of range pc-relative fixup value"; 238 break; 239 } 240 case ARM::fixup_arm_thumb_cb: { 241 // If we have a Thumb CBZ or CBNZ instruction and its target is the next 242 // instruction it is is actually out of range for the instruction. 243 // It will be changed to a NOP. 244 int64_t Offset = (Value & ~1); 245 if (Offset == 2) 246 return "will be converted to nop"; 247 break; 248 } 249 default: 250 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); 251 } 252 return nullptr; 253 } 254 255 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 256 const MCRelaxableFragment *DF, 257 const MCAsmLayout &Layout) const { 258 return reasonForFixupRelaxation(Fixup, Value); 259 } 260 261 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, 262 const MCSubtargetInfo &STI, 263 MCInst &Res) const { 264 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); 265 266 // Sanity check w/ diagnostic if we get here w/ a bogus instruction. 267 if (RelaxedOp == Inst.getOpcode()) { 268 SmallString<256> Tmp; 269 raw_svector_ostream OS(Tmp); 270 Inst.dump_pretty(OS); 271 OS << "\n"; 272 report_fatal_error("unexpected instruction to relax: " + OS.str()); 273 } 274 275 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we 276 // have to change the operands too. 277 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && 278 RelaxedOp == ARM::tHINT) { 279 Res.setOpcode(RelaxedOp); 280 Res.addOperand(MCOperand::createImm(0)); 281 Res.addOperand(MCOperand::createImm(14)); 282 Res.addOperand(MCOperand::createReg(0)); 283 return; 284 } 285 286 // The rest of instructions we're relaxing have the same operands. 287 // We just need to update to the proper opcode. 288 Res = Inst; 289 Res.setOpcode(RelaxedOp); 290 } 291 292 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { 293 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 294 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP 295 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 296 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP 297 if (isThumb()) { 298 const uint16_t nopEncoding = 299 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; 300 uint64_t NumNops = Count / 2; 301 for (uint64_t i = 0; i != NumNops; ++i) 302 OW->write16(nopEncoding); 303 if (Count & 1) 304 OW->write8(0); 305 return true; 306 } 307 // ARM mode 308 const uint32_t nopEncoding = 309 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; 310 uint64_t NumNops = Count / 4; 311 for (uint64_t i = 0; i != NumNops; ++i) 312 OW->write32(nopEncoding); 313 // FIXME: should this function return false when unable to write exactly 314 // 'Count' bytes with NOP encodings? 315 switch (Count % 4) { 316 default: 317 break; // No leftover bytes to write 318 case 1: 319 OW->write8(0); 320 break; 321 case 2: 322 OW->write16(0); 323 break; 324 case 3: 325 OW->write16(0); 326 OW->write8(0xa0); 327 break; 328 } 329 330 return true; 331 } 332 333 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { 334 if (IsLittleEndian) { 335 // Note that the halfwords are stored high first and low second in thumb; 336 // so we need to swap the fixup value here to map properly. 337 uint32_t Swapped = (Value & 0xFFFF0000) >> 16; 338 Swapped |= (Value & 0x0000FFFF) << 16; 339 return Swapped; 340 } else 341 return Value; 342 } 343 344 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, 345 bool IsLittleEndian) { 346 uint32_t Value; 347 348 if (IsLittleEndian) { 349 Value = (SecondHalf & 0xFFFF) << 16; 350 Value |= (FirstHalf & 0xFFFF); 351 } else { 352 Value = (SecondHalf & 0xFFFF); 353 Value |= (FirstHalf & 0xFFFF) << 16; 354 } 355 356 return Value; 357 } 358 359 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value, 360 bool IsPCRel, MCContext &Ctx, 361 bool IsLittleEndian, 362 bool IsResolved) const { 363 unsigned Kind = Fixup.getKind(); 364 switch (Kind) { 365 default: 366 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type"); 367 return 0; 368 case FK_Data_1: 369 case FK_Data_2: 370 case FK_Data_4: 371 return Value; 372 case FK_SecRel_2: 373 return Value; 374 case FK_SecRel_4: 375 return Value; 376 case ARM::fixup_arm_movt_hi16: 377 if (!IsPCRel) 378 Value >>= 16; 379 LLVM_FALLTHROUGH; 380 case ARM::fixup_arm_movw_lo16: { 381 unsigned Hi4 = (Value & 0xF000) >> 12; 382 unsigned Lo12 = Value & 0x0FFF; 383 // inst{19-16} = Hi4; 384 // inst{11-0} = Lo12; 385 Value = (Hi4 << 16) | (Lo12); 386 return Value; 387 } 388 case ARM::fixup_t2_movt_hi16: 389 if (!IsPCRel) 390 Value >>= 16; 391 LLVM_FALLTHROUGH; 392 case ARM::fixup_t2_movw_lo16: { 393 unsigned Hi4 = (Value & 0xF000) >> 12; 394 unsigned i = (Value & 0x800) >> 11; 395 unsigned Mid3 = (Value & 0x700) >> 8; 396 unsigned Lo8 = Value & 0x0FF; 397 // inst{19-16} = Hi4; 398 // inst{26} = i; 399 // inst{14-12} = Mid3; 400 // inst{7-0} = Lo8; 401 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); 402 return swapHalfWords(Value, IsLittleEndian); 403 } 404 case ARM::fixup_arm_ldst_pcrel_12: 405 // ARM PC-relative values are offset by 8. 406 Value -= 4; 407 LLVM_FALLTHROUGH; 408 case ARM::fixup_t2_ldst_pcrel_12: { 409 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 410 Value -= 4; 411 bool isAdd = true; 412 if ((int64_t)Value < 0) { 413 Value = -Value; 414 isAdd = false; 415 } 416 if (Value >= 4096) { 417 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 418 return 0; 419 } 420 Value |= isAdd << 23; 421 422 // Same addressing mode as fixup_arm_pcrel_10, 423 // but with 16-bit halfwords swapped. 424 if (Kind == ARM::fixup_t2_ldst_pcrel_12) 425 return swapHalfWords(Value, IsLittleEndian); 426 427 return Value; 428 } 429 case ARM::fixup_arm_adr_pcrel_12: { 430 // ARM PC-relative values are offset by 8. 431 Value -= 8; 432 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 433 if ((int64_t)Value < 0) { 434 Value = -Value; 435 opc = 2; // 0b0010 436 } 437 if (ARM_AM::getSOImmVal(Value) == -1) { 438 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 439 return 0; 440 } 441 // Encode the immediate and shift the opcode into place. 442 return ARM_AM::getSOImmVal(Value) | (opc << 21); 443 } 444 445 case ARM::fixup_t2_adr_pcrel_12: { 446 Value -= 4; 447 unsigned opc = 0; 448 if ((int64_t)Value < 0) { 449 Value = -Value; 450 opc = 5; 451 } 452 453 uint32_t out = (opc << 21); 454 out |= (Value & 0x800) << 15; 455 out |= (Value & 0x700) << 4; 456 out |= (Value & 0x0FF); 457 458 return swapHalfWords(out, IsLittleEndian); 459 } 460 461 case ARM::fixup_arm_condbranch: 462 case ARM::fixup_arm_uncondbranch: 463 case ARM::fixup_arm_uncondbl: 464 case ARM::fixup_arm_condbl: 465 case ARM::fixup_arm_blx: 466 // These values don't encode the low two bits since they're always zero. 467 // Offset by 8 just as above. 468 if (const MCSymbolRefExpr *SRE = 469 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 470 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 471 return 0; 472 return 0xffffff & ((Value - 8) >> 2); 473 case ARM::fixup_t2_uncondbranch: { 474 Value = Value - 4; 475 Value >>= 1; // Low bit is not encoded. 476 477 uint32_t out = 0; 478 bool I = Value & 0x800000; 479 bool J1 = Value & 0x400000; 480 bool J2 = Value & 0x200000; 481 J1 ^= I; 482 J2 ^= I; 483 484 out |= I << 26; // S bit 485 out |= !J1 << 13; // J1 bit 486 out |= !J2 << 11; // J2 bit 487 out |= (Value & 0x1FF800) << 5; // imm6 field 488 out |= (Value & 0x0007FF); // imm11 field 489 490 return swapHalfWords(out, IsLittleEndian); 491 } 492 case ARM::fixup_t2_condbranch: { 493 Value = Value - 4; 494 Value >>= 1; // Low bit is not encoded. 495 496 uint64_t out = 0; 497 out |= (Value & 0x80000) << 7; // S bit 498 out |= (Value & 0x40000) >> 7; // J2 bit 499 out |= (Value & 0x20000) >> 4; // J1 bit 500 out |= (Value & 0x1F800) << 5; // imm6 field 501 out |= (Value & 0x007FF); // imm11 field 502 503 return swapHalfWords(out, IsLittleEndian); 504 } 505 case ARM::fixup_arm_thumb_bl: { 506 // The value doesn't encode the low bit (always zero) and is offset by 507 // four. The 32-bit immediate value is encoded as 508 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) 509 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 510 // The value is encoded into disjoint bit positions in the destination 511 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 512 // J = either J1 or J2 bit 513 // 514 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII 515 // 516 // Note that the halfwords are stored high first, low second; so we need 517 // to transpose the fixup value here to map properly. 518 uint32_t offset = (Value - 4) >> 1; 519 uint32_t signBit = (offset & 0x800000) >> 23; 520 uint32_t I1Bit = (offset & 0x400000) >> 22; 521 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 522 uint32_t I2Bit = (offset & 0x200000) >> 21; 523 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 524 uint32_t imm10Bits = (offset & 0x1FF800) >> 11; 525 uint32_t imm11Bits = (offset & 0x000007FF); 526 527 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); 528 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 529 (uint16_t)imm11Bits); 530 return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); 531 } 532 case ARM::fixup_arm_thumb_blx: { 533 // The value doesn't encode the low two bits (always zero) and is offset by 534 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as 535 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) 536 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 537 // The value is encoded into disjoint bit positions in the destination 538 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 539 // J = either J1 or J2 bit, 0 = zero. 540 // 541 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 542 // 543 // Note that the halfwords are stored high first, low second; so we need 544 // to transpose the fixup value here to map properly. 545 if (Value % 4 != 0) { 546 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination"); 547 return 0; 548 } 549 550 uint32_t offset = (Value - 4) >> 2; 551 if (const MCSymbolRefExpr *SRE = 552 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 553 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 554 offset = 0; 555 uint32_t signBit = (offset & 0x400000) >> 22; 556 uint32_t I1Bit = (offset & 0x200000) >> 21; 557 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 558 uint32_t I2Bit = (offset & 0x100000) >> 20; 559 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 560 uint32_t imm10HBits = (offset & 0xFFC00) >> 10; 561 uint32_t imm10LBits = (offset & 0x3FF); 562 563 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); 564 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 565 ((uint16_t)imm10LBits) << 1); 566 return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); 567 } 568 case ARM::fixup_thumb_adr_pcrel_10: 569 case ARM::fixup_arm_thumb_cp: 570 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we 571 // could have an error on our hands. 572 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { 573 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 574 if (FixupDiagnostic) { 575 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 576 return 0; 577 } 578 } 579 // Offset by 4, and don't encode the low two bits. 580 return ((Value - 4) >> 2) & 0xff; 581 case ARM::fixup_arm_thumb_cb: { 582 // CB instructions can only branch to offsets in [4, 126] in multiples of 2 583 // so ensure that the raw value LSB is zero and it lies in [2, 130]. 584 // An offset of 2 will be relaxed to a NOP. 585 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) { 586 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 587 return 0; 588 } 589 // Offset by 4 and don't encode the lower bit, which is always 0. 590 // FIXME: diagnose if no Thumb2 591 uint32_t Binary = (Value - 4) >> 1; 592 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); 593 } 594 case ARM::fixup_arm_thumb_br: 595 // Offset by 4 and don't encode the lower bit, which is always 0. 596 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && 597 !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) { 598 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 599 if (FixupDiagnostic) { 600 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 601 return 0; 602 } 603 } 604 return ((Value - 4) >> 1) & 0x7ff; 605 case ARM::fixup_arm_thumb_bcc: 606 // Offset by 4 and don't encode the lower bit, which is always 0. 607 if (!STI->getFeatureBits()[ARM::FeatureThumb2]) { 608 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 609 if (FixupDiagnostic) { 610 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 611 return 0; 612 } 613 } 614 return ((Value - 4) >> 1) & 0xff; 615 case ARM::fixup_arm_pcrel_10_unscaled: { 616 Value = Value - 8; // ARM fixups offset by an additional word and don't 617 // need to adjust for the half-word ordering. 618 bool isAdd = true; 619 if ((int64_t)Value < 0) { 620 Value = -Value; 621 isAdd = false; 622 } 623 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. 624 if (Value >= 256) { 625 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 626 return 0; 627 } 628 Value = (Value & 0xf) | ((Value & 0xf0) << 4); 629 return Value | (isAdd << 23); 630 } 631 case ARM::fixup_arm_pcrel_10: 632 Value = Value - 4; // ARM fixups offset by an additional word and don't 633 // need to adjust for the half-word ordering. 634 LLVM_FALLTHROUGH; 635 case ARM::fixup_t2_pcrel_10: { 636 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 637 Value = Value - 4; 638 bool isAdd = true; 639 if ((int64_t)Value < 0) { 640 Value = -Value; 641 isAdd = false; 642 } 643 // These values don't encode the low two bits since they're always zero. 644 Value >>= 2; 645 if (Value >= 256) { 646 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 647 return 0; 648 } 649 Value |= isAdd << 23; 650 651 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords 652 // swapped. 653 if (Kind == ARM::fixup_t2_pcrel_10) 654 return swapHalfWords(Value, IsLittleEndian); 655 656 return Value; 657 } 658 case ARM::fixup_arm_pcrel_9: 659 Value = Value - 4; // ARM fixups offset by an additional word and don't 660 // need to adjust for the half-word ordering. 661 LLVM_FALLTHROUGH; 662 case ARM::fixup_t2_pcrel_9: { 663 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 664 Value = Value - 4; 665 bool isAdd = true; 666 if ((int64_t)Value < 0) { 667 Value = -Value; 668 isAdd = false; 669 } 670 // These values don't encode the low bit since it's always zero. 671 if (Value & 1) { 672 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup"); 673 return 0; 674 } 675 Value >>= 1; 676 if (Value >= 256) { 677 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 678 return 0; 679 } 680 Value |= isAdd << 23; 681 682 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords 683 // swapped. 684 if (Kind == ARM::fixup_t2_pcrel_9) 685 return swapHalfWords(Value, IsLittleEndian); 686 687 return Value; 688 } 689 case ARM::fixup_arm_mod_imm: 690 Value = ARM_AM::getSOImmVal(Value); 691 if (Value >> 12) { 692 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 693 return 0; 694 } 695 return Value; 696 } 697 } 698 699 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm, 700 const MCAsmLayout &Layout, 701 const MCFixup &Fixup, 702 const MCFragment *DF, 703 const MCValue &Target, uint64_t &Value, 704 bool &IsResolved) { 705 const MCSymbolRefExpr *A = Target.getSymA(); 706 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr; 707 // MachO (the only user of "Value") tries to make .o files that look vaguely 708 // pre-linked, so for MOVW/MOVT and .word relocations they put the Thumb bit 709 // into the addend if possible. Other relocation types don't want this bit 710 // though (branches couldn't encode it if it *was* present, and no other 711 // relocations exist) and it can interfere with checking valid expressions. 712 if ((unsigned)Fixup.getKind() == FK_Data_4 || 713 (unsigned)Fixup.getKind() == ARM::fixup_arm_movw_lo16 || 714 (unsigned)Fixup.getKind() == ARM::fixup_arm_movt_hi16 || 715 (unsigned)Fixup.getKind() == ARM::fixup_t2_movw_lo16 || 716 (unsigned)Fixup.getKind() == ARM::fixup_t2_movt_hi16) { 717 if (Sym) { 718 if (Asm.isThumbFunc(Sym)) 719 Value |= 1; 720 } 721 } 722 if (IsResolved && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) { 723 assert(Sym && "How did we resolve this?"); 724 725 // If the symbol is external the linker will handle it. 726 // FIXME: Should we handle it as an optimization? 727 728 // If the symbol is out of range, produce a relocation and hope the 729 // linker can handle it. GNU AS produces an error in this case. 730 if (Sym->isExternal() || Value >= 0x400004) 731 IsResolved = false; 732 } 733 // We must always generate a relocation for BL/BLX instructions if we have 734 // a symbol to reference, as the linker relies on knowing the destination 735 // symbol's thumb-ness to get interworking right. 736 if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx || 737 (unsigned)Fixup.getKind() == ARM::fixup_arm_blx || 738 (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl || 739 (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl)) 740 IsResolved = false; 741 } 742 743 /// getFixupKindNumBytes - The number of bytes the fixup may change. 744 static unsigned getFixupKindNumBytes(unsigned Kind) { 745 switch (Kind) { 746 default: 747 llvm_unreachable("Unknown fixup kind!"); 748 749 case FK_Data_1: 750 case ARM::fixup_arm_thumb_bcc: 751 case ARM::fixup_arm_thumb_cp: 752 case ARM::fixup_thumb_adr_pcrel_10: 753 return 1; 754 755 case FK_Data_2: 756 case ARM::fixup_arm_thumb_br: 757 case ARM::fixup_arm_thumb_cb: 758 case ARM::fixup_arm_mod_imm: 759 return 2; 760 761 case ARM::fixup_arm_pcrel_10_unscaled: 762 case ARM::fixup_arm_ldst_pcrel_12: 763 case ARM::fixup_arm_pcrel_10: 764 case ARM::fixup_arm_pcrel_9: 765 case ARM::fixup_arm_adr_pcrel_12: 766 case ARM::fixup_arm_uncondbl: 767 case ARM::fixup_arm_condbl: 768 case ARM::fixup_arm_blx: 769 case ARM::fixup_arm_condbranch: 770 case ARM::fixup_arm_uncondbranch: 771 return 3; 772 773 case FK_Data_4: 774 case ARM::fixup_t2_ldst_pcrel_12: 775 case ARM::fixup_t2_condbranch: 776 case ARM::fixup_t2_uncondbranch: 777 case ARM::fixup_t2_pcrel_10: 778 case ARM::fixup_t2_pcrel_9: 779 case ARM::fixup_t2_adr_pcrel_12: 780 case ARM::fixup_arm_thumb_bl: 781 case ARM::fixup_arm_thumb_blx: 782 case ARM::fixup_arm_movt_hi16: 783 case ARM::fixup_arm_movw_lo16: 784 case ARM::fixup_t2_movt_hi16: 785 case ARM::fixup_t2_movw_lo16: 786 return 4; 787 788 case FK_SecRel_2: 789 return 2; 790 case FK_SecRel_4: 791 return 4; 792 } 793 } 794 795 /// getFixupKindContainerSizeBytes - The number of bytes of the 796 /// container involved in big endian. 797 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { 798 switch (Kind) { 799 default: 800 llvm_unreachable("Unknown fixup kind!"); 801 802 case FK_Data_1: 803 return 1; 804 case FK_Data_2: 805 return 2; 806 case FK_Data_4: 807 return 4; 808 809 case ARM::fixup_arm_thumb_bcc: 810 case ARM::fixup_arm_thumb_cp: 811 case ARM::fixup_thumb_adr_pcrel_10: 812 case ARM::fixup_arm_thumb_br: 813 case ARM::fixup_arm_thumb_cb: 814 // Instruction size is 2 bytes. 815 return 2; 816 817 case ARM::fixup_arm_pcrel_10_unscaled: 818 case ARM::fixup_arm_ldst_pcrel_12: 819 case ARM::fixup_arm_pcrel_10: 820 case ARM::fixup_arm_adr_pcrel_12: 821 case ARM::fixup_arm_uncondbl: 822 case ARM::fixup_arm_condbl: 823 case ARM::fixup_arm_blx: 824 case ARM::fixup_arm_condbranch: 825 case ARM::fixup_arm_uncondbranch: 826 case ARM::fixup_t2_ldst_pcrel_12: 827 case ARM::fixup_t2_condbranch: 828 case ARM::fixup_t2_uncondbranch: 829 case ARM::fixup_t2_pcrel_10: 830 case ARM::fixup_t2_adr_pcrel_12: 831 case ARM::fixup_arm_thumb_bl: 832 case ARM::fixup_arm_thumb_blx: 833 case ARM::fixup_arm_movt_hi16: 834 case ARM::fixup_arm_movw_lo16: 835 case ARM::fixup_t2_movt_hi16: 836 case ARM::fixup_t2_movw_lo16: 837 case ARM::fixup_arm_mod_imm: 838 // Instruction size is 4 bytes. 839 return 4; 840 } 841 } 842 843 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data, 844 unsigned DataSize, uint64_t Value, bool IsPCRel, 845 MCContext &Ctx) const { 846 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); 847 Value = adjustFixupValue(Fixup, Value, IsPCRel, Ctx, IsLittleEndian, true); 848 if (!Value) 849 return; // Doesn't change encoding. 850 851 unsigned Offset = Fixup.getOffset(); 852 assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!"); 853 854 // Used to point to big endian bytes. 855 unsigned FullSizeBytes; 856 if (!IsLittleEndian) { 857 FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind()); 858 assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!"); 859 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); 860 } 861 862 // For each byte of the fragment that the fixup touches, mask in the bits from 863 // the fixup value. The Value has been "split up" into the appropriate 864 // bitfields above. 865 for (unsigned i = 0; i != NumBytes; ++i) { 866 unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i); 867 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 868 } 869 } 870 871 namespace CU { 872 873 /// \brief Compact unwind encoding values. 874 enum CompactUnwindEncodings { 875 UNWIND_ARM_MODE_MASK = 0x0F000000, 876 UNWIND_ARM_MODE_FRAME = 0x01000000, 877 UNWIND_ARM_MODE_FRAME_D = 0x02000000, 878 UNWIND_ARM_MODE_DWARF = 0x04000000, 879 880 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000, 881 882 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001, 883 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002, 884 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004, 885 886 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008, 887 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010, 888 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020, 889 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040, 890 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080, 891 892 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00, 893 894 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF 895 }; 896 897 } // end CU namespace 898 899 /// Generate compact unwind encoding for the function based on the CFI 900 /// instructions. If the CFI instructions describe a frame that cannot be 901 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which 902 /// tells the runtime to fallback and unwind using dwarf. 903 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding( 904 ArrayRef<MCCFIInstruction> Instrs) const { 905 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n"); 906 // Only armv7k uses CFI based unwinding. 907 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K) 908 return 0; 909 // No .cfi directives means no frame. 910 if (Instrs.empty()) 911 return 0; 912 // Start off assuming CFA is at SP+0. 913 int CFARegister = ARM::SP; 914 int CFARegisterOffset = 0; 915 // Mark savable registers as initially unsaved 916 DenseMap<unsigned, int> RegOffsets; 917 int FloatRegCount = 0; 918 // Process each .cfi directive and build up compact unwind info. 919 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 920 int Reg; 921 const MCCFIInstruction &Inst = Instrs[i]; 922 switch (Inst.getOperation()) { 923 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa 924 CFARegisterOffset = -Inst.getOffset(); 925 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 926 break; 927 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset 928 CFARegisterOffset = -Inst.getOffset(); 929 break; 930 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register 931 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 932 break; 933 case MCCFIInstruction::OpOffset: // DW_CFA_offset 934 Reg = MRI.getLLVMRegNum(Inst.getRegister(), true); 935 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 936 RegOffsets[Reg] = Inst.getOffset(); 937 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 938 RegOffsets[Reg] = Inst.getOffset(); 939 ++FloatRegCount; 940 } else { 941 DEBUG_WITH_TYPE("compact-unwind", 942 llvm::dbgs() << ".cfi_offset on unknown register=" 943 << Inst.getRegister() << "\n"); 944 return CU::UNWIND_ARM_MODE_DWARF; 945 } 946 break; 947 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc 948 // Ignore 949 break; 950 default: 951 // Directive not convertable to compact unwind, bail out. 952 DEBUG_WITH_TYPE("compact-unwind", 953 llvm::dbgs() 954 << "CFI directive not compatiable with comact " 955 "unwind encoding, opcode=" << Inst.getOperation() 956 << "\n"); 957 return CU::UNWIND_ARM_MODE_DWARF; 958 break; 959 } 960 } 961 962 // If no frame set up, return no unwind info. 963 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0)) 964 return 0; 965 966 // Verify standard frame (lr/r7) was used. 967 if (CFARegister != ARM::R7) { 968 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is " 969 << CFARegister 970 << " instead of r7\n"); 971 return CU::UNWIND_ARM_MODE_DWARF; 972 } 973 int StackAdjust = CFARegisterOffset - 8; 974 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) { 975 DEBUG_WITH_TYPE("compact-unwind", 976 llvm::dbgs() 977 << "LR not saved as standard frame, StackAdjust=" 978 << StackAdjust 979 << ", CFARegisterOffset=" << CFARegisterOffset 980 << ", lr save at offset=" << RegOffsets[14] << "\n"); 981 return CU::UNWIND_ARM_MODE_DWARF; 982 } 983 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) { 984 DEBUG_WITH_TYPE("compact-unwind", 985 llvm::dbgs() << "r7 not saved as standard frame\n"); 986 return CU::UNWIND_ARM_MODE_DWARF; 987 } 988 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME; 989 990 // If var-args are used, there may be a stack adjust required. 991 switch (StackAdjust) { 992 case 0: 993 break; 994 case 4: 995 CompactUnwindEncoding |= 0x00400000; 996 break; 997 case 8: 998 CompactUnwindEncoding |= 0x00800000; 999 break; 1000 case 12: 1001 CompactUnwindEncoding |= 0x00C00000; 1002 break; 1003 default: 1004 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() 1005 << ".cfi_def_cfa stack adjust (" 1006 << StackAdjust << ") out of range\n"); 1007 return CU::UNWIND_ARM_MODE_DWARF; 1008 } 1009 1010 // If r6 is saved, it must be right below r7. 1011 static struct { 1012 unsigned Reg; 1013 unsigned Encoding; 1014 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6}, 1015 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5}, 1016 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4}, 1017 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12}, 1018 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11}, 1019 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10}, 1020 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9}, 1021 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}}; 1022 1023 int CurOffset = -8 - StackAdjust; 1024 for (auto CSReg : GPRCSRegs) { 1025 auto Offset = RegOffsets.find(CSReg.Reg); 1026 if (Offset == RegOffsets.end()) 1027 continue; 1028 1029 int RegOffset = Offset->second; 1030 if (RegOffset != CurOffset - 4) { 1031 DEBUG_WITH_TYPE("compact-unwind", 1032 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at " 1033 << RegOffset << " but only supported at " 1034 << CurOffset << "\n"); 1035 return CU::UNWIND_ARM_MODE_DWARF; 1036 } 1037 CompactUnwindEncoding |= CSReg.Encoding; 1038 CurOffset -= 4; 1039 } 1040 1041 // If no floats saved, we are done. 1042 if (FloatRegCount == 0) 1043 return CompactUnwindEncoding; 1044 1045 // Switch mode to include D register saving. 1046 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK; 1047 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D; 1048 1049 // FIXME: supporting more than 4 saved D-registers compactly would be trivial, 1050 // but needs coordination with the linker and libunwind. 1051 if (FloatRegCount > 4) { 1052 DEBUG_WITH_TYPE("compact-unwind", 1053 llvm::dbgs() << "unsupported number of D registers saved (" 1054 << FloatRegCount << ")\n"); 1055 return CU::UNWIND_ARM_MODE_DWARF; 1056 } 1057 1058 // Floating point registers must either be saved sequentially, or we defer to 1059 // DWARF. No gaps allowed here so check that each saved d-register is 1060 // precisely where it should be. 1061 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 }; 1062 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) { 1063 auto Offset = RegOffsets.find(FPRCSRegs[Idx]); 1064 if (Offset == RegOffsets.end()) { 1065 DEBUG_WITH_TYPE("compact-unwind", 1066 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1067 << MRI.getName(FPRCSRegs[Idx]) 1068 << " not saved\n"); 1069 return CU::UNWIND_ARM_MODE_DWARF; 1070 } else if (Offset->second != CurOffset - 8) { 1071 DEBUG_WITH_TYPE("compact-unwind", 1072 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1073 << MRI.getName(FPRCSRegs[Idx]) 1074 << " saved at " << Offset->second 1075 << ", expected at " << CurOffset - 8 1076 << "\n"); 1077 return CU::UNWIND_ARM_MODE_DWARF; 1078 } 1079 CurOffset -= 8; 1080 } 1081 1082 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8); 1083 } 1084 1085 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) { 1086 unsigned AK = ARM::parseArch(Arch); 1087 switch (AK) { 1088 default: 1089 return MachO::CPU_SUBTYPE_ARM_V7; 1090 case ARM::AK_ARMV4T: 1091 return MachO::CPU_SUBTYPE_ARM_V4T; 1092 case ARM::AK_ARMV5T: 1093 case ARM::AK_ARMV5TE: 1094 case ARM::AK_ARMV5TEJ: 1095 return MachO::CPU_SUBTYPE_ARM_V5; 1096 case ARM::AK_ARMV6: 1097 case ARM::AK_ARMV6K: 1098 return MachO::CPU_SUBTYPE_ARM_V6; 1099 case ARM::AK_ARMV7A: 1100 return MachO::CPU_SUBTYPE_ARM_V7; 1101 case ARM::AK_ARMV7S: 1102 return MachO::CPU_SUBTYPE_ARM_V7S; 1103 case ARM::AK_ARMV7K: 1104 return MachO::CPU_SUBTYPE_ARM_V7K; 1105 case ARM::AK_ARMV6M: 1106 return MachO::CPU_SUBTYPE_ARM_V6M; 1107 case ARM::AK_ARMV7M: 1108 return MachO::CPU_SUBTYPE_ARM_V7M; 1109 case ARM::AK_ARMV7EM: 1110 return MachO::CPU_SUBTYPE_ARM_V7EM; 1111 } 1112 } 1113 1114 MCAsmBackend *llvm::createARMAsmBackend(const Target &T, 1115 const MCRegisterInfo &MRI, 1116 const Triple &TheTriple, StringRef CPU, 1117 const MCTargetOptions &Options, 1118 bool isLittle) { 1119 switch (TheTriple.getObjectFormat()) { 1120 default: 1121 llvm_unreachable("unsupported object format"); 1122 case Triple::MachO: { 1123 MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName()); 1124 return new ARMAsmBackendDarwin(T, TheTriple, MRI, CS); 1125 } 1126 case Triple::COFF: 1127 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); 1128 return new ARMAsmBackendWinCOFF(T, TheTriple); 1129 case Triple::ELF: 1130 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); 1131 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 1132 return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle); 1133 } 1134 } 1135 1136 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, 1137 const MCRegisterInfo &MRI, 1138 const Triple &TT, StringRef CPU, 1139 const MCTargetOptions &Options) { 1140 return createARMAsmBackend(T, MRI, TT, CPU, Options, true); 1141 } 1142 1143 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, 1144 const MCRegisterInfo &MRI, 1145 const Triple &TT, StringRef CPU, 1146 const MCTargetOptions &Options) { 1147 return createARMAsmBackend(T, MRI, TT, CPU, Options, false); 1148 } 1149 1150 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T, 1151 const MCRegisterInfo &MRI, 1152 const Triple &TT, StringRef CPU, 1153 const MCTargetOptions &Options) { 1154 return createARMAsmBackend(T, MRI, TT, CPU, Options, true); 1155 } 1156 1157 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T, 1158 const MCRegisterInfo &MRI, 1159 const Triple &TT, StringRef CPU, 1160 const MCTargetOptions &Options) { 1161 return createARMAsmBackend(T, MRI, TT, CPU, Options, false); 1162 } 1163